
A NOVEL META-HEURISTIC FOR GRAPH COLORING PROBLEM : SIMULATED

ANNEALING WITH BACKTRACKING

by

Buse Yılmaz

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Engineering

Yeditepe University

2011

A NOVEL META-HEURISTIC FOR GRAPH COLORING PROBLEM : SIMULATED

ANNEALING WITH BACKTRACKING

APPROVED BY:

Assoc. Prof. Dr. Emin Erkan KORKMAZ

(Thesis Supervisor)

Prof. Dr. Linet ÖZDAMAR

Dr. Yaşar SAFKAN

DATE OF APPROVAL:/..../2010

Bulut
imza

ACKNOWLEDGEMENTS

I would like to thank Assoc. Prof. Dr. Emin Erkan Korkmaz for his support and

mentorship during the preparation of my thesis. It was a great opportunity for me to work

with him.

I would also like to thank Prof. Dr. Linet Özdamar and Dr. Yaşar Safkan for serving

on my thesis committee and their valuable advises to make this thesis better. Also I deeply

appreciate the help and advises of Asst. Prof. Dr. Dionysis Goularas and Dr. Mustafa B.

Mutlu during the preperation of the presentation of the thesis.

Last but not least, I would like to express my sincere gratitude to my mother who stood

by me whenever I needed her. Without her endless patience and support, I would not be able

to achieve finishing my thesis.

To my beloved mom; my mentor and my best friend.

ABSTRACT

A NOVEL META-HEURISTIC FOR GRAPH COLORING

PROBLEM : SIMULATED ANNEALING WITH BACKTRACKING

Graph coloring problem (GCP) is one of the most extensively studied combinatorial

optimization problems. Many algorithms have been proposed to solve GCP efficiently. It has

been proved that hybrid algorithms are competitive with their pure counterparts as they yield

promising results. This thesis presents a new meta-heuristic named as Simulated Annealing

with Backtracking (SABT) for solving GCP. The algorithm proposed combines simulated

annealing approach (SA) with a backtracking mechanism. SABT is a hybrid general purpose

algorithm designed to solve any grouping problem. It does not exploit any domain-specific

information. Several tests have been run on a collection of benchmarks from DIMACS

challenge suite and promising results are obtained. A comparison of SABT with some

other state-of-the-art algorithms is also presented along with a performance analysis of the

algorithm.

ÖZET

ÇİZGE BOYAMA PROBLEMİ İÇİN YENİ BİR SEZGİ ÖTESİ

ALGORİTMA: GERİYE DÖNÜŞ YÖNTEMİYLE BENZETİLMİŞ

TAVLAMA (GDBT)

Çizge Boyama Problemi (ÇBP) üzerinde en yaygın çalışılan tümleşik optimizasyon

problemlerinden biridir. ÇBP’yi etkin şekilde çözmek için birçok algoritma tasarlanmıştr.

Hibrit algoritmaların elde ettiği umut verici sonuçlar, bu algoritmaların standard teknik ve

yaklaşımlar kadar iyi olduğunu kanıtlamaktadır. Bu tezde, ÇBP’yi çözmek için, yeni bir

üst-sezgisel algoritma olan Geriye Dönüş Yöntemiyle Benzetilmiş Tavlama (GDBT) yöntemi

geliştirilmiştir. Tasarlanan algoritmada benzetilmiş tavlama tekniği (BT) ile geriye dönüş

yöntemi birleştirilmiştir. GDBT, gruplama problemlerini çözmek için tasarlanmış hibrit

ve genel amaçlı bir algoritmadır ve bu algoritmada tanım kümesine özgü bilgi kullanmaz.

