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ABSTRACT

HYPER-HEURISTICS FOR GROUPING PROBLEMS

Hyper-heuristics emerge as domain independent methodologies to solve hard

computational search problems by performing search over the heuristics rather than directly

solutions. One of the main goals of hyper-heuristic research is to support and investigate into

the development of more general approaches applicable across different problem domains.

Grouping problems requires partitioning of a set of items into mutually disjoint subsets

subject to constraints. In this study, high level selection hyper-heuristics are investigated

embedding a set of low level heuristics for grouping problems based on an efficient

representation, referred to as linear linkage encoding. The empirical results over multi-

objective and single objective grouping problems, such as graph coloring, examination

timetabling, data clustering and bin packing show that the proposed grouping hyper-heuristic

framework is sufficiently general providing high quality solutions at each domain.
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ÖZET

GRUPLAMA PROBLEMLERİ İÇİN ÇOK HEDEFLİ ÜST

BULUŞSALLAR

Üst sezgiseller, çözümü zor hesaplamaya dayalı arama problemlerini direk çözümler

üzerinde arama yapmak yerine sezgiseller üzerinde arama yaparak çözmeye çalışan etki alanı

bağımsız bir metodoloji olarak ortaya çıkmaktadır. Üst sezgisel araştırmanın ana hedefi,

farklı problem alanlarında uygulanabilir genel yaklaşımların geliştirilmesini desteklemek ve

araştırmaktır. Çok amaçlı optimizasyon birden fazla ve genellikle çelişen amacı optimize

etmeyi hedefler. Bu çalışmada, yüksek düzey üst sezgiseller gruplama problemleri için bir

grup düşük düzey sezgiseller kullanarak doğrusal bağlantı kodlaması olarak adlandırılan

verimli bir sunuma bağlı olarak araştırıldı. Çok amaçlı ve tek amaçlı, çizge boyama,

sınav çizelgeleme, veri gruplama ve sele doldurma problemleri gibi gruplama problemleri

üzerindeki deneysel sonuçlarda, önerilen gruplama üst sezgisel sistemi bütün etki alanlarında

yeterince genel yüksek kalietede sonuçlar vermiştir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF SYMBOLS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. HYPER-HEURISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. The Hyper-heuristic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2. Classification of Hyper-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3. Selection Hyper-heuristics: Heuristic Selection and Move

Acceptance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4. Performance Comparison Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5. Hyper-heuristic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. MULTI-OBJECTIVE OPTIMIZATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. GROUPING PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1. LINEAR LINKAGE ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. ELBOW CRITERION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3. DATA CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4. EXAM TIMETABLING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5. GRAPH COLORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6. BIN PACKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. SELECTION HYPERHEURISTICS FOR GROUPING PROBLEMS . . . . . . . . . . . . . . . 30

4.1. FITNESS EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1. Graph Coloring and Exam Timetabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2. Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3. Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



vii

4.1.4. Delta Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2. HEURISTIC SELECTION METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1. Simple Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3. Modified Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3. MOVE ACCEPTANCE METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1. Great Deluge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2. Improve or Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.3. Late Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4. LOW LEVEL HEURISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1. Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2. Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.3. Merge Tournament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.4. Merge Most Conflicting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.5. Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.6. Divide Tournament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.7. Divide Most Conflicting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.8. Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.9. Change from Most Conflicting to Most Suitable . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.10. Change with Most Suitable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.11. Low-level Heuristics for Bin Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5. TYPES OF MULTI-OBJECTIVE HYPER-HEURISTIC FRAMEWORKS . . . 59

4.5.1. Generic Hyper-heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.2. Cyclic Candidate Solution Selection Hyper-heuristic . . . . . . . . . . . . . . . . . . . 60

4.5.3. Apply to All Candidate Solutions Hyper-heuristic . . . . . . . . . . . . . . . . . . . . . . 62

4.6. SINGLE OBJECTIVE HYPER-HEURISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5. EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1. EXPERIMENTAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2. PARAMETER TUNING EXPERIMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1. Tuning Tournament Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2. Pareto Front Interval for Multi-objective Problems . . . . . . . . . . . . . . . . . . . . . 72

5.2.3. Number of Low Level Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



viii

5.2.4. Comparison of RL and RLM Heuristic Selection Methods . . . . . . . . . . . . . 77

5.2.5. Comparison of Hyper-heuristic Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3. EXPERIMENTAL RESULTS FOR THE MULTI-OBJECTIVE PROBLEMS 82

5.4. EXPERIMENTAL RESULTS FOR BIN PACKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101



ix

LIST OF FIGURES

Figure 2.1. Single Point search based hyper-heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.2. Pareto Optimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.1. LLE LOP Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2. Elbow Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.1. Reinforcement Learning algorithm choose heuristic procedure . . . . . . . . . . . . 34

Figure 4.2. Reinforcement Learning algorithm change score procedure . . . . . . . . . . . . . . . . 35

Figure 4.3. Modified Reinforcement Learning algorithm change score procedure . . . . . 36

Figure 4.4. Great Deluge algorithm initialization procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.5. Great Deluge algorithm accept procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.6. Late Acceptance algorithm initialization procedure . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.7. Late Acceptance algorithm accept procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.8. Swap algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.9. Swap Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.11. Merge Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.10. Merge algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



x

Figure 4.12. Merge Tournament algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.13. Merge Tournament Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.14. Finding Most Conflicting Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.15. Merge Most Conflicting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.16. Merge Most Conflicting Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.17. Divide algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.18. Divide Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.19. Divide Tournament algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.20. Tournament algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.21. Divide Tournament Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.22. Divide Most Conflicting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.24. Change algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.23. Divide Most Conflicting Low-level Heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.25. Change Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.26. Finding Most Suitable Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.27. Change from Most Conflicting to Most Suitable algorithm . . . . . . . . . . . . . . . . . 55



xi

Figure 4.28. Change From Most Conflicting To Most Sutiable Low-level Heuristic . . . . 56

Figure 4.30. Change With Most Suitable Low-level Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.29. Change with Most Suitable algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.31. Repair Algorithm for infeasible candidate solutions . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.32. Generic Hyper-heuristic Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.33. Cyclic Candidate Solution Selection Hyper-heuristic Flow Chart . . . . . . . . . . 63

Figure 4.34. Apply to All Candidate Solutions Hyper-heuristic Flow Chart . . . . . . . . . . . . . 64

Figure 4.35. Single objective Hyper-heuristic Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.1. Graph Coloring Ranking based on the Best Solutions . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.2. Data Clustering Ranking based on the Best Solutions . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.3. Exam Timetabling Ranking based on Best Solutions . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.4. Pareto front of iris data with hyper-heuristic RL−LACC . . . . . . . . . . . . . . . . . . . 93

Figure 5.5. Pareto front of synthetic2 data with hyper-heuristic SRAN−LACC . . . . . . . 93

Figure 5.6. Bin Packing Problem Ranking based on Best Solutions . . . . . . . . . . . . . . . . . . . . 95



xii

LIST OF TABLES

Table 2.1. Application domains of methodologies to select perturbation heuristics. . . . . 6

Table 2.2. Heuristic selection and move acceptance methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 5.1. The characteristics of the problem instances from the DIMACS suite. |V |

is the number of vertices, |E| is the number of edges, % is the edge density

and x(G) is the chromatic number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 5.2. The characteristics of the problem instances from the Toronto benchmark

suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 5.3. The characteristics of the real-world data clustering problem instances. . . . . 70

Table 5.4. The characteristics of the synthetic data clustering problem instances. . . . . . . 71

Table 5.5. Tournament Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.6. Pareto Front Interval Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 5.7. Number of Heuristics Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 5.8. The performance comparison of RL and RLM heuristic selection methods. 78

Table 5.9. Hyper-heuristic types average performance comparison on Exam

Timetabling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 5.10. Hyper-heuristic types best performance comparison on Exam Timetabling

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



xiii

Table 5.11. Hyper-heuristic types average performance comparison on Graph

Coloring Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 5.12. Hyper-heuristic types best performance comparison on Graph Coloring

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 5.13. Hyper-heuristic types average performance comparison on Data

Clustering Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 5.14. Hyper-heuristic types best performance comparison on Data Clustering

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 5.15. Graph Coloring best colorings comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 5.16. Exam Timetabling best colorings comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table 5.17. Data Clustering best solutions comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 5.18. Bin Packing average best solutions comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 5.19. Pair-wise comparison of hyper-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 5.20. Bin packing problem mean number of bins comparison . . . . . . . . . . . . . . . . . . . . . . 97



xiv

LIST OF SYMBOLS/ABBREVIATIONS

ATACSH Apply to All Candidate Solutions Hyper-heuristic

BPP Bin Packing Problem

CCSSH Cylic Candidate Solution Selection Hyper-heuristic

CFMCTMS Change from Most Conflicting to Most Suitable

ChangeMS Change with Most Suitable

DivideMC Divide Most Conflicting

EMC Exponential Monte Carlo

EMCQ Exponential Monte Carlo with counter

GCP Graph Coloring Problem

GDEL Great Deluge

GE Group Encoding

GPX-CB Greedy Partition Crossover Cardinality Based

GPX-LI Greedy Partition Crossover Lowest Index

HGGA Hybrid Grouping Genetic Algorithm

IEQ Improving or Equal

LACC Late Acceptance

LIFX Lowest Index First Crossover

LIMX Lowest Index Max Crossover

LLE Linear Linkage Encoding

LLE-b Linear Linkage Encoding With Backward Node Links

LLE-e Linear Linkage Encoding With Ending Node Links

LMC Linear Monte Carlo

LOP Labeled Oriented Pseudo

MergeMC Merge Most Conflicting

MOEA Multi-objective Evolutionary Algorithm

MOP Multi-objective Optimization Problem

MTP Martello and Toth’s branch-and-bound reduction algorithm

NE Number Encoding

NSGA Non-dominated Genetic Algorithm



xv

RL Reinforcement Learning

RLF Recursive Largest Fit

RL-GDEL Reinforcement Learning - Great Deluge Hyper-heuristic

RL-IEQ Reinforcement Learning - Improve or Equal Hyper-heuristic

RL-LACC Reinforcement Learning - Late Acceptance Hyper-heuristic

RLM Modified Reinforcement Learning

RLM-GDEL Modified Reinforcement Learning - Great Deluge Hyper-heuristic

RLM-IEQ Modified Reinforcement Learning - Improve or Equal Hyper-

heuristic
RLM-LACC Modified Reinforcement Learning - Late Acceptance Hyper-

heuristic
RLTS Reinforcement Learning with Tabu Search

SPEA Strength Pareto Approach

SRAN Simple Random

SRAN-GDEL Simple Random - Great Deluge Hyper-heuristic

SRAN-IEQ Simple Random - Improve or Equal Hyper-heuristic

SRAN-LACC Simple Random - Late Acceptance

VEGA Vector Evaluated Genetic Algorithm

VNS Variable Neighborhood Search



1

1. INTRODUCTION

In general, exact methods fail in solving NP-hard/complete real-world computational

search problems and the researchers resort to the heuristic methods which are “rule of thumb”

for solving such problems to obtain solutions with acceptable quality. The state-of-the-

art heuristic methods for solving real-world problems are highly problem specific methods.

They are mostly tuned for a problem in hand which is an expensive process considering both

the development effort and maintenance. Moreover, there are many different heuristics which

are successful in solving different problems from a given domain. Heuristics are mostly

discarded and new methods have to be designed for a new problem domain. The difficulties

that appear when solving problems with heuristics are mainly due to the significant range of

parameter and algorithm choices which are difficult to deal with, since there is no specific

and conceded way to select the best parameter values and algorithm components. These

make it harder to even to choose the best heuristic approach for a given instance.

Hyper-heuristics are emerging methodologies that perform search over the space of

heuristics rather than solutions [1]. A key goal of the hyper-heuristic research is to support

the development of intelligent methodologies to solve problems with different characteristics

from a given domain or a range of domains. This way, hyper-heuristics aim to increase the

level of generality of the problem solvers. There are two main types of hyper-heuristics:

methodologies to generate heuristics and methodologies to select heuristics [2]. The focus

of this thesis is the latter one. A selection hyper-heuristic is a high level method which

attempts to improve an initially generated candidate solution iteratively in a single point

based framework by controlling (mixing) a set of low level heuristics during the search

process [3]. At each iteration, a heuristic is selected from the set of low level heuristics

first and then it is applied to the candidate solution in hand, generating a new one. Then, a

decision is made whether to accept or reject the new solution. The selection hyper-heuristics

aim to combine the strengths of different heuristics while avoiding from their weaknesses for

a given problem to raise the level of generality.

The grouping problems are concerned with partitioning a set of items into a collection
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of disjoint subsets [4]. All grouping problems have their own distinguishing set of

constraints. Some of the grouping problems can be formulated as a multi-objective problem

where objectives creates a trade-off or as a single objective problem. The examples of multi-

objective grouping problems are graph coloring, data clustering and exam timetabling. The

examples of single-objective grouping problems are bin packing and stock cutting. The

representation of candidate solutions in grouping problems is a critical issue, because some

representation schemes create symmetries in the search space and these symmetries cause

different solutions to represent the same point in the search space, so the search space

increases undesirably.

In this thesis, a general grouping selection hyper-heuristic framework based on linear

linkage encoding is described. The performance of a range of selection hyper-heuristics is

investigated over a set of problem instances including Toronto Benchmark [5] and DIMACS

Challenge Suite [6] for exam timetabling and graph coloring. Several real-world and

synthetic data sets are used for data clustering and data sets provided by Falkenauer [7]

are used for bin packing.

This thesis is organized as follows: Chapter 2 summarizes the hyper-heuristic

and multi-objective optimization concepts. Chapter 3 presents an overview of grouping

problems, particularly graph coloring, exam timetabling, data clustering and bin packing

along with linear linkage representation. Chapter 4 describes the grouping hyper-heuristic

framework, including the heuristic selection and move acceptance methods, low-level

heuristics, objective functions used for each problem domain. Chapter 5 discusses the

experimental results obtained for each problem domain using the proposed hyper-heuristics.

Finally, conclusions are provided in chapter 6.
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2. BACKGROUND

2.1. HYPER-HEURISTICS

2.1.1. The Hyper-heuristic Concept

Automating the design and tuning heuristic methods to solve hard computational

search problems is one of the key motivations for hyper-heuristics( [8–10]). Heuristics and

meta-heuristic methods are problem dependent, on the other hand hyper-heuristics aim to

develop more generally applicable problem independent methods. Hyper-heuristics aim to

find the right method or sequence of heuristics in a given situation rather than trying to solve

the problem directly. One of the important goals of hyper-heuristics is to devise easy-to

implement low-level heuristics to design generic methods for all problems to find acceptable

optimal solutions. A hyper-heuristic can be seen as a high-level methodology that is built

on top of the low-level heuristics to solve the given problem. It automatically produces

necessary combination of its components for the given problem instance. Two main ideas

provide inspiration for different types of hyper-heuristic frameworks [2]:

• Selecting and designing efficient hybrid and/or cooperative heuristics are

computational search problems in itself.

• Learning mechanisms can improve the search methodologies.

[11] first used the term hyper-heuristic and then [12] used hyper-heuristic term for

combinatorial optimization and describe it as “heuristic to choose heuristics” [13] is the

first journal that hyper-heuristic term is used.

In 2003, the first review book chapter on hyper-heuristics, stressed one of the

key objectives of the hyper-heuristics as to raise the level of generality [8]. [10]

published a tutorial article which gives useful implementation approaches for hyper-

heuristics and specifies some research issues and new application domains to apply hyper-

heuristics. Chakhlevitch and Cowling in [14] interested in recent developments in hyper-
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heuristics rather than the historical improvement of hyper-heuristics and heuristic generation

methodologies. They classify and discuss the hyper-heuristics recently developed.

Generating new heuristics from a set of potential heuristic components is discussed in

[9]. In this approach Genetic Programming is an important part of the discussion. This

chapter gives detailed description of the approach with some case studies. It also includes

a discussion of known issues for this type of hyper-heuristic. [9] represents a unified

classification and definition of hyper-heuristics based on previous categorizations. Based

on this categorization, there are two main hyper-heuristic categories: heuristic selection and

heuristic generation.

2.1.2. Classification of Hyper-heuristics

In [1], hyper-heuristic is defined as follows:

A hyper-heuristic is a search method or learning mechanism for selecting or generating heuristics to solve

computational search problems

In [9], classification of hyper-heuristics is proposed according to two dimensions:

• the nature of the heuristic search space

• the source of feedback during learning

Different heuristic search spaces can be combined with different sources of feedback

and different learning techniques.

There are two main categories of hyper-heuristics based on the nature of the search

space, these are:

• Heuristic selection: methodologies for choosing or selecting existing heuristics

• Heuristic generation: methodologies for generating new heuristics from components

of existing ones

Heuristics can be categorized as construction heuristics and perturbation heuristics
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under that two main categories. This categorization is about the low-level heuristics used

in the hyper-heuristic frameworks.

