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ABSTRACT 

 

 

A NOVEL IMPLEMENTATION OF AXISYMMETRICALLY 

ORTHOTROPIC MATERIAL MODEL TO LONGITUDINALLY CUT 

WOOD-LIKE THICK PLATES FOR EXAMINING THE 

FREQUENCY BEHAVIOR USING FEM 

 

Wood is usually modeled as a classical orthotropic material. In actuality, the 

principal axes of orthotropy are dependent on the location. In fact, the principal axes are 

aligned with the cylindrical axes of the annual rings that form the trunk from which the 

wood is cut. These axes are conventionally named as longitudinal (L), radial (R), and 

tangential (T). There exist numerious papers that studied the vibrational characterictics, 

such as resonance and mode shapes, of the plates with different boundary conditions. To 

the best of our knowledge, all of these studies used either isotropic or classically 

orthotropic material behavior in the analyses. In this study, a new plate type finite element 

is developed that takes into account the variation in the alignment of the principal axes of 

orthotropy, and a number of analyses are performed using this developed model. 
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ÖZET 

 

 

AĞAÇ VE BENZERİ YAPIDAKİ BOYLAMSAL OLARAK KESİLMİŞ 

İNCE PLAKALARIN SONLU ELEMANLAR METODU 

KULLANILARAK FREKANS DAVRANIŞLARININ 

İNCELENMESİNDE AKSİSİMETRİK ORTOTROPİK MALZEME 

MODELİNİN KULLANIMININ YENİ BİR UYGULAMASI 

 

Ağaç genellikle klasik ortotropik malzeme olarak modellenmektedir. Gerçekte 

ortotropinin esas eksenleri konuma bağlı olarak değişmektedir. Gerçekte bu esas eksenler 

ağacın gövdesini oluşturan yıllık halkaların silindirik eksenleriyle hizalanmış durumdadır. 

Bu eksenler geleneksel olarak boylamsal, radyal ve teğetsel diye adlandırılır. Rezonans ve 

mod şekli gibi titreşim karakteristiklerinin çalışıldığı çok sayıda makale bulunmaktadır. 

Bilindiği kadarıyla bu mevcut çalışmaların tamamı analizlerinde izotropik ya da klasik 

ortotropik malzeme modellerinden birini kullanmaktadır. Bu çalışmamızda ortotropinin 

esas eksenlerinin konumlanmasındaki varyasyonu dikkate alacak şekilde yeni bir sonlu 

elemanlar element tipi geliştirilmiştir ve bu model kullanılarak birçok farklı analiz 

gerçekleştirilmiştir. 
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1.  INTRODUCTION 

 

 

Orthotropic plates are commonly used in many fields of structural engineering such 

as aerospace, ocean structures, mechanical, and naval [1]. There are numerous types of 

solutions for the vibration of the orthotropic rectangular plates in the literature. One of the 

earliest studies about the fundamental frequency of vibration of orthotropic plates is done 

by Hearmon [2]. He defined the most fundamental differential equations governing the 

vibration of plates, and derived the frequency equations for the plates clamped at egdes and 

simply supported at edges. The derivations of fundamental frequency were done using the 

Rayleigh method where the maximum potential energy of bending is assumed as equal to 

the maximum kinetic energy, and the frequency of vibration results are found from this 

equality. The  boundary condition definitions are given by Timoshenko in [3]. Leissa [4] 

also applied Rayleigh and Rayleigh-Ritz methods of analysis to obtain the natural 

frequencies with the use of beam characteristic functions. In another one of Liessa’s works 

[5] studied free vibrations of rectangular plates for several isotropic cases and boundary 

conditions. Hearmon [6] improved Warburton’s study [7] for specially orthotropic plates 

with any of its edges either clamped or supported. Jones and Milne [8] analysed the 

transverse vibrations of rectangular plates by using the extended Kantorovich method 

which is a Galerkin-based averaging technique. The closed form solution is obtained for 

several combinations of boundary conditions. Bhat [9] obtained the natural frequency 

response of rectangular plates by employing a set of beam characteristic orthogonal 

polynomials in Rayleigh-Ritz method. Gram-Schmidt process is used to generate the 

orthogonal polynomials, and once the natural frequencies are obtained using the orthogonal 

polynomial functions, the results are compared with the previous studies. Sakata et al. [10] 

obtained the natural frequencies of rectangular plates by successive reduction of the 

governing partial differential equation. They assumed an approximate solution satisfying 

the boundary conditions along one direction and employing the Kantorovich method. Kim 

[11] used Rayleigh-Ritz method with products of simple polynomials as the admissable 

functions. The study analyzed the natural frequencies of orthotropic, elliptical and circular 

plates with free, simply supported, and clamped boundary conditions. Convergence tests 

were conducted for different geometrical aspect ratios, and the lowest three frequency-
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related parameters were compared. Biancolini [12] defined a new quick approximate 

method using a particular formulation of the Rayleigh method for the solution of free 

vibrations of thin orthotropic rectangular plates at various boundary conditions. The 

method was base on the assumption that the deformed shape w(x,y) is equal to the 

superposition of wi(x,y) due to fundamental frequency of each part. However, this method 

is useless for the isotropic plates with complex shapes of nodal lines. Rossi, who was one 

of the scientists that studied the subject numerically, defined a finite element procedure to 

compare analytical and numerical solutions of vibrations of a rectangular orthotropic plate 

with a free edges [13]. 

 

On the other hand, there are also some studies of frequencies of orthotropic plates 

with varying thickness in literature. Generally, the aims of designing a plate with tapered 

thickness are, 1) to alter the resonant frequency, and 2) to reduce the weight and size of the 

structures. Sakata [14] derived the characteristic equation of a clamped orthotropic 

rectangular plate with varying thickness in one direction parallel to the side, by the use of a 

double trigonometric solution. In the same study,  the influence of flexural rigidities on the 

natural frequency responses for both isotropic and orthotropic cases were illustrated. A 

new set of beam functions using with the Rayleigh-Ritz method were developed by 

Cheung [15], and the free vibrations of linearly tapered and parabotically tapered 

rectangular plates for different boundary conditions were analysed in different directions 

using various taper factors. Grigorenko and Tregubenko [16] made a comparison of the 

dimensionless fundamental frequency of rectangular plates with variable thicknesses using 

different methods such as Rayleigh-Ritz’s method, Edmann’s method, and Bolotin’s 

method. They also developed an alternative analytical solution to the problem using the 

Kirchhoff-Love theory. Huang et al. [17] applied the Green’s function to establish the 

characteristic equation of free vibration of non-uniform rectangular orthotropic plates. 

They transformed the differential equations into integral equations by taking into 

consideration the boundary conditions, aspect ratios, and the variation of the thickness. 

They used variables thicknesses in one and two directions, and gave the natural frequency 

responses for different boundary conditions, and different mode sequence numbers. There 

are also some studies for natural frequencies of circular plates with non-uniform thickness. 

Studies of Dian-Yun Chen et al.[18], and Chakraverty [19] et al. are the examples of such 
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analyses. This should also be noted here that there are not as much studies of natural 

frequencies of circular plates in the literature as rectangular plates.  

 

The studies mentioned above are related with the frequency response of plates 

made of isotropic or orthotropic materials. Now, some further studies of orthotropic plates, 

specifically made of wood (an axisymmetrically-orthotropic composite material found in 

nature) will be mentioned. Hearmon [2], was found to be one of the pioneers in this field, 

who used the Rayleigh and Ritz methods to derive expressions leading to natural 

frequencies of orthotropic plates made of wood. However, the axisymmetric nature of 

wood’s orthotropy was neglected. He also conducted  experiments on wood and plywood 

plates to determine orthotropic elasticity parameters, and compare frequencies of vibration 

between the numerical results and experimental ones. Goodman et al. [20] provided a 

monumental experimental study, with nearly 900 experiments on wood samples made of 

differents types of logs, cut at various grain and ring angles. They obtained the orthotropic 

elastic parameters of four different anatomical families of trees. The effective modulus 

variation with respect to grain and ring angles were provided in their study, both 

theoretically and experimentally. Mascia et al. [21] listed some remarks about orthotropic 

elastic models applied to wood. They listed some previous studies about the effect of grain 

angles of wood,  macroscopic structure of wood, and gave some theoretical and 

experimental examples. Noack et al. [22] determined the fundamental equations 

concerning the second boundary value problem of theory of elasticity for construction 

wood assuming the plain stress condition. Lawrence et al. [23] compared elastic constants 

that were obtained by mechanical testing with those found by ultrasonic wave propagation 

method. 

 

Many studies mentioned above are about the experimental determination of 

material parameters of wood which is not a trivial procedure due to the nonhomogeneous 

nature of wood's microstructure. Wood does not exhibit material symmetry as understood 

in the conventional sense-where the principal directions of orthotropy are spatially 

invariant-, especially when it is cut in the form of plates. This has been an ongoing concern 

in the previous studies, as stated in [20] and [21]. Because of the axisymmetric nature of its 

grain structure, the principal directions of orthotropy varies continuously as a function of 
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spatial coordinates. Therefore, the idealized orthotropic elastic behavior may not be as 

suitable for wood as previous studies have hoped for, in characterizing its mechanical and 

vibrational behavior. The variation in the principal orthotropic directions of wood, is 

chiefly due to the ring curvature and also possibly to the spirally grained structure as 

indicated in [20]. As noted in Goodman’s study, small deviations in grains can produce 

large changes in the stiffness matrix of wood.  

 

In this study, we aimed at developing a concise formulation that takes into account 

the aforementioned axisymmetric nature of orthotropy, exhibited by wood. The 

formulation is especially suitable for finite elements analysis of the frequency response of 

wooden plates, that were cut longitudinally from logs. The distance between the plane of 

cut and the longitudinal axis of the log - which is used to calculate the ring curvature-, is 

the main parameter for the determination of a pointwise stiffness matrix. An existing 

quadrilateral plate-type finite element subroutine was modified, and the calculation of 

stiffness matrix was re-defined. The new element type was tested under a set of conditions.  
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2.  THEORY 

 

 

2.1.  CONSTITUTIVE BEHAVIOR 

 

2.1.1.  Anisotropy, Orthotropy and Isotropy 

 

The relationship between the strain and the applied stress is commonly used to 

characterize a material. These stress-strain relationships for linear materials are known as 

Hooke’s law. In most general form of Hooke’s law 81 material constants are required. 

Symmetry in the stress and strain tensors reduces this number to 36 elastic constants. The 

matrix is symmetric which reduces the number of elastic constants to 21. The 21 material 

constants can be reduced to 9 for a cylindrical system if symmetry exists in the material. 

 

In general, each stress component is a function of all strain components. The 

generalized Hooke’s law relating stresses to strains can be written in contracted notation as 

 

 �� = ����� (2.1)

  

where σi are the components of the stress tensor, Sij is the stiffness matrix, and εj are the 

components of strain tensor for i, j = 1, 2, ..., 6. In writing Eqn.(2.1), the summation 

convention is implied over the repeating indices. The contracted notation is defined in 

comparison to the usual tensor notation for three-dimensional strains and stresses for 

situations in which the stress and strain tensors are symmetric. Therefore in contracted 

notation, the strains are 

 

 ε�  =  ε	  =   
�
� (2.2)
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 ε  =  ε�  =   
�
� (2.3)

  

 ε�  =  ε�  =   
�
�  (2.4)

  

 ε�  =  γ��  =    
�
� + 
�
�  (2.5)

  

 ε�  =  γ�	  =    
�
� +  
�
� (2.6)

  

 ε�  =  γ	�  =   
�
� +  
�
� (2.7)

 

where u, v, and w are displacements in the x, y, and z directions [24]. 

 

The stiffness matrix, Sij, in Eqn. (2.1) has 36 constants. Hovewer, only some of these 

are independent for elastic materials, when the strain energy is considered. For elastic 

materials the strain energy density per unit volume is defined as 

 

 dU = σ�dε� (2.8)

 

where the stress σi  acts through an infinitesimal strain dεi. Substituting for σi from Eqn. 

(2.1) we get 

 

 dU = S��ε�dε� (2.9)

 

Upon integration, the strain energy density per unit of volume becomes 
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 W =  12 S��ε�ε� (2.10)

 

Note that the Hooke’s law in Eqn. (2.1) can be derived from Eqn (2.11) by differentiating 

the strain energy density with respect to the strain components as 

 

 
∂W∂εi = S��ε� (2.11)

 

Differentiating this equation once more with respect to the εj, we get: 

 

 
∂2W∂εi∂εj = S�� (2.12)

 

which implies the symmetry Sij = Sij since the order of differentation of W is immaterial. 

 

From the symmetry consideration of Sij shown above, the stiffness matrix has only 

21 independent constants. In similar manner, the compliance matrix Cij which gives the 

strain in terms of stresses as 

 

 �� = &���� (2.13)

 

for i, j = 1, 2, ....., 6 can be shown to be symmetric based on the same consideration above. 

 

With the reduction operation from 36 to 21 independent constants, the stress-strain 

relation (in Voigt notation) becomes 

 

 

'
(()

σ1σ2σ3σ4σ5σ6.
//0 =

122
223
S11 S12 S13 S14 S15 S16S12 S22 S23 S24 S25 S26S13 S23 S33 S34 S35 S36S14 S24 S34 S44 S45 S46S15 S25 S35 S45 S55 S56S16 S26 S36 S46 S56 S66455

556
'
(()

ε1ε2ε3ε4ε5ε6.
//0 (2.14)
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where σ1=σx, σ2=σy, σ3=σz, σ4=τyz, σ5=τzx, σ6=τxy, ε1= εx, ε2= εy, ε3= εz, ε4= 2εyz, ε5= 2εzx, 

ε6= 2εxy. 

 

This is the most general expression defining the stress-strain relationship within the 

framework of linear elasticity. The Eqn (2.14) is referred to as characterizing an 

anisotropic material which does not take into account any planes of symmetry in material 

properties. 

