

HUMAN IDENTIFICATION AND TRACKING

by

Melih YÜCE

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Electrical and Electronics Engineering

Yeditepe University

2011

ii

HUMAN IDENTIFICATION AND TRACKING

APPROVED BY:

Assoc. Prof. Dr. Cem Ünsalan

(Advisor)

Assist. Prof. Dr. Duygun E. Barkana

Assist. Prof. Dr. Dionysis Goularas

DATE OF APPROVAL: …./.…/ 2011

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis advisor Assoc. Prof. Dr. Cem Ünsalan for

his assistance, encouragement and advises along this thesis study. Research assistant Rıfat

Benveniste has also deserves thanks due to his help to my project. Moreover, I am also

very happy to be a part of Yeditepe University. I am so thankful to the instructors of my

courses that I took during my Master of Science.

I would also thank to my family members for their encouragement and financial

support that they have given me during this study.

Finally, I would like to dedicate this thesis to my family and my wife Ezgi Yüce.

iv

ABSTRACT

HUMAN IDENTIFICATION AND TRACKING

In recent years, face detection and recognition have been very popular in both

scientific research communities and the market. But it still remains very challenging in

real–time applications. The machine learning and computer graphics communities are also

increasingly involved in face recognition. This common interest among researchers

working in diverse fields is motivated by the remarkable ability of recent algorithms to

recognize people and the fact that human activity is the primary concern both in everyday

life and in cyberspace. Face tracking and recognition is also very popular in security

systems. The ability of these methods help developing reliable human surveillance

systems. Both tracking and recognition systems can be used widely by the police and

private security firms. In this MSc. thesis study, we implement a human surveillance

system using face detection and recognition as a subpart of a human surveillance system.

v

ÖZET

İNSAN TANIMA VE İZLEME

Yüz bulma ve tanıma sistemleri geçtiğimiz yıllarda bilimsel araştırma grupları ve

piyasa tarafından oldukça geniş ilgi görmüştür. Halen bu sistemlerin gerçek zamanlı

uygulamalarının geliştirilmesi oldukça zorlayıcı bir problem olarak görülmektedir. Ayrıca

makine öğrenmesi ve bilgisayarda grafik işleme toplulukları da yüz bulma ve tanıma

çalışmalarına dahil olmuşlardır. Farklı branşlarda uzmanlaşmış bu araştırmacıların ortak

ilgisi, yüz bulma ve tanıma problemlerinin çözümünün gündelik ve sanal hayata

kazandıracağı artı değerin yadsınamayacak bir öneme sahip olmasından

kaynaklanmaktadır. Yüz takibi ve tanıma sistemleri güvenlik sistemlerininde de çok

popülerdir. Bu sistemlerin kabiliyeti insan izleme sistemlerinin geliştirilmesinde çok

etkilidir. Bu takip ve tanıma sistemleri Emniyet Müdürlüğü ve özel güvenlik firmaları

tarafından kullanılmaya çok müsaittir. İnsan izleme sistemlerinin günümüzdeki öneminden

dolayı, bu yüksek lisans tezinde yüz bulma ve tanıma metotlarını kullanarak insan takibi

yapan bir sistem geliştirdik.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

ÖZET .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF SYMBOLS / ABBREVIATIONS ... x

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 2

2.1. FACE DETECTION ... 2

2.1.1. Knowledge-based Methods ... 2

2.1.2. Feature-based Methods ... 3

2.1.2.1. Facial Features ... 3

2.1.2.2. Skin Color .. 4

2.1.2.3. Texture ... 5

2.1.2.4. Multiple Features ... 5

2.1.3. Template Matching Methods .. 5

2.1.4. Appearance-based Methods .. 6

2.1.4.1. Neural Networks .. 6

2.1.4.2. Support Vector Machines (SVM) .. 6

2.1.4.3. Principal Component Analysis (PCA) 7

2.1.4.4. Distribution-based method ... 7

2.2. FACE RECOGNITION .. 7

2.2.1. Appearance-based (view-based) Method .. 9

2.2.1.1. PCA and Kernel PCA ... 9

2.2.1.2. 3D Morphable Model ... 17

2.2.2. Feature-based Method ... 18

2.2.2.1. Feature-based Elastic Bunch Graph Matching (EBGM) 18

2.2.2.2. Hidden Markov Model (HMM) ... 18

2.2.3. Combined Method... 19

vii

2.3. TRACKING .. 19

2.3.1. Kernel Tracking .. 21

2.3.1.1. Template and density-based appearance models 22

2.3.1.2. Multiview appearance models .. 26

2.3.2. Silhouette Tracking ... 26

2.3.2.1. Shape matching .. 28

2.3.2.2. Contour tracking ... 28

2.3.3. Point Tracking ... 29

2.3.3.1. Deterministic methods for correspondence 30

2.3.3.2. Statistical methods for correspondence 32

3. THE PROPOSED SYSTEM .. 34

3.1. FACE DETECTION ... 35

3.1.1. Adaboost Algorithm .. 35

3.1.2. Skin Detection ... 39

3.2. TRACKING .. 45

3.3. FACE RECOGNITION .. 47

3.4. THE OVERALL SYSTEM .. 51

3.4.1. Initialization of The System .. 53

3.4.2. Execution of The System .. 53

3.4.2.1. Tracking with two cameras .. 54

3.4.2.2. Tracking with four cameras ... 56

4. EXPERIMENTAL RESULTS ... 61

4.1. EXPERIMENTS WITH TWO CAMERAS SETUP .. 61

4.2. EXPERIMENTS WITH FOUR CAMERAS SETUP .. 61

4.3. EXPERIMENTS ON FACE RECOGNITION ... 63

4.3. LIMITATIONS OF THE PROPOSED SYSTEMS .. 65

5. CONCLUSIONS .. 67

APPENDIX A: INITIALIZATION FOR RECOGNITION ... 68

APPENDIX B: BACKGROUND EXTRACTION .. 70

APPENDIX C: FUNCTIONS .. 73

APPENDIX D: MAIN FUNCTIONS... 77

REFERENCES ... 81

viii

LIST OF FIGURES

Figure 2.1. Examples of the Viola and Jones features. .. 4

Figure 2.2. The main steps of face recognition and its application areas. 8

Figure 2.3. a. Example images from the ORL database, b. Mean face obtained from

the ORL database... 12

Figure 2.4. Some examples of the eigenfaces, sorted with respect to decreasing

eigenvalues. ... 13

Figure 2.5. The cumulative sum curve for the eigenvalues ... 14

Figure 2.6. A typical eigenvalue spectrum .. 14

Figure 2.7. Elastic Bunch Graph Matching Method .. 18

Figure 2.8. a. Rectangle kernel tracking, b. c. silhouette tracking, d. point tracking .. 21

Figure 2.9. Mean-shift tracking iterations ... 23

Figure 2.10. Results of the robust online tracking method .. 24

Figure 2.11. Tracking features using the KLT tracker. ... 25

Figure 2.12. a. The measurements consist of image edges computed in the normal

direction to the contour b. Level set contour representation 27

Figure 2.13. Contour tracking results .. 29

Figure 2.14. Point correspondence .. 31

Figure 2.15. Different motion constraints .. 31

Figure 3.1. Camera settlement for the first scenario .. 34

Figure 3.2. Camera settlement for the second scenario ... 35

Figure 3.3. The value of the integral image at point (x,y) ... 36

Figure 3.4. The sum of the pixels within rectangle D.. 37

Figure 3.5. The processed image after the Adaboost algorithm 39

Figure 3.6. The CbCr plane at constant luminance Y=0.5 .. 40

ix

Figure 3.7. RGB color image and its components ... 41

Figure 3.8. YCbCr color image and its components .. 42

Figure 3.9. Histogram of skin color in Cr component of the YCbCr image 43

Figure 3.10. Face area after thresholding .. 43

Figure 3.11. Final state of face image .. 44

Figure 3.12. The skin detection result .. 44

Figure 3.13. Flow diagram of the first scenario ... 45

Figure 3.14. Flow diagram of second scenario .. 46

Figure 3.15. Database images gathered from Face Recognition Homepage 47

Figure 3.16. Flow diagram of the system .. 52

Figure 3.17. Displays of two cameras A and B ... 54

Figure 3.18. Flow diagram of tracking algorithm for two cameras 55

Figure 3.19. Displays of four cameras A, B, C and D ... 57

Figure 3.20. The decision for the recognition in four camera system 58

Figure 3.21. Flow Diagram of tracking algorithm for two cameras 60

Figure 4.1. Working system with two cameras ... 61

Figure 4.2. Working system with four cameras ... 62

Figure 4.3. Face recognition results of our algorithm using the database in Face

Recognition Homepage ... 63

Figure 4.4. Database images used in the system .. 64

Figure 4.5. Result after the recognition process .. 65

x

LIST OF SYMBOLS / ABBREVIATIONS

A Difference Matrix

I Image

i(x,y) Original image

ii(x,y) Integral image

Mt Number of the training images

Nx Image size in x coordinates

Ny Image size in y coordinates

P Dimension of the image space

s(x,y) The cumulative row sum

v Eigenvector

w Weight

X Covariance Matrix

 Similarity

 Distance Measure

 Distance Threshold

μ Eigenvalue

Γ Image vector

Φ Mean subtracted image

Ψ Mean face

 Weight matrix

 Projection

1D One Dimension

2D Two Dimensions

3D Three Dimensions

Adaboost Adaptive Boosting

CCD Charge Coupled Device

EBGM Elastic Bunch Graph Matching

xi

HCI Human Computer Interaction

HMM Hidden Markov Model

HSV Hue, Saturation, Value color triple

KLT Kanade-Lucas-Tomassi

ORL Operations Research Laboratory

PCA Principle Component Analysis

RGB Red, Green, Blue color triple

SVM Support Vector Machine

TV Television

WKPCA Weighted Kernel Principal Component Analysis

YCrCb Luma, Red difference, Blue difference color triple

YES Luma and chrominance color triple

YIQ Luma and chrominance color triple

1. INTRODUCTION

In recent years, advances in image processing techniques and the decreasing cost of

various image and video acquisition devices encouraged the development of many

applications. Among these, human face detection and tracking is the most attractive one for

researchers since they have a wide range of applications in the areas of surveillance,

security systems, human computer interaction, animation, and biometrics.

In this thesis study, we develop a system to detect, track, and recognize human faces.

There are many approaches to overcome to the problem of face detection and tracking. In

terms of face detection, previous studies can be classified into four main groups. In the

literature review chapter, we will introduce them shortly. Then, we will focus on the

Adaboost and skin color based face detection method, since we used them in our system.

We also consider the well-known tracking methods in the literature review chapter. Among

these, we pick the point tracking method for face tracking. In the following chapters, we

explain this method in detail. Face recognition is also very important for the human

surveillance systems. Therefore, we added a subpart to our system to recognize faces. As

in previous methods, we explain what has been done one face recognition in the literature

review chapter of the thesis. In implementation, we benefit from the Principle Component

Analysis (PCA) based face recognition method. We will explain its working principles in

the following chapters. In implementing our face detection, tracking and recognition

system, we consider two strategies. In the first one, we have two cameras. In the second

strategy, we have four cameras in implementation.

The layout of the thesis is as follows. We will first start to look the literature to

review which algorithms are valid for face detection, tracking, and recognition in Chapter

2. Then, we explain the implementation of our algorithms one by one and the whole

system in Chapter 3. Chapter 4 comprises our experiments and results.

2

2. LITERATURE REVIEW

In this chapter, we review the existing work on face detection, recognition and

tracking. For ease of understanding, we grouped these studies as follows.

2.1. FACE DETECTION

The definition of the face detection problem is finding or extracting one or more

human faces from a given image. According to users’ expectations, different methods for

face detection have been proposed in the literature. Ideally, a robust and good face detector

algorithm accurately extracts all faces in images regardless of their position, pose, scale,

color, orientation, shape, and external lighting conditions. In addition to accurately finding

faces, another significant problem is the detection time. This is very important because

face detection should be done very fast in tracking, surveillance applications, and video

streaming phones. Real-time working requirement prohibited many algorithms that

precisely extract faces using extensive computations. Existing techniques for face detection

can be classified into four main categories as: knowledge-based, feature-based, template

matching based and appearance-based methods.

2.1.1. Knowledge-based Methods

Face detection in this group is examined on the rules derived from the researcher’s

knowledge on human faces. In general, these rules belong to top-down (image-based)

approach. Top-down approach means that face regions are determined without resorting to

the identification of individual facial components such as lips, noses and eyes. So, the

basic rules are as: the color density has the maximum value in the center of human face;

there is a large illumination difference between human face region and the non-face region;

all facial features like eyes, lips and nose are symmetric.

Two variants for this method have been proposed. The first one is the vertical and

horizontal projection diagram method. Diagrams are extracted and decisions are made if

3

the areas with high projection rate include lips, nose and eyes [1]. The second method

focuses on the sequential resolutions approach. In this method, the image is processed first

in low resolution and the face center is located. After this process, in a finer resolution

histogram equalization and edge detection is applied. Finally, based on this face center,

the image is processed in high resolution to search the lip, nose and eyes [2].