Hyper-heuristics can be also classified with their learning mechanisms as learning

hyper-heuristics and non-learning hyper-heuristics. The distinction between these two is

using some feedback mechanism from the search process or not. Therefore learning hyper-

heuristics uses some feedback from the search process, on the other hand non-learning

hyper-heuristics do not use any feedback from the search process. Learning hyper-heuristics

are also divided into two categories which are online learning hyper-heuristics and offline

learning hyper-heuristics.

• Online learning hyper-heuristics: The learning process takes place when the algorithm

is on the run. Therefore all the problem instance dependent local properties can be

used in the learning process. Hyper-heuristics use these local properties to select

appropriate low-level heuristic. Reinforcement Learning is one of the examples of

the online learning hyper-heuristics. In this research, reinforcement learning is used

and detailed information of this algorithm can be found in Section 4.2.2

• Offline learning hyper-heuristics: The idea is to train the algorithm with a set of

training instances before running the algorithm for the real problem. Examples of

offline learning hyper-heuristics are: learning classifier systems, case-base reasoning

and genetic programming.

To sum up all the classifications:

• Nature of heuristic search space

– Heuristic selection methodologies

∗ Construction heuristics

∗ Perturbation heuristics

– Heuristic generation methodologies

∗ Construction heuristics

∗ Perturbation heuristics

• Feedback during learning



6

Table 2.1. Application domains of methodologies to select perturbation heuristics.

Application domain Reference(s)

Channel assignment [15, 16]

Component placement [17]

Personnel scheduling [12, 13, 18–20]

Packing [20, 21]

Planning [22]

Reactive Power Compensation [23]

Space allocation [24–26]

Timetabling [13, 20, 27–29]

Vehicle routing problems [30]

– Online learning hyper-heuristics

– Offline learning hyper-heuristics

– Hyper-heuristics without learning

In this study, we focus on heuristic selection methodologies managing a set

of perturbation low-level heuristics. The low-level heuristics for grouping problems

are described in Section 4.4 along with the online learning hyper-heuristic based on

reinforcement learning (Section 4.2.2).

2.1.3. Selection Hyper-heuristics: Heuristic Selection and Move Acceptance Methods

In selection hyper-heuristic frameworks, a heuristic (or a subset of heuristics) is

automatically selected and applied to a candidate solution to improve it. Heuristic selection

mechanisms devise some offline and online learning mechanism to make better decisions.

These approaches are applied to a wide variety of combinatorial optimization problems,

some of them are listen in Table 2.1 .
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The execution process of single point search based hyper-heuristic framework is shown

in Figure 2.1. In this framework, search starts with an initial candidate solution and this

candidate solution (scurrent) is improved until some termination criteria are fulfilled. For

every step the procedure is as follows; firstly, a heuristic (h) is selected from a set of low-

level heuristics and it is applied to the current candidate solution. Then a decision is made

whether to accept or reject the new candidate solution (snew). If the new candidate solution

is accepted, it is the new current candidate solution, otherwise candidate solution stays the

same for the next run. The single point based search hyper-heuristics are composed of two

key components:

• heuristic selection method

• move acceptance method

These are identified in [28] and [3]. New hyper-heuristics can be constructed by using

different combinations of heuristic selection methods and move acceptance methods. When

a heuristic selection method is changed with another one, we have a new hyper-heuristic.

1: generate initial candidate solution scurrent

2: while termination criteria not satisfied do

3: select a heuristic (or subset of heuristics) h from {H1, ..., Hn}

4: generate a new solution (or solutions) snew by applying h to scurrent

5: decide whether to accept s or not

6: if snew is accepted then

7: scurrent = snew

8: end if

9: end while

10: return scurrent

Figure 2.1. Single Point search based hyper-heuristic

Learning mechanisms, that heuristic selection mechanisms use, are divided into three
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parts as stated before, these are online learning mechanisms, offline learning mechanism and

non-learning mechanisms. Non-learning heuristic selection methods are based on a random

or an exhaustive process instead of a learning process. On the other hand, the learning

mechanisms aim is to improve the decision making process in the heuristic selection. Most

of the hyper-heuristics use online learning rather than offline learning mechanisms. Online

learning mechanisms use online scores that are generated based on the performances of the

low-level heuristics. These scores are used in a systematic way at each step to select the

appropriate low-level heuristic to be applied on the candidate solution. Score based online

learning heuristic selection mechanisms require five main components. These are:

• initial scoring

• memory length adjustment

• strategy for heuristic selection based on the scores

• score update rule for improvement

• score update rule for worsening

Initial scoring may affect the performance of a hyper-heuristic, generally all low-level

heuristics are assigned with the same initial score. The initial score might be 0 or some

other value based on the implementation of the hyper-heuristic. Memory length determines

the affect of the previous performance of a heuristic. Higher scores increase the probability

of selection of the low-level heuristic, in some strategies the low-level heuristic with the

highest score is selected.

Rewarding and punishing the low-level heuristics based on their individual

performance during the problem solution is called score mechanism. If a low-level heuristic

improves the candidate solution, it is rewarded by the predefined update rule. On the other

hand, low-level heuristics that worsens the current candidate solution is punished by the

predefined update rule. Reward increases the score of the low-level heuristic, however

punishment decreases the score of the low-level heuristic.

The acceptance strategy is another important component in hyper-heuristics.

Acceptance strategies can be categorized as deterministic and non-deterministic.
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Deterministic acceptance strategies make the same decision if the candidate solution and the

state of the problem is the same. Non-deterministic acceptance strategies may give different

decisions with the same candidate solution and the state. Non-deterministic methods require

different additional parameters for decision making, time is one of the most common

parameter used in non-deterministic acceptance methods. Table 2.2 summarizes the most

commonly used heuristic selection and move acceptance methods.

In this research, Simple Random heuristic selection method is used as a heuristic

selection with no learning method and Reinforcement Learning heuristics selection method

is used as a heuristic selection with learning. Also Improve and Equal deterministic

acceptance method and Great Deluge and Late Acceptance non-deterministic acceptance

methods are used as the acceptance methods.

Reinforcement learning is one of the most commonly used method in hyper-

heuristics, for more detailed information about reinforcement learning see [34] and [35].

A reinforcement learning strategy is also used in this study, for the implementation details

you can see Section 4.2.2.

Reinforcement Learning is used as a heuristic selection mechanism in [22]. Each low-

level heuristic’s score is updated according to a predetermined update rule which is based

on heuristic’s performance at each decision point. The heuristic selection mechanism selects

the appropriate heuristic based on these scores. All Moves acceptance method is used in the

study, therefore when a heuristic is chosen to be applied, it is accepted. Different score update

mechanism are investigated in this work. This study suggests that combining a low rate of

adaptation for rewarding an improving move and strong rate of adaptation for punishing a

worsening move is a good choice. In addition to this using max strategy when choosing a

heuristic at each step often generates better result when compared to choosing a heuristic

with a roulette wheel scheme using the scores.

Similar to Nareyek’s study, [13] is based on the score mechanisms by learning to select

among low-level heuristics. They presented a Reinforcement Learning with Tabu Search.

A dynamic tabu list of low-level heuristics also included in the hyper-heuristic, this list
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Table 2.2. Heuristic selection and move acceptance methods.

Component Name Reference(s)

Heuristic selection

Simple Random [12, 31]

Random Permutation [12, 31]

Greedy [12, 18, 31]

Peckish [18]

Random Gradient [12, 31]

Random Permutation Gradient [12, 31]

Choice Function [12, 31]

Reinforcement Learning [22]

Reinforcement Learning with Tabu Search [13, 21]

Move acceptance

All Moves [12, 31]

Only Improvements [12, 31]

Improving and Equal [12, 31]

Monte Carlo [17]

Great Deluge [15, 28]

Record to Record Travel [16]

Tabu Search [32]

Simulated Annealing [25, 28]

Simulated Annealing with Reheating [20, 21]

Late Acceptance [33]
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temporarily excludes them from the available heuristics. The algorithm deterministically

selects the highest ranked low-level heuristic that is not in the tabu list. All Moves acceptance

mechanism is used in this study, therefore when the heuristic is chosen the final candidate

solution is accepted whether it improves the solution or not. The improvement increases

the heuristic rank, on the other hand if there is no improvement both the heuristic rank is

decreased and the heuristic is enqueued into the tabu list. This decreases the probability of the

non-improving heuristics. When a non-improving move is accepted the tabu list is emptied.

University course timetabling and nurse rostering problems are used to evaluate this hyper-

heuristic. The results are competitive with the state-of-art problem specific techniques. [24]

extends this methodology to be used in multi-objective optimization.

A sales summit and a project presentation problem which are real-world scheduling

problems are used in [12, 31] to propose and compare a variety of the hyper-heuristic

components. In [12], a score based heuristic selection method Choice Function based on

reinforcement learning is introduced. The function adaptively ranks the low-level heuristics

based on their score. Simple Random selects a heuristic from low-level heuristics completely

randomly at each step. Simple Random approach is used in this study, you can find a

detailed description in Section 4.2.1. Random Gradient is a variant of Simple Random,

it randomly chooses a heuristic among low-level heuristics and applies this heuristic to the

candidate solution until it doesn’t improve the solution. Random Permutation generates

a random ordering of the low-level heuristics and the heuristics are applied according to

this randomly defined order, at each step the heuristic which is the next one in the order

is applied. Random Permutation Gradient is a variant of the Random Permutation, the

relation of Random Permutation and Random Permutation Gradient is same with the Simple

Random and Random Gradient. Low-level heuristics are in a randomly generated order,

however the next heuristic is applied to the solution when the heuristic could not improve

the solution. Greedy applies all low-level heuristics on the current candidate solution and it

selects the best improved solution. Random Gradient and Random Permutation Gradient can

be considered as intelligent heuristic selection mechanisms. Both of them implement some

kind of Reinforcement Learning by selecting the improving heuristic in the next step until

it doesn’t improve. This type of strategy can be useful if there are not many plateaus in the

search landscape. These heuristic selection mechanisms execute fast, Greedy which runs in
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an exhaustive manner, is the only exception for this case.

All Moves and Only Improvements were considered as the deterministic acceptance

criteria. Choice Function−All Moves hyper-heuristic resulted promising in the experimental

results in [12]. A series of experiments run and manual parameter tuning is done to

obtain the best parameter set. In [31] a variant of Choice function is proposed, which

uses reinforcement learning to automatically update all parameters at each step. This new

variant of Choice function outperforms the simple Choice Function with manually defined

parameters.

Simple Random and Greedy heuristic selection methods are used in [18]. There is

a probability that all moves may worsen the solution but Greedy method described in [12]

does not accept any worsening moves. This study accepts worsening moves in this situation.

Peckish heuristic selection strategies are also studied with four different Tabu Search based

move acceptance methods. Only Improving, All Moves and a variant of All Moves are used

as move acceptance criteria in the study. The All Moves variant discards solutions that are

same with the current solution. Real-world personnel scheduling problem is used to evaluate

the hyper-heuristic. Ninety five low-level heuristics are used and the results are promising.

This large set of low-level heuristics reveal a problem that selecting a low-level heuristic

becomes slower. This problem inspired a new study in [32] to represent two new learning

strategies for choosing the subset of the fittest low-level heuristics. The results of this study

reveal that Greedy-Tabu Search is the most promising hyper-heuristic among them. Greedy-

Tabu Search linearly reduces the number of the fittest low-level heuristics.

[17] proposed three different types of Monte Carlo acceptance strategy; Linear Monte

Carlo(LMC), Exponential Monte Carlo (EMC) which is based on an exponential probability

function and Exponential Monte Carlo with counter (EMCQ) which is based on the

computation time and a counter of consecutive non-improvement iterations. Optimization

of the scheduling of electronic component placement on a printed circuit board is used

to evaluate the hyper-heuristics that are combination of Simple Random with one of the

Monte Carlo acceptance strategies (LMC, EMC, EMCQ). The performance of these hyper-

heuristics are compared with combination of (Simple Random, Choice Function) and (All
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Moves, Only Improving) hyper-heuristics. Simple Random−EMCQ hyper-heuristic has a

superior performance over the deterministic acceptance with and without learning hyper-

heuristics in the problem instances tested in this study. Different results may occur for the

same number of iterations because faster machines executes more instructions in a given

time.

Great Deluge acceptance criteria accepts moves at each decision point if it is not worse

than the expected objective value which changes at linear rate every step. If f(snew) <

level = f(s0) − (t∆F )/T then the move is accepted at step t, where f(s0) is the objective

value of the initial solution. ∆F is the difference between the objective values of f(s0) and

the expected final objective value and T is the maximum number of iterations. A variant

of Great Deluge acceptance criteria used in [15] and Simple Random heuristic selection

strategy is used in this study. A real-world channel assignment benchmark problems are used

to evaluate this hyper-heuristics. Hyper-heuristic is compared with a constructive heuristic

and a genetic algorithm, the results are competitive.

[36] presented an acceptance criteria named Record-to-Record Travel and [16]

modified this acceptance criteria for using in hyper-heuristics. Channel assignment problem

is used to evaluate the hyper-heuristic that uses Simple Random for the heuristic selection and

it is compared with All Moves, Only Improving and EMCQ move acceptance strategies. The

proposed method has better results. It is also compared with the state-of-the-art algorithm

for this problem; a constructive heuristic and a genetic algorithm, Simple Random−Record-

to-Record Travel heuristic results comparable with these previous studies.

[25] introduced Simulated Annealing in hyper-heuristics and they discuss the

automation of the Simulated Annealing parameters. Simple Random−Simulated Annealing

hyper-heuristics outperformed the following according to the results; Simple Random−Only

Improving, Simple Random−All Moves, Greedy−Only Improving, Choice Function−All

Moves and two conventional simulated annealing approaches.

A multi-objective Simple Random−Simulated Annealing hyper-heuristic is described

in [23]. Power compensation problem in electricity distribution networks is the problem used
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with the proposed hyper-heuristic. Six low-level heuristics are designed to make a move

from one feasible solution to another. Simulated Annealing makes the decision based on the

dominance between these two feasible solutions. The weighted sum of two objective values

is used in acceptance probability. The proposed Simple Random−Simulated Annealing

hyper-heuristic performed slightly worse than a multi-objective genetic algorithm.

A variant of Reinforcement Learning with Tabu search (RLTS) is hybridized with a

Simulated Annealing with Reheating move acceptance strategy in [21]. Score updates and

acceptance rate reductions perform together which are the results of RLTS and Simulated

Annealing with Reheating respectively. A packing problem with real-world data is used

to evaluate the proposed hyper-heuristic. The hyper-heuristic which utilize Reinforcement

Learning with Tabu Search as heuristic selection mechanism and Simulated Annealing with

Reheating as move acceptance method is superior in performance than a simpler local search

strategy.

[20] uses a reinforcement learning mechanism with a short term memory as a heuristic

selection mechanism in his proposed hyper-heuristic. Low-level heuristics scores are used

to calculate the selection probabilities and they are selected with a roulette wheel strategy

after these probabilities are calculated. As a move acceptance method, a variant of Simulated

Annealing with Reheating which executes switching between annealing and reheating phases

during the search, is used. Nurse rostering, course timetabling and bin packing problems are

used to evaluate the proposed hyper-heuristic and its results are competitive compared to

previous studies.

Late Acceptance (LACC) strategy is a memory based technique, it devises a list of

size L to hold the history of objective values from the previous solutions. New candidate

solution’s objective value is compared with an objective value from the history and based

on this comparison it is decided to accept or reject the new candidate solution. [33]

used this acceptance criteria to investigate the performance of hyper-heuristics combined

with different heuristic selection methods. Simple Random, Greedy, Choice Function,

Reinforcement Learning and Reinforcement Learning with Tabu Search heuristic selection

methods are used. Simple Random performed the best with Late Acceptance and Greedy
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performed the worst with Late Acceptance. The delay in comparison of objective values

seem to be deceiving in the learning mechanism.

2.1.4. Performance Comparison Studies

In [28] previously proposed heuristic selection and move acceptance mechanisms are

combined in 35 different hyper-heuristics and they are tested for comparison. Heuristic

selection mechanisms used in this research are namely: Simple Random, Random

Gradient, Random Permutation, Random Permutation Gradient, Greedy, Choice Function

and Reinforcement Learning with Tabu Search. Move acceptance mechanisms used in this

research are namely: All Moves, Only Improving, Improving and Equal, Great Deluge and

EMCQ. Hyper-heuristics that use the Improve or Equal move acceptance strategy performed

slightly better than the other hyper-heuristics over a set of benchmark functions. When

heuristic selection mechanisms are compared, the Choice Function produced a slightly better

average performance. The results reveal that move acceptance strategies play more important

role compared to heuristic selection mechanisms. Over the exam timetabling instances,

Choice Function−EMCQ and Simple Random−Great Deluge outperformed the rest of the

hyper-heuristics.

[37] proposed four different types of hyper-heuristics and investigate the performance

of these frameworks. First hyper-heuristic type is the standard hyper-heuristic called FA

in the research. The low-level heuristics, which are composed of hill climber heuristics

which aim to improve the solution at each step and mutational heuristics which perturb a

candidate solution without considering whether the new solution will be improved or not, are

treated equally in one set. Hyper-heuristic selects one of them based on its heuristic selection

methodology. The second hyper-heuristic which is called FB in the study is a variant of FA.