 

When a symmetry plane in regard to the properties of a material brings certain 

restrictions as far as the components of the stiffness matrix involved. When a single plane 

of material property symmetry exists, the stress-strain relations reduce to the form: 

 

 

'
(()

σ1σ2σ3σ4σ5σ6.
//0 =

122
223
S11 S12 S13 0 0 S16S12 S22 S23 0 0 S26S13 S23 S33 0 0 S360 0 0 S44 S45 00 0 0 S45 S55 0S16 S26 S36 0 0 S66455

556
'
(()

ε1ε2ε3ε4ε5ε6.
//0 (2.15)

 

where the symmetry plane is z = 0. Such a material is called a monoclinic material which 

has 13 independent elastic constants. 

 

If a material possesses symmetry with respect to two orthogonal planes, then it is 

necessarly true that symmetry conditions also prevail in the third mutually orthogonal 

plane [25]. In that case, the relation expressed in a system of Cartesian coordinates aligned 

with the principal material directions is  

 

 

'
(()

σ1σ2σ3σ4σ5σ6.
//0 =

122
223
S11 S12 S13 0 0 0S12 S22 S23 0 0 0S13 S23 S33 0 0 00 0 0 S44 0 00 0 0 0 S55 00 0 0 0 0 S66455

556
'
(()

ε1ε2ε3ε4ε5ε6.
//0 (2.16)
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where  

 

 S11=
1-ν23ν32

∆
∗ E1 (2.17)

  

 S12=
ν12+ν31ν23

∆
∗ E1 = ν12+ν32ν13

∆
∗ E2 (2.18)

  

 S13=
ν31+ν21ν32

∆
∗ E1 = ν13+ν12ν23

∆
∗ E3 (2.19)

  

 S22=
1-ν13ν31

∆
∗ E2 (2.20)

  

 S23=
ν32+ν12ν31

∆
∗ E2 = ν23+ν21ν13

∆
∗ E3 (2.21)

  

 S33=
1-ν12ν21

∆
∗ E3 (2.22)

  

 ��� = �� (2.23)

  

 ��� = ��� (2.24)

  

 ��� = �� (2.25)

  

 ∆ = 1- ν12ν21 – ν23ν32 – ν31ν13 – 2*ν21ν32ν13 (2.26)

 



10 

 

Here, E1, E2 and E3 are the Young’s moduli in principal material directions, and G23, 

G31, and G12 are shear moduli values in the principal material planes associated with these 

directions. Finally, νij is the Poisson’s ratio for transverse strain in the j-direction when 

stressed in the i-direction (i.e. νij = - εj / εi). 

 

This type of a constitutive relation completes the description of the orthotropic 

behavior in a material. In this case, there is no interaction between normal stresses and 

shearing strains contrary to anisotropic materials. In addition, there is no interaction 

between sheraing stresses and normal strains as well as none between shearing stresses and 

shearing strains in different planes. For an orthotropic material, there are only nine 

independent constants in the stiffness matrix. 

 

When the material properties exhibit no dependence to the orientation along which 

they are tested, they are said to have an infinite number of planes of material property 

symmetry, and the relations simplify to that of an isotropic material which has only two 

independent constants in the stiffness matrix. The related matrix is shown below: 

 

 

'
(()

σ1σ2σ3σ4σ5σ6.
//0 =

122
223
S11 S12 S12 0 0 0S12 S11 S12 0 0 0S12 S12 S11 0 0 00 0 0 (S11 −  S12)/2 0 00 0 0 0 (S11 −  S12)/2 00 0 0 0 0 (S11 −  S12)/2455

556
'
(()

ε1ε2ε3ε4ε5ε6.
//0 (2.27)

  

2.1.2.  Orthotropy in Wood 

 

Wood is known to be one of the most common types of orthotropic materials found 

in nature. It has unique and independent mechanical properties in the directions of three 

mutually perpendicular axes: Longitudinal (1), tangential (2) and radial (3). The 

longitudinal axis L is parallel to fiber (grain); the radial axis R is normal to the growth 

rings (perpendicular to the grain in the radial direction); and the tangential axis T is 

perpendicular to the grain but tangent to the growth rings. These axes are shown in Figure 

2.1. The mechanical properties of wood in the radial direction are much higher than those 
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in the tangential direction. In addition, both radial and tangential properties are about one 

order of magnitude lower than the properties in the longitudinal direction [28]. The 

difference between the mechanical properties of wood in tangential and radial directions is 

explained by the cell shape in the cross-section plane causing the anisotropy in the 

transverse plane [29] and/or by the effect of rays in the radial direction [30]. In addition, 

wood’s fracture toughness is very high compared with relative weakness of its 

constituents. The fracture toughness of the wood is also affected by its microstructure. So, 

it is observed that the toughness in the TR direction is higher than that in the TL direction 

[31]. There are also some other characteristics that make wood different from composites: 

effect of moisture which leads to decrease of the strength of wood, dimensional instability 

which can be seen as a result of the moisture effect, time-dependent deformation which is a 

result of the movement of the non-crystalline (amorphous) sections of the cellulose 

microfibrils, large variability in properties among the species of the wood [32]. 

 

Interestingly, due to the natural formation of the growth of trees, a wooden log 

exhibits a unique orthotropic behavior. In the theory of elasticity, wood is described as an 

orthotropic body with a cylindrical anisotropy [26], which is why we call it as an 

axisymmetrically orthotropic material. An axisymmetrically orthotropic material is one 

whose principal directions are defined in a cylindrical coordinate system. Its properties 

remain invariant with respect to coordinates. However, in Cartesian coordinates, the 

principal material directions vary as a function of position, that is the invariance property is 

lost.  
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Figure 2.1. Principal directions of wood (Illustration is taken from [27])  

 

Clear wood (clear wood specimens are considered as “homogeneous” in wood 

mechanics) is commonly assumed to obey the linear elastic orthotropic material law 

locally. That means, if Cartesian coordiantes are used to express the mechanics of 

deformation, the homogeniety is only valid in a local base due to its ringed structure and 

the fact that its principal axes rotate from point to point. However, if a cylindrical 

coordinate system is used instead, its properties become invariant of location, provided that 

the rings are assumed to be ideally circular and they extend perpendicularly from its base. 

 

From Figure 2.2, this can be seen that for a longitudinally cut plate orthotropic 

orientation varies as a function of radial position. As the radial distance changes from point 

A to point B, the angle that specifies the orthotropic orientation changes from θA to θB. 

Then the elasticity tensor is also expected to change from point A to point B. 
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Figure 2.2. Variation of the orthotropic orientation angle as moving through a point to 

another one on the longitudinally cut wood log 

 

As a result to fully understand the elastic mechanical properties of wood (how it 

bends and deforms elastically), one needs 12 elastic properties: 3 moduli of elasticity (one 

for each direction), 3 moduli of rigidity (one for each direction), and 6 Poisson’s ratios 

(only three of them are independent). The moduli of elasticity are parameters that define 

how "stiff" or elastic a material is.  The modulus of rigidity is similar but is more often 

used to characterize how "stiff" a material is when it is twisted or put into a state of torsion. 

 Poisson's ratio defines how a material deforms when stressed. The general orthotropic 

material behavior for wood is given in the principal directions is given at Eqn. (2.28). From 

that point, the procedures for formation of the stiffness matrix of orthotropy in wood are 

mostly taken from Cıblak’s unpublished manuscript [33].  
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'
(()

εLεTεRεTRεRLεLT.
//0 =

122
222
22
3 1 ELB - νTL ETB - νRL ERB 0 0 0-νLT ELB 1 ETB -νRT ERB 0 0 0-νLR ELB -νTR ETB 1 ERB 0 0 00 0 0 1 2*GTRB 0 00 0 0 0 1 2*GRLB 00 0 0 0 0 1 2*GLTB 455

555
55
6

'
(()

σLσTσRσTRσRLσLT.
//0 (2.28)

  

where  σL=σ1, σT=σ2, σR=σ3, σTR=τ4, σRL=τ5, σLT=τ6, εL= ε1, εT= ε2, εR= ε3, εTR= ε4, εRL= ε5, 

εLT= ε6 

 

Here the single subscripts refer to the normal and double subscripts refer to shear 

components. The quantities subscripted by L, T, R are those along the longitudinal, radial 

and tangential axes of the wood. 

 

For purposes of classical mechanics, the compliance matrix is required to be 

symmetric for a physically allowable material constitutive rule. Hence, the symmetry 

constraints can be written as follows: 

 

 
νTL

ET
= νLT

EL
 (2.29)

  

 
νLR

EL
= νRL

ER
 (2.30)

  

 
νTR

ET
= νRT

ER
 (2.31)

 

This yields only nine independent material property constants, as is the case for general 

orthotropic material models. 

 



15 

 

For stiffness matrix representation the relationship between stress and strain is 

written as 

 

 F�G = �HF�G (2.32)

 

whose upper and lower 3 by 3 diagonal matrices are S1...3,1...3 

 

S1...3,1...3= 1
∆ * K (1-νRTνTR)*EL (νTL+νTRνRL)*EL (νRL+νRTνTL)*EL(νLT+νLRνRT)*ET (1-νLRνRL)*ET (νRT+νRLνLT)*ET(νLR+νLTνTR)*ER (νTR+νTLνLR)*ER (1-νTLνLT)*ER L 

 S4...6,4...6= MGTR 0 00 GRL 00 0 GLTN (2.33)

 

where 

 

 ∆=1 – νLTνTL – νTRνRT – νTRνRT – 2* νTLνLRνRT (2.34)

 

As one moves from point to point inside an axisyymetrically ortotropic material, the 

principal axes rotate, except for motions along L and R directions. Thus, for all thin plate 

cut-outs, except those whose xy-plane is formed by LR-axes, there is no classical 

homogenity. For the purposes of this study, only those cuts whose x-axes is aligned with 

the L-axis are considered, as shown in below Figure 2.3. 
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Figure 2.3. Longitudinally cut wood log showing the material coordinate system with 

scripts L, T, and R (Illustration is taken from [33]) 

 

From Figure 2.3, we can see that the R and L axes rotate with moving along the y-

axis of the plate. The perpendicular distance from the center of the wood to mid-plane of 

the plate is denoted by a. The intersection point in the mid-plane is also selected as the 

origin O of the xyz system. The systems are chosen as right handed. As one travels along 

the +y direction, the principal axes rotate about the L-axis in positive sense. The angle of 

rotation is related to the position as follows: 

 

 tan R = � SB  (2.35)
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Case a = 0 represents a cut through the center axis of the wood and the principal axes 

no longer rotates as one traverses the y-axis, however, the properties along the R and T 

directions are not distinguishable at the origin. Therefore, in the limit, the value of elastic 

modulus at radial axis becomes equal to elastic modulus at tangential axis. From now on, 

the formulation will be formed for the case that a value is different than zero. 

 

To start with, the transformation matrix representation is given below: 

 

 T =
122
223
1 0 0 0 0 00 cos R sin R −2 cos R sin R 0 00 sin R cos R 2 cos R sin R 0 00 cos R sin R −cos R sin R cos R − sin R 0 00 0 0 0 cos R sin R0 0 0 0 − sin R cos R455

556 (2.36)

 

Here, θ is the angle of rotation about the longitudinal axis, and it is measured positive 

according to the right hand rule.  

 

 In general, the stress and strain components transform using the tensor calculus 

according to 

  

 �XYYY = TZ�̅ (2.37)

 

where �XYYY is the quantity at θ = 0 and �̅ is the quantity at θ = θ* which is an arbitrary angle. 

By using that transformation rule, the general stiffness and compliance matrices can be 

defined as  

 

 �X\ = TZ�HT]�̂ (2.38)

  

 &X̂ = TZ&HT]�̂ (2.39)
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Since the engineering shear and strains are used in our study, the transformation 

eqauation for stiffness and compliance matrices should be written as 

 

 �X\ = TZ�HT_̂ (2.40)

  

 &X̂ = T]_̂&HT]�̂ (2.41)

 

Here, the relationsip between strain and stress can be written as below 

 

 F�G = T]_̂&HT]�̂F�G (2.42)

 

Here, for a thin plate assumption, only σx, σy , and σxy are needed in moment equations. 

Thus the problem reduces to a more traceble form Therefore; only the following form is 

needed 

 

 M εxεy2εxyN = b… … …… … …… … …d M σxσyσxyN (2.43)

 

By inverting this matrix, one can obtain this equation 

 

 M σxσyσxyN = MK11 K12 0K21 K22 00 0 K66N M εxεy2εxyN (2.44)

 

This coefficient matrix in the above equation is the reduced form of the stiffness matrix for 

a thin plate assumption. If one would like to obtain the shear terms from the stiffness 

matrix, the following open-form multiplication of matrices should be performed and 

appropriate 2 x 2 portion should be shown. For the matrix algebra multiplication process, 

L, T, and R are replaced with 1, 2, and 3, respectively as it is shown in Figure 2.1. 

In open form, this equation can be written as below: 
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�X\ = TZ�HT_̂ =
122
223
1 0 0 0 0 00 cos R sin R −2 cos R sin R 0 00 sin R cos R 2 cos R sin R 0 00 cos R sin R −cos R sin R cos R − sin R 0 00 0 0 0 cos R sin R0 0 0 0 − sin R cos R455

556 

1
∆

122
223

(1-ν32ν23)*E1 (ν21+ν23ν31)*E1 (ν31+ν32ν21)*E1 0 0 0(ν12+ν13ν32)*E2 (1-ν13ν31)*E2 (ν32+ν31ν12)*E2 0 0 0(ν13+ν12ν23)*E3 (ν23+ν21ν13)*E3 (1-ν21ν12)*E3 0 0 00 0 0 ∆G23 0 00 0 0 0 ∆G31 00 0 0 0 0 ∆G12455
556 

 
122
223
1 0 0 0 0 00 cos R sin R cos R sin R 0 00 sin R cos R − cos R sin R 0 00 −2 cos R sin R 2cos R sin R cos R − sin R 0 00 0 0 0 cos R − sin R0 0 0 0 sin R cos R 455

556

=
122
223
K11 K12 … … … …K21 K22 … … … …… … … … … …… … … K44 K45 …… … … K54 K55 …… … … … … K66455

556 
(2.45)

 

where ∆ = 1 − ν13ν31 − ν23ν32 − ν12ν31ν23 − ν21ν13ν32 − ν12ν21  

 

Here the matrix can be divided into two portions: First 3 by 3 matrix, D, is the 

reduced form of the stiffness matrix for the normal and shear stresses, while the other 2 by 

2 martix, α, is for expressing the shear terms that are defined by the thick plate theory. 