Advantages of the knowledge-based methods are as follows. Finding face properties

and the rules which describe the relations between them are very easy. Extracting face

properties from an image based on these rules are also very simple. These methods are

successful on images that do not have cluttered backgrounds. Disadvantages of these

methods are using the rules of human knowledge including small details. These may give

incorrect results and faces in different poses may not be detected.

2.1.2. Feature-based Methods

In contrast to the knowledge-based top-down method, researchers have been trying

to find invariant features for face detection, like edge color variety, color density, design

and shape. Feature-based methods are also called bottom-up approaches. Bottom-up

approach means that the precise face regions are constructed from the individual facial

components. In other words, the facial components should be extracted prior to the

determination of the precise location of face regions in the image. Feature-based methods

are classified into four categories as: facial features, skin color, texture and multiple

features.

2.1.2.1. Facial Features

Methods of facial features are interested in eyes, nose, lips, eyebrow positions and

presence of them and their orientations. Sirohey [3] proposed a localization method to

segment faces from a cluttered environment for face identification. This method depends

on edge map extraction, removing and grouping edges so that only the ones on the face

counter are preserved. Graf [4] has developed a method to locate facial features and faces

in gray scale images. The method uses band-pass filtering and morphological operations to

enhance regions with high intensity values and certain shapes such as eyes. There are other

4

methods to identify facial components which use Gaussian filters and its derivatives and

Gaussian distributions in arrangement of facial components with mutual distances [5, 6, 7].

In the paper of Viola and Jones [8], three types of Haar-like features are utilized;

namely, two, three, and four rectangle features (see Figure 2.1), which help in computing

the difference between the sum of pixels within rectangular areas in the image. These

Haar-like features are considered as face features like lips, eyes, eyebrow etc. We use this

algorithm to detect faces. Therefore, we will explain it in detail in the next chapter.

Figure 2.1. Examples of the Viola and Jones features.

2.1.2.2. Skin Color

From face detection to hand tracking, skin color representation is an effective

feature. Although different people have different skin colors like fair-skinned, dark-

skinned etc., many proposed studies have shown that the main difference is their intensity

not their chrominance. Face detection in color images is used with many proposed color

spaces to label skin pixels in the image. Some of the color spaces can be given as RGB,

normalized RGB, YCbCr, HSV, YIQ, and YES [9 - 17]. An image is formed of many

pixels. Each pixel in an image is represented with its intensity value of 0 to any values like

63; 127; and 255. These color spaces represent a pixel with three features. RGB color

space represents a pixel with red, green and blue components. YCbCr color space

represents a pixel with luma, blue-difference and red-difference components. HSV color

space represents a pixel with hue, saturation and value components. Many methods have

been developed for skin color modeling. The simplest model is to define a region of skin

tone pixels including Cb and Cr values. With carefully chosen thresholds values, a pixel

can be classified to have skin tone if it is falls into the chosen threshold values. We will

explain how to use this method in the next chapter.

5

2.1.2.3. Texture

Human faces have a distinct feature that can be separated from other objects in the

image. A method is developed by Augusteijn and Skufca [18] that infers the presence of a

face through the identification of face-like features. Three types of features are considered

as texture in this method: skin, hair and others.

2.1.2.4. Multiple Features

Numerous methods that combine several facial features have been proposed to locate

or detect faces. Most of them utilize global features such as size, skin color and shape to

find face candidates, and then verify these candidates using local and detailed features such

as eyes, nose, brows, and hair. A typical approach begins with the detection of skin-like

regions. Next, skin-like pixels are grouped together using connected component analysis or

clustering algorithms. If the shape of a connected region has an elliptic or oval shape, it

becomes a face candidate. Finally, local features are used for verification [10, 19, 20].

Advantage of feature-based method is independency of characteristics of human

faces for different illumination conditions and poses. The disadvantage of this method is

that, the process of detecting faces is hard under different illumination and complex

environments.

2.1.3. Template Matching Methods

These methods use templates that are defined beforehand. Various standard patterns

are stored in a database to describe the face as a whole or the facial features separately. The

image is checked if there is a face in the image that matches with the template in database

[21 - 23]. The correlations between the input image and the stored templates are computed

for detection. The existence of a face is determined based on these correlation values. This

approach has the advantage of being simple to implement and easy for calculations.

Disadvantage of this method is its being inadequate for face detection since it cannot

effectively deal with variation in scale, pose, and shape.

6

2.1.4. Appearance-based Methods

In contrast to template matching methods where templates are predefined, the

templates in appearance-based methods are learned from examples in images. In general,

appearance-based methods rely on techniques from statistical analysis and machine

learning to find the relevant characteristics of face and non-face images. These methods

can benefit from examples and have been demonstrated to be more robust and useful than

other methods [24].

Generally all kinds of appearance-based methods are actualized with vertically and

horizontally scanning test images. To improve the success rate of this algorithm, sub

sampling is done by decreasing the height and width of the image. Sub sampling and

scanning continues until the image become as small as possible.

Many different classifiers and learning methods are available to perform appearance-

based detection. These methods include artificial neural networks, principal component

analysis, support vector machines and distribution-based methods [25 - 31].

2.1.4.1. Neural Networks

This technique uses light correction and histogram equalization methods to

standardize the image due to training with complex facial patterns. Besides, the

implementation of this approach is simple. This method examines small windows of an

image, and decides whether each window contains a face. Therefore, it cannot effectively

deal with variation in scale, pose and shape. It has a straightforward procedure for aligning

positive face examples for training. With this technique, simple heuristics (such as faces

rarely overlap in images) can further improve the accuracy. The advantage of using neural

networks in face detection is the feasibility of training a system to capture the complex

class conditional density of face patterns.

2.1.4.2. Support Vector Machines (SVM)

Support Vector Machines can be considered as a new paradigm to train a polynomial

function, neural networks classifiers. While most methods for training a classifier (like

Bayesian and neural networks), are based on of minimizing the training error, SVM

7

operates on another induction principle, called structural risk minimization, which aims to

minimize an upper bound on the expected generalization error. An SVM classifier is a

linear classifier where the separating hyperplane is chosen to minimize the expected

classification error of the unseen test patterns. This optimal hyperplane is defined by a

weighted combination of a small subset of the training vectors, called support vectors.

2.1.4.3. Principal Component Analysis (PCA)

This aim of this method is the selection of a minimum set of features such that the

probability distribution of different classes given the values for those features is as close as

possible to the original distribution given the values for all features. PCA is useful for

finding more informative, uncorrelated features in the image. We will cover this method in

the face recognition chapter in detail.

2.1.4.4. Distribution-based method

This technique uses histogram equalization and masking procedures. With the help

of histogram equalization technique, we can eliminate the imaging effects due to

illumination variations and different camera input gains in the image. Masking provides

reducing the unwanted background noise in face template images. Moreover, the best fit

brightness plane is found and subtracted from the image. This way, heavy shadows that are

caused by extreme lighting are reduced.

Advantages for appearance-based methods can be given as follows. They have

successful algorithms, successful proved results. They are fast and their processing

procedures are effective. They work well in different face poses. As disadvantages

concerned, we can only give the fact that these algorithms should have a lot of positive and

negative example images in order to run well.

2.2. FACE RECOGNITION

Face detection is the first step for face tracking or recognition. Many commercial

face recognition applications are available such as person identification, security systems,

criminal investigations, image and film processing. The purpose here is to find the best

match between the given face image and the face in the sequence of images captured by

8

camera. The face recognition system should be able to identify or verify one or more

persons in the scene using a pre-defined image database.

As explained above, before performing face recognition, the system should

determine whether or not there is a face in the given image. Once the face region is

detected, it should be isolated from the scene for face recognition. Features of the face

obtained from the face detection system are used in the face recognition process.

Therefore, the feature extraction step is placed between face detection and recognition.

However, face detection and recognition are often performed simultaneously. The overall

process is shown in Figure 2.2.

Figure 2.2. The main steps of face recognition and its application areas.

Face recognition is complicated if the images of the face is taken in different poses

with different angles [32]. To handle these problems several methods are proposed such as:

image resizing, (to align faces and eyes on the same line for all images); background

9

subtraction, (to delete image background and human hair from the image); histogram

equalization, (to gain best color contrast distribution); face normalization with zero mean.

Face recognition algorithms are classified into three main groups as: appearance-based

(view-based), feature-based, and combined.

2.2.1. Appearance-based (view-based) Method

These methods use specifications of the face such as the shape or the area of the face,

distances between eyes and mouth etc.

2.2.1.1. PCA and Kernel PCA

An image can be represented as a space having dimensions equal to the number of

pixels forming up the image and having values in 32 the range of the pixels values. Thus,

for example for a gray scale image of size (Nx x Ny), the dimension of the image space is

P= Nx x Ny. For the case of gray scale images, in each dimension, the image can have an

intensity value between 0 and 255. An image can be thought as a point in the image space

by converting it to a long vector by arranging each column of the image one after the other.

After all the face images are converted into vectors, they will cluster at a certain

location in the image space as they have similar structure, having eye, nose and mouth in

common and their relative position correlated. This correlation is the main start point for

the eigenface analysis. The eigenface method tries to find a lower dimensional space for

the representation of the face images by eliminating the variance due to non-face images;

that is, it tries to focus on the variation just coming out of the variation between the face

images. The eigenface method is the implementation of PCA over images. In this method,

the features of the studied images are obtained by looking for the maximum deviation of

each image from the mean image. This variance is obtained by getting the eigenvectors of

the covariance matrix of all images. The eigenface space is obtained by applying the

eigenface method to the training images. Later, the training images are projected into the

eigenface space. Next, the test image is projected into this new space and the distance of

the projected test image to the training images is used to classify the test image. In the

standard eigenface procedure suggested by Turk and Pentland [28], the nearest mean

classifier is used for the classification of test images.

10

In mathematical terms, let I be the image matrix with (Nx x Ny) pixels. This image is

converted to the image vector Γ of size (P x 1) where P = (Nx x Ny); that is the image

matrix is reconstructed by adding each column one after the other as

 1 2Γ = [... Γ]Mt  (2.1)

is the training set of image vectors and its size is (P x Mt) where Mt is the number of the

training images. Based on these, we can form the arithmetic average of the training image

vectors at each pixel point as

 tM

i

i=1t

1
Ψ = Γ

M
 (2.2)

This arithmetic image can be used to obtain the difference of the training image from

the mean image as

 Φ = Γ – Ψ (2.3)

For all images, we can from the matrix of all the mean subtracted training image

vectors as

 1 2A = [...]Mt   (2.4)

Using A, we can form the covariance matrix of the training image vectors as

1

1
X = A A =

tM
T T

i i

itM 

   (2.5)

An important property of the eigenface method is obtaining the eigenvectors of the

covariance matrix, X. For a face image of size (Nx x Ny) pixels, the covariance matrix

should be of size (P x P), P being (Nx x Ny). This covariance matrix is very hard to work

with due to its huge dimension causing computational complexity. On the other hand, the

11

eigenface method calculates the eigenvectors of the (Mt x Mt) matrix, Mt being the number

of face images, and obtains (P x P) matrix using the eigenvectors of the (Mt x Mt) matrix as

follows. Initially, a matrix Y is defined as,

1

1
Y = A A =

tM
T T

i i

itM 

   (2.6)

which is of size (Mt x Mt). Then, the eigenvectors vi and the eigenvalues μi of Y are

obtained as

 Y i i iv v   (2.7)

The value of Y is put in this equation,

TA A i iv v    (2.8)

Both sides are multiplied by A from left,

TA A A Ai i iv v      (2.9)

The necessary matrix arrangements are made,

TA A A Ai i iv v      (2.10)

As μi is a scalar, this arrangement can be done as

 X A Ai i iv v     (2.11)

Now, we can group A iv and call a variable Ai iv   . It is easy to see that

 Ai iv   (2.12)

12

is one of the eigenvectors of X = A AT and its size is (P x 1).

Thus, it is possible to obtain the eigenvectors of X by using the eigenvectors of Y. A

matrix of size (Mt x Mt) is utilized instead of a matrix of size (P x P) (i.e. [{Nx x Ny} x {Nx

x Ny}]). This formulation brings substantial computational efficiency. In Figure 2.3, some

example images and mean image of the images from the ORL database are given. In

Figure 2.4, some characteristic eigenfaces obtained from this database can be seen. The

eigenfaces are in fact (P x 1) vectors for the computations; in order to see what they look

like, they are rearranged as (Nx x Ny) matrices.

Figure 2.3. a. Example images from the ORL database, b. Mean face obtained from the

ORL database

Instead of using Mt of the eigenfaces, M'≤ Mt of the eigenfaces can be used for the

eigenface projection. This is achieved to eliminate some of the eigenvectors with small

eigenvalues, which contribute less variance in the data. In Figure 2.5, the cumulative sum

of the eigenvalues, and in Figure 2.6 a typical eigenvalue spectrum can be observed.

13

Figure 2.4. Some examples of the eigenfaces, sorted with respect to decreasing

eigenvalues.