If the selected heuristic is a hill climber heuristic, move acceptance methodology applies as in

FA, but if a mutational heuristic is selected, a predefined hill climber heuristic is applied after

the mutational heuristic is applied to the candidate solution. Third hyper-heuristic framework

that is called FC in this study uses only mutational heuristics as its low-level heuristic set.

One of the mutational low-level heuristic is selected and applied to the candidate solution

and then a predefined hill climber heuristic is applied to the candidate solution. The last
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one that is called FD hyper-heuristic framework uses two hyper-heuristics successively for

managing mutational and hill climber heuristics. Test results reveal that FC outperforms the

other three hyper-heuristic frameworks.

[3] extend the studies [28] and [37]. When learning mechanisms used, it is observed

that some low-level heuristics are rarely chosen. The repeated experiments show that the

choice of single hill climber heuristic that is used in every iteration affects the performance

of the FB and FC frameworks. When the best hill climber heuristic is chosen, FB and

FC outperformed others, FC also outperforms genetic algorithm and its performance is

comparable with memetic algorithms.

[26] worked on a fresh produce inventory and shelf space allocation problem and

compared the results against a multi-start generalized reduced gradient algorithm proposed in

[38], some hyper-heuristics and meta-heuristics. The empirical results show that Simulated

Annealing based hyper-heuristics performs better than Reinforcement Learning with Tabu

Search−All Moves hyper-heuristic and similar performances to the traditional Simulated

Annealing and GRASP. Reinforcement Learning with Tabu Search outperforms Simple

Random when the heuristic selection methods are compared in hyper-heuristic frameworks.

[20] treats the hyper-heuristic components, heuristic selection and move acceptance as

indivisible and tries to update their parameters together. [39] showed that they are separable

in the study which combines the heuristic selection methods, Simple Random and Choice

Function with move acceptance methods, Simulated Annealing, Simulated Annealing with

Reheating and EMCQ. These combined hyper-heuristics are tested with Greedy−Simulated

Annealing with Reheating and the hyper-heuristic proposed in [20]. These are tested on

exam timetabling problems and the results show that Choice Function−Simulated Annealing

outperforms the others. [22] shows that using max strategy for heuristic selection performs

better. This explains why Choice Function performed better than the learning mechanism

in [20]. This mechanism rewards the heuristic when it is accepted, it doesn’t consider the

improvement in the candidate solution after the low-level heuristic is applied.
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2.1.5. Hyper-heuristic Tools

Recently, hyper-heuristic software libraries have been implemented for rapid

development and research: Hyperion [40] and Hyflex [41]. Hyperion provides a general

recursive framework for the development of hyper-heuristics (or meta-heuristics), supporting

the selection hyper-heuristic frameworks provided in [3]. Hyflex provides reusable hyper-

heuristic (meta-heuristic) components, having a support for the problem domains of Boolean

Satisfiability (MAX-SAT), One Dimensional Bin Packing, Permutation Flow Shop (PFS)

and Personnel Scheduling (PS) each with ten different instances and a set of low-level

heuristics. Burke et al. [42] investigated the performance of a range of selection hyper-

heuristics implemented as part of HyFlex. This was a proof of concept study for CHeSC:

Cross-Domain Heuristic Search Competition 1 . The best selection hyper-heuristic will be

determined among CHeSC competitors which generalizes the best across a set of problem

instances from different problem domains. Burke et al. [42] reported that the best performing

hyper-heuristic was an iterated local search approach. This result also shows that the FC

framework has a lot of potential. More on hyper-heuristics can be found in [1, 2, 8–10, 14]

2.2. MULTI-OBJECTIVE OPTIMIZATION

Optimization can be described as minimization or maximization of a real function.

An allowed set of real and/or integer variables are chosen systematically to maximize or

minimize the real function. Optimization can be categorized as single-objective and multi-

objective. Multi-objective optimization involves more than one objective to minimize or

maximize, generally these objectives conflict with each other.

The Multi-Objective Optimization Problem (MOP) can be defined as the problem of

finding a vector of decision variables which satisfies constraints and optimizes them as a

vector function whose elements represent the objective functions. These functions form a

mathematical description of performance criteria which are usually in conflict with each

other [43]. The term “optimize” means finding a solution which would give the values of all

objective functions acceptable to the decision maker [44]

1http://www.asap.cs.nott.ac.uk/chesc2011/
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The notion of “optimum” that is mostly adopted in the literature is firstly proposed

by Francis Ysidro Edgeworth in 1881. In 1896 Vilfredo Pareto generalized this notion.

Therefore this notion firstly called in literature as Edgeworth-Pareto optimum, however in

later studies the notion is accepted and used as Pareto Optimum.

Single-objective optimization and multi-objective optimization are different in the

nature of the problems that they devise to solve. Single-objective optimization aim to find the

optimal solution, therefore there is only one optimal value in this optimization. On the other

hand in multi-objective optimization, there are no one single optimal value. The nature of

multi-objective optimization contains multi conflicting objects, therefore it results with a set

of optimal values. Each different objective may have different individual optimal solutions.

The term conflicting can be described as if there is a sufficient difference in the optimal

solutions for two different objectives, then these two objectives are known as conflicting.

The reason of having not one optimal solution but a set of optimal solutions is the conflicting

objectives and the solutions can not be considered better than any other optimal solution with

respect to all objective functions. This set of optimal solutions are called Pareto-Optimal

solutions. This notion is illustrated with an example in Figure 2.2

In this figure, f1 and f2 represent two objectives to be minimized. Solution A

represents a solution which is minimized with respect to objective f1 but it has the maximum

value with respect to objective f2. In contrary the solution D represent the minimum value

for objective f2, but it has the maximum value for objective f1. If the objectives f1 and

f2 are equally important goals, it can not be said neither solution A is better solution nor

solution D. Solution A is better than solution D with respect to objective f1, on the other

hand solutionD is better than solutionAwith respect to objective f2. There exists a trade-off

between these acceptable solutions.

Pareto-Optimal Set can be defined as; the non-dominated solutions P ′ , those are not

dominated by any member of a set of solutions P . The non-dominated set of entire feasible

search space S is the global pareto optimal set. If for every member x in a set P ′ there exists

no solution y in the neighborhood of x dominating any member of P ′ , then P ′ is a locally

pareto-optimal set.
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Figure 2.2. Pareto Optimal Solutions

There are two condition for a solution x1 to dominate another solution x2. These

conditions are:

1. The solution x1 is no worse than x2 in all objectives

2. The solution x1 is strictly better than x2 in at least one objective

If x1 dominates x2, then

• x2 is dominated by x1

• x1 is non-dominated by x2

• x1 is non-inferior to x2

There are many classical and evolutionary methods for solving MOP. Some of them

can be listed as:

• Classical Methods:
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– Weighted Sum Method

– The ε-Perturbation Method

• Evolutionary Methods

– Schaffer’s Vector Evaluated Genetic Algorithm (VEGA) [45]

– Fonseca and Fleming’s Multi-objective Genetic Algorithm [46]

– Horn, Nafploitis and Goldberg’s Niched Pareto Genetic Algorithm [47]

– Zitzler and Theile’s Strength Pareto Approach (SPEA) [48]

– Srinivas and Deb’s Non-dominated Genetic Algorithm (NSGA) [49]

More information about multi-objective optimization can be found in [50–52].
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3. GROUPING PROBLEMS

The performance of a range of selection grouping hyper-heuristics for solving grouping

problems, in particular graph coloring, examination timetabling, data clustering and bin

packing is investigated in this study. This chapter provides an overview of the grouping

problem concepts and these problem domains.

Grouping problems can be described as the problem of searching for the best partition

of a set of items into a collection of mutually disjoint subsets [4] subject to constraints.

V = V1 ∪ V2 ∪ V3 ∪ ... ∪ VN and Vi ∩ Vj = ∅ where i 6= j (3.1)

In a grouping problem, the aim is to partition the members of a set V into N different

groups, where (1 ≤ N ≤ |V |) and each item is in exactly one group (Equation 3.1).

There are usually a set of constraints for a valid solution to a grouping problem, because

in general, not all groupings are permitted. A valid (feasible) solution has to comply with

these constraints. A grouping problem has its own specific constraints, for example in graph

coloring, adjacent nodes can not be in the same group. In the bin packing problem, the

constraints are different then the graph coloring problem, the sizes of items in a bin can not

exceed the bin’s capacity. Exam Timetabling also has different constraint and its constraints

are also different in different problem instances, one example of exam timetabling constraint

can be like, any two exam can not be at the same time if these two exams will be taken by

any of the students. Exam Timetabling constraint can be divided into two categories as hard

constraint and soft constraints. Hard constraints must be satisfied, while soft constraints are

not mandatory but the aim is to resolve soft constraints as many as possible. Almost all

grouping problems have these kind of constraints. The objective of grouping is to optimize a

fitness function defined over a set of groupings. In all three examples that are given above is

to minimize the number of groups while satisfying the constraints defined for each problem.
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Representation of grouping problems is a challenging issue. The reason of this is the

symmetries in the search spaces, these symmetries causes different solutions to be equal in

the search space. This is an undesirable case, because it increases the search space which

decreases the performance of the search procedures by examining the same solutions more

than once. The previously used representations do not solve these symmetries in the search

space issue, therefore a new representation schema name Linear Linkage Encoding (LLE)

[53] is proposed to resolve this issue.

There are two commonly used representation schemes prior to LLE, these are Number

Encoding (NE) and Group Encoding(GE). In NE, each object is represented with a group

id which it belongs to. For example, 34112314 encodes a solution where first object is in

group 3, the second object is in group 4, third object is in group 1 and so on. However the

encoding 12334132 represents exactly the same solution. The naming or the ordering of

the partition sets is irrelevant to the solution encoding. [4] represents the drawbacks of this

representation schema and showed that it is against the minimal redundancy principal for

encoding scheme [54]. On the other hand GE places the objects, which are in the same group,

in the same partition set. For example, the encoding represented for NE can be encoded in GE

as (1, 6)(2, 8)(3, 4, 7)(5). Unlike NE, search operators work on groups rather than objects,

so ordering within each partition is unimportant. However the following represents the same

solution, (3, 4, 7)(5)(1, 6)(2, 8) because the ordering redundancy among groups problem is

not solved in this representation scheme too.

LLE is proposed to solve these representation issues. It is explained in detail in section

3.1. In this study, LLE is used as the representation scheme for solving grouping problems.

3.1. LINEAR LINKAGE ENCODING

Linear Linkage Encoding (LLE) is proposed in [53] to resolve the symmetries issue

that causes redundancy in the search space. LLE can be represented using an array, each item

in the array has a value between 1 to n that is a link to another object in the same partition.

Two objects are in the same group if either one can be reached from another through the

links. If an object links to itself, that is considered as an ending node. LLE constructs a
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Figure 3.1. LLE LOP Graph

pseudo linear path with the only loop allowed being a self loop link to mark the last node

in a group. LLE can be represented as a labeled oriented pseudo (LOP) graph which is a

directed graph G(V,E), where V is the vertex set and E is the edge set. An example of an

LLE representation can be seem as an array representation and LOP representation in the

figure 3.1

There are two requirements for LLE to be feasible. First, backward links are not

allowed, this means that all nodes in a group should point to a node with a higher index

than itself. Second requirement is that no two nodes can point to the same node in the array,

only exception to this case is the ending node which points to itself. A composition of G

is a grouping of V (G) into disjointed oriented pseudo path graphs G1, G2, ....Gm with the

following properties:

• Disjoint paths ∪mi=1V (Gi) = V (G) and for i 6= j,V (Gi) ∩ V (Gj) = ∅

• Non-backward oriented edges: If there is and edge e directed from vertex vi to vk then

i ≤ k

• Balanced Connectivity

1. |E(G)| = |V (G)|

2. each Gi has only one ending node with an in− degree of 2 and out− degree of

1

3. eachGi has only one starting node whose in−degree = 0 and out−degree = 1

• All other |V (Gi)| − 2 vertices in Gi have in− degree = out− degree = 1
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There are several studies that use LLE for solving grouping problems. [55] used LLE

to solve two-level clustering problem with a genetic algorithm and used large datasets.

The results were promising and competitive with the supervised techniques. [56] worked

on two grouping problem domains, Graph Coloring and Timetabling. This study used a

multi-objective genetic algorithm to solve these problems and investigate the performance

of LLE on these problem domains. The genetic algorithm operators Lowest Index First

Crossover (LIFX) and Lowest Index Max Crossover (LIMX) have promising result. [33]

worked on Examination Timetabling problem with a newly proposed acceptance criteria Late

Acceptance (LACC) [57]. Perturbative hyper-heuristic framework used in this study and

best heuristic selection match is investigated for LACC. Simple Random heuristic selection

performed well with LACC according to the experiments. Another observation of the study

is that learning mechanisms based on reinforcement learning or statistical analyses do not

function well with LACC. [58] studied on the representation issues in Graph Coloring and it

proposed two new versions of LLE which are Linear Linkage Encoding with Ending Node

Links and Linear Linkage Encoding with Backward Links. [59] used LLE for solving bin

packing problems with grouping genetic algorithm and the performance of custom made

LLE operators are compared with traditional recombination operators.

3.2. ELBOW CRITERION

In this study, data clustering, exam timetabling and graph colouring are formulated

as multi-objective problems. The minimum number of clusters causing the least error, the

minimum number of timeslots causing the least violations and the minimum number of

colours causing the least conflicts are searched. All these objectives are conflicting objectives

and finding the minimum number of groups (clusters, timeslots, colours) is a distinct issue

from the process of actually solving the grouping problem. The elbow criterion is a common

rule of thumb to determine the best number of groups against a given conflicting objective.

The elbow criterion claims that a number of groups should be chosen where adding another

group does not create a better solution. In Figure 3.2, it is clearly shown that adding a group

to the solutions of 2 groups and 3 groups have a significant effect in fitness value assuming

a minimization problem. However, when number of groups is increased from 4 to 5, it has a

very slight difference compared to its successors. Therefore, the solution with 4 number of



25

Figure 3.2. Elbow Criterion

groups should be selected in this example according to the elbow criterion.

In this study, elbow criterion is used to determine the best solution after running the

grouping hyper-heuristic on a problem instance. The result of multi-objective grouping

hyper-heuristics constitutes a pareto front for non-dominating list of candidate solutions and

the best solution from this list is selected based on the elbow criterion.

3.3. DATA CLUSTERING

Data Clustering is a kind of a grouping problem where patterns like observations, data

items or feature vectors are classified into groups which are called clusters in the problem

specific naming. Clustering problem has a wide range of domains that it can be used, because

it is useful in the exploration of data in data analysis. Basic idea of data clustering is to group

similar objects into the same cluster. From this definition, we can understand that items that

are in different clusters are dissimilar with each other.

Data Clustering techniques require a definition of a similarity measure between

patterns, which is not easy to specify in the absence of any prior knowledge about the

clusters. Therefore, even there exists lots of clustering algorithms, none of them can handle
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all sorts of clustering problems. Each algorithm has its own approach for handling cluster

validity, number of clusters and structure of the data.

In [60] clustering approaches are classified as hierarchical and partitional.

Hierarchical approaches includes single link and multi link, on the other hand partitional

approaches include square error, k-means, graph theoretic, mixture resolving, expectation

minimization and mode seeking. LLE is used in a novel clustering approach that devises a

genetic algorithm in [53].

3.4. EXAM TIMETABLING

An optimal schedule is searched with a set of constraints for a given set of events

and resources in timetabling problems. There are two types of constraints which are hard

constraints and soft constraints. Hard constraints have to be satisfied to solve the scheduling

problem, on the other hand soft constraints are not mandatory to solve but the aim is to

resolve soft constraints as many as possible. A solution must not violate any hard constraints

to be named a feasible solution. The size of the search space changes. Number of items to be

scheduled changes the size of the search space for a timetabling problem. Constraints result

many infeasible solutions in the search space.

[61] and [62] are the first studies with some computer based strategies for examination

timetabling. Then, a large university examination timetabling system is designed by [63].

Real-world applications of timetabling in different universities are provided as a survey

in [64]. In this study how to design specific timetabling algorithms for each institution

separately is described. Different heuristic orderings based on graph coloring applied

in [5]. This approach takes its inspiration from [65] which showed that the timetabling

problem can be reduced to a graph coloring problem. [66] proposed an effective use of

evolutionary algorithms by dividing a large scale problem into smaller instances and solving

these instances separately. [67] designed a multi-objective evolutionary algorithm(MOEA)

based on a direct encoding of the mapping between exams and time slots. The approach

attempted to minimize the number of violations of each type of constraint as separate

objectives. [68] proposed an XML data format which is based on MathML for representing
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timetabling problems and their solutions. [28] tested a set of hyper-heuristics that combine

heuristic selection and move acceptance mechanisms over a set of examination timetabling

benchmark problems. [69] presented a multi-objective evolutionary algorithm(MOEA) that

aims to generate feasible exam timetables without any prior knowledge of timetable length.

3.5. GRAPH COLORING

Graph Coloring Problem (GCP) is a well known combinatorial optimization problem

which is probed to be NP Complete in [70]. Graph coloring is assigning colors to each

vertex of an undirected graph such that no adjacent vertices should receive the same color.