 

Here, D is represented as 

 

 f = MK11 K12 …K21 K22 …… … K66N (2.46)

 

The calculation of the each term is given below for D matrix. 
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 K11 = 1
∆ 122

223
100000455

556
_

�X\
122
223
100000455

556 = E1 − ν23ν32E1
∆

 (2.47)

  

 K12 = 1
∆ 122

223
010000455

556
_

�X\
122
223
100000455

556 = E2(ν12 + ν13ν32) cos R +E3(ν13 + ν12ν23) sin R
∆

 (2.48)

  

  

 K12 = K21 (2.49)

  

 

K22 = 1
∆ 122

223
010000455

556
_

�X\
122
223
010000455

556

= E2(1 − ν13ν31) cos� R +E3(1 − ν12ν21) sin� R + (sin R cos R)(4∆G23+ν32E2+ν12ν31E2+ν21ν12E3+ν23E3)
∆

(2.50)

  

 K66 = 1
∆ 122

223
000001455

556
_

�X\
122
223
000001455

556 = G12  cos R + G31  sin R (2.51)

 

As the second part of the reduced stiffness matrix, α, the K44, K55, K45, and K54 terms 

are the ones that include the shear terms (i.e. thick plate assumption method). This 2 by 2 

matrix is given below: 
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 gσTRσRLh = gK44 K45K54 K55h gεTRεRLh      where      gK44 K45K54 K55h = m (2.52)

 

where  

 

                                 K44 = 1
∆ 122

223
000100455

556
_

�X\
122
223
000100455

556

= G23  (cos� R + sin� R)
+ sin R cos R (E2

∆
(1 − ν12ν21 − ν21ν13 − ν23)

+ E2
∆

(1 − ν12ν31 − ν13ν31 − ν32) − 2G23 

(2.53)

  

 K45 = 1
∆ 122

223
000100455

556
_

�X\
122
223
000010455

556 = 0 (2.54)

  

 K54 = 1
∆ 122

223
000010455

556
_

�X\
122
223
000100455

556 = 0 (2.55)

  

 K55 = 1
∆ 122

223
000010455

556
_

�X\
122
223
000010455

556 = G31  cos R + G12  sin R (2.56)
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Thus, these operations complete the formation of stiffness matrix for 

axisymmetrically orthotropic material model applied for wood. These are adequate to make 

necessary changes in finite element material file. Details about the finite element code that 

we deal with are given at Appendix A. m and f matrices are defined as dsg and dmg at this 

subroutine. This subroutine is a part of the plate element (plate2q.f) function defined at the 

finite element solver FEAP. Now, some limit cases will be examined in detail. 

 

2.1.3.  Limiting Cases 

 

The general behavior of the stiffness matrix is defined at above part. However, the 

case of cutting the plate centrally, and the case of cutting the plate far away from the center 

of the wood should be examined mathematically as the limit cases of the operation. At the 

case of centrally cut plate where the radial offset parameter, a, becomes zero the term 

 sin R approaches one, and cos R approaches zero. In this case, the stiffness terms 

simplify as below: 

 

 K11 = 11 − ν31ν13 EL (2.57)

  

 K12 = ν131 − ν31ν13 E3 (2.58)

  

 K22 = 11 − ν31ν13 E3 (2.59)

  

 K66 = G31 (2.60)

 

In this case, the dependence to the position information (i.e. “y” information) of the 

stiffness coefficients is removed and the effect of material properties along the tangential 

axis becomes immaterial. For this location, the tangential properties’ contributions 

disappear in the limit and only the radial and longitudinal remain in effect. 
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On the other hand, if the cutting plane is brought far away from the centroidal axis, 

i.e. as the radial offset approaches infinity, the terms  sin R approaches zero, and cos R 

approaches one. In this case, the longitudinal and the tangential properties remain in effect 

while the contributions from the radial properties dissepear for the limit value. The 

stiffness matrix terms for this case are given below: 

 

 K11 = 11 − ν21ν12 E1 (2.61)

  

 K12 = ν121 − ν21ν12 E2 (2.62)

  

 K22 = 11 − ν21ν12 E2 (2.63)

  

 K66 = G12 (2.64)

 

2.2.  MECHANICS AND VIBRATION OF PLATES 

 

A plate is a flat structural element with other dimensions much longer than its 

thickness and is subjected to loads that cause bending deformation and stretching. In most 

cases, the thickness of plate structures is about one-tenth or less of the smallest in-plane 

dimensions. When the thickness is one-twentieth of an in-plane dimension or less, they are 

called thin, otherwise they are said to be thick. Since our study is focused on the deflection 

and the frequency behavior of the plates for different kinds of boundary condition cases 

and for different geometrical shapes, the short theoretical information about these are 

mentioned at this part of the chapter. The mechanical and the vibration theory about the 

plates where we are interested with are explained, respectively. 
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2.2.1.  Deformation at the Plates 

 

The deformations at the plates are examined for different kinds of geometries. Every 

geometrical shape forms their own deformation formulas for different kinds of boundary 

conditions. For our studies purposes, the circular geometry case is selected to be 

formulized. To present the deformation analysis of the circle geometry for two different 

types of boundary conditions, the analytical analysis of the problem under uniformly 

distributed load q0 which is given at [34] is examined. 

 

For the analytical calculations, these formulas are used: 

 

- For clamped case: 

 

 w(r) = q ∗ a�64 ∗ D ∗ p1 − raq
 (2.65)

  

 

 

Figure 2.4. Clamped Circular Plate 

 

- For simply supported case: 

 

 �(r) = sX ∗ S�64 ∗ f ∗ FtrSu� − 2 ∗ v3 + ν1 + ν
w ∗ trSu + v5 + ν1 + ν

wG (2.66) 
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Figure 2.5. Simply Supported Circular Plate 

 

In addition, the deflection of the cantilever beam at the tip formula is given at the below: 

 

 

 

Figure 2.6. Cantilever Beam Geometry and the distributed loading onto the goemetry 

 

The analytical deflection formula for the maximum deflection where the deflection 

takes place at the tip is given below: 

 

 �xyz =  sX ∗ {�8 ∗ }~ ∗ � (2.67)

 

where I = (1/12)*b*h
3. 

 

2.2.2.  Vibration at the Plates 
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The vibration analysis is an important part of the study, and to do that the solution of 

the eigenvalue-eigenvector problem for a multi degree of freedom system should be 

understand well. 

 

The eigenvalues of an n by n matrix, A, are the values of λ such that the system of 

equations 

 

 �� = λ� (2.68)

 

has a nontrivial solution. An eigenvector is the nontrivial solution corresponding to an 

eigenvalue. The Eqn. (2.68) can be written as  

 

 (� − λ�)� = � (2.69)

 

where x is the n-dimensional column vector of generalized coordinates. From Cramer’s 

Rule, the solution for xi is given as 

 

 x� = 0|� − λ�| (2.70)

 

Thus, for each i = 1,...., n,  xi becomes zero, unless 

 

 |� − λ�| = 0 (2.71)

 

The determinant of Eqn. (2.71) can be expanded by a column or row expansion. This 

yields an n-th order polynomial equation of the form 

 

 
λ

� + &�λ�]� + &�λ�]� + ⋯ + &�λ�]� + &�λ�]� = 0 (2.72)

 

called the characteristic equation which has n roots, and A has n eigenvalues. 
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 The reciprocals of the positive square roots of the eigenvalues of AH or the positive 

square roots of the eigenvalues H-1S form the natural frequencies of an n-degree of 

freedom system. Here, H and S are the symmetric n by n mass matrix and stiffness matrix, 

respectively. All coefficients in the characteristic equation are real because all elements of 

the mass and stiffness matrices are real, and if complex roots are formed they should occur 

in complex conjugate pairs. The mode shape vectors are the corresponding eigenvectors 

and each distinct eigenvalue ��, i = 1, 2,...., n, has a corresponding eigenvector, Xi, which 

satisfies 

 

 �]���� = ���� (2.73)

   

This mode shape, Xi, is an n-dimensional column vector, and it is shown in the form of 

 

 �� =
122
23�����……���455

56
 (2.74)

 

The natural frequencies of a three-degree of freedom system can be obtained by 

finding the roots of a cubic polynomial, which are done by iterative method or trial and 

error way. The developement of a characteristic equation for an n-degree of freedom 

system requires the evaluation of an n by n determinant and the natural frequencies are 

called the n roots of the characteristic equation. The determinant of each of these 

eigenvector requires the solution of n algebraic equations. Thus for three or more number 

of degrees of freedom, the numerical methods which don’t require the evaluation of the 

characteristic equation are used [35]. 

 

2.2.2.1. Free Vibrations 

 

The free vibration concept is explained for two cases of application. For a clamped 

case application, a circular plate problem, which is given in the literature [36], is proceded 
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initially. Here, bending of a circular plate is considered. The equation of motion for this 

isotropic plate is given as: 

 

 ���ωX + �ωX + �X 
ωX
� − � 

� (�ωX) = 0 (2.75)

 

where F is the flexural rigidity, � is the Laplace operator, ωX is the transverse deflection, 

k is the elastic foundation of modulus, �X (�ℎ� �r�����S� ���r��S) = ρh, and � (r��S��r� ���r��S) = ρℎ�/12 where h is the thickness. If free vibration is assumed, the 

deflection is periodic and it is expressed as 

 

 ω�(r, R, �) = �(r, R) cos �� (2.76)

 

where ω is the circular frequency of vibration (radians per unit time), and W is a function 

of only r (radius) and θ. Now, when the substitution of equation (2.76) into equation (2.75), 

the result is expressed as 

 

 ���� + �� − �Xω� + �ω�� = 0 (2.77)

 

The rotary inertia � can be neglected from the Eqn. (2.77) since it contributes little to the 

frequencies. Thus, we get 

 

 (�� − ��)� = 0 (2.78)

 

where 

 

 �� = �Xω − �f  (2.79)

 

Equation (2.78) can be factored into the form 
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 (� + �)(� − �)� = 0 (2.80)

 

so that the complete solution to Eqn. (2.80) is obtained by superimposing the solutions of 

the equations 

 

 (��� + ���) = 0,          (�� − ��) = 0 (2.81)

 

We now assume that the solution to equation (2.78) in the form of the general Fourier 

series as 

 

 � (r, R) = � ��(r) cos �R + � ��∗(r) sin �R∞

���
∞

��X  (2.82)

 

As the next step, subtitution of equation (2.82) into equation (2.81) yields 

 

 
�����r + 1r �����r − p�r − �q ��� = 0 (2.83)

  

 
����r + 1r ����r − p�r − �q �� = 0 (2.84)

 

and two identical equations for ��∗ (��∗  and ���∗ ). Equations (2.83) and (2.84) are at the 

form of Bessel’s equations, which have the solutions 

 

 ��� = ����(�r) +  �¡�(�r),                 �� = &���(�r) + f�¢�(�r) (2.85)

 

respectively. Here  �� and ¡� are the Bessel functions of first and second kind, respectively, 

and �� and ¢� are the modified Bessel functions of the first and second kind, respectively 

[37]. The mode shapes are determined by the coefficients ��,  �, &� and f� and they are 

solved using the boundary conditions. Thus the general solution of Equation (2.78) is 
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�(r, R) = �F∞

��X ����(�r) +  �¡�(�r) + &���(�r) + f�¢�(�r)G cos �R
+ �F∞

��X ��∗ ��(�r) +  �∗¡�(�r) + &�∗��(�r)
+ f�∗¢�(�r)G sin �R 

(2.86)

 

For solid circular plates, in order to avoid singularity of deflections and stresses at the 

origin (r=0), the terms, that are involving ¡� and ¢� in the solution, must be discarded. In 

addition, if the boundary conditions are symmetrically applied about a diameter of the 

plate, then the second expression containing sin nθ  is not needed to represent the solution. 

Then, the n-th term of Equation (2.86) becomes 

 

 ��(r, R) = F����(�r) + &���(�r)G cos �R (2.87)

 

for n = 0,1,...., ∞. A nodal line is the one which has zero deflection (i.e. �� = 0), and 

represents the points or areas which remain in equilibrium position during any vibration 

[38]. For circular plates nodal lines are represented as either concentric circles or 

diameters. In addition to that, the nodal diameters are determined by nθ = π/2, 3π/2,.... 

 

 Depending on the frequency, main section of the wood, and wood species, the sand 

on the plate can be group in nodal lines. These nodal lines can be represented with some 

experimental efford, and the powder or the sand creates some patterns called Chladni 

patterns. The nodal lines create modal forms on the plates, and the modal shapes become 

more and more complex and tend to be similar regardless of species. Chladni patterns can 

be used to trace the evaluation of the mode shape through a number of geometric changes. 

There are some example Chladni patterns in Figure 2.7 below. As it can be seen on the 

figure that there are some symmetrical behaviors on the plates, this symmetry of modal 

shapes depends on the symmetry of the wood microstructure. 
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Figure 2.7. Some example Chladni patterns with different frequency values (Illustrations 

are taken from [39]) 

 

 As the next step, the analytical solutions of a circular plate are obtained for two 

differents boundary conditions. 

 

The clamped circular plate problem that is shown in Figure 2.4 is examined. For this 

case the boundary conditions are given as 

 

 �� = 0     ,     
��
r = 0    at r =  a for any θ (2.88)
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Using the equation (2.87) and (2.88), it is obtained that 

 

 ¤��(¥) ��(¥)��′ (¥) ��′ (¥)¦ v��&� w = t00u (2.89)

 

where ¥ = βα and the prime denotes differentiation with respect to the βr expression. The 

determinant of the coefficient matrix in Equation (2.89) is set to zero for nontrivial solution 

 

 §��(¥) ��(¥)��′ (¥) ��′ (¥)§ = 0 (2.90)

 

Then expanding the determinant and using the recursion relations we obtain 

 

 ��(¥)��¨�(¥) + ��(¥)��¨�(¥) = 0 (2.91)

 

which is called the frequency equation. The roots ¥ of Equation (2.91) are said to be the 

eigenvalues, and are used to determine the frequencies ω [see Equation(2.79)]. 