DIMACS challenge suit’ten birçok kıyaslama noktası örneği üzerinde yapılan testlerde umut

verici sonuçlar elde edilmiştir. Diğer yandan, GDBT’nin en son gelişmeleri yansıtan birçok

algoritmayla karşılaştırması ve algoritmanın performans analizi de tezde sunulmuştur.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. LITERATURE SURVEY . 4

2.1. Graph Coloring Problem. 4

2.2. Graph Coloring as a Grouping Problem . 5

2.3. Overview of the Solution Methodologies for Graph Coloring 7

3. SIMULATED ANNEALING ALGORITHM . 14

4. BACKTRACKING ALGORITHM. 18

5. SIMULATED ANNEALING WITH BACKTRACKING . 21

5.1. Main scheme and evaluation function . 22

5.2. Individual Structure in SABT . 26

5.3. Construction Mechanism . 28

5.4. Backtracking Mechanism . 30

5.5. Initial Version of SABT (SABT0) . 33

6. EXPERIMENTAL RESULTS . 36

6.1. Problem instances and Experimental Details . 36

7. CONCLUSION AND FUTURE WORK . 68

REFERENCES . 70

viii

LIST OF FIGURES

Figure 2.1. Example of coloring a graph. 5

Figure 4.1. Example of a tree representing the search space of all possible solutions . . 18

Figure 5.1. Change of evaluation function based on power . 25

Figure 5.2. Structure of an individual . 27

Figure 5.3. Extraction from VV set . 30

Figure 5.4. Backtracking Amount of DSJC125.5 . 33

Figure 5.5. Example of an individual in the old version of SABT . 34

Figure 5.6. Example of backtracking on an individual of SABT0 . 35

Figure 6.1. Utility value of DSJC125.5 . 46

Figure 6.2. Backtracking Amount of DSJC125.5 . 47

Figure 6.3. Utility value of DSJC125.9 . 48

Figure 6.4. Backtracking Amount of DSJC125.9 . 49

Figure 6.5. Utility value of DSJC250.1 . 49

Figure 6.6. Backtracking Amount of DSJC250.1 . 50

Figure 6.7. Utility value of DSJC250.9 . 50

ix

Figure 6.8. Backtracking Amount of DSJC250.9 . 51

Figure 6.9. Utility value of DSJC500.5 . 51

Figure 6.10. Backtracking Amount of DSJC500.5 . 52

Figure 6.11. Utility value of DSJC1000.1. 52

Figure 6.12. Backtracking Amount of DSJC1000.1 . 53

Figure 6.13. Utility value of DSJC1000.5. 53

Figure 6.14. Backtracking Amount of DSJC1000.5 . 54

Figure 6.15. Utility value of DSJR500.1 . 54

Figure 6.16. Backtracking Amount of DSJR500.1 . 55

Figure 6.17. Utility value of R250.5. 55

Figure 6.18. Backtracking Amount of R250.5 . 56

Figure 6.19. Utility value of le450.15b . 56

Figure 6.20. Backtracking Amount of le450.15b . 57

Figure 6.21. Utility value of le450.25c . 57

Figure 6.22. Backtracking Amount of le450.25c . 58

Figure 6.23. Utility value of flat300.20. 58

x

Figure 6.24. Backtracking Amount of flat300.20 . 59

Figure 6.25. Utility value of school1_nsh . 59

Figure 6.26. Backtracking Amount of school1_nsh . 60

Figure 6.27. Utility value of fpsol2.i.2 . 60

Figure 6.28. Backtracking Amount of fpsol2.i.2. 61

Figure 6.29. Utility value of inithx.i.2 . 61

Figure 6.30. Backtracking Amount of inithx.i.2 . 62

Figure 6.31. Utility value of mulsol.i.1. 62

Figure 6.32. Backtracking Amount of mulsol.i.1 . 63

Figure 6.33. Utility value of mulsol.i.4. 63

Figure 6.34. Backtracking Amount of mulsol.i.4 . 64

Figure 6.35. Utility value of zeroin.i.1 . 64

Figure 6.36. Backtracking Amount of zeroin.i.1 . 65

xi

LIST OF TABLES

Table 6.1. Best colorings for SABT . 38

Table 6.2. User-defined parameters . 39

Table 6.3. Comparison of SABT with population based algorithms and other algorithms 41

Table 6.4. Comparison of SABT with local search algorithms . 43

Table 6.5. Comparison of SABT with hybrid algorithms. 44

Table 6.6. Comparison of initial version of SABT (SABT0) and the current version . . 66