The minimum number of colors that can be used for a valid coloring is called the chromatic

number.

Given a graph G = (V,E) with vertex set V and edge set E, and given an integer k,

a k-coloring of G is a function c : V → 1, ..., k. The value of c(x) of a vertex is called the

color of x. The vertices with color r(1 ≤ r ≤ k) define a color class, denoted Vr. If two

adjacent vertices x and y have the same color r, x and y are conflicting vertices, and the edge

(x, y) is called a conflicting edge. If there is no conflicting edge, then the color classes are

all independent sets and the k-coloring is valid. The Graph Coloring Problem is to determine

the minimum integer k (the chromatic number of G − x(G)) such that there exists a legal

k-coloring of G [71]

There are several studies about Graph Coloring Problem. Recursive Largest Fit (RLF)

is a well-known greedy heuristic introduced by Leighton [65]. Davis [72] proposed a coding

as an ordering of vertices which could be used in a genetic algorithm. Davis’ algorithm

was designed to maximize the total weights of the vertices in the graph colored with a fixed

amount of colors. Hertz and de Werra [73] presented the first tabu search implementation

which outperforms another local search method, simulated annealing on random dense graph

instances. This methods attempts to find a valid k-coloring by partitioning the set of vertices

V into k subsets. [74] presented three simulated annealing implementations based on three

neighboring approaches: penalty-function approach, Kempe chain approach and fixed-k

approach. [71] proposed a variable neighborhood search algorithm(VNS) for graph coloring
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problem.

3.6. BIN PACKING

Bin packing problem(BPP) is a well-known combinatorial optimization problem which

is NP hard problem. In BPP items of different sizes has to be packed into a minimal number

of bins of fixed capacity. Bin packing has many variants with respect to:

• the number of dimensions used

• the arrival of bins

• the distribution of the size of the items

In this study, only one dimensional bin packing problem will be considered.

In the classic one dimensional bin packing problem [75], there is a given sequence

L = (a1, a2, a3, ...., an) of items, each with a size s(ai) ∈ (0, 1] and these are aimed to be

packed into a number of bins which are in a fixed unit capacity. In other words the aim of

the problem is to partition the given items into a minimum number of subsets. Let’s say the

number of bins is m and the subsets are B1, B2, B3, ..., Bm, this could be formulated as in

3.2

∑
ai∈Bj

6 1, 1 6 j 6 m (3.2)

There are several methods to solve bin packing problem. First Fit is one of them. In

this approach an item ai is placed in the first partially filled bin Bj into which it fits. If there

is no bin that ai can fit into a new bin is created and this item is put into this new bin. This

method is used in this study while initializing the Bin Packing problem. Another method to

solve bin packing problem is Best Fit. In this approach an item ai is placed in the partially

filled bin Bj with the highest level which means the selected bin is the most suitable bin to

put the item ai in. On the other hand Worst Fit is the counter approach of best fit and it places

an item ai in the partially filled bin Bj with the lowest level.
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Most comparative studies of bin packing take the Martello and Toth’s branch-and-

bound reduction algorithm(MTP) [76] as their reference. The MTP is based on a dominance

criterion. A feasible set of items is defined as any subset F ⊆ N such that
∑

i∈F wi ≤ C.

With two feasible sets F1 and F2, F1 dominates F2 if and only if the number of bins in some

optimal solution by setting B1 = F1 is not greater than by setting B1 = F2. There exists

a partition P1, ..., Pt and a subset i1, ..., il ⊂ F1 such that wih ≥
∑

k∈phwk for h = 1, ..., l.

Therefore a solution containing F1 will not have more bins than a solution containing F2

[7] uses a Hybrid Grouping Genetic Algorithm(HGGA) which is heavily modified to

suit the structure of grouping problems. While placing free items Falkenauer used a similar

strategy like domination criterion of Martello and Toth.
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4. SELECTION HYPERHEURISTICS FOR GROUPING

PROBLEMS

Heuristic is a methodology to solve problems where exhaustive solutions aren’t

practical. A heuristic does not solve all problems at best every time. Heuristics are problem

dependent solution methods, so heuristics are implemented separately for every different

problem domain and/or problem instance. A type of a hyper-heuristic can be described as

a heuristic to choose heuristics [12]. A selection hyper-heuristic operates at a high level

and manages a set of low level heuristics (see Section 2.1.3). The number of low level

heuristics are not limited. New heuristics can be implemented and added into the hyper-

heuristic framework.

A selection hyper-heuristic framework mainly combines two components:

• The heuristic selection method is a problem-independent structure to make selection

of one of the low-level heuristics provided to apply on the problem.

• After the heuristic is applied, the other important part of the framework, the move

acceptance mechanism gathers the candidate solution in terms of a fitness value and

decides to accept or reject the new fitness value returned by the applied heuristic.

The following sections describe all relevant components of the hyper-heuristic framework

for solving grouping problems.

4.1. FITNESS EVALUATION

4.1.1. Graph Coloring and Exam Timetabling

In [6], it is showed that the exam timetabling problem can be reduced to graph coloring

problem, if the task of minimizing the number of exam periods and removing the clashes are

considered. Therefore in this study, they are treated the same when solving them and their

fitness functions are calculated in the same way. The fitness value denotes the number of
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conflicts in the graph. The algorithm works on the principle of counting the adjacent nodes

of the graph. If there are two adjacent nodes that are the same color, this counts as a conflict.

4.1.2. Data Clustering

In Data Clustering, fitness function calculates the total distance of items in clusters.

Euclidean distance metric is used in this research. In Euclidean metric, there are n centers

for each group where n is the number of properties. Therefore every property has its own

center and the distance of each item is calculated with the distances to these property centers.

It is formulated as in Equation 4.1

n∑
k=1

m∑
i=1

Wik

p∑
j=1

(Xij − Ckj)
2 (4.1)

In Equation 4.1 n is the number of clusters, m is the number of items, p is the number of

properties and Wik is 1 if the ith item is in kth cluster, it is 0 otherwise. Ckj is the center for

the kth clusters jth property, while Xij is the ith items jth property.

4.1.3. Bin Packing

There are different approaches while calculating the fitness value of the bin packing

problems. A straightforward fitness function would just take the inverse of the number of

bins. However, as pointed by Falkenauer in [77] as well, such a fitness function will result

a very unfriendly fitness landscape in which many combinations with one more bin than

optimal solution will have the same fitness value. Instead the function proposed by [77] is

used in this study:

f(s) =

∑N
i=1(Fi/C)2

N
(4.2)

where, N is the number of bins, Fi is the fill of the bin i and C is maximum bin capacity for

a given solution s. This equation is also used in [59], the results of this study and [59] will

be compared.
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4.1.4. Delta Fitness Evaluation

Grouping hyper-heuristics work on time based fashion, all runs are executed in a

predefined time. Fitness evaluation is a very time consuming part of the framework. In

almost all grouping hyper-heuristics, the fitness evaluation is done based on the whole

candidate solutions. The datasets can be very large in grouping problems, therefore

calculating the fitness value of a candidate solution takes significant time. Number of

iterations is an important factor in finding the best solution, the more iterations in a run

increases the probability of finding the best solution for the problem instance. This leads

us to utilize a different fitness calculation which is called delta fitness evaluation. In delta

fitness evaluation, rather than calculating the fitness value of the whole candidate solution,

only the partial fitness contributions of the groups that are modified during that iteration are

calculated. This would give a significant time advantage and provides more iterations in a

run. For example, if swap heuristic is applied and G1 and G2 are the groups that swap nodes

ni and nj , it is calculated as in equation 4.3

fitness = (fitness− (f(G1) + f(G2))) + (f(G
′

1) + f(G
′

2)) (4.3)

To generalize the equation, the partial fitness contribution (denoted as f(.)) of the

groups that will be modified are subtracted from the overall fitness value and the new partial

fitness contributions are calculated after the low-level heuristic is applied to the candidate

solution and these are added to the fitness value of the candidate solution.

4.2. HEURISTIC SELECTION METHODS

Despite the difference, single-objective approaches deal with only the best and unique

solution, the multi-objective optimization approaches deal with conflicting objectives with a

set of solutions (pareto optimal set) instead of only one. So that it is not possible to expect

the same selection procedures within the single-objective optimization to be applicable

on multi-objective optimization problems. For this study, we implemented three heuristic

selection mechanism namely “Simple Random”, “Reinforcement Learning” and “Modified
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Reinforcement Learning”.

4.2.1. Simple Random

“Simple Random” selection mechanism makes the selection randomly among the low-

level heuristics. It is totally random, no intelligence used in this selection mechanism and

every heuristic has an equal chance to be selected in every single run.

4.2.2. Reinforcement Learning

“Reinforcement Learning” selection mechanism makes the selection based on a

ranking mechanism. Every heuristic has a score in reinforcement learning algorithm and they

all start equally. The score of heuristics are bounded with a range and they are always in this

score range. There are studies about the range of these bounds. [78] showed that the upper

and lower bounds should be 0 and 40. These values are used as the bounds of reinforcement

learning in this study. When heuristics are selected and makes an improvement in that run

they take a reward which increases their score. However when a heuristic is applied but

it is not improve the candidate solution, it is given a punishment score which decreases

its score. Reinforcement learning selects the heuristics based on their scores. Therefore

all heuristics do not have the same probability to be selected for the next run. If all the

heuristics have the same score than a random heuristic is selected to apply on the candidate

solution. This case is same as the simple random selection mechanism. Hyper-heuristic

framework continues to select a heuristic while it is successful to optimize the fitness value

of the candidate solution. Algorithm 4.1 shows how the heuristic selection in reinforcement

learning works and algorithm 4.2 shows how the scores of heuristics change in reinforcement

learning.
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1: indexArray[numberOfHeuristics]

2: scoreArray[numberOfHeuristics]

3: counter ← 1

4: indexArray[0]← 0

5: max← scoreArray[0]

6: for index = 1 to numberOfHeuristics do

7: if scoreArray[index] > index then

8: max← scoreArray[index]

9: indexArray[0]← index

10: counter ← 1

11: else

12: indexArray[counter + +]← index

13: end if

14: end for

15: if counter = 1 then

16: tempIndex← indexArray[0]

17: else

18: tempIndex← indexArray[random(counter)]

19: end if

20: return tempIndex

Figure 4.1. Reinforcement Learning algorithm choose heuristic procedure
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1: if newFitness < oldF itness then

2: score[selectedHeuristicIndex]+ = reward

3: else

4: score[selectedHeuristicIndex]− = punishment

5: end if

6: if score[selectedHeuristicIndex] > scoreUpperBound then

7: score[selectedHeuristicIndex] = scoreUpperBound

8: end if

9: if score[selectedHeuristicIndex] < scoreLowerBound then

10: score[selectedHeuristicIndex] = scoreLowerBound

11: end if

Figure 4.2. Reinforcement Learning algorithm change score procedure

4.2.3. Modified Reinforcement Learning

Modified Reinforcement Learning is a variant of reinforcement learning which is

also based on a similar scoring mechanism. Modified reinforcement learning differs

from reinforcement learning in changing the scores of the heuristics. As stated before

reinforcement learning changes the scores of the heuristics based on the improvement in

the candidate solution. Modified reinforcement learning adds an extra scoring mechanism

to this and it changes the scores of the heuristics based on their acceptance. If a heuristic

is accepted by the acceptance criteria, it is given an extra reward score that increases its

score and it does not change the heuristic’s score if it is not accepted. The heuristic selection

methodology is completely the same with its original version of reinforcement learning. The

modified scoring mechanism of modified reinforcement learning is in algorithm 4.3.
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1: if newFitness < oldF itness then

2: score[selectedHeuristicIndex]+ = reward

3: else

4: score[selectedHeuristicIndex]− = punishment

5: end if

6: if Selected heuristic is accepted then

7: score[selectedHeuristicIndex]+ = reward

8: end if

9: if score[selectedHeuristicIndex] > scoreUpperBound then

10: score[selectedHeuristicIndex] = scoreUpperBound

11: end if

12: if score[selectedHeuristicIndex] < scoreLowerBound then

13: score[selectedHeuristicIndex] = scoreLowerBound

14: end if

Figure 4.3. Modified Reinforcement Learning algorithm change score procedure

4.3. MOVE ACCEPTANCE METHODS

The combination of heuristic selection methods and the move acceptance methods

is an important issue for performing better results on various objective functions. An

important observation in various studies is that the performance difference between various

acceptance methods gives significant changes in comparison to the performance differences

of applied selection methods. This gives the idea that the importance of the move acceptance

method used in hyper-heuristic framework makes more significance on the performance

rather than the selection method. In this study, we applied three acceptance mechanism

namely; Improving or Equal (IEQ), Great Deluge(GDEL) and Late Acceptance(LACC).
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4.3.1. Great Deluge

Great Deluge (GDEL) acceptance criterion is a stochastic acceptance method. All

moves that improve the fitness value are accepted. On the other hand, the moves that

doesn’t improve the fitness value are accepted according to their objective value. If it is

better than the expected objective value, the worsening move is accepted. Worsening moves

probabilities to be accepted are higher in the early stages of the run and their probability

decreases with a linear rate. This can be formulated as in Equation 4.4

τt = f0 + ∆F × (1− t

T
) (4.4)

τt is the threshold level at step t in a minimization problem, T is the maximum number of

steps, ∆F is an expected range for the maximum fitness change and f0 is the final objective

value. In the implementation, algorithm 4.4 shows how it is initialized and algorithm 4.5

shows Great Deluge’s acceptance mechanism. The acceptance probability of worsening

moves decreases linearly by time.

1: minFitness← 10000

2: startT ime← currentT ime

3: for candidateSolutionIndex← 0 to numberOfCandidateSolutions do

4: if fitness(candidateSolutions[candidateSolutionIndex]) < minFitness then

5: minFitness = fitness(candidateSolutions[candidateSolutionIndex])

6: end if

7: end for

8: cnorm = minFitness

Figure 4.4. Great Deluge algorithm initialization procedure
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1: if newFitness < currentF itnessV alueOfCandidateSolution then

2: return true

3: else

4: time = currentT ime− startT ime

5: delta = 1.0− time/durationOfATrial

6: if delta ≤ 0.0 then

7: delta = 0.0

8: end if

9: if fitness < globalOptimum+ cnorm ∗ delta then

10: return true

11: end if

12: end if

13: return false

Figure 4.5. Great Deluge algorithm accept procedure

4.3.2. Improve or Equal

“Improve or Equal”(IEQ) acceptance mechanism is a deterministic and efficient

method. As its name implies it accepts moves that improves the candidate solution or moves

that doesn’t change the fitness value of the candidate solution.

4.3.3. Late Acceptance

“Late Acceptance”(LACC) is a newly proposed meta-heuristic acceptance mechanism,

it is firstly proposed by [57]. Late Acceptance is some kind of iterative search technique,

however it uses a different acceptance mechanism. It chooses to compare new candidate

solution with a previous one instead of current candidate solution. As it is observed in

initialization part in the algorithm 4.6 there is a list of previous solutions. Then in algorithm

4.7, it is observed that the new candidate solution is compared with a previous one from the

list.
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1: lastBestF itness[numberOfCandidateSolutions]

2: fitnessArray[numberOfCandidateSolutions]

3: for candidateSolutionIndex← 0 to numberOfCandidateSolutions do

4: for listIndex← 0 to listSize do

5: fitnessArray[candidateSolutionIndex][listIndex] ←

fitnessOfCandidateSolution

6: end for

7: end for

8: vhead← 0

Figure 4.6. Late Acceptance algorithm initialization procedure

1: candidateSolutionIndex← activeCandidateSolutionIndex

2: retV alue← false

3: if newFitness < fitnessArray[candidateSolutionIndex][vhead] then

4: retV alue← true

5: fitnessArray[candidateSolutionIndex][vhead]← newFitness

6: lastBestF itness[candidateSolutionIndex]← newFitness

7: else

8: retV alue← false

9: fitnessArray[candidateSolutionIndex][vhead] ←

lastBestF itness[candidateSolutionIndex]

10: end if

11: vhead++

12: if vhead > listsize− 1 then

13: vhead← 0

14: end if

15: return retV alue

Figure 4.7. Late Acceptance algorithm accept procedure
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4.4. LOW LEVEL HEURISTICS

There are 10 low level heuristics used in this study. These are namely Swap, Divide,

Divide Tournament, Divide Most Conflicting, Merge, Merge Tournament, Merge Most

Conflicting, Change, Change from Most Conflicting to Most Suitable and Change with Most

Suitable. One of the main aims of the study is to solve all problems using same low level

heuristics and hence the same hyper-heuristic framework, therefore very simple and basic

low-level heuristics are used.

All heuristics first chooses a point from the list of non-dominating candidate solutions

and checks whether the random point is in the range of the non-dominating candidate

solutions list. The main algorithm requires a range for the list of non-dominating candidate

solutions. The best solutions of the problems are known, therefore we specify the range of

the non-dominating candidate solutions list based on these best solutions. Different ranges

are tested before we ensure which range fits best for the list of non-dominating candidate

solutions. Some best solutions of these problems, mostly the data clustering problem’s best

solutions are relatively small numbers therefore we can not have equal plus and minus range

for these problems. If the best solutions permits the equal plus-minus range, we give them

an equal plus-minus range. For example, if the best solution of the problem is 15, we give

the range between 5 to 25 or 10 to 20 based on our interval parameter. However if the best

solution is 3, then we give the range between 2 to 10 or 2 to 8 based on our interval parameter.