 

 ω = ��� + ��© = �¥� + �S�S��©  (2.92)

 

When k = 0, the Equation (2.92) reduces to this form: 

 

 ω = �¥�S��©            �r         ¥ =  ωSª�© �B  (2.93)

 

There are an infinite number of roots λ of Eqn. (2.91) for each value of n number, 

which represents the number of nodal diameters. For example, the roots in order of 

magnitude correspond with 1,2,...,m nodal circles when n = 0 (i.e. when the only nodal 

diameter is the boundary circle). The mode shape associated with λ is determined using 

Eqn. (2.90) 
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��&� = − ��(¥)��(¥) (2.94)

 

where λ is the solution (i.e. root) of Equation (2.91). The radii of nodal circles ζ = r / a are 

determined from Equations (2.94) and (2.87) 

 

 
��(¥ζ)��(¥) = ��(¥ζ)��(¥)  (2.95)

 

Now, the simply supported circular plate problem that is shown in Figure 2.5 is 

examined. The boundary conditions Wn and the bending moment about the r = a is zero for 

this case at any θ. In addition, 
�X 
RB = 0 on the boundary. Using the Equation (2.87) and 

Equation (2.95) results in the following equations: 

 

 ����(¥) + &�(¥)��(¥) = 0 (2.96)

  

 �� g ��¬¬(¥)  +  ¥  ��¬ (¥)h + &� g ��¬¬(¥)  +  ¥  ��¬ (¥)h = 0 (2.97)

 

These equations lead to the frequency equation 

 

 
��¨�(¥)��(¥) + ��¨�(¥)��(¥) = 2¥1 −  (2.98)

 

The mode shape can be determined using Equation (2.96) and (2.97) 

 

 
��&� = − ��(¥)��(¥) (2.99)
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where λ is a solution of Equation (2.98). So, the Equation (2.93) is also valid for the simply 

supported case but the values of λ are different from the clamped case solution as it should 

be. 

 

2.3.  NUMERICAL IMPLEMENTATION OF THE THICK PLATE THEORY 

 

 The thin plate theory was first formulized by Kirchhoff in 1850’s and his name is 

accociated with his name with this theory. Then Reissner [40] and Mindlin [41] made 

some relaxation of assumptions, and these modified theories extend the field of application 

of the thick plate theory. Then, this theory is accociated with the name of Reissner-Mindlin 

plate theory. 

 

 Two general assumptions are made for the thick plate theory. First and the most 

important assumption is that the sections normal to the middle plane remain plane during 

the deformation. Secondly, the direct stresses in the normal direction are small, i.e., of the 

order of applied lateral load intensities and the direct strains in that direction are 

negligable. It seems to have an inconsistancy case here; however, this is compansated by 

assuming a plane stress condition in each lamina. To explain the thick plate theory and its 

representation for finite element formulation, the study of Zienkiewizcz [42] is generally 

used. The general force resultants and the displacements for bending of a plate are given in 

Figure 2.8. 
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Figure 2.8. Force resultants and displacements for bending of a plate (Illustration is 

inspired from [42]) 

 

The stress resultants are obtained as 

 

 P	  = ¯ �z°/
]°/ dz = B ∂u∂x (2.100)

  

 S	   =   ¯ ´z°/
]°/  dz = κGt (∂w∂x + φ	) (2.101)

  

 M	  =   ¯ �z°/
]°/  z dz = F ∂φ	∂x  (2.102)

 

where Px is the x-direction axial force, Sx is the x-direction transverse shear force, Mx is the 

x-direction bending moment, B is the in-plane plate stiffness, h is the thickness of the plate,  

κ is the shear factor, and F is the bending stiffness and its representations are given below 

for rectangular plate as  
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 �� = }�ℎ�12(1 − ��) (2.103)

  

 � = }ℎ�12(1 − ��) (2.104)

  

 ��� = ¹�ℎ�12  (2.105)

 

for orthotropic elastic materials. Here,νterms are the Poisson’s ratios, E and G are the 

direct and the shear elastic modulus, respectively. 

 

The basic difference between the thin and thick plate formulation is the presence of 

the shear term. In thin plate theory, the shear deformation is neglected and G = ∞ (or 

γxy=0) is put on the in Eqn (2.101). So the right-hand side of the equation becomes 

 

 
∂w∂x + φ	 = 0 (2.106)

 

Thus, in thin plate assumption the shear term becomes immaterial, and it is equivalent to 

say that the normals to the middle plane remain normal to it during deformation and is the 

same as the Bernoulli-Euler assumption for thin plates. 

 

In general, the strains can be seperated into in-plane, i.e., bending components and 

transverse shear groups as given below: 

 

 ε =  º εx

εy

γxy

» = � M∂/ ∂x 0
0 ∂/ ∂y∂/ ∂y ∂/ ∂xN v¼x¼y

w ≡ �¾¼ (2.107) 

   



37 

 

 γ =  tγxy

γyz
u = v∂w/ ∂x

∂w/∂y
w + v¼x¼y

w = À� +  ¼ (2.108) 

 

where z is the normal direction that the transverse loading, q, is applied to. In addition to 

normal bending moments, a twisting moment is also defined by 

 

 M	�  =  ¯ � ´zÁdz°/
]°/  (2.109) 

 

Introducing appropriate constitutive relations, all moment components can be related to 

displacement derivatives. For orthotropic elasticity the below equation can be written 

 

 Â =  º Mx

My

Mxy 
» = Ã¾¼ (2.110) 

 

where D matrix was represented before in Eqn (2.46). 

 

Further, the shear force resultants are 

 

 Ä =  t�x�y
u = Å(À� + ¼) (2.111) 

 

Here the 2 by 2 matrix, α, martix that includes the shear terms was defined before in Eqn 

(2.52) for orthotropic elasticity. 

 

The governing equations of thick plate behaviour are completed by expressing the 

equilibrium relations with omitting the in-plane behaviour, and these are given at below: 

 

 ¤ ∂∂x , ∂∂y¦ t�x�y
u + q ≡ ∇∇∇∇TS+q=0 (2.112)
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 ¤∂/ ∂x 0 ∂/ ∂y0 ∂/ ∂y ∂/ ∂x¦ º Mx

My

Mxy 
» + t�x�y

u  ≡  ¾_Â +  Ä = � (2.113)

 

The equations (2.110), (2.111), (2.112), and (2.113) are the basis from which the 

thick plate solution can start. To sum up, Eqn (2.110) is the moment constitutive equation 

in the form of M - D¾ ¼ = 0 , Eqn (2.111) is the shear constitutive equation in the form of  

�Ç S – ¼ – Àw = 0, Eqn (2.112) is the shear equilibrium equation, and Eqn (2.113) is the 

moment equilibrium equation. 

  

It is convenient to eliminate M from the equation set and write the system as three 

equations: 

 

 ¾_È¾¼ + Ä = � (2.114)

  

 ÀÉÄ + q = � (2.115)

 

 
1α � − ¼ − Àw = � (2.116)

 

This equation system can be reduced to an irreducible form and can serve as the basis 

on which a mixed discretization is built. As stated before, the problem becomes thin-plate 

problem when α is equal to infinity. On the other hand, if α is not equal to infinity as it in 

the thick plate assumption, it is easy to derive an alternative irreducible form. The shear 

forces can be eliminated from the above equations (2.114), (2.115), and (2.116) and this 

can be represented as set of two equaitons as given below: 

 

 ¾_È¾¼ + α(À� + ¼) = � (2.117)

 

 À_Fα (À� + ¼)G + s = 0 (2.118)
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Thus an irreducible system corresponding to minimization of the total potential energy can 

be written as below by using the above equations (2.117) and (2.118): 

 

 
Π = 12 ¯ (¾¼)ÌÃ¾ ¼ �Ω

Ω

+ 12 ¯ (À� +  ¼)
Ω

_
α (À� + ¼)�Ω− ¯ wq

Ω

 �Ω
+ ΠÍ° = Î���Î�Î 

(2.119)

 

As it can easily be verified that the first term is simply the bending energy and the second 

the shear distorsion energy in the above term. This is clearly be seen that this irreducible 

equation is valid only for α in not equal to infinity case. Now, using the equations (2.117) 

and (2.118) the discretization of the terms included at the equations can be made clearly, 

and these procedures are shown at the next part of the study. 

 

2.3.1.  The Irreducible Formulation (Reduced Integration) 

 

We first consider that standart isoparametric interpolation in which shape functions 

are used to interplolate both the element geometry and displacement field (or some other 

field variable). For this purpose, two displacement variables are approximated by shape 

functions and parameters, and these are given below: 

 

 ¼ =  Nøǿ + NÒ∆ǿÒ (2.120)

  

 w = NÔŵ + NÔøǿ (2.121)

  

 � = Ö×�H (2.122)

 

Here, ¼ and w are the approximation of θ and w by independent interpolations of C0 

continuity. The notation abbreviated as b is used for modes named bubble. The 
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approximation equations can be obtained directly by the use of the energy equation as 

given below: 

 

 

Π = 12 ¯ (Lϕ)TDL ϕ dΩ
Ω

− 12 ¯ SØ
Ω

α]���Ω+ ¯ SØ
Ω

(∇� +  ¼)�Ω
− ¯ wq

Ω

 �Ω+ ΠÍ° = Ù�S����Sr� 

 

(2.123)

Then using the equations (2.120), (2.121), (2.122), and (2.123) the below formulation is 

written: 

 

∂Π= ¯ ∂ ϕTLT DLϕ dΩ
Ω

− ¯ ∂SØ
Ω

α]���Ω+ ¯ ∂SØ
Ω

(∇� +  ¼)�Ω
− ¯ ∂wq

Ω

 �Ω+ ΠÍ°
= ¯ ∂ [(Öϕ ϕZ)T +  (ÖÍ ∆ϕZb)

T ] LTDL (Öϕ ϕZ + ÖÍ ∆ϕZb) dΩ
Ω− ¯ ∂SØÖ×_
Ω

α]�Ös��Ω+ ¯ ∂SØÖ×_  (∇(Öwŵ + ÖwϕϕZ)+ÖϕϕZ + ÖÍ∆ϕZÒ) �Ω
Ω− ¯ ∂ (Öwŵ + ÖwϕϕZ) q

Ω

�Ω+ ΠÍ°                      
= ∂ ¼ b¯ ÖϕT LT DL Öϕ dΩ 

Ω

+ ¯∆ϕZb (ÖÍT LT DL Öϕ) dΩ
Ω

d
+ ∂SF ¯ Ö×_α]� Ns

Ω

dΩG+ ¯ Ö×_(∇Öwϕ –Öϕ) ϕ
Ω

dΩ+ ¯ Ö×_ ∇Öw ŵ dΩ
Ω

G
+ ∂ ∆ϕZb b¯ ÖÍT LT DL ÖÍ dΩ

Ω

d − ¯ (Ö×_ÖÍ) ST

Ω

dΩG
=  ¢ÚÚ + ¢ÍÚ + ¢×× + ¢×Ú + ¢×Û + ¢ÍÍ + ¢×Í 

(2.124)

 

where 

 

 ¢ÚÚ = ¯ (LÖϕ)_D(LÖϕ)dΩ
Ω

 (2.125)
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 ¢ÍÚ = ¯ (LNb)
_D(LÖÍ)dΩ

Ω

 (2.126)

  

 ¢ÍÍ = ¯ (LÖÍ)_D(LÖÍ)dΩ
Ω

 (2.127)

  

 ¢×Û = ¯ Ö×_  ∇ ÖwϕdΩ
Ω

 (2.128)

  

 ¢×× = − ¯ Ös
 ∇ α]�ÖsdΩ

Ω

 (2.129)

  

 ¢×Ú = ¯ Ö×_F∇Öwϕ- ÖϕGdΩ
Ω

 (2.130)

  

 ¢×Í = − ¯ Ö×_ÖÍ dΩ
Ω

 (2.131)

 

Therefore, the discretized problem is obtained. 

 

To complete the formulization, these should be written in a standard finite element 

representation (i.e. kd = f where k is the stiffness matrix, d is the displacement vector, and f 

is the force vector.). Therefore, the final form of the equation is given below: 

 

 

122
23 0 0 0 ¢×Û_0 ¢ÚÚ ¢ÍÚ_ ¢×Ú_0 ¢ÍÚ ¢ÍÍ ¢×Í_¢×Û ¢×Ú ¢×Í ¢×× 455

56 Ü �Ý¼Z
∆¼ZÍ�H Þ = ÜßÛßÚ00 Þ (2.132)
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As this can be noted here that only the forces (ßÛ  and ßÚ) due to transverse load q adn 

boundary conditions are shown for simplicity. 
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3.  VERIFICATION AND VALIDATION  

 

 

Before starting the analysis using actual instrument geometry, it is first necessary to 

make some analysis using the finite element solver named as FEAP and compare the 

results with analytical ones. This process will also serve to ensure that the relevant problem 

description is entered correctly to corresponding input file and that finite element solver is 

utilized properly. 

 

On the other hand, benchmarking studies are done for deformation, and vibration 

analyses using a circular geometry. The diagram depicting the organization of the 

benchmark studies is given in Figure 3.1. 

 

 

 

Figure 3.1. Schematic diagram of the benchmarking studies 

 

The circular geometry is meshed using the a quarter circle for the deformation and a 

full circle for the vibrations analyses. This is due to the fact that some modes can dissapear 

if quarter circle geometry is used instead of a full circle. 



44 

 

Next, the procedure of solving problem using FEAP is briefly described, which is 

followed by the deformation results in Section 3.2 and the vibration results in Section 3.3. 

 

3.1.  STRUCTURE OF PROBLEM SOLVING USING FEAP 

 

The general form of an input file is given as [43]: 

 

  FEAP * * Start record and title 

   .... 

  Control and mesh description data 

   .... 

  END 

   .... 

  Solution and graphics commands 

   .... 

  STOP 

 

Initially, the input file starts with definitions of the general problem parameters as 

 

FEAP 

 a1,a2,a3,a4,a5,a6 

 

where a1 is the number of nodes, a2 is the number of elements, a3 is the number of 

material set, a4 is the spatial dimension of mesh, a5 is the number of degrees of freedom 

for each node, and a6 is the maximum number of nodes on any elements.  