From Figures 2.5 and 2.6, it can be easily observed that most of the generalization

power is contained in the first few eigenvectors. For example, 40% of the total

eigenvectors have 85 – 90% of the total generalization power. Thus, using 40% of the total

number of eigenvectors may end up with reasonable classification results.

14

Figure 2.5. The cumulative sum curve for the eigenvalues

Figure 2.6. A typical eigenvalue spectrum

Eigenvectors can be considered as the vectors pointing in the direction of the

maximum variance and the value of the variance that the eigenvector represents is directly

proportional to the value of the eigenvalue (i.e. the larger the eigenvalue indicates the

larger variance the eigenvector represents). Hence, the eigenvectors are sorted with respect

to their corresponding eigenvalues. The eigenvector having the largest eigenvalue is

marked as the first eigenvector, and so on. In this manner, the most generalizing

eigenvector comes first in the eigenvector matrix.

15

In the next step, the training images are projected into the eigenface space and thus

the weight of each eigenvector to represent the image in the eigenface space is calculated.

This weight is simply the dot product of each image with each of the eigenvectors. To find

the projection of a training image on each of the eigenvectors

 ()T T

k k k       (2.13)

where k = 1, 2, …, M’. Representing the training image in the eigenface space, we obtain

the weight matrix as

 ,1 2[...]T

M
    (2.14)

At this point, the images are just composed of weights in the eigenface space, simply

like they have pixel values in the image space. The important aspect of the eigenface

transform lies in this property. Each image is represented by an image of size (Nx x Ny) in

the image space, whereas the same image is represented by a vector of size (M’ x 1) in the

eigenface space. Moreover, having the dimension structure related to the variance of the

data in hand makes the eigenface representation a generalized representation of the data.

This makes the algorithm a solution to the “curse of dimensionality” problem seen in the

standard pattern recognition task [33].

When a new test image is to be classified, it is also mean subtracted and projected

onto the eigenface space and the nearest mean algorithm is used for the classification of the

test image vector in the standard eigenface method; that is, the test image is assumed to

belong to the nearest class by calculating the Euclidean distance of the test image vector to

the mean of each class of the training image vectors [28].

If possible, it is better to work on a database of more than one image per individual

in order to increase the robustness to minor changes in expression, illumination and slight

variations of view angles. A class of images for an individual can be formed and this class

can be considered as the representative image vector of that class. For an individual having

qi images in the database, the average of the projections of each class is the mean of all the

16

projected image vectors in that class. In mathematical terms, we can obtain the average

class projections as

1

1 iq

i

iiq




   (2.15)

This average class projection can be used as one of the vectors (representing an

image class instead of an image vector) to compare with the test image vector. A similarity

measure is defined as the distance between the test image vector and i
th

 face class as

  
2

1

t

i k ik

M

i T T

k

  



      (2.16)

A distance threshold may be defined for the maximum allowable distance from any

face class, which is half of the distance between the two most distant classes as

  1
max

2 i j     (2.17)

The classification procedure of the eigenface method ensures that face image vectors

should fall close to their reconstructions, whereas non-face image vectors should fall far

away. Hence, a distance measure is defined as

2

2

f   (2.18)

which is the distance between the mean subtracted image and the reconstructed image.

The recognition of an image knowing these two measures δi and ε can be done as

follows:

 If ε > Θ  the image is not a face (independent of the values of δi),

 If ε < Θ and for all i  δi > Θ  the image is an unknown face,

17

 If ε < Θ and for one of i  δi < Θ  the image belongs to the training face class i.

This is the standard Eigenface approach suggested by Turk and Pentland in 1991 [28,

34].

Another developed algorithm related to PCA is the weighted kernel principal

component analysis (WKPCA) which is also proposed for feature extraction [35]. Weights

that represent inter-class relationships are incorporated into a kernel matrix. Images in the

training and testing set are projected onto the subspace obtained from the weighted kernel

matrix. The idea is to use genetic algorithms to select optimal weights. WKPCA based

methods require low capacity and memory. They have high tolerance to noise and provide

effective indexing on using small sized spaces. They can be affected from different

environmental conditions since these methods are designed for good poses, constant

luminance conditions and accurate and smooth captured images.

2.2.1.2. 3D Morphable Model

The main idea behind the morphable model approach is that given a sufficiently large

database of 3D face models any arbitrary face can be generated by morphing the ones in

the database [36, 37]. These methods are not sensitive to the external environmental

parameters such as pose, orientation, and luminance. The 3D model of a face has all the

pose specifications of the face. Therefore, the face gathered from the input image can be

easily compared with the poses of the 3D model face, and can be recognized according to

the one of the poses of this 3D model. These types of methods require the usage of

computer technologies which provide 3D modeling. Advantage of the appearance-based

methods is as follows. These methods are implemented successfully to images which have

low quality and low resolution. The disadvantages of these methods are as follows. They

require a number of different test images. Besides, illumination conditions and different

pose angles make for the methods to model the face harder.

18

2.2.2. Feature-based Method

Feature-based methods cover not only shape or the relations between eyes and

mouth; they cover all of the face data. These methods can be classified into three groups.

2.2.2.1. Feature-based Elastic Bunch Graph Matching (EBGM)

All human faces share a similar topological structure. All faces have critical points

above them like nose tip, eyes, lips, ears, contour between brow and hairs etc. In these

methods, faces are represented as graphs with nodes positioned at these points and edges

labeled with 2D distance vectors. Figure 2.7 shows some sample graphs [38].

Figure 2.7. Elastic Bunch Graph Matching Method –Marked critical points and edges

First, critical points are obtained using Gabor filtering. Then, graphs are obtained

between these critical points. After that, the graph patterns are compared and decisions are

made for the recognition of the face pattern. Success rate of these methods is based upon

the true localization of the important critical points of the human face. Therefore, many

different algorithms are introduced to locate the critical points [34].

2.2.2.2. Hidden Markov Model (HMM)

HMM deals with sequences of coherent 1D signals (feature vectors), while an image

is usually represented by a simple 2D matrix. However, this dilemma can be solved by

applying a sliding window to the image covering the entire width of the image which is

moved from the top to the bottom of the image. The intensity values of the pixels in the

windows are passed as 1D feature vectors to the HMM process. Successive windows

19

overlap to avoid cutting of significant facial features and to bring the missing context

information into the sequence of feature vectors [39, 40]. The human face can be divided

in horizontal regions like forehead, eyes, nose, mouth, chin, which are recognizable even

when observed in isolation. Thus the face is modeled as a linear left-right HMM model of

these five states.

The complete recognition system incorporates a preprocessing step followed by four

processing steps. The preprocessing procedure includes the normalization of the image

width, the histogram equalization, and the manual determination of the face location. It is

applied to both database and test images. A test image that was not used for training first

passes the preprocessing step. Then, the probability of producing this image is computed

for every person, i.e. every model, in the database.

2.2.3. Combined Method

These methods are the combination of the feature-based and the appearance-based

methods. They give higher success rates among the previous methods. Cootes et. al. [41]

used the point distribution model and the local gray level which deals with the color

changes in pixel in gray level. This model is applied to the PCA method. It creates a vector

that stores the face data. The decision between the database and test images is done

according to the obtained values using stored vector information.

Decrease in the complication which occurs by the environmental effects can be given

as an advantage to feature-based methods. Disadvantages of these methods can be lined up

as follows. To obtain face properties in a fully automatic way is not easy. Creation of

models is a long, complicated and may be a cracked process since the local minimum

values can give faulty results. Images in these methods should have high quality and high

resolution.

2.3. TRACKING

The purpose of tracking an object is to generate the trajectory of a moving or non-

moving body in time by locating its position in every video frame. Object tracker can also

20

provide the whole region in the frame which is occupied by the object at every time

instant.

The object tracking algorithm can run the tasks of detecting the object and

establishing correspondence between the object instances across frames separately or

jointly. It means that if the tasks work separately, first possible object regions in every

frame are extracted with the object detection algorithm, then the algorithm will track these

obtained object regions. In the latter case, the object region and correspondence is jointly

estimated by iteratively updating object location and region information obtained from

previous frames. In either tracking approach, objects are represented using appearance or

shape models.

The model selected to represent object shape limits the type of motion. For example,

in the case where a geometric shape representation like an ellipse or a circle is used for the

object, parametric motion models like affine or projective transformations are appropriate.

These representations are used for approximation of the motion of rigid bodies in the

scene. However, for a non-rigid body, silhouette or contour representation is used since

they include descriptive details of the body. If an object is represented as a point, then only

a translational model can be used. Our face model in this study is also represented as a

point. We use the centroid of the face region as a point descriptor.

Tracking will be considered in three main subsections as Kernel, Silhouette and Point

Tracking. Figure 2.8(a) shows an example rectangle kernel tracking. Examples on

Silhouette tracking can be seen in the Figures 2.8(b) and 2.8(c). An example of object

correspondence as point tracking is shown in Figure 2.8(d).

21

Figure 2.8. a. Rectangle kernel tracking, b. c. silhouette tracking, d. point tracking

2.3.1. Kernel Tracking

Kernel refers to the object appearance and shape. For example, the kernel can be

elliptical shape or rectangular template with an associated histogram. Bodies in the

consecutive frames are tracked by computing the motion of these types of kernel. This

motion is usually in the form of a parametric transformation like translation, affine or

rotation [42].

The main purpose of the trackers in this category is to estimate the object motion.

Kernel tracking is typically performed by computing the motion of the object represented

by a primitive object region in consecutive frames. These algorithms differ in terms of the

appearance representation used, the number of objects tracked, and the method used to

estimate the object motion. Kernel tracking is categorized in two groups as template and

density-based appearance models and multi-view appearance models [42].

22

2.3.1.1. Template and density-based appearance models

The most common approach for track a single object is the template matching

method. Template matching searches the image to obtain a region similar to the object

template. The position of the template in the current image is computed by a similarity

measure, for example, cross correlation. A disadvantage to template matching can be given

as its high computation cost due to the brute force search. To reduce the computational

cost, methods are usually limited to the object search to the vicinity of its previous position

[43].

Other object representations can be used for tracking. For instance, color histograms

or mixture models can be computed by using the appearance of pixels inside the

rectangular or ellipsoidal regions. Such an object model is generated by finding the mean

color of the pixels inside the rectangular object region [44].

Another method uses a weighted histogram computed from a circular region to

represent the object [42]. In this method, instead of performing a brute force search for

locating the object, they use the mean-shift procedure. The mean-shift tracker maximizes

the appearance similarity iteratively by comparing the histograms of the object, and the

window around the hypothesized object location. At each iteration, the mean-shift vector is

computed such that the histogram similarity is increased. This process is repeated until

convergence is achieved, which usually takes five to six iterations. An example of mean-

shift tracking is given in Figure 2.9. An obvious advantage of the mean-shift tracker over

the standard template matching is the elimination of a brute force search, and the

computation of the translation of the object patch in small number of iterations. However,

mean-shift tracking requires that a portion of the object is inside the circular region upon

initialization (part of the object has to be inside the white ellipse in Figure 2.9(b)).

23

Figure 2.9. Mean-shift tracking iterations. a. estimated object location at time t − 1 b.

frame at time t with initial location estimate using the previous object position c. d. e.

location update using mean-shift iterations, (f) final object position at time t.

Another method tracks an object as a three component mixture, consisting of the

stable appearance features, transient features and noise process [45]. The stable component

identifies the most reliable appearance for motion estimation, that is, the regions of the

object whose appearance does not quickly change over time. The transient component

identifies the quickly changing pixels. The noise component handles the outliers in the

object appearance that arises due to noise. Figure 2.10 shows the object tracking method

used in this reference.

24

Figure 2.10. Results of the robust online tracking method [45] a. The target region in

different frames. b. The mixing probability of the stable component. Note that the

probabilities around the mouth and eyebrow regions change, while they remain the same in

the other regions.

Another approach to track a region defined by a primitive shape is to compute its

translation by use of an optical flow method. Optical flow methods are used for generating

dense flow fields by computing the flow vector of each pixel under the brightness

constancy constraint. Kanade-Lucas-Tomassi (KLT) feature tracker which iteratively

computes the translation of a region centered on an interest point [46]. The results obtained

by the KLT tracker are shown in Figure 2.11.

25

Figure 2.11. Tracking features using the KLT tracker.

Modeling objects individually does not take into account the interaction between

multiple objects and between objects and background during the course of tracking. An

example interaction between objects can be such as one object partially or completely

occluding the other. The tracking methods given in the following paragraphs model the

complete image, that is, the background and all moving objects are explicitly tracked.

Tao [47] proposed an object tracking method based on modeling the whole image as

a set of layers. This representation includes a single background layer and one layer for

each object. Each layer consists of shape priors (ellipse) motion model (translation and

rotation), and layer appearance (intensity modeled using a single Gaussian). Layering is

performed by first compensating the background motion modeled by projective motion

such that the object’s motion can be estimated from the compensated image using 2D

parametric motion. Then, each pixel’s probability of belonging to a layer (object) is

computed based on the object’s previous motion and shape characteristics. Any pixel far

from a layer is assigned a uniform background probability. Later, the object’s appearance

(intensity, color) probability is coupled with the probability of each pixel to obtain the final

layer estimate.