If we have a list of non-dominating candidate solutions of 10 to 20 range, this means that we

have candidate solutions which have at least 10 groups and which have at most 20 groups in

the solutions.

In our heuristic set we have 3 algorithms that decreases the number of groups, 3

algorithms that increases the number of groups and 4 algorithms that doesn’t change the

number of groups. The divide algorithms increases the number of groups and merge

algorithms decreases the number of groups, therefore before implementing the algorithms,

a range check is implemented to ensure this rule. If we implement the merge heuristics,

which will decrease the number of groups, we can not choose the candidate solution with

the least number of groups. For example, if we have the range of 10 to 20 we can not choose
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the candidate solution representation with 10 groups, because after we implement the merge

heuristics the number of groups will be 9 and we do not have any candidate solution that

we can compare with this number of groups. In the divide heuristics case, we increase the

number of groups by one. Therefore if we choose the solution with 20 groups, after we

implement one of the divide heuristics the number of groups will be 21 and there are no

candidate solutions that we can compare with this number of groups. This takes us to restrict

the hyper-heuristic not to choose the most number of groups solution if we choose one of the

divide heuristics to apply. In our example, we can not choose the candidate solution with 20

groups to apply divide heuristics. Here are the details of the low-level heuristics algorithms.

4.4.1. Swap

Swap heuristic is one of the heuristics that doesn’t change the number of groups in the

solution. Main idea of the swap heuristic is to swap two nodes in two different groups. Swap

heuristic chooses a candidate solution from the list of non-dominating candidate solutions

to apply. Then it selects two random groups from the candidate solution and it chooses two

random nodes from both groups. Take these nodes out of these groups and put them in other

groups that are chosen before. It is a mutational heuristic works for exploration of the search

space. The heuristic is illustrated in Figure 4.9.

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a random group(G1)

3: Select a random group(G2, where G26=G1)

4: Select a random node(N1) from G1

5: Select a random node(N2) from G2

6: Remove N1 from G1 and N2 from G2

7: Place N1 to G2 and N2 to G1

8: Calculate fitness based on delta evaluation using G1 and G2

Figure 4.8. Swap algorithm
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Figure 4.9. Swap Low-level Heuristic

4.4.2. Merge

Merge heuristic decreases the number of groups in a candidate solution by merging

two groups. There is a probability to increase the total error rate but it is useful for especially

in the cases which the items of the same group are separated into two different groups.

Merge heuristic chooses a candidate solution from a list of non-dominating candidate

solutions to apply. Then it selects two random groups from the candidate solution and merges

these two groups. After merging two groups a repair mechanism is applied to ensure the LLE

structure is assured. Merge heuristic must choose a candidate solution that does not violate

the range of the list of non-dominating candidate solutions. It means that the candidate

solution with the smallest number of groups can not be chosen for merge heuristic. The

heuristic is illustrated in Figure 4.11.
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Figure 4.11. Merge Low-level Heuristic

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a random group(G1)

3: Select a random group(G2, where G26=G1)

4: Merge G1andG2→ G3

5: Repair G3 to assure LLE structure

6: Calculate fitness based on delta evaluation using G1, G2 and G3

Figure 4.10. Merge algorithm

4.4.3. Merge Tournament

Merge tournament is a different version of merge heuristic. It also decreases the

number of groups in a candidate solution by merging two groups and there is possibility

of increasing the overall fitness but it is useful for especially the cases which the items of

same group are separated into two different groups. Also merge tournament as in merge

heuristic must obey the range of the list of non-dominating candidate solutions.
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Merge tournament differs from merge heuristic by its tournament structure.

Tournament procedure is based on the partial fitness contribution of each group to the overall

fitness value for a given candidate solution. Tournament size is a parameter for merge

tournament which indicates how many groups are challenging in the tournament. Different

experiments run for different number of tournament sizes. For example if the tournament size

is 2, then two randomly selected groups are competing. The group with the highest partial

fitness contribution wins the tournament and it is selected. Therefore in merge tournament

the groups are selected based on this tournament procedure. In Figure 4.20, the tournament

procedure is provided. The heuristic is illustrated in Figure 4.13.

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a group using tournament(G1)

3: Select a group using tournament(G2, where G26=G1)

4: Merge G1andG2→ G3

5: Repair G3 to assure LLE structure

6: Calculate fitness based on delta evaluation using G1, G2 and G3

Figure 4.12. Merge Tournament algorithm

4.4.4. Merge Most Conflicting

Merge Most Conflicting (MergeMC) heuristic is a variant of the merge heuristic. As

in all types of merge heuristics, it decreases the number of groups. In merge heuristic, the

groups to be merged are selected randomly, on the other hand in MergeMC the groups are

selected based on their partial fitness contributions. If partialF itnessContribution(Gi) >

partialF itnessContribution(Gj) that means that Gi has more conflict than Gj . The

procedure represented in algorithm 4.14 finds the most conflicting group in the candidate

solution to use in the heuristic. MergeMC chooses both of its groups based on this procedure.

The heuristic is illustrated in Figure 4.16.
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Figure 4.13. Merge Tournament Low-level Heuristic
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1: groupIndex← −1

2: tempFitnessContribution← 0

3: for index← 0 to candidateSolution.groupSize do

4: if tempFitnessContribution < group.partialF itnessContribution then

5: groupIndex = index

6: tempFitnessContribution = group.partialF itnessContribution

7: end if

8: end for

9: return groupIndex

Figure 4.14. Finding Most Conflicting Group

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select the most conflicting group(G1)

3: Remove G1 from candidate solution

4: Select the most conflicting group(G2 , where G26=G1)

5: Remove G2 from candidate solution

6: Merge G1andG2→ G3

7: Repair G3 to assure LLE structure

8: Calculate fitness based on delta evaluation using G1, G2 and G3

Figure 4.15. Merge Most Conflicting algorithm

4.4.5. Divide

Divide heuristic, as the name implies divides a group into two different groups. It

increases the number of clusters of a candidate solution but meanwhile it decreases the

error rate. It is useful when the items belonging to more than one groups are assigned into

one group. Divide heuristic must assure the range of the list of non-dominating candidate

solutions. The candidate solution with most number of groups can not be selected for divide
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Figure 4.16. Merge Most Conflicting Low-level Heuristic
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heuristic, because when we apply divide heuristic, number of groups increases one and it

violates the range of the list of non-dominating candidate solutions. A random group is

chosen from the selected candidate solution to apply the divide heuristic and a random node

is selected from this group as the division point in the group. The heuristic is illustrated in

Figure 4.18.

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a random group (G1)

3: if numOfNodesG1 ≤ 1 then

4: Select another group for G1

5: end if

6: Divide G1→ G2−G3

7: Calculate fitness based on delta evaluation using G1, G2 and G3

Figure 4.17. Divide algorithm

4.4.6. Divide Tournament

Divide tournament is a different implementation of divide heuristic. Divide tournament

uses a tournament procedure as in merge tournament heuristic. It increases the number of

heuristic and the range of the list of non-dominating candidate solutions must be assured

while applying this heuristic. The candidate solution with most number of groups can not be

selected to apply divide tournament heuristic.

Tournament procedure is same as the merge tournament, different number of groups

compete for selection. The tournament size is a parameter to the algorithm and it is tested

for different numbers. The group with the highest partial fitness contribution is chosen to

divide. Highest partial fitness contribution implies that it has the highest number of conflicts

in the group compared to other groups in the tournament. The implementation of the divide

tournament is same of divide heuristic other than the tournament procedure. In algorithm

4.20, tournament procedure is explained in detail. The heuristic is illustrated in Figure 4.21.
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Figure 4.18. Divide Low-level Heuristic

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a group by tournament (G1)

3: if numOfNodesG1 ≤ 1 then

4: Select another group by tournament for G1

5: end if

6: Divide G1→ G2−G3

7: Calculate fitness based on delta evaluation using G1, G2 and G3

Figure 4.19. Divide Tournament algorithm
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1: partialF itness← 0

2: groupIndex← −1

3: for i← 1 to tournamentSize do

4: Select a random group G1

5: if G1 in selectedGroups then

6: Select another group for G1

7: end if

8: if partialF itness < partialF itnessOfSelectedGroup then

9: partialF itness = partialF itnessOfSelectedGroup

10: groupIndex = indexOfSelectedGroup

11: else

12: continue

13: end if

14: Add G1 to selectedGroups

15: end for

16: return groupIndex

Figure 4.20. Tournament algorithm

4.4.7. Divide Most Conflicting

Divide Most Conflicting(DivideMC) is a variant of divide heuristic. As all types

of divide heuristic DivideMC increases the number of groups in the candidate solution.

DivideMC differs from divide heuristic when choosing the group to divide. It chooses the

group based on the most conflicting procedure which is described in algorithm 4.14 rather

than choosing the group randomly. The heuristic is illustrated in Figure 4.23.

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select the most conflicting group (G1)

3: Divide G1→ G2−G3

4: Calculate fitness based on delta evaluation using G1, G2 and G3
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Figure 4.21. Divide Tournament Low-level Heuristic
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Figure 4.22. Divide Most Conflicting algorithm

4.4.8. Change

Change heuristic is another heuristic that the number of groups doesn’t change.

Change heuristic selects a candidate solution from a list of non-dominating candidate

solutions and then selects a group G1 to take a node ni from it and selects another group

G2 to put ni into it. Change heuristic selects all groups and nodes randomly without having

any special procedure. The heuristic is illustrated in Figure 4.25.

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a random group(G1)

3: Select a random group(G2 , where G26=G1)

4: Select a random node(N1) from G1

5: Remove N1 from G1

6: Place N1 to G2

7: Calculate fitness based on delta evaluation using G1 and G2

Figure 4.24. Change algorithm

4.4.9. Change from Most Conflicting to Most Suitable

Change from Most Conflicting to Most Suitable (CFMCTMS) heuristic is a variant

of change heuristic. As in the change heuristic a candidate solution is chosen to apply

the heuristic but differently from change heuristic CFMCTMS does not choose the groups

randomly. CFMCTMS chooses the group G1 to take the node out based on its conflicting

level. Conflicting level represents the partial fitness contribution of the groups and

CFMCTMS chooses the group with the highest partial fitness contribution to take the node

out of it, this is represented in algorithm 4.14. After it chooses G1, it selects a random node
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Figure 4.23. Divide Most Conflicting Low-level Heuristic
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Figure 4.25. Change Low-level Heuristic

from that group and then searches for a group G2 to place the selected node into. G2 is also

selected based on a defined procedure which selects the group according to its suitability.

Best suitability is the best partial fitness contribution value after the node is placed on the

group, this procedure is represented in algorithm 4.26. The heuristic is illustrated in Figure

4.28.
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1: tempPartialF itness← 100000

2: groupToChose← −1

3: for groupIndex← 0 to candidateSolution.groupSize do

4: Add new node to group GgroupIndex

5: group.partialF itness← newPartialF itnessOfTheGroup

6: if group.partialF itness < tempPartialF itness then

7: groupToChoose = groupIndex

8: tempPartialF itness = group.partialF itness

9: end if

10: end for

11: return groupToChoose

Figure 4.26. Finding Most Suitable Group

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a most conflicting group(G1)

3: Select a random node(N1) from G1

4: Remove N1 from G1

5: Select the most suitable group(G2)

6: Place N1 to G2

7: Calculate fitness based on delta evaluation using G1 and G2

Figure 4.27. Change from Most Conflicting to Most Suitable algorithm

4.4.10. Change with Most Suitable

Change with Most Suitable Heuristic(ChangeMS) is another variant of Change

heuristic. It is different from Change and CFMCTMS, it chooses the group G1 and node

ni randomly but chooses the group G2 according to the most suitable procedure defined in

algorithm 4.26. The heuristic is illustrated in Figure 4.30.
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Figure 4.28. Change From Most Conflicting To Most Sutiable Low-level Heuristic
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Figure 4.30. Change With Most Suitable Low-level Heuristic

1: Select a candidate solution (from a list of non-dominating candidate solutions)

2: Select a random group(G1)

3: Select a random node(N1) from G1

4: Remove N1 from G1

5: Select the most suitable group(G2)

6: Place N1 to G2

7: Calculate fitness based on delta evaluation using G1 and G2

Figure 4.29. Change with Most Suitable algorithm
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4.4.11. Low-level Heuristics for Bin Packing Problem

Bin Packing Problem(BPP) is different from the other three problems(Data Clustering,

Graph Coloring and Exam Timetabling) studied in this research. BPP is a single objective

grouping problem which it has only one objective to be optimized. The number of bins

is the only objective of BPP. The single objective nature of the problem leads a little

differentiation in the low-level heuristics used in the grouping hyper-heuristic. The most

significant difference is there is only one best solution in the single objective optimization,

therefore there is no list of non-dominating candidate solutions in the BPP problem. As

stated in the low-level heuristic definitions, the first step is always selecting a candidate

solution, however in BPP this step is ignored because there is only one candidate solution.

The other significant difference is the repair procedure in the low-level heuristics. This

repair procedure is added to all low-level heuristics defined. The reason of using this repair

procedure is not to allow infeasible solutions as a candidate solution. A feasible candidate

solution is formulated as ∀iwi ≤ C where wi is the weight of the ith bin and C is the

maximum bin capacity. Therefore, an infeasible candidate solution contains at least one bin

that exceeds the bin capacity. The repair mechanism can be seen in algorithm 4.31
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1: for groupIndex← 0 to candidateSolution.numberOfGroups do

2: if group.numberOfNodes == 0 then

3: Remove group

4: end if

5: end for

6: for groupIndex← 0 to candidateSolution.numberOfGroups do

7: if group.weight ¿ binCapacity then

8: while group.weight ¿ binCapacity do

9: Take out the most suitable item(ni) out

10: Place ni to the most suitable bin

11: if There is no bin to put ni then

12: Open a new bin

13: Place ni to newly opened bin

14: end if

15: end while

16: end if

17: end for

Figure 4.31. Repair Algorithm for infeasible candidate solutions

There are two points in the algorithm needs to be clarified, these are the most suitable

item ni to take out from the infeasible bin and the most suitable bin Bj to place ni. The

suitability issue in this two cases are about the fill ratios of the bins. ni is selected to be the

smallest item that makes the bin feasible and Bj is selected to be the maximum weight when

ni is placed into. This repair avoids the infeasible solutions, therefore the hyper-heuristic

framework always deals with feasible solutions.

4.5. TYPES OF MULTI-OBJECTIVE HYPER-HEURISTIC FRAMEWORKS

Combination of heuristic selection and move acceptance mechanisms represents

different hyper-heuristic frameworks, in addition to this hyper-heuristic frameworks can



60

differ from each other with different properties. In [37] proposed four different types of

hyper-heuristics and these are differ from each other mainly by the heuristic usages. For

example, in one of the proposed hyper-heuristic, a selected hill-climber heuristic is applied

to the candidate solution whenever a heuristic is applied to the candidate solution. In

this research, three different types of hyper-heuristic frameworks are represented and they

differ from each other in terms of candidate solution selection. These hyper-heuristics

are namely; Generic hyper-heuristic(Section 4.5.1), Cyclic Candidate Solution Selection

hyper-heuristic(Section 4.5.2) and Apply to All Candidate Solutions hyper-heuristic(Section

4.5.3). In multi-objective hyper-heuristic framework, after a low-level heuristic is selected a

candidate solution that is represented by LLE is selected to apply a heuristic. The difference

between these three hyper-heuristic frameworks is this candidate solution selection.

4.5.1. Generic Hyper-heuristic

Generic hyper-heuristic selects the candidate solution from the list of non-dominating

candidate solutions completely randomly. It selects a random candidate solution and then

checks if this candidate solution is suitable to apply the heuristic. As stated before, all

heuristics can not be applied to all candidate solutions. Merge type heuristics and divide

type heuristics have constraints. After an acceptable candidate solution is selected, heuristic

is applied on it and the new fitness value of the candidate solution is calculated. If this new

candidate solution is accepted by the move acceptance criteria, the candidate solution in the

list of non-dominating candidate solutions is changed with the new one. The drawback of

the generic hyper-heuristic is lack of equality. Some of the candidate solutions in the list of

non-dominating candidate solutions may not be selected as much as the others and this may

prevent them to be optimized. An iteration of a generic hyper-heuristic can be seen in Figure

4.32

4.5.2. Cyclic Candidate Solution Selection Hyper-heuristic

Cyclic Candidate Solution Selection Hyper-heuristic(CCSSH) runs completely the

same with generic hyper-heuristic except its candidate solution selection. CCSSH selects a

candidate solution from the list of non-dominating candidate solutions in a cyclic manner, it
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Figure 4.32. Generic Hyper-heuristic Flow Chart
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selects all candidate solutions with their order in the non-dominating candidate solutions list.