 

For the numerical part of the solution, the basic mesh form of the circular plate 

which consists of nodes and elements are generated. For the general finite elements 

included with the program, the mesh is described relative to a global Cartesian coordinate 

frame.  

 

3.1.1.  Control and Mesh Description Data 
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In the control and mesh description block the material properties, element properties, 

mesh properties such as element connectivity and model coordinate lists, and boundary 

conditions are specified. 

 

The material sets are defined using the 

 

  MATErial 

 

command. The next records after MATE consist of commands which describe the type of 

the element and the material parameters associated with the set. This record may also 

contain a material set number if more than one material set is used in the analysis. In our 

case, the plate element is used to model the expected structural behavior using the 

 

  PLATe 

 

command. These types of elements are used for the small deflection analyses only and 

include bending and transverse shearing deformations. The model is formulated in terms of 

the force resultants which are computed by integration of stress components over the 

thickness of the plate. Each element is a quadrilateral with 4-nodes. The degrees of 

freedom for this kind of an element at each node are: The transverse displacement, w, and 

the rotations θx and θy about the coordinate axes; and the order of these are {w, θx, θy} as 

shown in Figure 3.2. 

 

 

 

Figure 3.2. Representations of displacement, w and rotations θx, θy along a surface of a 

plate 
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In the benchmarking tests, the elastic isotropic material behavior is used. Finally the 

thickness of the plate, loading type, and the mass density values are inputted. The 

completed material set portion of the input file is written as 

 

MATErial 

  PLATE 

ELAStic isotropic e1 ν1 ! elastic modulus, Poisson’s Ratio 

  THICkness plate t1 ! plate thickness 

  LOAD plate l1 ! uniform loading 

  DENSity mass d1 ! mass density value 

 

Note that however in the actual analyses results, the properties shown an orthotropic 

material are given as: 

 

ELAStic orthotropic e1 e2 e3 nu-12 nu-23 nu-31 g-12 g-23 

g-31 

 

where the parameters represent the relevant coefficient of the stiffness. 

 

  Before meshing commands are executed, a set of parameters that are used in the 

further parts of the input file may be defined using the 

 

PARAmeter 

 

command. This command also permits arithmetic calculations to be performed.  

 

With respect to the problem geometry, the COOR, and ELEM commands are used to 

define the coordinates and the elements of the geometry, respectively. Some additional 

macros that also come with the FEAP provide extra functionality in building regular 

meshes. A block of nodes and elements is generated using the blending function approach 

for the circular geometry. In FEAP, the blending function meshes are created from a set of 

control points, which are said to be super-nodes; inputted using the SNODe command, 

edges inputted using the SIDE command and a description of the region using the BLENd 
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command. The coordinates for the super-nodes are given in Cartesian coordinate frame. 

The input file includes lines as: 

 

SNODe 

  N   X_N   Y_N   Z_N 

  .... 

 

where N is the super-node number and is generated from 1 to the maximum number needed 

to describe all the blending functions. The super-nodes that are generated for the full circle 

geometry analyses are in shown in Figure 3.3. 

 

 

 

Figure 3.3. Super-nodes on the full circle geometry meshing 

 

The sides of any surface and the edges of any solid to be generated by BLENd 

command should be prescribed. Only sides for non-straight or non-uniformly spaced 

increments such as a circular geometry need to be given. FEAP adds all straight uniformly 

spaced sides not given as input data automatically. The specification of sides using the 

SIDE command is given by the form: 

 

  SIDE 

   Type   V1,V2,V3 
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where Type may either be specified on polar or Cartesian for the side, V1 and V2 are the 

super-node numbers for the ends (End 1 and End 2) of the sides, and V3 is the intermediate 

node nearest End 1. 

 

 The blending function meshes are created from a set of control points (i.e. super-

nodes), and 4-node quadrilateral elements are used for blending operation. The nodes and 

the quadrilateral elements defined by blending command is developed from a master 

element which is defined by an isoparametric mapping function in terms of the two natural 

coordinates. The first direction is defined along the direction of the first two super-nodes 

and the second direction along the direction of the first and fourth super-nodes. 

 

 SURFace option is used with the BLENd command and four vertex super-nodes 

specify the orientation of the region. The super-nodes should be given as an anti-clockwise 

sequence (right hand rule). The input is given as: 

 

BLENd 

  SURFace inc-1 inc-2 Node1 Elem1 Mat1 Etype 

   s1   s2   s3   s4 

 

where inc-1 is the number of nodal increments to be generated along 1-2 edge, inc-2 

is the number of nodal increments to be generated along 2-3 edge, Node1 is the number to 

be assigned to first generated node in patch (first node is located at the same location as 

master node 1), Elem1 is the number to be assigned to first element generated in patch, 

Mat1 is the material identifier to be assigned to all generated elements in patch (default = 

1), and Etype is the element type. 

 

The value of a force or displacement is selected based on the boundary restraint code 

value active at the time of execution. Non-zero boundary restraint codes imply a specified 

displacement and zero implies a specific load. The boundary restraint codes are set using 

the 

 



49 

 

  BOUNdary codes 

   N1   I1   R1   R2 

 

command where N1 is the node number restraint codes, I1 is the increment of nodes for 

the next ones, R1 and R2 are the restrained codes for the boundaries. 

 

 For the boundary node of interest angle boundary conditions can be prescribed by 

specifying the angle in degrees. The data is written using the command 

 

  ANGLe 

   N1   I1   A1  

 

where N1 denotes the node number, I1 is the increment for the next node, and A1 is the 

value of the angle. 

 

 In relation with the boundary definitions, one should mention the EBOUndary 

command used to define the boundary conditions for modelling the lines of symmetry of 

the quarter circle geometry. The form of this command is 

 

  EBOUndary 

   N1   I1   B1   B2   B3 

 

where N1 is the number of nodes, I1 is the increments in the node numbers, and 

B1,B2,B3 are the boundary values (zero or non-zero) for the associated coordinates. 

 

Finally, the CANGle command is used to enforce the change of coordinates for those 

nodes rotated by the ANGLe command. 

 

3.1.2.  Solution and Graphics Commands 

 

FEAP performs solution steps based upon user specified comand language 

statements, and the program provides commands which can be used to solve problems 
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using standard algorithms. In order to enter the solution command language part of FEAP 

the user includes the BATCh command in the input file. The batch solution is terminated 

by the command END. Thus, the input file looks like: 

 

  BATCh 

   LOOP 

    .... ! Solution specification steps 

   END 

  END 

 

Next, some of the solution commands available in the program are described. 

 

 The solutions of problems by FEAP are obtained by computing residuals for the 

governing equations followed by a sequence of solution steps to reduce the size of the 

residual to a very small value. The residual for each step may be computed using the FORM 

command, which is placed on the top of the macros within a LOOP statement. When the 

value of residual completed in form falls below a threshold value defined as TOLErance 

the solution is thought to be converged and the program exists the loop. For structural 

problems like the one we are studying, the MASS command computes the inertia matrix. In 

order to form symmetric tangent arrays for use in an iterative solution, the command 

TANGent is used. This command computes the tangent stiffness matrix for the current 

solution. The general form of these commands is given below as: 

 

  LOOP 

   FORM 

   TANGent 

   SOLVe 

  END 

 

When the direct solution by a Gauss elimination algoraitm is used the tangent matrix is 

also factored into the form without pivoting as: 
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 àá = (âÉ)°(Èã)(âÉ) (3.1)

  

where DM is a diagonal matrix, UT is an upper triangular matrix, and Kt is the tangent 

stiffness matrix. 

 

The generalized linear eigenvalue problem can be stated as: 

 

 àáä = åäæ (3.2)

  

where Φ are the eigenvectors, Λ is the eigenvalues. B has three options for the solution: B 

= M the mass matrix, B = KG the geometric stiffness matrix, and B = I an identity matrix. 

To solve this type of a problem the SUBSpace PRINt n1 g1 command is used where 

the parameter PRINt results in an output of the subspace arrays, n1 is the number of 

converged pairs requested and g1 is the number of extra vectors to use for acceleration of 

the convergence. 

 

 The SOLVe command is used after the computation of the tangent matrix and a 

resudial in the solution of 

 

 àáçè = é(è) (3.3)

  

where u denotes the set of nodal displacements and ∆u, the solution increment for the 

current step. Upon convergence the solution contains the generalized displacement at 

nodes. The numerical values for the nodal displacements at each node are calculated using 

the: 

 

  DISPlacement nodes n1 n2 inc 

 

command where n1 and n2 define the fisrt and the last node to output and inc is the 

increment between node numbers. 
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The STREss command is used to list the stress results in elements n1 to n2 at 

increments of n2, and it is inputted as: 

 

  STRE,,n1,n2 

 

The values at all points are reported with STREss,ALL command. 

 

Finally, the issuing of the command PLOT from an interactive mode causes input to 

be requested for plot commands. In the BATCh mode, the specific command for plotting is 

given as: 

 

  PLOT type v1 v2 v3 

 

where type defines the plot command and v1, v2, and v3 are the parameters needed to 

perform te plot. 

 

After preparing the general input file we are ready to begin the deformation and 

vibration analyses for various kinds of mesh profiles for a circular geometry. 

 

3.2.  DEFORMATION ANALYSES 

 

3.2.1.  Isotropic Case 

 

For the deformation analysis of the circular geometry, the analytical solution of the 

problem given in the Section 2.2 is compared with the finite element results. 

 

The problem is meshed using a quarter circular geometry having a radius of 2 mm. 

Plate element is selected as the element type. A uniformly distributed loading of 10 N/m2 is 

applied in the vertical direction, and the material properties are defined as Elastic modulus 

= 210000 MPa and Poisson’s ratio = 0.3 wheras its thickness / radius ratio is kept at 0.025. 
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Necessary boundary conditions are entered as input for both clamped and simply supported 

cases. Finally, the finite element program is run for these cases. 

 

The numerical deformations at nodes are compared with analytical curves given in 

Eqn (2.65) and (2.66) for the clamped and the simply supported cases, respectively. As it 

can be seen easily from Figure 3.4 the analytical results match perfectly with the finite 

element calculations. The input macro files generation process, is thus verified for 

deformational type analyses. 

 

 

 

Figure 3.4. Validation of deformation obtained from the finite element model with the 

analytical result 

 

At this point, a verification analysis is performed through a sensitivity study, to 

assess the accuracy of the numerical procedure. The deflection value of center of the circle 

from the analytical solution is compared to numerical solutions with four different mesh 

densities. A super-node, which can be seen in Figure 3.3 as the node number 6, is defined 

at the middle of the quarter circle for each of them. Then four different meshed geometries 

are classified by average element size numbers (n). For instance, the tetragonal shape can 
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be seen in yellow colors in Figure 3.5 for n = 2 (i.e. each side of the tetragonal shape, 

whose one corner is at the middle super-node, has two portions). 

 

 

 

Figure 3.5. A sample mesh to show the average element size (n) 

 

The geometries are meshed for n = 1, n = 2, n = 4, and n = 8 as shown in Figure 3.6. 

At each step, the mesh density value is doubled so that the order effect of mesh sizing on 

the error can be analysed in a systematic manner. 
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Figure 3.6. Four different mesh densities  

 

The deflection values of the circle’s center points are listed in the Table 3.1 and 

Table 3.2 for clamped and simply supported cases respectively. Accepting the analytical 

solution to be the true value, the errors are computed and listed in the below tables. Two 

types of error calculation is executed: true and approximate. The approximate error is 

calculated between meshes having two consecutive values of n while the true error is 

computed between the analytical value and the numerical value.  
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Table 3.1. Sensitivity Analysis for the Clamped Case 

 

 Analytical n = 1 n = 2 n = 4 n = 8 

Deflection Value (mm) 0.065000 0.050098 0.061878 0.064804 0.065530 

True Error (mm) - 0.014902 0.003122 0.000196 - 0.000530 

Approximate Error (%) - 19.04 4.52 1.11 - 

Error Ratio - - 4.21 4.07 - 

 

 

Table 3.2. Sensitivity Analysis for the Simply Supported Case 

 

 Analytical n = 1 n = 2 n = 4 

Deflection Value (mm) 0.26500 0.27042 0.26701 0.26609 

True Error (mm) - - 0.00542 - 0.00201 - 0.00109 

Approximate Error (%) - - 1.28 - 0.35 - 

 

Since the instrument that is being analysed has clamped boundary conditions, we did 

not only calculate the true and approximate errors but also checked the ratio between the 

two consecutive approximate errors (this ratio is given in the fourth row of the Table 3.1) 

for clamped case analyses. This error ratio values should be almost equal to each other for 

numerical reasons, and this sensitivity analyses show that we can handle the solution of 

any clamped conditioned problem using FEAP since the values (4.026, 4.030) are almost 

equal. Figure 3.7 shows the deflection values of the center point of the circle by the 

average element size numbers for clamped and simply supported cases using the 

logarithmic plot. 

 



57 

 

 

 

 

Figure 3.7. Deflection values of the center versus average element size number (n) 
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3.2.2.  Orthotropic Case 

 

 For the deformation analysis of a material which has orthotropic behavior, a 

cantilever beam problem, whose analytical solution exists, is solved using two commercial 

finite element solvers: ANSYS and FEAP. The orthotropic material is chosen to be a 

wooden material, Spruce Sitka. The engineering parameters of the spruce sitka is given in 

Appendix B. 

 

 The geometry of the problem is given in Figure 3.8. As it can be seen on the figure 

that the problem is fixed supported (clamped) with the uniformly distributed load. The 

numerical values of the expressions at the geometry are selected as w = 10 N/m2, L = 1.38 

m, b = 0.32 m, h = 0.004 m for benchmarking analysis. 

 

 

 

Figure 3.8. Cantilever beam geometry for the orthotropic case solution 

 

As it is previously given at the theory part of the study, the analytical solution 

formula for the maximum deflection (i.e. deflection at the tip) is given below: 

 

 �xyz =  � ∗ {�8 ∗ }~ ∗ � (3.4)

  

where I = (1/12)*b*h
3. 
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 Since two finite element solvers are used for the numerical solution of the problem, 

the number of elements should be equal for mesh models for an accurate comparison of the 

results. To do that, the average element size is selected as 0.01m for ANSYS solver. Thus 

the total number of elements is (1.38 / 0.01) * (0.32 / 0.01) = 4416. Similarly, the 

parameters (n1, and n2) in FEAP’s input file are defined as 138, and 32 respectively so that 

the same number of elements value is obtained. The meshed view of the cantilever beam 

with 4416 elements is shown in Figure 3.9. 