Another method, which consists of joint modeling of the background and foreground

regions for tracking, is proposed by Isard and MacCormick [48]. The background

appearance is represented by a mixture of Gaussians. Appearance of all foreground objects

is also modeled by mixture of Gaussians. The shapes of objects are modeled as cylinders.

Tracking is achieved by using particle filters.

26

2.3.1.2. Multiview appearance models

As it can be deduced from the name of the method, different views of the object are

learned offline and used for tracking. The bodies in the scene may appear from different

views. If the object view changes during tracking, the appearance model may no longer be

valid, and the object tracking process might be lost. Therefore, multiview appearance

models are used to overcome this problem.

Eigenspaces are used to compute the affine transformation from the current image of

the object to the image reconstructed using eigenvectors [49]. First, a subspace

representation of the appearance of an object is built using PCA, and then the

transformation from the image to the eigenspace is computed by minimizing the so-called

subspace constancy equation which evaluates the difference between the image

reconstructed using the eigenvectors and the input image. Based on this, tracking is

performed by estimating the affine parameters iteratively until the difference between the

input image and the projected image is minimized.

In addition to this method, a Support Vector Machine (SVM) classifier is used for

tracking [50]. During testing, the SVM gives a score to the test data indicating the degree

of membership of the test data to the positive class. For SVM-based trackers, positive

examples consist of the images of the object to be tracked, and negative examples consist

of all that are not to be tracked.

2.3.2. Silhouette Tracking

Tracking is performed by estimating the object region in each consecutive frame.

Silhouette tracking methods use the information encoded inside the object region. This

information can be in the form of appearance density and shape models which are formed

with the edge maps. Silhouettes are tracked by either shape matching or contour evolution

[51].

Silhouette tracking is proposed when tracking of the complete body of an object is

required [51]. The most important advantage of tracking silhouettes is their flexibility to

handle a large variety of object shapes. Silhouettes can be represented in different ways.

27

The most common silhouette representation is in the form of a binary indicator function,

which marks the object region by ones and the non-object regions by zeros. For contour-

based methods, the silhouette is represented either explicitly or implicitly (Figure 2.12).

Explicit representation defines the boundary of the silhouette by a set of control points.

Implicit representation defines the silhouette by means of a function defined on a grid. The

most common implicit contour representation is level sets [51]. Figure 2.12 gives an

example for level sets based tracking.

Figure 2.12. a. The measurements consist of image edges computed in the normal direction

to the contour b. Level set contour representation, each grid position encodes the

Euclidean distance between a grid point and the point on the contour; gray levels represent

the values of the grid.

Occlusion handling is another important aspect of silhouette tracking methods.

Usually methods do not address the occlusion problem explicitly. A common approach is

to assume constant motion or constant acceleration where, during occlusion, the object

silhouette from the previous frame is translated to its hypothetical new position.

28

Another important issue related to silhouette trackers is their capability for dealing

with object split and merge. For instance, while tracking a silhouette of a person carrying

an object, when the person leaves an object, a part of the person’s contour will be placed

on the left object (region split). These topology changes of region split or merge can be

handled well by implicit contour representations [51].

2.3.2.1. Shape matching

Silhouette tracking can be executed by using shape matching. Shape matching is

performed similar to tracking based on template matching where an object silhouette and

its associated model are searched in the current frame. The search is performed by

computing the similarity of the object with the model generated from the hypothesized

object silhouette based on previous frame. In this approach, the silhouette is assumed to

only translate from the current frame to the next. Therefore, non-rigid object motion is not

explicitly handled. The object model, which is usually in the form of an edge map, is

reinitialized to handle appearance changes in every frame after the object is located. This

update is required to overcome tracking problems related to viewpoint and lighting

condition changes as well as non-rigid object motion. Huttenlocher [52] performed shape

matching using an edge-based representation. There are some other methods for shape

matching which use Hough transform or color histograms [52, 53].

2.3.2.2. Contour tracking

Contour tracking methods, in contrast to shape matching methods, iteratively evolve

an initial contour in the previous frame to its new position in the current frame. This

contour evolution requires that some part of the object in the current frame overlap with

the object region in the previous frame. Tracking by evolving a contour can be performed

using two different approaches.

The first approach uses state space models to model the contour shape and motion

[54 - 56]. The object’s condition is represented in terms of the shape and the motion

parameters of the contour. The state is updated at each time instant such that the contour’s

a posteriori probability is maximized. The posterior probability depends on the prior state

and the current likelihood which is usually defined in terms of the distance of the contour

from observed edges.

29

The second approach directly evolves the contour by minimizing the contour energy

using direct minimization techniques such as gradient descent. The contour energy is

defined in terms of temporal information in the form of either the temporal gradient

(optical flow) [57, 58], or appearance statistics generated from the object and the

background regions [59, 60]. In contrast to state space models, these methods can use

implicit representations and allow topology changes. Figure 2.13 gives such an example.

Figure 2.13. Contour tracking results a. tracking of a tennis player b. tracking in presence

of occlusion [60]

2.3.3. Point Tracking

Bodies detected in consecutive frames are represented by points, and the association

of the points is based on the previous body state which can include object position and

motion. This approach requires an external mechanism to detect the bodies in every frame

[61].

This type of tracking can be formulated as the correspondence of detected objects

represented by points across frames. Point correspondence is a complicated problem,

especially in the presence of entries and exits of bodies, occlusions, and misdetections.

30

Overall, point correspondence methods can be divided into two broad categories as

deterministic and statistical. The deterministic methods use qualitative motion heuristics to

constrain the correspondence problem. On the other hand, probabilistic methods explicitly

take the object measurement and take uncertainties into account to establish

correspondence.

2.3.3.1. Deterministic methods for correspondence

Deterministic methods for point correspondence define a cost of associating each

object in the previous frame to a single object in the current frame using a set of motion

constraints. Minimization of the correspondence cost is formulated as a combinatorial

optimization problem. A solution, which consists of one-to-one correspondence (Figure

2.14(b)) among all possible associations (Figure 2.14(a)), can be obtained by optimal

assignment methods, for example, Hungarian algorithm or greedy search methods [62].

The correspondence cost is usually defined by using a combination of the following

constraints: proximity assumes the location of the object would not change from one frame

to other (Figure 2.15(a)); maximum velocity defines an upper bound on the object velocity

and limits the possible correspondence to the circular neighborhood around the object

(Figure 2.15(b)); small velocity change (smooth motion) assumes the direction and the

speed of the object which does not change very much (Figure 2.15(c)); common motion

constrains the velocity of the object in a small neighborhood to be similar (Figure 2.15(d)).

This constraint is usable for objects represented by multiple points; rigidity assumes that

objects in the 3D world are rigid. Therefore, the distance between any two points on the

actual object will remain unchanged (Figure 2.15(e)); proximal uniformity is a

combination of the proximity and the small velocity change constraints.

31

Figure 2.14. Point correspondence a. All possible associations of a point (object) in frame

(x – 1) with points (objects) in frame x b. unique set of associations plotted with bold

lines.

Figure 2.15. Different motion constraints a. proximity b. maximum velocity (r denotes

radius) c. small velocity-change d. common motion e. rigidity constraints. ∆ denotes

object position at frame (x – 2), Ο denotes object position at frame (x – 1), and finally ×

denotes object position at frame x.

32

A method was proposed to solve the correspondence by a greedy approach based on

the proximity and rigidity constraints [63]. A modified version of the same algorithm

which computes correspondences in the backward direction (from the last frame to the first

frame) in addition to the forward direction is also analyzed. This method cannot handle

occlusions, entries, or exits. A new method was proposed to handle these problems by first

establishing correspondence for the detected points and then extending the tracking of the

missing objects by adding a number of hypothetical points [64].

A new approach proposes a method, which is constrained by proximal uniformity

[65]. Initial correspondences are obtained by computing optical flow in the first two

frames. The method does not address entry and exit of objects. If the number of detected

points decreases, occlusion or misdetection is assumed. Occlusion is handled by

establishing the correspondence for the detected objects in the current frame. For the

remaining objects, position is predicted based on a constant velocity assumption.

Another method, which was proposed by extending the previous three works,

introduces the common motion constraint for correspondence [66]. The common motion

provides a strong constraint for coherent tracking of points that lie on the same object.

However, it is not suitable for points lying on isolated objects moving in different

directions.

A work by Intille [67], which uses a modified version of proximal uniformity

approach above for matching object centroids, the objects are detected by using

background subtraction. The authors explicitly handle the change in the number of objects

by examining specific regions in the image, (for example, a door), to detect entries/exits

before computing the correspondence.

2.3.3.2. Statistical methods for correspondence

The statistical correspondence methods use the state space approach to model the

object properties such as position, velocity, and acceleration. Measurements usually consist

of the object position in the image, which is obtained by a detection mechanism.

Measurements also contain noise and there may be some perturbations over object motions

like maneuvering vehicles. These methods solve these tracking problems by taking the

33

measurements to model uncertainties into account during object state estimation. Object

state estimation is classified into two groups as single or multiple object state estimation.

For the single object case, if noise in the measurements has a Gaussian distribution,

then the optimal state estimate is given by the Kalman filter. If the object state is not

assumed to be a Gaussian, then the state estimation can be performed by using particle

filters [68, 7].

 A Kalman filter is used to estimate the state of a linear system where the state is

assumed to be distributed by a Gaussian. Kalman filtering consists of two steps as

prediction and correction. The Kalman filter has been often used in the tracking

algorithm in the vision community. For example, Broida and Chellappa used the

Kalman filter to track points in noisy videos [68].

 The particle filter is used to overcome the poor estimation problem of the Kalman

filter, if the estimation does not follow Gaussian distribution [7].

The Kalman filter and particle filter described above assume a single measurement at

each time instant, that is, the state of a single object is estimated. Tracking multiple objects

requires a joint solution of data association and state estimation problems. The multiple

object state estimation is dealing with solving the problem of the correspondence before

the Kalman or particle filters can be applied. The simplest method to perform

correspondence is to use the nearest neighbor approach. However, if the objects are close

to each other, then there is always a chance that the correspondence is incorrect. An

incorrectly associated measurement can cause the filter to fail to converge. There exist

several statistical data association techniques to tackle this problem [69].

As we mentioned before, we used point tracking method in order to track the face

location in the image. We take the centroid of the face region as a point indicator and track

this indicator with basic point tracking method in order to be fast. With the location change

of this indicator in consecutive frames, we can decide that which camera should be active

or non-active. We will discuss this method in Chapter 3.

34

3. THE PROPOSED SYSTEM

In a surveillance system, there can be various setups in order to track a human in a

certain area. People may think that it is enough to set a camera in a corner or somewhere in

the area to visualize it. However, all the cameras have a limited range to capture the picture

of the given area. Although one can think that one camera it is enough to capture the whole

sight, for this situation one can only see the one side view of the scene. In this thesis, we

have setup a human tracking system in order to capture a certain area with different side of

view and the cameras are collaborating with each other.

Our system has two scenarios. The first scenario is the basic one to develop our

system and investigate the right flow of the algorithms. This scenario has two cameras,

which are located parallel with some distance between them, and both of them look at the

same direction in order to see the whole sight view. Figure 3.1 shows the installation of the

system.

Figure 3.1. Camera settlement for the first scenario

The second scenario has four cameras; each of them is located at one of the four

corners in a given area. For this scenario, the camera installation in the area is given in

Figure 3.2.

35

Figure 3.2. Camera settlement for the second scenario

Both scenarios use the same face detection, tracking and face recognition methods.

In the following sections, we explain the face detection, tracking and face recognition

methods we used in our system.

3.1. FACE DETECTION

As the face detection method, we choose the Adaboost algorithm in order to find the

face in the image because its detection rate and speed is fast. However, Adaboost can

sometimes find unexpected regions as face. In order to avoid this malfunction, we integrate

skin color detection to Adaboost algorithm.

3.1.1. Adaboost Algorithm

The robust face detection systems are using boosting algorithms to detect objects

both with high performance and in a very short time. The first boosting algorithm applied

on face detection problem was AdaBoost (Adaptive Boosting) proposed by Viola and

Jones [8]. The reason for choosing of this algorithm is its short time detection performance.

36

We started to investigate the Haar structures, proposed by Viola and Jones that using

some filter-like objects to examine the image. The goal is to detect the alterations on gray

color level for a given image and characterize the output for the pattern given on that

image. The output of the image is done with a formula named integral image, which

subtracts gray color level sums on contrast areas of the Haar filters. Figure 3.3 gives an

example for integral images.

Figure 3.3. The value of the integral image at point (x,y) is the sum of all the pixels above

and to the left.

The integral image at location (x,y) contains the sum of the pixels above and to the

left of (x,y) as

, ,

, ,

,

(,) (,)
x x y y

ii x y i x y
 

  (3.1)

where ii(x,y) is the integral image and i(x,y) is the original image (see Figure 3.3). Using

the following pair of recurrences:

 (,) (, 1) (,)s x y s x y i x y   (3.2)

 (,) (1,) (,)ii x y ii x y s x y   (3.3)

 (,) (, 1) (,)s x y s x y i x y   (3.4)

37

where s(x,y) is the cumulative row sum, s(x,-1) = 0, and ii(-1,y) = 0, the integral image can

be computed in one pass over the original image.