The aim of this hyper-heuristic is to give all points in the non-dominating candidate solutions

list to optimize themselves and therefore solve the inequality problem of the generic hyper-

heuristic. An iteration of CCSSH can be seen in Figure 4.33

4.5.3. Apply to All Candidate Solutions Hyper-heuristic

Apply to All Candidate Solutions Hyper-heuristic(ATACSH) also runs completely the

same with generic hyper-heuristic except its candidate solution selection. ATACSH applies

selected heuristic to all candidate solutions that are in the list of non-dominating candidate

solutions. After a heuristic is selected by the heuristic selection mechanism, all candidate

solutions in the non-dominating candidate solutions list are selected one by one with their

order in the list by considering candidate solution selection constraints. This approach tries

to eliminate the inequality problem in the generic hyper-heuristic. An iteration of ATACSH

can be seen in Figure 4.34

4.6. SINGLE OBJECTIVE HYPER-HEURISTICS

Single objective problems are different from multi-objective problems in their nature.

The difference of these two problems are stated before. The most significant difference

between single and multi-objective problems is the number of solutions maintained during

the search process using the grouping selection hyper-heuristic framework. Hence, while

single objective problems maintain one best solution, multi-objective problems requires

maintenance of a set of non-dominant solutions.

Single objective hyper-heuristic starts with an initial candidate solution and tries

to improve this single solution. A heuristic is selected based on the heuristic selection

mechanism and selected heuristic is applied on the candidate solution. After the heuristic

is applied, a repair mechanism works on the candidate solution to repair the infeasible

groups. Details of this repair mechanism is described in Algorithm 4.31. Fitness value of

the new candidate solution is calculated on the feasible candidate solution. Move acceptance

mechanism decides whether to accept or reject the new candidate solution and if the new
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candidate solution is accepted by the move acceptance mechanism, it is replaced with the

current candidate solution. An iteration of single objective hyper-heuristic can be seen in

Figure 4.35.
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5. EXPERIMENTS

The grouping hyper-heuristic framework is tested using combinations of {Simple

Random, Reinforcement Learning} heuristic selection methods and {Improving and Equal,

Great Deluge, Late Acceptance} move acceptance methods. Initially, a set of parameter

tuning experiments are performed. The parameter tuning experiments for the tournament

size, range of pareto front, number of heuristics, hyper-heuristics types are followed by

comparison of the best performing grouping hyper-heuristics and their configurations to

the performance of previously proposed approaches for graph coloring, exam timetabling,

data clustering and bin packing. 3 GHz quad-core Linux machines with 16 Gb memory are

used during the experiments. Multiple runs are performed with each hyper-heuristic and

parameter configuration for a given problem instance. All approaches are given 10 minutes

of time as a termination criteria in each run.

5.1. EXPERIMENTAL DATA

The experiments for investigating the performance of grouping hyper-heuristics and

different design choices are performed using a benchmark for each problem domain.

DIMACS challenge suite [6] is used for graph coloring problem during the experiments.

The characteristics of the instances are presented in Table 5.1. DIMACS benchmark suite is

widely used by the researchers to investigate graph coloring approaches. There are different

types of data instances in this benchmark suite:

• DSJCX.Y: Random graphs generated by Johnson et al. in [74]. The number of vertices

is denoted by the first number and the second digit references the conflict density.

• flatX K: These data sets are generated by partitioning the vertex set into N classes

which are in equal size as much as possible and then by selecting edges only between

vertices of different classes. X is the vertex set size and K is the chromatic number.

• le450 K: These are represented in [65] which are called Leighton graphs. 450 is the

number of vertices and K is the known chromatic number.
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Table 5.1. The characteristics of the problem instances from the DIMACS suite. |V | is the

number of vertices, |E| is the number of edges, % is the edge density and x(G) is the

chromatic number.

Instance

|V | |E| % χ(G)

DSJC125.5 125 3891 0,50 ?

DSJC125.9 125 6961 0,90 ?

zeroin.1.col 211 4100 0,19 49

zeroin.2.col 211 3541 0,16 30

zeroin.3.col 206 3540 0,17 30

DSJC250.1 250 3218 0,10 ?

DSJC250.5 250 15668 0,50 ?

DSJC250.9 250 27897 0,90 ?

flat300 20 300 21375 0,48 20

flat300 26 300 21633 0,48 26

flat300 28 300 21695 0,48 28

school1 nsh 352 14612 0,24 14

le450 15a 450 8168 0,08 15

le450 15b 450 8169 0,08 15

le450 15c 450 16680 0,17 15

le450 15d 450 16750 0,17 15

le450 25a 450 8260 0,08 25

le450 25b 450 8263 0,08 25

le450 25c 450 16680 0,17 25

le450 25d 450 16750 0,17 25

DSJC500.1 500 12458 0,10 ?
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Toronto benchmark [5] is used during the experiments for exam timetabling. The

characteristics of the problem instances are presented in Table 5.2. The Toronto benchmark

instances are 13 real-world exam timetabling problems which is introduced in [5]. These

instances are collected from three Canadian high schools, five Canadian universities, one

American university, one British university and one university in Saudi Arabia. In exam

timetabling problem, the density of conflicting exams is defined with a Conflict Matrix C.

In this matrix, each element cij = 1 if exam i conflicts with exam j, or cij = 0 otherwise.

The ratio between the number of elements of value 1 to the total number of elements in the

conflict matrix is called Conflict Density. The edge density in the Table 5.2 represents this

conflict density. In the original data set there are two different objectives.

• to minimize the number of time slots needed for the problem

• to minimize the average cost per student

In this study, the first type of objective is aimed to be resolved by forming a feasible timetable

with the least number of time slots. Qu et al. [79] differentiated between different versions

of the data sets used in literature and proposed a naming convention which is also adapted in

this study.

For data clustering, two different types of data sets are used during the experiments:

real-world data set and synthetic data set. Table 5.3 presents the real-world data set and

Table 5.4 presents the synthetic data set. The number of instances, number of attributes and

number of expected clusters are provided in these tables. Breast, dermatology, iris and zoo

are the well known real world data clustering instances. The synthetic problem instances are

taken from the study of Külahçıoğlu [80] for comparison of approaches. They are generated

randomly based on Gaussian Distribution around randomly selected centers.

In bin packing experiments, two different sets of data set instances are used, these are

provided by Falkeanuer [7]. In the first set, the maximum bin capacity is set to 150 and each

integer is randomly generated in a range between 20 and 100 with a uniform distribution. [7]

reports that this distribution gives the most difficult problems according to the results of

Martello and Toth’s method [76]. Falkenauer generated instances of this kind of data sets
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Table 5.2. The characteristics of the problem instances from the Toronto benchmark suite.

Instance

|V | |E| %

hec92 I 81 1363 0.42

sta83 I 139 1381 0.14

yor83 I 181 4691 0.29

ute92 184 1430 0.08

ear83 I 190 4793 0.27

tre92 261 6131 0.18

lse91 381 4531 0.06

kfu93 461 5893 0.06

rye93 486 8872 0.08

car92 I 543 20305 0.14

uta92 I 622 24249 0.13

car91 I 682 29814 0.13

Table 5.3. The characteristics of the real-world data clustering problem instances.

Instance

# of instances # of attributes # of clusters

Breast-cancer 699 9 2

Dermatology 366 34 6

Zoo 101 16 7

Iris 150 4 3
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Table 5.4. The characteristics of the synthetic data clustering problem instances.

Instance

# of instances # of attributes # of clusters

Synthetic1 450 2 3

Synthetic2 500 2 5

Synthetic3 900 2 3

Synthetic4 1000 2 5

with the several number of items. These are, 120, 250, 500 and 1000 with 20 instances.

In the second kind of data set, the item sizes are selected from the range (0.25, 0.50) to be

packed into bins of maximum capacity 1. In these instances, a well-filled bin must contain

one large item and two small items that is why Falkenauer referred them as triplets. Even

though it is possible to pack two large items or three small items into one bin, this results

an inevitable loss of space. [81] points out a similarity between triplets and 3SAT which is

considered as the most difficult kSAT problem. Falkanauer finally points out that bin packing

instances are easier to approximate when the number of items to be packed into a bin exceeds

three, so triplets are the most difficult bin packing problem instances.

In order to preserve the difficulty of the problem, generated instances have pre-known

local optimal point. In a maximum bin capacity of 1000, an item with a size in range

[380, 490] was generated. Then left space S that is in range [510, 620], the second item’s

size is selected in the range [250, S/2) and the third item completes the bin. Triplets of 60,

120, 249 and 501 items with 20 instances are generated. In this study, all of the instances of

both kinds of data set instances, only the selected subset is used to test proposed grouping

hyper-heuristic.

5.2. PARAMETER TUNING EXPERIMENTS

Several experiments are run for investigating different aspects of the hyper-heuristics.

Following sections describe these experiments. In all sections selected results are listed in
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tables and following abbreviations are used in tables:

• avr: Average solution quality based on number of groups.

• std: Standard deviation in average solution quality.

• sr: Success rate is the ratio of the number of runs in which a feasible solution is

obtained to the total number of runs.

• bst: Best solution quality based on number of groups.

5.2.1. Tuning Tournament Size

The tournament size parameter is used in two heuristics: divide tournament and merge

tournament. 2 different tournament sizes are tested, 2 and 8. A subset of data sets are used

for these experiments and some of them are listed in Table 5.5. The experimental settings

are as follows:

• Number of runs: 100

• Number of heuristics: 5

• Pareto front interval: 10

The experimental results show that, tour sizes 2 and 8 have the same success of finding

the best solution. Both of them failed to find the expected solutions in only one instance. On

average, tournament size 8 is slightly better than the tournament size 2 considering the best

solutions, however tour size 2 generates a better standard deviation compared to tournament

size 8 which disposes the advantage of tour size 8 on average. When we compare the success

rates of the tour sizes we observe that tournament size 2 has a better performance in finding

acceptable solutions. To sum up, finding the best solution neither of them is superior than

the other one, however in the robustness, tour size 2 is slightly better than the tour size 8.

5.2.2. Pareto Front Interval for Multi-objective Problems

In this study, pareto front range is defined as a parameter, therefore the number of

candidate solutions are known when experiments are performed. Two different pareto front
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Table 5.5. Tournament Size Comparison

tour size 2 8

instance hyper-heuristic avr std sr bst avr std sr bst

car92 RL-GDEL 34 2,34 94 28 35 2,47 95 28

RL-IEQ 34 2,81 87 28 34 2,79 95 28

RL-LACC 34 2,41 71 28 33 2,65 88 28

SRAN-GDEL 35 2,12 92 29 34 2,54 89 28

SRAN-IEQ 35 2,30 91 28 35 2,08 91 29

SRAN-LACC 33 2,80 78 28 33 2,74 80 28

DSJC125.9 RL-GDEL 49 1,68 89 44 49 2,22 86 44

RL-IEQ 49 2,23 91 44 49 2,28 82 44

RL-LACC 48 3,20 37 44 47 2,52 38 44

SRAN-GDEL 49 2,04 90 44 49 2,27 84 44

SRAN-IEQ 49 2,34 88 44 49 2,23 82 44

SRAN-LACC 47 2,94 38 44 48 2,72 50 44

DSJC250.5 RL-GDEL 36 2,56 93 30 36 2,67 91 30

RL-IEQ 36 2,57 86 30 36 2,69 90 30

RL-LACC 35 2,57 74 30 34 2,94 70 30

SRAN-GDEL 36 2,37 88 30 36 2,45 86 30

SRAN-IEQ 37 2,33 92 30 36 2,96 90 30

SRAN-LACC 34 2,88 63 30 34 2,80 60 30

yor83 RL-GDEL 26 2,37 80 19 24 2,83 78 19

RL-IEQ 25 2,33 95 19 25 2,42 86 19

RL-LACC 23 2,65 82 19 23 2,56 84 19

SRAN-GDEL 25 2,6 73 19 25 2,86 77 19

SRAN-IEQ 25 2,4 90 19 26 2,63 83 19

SRAN-LACC 24 2,6 83 19 23 2,79 78 19
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intervals are tested in the study, 5 and 10. The expected solutions are assumed to be known

for all problem instances, so the candidate solutions in the pareto front are set accordingly.

There is a pareto range check when applying heuristics to assure that a candidate solution is

generated within the pareto range. Table 5.6 shows the results for both pareto intervals. The

experimental settings are as follows:

• Number of runs: 100

• Number of heuristics: 5

• Tournament size: 2

The experimental results show that both pareto front intervals have no effect on finding

the best solution. All hyper-heuristics tested in this experiment succeed to find the expected

best solution. Considering the average quality and the standard deviation of these solutions,

pareto front interval 5 is better in all cases. On the other hand pareto interval 10, has better

results than pareto interval 5 in success rate. More candidate solutions in the pareto front

generates a better success rate, however these solutions are worse and deviate with high

ratios. To sum up, pareto intervals have the same best results, in the robustness comparison

metric pareto interval 5 is slightly better than pareto interval 10 with its better results on

average solution and standard deviation in spite of the success rate of pareto interval 10.

5.2.3. Number of Low Level Heuristics

In Section 4.4, 10 different low-level heuristics are introduced. In the experiments two

different sets of low-level heuristics are used, all of them and a subset of heuristics which

includes swap, divide, divide tournament, merge and merge tournament. The experimental

results are summarized in Table 5.7 with the following experimental settings:

• Number of runs: 100

• Pareto Interval: 5

• Tournament size: 2
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Table 5.6. Pareto Front Interval Comparison

pareto interval 10 5

instance hyper-heuristic avr std sr bst avr std sr bst

car92 RL-GDEL 34 2,34 94 28 31 1,3 92 28

RL-IEQ 34 2,81 87 28 31 1,4 80 28

RL-LACC 34 2,41 71 28 30 1,4 77 28

SRAN-GDEL 35 2,12 92 29 31 1,4 83 28

SRAN-IEQ 35 2,30 91 28 30 1,3 84 28

SRAN-LACC 33 2,80 78 28 30 1,4 72 28

DSJC125.9 RL-GDEL 49 1,68 89 44 47 1,0 84 44

RL-IEQ 49 2,23 91 44 46 1,1 86 44

RL-LACC 48 3,20 37 44 46 1,3 48 44

SRAN-GDEL 49 2,04 90 44 46 1,2 88 44

SRAN-IEQ 49 2,34 88 44 46 1,0 78 44

SRAN-LACC 47 2,94 38 44 45 1,2 32 44

DSJC250.5 RL-GDEL 36 2,56 93 30 33 1,4 78 30

RL-IEQ 36 2,57 86 30 33 1,4 79 30

RL-LACC 35 2,57 74 30 32 1,4 66 30

SRAN-GDEL 36 2,37 88 30 32 1,5 81 30

SRAN-IEQ 37 2,33 92 30 32 1,4 80 30

SRAN-LACC 34 2,88 63 30 32 1,4 59 30

yor83 RL-GDEL 26 2,37 80 19 21 1,5 66 19

RL-IEQ 25 2,33 95 19 22 1,3 88 19

RL-LACC 23 2,65 82 19 21 1,3 74 19

SRAN-GDEL 25 2,6 73 19 21 1,4 75 19

SRAN-IEQ 25 2,4 90 19 22 1,3 86 19

SRAN-LACC 24 2,6 83 19 21 1,4 70 19
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Table 5.7. Number of Heuristics Comparison

number of heuristics 5 10

instance hyper-heuristic avr std sr bst avr std sr bst

car92 RL-GDEL 31 1,3 92 28 31 1,3 75 28

RL-IEQ 31 1,4 80 28 30 1,4 79 28

RL-LACC 30 1,4 77 28 30 1,5 74 28

SRAN-GDEL 31 1,4 83 28 31 1,3 73 28

SRAN-IEQ 30 1,3 84 28 30 1,4 82 28

SRAN-LACC 30 1,4 72 28 30 1,4 71 28

DSJC125.9 RL-GDEL 47 1,0 84 44 46 1,3 63 44

RL-IEQ 46 1,1 86 44 46 1,5 56 44

RL-LACC 46 1,3 48 44 45 1,4 51 44

SRAN-GDEL 46 1,2 88 44 46 1,3 72 44

SRAN-IEQ 46 1,0 78 44 46 1,3 67 44

SRAN-LACC 45 1,2 32 44 46 1,4 57 44

DSJC250.5 RL-GDEL 33 1,4 78 30 33 1,4 75 30

RL-IEQ 33 1,4 79 30 32 1,4 72 30

RL-LACC 32 1,4 66 30 32 1,4 59 30

SRAN-GDEL 32 1,5 81 30 33 1,4 76 30

SRAN-IEQ 32 1,4 80 30 32 1,3 60 30

SRAN-LACC 32 1,4 59 30 32 1,5 62 30

yor83 RL-GDEL 21 1,5 66 19 21 1,5 73 19

RL-IEQ 22 1,3 88 19 21 1,3 80 19

RL-LACC 21 1,3 74 19 21 1,4 72 19

SRAN-GDEL 21 1,4 75 19 21 1,4 73 19

SRAN-IEQ 22 1,3 86 19 21 1,4 84 19

SRAN-LACC 21 1,4 70 19 21 1,4 65 19
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The experiments show that the number of low-level heuristics does not have a particular

effect on the best solutions found. The average quality and the standard deviation of these

solutions are very similar to each other. However, considering the success rate, hyper-

heuristics with 5 low-level heuristics perform strictly better than the hyper-heuristics with

10 low-level heuristics. This might be because in the 10 low-level heuristics case, the extra

heuristics are more time consuming than the other heuristics and heuristic selection methods

do not take this feature into account. In particular, finding the most suitable and finding most

conflicting groups take more time as compared to the other low level heuristics. To sum up,

both of them is very successful for finding the best solution considering the expected best

solution. However, considering the robustness measure, 5 low-level heuristics has a better

performance than 10 low-level heuristics within the grouping hyper-heuristic framework.