 

 

 

Figure 3.9. The meshed view of the cantilever beam 

 

Plate element is selected as the element type for FEAP solver, and SHELL281 is 

selected for ANSYS program. The input sequence for the material properties parts is given 

below Table 3.3: 

 

Table 3.3. Input file sequence of FEAP and ANSYS for orthotropic materials 

 

 Input File Sequence for the Orthotropic Materials 

FEAP EL ET ER νLT νTR νRL GLT GTR GRL 

ANSYS EL ET ER νLT νTR νLR GLT GTR GLR 

 

The deflection results at the free end of the cantilever beam (the region where 

maximum deflection happens) is calculated for analytical solution with the formula given 

above, using FEAP, and using ANSYS. The result for the analytical solution is found as 

73.27 mm. The numerical solutions are 72.58 mm (0.95 %), and 72.60 mm (0.46 %) for 

using FEAP, and ANSYS, respectively. The error values in percentage are given in the 
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paranthesis of each of the numerical solution. It is clearly being seemed that the numerical 

solutions for both finite element solvers are almost same with the analytical solution. 

 

3.3.  VIBRATION ANALYSES 

 

3.3.1.  Isotropic Case 

 

3.3.1.1.  Clamped Boundary Condition 

 

For the vibration analysis of the circle geometry for isotropic case, the analytical 

analyses of the problems given in the Section 2.2 are compared with the finite element 

results. The analyses of problem using FEAP are performed for the case whose average 

element size equals to eight. 

 

For the finite element analysis, the material properties are defined as Elastic modulus 

= 210000 Pa and Poisson’s ratio = 0.3. Its thickness value (h) is 0.05 mm, and its mass 

density (ρ) is 350 kg/m3. The circle has the same radius value, 2 mm, as it is in the 

deformation analysis. The governing equations for the analytical solution process is given 

as follows (taken from the Eqn (2.93)): 

 

 λ

 = ω ∗ a ∗ êI/F (3.5)

 

where I = ρ*h is the principal inertia, and F is the bending stifness and its formula is 

 

 � = } ∗ ℎ� 12 ∗ (1 − )B  (3.6)

 

For different values of m and n, there correspond a unique frequency ωmn and the 

mode shape. The smallest value of ωmn is said to be the fundamental frequency. It is not 

easy to find the lowest natural frequncy value when the rotatory inertia is not neglected. 
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For most plates (like the one we have) with thickness to side ratio value is under 0.1, the 

rotatory inertia can be neglected. 

 

After entering the values to the above equation, we obtain: 

 

 ω = 0.3706 ∗ λ

 (3.7)

 

To calculate λ2 values, the square roots of eigenvalues (rad/t) are noted from the 

output file of the finite element solver for clamped case.  

 

At Table 3.4, n denotes the number of nodal diameters and m is the number of nodal 

circles, not including the circle r = a. The λ2 values are listed in Table 3.4 to make a 

comparison between the analytical and the numarical solutions.  

 

Table 3.4. Comparison of λ2 values with different combinations of nodal diameter (n), and 

nodal line for clamped boundary conditions  

 

  m = 0 m = 1 m = 2 m = 3 

n = 0 
Analytical Solution 

Numerical Solution 

10.21 

10.22 

21.26 

- 

34.88 

34.65 

51.04 

50.54 

n = 1 
Analytical Solution 

Numerical Solution 

39.77 

39.53 

60.82 

60.22 

84.58 

- 

111.01 

- 

 

Here, it is seen that the calculated values of λ2 matches well with the analytical results. So, 

every matching number shows us a different mode shape of this geometry. From using the 

output information of the finite element results, we are able to draw the mode shapes. 

Thus, we have opportunity to compare these with the mode shapes with the mode shape 

figures that are given in the referenced book. In Figure 3.10, the nodal diameters and the 

nodal circles can be seen for the several mode shapes. These mode shape figures are given 

below: 
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Figure 3.10. Mode shapes that are obtained from the analytical and finite element results 

(Illustrations are taken from [36]) 

 

3.3.1.2. Simply Supported Boundary Condition 

 

Same procedure of the clamped solution case is done for the simply supported 

solution too. The λ values differ from the clamped case solution as it is expected. 

mode 1

mode 2

mode 3

mode 4
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 λ

 = ω ∗ a ∗ êI/F (3.8)

  

After entering the values to the above equation, we obtain: 

 

 ω = 0.3706 ∗ λ

 (3.9)

 

To calculate λ2 values the square root of eigenvalues (rad/t) values are noted from 

the output file of the finite element solver for simply supported case. 

 

At Table 3.5, n denotes the number of nodal diameters and m is the number of nodal 

circles, not including the circle r = a. The λ2 values are listed in the table to make a 

comparison between the analytical and the numarical solutions.  

 

Table 3.5. Comparison of λ2 values with different combinations of nodal diameter (n), and 

nodal line for simply supported boundary conditions 

 

 m = 0 m = 1 m = 2 

n = 0 
Analytical Solution 

Numerical Solution 

4.98 

4.91 

13.94 

13.82 

25.65 

25.34 

n = 1 
Analytical Solution 

Numerical Solution 

29.76 

29.55 

48.51 

48.03 

70.14 

- 

 

Here, it is seen that the calculated values of λ2 matches well with the analytical 

results as it is in the clamped case. 

 

3.2.2.  Orthotropic Case 

 

 For an orthotropic case analysis, a rectangular clamped plate problem is selected 

from page 413 of reference [36]. The problem geometry is given Figure 3.11. 
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Figure 3.11. 4-sided rectangular clamped plate with dimensions a and b 

 

These material properties are selected for analytical solution to determine the 

frequencies of this clamped plate for the orthotropic case: E1 = 10E2, G12 = 0.5 E2, ν = 

0.25. Although these indicate that the plate does not have a fully orthotropic behavior, the 

frequency solutions using these can give a general idea about the vibrational behavior of 

the plate. 

 

 Using the same equation for the isotropic case, the frequencies can be determined: 

 

 λ

 = ωîï ∗ a ∗ êI/F (3.10)

 

where 

 

 � = } ∗ ℎ�12 ∗ (1 − � ∗ �) (3.11)

 

Analytical solution is performed for two different plate aspect ratios ( yÍ = X.� xX.� x =
1.5;  yÍ = X.� xX.� x = 2) using the values of E1 = 108.2*108 N/m2, E2 = 4.7*108 N/m2, ρ = 300 
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kg/m3, h = 0.005 m, ν = 0.25. The numerical solution is performed using only FEAP. Since 

input file of FEAP requires nine values for defining an orthotropic material, the values 

which are not defined by the analytical solution are assumed. The values of the orthotropic 

material are listed for the numarical solution: EL = 108.2*108 N/m2, ET = 4.7*108 N/m2, ER 

= 8.4*108 N/m2, νLT = νTR = νRL = 0.25, GLT = GTR = GRL = 5.8*108 N/m2. The analytical 

and the numerical solutions for two different aspect ratios are listed at the Table 3.6. 

 

Table 3.6. Comparison of the first four natural frequencies of the clamped rectangular plate 

problem for the different aspect ratios 

 ωîï values for the first four natural frequencies (rad / s) 

 a / b = 1.5 a / b = 2 

m n Analytical Numerical Analytical Numerical 

1 

 

2 

1 

2 

1 

2 

746.2 

1363.6 

1729.3 

2161.8 

721.9 

1306.3 

1640.8 

2064.8 

981.7 

1873.1 

2209.9 

2846.7 

950.4 

1784.4 

2109.3 

2722.6 

 

 Since the analytical solution approach does not include all nine parameters of the 

orthotropic material, the results obtained from the numerical solution are slighly different 

from the analytical ones. The difference between the analytical and the numerical solutions 

is approximately 3-4 percent. This is an acceptable error and, thus, this indicates that the 

frequency solution of the general orthotropic modelling of any problem using FEAP ends 

up reliable results. In addition, the mode shape figures for the first four frequency that are 

obtained from numerical analyses are given in Figure 3.12. 
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Figure 3.12. Mode shapes for the first four frequencies of the 4-sided clamped rectangular 

plate geometry for the orthotropic case using FEAP (for a / b =2) 
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4.  RESULTS 

 

 

In this chapter, the numerical experimental results are given for various types of 

cases. As given in Figure 2.3, the effects of variation of radial offset parameter to the 

results are the most important effort for our study. Besides the radial offset parameter, the 

tangential offset is other important value for the analyses. The representation of the radial 

offset and the tangential offset is given in Figure 4.1 as the top view and in Figure 4.2 as 

the isometric view. 

 

 

 

Figure 4.1. Radial offset distance, a, and tangential offset distance, s, from top view 
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Figure 4.2. The cutting plane described as a function of radial offset, a, from the centroidal 

axis. Two different cases are examined and these are shown in isometric view 

 

 Figure 4.1 shows the radial offset distances, a, and the tangential offset distances, s, 

for a couple of configurations. Radial offset is the perpendicular distance between the 

plane of cut and the longitudinal axis, while the tangential offset is the distance measured 

in-plane between the centroids of the log and the plate. Figure 4.2 is given as to show the 

longitudinal cut plates in isometric view. 

 

To summarize the analyse types, effect of the radial offset, effect of the tangential 

offset, effect of the geometry, and the effect of the wood type are shown to examine the 

variation of frequency response. The analyses are done using spruce sitka and clamped 

boundary condition. Now, each of these analyses is studied in sequence. 

 

4.1.  EFFECT OF RADIAL OFFSET 
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 In Figure 4.4, we demonstrate the variation of frequency response with the radial 

offset of cutting plane for the longitudinal axis of the wood log. First five eigenvalues are 

plotted seperately. At this case, a square plate with side length 0.3545 m is cut from center 

of the wood (i.e. tangential offset distance = 0). All five eigenvalues show similar 

behavior. Mesh density is taken as 100 by 100 for this case. For the very small values of 

radial offset distance (10-7 m, 10-5 m, 10-4 m), the frequency values are increasing up to a 

certain value, and for values around 0.001, 0.01 the frequency values decreases rapidly. 

Then, it behaves like a V-shaped curve for the values between 0.01 m and 1 m.  

 

4.2.  EFFECT OF TANGENTIAL OFFSET 

 

 In Figure 4.5, frequency behavior of a square plate with side length 0.3545 m and 

thickness 0.005 m is demonstrated as a function of tangential offset with varying radial 

offset distance. Two cases are examined for the analyses: first is s = 0 case and second is s 

= 0.5 x b case. Analyses are done for the first five eigenvalues and mesh density is taken as 

100 by 100. For the ease of comparison, the radial offset distances of each case are taken 

as equal to each other. Similarly, V-shaped behavior exists at the definite interval of radial 

offset values (0.01 m to 1 m). As mentioned before that the most important behavior to be 

examined for us is the curve’s V-shaped behavior so that we need to focus at this portion 

carefully. To do that, this portion is zoomed for all five cases of eigenvalues, and these 

plots are given in Figure 4.6. 

 

4.3.  EFFECT OF GEOMETRY 

 

 In Figure 4.7, the frequency values are compared with varying radial offset distance 

for two different geometries: one is a square plate with side length 0.3545 m, and the other 

one is a circle plate with radius 0.2 m. Their thickness values are both 0.005 m. Their 

volumes are selected to be equal to each other so that amount of material are equal for both 

cases and the comparison analyses would be rational to be performed. Mesh density is 

taken as 100 by 100 for square plate, while the number of total element of the circular 

mesh is taken as 10800. Mesh and boundary condition plot of clamped circular plate is 

given in Figure 4.3 below: 
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Figure 4.3. Circular mesh showing the boundary conditions in red colour. Total number of 

elements for this mesh is 10800 

 

 Like the previous cases, the plots are zoomed at the portion that the curve draws a V-

shaped behavior. These plots are given in Figure 4.8a, Figure 4.8b, Figure 4.8c, Figure 

4.8d, and Figure 4.8e. 

 

4.4.  EFFECT OF WOOD TYPE 

 

 In Figure 4.9, the frequency values of two different types of woods- balsa and spruce 

sitka- with varying radial offset distance value are compared. A square plate with side 

length 0.3545 m and thickness 0.005 m is used for the analyses. It is clearly be seen that 

the frequency values of spruce sitka analyses are higher than the values of balsa analyses 

for all five cases of interest. The first examined frequency value of spruce sitka case is 

nearly doubled the values of balsa values at each of the five cases. The zoomed plots are 

given in Figure 4.10a, Figure 4.10b, Figure 4.10c, Figure 4.10d, and Figure 4.10e. 