Using the integral image any rectangular sum can be computed in four array

references (see Figure 3.4). Clearly the difference between two rectangular sums can be

computed in eight references. Since the two-rectangle features defined above involve

adjacent rectangular sums, they can be computed in six array references, eight in the case

of the three-rectangle features, and nine for four-rectangle features.

Figure 3.4. The sum of the pixels within rectangle D can be computed with four array

references. The value of the integral image at location 1 is the sum of the pixels in

rectangle A. The value at location 2 is A+B, at location 3 is A+C, and at location 4 is

A+B+C+D. The sum within D can be computed as 4+1-(2+3).

Using the integral image, the rectangular features can be calculated more efficiently.

We try to first formulize Adaboost Algorithm and then explain more understandable how it

works clearly below.

 Preparation and definition

Example images (x1,y1),……,(xN,yN) are given. N is the sum of a and b, where a is

the number of positive examples and b is the number of negative examples. For positive

examples yi = 1 and for negative examples yi = 0.

M is the number of weak classifiers. The number of maximum weak classifiers are

represented with Mmax.

38

 Start to algorithm

 Initialize the weights:

o IF (yi = 1)

 THEN
1

2
iw

a


o IF (yi = 0)

 THEN
1

2
iw

b


 Loop for adding weak classifiers

 FOR (maxM M)

o Normalize weights:
()

()

()

1

M
M i

i N
M

j

j

w
w

w






o IF (xi is classified correctly)

 THEN ei = 0

o ELSE

 THEN ei = 1 and
1

M
M

M









o 1(1) () () ieM M

i i Mw w   

 END FOR

 Output

 IF  
1 1

1
()

2

M M

m m m

m m

w h x w
 

 

o THEN () 1h x 

 ELSE

o THEN () 0h x 

39

 RETURN h

Figure 3.5 shows the processed image after the Adaboost algorithm applied on it. A

rectangle surrounds each of the face areas. Some misdetections tend to occur after the

Adaboost processing. We will cover these errors with the application of the skin detection.

Figure 3.5. The processed image after the Adaboost algorithm

3.1.2. Skin Detection

In image processing, there are many color spaces in order to represent an image with

these color space values. We have briefly cited them in Section 2.1.2.2. In this thesis, we

used the YCbCr color space in order to extract the faces from the video image. YCbCr is

one of two primary color spaces used to represent digital component video (the other is

RGB). The difference between YCbCr and RGB is that YCbCr represents color as

40

brightness and two color difference signals, while RGB represents color as red, green and

blue. In YCbCr, the Y is the brightness (luma), Cb is blue minus luma (B-Y) and Cr is red

minus luma (R-Y). We can see the CbCr color space plane in Figure 3.6. According to this

plane, we can decide where a face skin color is located and how a threshold value can be

estimated for a face skin color to be extracted from the image.

Figure 3.6. The CbCr plane at constant luminance Y=0.5

Below functions represent the basic conversion from an RGB image to YCbCr

representation. Figure 3.7 shows the RGB image and its red, green, blue components and

YCbCr image and its luma (Y), two chroma (Cr, Cb) components.

 ' (0.299 ') (0.587 ') (0.114 ')D D DY R G B      (3.5)

 128 (0.168736 ') (0.331264 ') (0.5 ')B D D DC R G B       (3.6)

 128 (0.5 ') (0.418688 ') (0.081312 ')R D D DC R G B       (3.7)

41

Figure 3.7. RGB color image and its components a. RGB image b. red component c.

green component d. blue component

42

Figure 3.8. YCbCr color image and its components a. YCbCr image b. Y component c.

Cb component d. Cr component

We have chosen the YCbCr color space since it provides the simplest model to

define a region of skin tone pixels using Cr, Cb values. With carefully chosen thresholds,

[Cr1, Cr2] and [Cb1, Cb2], a pixel is classified to have skin tone if its values (Cr, Cb) fall

within the ranges 1 2Cr Cr Cr  and 1 2Cb Cb Cb  . As can be seen in Figure 3.8 part D,

the skin region in image is shining, and its histogram is shown in Figure 3.9. Threshold

value could be easily found from the histogram figure. With successful thresholding the Cr

component image, we can almost reach the face region as in Figure 3.10.

43

Figure 3.9. Histogram of skin color in Cr component of the YCbCr image

Figure 3.10. Face area after thresholding

After some morphological operations (dilation, erosion), face area can be marked

out. These operations have been performed in order to remove the noisy pixels in face

image. Figure 3.11 shows the last state of the image.

44

Figure 3.11. Final state of face image

Figure 3.12 shows the skin detection result, when a skin detection algorithm is

applied to the image after the Adaboost algorithm applied to it. Both the Adaboost and skin

detection methods are combined to improve the accuracy of locating faces in an image. We

will cover this combination in Section 3.4.

Figure 3.12. The skin detection result

45

3.2. TRACKING

We used the point tracking method in order to track the face in consecutive frames.

Tracking point is chosen as the centroid of the extracted face. Moving directions of the

face can be easily tracked by following the movement of this point. Before the centroid of

the face is determined, a labeling operation has to be performed to the extracted face area.

Connected binary pixels form a labeled area. Each face area is composed of these binary

pixels.

In this thesis, we define the centroid of the face area as the midpoint of the cropped

face image. Adaboost algorithm finalizes the processed image with cropped face images.

The point indicator is followed horizontally if the face moves left or right. In both the two

scenarios in our thesis, we use the horizontally tracking of the face. The flow diagram

which was drawn with Smartdraw [70] in Figure 3.13 is constructed for the first scenario

with two cameras.

Figure 3.13. Flow diagram of the first scenario [70]

46

In this scenario, during the capture turn of camera A, if the point indicator moves to

right, the camera B will be active and start to capture the frame and looks for the face and

track it. In this step, the camera A will be inactive. After that if the tracked face moves to

left, the camera A will be active and start to capture and camera B will fall to inactive

mode.

The second scenario is more difficult to implement. Figure 3.14 shows the flow

diagram of second scenario of the tracking face in four cameras system which was drawn

with Smartdraw [70].

Figure 3.14. Flow diagram of second scenario [70]

The working principle of this scenario is like in first scenario, but it is improved as if

a human turns back rapidly and active camera cannot detect the face, algorithm starts to

find the face in each of four cameras. When the face is found by any cameras, the

algorithm continues to detect the face from this camera’s captured frame.

47

3.3. FACE RECOGNITION

If a face is detected and tracked, it continues to be recognized with an algorithm

integrated to the system. We have chosen the PCA algorithm to recognize the face. PCA

method was introduced in Chapter 2. This algorithm looks for that if the tracking face is

pair with the face in database. In our system, we have built a database with my friends and

my family members. However, we also try the PCA algorithm success with generic

databases introduced in image processing world. Figure 3.15 shows the database images

gathered from Face Recognition Homepage [71].

Figure 3.15. Database images gathered from Face Recognition Homepage [71]

48

Purpose of eigenface method is based on obtaining an eigenface space by applying

this method to the database training images. Moreover, after the projection of the test

image onto this eigenface space, distance of the projected test image to the database

training images can be used to identify the test image.

All the images in the database and the tracked and cropped face are resized to 180

pixels in x coordinate and 200 pixels in y coordinate. This resizing is performed in order to

equal the size of tracked images and its corresponding face in database.

The images in database are in RGB format and are in 200x180 size format. First, the

database images are converted to grayscale. Then, these 2D images are converted into 1D

image vectors in size of 36000x1. Then, we bring up each training face image vectors (n

pieces) together in one matrix (T) in size of 36000xn. The mean value of T matrix is

calculated and formed a matrix of m in size of 36000x1. Then, the deviation of each

database image from mean image is calculated and a matrix A is obtained in size of

36000xn.

After this step, covariance matrix should be calculated, which have a formula of

AxA’. However, its size will be very huge to work on it. Therefore, instead of working on

a matrix in size 36000x36000, we can take the surrogate of this covariance matrix as A’xA

and get a matrix L in size nxn. If we perfom the eigen process on matrix L, we will get two

matrices of D and a eigenvector matrix. The diagonal elements of D are the eigenvalues for

both AxA’ and A’xA.

Eigenvectors of covariance matrix (or so-called Eigenfaces) can be recovered from

the eigenvectors of L. Multiplying the deviation matrix A with the eigenvector matrix of L

will result the Eigenfaces matrix.

All centered images are projected into facespace by multiplying in Eigenface basis’s.

Projected vector of each face will be its corresponding feature vector. Multiplying the

transpose of Eigenfaces matrix with matrix A gives the projected image matrix.

49

After this point, if a test image should be classified, it has to be also mean subtracted

and projected onto the eigenface space. The nearest mean algorithm can classify the test

image vector in the standart eigenface method.

We consider the PCA algorithm in two pieces as initialization step and running step

during the execution of the system.

The flow of initialization of our PCA algorithm is introduced below in algorithmic

form.

 Form a matrix T using database images

 FOR (i = 1 : n)

o Convert i
th

 RGB image in database to grayscale image

o Convert 2D grayscale image matrix (200x180) to 1D image vector (36000x1)

o T (i,:) = i
th

 1D image vector

 END FOR

 Calculate the mean value of matrix T

 FOR (i = 1 : 36000)

o
(1,) (2,) (3,) ... (,)

(1,)
x i x i x i x n i

m i
n

   


 END FOR

 Calculate deviation

 FOR (i = 1 : n)

o (,:) (,:)A i T i m 

 END FOR

 Calculate L = A’xA

 Find eigenvalues of L

 Eliminate some eigenvalues, which are below the threshold

 Form new L, after elimination

 Calculate Eigenface matrix F = AxL

 Form projected centered image matrix P

50

 FOR (i = 1 : n)

o (,:) ' (,:)P i F xA i

 END FOR

This initialization is performed for a one time before the system begins to run. After

a face is detected and tracked, if the face will be recognized, the rest part of the PCA

algorithm is executed.

The running step of the algorithm is explained below in algorithmic form.

 Get Red component of cropped (test) image

 Convert 2D Red image matrix (200x180) to 1D image vector (36000x1)

 Calculate deviation

 D ImageVector m 

 Calculate Test image feature vector

 'V F xD

 Drive an Euclidean distance matrix E

 FOR (i = 1 : n)

o 2() (((:,)))E i normalize V P i 

 END FOR

 Decide which column of E has minimum value (a = 3*10
20

)

 FOR (i = 1 : n)

o IF  E i a

o THEN  a=E i and j i

 END FOR

 Return j

 Decide if the test image corresponds to a face in database

 IF   15E 3*10j 

o Return j
th

 database image

 ELSE

o Put test image into null-class

51

3.4. THE OVERALL SYSTEM

In this chapter, we cover the overall system including the initialization of the system,

execution of the system and results. We used Matlab for implementation of our system.

Figure 3.16 shows the flow diagram of our system which was drawn with Smartdraw [70].

52

Figure 3.16. Flow diagram of the system [70]

53

3.4.1. Initialization of The System

Initialization step includes the database training for PCA algorithm and getting the

median of background for robust background image. We have covered the database

training before in chapter 3.3. We will explain a little bit why we get the median of the

background image.

In real world, there will be always illumination changes in the environment.

Therefore, we capture a small video of the free indoor space consists of totally 50 frames.

Free indoor space means that there is no movement during the capturing of the video.

Then, we process this video to take the median of the pixels of all 50 frames. The process

of taking median of a video is explained below in algorithmic form.

 Store the background video in a 4D matrix

 Convert each RGB image in 4D matrix to grayscale image

 Take median of corresponding pixels in each image

 Constitute a background image matrix with this median process

3.4.2. Execution of The System

 Background subtraction

 IF (there is a movement)

o GO TO b

 ELSE

o GO TO a

 Adaboost Algorithm

 IF (there is a face)

o GO TO c

 ELSE

o GO TO a

 Skin detection

 Threshold the Cr component of images found in Adaboost

54

 IF (image contains a face)

o GO TO Tracking

 ELSE

o GO TO a

After we continue to track the face, we have to consider the tracking algorithm in

two distinct parts. As we mentioned before, we have a system with two cameras and a

system with four cameras.

First implementation is built with two cameras of two webcams. Second

implementation is built with four cameras. Two of four cameras are webcams and the other

two cameras are Sony CCD Color Cameras.

During the tracking of the face, we also want to recognize the face. We will also

explain the working principle separately for our two systems.

3.4.2.1. Tracking with two cameras

Our system starts to detect the movement in the area and the face with the first

camera, we call it as Camera A. The second one is called Camera B. The settlement was

shown in Chapter 3. Figure 3.17 shows how two cameras display the area.

Figure 3.17. Displays of two cameras A and B

55

If the direction of the face is towards to Camera A and the face is tracked by the

Camera A, our tracking algorithm starts to follow the movement of the face in x

dimension. Figure 3.18 shows the flow diagram of the tracking algorithm for two cameras

which was drawn with Smartdraw [70].