5.2.4. Comparison of RL and RLM Heuristic Selection Methods

Modified Reinforcement Learning (RLM) is a variant of Reinforcement Learning

(RL) as stated before. The scoring mechanism is modified and the scores of the low-level

heuristics are updated not only if they improve the candidate solution but also when they

are accepted by the move acceptance criteria. In this set of experiments, the performance of

these two heuristic selection mechanisms is compared. The experimental results are shown

in Table 5.8 with the following experimental settings:

• Number of runs: 100

• Pareto Interval: 10

• Tournament size: 2

In the experiments, RL and RLM generated similar and successful results in finding

the best solutions for the problem instances except one. RL-IEQ failed to find the expected

best solution for DSJC125.5 and RLM-IEQ failed to find for DSJC125.9. On average, two

heuristic selection mechanisms generated similar results and none of them outperformed the

other. When we compare the success rates of these two heuristic selection methods RL has

better performance than RLM and finds more feasible solutions than RLM. The results show

that the modified scoring mechanism does not improve the performance of reinforcement
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Table 5.8. The performance comparison of RL and RLM heuristic selection methods.

heuristic selection RL RLM

instance move acceptance avr std sr bst avr std sr bst

car92 GDEL 34 2,3 94 28 34 2,5 94 28

IEQ 34 2,8 87 28 33 2,8 55 28

LACC 34 2,4 71 28 34 2,5 83 28

car91 GDEL 34 2,4 90 28 35 2,4 92 28

IEQ 34 2,7 89 28 33 3,0 51 28

LACC 34 2,8 77 28 34 2,6 75 28

DSJC125.5 GDEL 23 2,5 72 18 24 2,7 82 18

IEQ 25 0,9 100 22 25 1,9 93 18

LACC 22 2,5 79 18 22 2,8 81 18

DSJC125.9 GDEL 49 1,7 89 44 49 2,1 90 44

IEQ 49 2,2 91 44 49 2,0 86 45

LACC 48 3,2 37 44 47 2,6 32 44

DSJC250.5 GDEL 36 2,6 93 30 37 2,4 87 30

IEQ 36 2,6 86 30 35 3,0 69 30

LACC 35 2,6 74 30 35 2,8 72 30

synthetic1 GDEL 3 0,0 100 3 3 0,5 100 3

IEQ 3 0,1 100 3 4 0,5 100 3

LACC 3 0,0 100 3 3 0,5 100 3

synthetic2 GDEL 5 0,0 100 5 5 0,0 100 5

IEQ 5 0,1 100 5 6 0,4 100 5

LACC 5 0,0 100 5 6 0,5 100 5

yor83 GDEL 26 2,4 80 19 25 2,9 75 19

IEQ 25 2,3 95 19 25 2,5 79 19

LACC 23 2,7 82 19 23 2,6 86 19
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learning heuristic selection method. To sum up, these two heuristic selection methods have

similar performances based on best solution and RL has slightly better than RLM according

to robustness comparison measure.

5.2.5. Comparison of Hyper-heuristic Frameworks

There are three types of hyper-heuristic frameworks proposed for multi-objective

optimization in this study, namely; generic, cyclic and apply to all. These frameworks are

explained in Section 4.5. They are tested with a subset of problem instances and the results

are presented below.

The experimental results over exam timetabling problem instances considering average

and best performances are summarized in Table 5.9 and Table 5.10. In Table 5.10, it can be

observed that all hyper-heuristic types can reach the expected solution quality. The only

exception to this is the cyclic type hyper-heuristic which failed to find the expected solution

quality for yor83 when the SRAN−IEQ hyper-heuristic is used. The average performance of

hyper-heuristic types for exam timetabling problems are similar to each other. While cyclic

hyper-heuristic type’s success rate is slightly better than the others, generic hyper-heuristic

type’s average performance are slightly better. To sum up, all three hyper-heuristic types

deliver similar average performances but cyclic and generic types are slightly better than

the apply all hyper-heuristic type. Considering the best performance of runs criterion, apply

to all and generic types are the same and they perform slightly better than the cyclic type

hyper-heuristic.

The results of the graph coloring problem instances are presented in Table 5.11 and

Table 5.12. Table 5.11 compares the average performances of the hyper-heuristic types and

Table 5.12 compares the best performance of the hyper-heuristic types. All three hyper-

heuristic types find the same best solutions in all experiment cases but the apply to all hyper-

heuristic type failed to find the same best solution with the other two hyper-heuristic types

in DSJC125.5 problem instance when run with SRAN−IEQ hyper-heuristic. On the average

performance of hyper-heuristic types, they have similar average performances for finding

close results to expected best solutions, when these are combined with the standard deviation
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Table 5.9. Hyper-heuristic types average performance comparison on Exam Timetabling

Problems

hh type generic cyclic all

instance hh avr std sr avr std sr avr std sr

car92 RL-GDEL 30 1,4 66 30 1,5 76 30 1,5 80

RL-IEQ 30 1,4 70 31 1,3 72 30 1,3 90

RL-LACC 30 1,4 84 30 1,3 82 30 1,3 80

SRAN-GDEL 31 1,1 74 30 1,6 74 30 1,5 76

SRAN-IEQ 30 1,4 80 31 1,3 84 31 1,3 80

SRAN-LACC 30 1,4 76 30 1,3 72 30 1,3 70

car91 RL-GDEL 31 1,3 84 31 1,3 72 30 1,5 88

RL-IEQ 31 1,1 78 30 1,4 72 31 1,3 84

RL-LACC 30 1,6 70 30 1,6 80 30 1,5 78

SRAN-GDEL 30 1,4 78 31 1,4 76 31 1,5 72

SRAN-IEQ 31 1,3 88 30 1,5 72 30 1,6 76

SRAN-LACC 31 1,2 76 31 1,5 80 31 1,3 72

sta83 RL-GDEL 13 0,4 100 13 0,3 100 13 0,4 100

RL-IEQ 13 0,0 100 13 0,0 100 13 0,0 100

RL-LACC 14 0,8 54 14 1,3 56 14 1,0 50

SRAN-GDEL 13 0,4 100 13 0,4 100 13 0,4 100

SRAN-IEQ 13 0,0 100 13 0,0 100 13 0,0 100

SRAN-LACC 14 1,2 50 14 1,0 52 14 1,1 50

yor83 RL-GDEL 21 1,5 70 21 1,4 82 21 1,5 70

RL-IEQ 22 1,1 98 22 1,1 96 22 1,2 96

RL-LACC 20 1,4 66 21 1,5 60 21 1,6 58

SRAN-GDEL 21 1,5 70 21 1,4 72 22 1,3 80

SRAN-IEQ 22 0,8 94 22 0,7 96 22 1,0 88

SRAN-LACC 21 1,6 64 21 1,1 70 21 1,4 62
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Table 5.10. Hyper-heuristic types best performance comparison on Exam Timetabling

Problems

hh type generic cyclic all

instance hh best best best

car92 RL-GDEL 28 28 28

RL-IEQ 28 28 28

RL-LACC 28 28 28

SRAN-GDEL 28 28 28

SRAN-IEQ 28 28 28

SRAN-LACC 28 28 28

car91 RL-GDEL 28 28 28

RL-IEQ 28 28 28

RL-LACC 28 28 28

SRAN-GDEL 28 28 28

SRAN-IEQ 28 28 28

SRAN-LACC 28 28 28

sta83 RL-GDEL 13 13 13

RL-IEQ 13 13 13

RL-LACC 13 13 13

SRAN-GDEL 13 13 13

SRAN-IEQ 13 13 13

SRAN-LACC 13 13 13

yor83 RL-GDEL 19 19 19

RL-IEQ 19 19 19

RL-LACC 19 19 19

SRAN-GDEL 19 19 19

SRAN-IEQ 19 20 19

SRAN-LACC 19 19 19
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of these results, generic hyper-heuristic type is slightly better than the other two types. In the

success rate comparison metric, apply to all hyper-heuristic type has a very slightly better

performance than the other two hyper-heuristic types. To sum up, these three hyper-heuristic

types have similar average and best performances again, but in best case generic and cyclic

types are slightly better than the apply to all type and on average case they are not separated

significantly with the results.

The results of the data clustering problem instances are presented in Table 5.13 and

Table 5.14. Table 5.13 compares the average performances of the hyper-heuristic types

on data clustering problem instances and Table 5.14 compares the best performance of

the hyper-heuristic types on data clustering problem instances. Generic hyper-heuristic

type failed to find acceptable solution in RL−IEQ and SRAN−IEQ hyper-heuristics in

dermatology problem instance and apply to all hyper-heuristic failed to find acceptable

solutions in RL−IEQ, SRAN−GDEL and SRAN−IEQ hyper-heuristics. Cyclic hyper-

heuristic type succeed to find acceptable solutions in every hyper-heuristics. However they

all failed to find the expected best quality solution for dermatology problem instance. In zoo

problem instance, all of the hyper-heuristic types are performed the same and they all failed

to find the expected best quality solution. On the average performance of these three hyper-

heuristic types, all of them performed the same in zoo problem instance and cyclic type is

slightly better than generic type and generic type is slightly better than apply to all type. To

sum up, when we combine the best and average performances, cyclic hyper-heuristic type

performed better than the other two hyper-heuristic types, however when they are compared

to state-of-art solutions, they all performed bad.

5.3. EXPERIMENTAL RESULTS FOR THE MULTI-OBJECTIVE PROBLEMS

In Section 5.2, we investigated several parameters of hyper-heuristic frameworks.

In this section, results of the selected configuration are presented and they are compared

with older studies. After parameter tuning experiments, the generic hyper-heuristic type

performed slightly better than the other two types, so it is selected for this set of experiments.

Also tour size 2, pareto interval 5 and number of heuristics 5 performed better than their

counterparts in the experiments. The experiments show that reinforcement learning modified
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Table 5.11. Hyper-heuristic types average performance comparison on Graph Coloring

Problems

hh type generic cyclic all

instance hh avr std sr avr std sr avr std sr

DSJC125.5 RL-GDEL 21 1,3 78 21 1,4 80 20 1,5 82

RL-IEQ 20 0,6 100 20 0,5 100 20 0,6 100

RL-LACC 19 1,3 62 19 1,5 54 20 1,3 56

SRAN-GDEL 20 1,2 76 21 1,3 66 20 1,2 78

SRAN-IEQ 20 0,7 100 20 0,7 100 21 0,7 100

SRAN-LACC 20 1,2 62 20 1,3 70 20 1,4 62

DSJC125.9 RL-GDEL 46 1,2 66 46 1,2 68 46 1,4 76

RL-IEQ 46 1,3 88 46 1,4 94 46 1,3 80

RL-LACC 46 1,4 60 46 1,5 64 46 1,5 62

SRAN-GDEL 46 1,3 74 46 1,2 74 47 1,3 78

SRAN-IEQ 47 1,1 86 47 1,2 86 46 1,3 78

SRAN-LACC 46 1,4 70 46 1,5 60 46 1,4 60

DSJC250.1 RL-GDEL 12 1,2 88 11 1,3 80 12 1,3 80

RL-IEQ 11 0,4 100 10 0,4 100 10 0,4 100

RL-LACC 12 1,2 70 12 1,1 64 12 1,1 82

SRAN-GDEL 12 1,2 88 12 1,4 82 12 1,1 92

SRAN-IEQ 11 0,5 100 10 0,5 100 11 0,5 100

SRAN-LACC 12 1,2 80 12 1,3 66 11 1,4 80

zeroin.i.3 RL-GDEL 33 0,8 100 33 0,8 100 33 0,7 100

RL-IEQ 30 0,4 100 30 0,5 100 30 0,3 100

RL-LACC 32 1,5 50 31 1,3 64 32 1,4 50

SRAN-GDEL 32 0,8 100 33 0,8 100 33 0,8 100

SRAN-IEQ 30 0,4 100 30 0,6 100 30 0,4 100

SRAN-LACC 31 1,3 42 32 1,2 58 32 1,4 54
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Table 5.12. Hyper-heuristic types best performance comparison on Graph Coloring

Problems

hh type generic cyclic all

instance hh best best best

DSJC125.5 RL-GDEL 18 18 18

RL-IEQ 19 19 19

RL-LACC 18 18 18

SRAN-GDEL 18 18 18

SRAN-IEQ 19 19 20

SRAN-LACC 18 18 18

DSJC125.9 RL-GDEL 44 44 44

RL-IEQ 44 44 44

RL-LACC 44 44 44

SRAN-GDEL 44 44 44

SRAN-IEQ 44 44 44

SRAN-LACC 44 44 44

DSJC250.1 RL-GDEL 9 9 9

RL-IEQ 10 10 10

RL-LACC 9 9 9

SRAN-GDEL 9 9 9

SRAN-IEQ 10 10 10

SRAN-LACC 9 9 9

zeroin.i.3 RL-GDEL 31 31 31

RL-IEQ 30 30 30

RL-LACC 30 30 30

SRAN-GDEL 31 31 31

SRAN-IEQ 30 30 30

SRAN-LACC 30 30 30
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Table 5.13. Hyper-heuristic types average performance comparison on Data Clustering

Problems

hh type generic cyclic all

instance hh avr std sr avr std sr avr std sr

dermatology RL-GDEL 6 0,5 16 6 0,0 6 6 2

RL-IEQ 0 6 2 0

RL-LACC 6 0,5 14 7 0,8 14 6 2

SRAN-GDEL 7 0,6 8 7 1,0 12 0

SRAN-IEQ 0 6 2 0

SRAN-LACC 6 0,4 10 6 0,0 4 7 0,6 8

zoo RL-GDEL 10 0,0 100 10 0,0 100 10 0,0 100

RL-IEQ 10 0,0 100 10 0,0 100 10 0,0 100

RL-LACC 10 0,0 100 10 0,0 100 10 0,0 100

SRAN-GDEL 10 0,0 100 10 0,0 100 10 0,0 100

SRAN-IEQ 10 0,0 100 10 0,0 100 10 0,0 100

SRAN-LACC 10 0,0 100 10 0,0 100 10 0,0 100
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Table 5.14. Hyper-heuristic types best performance comparison on Data Clustering

Problems

hh type generic cyclic all

instance hh best best best

dermatology RL-GDEL 6 6 6

RL-IEQ 6

RL-LACC 6 6 6

SRAN-GDEL 6 6

SRAN-IEQ 6

SRAN-LACC 6 6 6

zoo RL-GDEL 10 10 10

RL-IEQ 10 10 10

RL-LACC 10 10 10

SRAN-GDEL 10 10 10

SRAN-IEQ 10 10 10

SRAN-LACC 10 10 10
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has no performance gain over reinforcement learning. 50 runs are run with this configuration

and all 21 graph coloring problem instances, 8 data clustering problem instances and 12

exam timetabling problem instances are tested. 6 hyper-heuristics are used to test these

problem instances, these are namely; RL−GDEL, RL−IEQ, RL−LACC, SRAN−GDEL,

SRAN−IEQ and SRAN−LACC.

In order to compare the performances of hyper-heuristics, a ranking mechanism based

on best solutions found is used. The most successful hyper-heuristic is ranked 1 and the

worst one ranked 6. The ties between hyper-heuristics are taken into account and ranked

according to this. Average ranks of the hyper-heuristics are taken and the hyper-heuristics

with best performances are decided by this ranking procedure. All problem domains are

taken into account separately, ranking of the graph coloring problems is shown in Figure

5.1. In this figure, it can be seen that RL−IEQ, RL−LACC and SRAN−LACC performed

the same and they are slightly better than the others. Rankings of the hyper-heuristics

on data clustering problems is presented in Figure 5.2. In data clustering RL−GDEL

and SRAN−GDEL performed slightly better than the others. However in data clustering,

hyper-heuristics failed to find expected best quality solutions in three of the four real world

date sets. Rankings of hyper-heuristics on exam timetabling problems is shown in Figure

5.3. RL−IEQ, RL−LACC and SRAN−LACC performed the same and they are slightly

better than the other hyper-heuristics. In general, RL−LACC and SRAN−LACC performed

slightly better than the other hyper-heuristics.