 

Figure 4.4. The frequency behavior of 

thickness 0.005 m as a function of the radial offset. Figures (a), (b), (c), (d), (e) shows the 

first, second, third, fourth, and fifth eigenvalues, respectively

 

(a)        

(c)            

 

          (e) 

 

The frequency behavior of a square plate with side lenght 0.3545 m and 

thickness 0.005 m as a function of the radial offset. Figures (a), (b), (c), (d), (e) shows the 

first, second, third, fourth, and fifth eigenvalues, respectively
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       (b) 

 

           (d) 

 

square plate with side lenght 0.3545 m and 

thickness 0.005 m as a function of the radial offset. Figures (a), (b), (c), (d), (e) shows the 

first, second, third, fourth, and fifth eigenvalues, respectively 



 

Figure 4.5. The frequency behavior of square plate with side lenght 0.3545 m and 

thickness 0.005 m as a function of tangential 

first, second, third, fourth, and fifth eigenvalues,

 

(a)       

(c)                                                                                    

 

          (e) 

 

The frequency behavior of square plate with side lenght 0.3545 m and 

thickness 0.005 m as a function of tangential offset. Figures (a), (b), (c), (d), (e) shows the 

first, second, third, fourth, and fifth eigenvalues, respectively
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      (b) 

 

                                                       (d) 

 

The frequency behavior of square plate with side lenght 0.3545 m and 

offset. Figures (a), (b), (c), (d), (e) shows the 

respectively 



 

Figure 4.6. The frequency behavior of square plate with side lenght 0.3545 m and 

thickness 0.005 m as a function of tangential offset. Figures (a), (b), (c), (d), (e) shows the 

first, second, third, fourth, and fifth eigenvalues, respectively. These figures show a 

restricted area (x axis is restricted between 0.01 and 10 values) of the plots 

(a)         

(b)        

 

           (e) 

 

The frequency behavior of square plate with side lenght 0.3545 m and 

thickness 0.005 m as a function of tangential offset. Figures (a), (b), (c), (d), (e) shows the 

first, second, third, fourth, and fifth eigenvalues, respectively. These figures show a 

tricted area (x axis is restricted between 0.01 and 10 values) of the plots 

Figure 4.5 
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        (b) 

 

       (d) 

 

The frequency behavior of square plate with side lenght 0.3545 m and 

thickness 0.005 m as a function of tangential offset. Figures (a), (b), (c), (d), (e) shows the 

first, second, third, fourth, and fifth eigenvalues, respectively. These figures show a 

tricted area (x axis is restricted between 0.01 and 10 values) of the plots in  



 

Figure 4.7. Effect of geometry on the frequency behavior of 

and square plate with side lenght 0.3545 m are compared. Their areas are equal to each 

other, and thicknesses are both 0.005

second, third, fourth, and fifth eigenvalues,

 

(a)           

(c)           

 

             (e) 

 

Effect of geometry on the frequency behavior of circle plate with radius 0.2 m 

and square plate with side lenght 0.3545 m are compared. Their areas are equal to each 

other, and thicknesses are both 0.005 m. Figures (a), (b), (c), (d), (e) shows the first, 

second, third, fourth, and fifth eigenvalues, respectively
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          (b) 

 

          (d) 

 

ircle plate with radius 0.2 m 

and square plate with side lenght 0.3545 m are compared. Their areas are equal to each 

m. Figures (a), (b), (c), (d), (e) shows the first, 

respectively 



 

Figure 4.8. Effect of geometry on the frequency behavior of 

and square plate with side lenght 0.3545 m are compared. Their areas are equal to each 

other, and thicknesses are both 0.005 m. Figures (a), (b), (c), (d), (e) shows the first, 

second, third, fourth, and fifth eigenvalues, res

area (x axis is restricted between 0.01 and 10 values) of the plots 

(a)       

(c)                                                                                 (d)

 

           (e) 

 

Effect of geometry on the frequency behavior of circle plate with radius 0.2 m 

and square plate with side lenght 0.3545 m are compared. Their areas are equal to each 

other, and thicknesses are both 0.005 m. Figures (a), (b), (c), (d), (e) shows the first, 

second, third, fourth, and fifth eigenvalues, respectively. These figures show a restricted 

area (x axis is restricted between 0.01 and 10 values) of the plots 
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      (b) 

 

(c)                                                                                 (d) 

 

ircle plate with radius 0.2 m 

and square plate with side lenght 0.3545 m are compared. Their areas are equal to each 

other, and thicknesses are both 0.005 m. Figures (a), (b), (c), (d), (e) shows the first, 

pectively. These figures show a restricted 

area (x axis is restricted between 0.01 and 10 values) of the plots in Figure 4.7 



 

Figure 4.9. Effect of wood type on the frequency behavior of square plate with side lenght 

0.3545 m and thickness 0.005m. 

 

(a)        

(c)                                                                                 

 

             (e) 

 

Effect of wood type on the frequency behavior of square plate with side lenght 

0.3545 m and thickness 0.005m. Figures (a), (b), (c), (d), (e) shows the first, second, third, 

fourth, and fifth eigenvalues, respectively 
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       (b) 

 

                                                            (d) 

 

Effect of wood type on the frequency behavior of square plate with side lenght 

Figures (a), (b), (c), (d), (e) shows the first, second, third, 



 

Figure 4.10. Effect of wood type on the frequency behavior of square plate with side lenght 

0.3545 m and thickness 0.005m. Figures (a), (b), (c), (d), (e) shows the first, second, third, 

fourth, and fifth eigenvalues, respective

restricted between 0.01 and 10 values) of the plots 

 

(a)        

(c)                                                                                  (d)

 

             (e) 

 

Effect of wood type on the frequency behavior of square plate with side lenght 

0.3545 m and thickness 0.005m. Figures (a), (b), (c), (d), (e) shows the first, second, third, 

fourth, and fifth eigenvalues, respectively. These figures show a restricted area (x axis is 

restricted between 0.01 and 10 values) of the plots in Figure 
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       (b) 

 

(c)                                                                                  (d) 

 

Effect of wood type on the frequency behavior of square plate with side lenght 

0.3545 m and thickness 0.005m. Figures (a), (b), (c), (d), (e) shows the first, second, third, 

ly. These figures show a restricted area (x axis is 

Figure 4.9 
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5.  DISCUSSION 

 

 

The numerical experimental results are given at the previous chapter for various 

types of cases. As stated before, the most important observation that we focus on is to 

understand the frequency behavior of axisymmetrically orthotropic material model with 

varying radial offset distance parameter. For this purpose, the numerous types of analyses 

are performed. 

 

We begin by analyzing a clamped square plate to show the variation of frequency 

response at the limit values of the radial offset (first case is a=0, and the second case is a 

approaching infinity.) for first five eigenvalues as the initial work. Thus, the differences at 

the limit cases are shown clearly. After that, a number of numerical comparisons are done 

to compare the results obtained using the axisymmetrically orthotropic material model with 

the ones using the classical orthotropic material model. For that purpose, to validate the 

results of the finite element analyses Xing’s study [1] is taken for the classical orthotropic 

case. Following these, the variation of eigenfrequencies is listed back to back with radial 

offset variation in an interval of 10-7 m and 109 m. The frequency behavior of spruce sitka 

square plate is shown as a function of the radial offset and the tangential offset in Figure 

4.4 and, Figure 4.5, respectively. Figure 4.6 is given for a selected portion of the radial 

offset value as zoomed view for the tangential offset variation case. Then, the geometry 

effect on the frequency behavior is examined using a square plate and a circular plate, and 

the related plots are given in Figure 4.7 and Figure 4.8. As the next analyses, the effect of 

wood type on the frequency behavior is studied using two types of wood: spruce sitka, and 

balsa. The orthotropic material properties of these woods are given at Appendix B. 

Similarly, the plots are given for the first five eigenvalues with varying radial offset value 

for the case that shows the effect of wood type in Figure 4.9 and Figure 4.10. Finally, the 

frequency behavior of spruce sitka square plate is shown as a function of shear presence in 

Figure 5.4. Now, the results are given for each of these cases mentioned above, 

respectively. 
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5.1. COMPARISON BETWEEN THE NUMERICAL SOLUTIONS OF THE      

CLASSICAL ORTHOTROPIC MATERIAL MODEL, AND THE LIMITING 

CASES OF AXISYMMETRIC ORTHOTROPIC MATERIAL MODEL 

 

The plate of cut is made longitudinally such that its radial offset distance can be 

taken as equal to zero or approaching to infinity to perform the limiting case analyses. The 

theoratical explanation of these cases is examined as “limiting cases” at Section 2.1. As it 

is noted there, the dependence to the position information (i.e. “y” information) of the 

stiffness coefficients is removed as the radial offset approaches zero. In this case the effect 

of material properties along the tangential axis becomes immaterial. For this location, the 

cutting plane becomes a centroidal plane of symmetry which is parallel to the principal RL 

plane of orthotropy. In contrast, as the radial offset approaches infinity, i.e. the cutting 

plane is brought far away from the centroidal axis, the terms  sin R approaches zero and 

the radial properties dissepear. Here, it becomes parallel to the principal TL plane of 

orthotropy. The related drawing is given in Figure 5.1 below. For these two distinct cases, 

plates local coordinate system gets rotated 90 degrees about the longitudinal axis, from the 

radial direction of orthotropy for the case which radial offset equals to zero, to the 

tangential direction for the case radial offset approaches infinity.  

 

Table 5.1 indicates the variation of frequency response with radial offset of clamped 

square plate made from spruce sitka for radial offset approaching infinity, and zero cases. ��_~ corresponds to the ith natural frequency of a plate that lies along the TL plane while  ��ñ~ is that of a plate lying along the RL plane; both of which are derived from the classical 

orthotrpic plate solution. It is observed that as radial offset is brought to infinity the 

solution of the axisymmetrical orthotropic material model converges to that of a plate lying 

in the TL plane predicted by the clasically orthotropic material model. Vice versa, as radial 

offset becomes zero, the solution of the former solution converges to that of a plate lying in 

the RL plane predicted by the latter solution. It is worth noting that the values from each 

solution are same to four significant digits. 

 



 

Figure 5.1. The cutting plane described as a function of radial offset, 

axis. Location of the cutting plane leads to a singular orthotropic orientation at 

this location, the cutting plane becomes 

to infinity it becomes parallel to the TL plane

 

 

Table 5.1. Verification 

made from spruce

 

 ��_~ 

λ1        227.54 

λ2        273.28 

λ3        361.82 

λ4        493.26 

λ5        662.71 

 

 

The cutting plane described as a function of radial offset, 

axis. Location of the cutting plane leads to a singular orthotropic orientation at 

this location, the cutting plane becomes parallel with the RL plane. As radial offset is taken 

to infinity it becomes parallel to the TL plane 

Verification of frequency response with radial offset of clamped square plate 

made from spruce sitka for approaching to infinity, and zero cases 

limy→∞

��(S) ��ñ~ 

       227.54        233.31 

       273.28        297.55 

       361.82        419.45 

       493.26        593.58 

       662.71        810.56 
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The cutting plane described as a function of radial offset, a, from the centroidal 

axis. Location of the cutting plane leads to a singular orthotropic orientation at a=0. For 

parallel with the RL plane. As radial offset is taken 

 

of frequency response with radial offset of clamped square plate 

sitka for approaching to infinity, and zero cases  

��(0< 
       233.31 

       297.55 

       419.46 

       593.59 

       810.57 
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5.2. VALIDATION OF AXISYMMETRICALLY ORTHOTROPIC MATERIAL       

MODEL RESULTS WITH THOSE OF AN ANALYTICAL SOLUTION 

 

 To validate the axisymmetrically orthotropic material model results with an 

analytical solution, Xing’s study [1] is used as the analytical solution. At this study, the 

eigenvalue equations are solved using Newton’s method, and a dimensionless frequency 

parameter = õê�öℎ/��
÷  , where b is the shorter side length of the rectangle, ω is the 

corresponding eigenvalue, ρis the mass density, h is the thickness, and F1 is the bending 

stiffness parameter, is defined in order to be used at the analyses. The geometry of problem 

is shown in Figure 5.2. 

 

 

 

Figure 5.2. A rectangle plate and its dimensions 

 

At the same study, this frequency parameter is calculated using different types of material 

for different geometrical configurations of a rectangle plate. Only the clamped boundary 

condition solutions are compared with our study. Material list for four different composites 

types used at the analysis are given at Table 5.2. 
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Table 5.2. Type of the material properties 

 

No Material EL (GPa) ET (GPa) GLT (GPa) νLT ρ(kg/m) 

1 T-graphite / epoxy 185 10.5 7.3 0.28 1600 

2 B-boron / epoxy 208 18.9 5.7 0.23 2000 

3 K-arly / epoxy 76 5.6 2.3 0.34 1460 

 

 Table 5.3 shows the variation of frequency parameter ø = õê�öℎ/��
÷  for the 

clamped square plate with side length 1 m and material type 2. Axisymmetrically 

orthotropic material model analyses for this case are done for three different mesh 

densities. Xing’s [1] results are compared with axisymmetrically orthotropic material 

model solution, and the errors in percentage values are noted right next to the 

axisymmetrically orthotropic material model values in parathesis. Standart 

axisymmetrically orthotropic material model mesh density is 100 by 100. AOMM# 

indicates 200 by 200 meshing while AOMM* analyses are evaluated using the 220 by 220 

meshing. A sample meshing plot is given in Figure 5.3 below.  

 

 

 

Figure 5.3. Clamped square mesh types showing the boundary conditions in red colour. 

Figure indicates 100 by 100 meshing 
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For our study, the errors about 0.5 % are acceptable and nearly all results given at the Table 

5.3 are below that number. 

 

Table 5.3. Frequency parameter for clamped square plate with side length 1 m and Material 

2 

 

c            b 

(m)        (m)  
Method 

Frequecncy parameter of  for first five eigenvalues and errors in 

percentage 

λ1 λ2 λ3 λ4 λ5 

1.0         1.0 

Xing           

AOMM 

AOMM# 

AOMM* 

 4.87 5.50 6.68 7.91 8.15               

4.88  (0.21) 

same 

same 

5.52  (0.36) 

same 

same 

6.70  (0.30) 

same 

same 

8.17  (3.29) 

8.16   (3.16) 

7.92   (0.13) 

9.76  (19.7) 

8.16  (0.12) 

8.17  (0.24) 

 

 Another important observation about the Table 5.3 is the error difference at the 

fourth and fifth eigenvalues of three different meshed analyses. Generally, finite element 

analyses are affected by mesh density, and for less denser meshes some eigenvalues may 

be missing especially at the higher sequence numbers of eigenvalues. When the 100 by 100 

mesh results are examined it is seen that there is nonignorable error between Xing’s 

solution and axisymmetrically orthotropic material model solution for the fourth and fifth 

eigenvalues. Then, when the 200 by 200 meshing is examined, the fifth eigenvalue 

matches with the Xing’s solution but the fourth eigenvalue is seemed to be still missing by 

the axisymmetrically orthotropic material model solution. As the final run, 220 by 220 

meshing is applied for the same geometry, and for all five eigenvalues there is a perfect 

match between the frequency parameter results of Xing’s solutions and axisymmetrically 

orthotropic material model ones. Thus, depending on the application type and how 

sensitivity results the user would like to obtain, the mesh density should be increased for 

the finite element analysis. 