Figure 3.18. Flow diagram of tracking algorithm for two cameras [70]

Recognition is performed during tracking, if the human body comes to door, which is

near the camera B. Decision on recognition will be introduced in the algorithm below.

 Track the face with Camera A

 IF () 540A x 

o GO TO b

 ELSE

o IF (there is no face)

 GO TO b

56

o ELSE

 GO TO a

 Track the face with camera B

 IF () 100B x 

o IF (there is no face)

 GO TO a

o ELSE

 IF () 150B y 

 THEN Face Recognition

 ELSE

 GO TO b

 ELSE

o GO TO a

If the body turns back, and no face can be found during tracking, we start to capture

the frame with other camera. It goes vice versa, until the face is found again.

3.4.2.2. Tracking with four cameras

Our system starts to detect the movement in the area and the face with the first

camera, like the system with two cameras, called Camera A. The other ones are called

Camera B, C and D respectively. The settlement for this system was also shown in the

beginning of Chapter 3. Figure 3.19 shows how four cameras can cover and displays the

whole area.

57

Figure 3.19. Displays of four cameras A, B, C and D

Recognition is performed during tracking, if the human body comes to door, which is

near the camera D. Decision on recognition will be introduced in the algorithm below and

also shown in Figure 3.20.

58

Figure 3.20. The decision for the recognition in four camera system

 Track the face with Camera A

 IF () 540A x 

o GO TO b

 ELSIF 100 () 540A x 

o IF (there is no face)

 GO TO c

o ELSE

 GO TO a

 ELSE

o GO TO d

 Track the face with camera B

 IF () 540B x 

o GO TO c

59

 ELSIF 100 () 540B x 

o IF (there is no face)

 GO TO d

o ELSE

 GO TO b

 ELSE

o GO TO a

 Track the face with Camera C

 IF () 540C x 

o GO TO d

 ELSIF 100 () 540C x 

o IF (there is no face)

 GO TO a

o ELSE

 GO TO c

 ELSE

o GO TO b

 Track the face with camera D

 IF () 540D x 

o GO TO a

 ELSIF 100 () 540D x 

o IF (there is no face)

 GO TO b

o ELSE

 IF () 150D y 

 THEN Face Recognition

 ELSE

 GO TO d

 ELSE

o GO TO c

60

Figure 3.21 shows the flow diagram of working principle of the tracking algorithm

for four cameras which was drawn with Smartdraw [70].

Figure 3.21. Flow Diagram of tracking algorithm for two cameras [70]

There are some extra conditions during tracking introduced below.

 For Example, during the tracking turn of Camera A, if the body turns back and

Camera A cannot handle the face, algorithm starts to look for the face in each other

cameras, and as it is expected, Camera C could detect the face. Then Algorithm

continues to track the face with Camera C. This exemption is also valid for the other

situation. If the face turns completely right, then Camera D should find and track the

face. If it turns left, Camera B should continue to track.

 If the face is completely invisible in the tracked area or out-of-sight of each camera,

system starts to search the face in each camera until the face is found by one of the

cameras, and it continues to track with this camera.

61

4. EXPERIMENTAL RESULTS

4.1. EXPERIMENTS WITH TWO CAMERAS SETUP

Figure 4.1 shows the working of the system with two cameras. In this Figure, we can

see the tracking process of the face. It goes from Camera A to B.

Figure 4.1. Working system with two cameras

4.2. EXPERIMENTS WITH FOUR CAMERAS SETUP

Figure 4.2 shows the images gathered during the run-time of the four camera system.

In this figure, tracking is performed sequentially in each camera.

62

Figure 4.2. Working system with four cameras

63

4.3. EXPERIMENTS ON FACE RECOGNITION

According to the tests on database images gathered from Face Recognition

Homepage [71], we achieved a 80% of success rate after the recognition process. These

database images are not used for our complete system. We have tried the actual success

rate of the PCA algorithm with the use of these official database images. Figure 4.3 shows

some results of the PCA algorithm with using the training database gathered from Face

Recognition Homepage [71].

Figure 4.3. Face recognition results of our algorithm using the database in Face

Recognition Homepage

64

In our system, we collected some images of our friends and proposed a training

database with these images. Figure 4.4 shows the database images which we use in our

system.

Figure 4.4. Database images used in the system

In our system, as it is explained before, if the human body comes to near the door,

we try to recognize its face. After the face is cropped from the input image, we set it as test

image and PCA algorithm is applied on to this test image in order to match it with the

equivalent image in database. If PCA algorithm cannot recognize the face, we store this

65

face image taken from the system into a null class directory. Result after PCA application

is shown in Figure 4.5.

Figure 4.5. Result after the recognition process

4.3. LIMITATIONS OF THE PROPOSED SYSTEMS

Human surveillance systems are vulnerable to development. Our system can also be

improved for all sides. Taking video sequences in Matlab was a hard problem. With the

improvement in Matlab, this problem can be disregarded and it will be more easy to use

Matlab in video surveillance systems.

Using two webcams and integrated them to Matlab are handled easily. However, we

have encountered with a problem during integration the other two Sony CCD Color

Cameras into the system. This Sony Cameras are used with two TV Cards together in order

to receive images. Installing them to Computer and getting images from them was not so

easy. We have overcome this issue somehow. It was a driver conflict between the TV

Cards. If this hardware problem was resolved by the manufacturer, it will be easier to

implement such cameras into our system.

66

Webcams and Sony Cameras are sufficient in our implementation and the system

execution. The resolution for the webcams is 480x640, and for the Sony Cameras is

576x720. When a more high resolution camera is used during the face recognition process,

system can recognize the face more successfully.

In future work, this system can be developed in outside areas which have variable

light conditions, not stable background images.

Our objective to develop this system was detecting and tracking the one person in

indoor area, but our code implementation in face detection is written to detect all the face

images. Also we have written the tracking algorithm to track all the faces. However, we

tested our tracking algorithm for one person in the tracked area. Tracking more than one

person in the area can be developed as a future work.

Another objective was to match and recognizing the face. However, we improved the

idea a little bit and put the unrecognized faces into a null class. As a future work, this face

images in null class can be integrated to the used database, and we would have achieved a

self-improved database.

67

5. CONCLUSIONS

Face detection technology has come a long way in the last thirty years. Because of

the importance of human surveillance in today’s world, application of face detection and

recognition to human surveillance systems becomes also very important for this reason.

Due to these reasons, we considered a surveillance system in this thesis.

Surveillance applications usually work in controlled environments, and detection

algorithms can take advantage of the environmental constraints to obtain high detection

accuracy. Although detection accuracy is very important in face detection, detection rate

and speed is also very important if there will be a human tracking in real time. Due to ease

of implementation and having very high detection speed of Adaboost and skin detection

algorithms, we used these two algorithms together in our system in order to detect the face.

Tracking of people is the main purpose of the human surveillance systems.

Therefore, many tracking algorithms have been developed. We have described the tracking

algorithms in Chapter 2. We choose the point tracking, because it is very fast and sufficient

for our system to work. We tracked the face within the human tracking system and used

the centroid of the face region during tracking which is obtained after the face detection

step. This tracking instance is performed first with two cameras and then with four cameras

which are settled on the corners of an indoor place.

Tracking of a human is performed of course for a purpose. This is recognition this

human. Therefore, we have implemented the face recognition algorithm of PCA to the

system in order to recognize the face. Finally, there is still more work to be done, and we

believe that more robust face detection and recognition algorithms should be developed.

68

APPENDIX A: INITIALIZATION FOR RECOGNITION

%% Initialization For Recognition

% Read the database directory
Train_images =

dir(fullfile(matlabroot,'work/PCAmelih_opencv/database1/*.jpg'

));

%%%%%%%%%%%%%%%%%%%%%%%% Construction of 2D matrix from 1D

image vectors
T = [];
for i=1:size(Train_images,1)

 % I have chosen the name of each image in databases as a

corresponding number.
 str = int2str(i);
 str = strcat('\',str,'.jpg');
 str =

strcat('F:\MATLAB\R2008a\work\PCAmelih_opencv\database1',str);

 img = imread(str);
 % Reshaping 2D images into 1D image vectors
 img = (rgb2gray(img))';
 temp = img(:);

 % 'T' grows after each turn
 T = [T temp];
end

%%%%%%%%%%%%%%%%%%%%%%%% Calculating the mean image
% Computing the average face image m = (1/P)*sum(Tj's) (j =

1 : P)
m = mean(T,2);
Train_Number = size(T,2);

%%%%%%%%%%%%%%%%%%%%%%%% Calculating the deviation of each

image from mean image
A = [];
for i = 1 : Train_Number
 % Computing the difference image for each image in the

training set Ai = Ti - m
 temp = double(T(:,i)) - m;
 % Merging all centered images
 A = [A temp];
end

% L is the surrogate of covariance matrix C=A*A'.
L = A'*A;
% Diagonal elements of D are the eigenvalues for both L=A'*A

and C=A*A'.
[V D] = eig(L);

%%%%%%%%%%%%%%%%%%%%%%%% Sorting and eliminating eigenvalues

69

% All eigenvalues of matrix L are sorted and those who are

less than a
% specified threshold, are eliminated. So the number of non-

zero
% eigenvectors may be less than (P-1).
L_eig_vec = [];
for i = 1 : size(V,2)
 if(D(i,i)>1)
 L_eig_vec = [L_eig_vec V(:,i)];
 end
end
%%%%%%%%%%%%%%%%%%%%%%%% Calculating the eigenvectors of

covariance matrix 'C'
% Eigenvectors of covariance matrix C (or so-called

"Eigenfaces")
% can be recovered from L's eigenvectors.
Eigenfaces = A * L_eig_vec;

%%%%%%%%%%%%%%%%%%%%%%%% Projecting centered image vectors

into facespace
% All centered images are projected into facespace by

multiplying in
% Eigenface basis's. Projected vector of each face will be its

corresponding
% feature vector.

ProjectedImages = [];
Train_Number = size(Eigenfaces,2);
for i = 1 : Train_Number
 temp = Eigenfaces'*A(:,i); % Projection of centered images

into facespace
 ProjectedImages = [ProjectedImages temp];
End

70

APPENDIX B: BACKGROUND EXTRACTION

Algorithm B.1. For two cameras

%%
vid=videoinput('winvideo',1);
sr=get(vid,'source');
set(sr,'Brightness',100);

set(vid,'FramesPerTrigger',50);
triggerconfig(vid,'manual');
start(vid);
trigger(vid);
img=getdata(vid);
mov=immovie(img);
movie2avi(mov,'background_ev')

%%
vid=videoinput('winvideo',2);
sr=get(vid,'source');
set(sr,'Brightness',60);

set(vid,'FramesPerTrigger',50);
triggerconfig(vid,'manual');
start(vid);
trigger(vid);
img=getdata(vid);
mov=immovie(img);
movie2avi(mov,'background_ev2')
%%
%(1) background with median filter (1. camera)
med1=aviread('background_ev.avi');
for i=1:size(med1,2)
 med11=med1(i).cdata;
 med12(:,:,i)=rgb2gray(med11);
end
background1=median(med12(:,:,:),3);
%%
%(2) background with median filter (2. camera)
med2=aviread('background_ev2.avi');
for i=1:size(med2,2)
 med21=med2(i).cdata;
 med22(:,:,i)=rgb2gray(med21);
end
background2=median(med22(:,:,:),3);

71

Algorithm B.2. For four cameras

%%%%%%%%%% 1. Camera (Laptop Webcam)
vid=videoinput('winvideo',1);
sr=get(vid,'source');
set(sr,'Brightness',100);
% set(sr,'Contrast',110);
% set(sr,'Exposure',90);
% set(sr,'Gamma',50);
% set(sr,'Hue',180);
set(vid,'FramesPerTrigger',50);
triggerconfig(vid,'manual');

start(vid);
trigger(vid);
img=getdata(vid);

mov=immovie(img);
movie2avi(mov,'background_1')

%%
%%%%%%%%%% 2. camera (External Webcam)
vid=videoinput('winvideo',2);
sr=get(vid,'source');
set(sr,'Brightness',100);
% set(sr,'Contrast',110);
% set(sr,'Exposure',90);
% set(sr,'Gamma',50);
% set(sr,'Hue',180);
set(vid,'FramesPerTrigger',50);
triggerconfig(vid,'manual');

start(vid);
trigger(vid);
img=getdata(vid);

mov=immovie(img);
movie2avi(mov,'background_2')
%%
%%%%%%%%%% 3. camera (Composit Camera 1)
vid=videoinput('winvideo',3);
set(vid,'ReturnedColorSpace','rgb')
triggerconfig(vid, 'manual')
set(vid,'FramesPerTrigger',50)
start(vid)
trigger(vid);
img=getdata(vid);

mov=immovie(img);
movie2avi(mov,'background_3')
%%
%%%%%%%%%% 4. camera (Composit Camera 2)
vid=videoinput('winvideo',4);
set(vid,'ReturnedColorSpace','rgb')
triggerconfig(vid, 'manual')
set(vid,'FramesPerTrigger',50);