RL−LACC and SRAN−LACC are the two best performers of the hyper-heuristics

among the six hyper-heuristics tested. The best solutions of these are compared with old

studies [56, 80, 82]. RL−LACC and SRAN−LACC have the same best performances so

they are denoted as (*-LACC). Greedy Partition Crossover Lowest Index (GPX-LI), Greedy

Partition Crossover Cardinality Based (GPX-CB) and Lowest Index Max Crossover (LIMX)

graph coloring algorithms are proposed in [56]. Kirovski B (Kir-B) and Kirovski C (Kir C)

graph coloring algorithms are proposed in [82]. Linear Linkage Encoding With Ending Node

Links (LLE-e) and Linear Linkage Encoding With Backward Links (LLE-b) are proposed

representation schemes that are used with genetic operators in [80]. This study also, tested

these representation schemes with classical LLE (LLE). The fields marked with “?” means
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Figure 5.1. Graph Coloring Ranking based on the Best Solutions

Figure 5.2. Data Clustering Ranking based on the Best Solutions
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Figure 5.3. Exam Timetabling Ranking based on Best Solutions

there is no solution reported for that problem instance in that hyper-heuristic. The best

colorings of these experiments are shown in Table 5.15.

The results of RL−LACC and SRAN−LACC are competitive with the previous

studies and they outperform the old studies in some problem instances. The grouping hyper-

heuristics proposed in this study succeeded to find the expected best quality solutions in all

problem instances.

In exam timetabling data sets, RL−LACC and SRAN−LACC are compared with

studies of Carter et. al. [83], Caramia et. al. [84], Merlot et. al. [85] and Ulker et. al. [56].

Greedy Partition Crossover Lowest Index (GPX-LI), Greedy Partition Crossover Cartinality

Based (GPX-CB) and Lowest Index Max Crossover (LIMX) graph coloring algorithms are

presented in [56]. RL−LACC and SRAN−LACC are denoted as (*-L), because their best

performances are same. The results are shown in Table 5.16.

The results show that hyper-heuristics presented in this study have competitive
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Table 5.15. Graph Coloring best colorings comparison

Instance *-L LIMX GPX-LI GPX-CB LLE-e LLE-b LLE Kir-B Kir-C

DSJC125.5 18 18 18 18 19 19 18 19 18

DSJC125.9 44 44 44 44 44 44 44 45 45

zeroin.i.1 49 49 49 49 ? ? ? 49 49

zeroin.i.2 30 31 31 31 ? ? ? 30 30

zeroin.i.3 30 31 30 31 ? ? ? 30 30

DSJC250.1 9 9 9 9 9 9 9 9 9

DSJC250.5 30 31 31 31 ? ? ? 30 30

DSJC250.9 74 75 75 74 74 74 74 77 77

Flat300 20 20 20 27 32 20 32 33 20 20

Flat300 26 26 34 34 34 ? ? ? 32 28

Flat300 28 28 34 34 34 ? ? ? 33 32

school1 nsh 14 14 14 14 14 14 14 16 14

le450 15a 15 16 16 16 ? ? ? 17 17

le450 15b 15 16 16 16 17 17 17 17 17

le450 15c 15 23 23 23 ? ? ? 22 21

le450 15d 15 23 23 23 ? ? ? 22 21

le450 25a 25 25 25 25 ? ? ? 25 25

le450 25b 25 25 25 25 ? ? ? 25 25

le450 25c 25 28 28 28 29 29 29 28 28

le450 25d 25 28 28 28 ? ? ? ? ?

DSJC500.1 14 14 14 14 ? ? ? 14 14
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Table 5.16. Exam Timetabling best colorings comparison

Instance *-L LIMX GPX-LI GPX-CB Carter Caramia Merlot

hec92 17 17 17 17 17 17 18

sta83 13 13 14 14 13 13 13

yor83 19 20 20 20 19 19 23

ute92 10 10 10 10 10 10 11

ear83 22 23 24 23 22 22 24

tre92 20 21 21 21 20 20 21

lse91 17 17 18 18 17 17 18

kfu93 19 20 20 20 19 19 21

rye93 21 23 23 23 21 21 22

car92 28 36 36 36 28 28 31

uta92 30 38 38 38 32 30 32

car91 28 36 37 35 28 28 30
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Table 5.17. Data Clustering best solutions comparison

Instance RL-LACC SRAN-LACC Expected Best

breast 6 6 2

dermatology 7 7 5

iris 3 3 3

zoo 10 10 7

synthetic1 3 3 3

synthetic2 5 5 5

synthetic3 3 3 3

synthetic4 5 5 5

performances in all problem instances with all previous studies. Also they perform better

in most cases to the previous studies.

In data clustering problem instances RL−LACC and SRAN−LACC are compared

with the expected best solutions of the problem instances. The results are shown in Table

5.17

These are the two pareto fronts from the tests run. The iris problem instance in Figure

5.4 and synthetic2 problem instance in Figure 5.5. The expected best quality solution points

can be clearly seen in these two pareto fronts. Points in the pareto fronts that represent the

candidate solution with three groups in iris pareto front and the candidate solution with five

groups in the synthetic2 pareto front are clearly shown as the best quality points.

Hyper-heuristics presented in this study failed to find the expected best solutions

in three of the four real-world problem instances. Only in iris problem instance, hyper-

heuristics succeeded to find the expected best solutions. However in the synthetic data

clustering problem instances, hyper-heuristics performed well and succeeded to find the

expected best solutions.
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Figure 5.4. Pareto front of iris data with hyper-heuristic RL−LACC

Figure 5.5. Pareto front of synthetic2 data with hyper-heuristic SRAN−LACC
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Table 5.18. Bin Packing average best solutions comparison

hh t60 t120 t249 t501 u120 u250 u500 u1000 Avrg.

RL-GDEL 22 43,67 92 184,67 50,33 106,67 209,67 420,67 141,21

RL-IEQ 22 44 91,33 184,33 50,33 106,67 209,33 420,67 141,08

RL-LACC 21 43 90 181,33 50,33 106,33 209,67 421 140,33

RLM-GDEL 22 44 90,33 184,67 50,33 106,33 209,67 421 141,04

RLM-IEQ 22 44 91 184,67 50,33 106,33 209,33 420,33 141

RLM-LACC 21 42 89 176,67 49,67 105,33 209 420,33 139,13

SRAN-GDEL 22 44 90,33 184,67 50,33 106,33 210 421,33 141,13

SRAN-IEQ 22 44 90,67 184,67 50,33 106,33 209,67 420,33 141

SRAN-LACC 21,33 43 90,33 181,67 50,33 106 210 421 140,46

5.4. EXPERIMENTAL RESULTS FOR BIN PACKING

Bin packing experiments are done with 9 different hyper-heuristics. These

are RL−GDEL, RL−IEQ, RL−LACC, RLM−GDEL, RLM−IEQ, RLM−LACC,

SRAN−GDEL, SRAN−IEQ and SRAN−LACC. 7 low-level heuristics are used for these

hyper-heuristics, these heuristics are; swap, merge, merge tournament, divide, divide

tournament, change, change to most suitable. Tournament size for merge tournament

and divide tournament is set to 2. The average best solutions of each hyper-heuristic is

shown in Table 5.18. According to average best solutions hyper-heuristics that use Late

Acceptance move acceptance method perform better than the other hyper-heuristics and

Modified Reinforcement Learning with Late Acceptance has better than the other two Late

Acceptance hyper-heuristics. Modified Reinforcement Learning has performed slightly

better than its original version, reinforcement learning.

The performances of hyper-heuristics are also compared with the ranking mechanism

used in the multi-objective optimization experiments. Best solutions found for each problem

instance is taken into account. Hyper-heuristic that finds the best solution gets the rank 1

and hyper-heuristic that finds the worst solution gets rank 9, ties are taken into account. The

results are shown in Figure 5.6.
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Figure 5.6. Bin Packing Problem Ranking based on Best Solutions

These results also show that, Late Acceptance move acceptance method has

better performance than great deluge and improve or equal move acceptance methods.

RLM−LACC has superior performance over the other eight hyper-heuristics.

In the two comparisons RLM−LACC resulted as performing better than the other

hyper-heuristics. Therefore the pairwise performance variations between RLM−LACC and

other hyper-heuristics are compared to observe the difference is statistically significant or

not. The results are shown in Table 5.19. In this table, the heuristic selection methods

are presented as R,M and S. R stands for Reinforcement Learning, M stands for Modified

Reinforcement Learning and S stands for Simple Random. Move acceptance methods are

presented as G for Great Deluge, I for Improve or Equal and L for Late Acceptance. Pair-

wise comparison using T-test of hyper-heuristics for each type of hyper-heuristics determined

by a given frequency and severity of change. Given A vs B, s+ (s−) denote that A (B)

is performing statistically better than B (A), while ≈ denotes that there is no statistically

significant performance variation between A and B.
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Table 5.19. Pair-wise comparison of hyper-heuristics

RLM-LACC

Instance R-G R-I R-L M-G M-I S-G S-I S-L

t60 01 s+ s+ ≈ s+ s+ s+ s+ ≈

t60 02 s+ s+ ≈ s+ s+ s+ s+ ≈

t60 03 s+ s+ ≈ s+ s+ s+ s+ ≈

t120 01 s+ s+ ≈ s+ s+ s+ s+ ≈

t120 02 s+ s+ s+ s+ s+ s+ s+ s+

t120 03 s+ s+ s- s+ s+ s+ s+ s-

t249 01 s+ s+ s- s+ s+ s+ s+ ≈

t249 02 s+ s+ ≈ s+ s+ s+ s+ ≈

t249 03 s+ s+ ≈ s+ s+ s+ s+ ≈

t501 01 s+ s+ ≈ s+ s+ s+ s+ ≈

t501 02 s+ s+ ≈ s+ s+ s+ s+ ≈

t501 05 s+ s+ ≈ s+ s+ s+ s+ ≈

u120 01 ≈ s+ ≈ s+ s+ s+ s+ ≈

u120 02 s+ s+ ≈ s+ s+ s+ s+ ≈

u120 07 ≈ s+ ≈ s+ ≈ s+ s+ ≈

u250 04 s+ s+ s+ s+ s+ s+ s+ s+

u250 08 s+ s+ s+ s+ s+ s+ s+ s+

u250 12 s+ s+ s+ s+ s+ s+ s+ s+

u500 02 s+ s+ s+ ≈ s+ s+ s+ ≈

u500 08 s+ s+ s+ s+ s+ s+ s+ s+

u500 09 s+ s+ s+ s+ s+ s+ s+ s+

u1000 01 ≈ ≈ s+ ≈ s+ s+ s+ ≈

u1000 03 s+ s+ s+ s+ s+ s+ s+ s+

u1000 10 ≈ ≈ ≈ ≈ s+ s+ ≈ s+
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Table 5.20. Bin packing problem mean number of bins comparison

hh t60 t120 t249 t501 u120 u250 u500 u1000 Avrg.

Theo 20 40 83 167 49,05 101,55 201,2 400,55 132,79

RLM-LACC 21 42 89 176,67 49,67 105,33 209 420,33 139,13

1PTX FF2 20,95 41 84 168 49,05 101,7 201,3 400,65 133,33

LIMX FF1 21 41 84 168,85 49,1 101,8 202,35 417,5 135,7

UX FFD2 21 41 84,15 169,8 49,05 101,75 201,5 401,5 133,72

MUX FFD1 21 41 84,05 169,2 49,05 101,65 201,3 401,5 133,59

HGGA 20,1 40 83 167 49,15 101,7 201,2 400,55 132,84

MTP 21,55 44,1 90,45 181,85 49,15 102,15 203,4 404,55 137,15

According to the results RLM−LACC performs statistically

better than SRAN−GDEL in all problem instances. SRAN−IEQ and RLM−IEQ have only

one problem instances that has similar performance with RLM−LACC. RLM−GDEL has

three and RL−IEQ has two and RL−GDEL has four problem instances that have similar

performance. Late acceptance heuristics have better results statistically compared to other

move acceptance methods. All results show that RLM−LACC has significantly better than

other hyper-heuristics. Its average best results are compared with Falkanauer’s HGGA [7],

Martello and Toth’s [76] reduction algorithm (MTP) and 4 different genetic operator used

genetic algorithms [59], these are namely 1PTX FF2, LIMX FF1, UX FFD2 and MUX

FFD1. The results are shown in Table 5.20

RLM−LACC has worse average best results compared to other studies. It is

competitive only in t60 and u120 data sets. RLM−LACC has better performance than

Martello and Toth’s reduction algorithm in the datasets which are created as triplets (t60,

t120, t249 and t501).
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6. CONCLUSION

In the thesis, the performance of grouping hyper-heuristics on well-known multi-

objective and single-objective grouping problems are investigated. Three multi-objective

grouping problems, graph coloring, exam timetabling and data clustering and one single-

objective grouping problem, bin packing are used in the study. As a total of 9 hyper-heuristics

are used combining 3 heuristic selection methods; simple random, reinforcement learning,

modified reinforcement learning and 3 move acceptance methods; great deluge, improve

or equal, late acceptance. 10 low-level heuristics are implemented and 3 different hyper-

heuristic framework types for multi-objective optimization are used.

In multi-objective hyper-heuristics, the tuning experiments show that tournament size

does not have much effect on the performance of hyper-heuristics and tournament size 2

performs slightly better. The choice of the pareto front interval in the multi-objective hyper-

heuristic solvers affects their average performance. A smaller interval generates a better

average performance. The number of heuristics used in the multi-objective hyper-heuristics

also affects the performance of the hyper-heuristics. The use of simpler and fast heuristics

generates a better performance than the use of additional more time consuming intelligent

heuristics within the grouping hyper-heuristic framework.

The hyper-heuristic framework types used for the multi-objective grouping problems

differs how a candidate solution is selected from the list of non-dominating candidate

solutions for applying a selected heuristic. However, the proposed methods, namely; cyclic

and apply to all hyper-heuristic types do not give better results than the generic hyper-

heuristic type which selects a candidate solution randomly from the pareto front. Also the

modified reinforcement learning does not yield better results than the standard reinforcement

learning for multi-objective problems. The number of accepted moves are too few, therefore

the reinforcement learning mechanism loses its advantage of learning. The late acceptance

move acceptance method has a slightly better performance than great deluge and improve or

equal.
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The tuning experiments show that the reinforcement learning with late acceptance and

simple random with late acceptance deliver similar performances in finding the best solutions

and they are slightly better than the other hyper-heuristics. The performances of these

two hyper-heuristics are compared to the previously proposed approaches. The proposed

hyper-heuristics have very successful results in graph coloring and exam timetabling. They

succeeded to find the expected best solutions for the benchmark problem instances. They

perform even better than some of them or deliver a matching performance. However, in data

clustering, proposed hyper-heuristics failed to find any feasible solution in three of the four

real-world data sets. On the other hand, they successfully find the expected best solutions

one real-world and four synthetic problem instances.

As for the single objective grouping problem, similarly, hyper-heuristics that use late

acceptance move acceptance method have better performances compared to others. Modified

reinforcement learning has a slightly better performance than reinforcement learning for bin

packing. Modified reinforcement learning with late acceptance is significantly better than the

other 8 hyper-heuristics. This hyper-heuristic is compared to the previous approaches and it

delivers better results than Martello and Toth’s reduction algorithm for the triplet instances.

It has competitive results for the small problem instances but when the problem size gets

bigger, the results of proposed hyper-heuristic worsens. Considering that the framework

only allows feasible solutions for bin packing, it is likely that hyper-heuristic cannot learn

which heuristic delivers a good performance given the time limit for a run, since some of the

improvement attempts and hence the relevant steps are ignored due to the repair mechanism.

The results of the experiments is consistent with the previous findings [33, 39, 78].

Learning during the heuristic selection process definitely helps, but move acceptance plays a

major role in the performance of hyper-heuristics. This is possibly because the small number

of heuristics used within the hyper-heuristics. A goal of hyper-heuristics is raising the level

of generality by automating the heuristic design process. With this in mind, selection hyper-

heuristics based on a general framework even including the low level of heuristics for solving

grouping problems are investigated in this thesis. The grouping selection hyper-heuristic

frameworks are designed assuming a domain barrier between the high level hyper-heuristic

methodology and the problem domain dependent components such as low level heuristics.



100

Only problem independent information, such as fitness is allowed to pass across these layers.

Using this information, selection hyper-heuristics manage the low level heuristics and choose

the best alternative at each iterative step during the search process. In the overall, the

empirical results show that the grouping selection hyper-heuristics provide although not

the best, but competitive and promising results without compromising from the solution

quality. In the future, more low-level heuristics can be tested along with new hyper-heuristic

methodologies and the most efficient low-level heuristic subset can be identified to improve

the performance of hyper-heuristics. The grouping hyper-heuristics can be tested with other

multi-objective and single-objective grouping problems.
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of Metaheuristics, chap. A Classification of Hyper-heuristic Approaches, International

Series in Operations Research & Management Science, Springer, 2009.
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78. Özcan, E., M. Mısır, G. Ochoa and E. K. Burke, “A Reinforcement Learning - Great-

Deluge Hyper-Heuristic for Examination Timetabling”, Int. J. of Applied Metaheuristic

Computing, vol. 1, no. 1, pp. 39–59, 2010.

79. Qu, R., E. K. Burke, B. Mccollum, L. T. G. Merlot and S. Y. Lee, “A survey of

search methodologies and automated system development for examination timetabling”,

Journal of Scheduling, vol. 12, pp. 55–89, 2009.
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