Table 6.7. Comparison of evaluation functions . 67

xii

LIST OF SYMBOLS/ABBREVIATIONS

backtrackingAmount The number of vertices to be removed from the individual

elementCount The number of vertices in an individual(utility value)

elementCountcurrent The elementCount of the current individual

elementCountold The elementCount of the old individual

Indcurrent The current individual constructed by SABT

Indold The previous individual constructed by SABT

iterCnt Iteration count of SABT

iterCntmax Maximum iteration count of SABT

kB Boltzman constant

lowerBound The lower bound of the range used when backtrackAmount is

zero

power parameter used in the evaluation function

randIdx Random value selected between 1 and elementCount

T Temperature T used in SA

T0 initial value that temperature T gets

Tmax maximum value that temperature T can get

upperBound The upper bound of the range used when backtrackAmount is

zero

VCset Set containing conflicting vertices

VV set set containing separators and uncolored vertices

Z(T) Normalization factor in Bolztman distribution

∆E The difference in the energies of two states in SA

exp(−E/kBT) Boltzman factor

ϑ The set of uncolored vertices

CSP Constraint satisfaction problem

CX Crossover

DFS Depth-First search

DSATUR Largest saturation degree heuristic

xiii

EVA Evolutionary Annealing Algorithm

FAP Frequency assignment problem

GA Genetic algorithm

GCP Graph coloring problem

GLS Genetic local search

GRASP Greedy randomized adaptive search procedure

HEA Hybrid evolutionary algorithm

ILS Iterated Local Search

LS Local search

MOGA multi-objective genetic algorithm

PSA Parallel Simulated Annealing

RLF Recursive largest first heuristic

SA Simulated annealing

SLS Stochastic local search

SABT Simulated annealing with backtracking

SABT0 Old version of SABT

TS Tabu search

VNS Variable neighborhood search

1

1. INTRODUCTION

Solving grouping problems is accepted to be challenging as these problems belong to

the set of NP-Complete problems [1]. The aim of these problems is to partition a given set

of items into a number of different sets. Generally there is set of constraints which has to

be satisfied while partitioning the items into these sets. There are many grouping problems

such as graph coloring, bin packing and Knapsack problem.

Graph coloring problem (GCP) is one of the most extensively studied NP-complete

problems [1]. Given an undirected graph G = (V,E) where V is a set of vertices and E is a

set of edges, GCP is a grouping problem in which the set V is partitioned into k independent

sets and k is attempted to be minimized.

Many researchers have been studying graph coloring problem since 1980s. This

combinatorial optimization problem is attractive for researchers for mainly two reasons.

First of all, there are several real-world problems which could easily be reduced to the graph

coloring problem. Besides, GCP is considered to be a difficult combinatorial optimization

problem being NP-hard [2–4].

In this thesis, a new meta-heuristic algorithm named Simulated Annealing with

Backtracking (SABT) is proposed to solve grouping problems. GCP is chosen as the testbed

for the methodology proposed in this thesis. The algorithm utilizes simulated annealing

(SA) algorithm as the local search mechanism while making use of a simple backtracking

algorithm when the search is stuck. SABT is quite simple and efficient. It does not have

a pre-processing step which is costly in terms of computational time. It is not a population

based algorithm, thus at every iteration a single candidate solution (individual) is updated.

The algorithm accepts candidate solutions only with a legal coloring (i.e. there are no

conflicting vertices in a candidate solution). SABT simply constructs the groups of an

individual by randomly selecting vertices from the vertex set. A randomly selected vertex

can be placed in a group if it does not conflict with any of the elements of that group. When

it is impossible to insert any more vertices into the groups of the individual, the backtracking

2

mechanism removes vertices of some groups by backtracking to a point in the individual

and then the individual is reconstructed. Hence, the algorithm constructs individuals with a

variable length at every iteration.

Simulated annealing approach is used to decide whether to accept or reject the

reconstructed individual. The reconstructed individual is either a better or a worse candidate

solution than the current individual. An individual with more vertices is a better individual.

A better individual is always accepted by the algorithm, whereas, a worse individual is

accepted with a probability determined by the SA approach. We also propose a new

exponential function for the cooling down schedule in the SA process. It is a simple

exponential function which avoids heavy computations, contributing to the performance of

the algorithm. Backtracking mechanism also makes use of the function proposed for the

cooling down schedule used in simulated annealing. This time, the function is utilized

to determine the amount of backtracking. This approach provides a balance between

diversification (exploration of the search space) and intensification (exploitation of the

previous solutions). The rate of backtracking decreases in time, intensifying the search on

immediate neighbors of the current solution.