72

start(vid);
trigger(vid);
img=getdata(vid);

mov=immovie(img);
movie2avi(mov,'background_4')

%%
%(1) background with median filter (1. camera)
med1=aviread('background_okul1.avi');
for i=1:size(med1,2)
 med11=med1(i).cdata;
 med12(:,:,i)=rgb2gray(med11);
end
background1=median(med12(:,:,:),3);

%(2) background with median filter (2. camera)
med2=aviread('background_okul2.avi');
for i=1:size(med2,2)
 med21=med2(i).cdata;
 med22(:,:,i)=rgb2gray(med21);
end
background2=median(med22(:,:,:),3);

%(3) background with median filter (3. camera)
med3=aviread('background_okul3.avi');
for i=1:size(med3,2)
 med31=med3(i).cdata;
 med32(:,:,i)=rgb2gray(med31);
end
background3=median(med32(:,:,:),3);

%(4) background with median filter (4. camera)
med4=aviread('background_okul4.avi');
for i=1:size(med4,2)
 med41=med4(i).cdata;
 med42(:,:,i)=rgb2gray(med41);
end
background4=median(med42(:,:,:),3);

73

APPENDIX C: FUNCTIONS

Algorithm C.1. Function of Adaboost

% Adaboost Face

% Convert the image to grayscale
imgGray = rgb2gray(img);

% Find the faces and draw them
rectangleMatrix = face_detect(imgGray,

classifierFileFullPath, minFaceSize, shouldViewElapsedTime);

Algorithm C.2. Function of face_detect

function rectangleMatrix = face_detect(img,

classifierFileFullPath, minFaceSize, shouldViewElapsedTime)

if nargin < 3
 minFaceSize = 100;
end
if nargin < 4
 shouldViewElapsedTime = 0;
end

[rectanglesArray] = cvlib_mex('facedetect', im2uint8(img), ...
 classifierFileFullPath,

minFaceSize, ...
 shouldViewElapsedTime);
nRectangles = length(rectanglesArray)/4;
rectangleMatrix = zeros(nRectangles,4);
for iRectangle = 1:nRectangles
 rectangleMatrix(iRectangle,:) = ...
 rectanglesArray(4*(iRectangle-1)+1:4*iRectangle);
end

Algorithm C.3. Function of Skin_face

% Compare the found faces with the skin region

img1=rgb2ycbcr(img);
img2=img1(:,:,3);
img_meancr=mean(img2(:));
Face_coordinates=[];
Face_origin=[];

74

for a=1:size(rectangleMatrix,1)
 row=rectangleMatrix(a,:);
 x1=round(row(1,1));
 y1=round(row(1,2));
 x2=round(x1+row(1,3));
 y2=round(y1+row(1,4));
 rectangled_face=img2(y1:y2,x1:x2);
 % Thresholding
 rectangled_face_cr=rectangled_face>(img_meancr+5);
 % Set the centroid of the face image to midpoint
 midpoint=[((x1+x2)/2) ((y1+y2)/2)];

bw=bwareaopen(rectangled_face_cr,round(size(rectangled_face_cr

,1)*size(rectangled_face_cr,2)/2));

 if mean(bw(:))>0

Face_coordinates=[Face_coordinates;rectangleMatrix(a,:)];
 Face_origin=[Face_origin;midpoint];
 end
end

for iRectangle = 1:size(Face_coordinates,1)
 rectangle('Position',Face_coordinates(iRectangle,:),

'EdgeColor', 'r')
end

Algorithm C.4. Function of Recognition_face

% Recognition Face

for ii=1:size(Face_coordinates,1)
 row=Face_coordinates(ii,:);
 x1=round(row(1,1)-20);
 y1=round(row(1,2)-25);
 x2=round(x1+row(1,3)+40);
 y2=round(y1+row(1,4)+50);
 % if a corner of face image is found out of range of the

image, equal it to '1'
 if x1<1
 x1=1;
 end
 if y1<1
 y1=1;
 end
 if x2<1
 x2=1;
 end
 if y2<1
 y2=1;
 end

 img_red=img(:,:,1);
 cropped_face=img_red(y1:y2,x1:x2);

75

 % Resizing the face image as a standart 180x200
 cropped_face_2=imresize(cropped_face,[200 180]);

 % Reshaping 2D image into 1D image vector
 [irow icol] = size(cropped_face_2);
 InImage = reshape(cropped_face_2',irow*icol,1);
 % Centered test image
 Difference = double(InImage) - m;
 % Test image feature vector
 ProjectedTestImage = Eigenfaces'*Difference;

 %%%%%%%%%%%%%%%%%%%%%%%% Calculating Euclidean distances
 % Euclidean distances between the projected test image and

the projection
 % of all centered training images are calculated. Test

image is
 % supposed to have minimum distance with its corresponding

image in the
 % training database.

 Euc_dist = [];
 for iii = 1 : Train_Number
 q = ProjectedImages(:,iii);
 temp = (norm(ProjectedTestImage - q))^2;
 Euc_dist = [Euc_dist temp];
 end

 [Euc_dist_min , Recognized_index] = min(Euc_dist);

 % Check if recognized person is not the same with previous

one, because
 % we do not want to recognize the same person

continuously.
 if Recognized_index ~= dummy
 if Euc_dist_min < 3e15
 OutputName =

strcat(int2str(Recognized_index),'.jpg');

 SelectedImage =

strcat('F:\MATLAB\R2008a\work\PCAmelih_opencv\database1','\',O

utputName);
 SelectedImage = imread(SelectedImage);
 close all
 figure(2);subplot(1,2,1);imshow(cropped_face_2)

 title('Test Image');
 figure(2);subplot(1,2,2);imshow(SelectedImage);
 title('Equivalent Image');
 end
 if Euc_dist_min >= 3e15
 fprintf('no match found')
 str = int2str(null);
 str = strcat('\',str,'.jpg');
 str =

strcat('F:\MATLAB\R2008a\work\PCAmelih_opencv\nullclass',str);
 imwrite(cropped_face_2,str);
 null=null+1;

76

 end
 dummy = Recognized_index;
 end
end

Algorithm C.5. Function of camera3_set

function vid3=camera3_set()
vid3=videoinput('winvideo',3);
set(vid3,'ReturnedColorSpace','rgb')
triggerconfig(vid3, 'manual')
set(vid3,'FramesPerTrigger',1)
start(vid3)

Algorithm C.6. Function of camera4_set

function vid4=camera4_set()
vid4=videoinput('winvideo',4);
set(vid4,'ReturnedColorSpace','rgb')
triggerconfig(vid4, 'manual')
set(vid4,'FramesPerTrigger',1)
start(vid4)

Algorithm C.7. Function of camera3_get

function img=camera3_get(vid3)
trigger(vid3);
img=getdata(vid3);

Algorithm C.8. Function of camera4_get

function img=camera4_get(vid4)
trigger(vid4);
img=getdata(vid4);

77

APPENDIX D: MAIN FUNCTIONS

Algorithm D.1. For two cameras

%% real time face tracking

%%% Initialization

of Cameras
vid1=videoinput('winvideo',1);
vid2=videoinput('winvideo',2);
sr1=get(vid1,'source');
set(sr1,'Brightness',100);
sr2=get(vid2,'source');
set(sr2,'Brightness',60);

%%% Initialization

for Adaboost algorithm
classifierFileFullPath =

['F:\MATLAB\R2008a\work\PCAmelih_opencv\haarcascades\haarcasca

de_frontalface_default.xml'];
% Minimum face size (area) to detect
minFaceSize = 15;
% Should the OpenCV face detector print the elapsed time?
shouldViewElapsedTime = 1;
%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% null variable is used to write the unrecognized images into

nullclass file
null=1;
% SE variable is used for imdilation operation in Skin_face
SE = strel('disk',5);

dummy=[];
cam=1;
tr=2;
background1=rgb2gray(background1);
background2=rgb2gray(background2);
while (1)

 if cam==1
 img=getsnapshot(vid1);
 imgGray=rgb2gray(img);
 subtract_img1=abs(imgGray-background1);
 bw1=bwareaopen((subtract_img1<5),100);

 else
 img=getsnapshot(vid2);
 imgGray=rgb2gray(img);
 subtract_img2=abs(imgGray-background2);
 bw1=bwareaopen((subtract_img2<5),100);

 end
 imshow(img,[])

78

 if (mean(bw1(:))> 0)
 Adaboost_face
 if (size(rectangleMatrix,1)>0)
 Skin_face
 if (size(Face_coordinates,1)> 0)

 if (cam==1 && Face_origin(1,1)<500)
 tr=1;
 end

 if (cam==1 && Face_origin(1,1)>500)
 tr=2;
 end

 if (cam==2 && Face_origin(1,1)>100)
 tr=2;
 end

 end
 end

 end

 if tr==2
 cam=2;
 tr=1;
 elseif tr==1
 cam=1;
 tr=2;
 end

 if (cam==2 && Face_origin(1,1)>500 && row(1,3)>150)
 Recognition_face
 end
end

Algorithm D.2. For four cameras

%% real time face tracking

%%% Initialization

of Cameras
vid1=videoinput('winvideo',1);
vid2=videoinput('winvideo',2);
camera3_set;
camera4_set;
sr1=get(vid1,'source');
set(sr1,'Brightness',100);
sr2=get(vid2,'source');

79

set(sr2,'Brightness',60);

%%% Initialization

for Adaboost algorithm
classifierFileFullPath =

['F:\MATLAB\R2008a\work\PCAmelih_opencv\haarcascades\haarcasca

de_frontalface_default.xml'];
% Minimum face size (area) to detect
minFaceSize = 15;
% Should the OpenCV face detector print the elapsed time?
shouldViewElapsedTime = 1;
%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% null variable is used to write the unrecognized images into

nullclass file
null=1;
% SE variable is used for imdilation operation in Skin_face
SE = strel('disk',5);

dummy=[];
cam=1;
tr=4;
background1=rgb2gray(background1);
background2=rgb2gray(background2);
background3=rgb2gray(background3);
background4=rgb2gray(background4);
while (1)

 if cam==1
 img=getsnapshot(vid1);
 img10=rgb2gray(img);
 subtract_img1=abs(img10-background1);
 bw1=bwareaopen((subtract_img1<5),100);
 elseif cam==2
 img=getsnapshot(vid2);
 img10=rgb2gray(img);
 subtract_img2=abs(img10-background2);
 bw1=bwareaopen((subtract_img2<5),100);
 elseif cam==3
 img=camera3_get(vid3);
 img10=rgb2gray(img);
 subtract_img3=abs(img10-background3);
 bw1=bwareaopen((subtract_img3<5),100);
 else
 img=camera4_get(vid4);
 img10=rgb2gray(img);
 subtract_img4=abs(img10-background4);
 bw1=bwareaopen((subtract_img4<5),100);

 end
 imshow(img,[])

 if (mean(bw1(:))> 0)
 Adaboost_face
 if (size(rectangleMatrix,1)>0)
 Skin_face
 if (size(Face_coordinates,1)> 0)

80

 if (cam==1 && 100<Face_origin(1,1)<500)
 tr=3;
 elseif (cam==1 && Face_origin(1,1)>500)
 tr=4;
 elseif (cam==1 && Face_origin(1,1)<100)
 tr=2;
 elseif (cam==2 && Face_origin(1,1)<100)
 tr=3;
 elseif (cam==2 && 100<Face_origin(1,1)<500)
 tr=4;
 elseif (cam==2 && Face_origin(1,1)>500)
 tr=1;
 elseif (cam==3 && Face_origin(1,1)<100)
 tr=4;
 elseif (cam==3 && 100<Face_origin(1,1)<500)
 tr=1;
 elseif (cam==3 && Face_origin(1,1)>500)
 tr=2;
 elseif (cam==4 && Face_origin(1,1)<100)
 tr=1;
 elseif (cam==4 && 100<Face_origin(1,1)<500)
 tr=2;
 elseif (cam==4 && Face_origin(1,1)>500)
 tr=3;
 end

 end
 end

 end

 if tr==4
 cam=2;
 tr=1;
 elseif tr==3
 cam=1;
 tr=4;
 elseif tr==2
 cam=4;
 tr=3;
 elseif tr==1
 cam=3;
 tr=2;
 end

 if (cam==2 && Face_origin(1,1)>500 && row(1,3)>150)
 Recognition_face
 end
end

81

REFERENCES

1. Kotropoulos, C. and I., Pitas, “Rule-Based Face Detection in Frontal Views”, Proc.

Int’l Conf. Acoustics, Speech and Signal Processing, vol. 4, pp. 2537-2540, 1997.

2. Yang, G. and T.S., Huang, “Human Face Detection in Complex Background”,

Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.

3. Sirohey, S.A., Human Face Segmentation and Identification, Technical Report CS-

TR-3176, Univ. of Maryland, 1993.

4. Graf, H.P., T., Chen, E., Petajan and E., Cosatto, “Locating Faces and Facial Parts”,

Proc. First Int’l Workshop, Automatic Face and Gesture Recognition, pp. 41-46,

1995.