 

 Table 5.4 shows the variation of frequency parameter ø = õê�öℎ/��
÷  for clamped 

plates with variable b for all the material types. For this analyses mesh density is taken as  

100 by 100 as standart. Xing’s results are compared with axisymmetrically orthotropic 
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material model solution, and the errors in percentage values are noted right next to the 

axisymmetrically orthotropic material model values in paranthesis. It can be be seen on the 

table that the maximum error between Xing’s solution and axisymmetrically orthotropic 

material model is 0.53 % for material 1 which is in acceptable region for us. For the other 

two geometrical combinations, i.e. c x b = 1m x 2m and c x b = 1m x 2m, like the previous 

one, axisymmetrically orthotropic material model solutions are again satisfying when 

compared with the Xing’s solutions. Thus, this completes the validation of 

axisymmetrically orthotropic material model results with the ones in the literature, i.e. 

Xing’s solutions. 

 

Table 5.4. Frequency parameter for clamped plates with variable b and Material 3 

 

c            b 

(m)        (m) 

Method 

(Material 

No) 

Frequecncy parameter of  for first five eigenvalues and errors in 

percentage 

λ1 λ2 λ3 λ4 λ5 

1.0         1.2 
Xing (M1) 

AOMM(M1) 

4.80 

4.81 (0.21) 

5.08 

5.10 (0.39) 

5.68 

5.71 (0.53) 

6.56 

6.58 (0.30) 

7.60 

7.62 (0.26) 

1.0         2.0 

Xing (M2) 

AOMM(M2) 

4.75 

4.75 (-) 

4.82 

4.83 (0.21) 

5.00 

5.01 (0.20) 

5.32 

5.33 (0.19) 

5.78 

5.80 (0.35)    

Xing (M3) 

AOMM(M3) 

4.75 

4.75 (-) 

4.82 

4.82 (-) 

4.98 

4.99 (0.20) 

5.26 

5.28 (0.38) 

5.68 

5.69 (0.18) 

1.0         3.0 

Xing (M2) 

AOMM(M2) 

4.74 

4.74 (-) 

4.76 

4.74 (-) 

4.81 

4.81 (-) 

4.90 

4.91 (0.20) 

5.05 

5.06 (0.19) 

Xing (M3) 

AOMM(M3) 

4.74 

4.74 (-) 

4.76 

4.76 (-) 

4.81 

4.81 (-) 

4.90 

4.90 (-) 

5.03 

5.04 (0.19) 

 

5.3. COMMENTS ON THE EFFECT OF RADIAL OFFSET AND TANGENTIAL 

OFFSET ON THE FREQUENCY BEHAVIOR 

 

The analyses examining the effect of the radial offset show like a V-shaped curve 

behavior for the values between 0.01 m and 1 m as given in Figure 4.4. This may be the 

most important observation for our study since it seems like there is a critical radial offset 

distance value (for this case it is 0.1 m) which the frequencies show minimum value. At 
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that point, the frequency values also show nearly a symmetrical behavior at the right and 

left sides of this minimum value. 

 

On the other hand, the frequency values show characteristic behavior at the limit 

cases of radial offset distance values for all five cases of analyses. Mathematically, as the 

radial offset distance goes to an infinite value it is expected that the values show 

asymptotic behavior. Therefore, it is seemed that the curve fits to a constant value of 

frequency asymptotically after a certain value which is 105 m for this case of interest. From 

the definition of limit, for radial offset distance values approaching to zero, the curve 

should have a zero tangent region for derivative continuity at zero value for even functions. 

Since the function in our study is defined as (y/a)
2 where y is the actual position coordinate 

of corresponding mesh element, we have an even function so that it is expected from curve 

to reach a minimum value at zero radial offset value. So, the tendency of decrease starting 

from 10-5 m indicates that it will reach to a minimum value and shows zero tangent 

behavior. 

Figure 4.5 and Figure 4.6 indicate the effect of tangential offset with varying radial 

offset distance. At all plots given in Figure 4.6, it is obviously seemed that the frequency 

values for s = 0.5 x b m are higher than the ones for s = 0 up to a definite value which is 

about 0.2 m for this case of interest. After that point, the frequency values of s = 0 case 

becomes higher than the other one. So, there is clearly a turning point for these plots listed 

in Figure 4.6. The V-shaped behavior shows almost linearly increasing and almost linearly 

decreasing behavior at the right and left sides of this turning point. Like the previous case 

of radial offset distances varying case, the curve clearly shows zero tangent behavior for 

the very small values of tangential offset distance values, and asymptotic behavior at the 

values of radial offset distance approaching to infinity. 

 

5.4. COMMENTS ON THE EFFECT OF GEOMETRY ON THE FREQUENCY     

BEHAVIOR 

 

Figure 4.7 and Figure 4.8 the variation of the frequency values with changing the 

radial offset distance for a clamped square plate and a clamped circle plate with radius. The 

most important observation about these results is that the frequency value of analyses 
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performed with square geometry is always higher than the ones with circle geometry for all 

first five eigenvalues. The general behavior of the curves of both geometries is similar with 

the previous analyses. Again, the zero tangent portion, asymptotic region, and the V-

shaped areas are clearly being seen on all plots of Figure 4.7 andFigure 4.8. However, for 

the fifth eigenvalue, the behavior of circle geometry solution seems to be much more 

different that the previous ones. This is not an exceptional solution case; actually this is an 

example of numerical error case. As mentioned before at the rectangular geometry solution 

cases using axisymmetrically orthotropic material model, there may be these kinds of 

numerical errors when the mesh density is lower than a certain value. So, in this case, if 

someone would like to obtain more accurate results for the frequency values of the fifth 

eigenvalue, he/she should increase the mesh size. The weird behavior of the fifth 

eigenvalue caused by the numerical error can be seen much more clearly in Figure 4.8e. 

 

Another important observation about the plots in Figure 4.7 is that there is a sharp 

linearly decreasein portion of values between the values 103 m and 105 m. After the ending 

point of this line, the asymptotic behaviour begins to be observed clearly. The turning point 

of the curves (i.e. the frequency values of circle geometry is higher than the ones of square 

geometry up to a point. After that point the behavior changes oppositely and the frequency 

values of square geometry are getting higher than the other ones.) are again observed 

clearly. 

 

5.5. COMMENTS ON THE EFFECT OF WOOD TYPE ON THE FREQUENCY 

BEHAVIOR 

 

There is an obvious observation about the results which examine the effect of wood 

types on the frequency behavior: The values of frequencies using a spruce sitka case is 

almost doubled the values of balsa at each of the five runs. These are listed in Figure 4.9 

and Figure 4.10. This is an expected result because of their different orthotropic material 

behaviors. Balsa is lighter material than the spruce sitka, so spruce sitka is said to be stiffer 

material than balsa. This is why the frequency values of analyses using spruce sitka is 

always higher than the ones obtained with using balsa wood. As it can be seen on the 

zoomed plots, balsa wood behaves similarly to spruce sitka up to a minimum point of 
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frequency values at all cases of eigenvalues. However, after that point, balsa does not 

behave like spruce sitka and it is rapidly starting the asymptotic behavior. 

 

One of the most important outcomes of these analyses is that the curve behavior of 

the spruce sitka and balsa woods are different than each other. Spruce sitka curve behaves 

like our previous analyses but the balsa curve does not have a V-shaped region like spruce 

sitka. 

 

5.6.   EFFECT OF SHEAR PRESENCE ON THE FREQUENCY BEHAVIOR 

 

 In Figure 5.4, the frequency behavior of spruce sitka clamped square plate with side 

length 0.3545 m and thickness 0.005 m is examined as a function of shear presence with 

the varying radial offset distance value. Two cases of shear presence are examined here: 

one is the no shear case, while the other is the case that the shear factor (kappa) is 5/6 

which is the default value of the finite element solver. 

 

 The analyses indicate that the frequency values with including shear cases are always 

lesser than the ones obtained with no shear case.  

 

 The zero tangent region of the analyses of no shear are wider than the other case. 

Also the no shear case fits to an asymptotic line sooner than including shear case. As a 

general observation, the effect of shear presence on the frequency behavior plays an 

important role on the limit cases although the difference between the values of frequency 

between these two analyses is low (for example, this difference is only about 2 Hz., and 10 

Hz for a=10-7 m value at the first eigenvalue and second eigenvalue analyses, 

respectively.). 

  



 

             

 

Figure 5.4. The frequency behavior of 

and thickness 0.005 m as a function of shear presence. Figures (a), (b), (c), (d), and (e) 

shows the first, second, third, fourth, and fifth eigenvalues, respectively

 

(a)        

            (c)            

 

           (e) 

 

The frequency behavior of spruce sitka square plate with side 

and thickness 0.005 m as a function of shear presence. Figures (a), (b), (c), (d), and (e) 

shows the first, second, third, fourth, and fifth eigenvalues, respectively
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       (b) 

 

           (d) 

 

itka square plate with side lenght 0.3545 m 

and thickness 0.005 m as a function of shear presence. Figures (a), (b), (c), (d), and (e) 

shows the first, second, third, fourth, and fifth eigenvalues, respectively 
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6.  CONCLUSION AND FUTURE WORKS 

 

 

In this study, a new finite element material model is developed with concise 

formulation that takes into account the variation in the alignment of the principal axes of 

orthotropy in order to examine the frequency behavior of the longitudinally cut thick 

plates. More different than the existing studies that use classical orthotropic material 

model, the components of the stiffness matrix are updated pointwise along the surface of 

plate as a result of the varying orthotropic orientation angle. 

 

Wood is selected as the axisymmetrically orthotropic material, and a number of 

analyses are performed. Basically, the results are focused to indicate the effects of 

variation of the radial offset parameter on the frequecny behavior. Apart from that, a 

couple of discussions are given for different kinds of analyses such as the analyses 

showing the effect of geometry, wood type, and the shear presence. 

 

This study completes the formation of the stiffness matrix of an axisymmetricaly 

orthotropic material model, and someone can perform a finite element analysis of 

longitudinally cut thick plates using this new model and using the finite element solver, 

FEAP, with its new subroutines which are developed in this study. In addition, a couple of 

future works would be applied in the light of this study. For instance, a shape optimization 

project may be executed in order to develop an acoustically perfect shaped musical 

instrument. Since the frequency values of each syllables at resonant are well-known, an 

optimum plate shape, which gives its mode shapes exactly at these resonant values, can be 

obtained for any type of wood. As another example of the possible future works is to make 

an application of variable thickness analyses in order to be used for any selected 

application. 
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APPENDIX A: MATERIAL SUBROUTINE 

 

 

Updated material subroutine is defined as the name of umatpl at the program. The 

reduced form of the stiffness matrix for the normal and shear stresses is defined as dmg 

matrix, and the reduced stiffness matrix that includes the shear terms is defined as dsg 

matrix. The whole subroutine is given below.  

 

c$Id:$ 

      subroutine umatpl(d,psi,dmg,dsg) 

 

c     Rotation of material arrays from principal to local element 

directions 

 

 

c     Inputs: d        - Array with material properties 

c             psi      - Angle from y1-axis (local) to 1-axis 

(principal) 

c     Output: dmg(3,3) - Plane stress modulus matrix 

c             dsg(2,2) - Transverse shear modulus matrix 

 

 

c-----[--.----+----.----+----.------------------------------------

-----] 

 

      implicit  none 

 

      integer   i, j 

 

      real*8    psi, si, co, s2, c2, s4, s8, c4, c8, cs 

      real*8    E1, E2, E3, v12, v23, v31, v21, v13, v32  

      real*8    g12, g23, g31, R 

 

      real*8    d(*) 
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      real*8    dml(3,3), dmg(3,3), dsg(2,2), qm(3,3), dmlqj(3) 

 

      save 

 

c     Set up constants for transformation 

 

      si = sin(psi) 

      co = cos(psi) 

      s2 = si*si 

      s4 = s2*s2 

      s8 = s4*s4 

      c2 = co*co 

      c4 = c2*c2 

      c8 = c4*c4        

      cs = co*si 

      E1 = d(231) 

      E2 = d(232) 

      E3 = d(233) 

      v12 = d(234) 

      v23 = d(235) 

      v31 = d(236) 

      v21 = (E2/E1)*v12 

      v13 = (E1/E3)*v31 

      v32 = (E3/E2)*v23 

      g12 = d(237) 

      g23 = d(238) 

      g31 = d(239) 

      R = (1/E2)*(1-v21*v12)*c4+(1/E3)*(1-v31*v13)*s4 

     &  +(1/g23-v23/E2-v32/E3-2*v12*v13/E1)*c2*s2 

 

c     Convert plane stress local to global matrix 

 

      dmg(1,1) = E1*((c4/E2)+(s4/E3)+(1/g23-v23/E2-

v32/E3)*c2*s2)/R 
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      dmg(1,2) = (v12*c2+v13*s2)/R 

 

      dmg(1,3) = 0 

 

      dmg(2,1) = dmg(1,2) 

 

      dmg(2,2) = 1/R 

 

      dmg(2,3) = 0 

 

      dmg(3,1) = 0 

 

      dmg(3,2) = 0 

 

      dmg(3,3) = 1/(c2/g12+s2/g31) 

 

     

c     Set up global shear matrix 

 

      dsg(2,2) = d(37)*(g23*c4+g23*s4+s2*c2*((E3/R) 

     &         *(1-v12*v21-v21*v13-v23)+(E2/R) 

     &         *(1-v12*v31-v13*v31-v32)-2*g23)) 

 

      dsg(1,1) = d(37)*(g31*c2+g12*s2) 

 

      dsg(1,2) = 0 

 

      dsg(2,1) = 0 

 

 

      end 
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APPENDIX B: MATERIAL PROPERTIES OF WOODS 

 

 

 The orthotropic material properties of spruce sitka and balsa woods are given at the 

below table: 

 

 
EL (N/m2) 

ET 

(N/m2) 

ER 

(N/m2) 
νLT νTR νRL 

GLT 

(N/m2) 

GTR 

(N/m2) 

GRL 

(N/m2) 

Spruce 

Sitka 
108.2*108 4.7*108 8.4*108 0.47 0.24 0.04 66*108 3*108 69*108 

Balsa 33.8*108 0.5*108 1.6*108 0.49 0.23 0.02 12*108 2*108 18*108 
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