5. Leung, T.K., M.C., Burl and P., Perona, “Finding Faces in Cluttered Scenes Using

Random Labeled Graph Matching”, Proc. Fifth IEEE Int’l Conf. Computer Vision,

pp. 637-644, 1995.

6. Burl, M.C., T.K., Leung and P., Perona, “Face Localization via Shape Statistics”,

Proc. First Int’l Workshop, Automatic Face and Gesture Recognition, pp. 154-159,

1995.

7. Ghorbel, M.B., M., Baklouti and S., Couvet, “3D Head Pose Estimation and

Tracking Using Particle Filtering and ICP Algorithm”, Lecture Notes in Computer

Science, 2010.

8. Viola, P. and M.J., Jones, Robust Real-Time Face Detection, International Journal of

Computer Vision 57(2), 2004.

http://www.springerlink.com/content/?Author=Mahdi+Ben+Ghorbel
http://www.springerlink.com/content/?Author=Malek+Baklouti
http://www.springerlink.com/content/?Author=Serge+Couvet
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

82

9. Jebara, T.S. and A., Pentland, “Parameterized Structure from Motion for 3D

Adaptive Feedback Tracking of Faces”, Proc. IEEE Conf., Computer Vision and

Pattern Recognition, pp. 144-150, 1997.

10. Yang, J. and A., Waibel, “A Real-Time Face Tracker”, Proc. Third Workshop,

Applications of Computer Vision, pp. 142-147, 1996.

11. Crowley, J.L. and F., Berard, “Multi-Modal Tracking of Faces for Video

Communications”, Proc. IEEE Conf., Computer Vision and Pattern Recognition, pp.

640-645, 1997.

12. Kim, S.H., N.K., Kim, S.C., Ahn and H.G., Kim, “Object Oriented Face Detection

Using Range and Color Information”, Proc. Third Int’l Conf., Automatic Face and

Gesture Recognition, pp. 76-81, 1998.

13. Chai, D. and K.N., Ngan, “Locating Facial Region of a Head-and-Shoulders Color

Image”, Proc. Third Int’l Conf., Automatic Face and Gesture Recognition, pp. 124-

129, 1998.

14. Wang, H. and S. F., Chang, “A Highly Efficient System for Automatic Face Region

Detection in MPEG Video”, IEEE Trans., Circuits and Systems for Video

Technology, vol. 7, no. 4, pp. 615-628, 1997.

15. Kjeldsen, R. and J., Kender, “Finding Skin in Color Images”, Proc. Second Int’l

Conf., Automatic Face and Gesture Recognition, pp. 312-317, 1996.

16. Dai, Y. and Y., Nakano, “Extraction for Facial Images from Complex Background

Using Color Information and SGLD Matrices”, Proc. First Int’l Workshop,

Automatic Face and Gesture Recognition, pp. 238-242, 1995.

17. Saber, E. and A.M., Tekalp, “Frontal-View Face Detection and Facial Feature

Extraction Using Color, Shape and Symmetry Based Cost Functions”, Pattern

Recognition Letters, vol. 17, no. 8, pp. 669-680, 1998.

83

18. Augusteijn, M.F. and T.L., Skujca, “Identification of Human Faces through Texture-

Based Feature Recognition and Neural Network Technology”, Proc. IEEE Conf.,

Neural Networks, pp. 392-398, 1993.

19. Graf, H.P., E., Cosatto, D., Gibbon, M. Kocheisen and E., Petajan, “Multimodal

System for Locating Heads and Faces”, Proc. Second Int’l Conf., Automatic Face

and Gesture Recognition, pp. 88-93, 1996.

20. Yang, M.H. and N., Ahuja, “Detecting Human Faces in Color Images”, Proc. IEEE

Int’l Conf., Image Processing, vol. 1, pp. 127-130, 1998.

21. Sakai, T., M., Nagao and S., Fujibayashi, “Line Extraction and Pattern Detection in a

Photograph”, Pattern Recognition, vol. 1, pp. 233-248, 1969.

22. Craw, I., H., Ellis and J., Lishman, “Automatic Extraction of Face Features”, Pattern

Recognition Letters, vol. 5, pp. 183-187, 1987.

23. Govindaraju, V., S.N., Srihari and D.B., Sher, “A Computational Model for Face

Location”, Proc. Third IEEE Int’l Conf., Computer Vision, pp. 718-721, 1990.

24. Hjelmas, R. and B.K., Low, “Face detection: a survey”, Computer Vision Image

Understanding, vol. 83, pp. 236–274, 2001.

25. Rowley, H.A., S., Baluja and T., Kanade, “Neural network-based face detection”,

IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 20, pp. 23–38, 1998.

26. Sung, K.K. and T., Poggio, “Example-based learning for view-based human face

detection”, IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 20, pp. 39–

50, 1998.

27. Schneiderman, H. and T., Kanade, “Object detection using the statistic of parts”, Int.

J., Computer Vision, vol. 56, pp. 151–177, 2004.

84

28. Turk, M. and A., Pentland, “Eigenfaces for Recognition”, J. Cognitive Neuroscience,

vol. 3, no. 1, pp. 71-86, 1991.

29. Osuna, E., R., Freund and F., Girosi, “Training support vector machines: an

application to face detection”, Proc. IEEE Conf., Computer Vision and Pattern

Recognition, pp. 130–136, 1997.

30. Sung, K.K. and T., Poggio, “Example-Based Learning for View-Based Human Face

Detection”, IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 20, no. 1,

pp. 39-51, Jan. 1998.

31. Yang, M.H., N., Ahuja and D., Kriegman, “Mixtures of Linear Subspaces for Face

Detection”, Proc. Fourth Int’l Conf., Automatic Face and Gesture Recognition, pp.

70-76, 2000.

32. Gutta, S. and H., Wechsler, “Face Recognition using Asymmetric Faces”, ICBA., pp.

162-168, 2004.

33. Duda, R.o., P.E., Hart and D.G., Stork, Pattern Classification, NY: John Wiley &

Sons, 2001.

34. Turk, M.A. and A.P., Pentland, ”Face recognition using eigenfaces”, Proc. IEEE

Computer Society Conf., Computer Vision and Pattern Recognition, pp. 586- 591,

Maui, Hawaii, 1991.

35. Liu, N., H., Wang and W.Y., Yau, Face Recognition with Weighted Kernel Principal

Component Analysis

36. Blanz, V. and T., Vetter, “Face recognition based on fitting a 3D morphable model”,

IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 25, Issue 9, Sept. 2003.

37. Huang J., B., Heisele, and V., Blanz, Component-based Face Recognition with 3D

Morphable Models

85

38. Wiskott, L., J.M., Fellous, N., Kruger and Christoph von der Malsburg, “Face

Recognition by Elastic Bunch Graph Matching”, Intelligent Biometric Techniques in

Fingerprint and Face Recognition, Chapter 11, pp. 355-396, 1999.

39. Achermann, B. and H., Bunke, “Combination of Face Classifiers for Person

Identification”, Proc. 13
th

 IAPR International Conference, Pattern Recognition

(ICPR), vol. 3, pp. 416-420, Vienna, 1996.

40. Samaria, F. and S., Young, “HMM-Based Architecture for Face Identification”,

Image and Vision Computing, vol. 12, Issue 8, pp. 537-543, 1994.

41. Cootes, T., T., Taylor, C., Cooper and D., Graham, “Active Shape Models – Their

Training and Application”, Computer Vision and Image Understanding, pp. 38-59,

1995.

42. Comaniciu, D., V., Ramesh and P., Meer, “Kernel-based object tracking”, IEEE

Trans, Pattern Analysis and Machine Intelligence, vol. 25, pp. 564–575, 2003.

43. Schweitzer, H., J.W., Bell and F., Wu, “Very fast template matching”, European

Conf., Computer Vision (ECCV), pp. 358–372, 2002.

44. Fieguth, P. and D., Terzopoulos, “Color-based tracking of heads and other mobile

objects at video frame rates”, IEEE Conf., Computer Vision and Pattern Recognition

(CVPR), pp. 21–27, 1997.

45. Jepson, A., D., Fleet and T., Elmaraghi, “Robust online appearance models for visual

tracking”, IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 25, Issue 10,

pp. 1296–1311, 2003.

46. Shi, J. and C., Tomasi, “Good features to track”, IEEE Conf., Computer Vision and

Pattern Recognition (CVPR), pp. 593–600, 1994.

86

47. Tao, H., H., Sawhney and R., Kumar, “Object tracking with Bayesian estimation of

dynamic layer representations”, IEEE Trans., Pattern Analysis and Machine

Intelligence, vol. 24, Issue 1, pp. 75–89, 2002.

48. Isard, M. and J., Maccormick, “Bramble: A bayesian multiple-blob tracker”, IEEE

Int. Conf., Computer Vision (ICCV). 34–41, 2001.

49. Black, M. and A., Jepson, “Eigentracking: Robust matching and tracking of

articulated objects using a view-based representation”, Int. J. Computer Vision, vol.

26, Issue 1, pp. 63–84, 1998.

50. Avidan, S., “Support vector tracking”, IEEE Conf., Computer Vision and Pattern

Recognition (CVPR), pp. 184–191, 2001.

51. Haritaoglu, I., D., Harwood and L.S., Davis, “Hydra: multiple people detection and

tracking using silhouettes”, Second IEEE Workshop, Visual Surveillance (VS'99),

1999.

52. Kang, J., I., Cohen and G., Medioni, “Object reacquisition using geometric invariant

appearance model”, Int. Conf., Pattern Recongnition (ICPR), pp. 759–762, 2004.

53. Sato, K. and J., Aggarwal, “Temporal spatio-velocity transform and its application to

tracking and interaction”, Computer Vision Image Understand, vol. 96, Issue 2, pp.

100–128, 2004.

54. Terzopoulos, D. and R., Szeliski, “Tracking with kalman snakes”, Active Vision, A.

Blake and A. Yuille, Eds. MIT Press, 1992.

55. Maccormick, J. and A., Blake, “Probabilistic exclusion and partitioned sampling for

multiple object tracking”, Int. J., Computer Vision, vol. 39, Issue 1, pp. 57–71, 2000.

56. Chen, Y., Y., Rui and T., Huang, “Jpdaf based hmm for real-time contour tracking”,

IEEE Conf., Computer Vision and Pattern Recognition (CVPR), pp. 543–550, 2001.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6325
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6325

87

57. Bertalmio, M., G., Sapiro and G., Randall, “Morphing active contours”, IEEE Trans.,

Pattern Analysis and Machine Intelligence, vol. 22, Issue 7, pp. 733–737, 2000.

58. Mansouri, A., “Region tracking via level set pdes without motion computation”,

IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 24, Issue 7, pp. 947–

961, 2002.

59. Ronfard, R., “Region based strategies for active contour models”, Int. J., Computer

Vision, vol. 13, Issue 2, pp. 229–251, 1994.

60. Yılmaz, A., X., Li and M., Shah, “Contour based object tracking with occlusion

handling in video acquired using mobile cameras”, IEEE Trans., Pattern Analysis

and Machine Intelligence, vol. 26, Issue 11, pp. 1531–1536, 2004.

61. Arshad, M.R. and N., Nordin, “Human Motion Tracking and Analysis via Point

Tracking Technique”, Int. Conf., Control, Instrumentation and Mechatronics

Engineering (CIM '07), 2007.

62. Kuhn, H., “The hungarian method for solving the assignment problem”, Naval

Research Logistics Quart., vol. 2, pp. 83–97, 1955.

63. Sethi, I. and R., Jain, “Finding trajectories of feature points in a monocular image

sequence”, IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 9, Issue 1,

pp. 56–73, 1987.

64. Salari, V. and I.K., Sethi, “Feature point correspondence in the presence of

occlusion”, IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 12, Issue 1,

pp. 87–91, 1990.

65. Rangarajan, K. and M., Shah, “Establishing motion correspondence”, Conf., Vision

Graphies Image Process, vol. 54, Issue 1, pp. 56–73, 1991.

88

66. Veenman, C., M., Reinders, and E., Backer, “Resolving motion correspondence for

densely moving points”, IEEE Trans., Pattern Analysis and Machine Intelligence,

vol. 23, Issue 1, pp. 54–72, 2001.

67. Intille, S., J., Davis and A., Bobick, “Real-time closed-world tracking”, IEEE Conf.,

Computer Vision and Pattern Recognition (CVPR), pp. 697–703, 1997.

68. Broida, T. and R., Chellappa, “Estimation of object motion parameters from noisy

images”, IEEE Trans., Pattern Analysis and Machine Intelligence, vol. 8, Issue 1, pp.

90–99, 1986.

69. Cox, I.J., “A review of statistical data association techniques for motion

correspondence”, Int. J., Computer Vision, vol. 10, Issue 1, pp. 53–66, 1993.

70. Communicate Visually Company, “SmartDraw Software”, Available on site

http://www.smartdraw.com

71. “Face Recognition Database Images”, Available on site http://www.face-

rec.org/databases

http://www.face-rec.org/databases
http://www.face-rec.org/databases