The instances used in studies for GCP are chosen from the DIMACS Challenge Suite.

Some of these instances are benchmarks including randomly created graphs, Leighton graphs

[5] and register allocation problems in real codes. For graph coloring problem, some of the

randomly created large graphs and some Leighton graphs are proved to be difficult to tackle.

Some algorithms use domain-specific information which is extracted from the graph in order

to deal with the difficult instances [6, 7]. This information is then exploited to enhance

the algorithm [8–10]. An important attribute worth mentioning about SABT is that it is

designed as a general-purpose algorithm for grouping problems as it does not exploit any

domain-specific information. Hence, SABT could be utilized for any grouping problem.

In addition, many researchers utilize an initialization phase in their algorithms as in

[11, 12]. SABT does not use any initialization phase for dealing with the large instances.

In this study, several tests have been run on a collection of benchmark graphs from

3

the DIMACS Challenge Suite. The results match many of the best solutions presented in

the literature. Thus, it is proved that the algorithm is competitive with other state-of-the-art

algorithms.

This thesis is organized as follows; Chapter 1 gives an overview of the thesis. In

chapter 2, the problem that is solved is introduced in detail and an overview of the solution

methodologies in the literature is provided. Chapter 3 gives a detailed explanation of the

stochastic local search algorithm (SLS) that is utilized in the algorithm. In the following

chapter, the search method which is combined with this SLS is explained in detail. In chapter

5, the algorithm proposed to solve the problem at hand is provided in detail. The general

algorithm, several algorithmic and implementation details are given in this chapter. Chapter 6

provides the problem instances used in the experiments, experimental results and comparison

of the results with results of some state-of-the-art algorithms. In addition, a brief comparison

with the previous version of the algorithm proposed in this thesis is given in this chapter.

Chapter 7 presents the conclusion, comments on the thesis and the future work.

4

2. LITERATURE SURVEY

2.1. GRAPH COLORING PROBLEM

Graph coloring problem (GCP) is one of the well-known combinatorial optimization

problems. Its significance, apart from being an NP-complete problem [1] comes from its

easiness to be utilized to model several real-world applications. Many applications such as

timetabling [13, 14], frequency assignment problem (FAP) [15, 16], register allocation [17],

air traffic flow management [18] and satellite range scheduling [19] are modeled using GCP.

Given an undirected graph G = (V,E) where V is a set of vertices and E is a set of

edges, the vertices of the given graph G are attempted to be colored with a minimum number

of colors (k). While coloring the graph, no adjacent vertices can be colored with the same

color. Two vertices are considered to be adjacent if there is an edge connecting them. When

adjacent vertices have the same color they are considered to be in conflict. Thus, solving

GCP is the attempt to color a given graph G with the minimum possible number of colors

while avoiding any conflicts.

A more formal definition is as follows;

Given G = (V,E) and k to be the minimum number of colors, a k − coloring of G is

a function c : V → 1,, k where c(x) of a vertex x is called the color of x. A color class Vr

is defined by the vertices with color r with the constraint 1 ≤ r ≤ k. When vertices x and y

which are adjacent have the same color r, they are in conflict. Hence, the edge between them

ex,y ∈ E is a conflicting edge. If the k − coloring does not have any conflicting vertices

then it is a valid coloring. Hence, GCP is to determine the minimum integer k (the chromatic

number χ(G)) such that there exists a legal k − coloring of G [20].

5

2.2. GRAPH COLORING AS A GROUPING PROBLEM

In the grouping problem, a set of items has to be partitioned into mutually disjoint

subsets (stable sets). Vi of V such that V = V1
⋃
V2

⋃
V3......

⋃
VN and Vi

⋂
Vj = ∅ where

i 6= j [21].

In most of the grouping problems, not all possible groupings are permitted. A set of

constraints has to be complied with, in order to have a valid k − coloring. The objective is

to optimize a cost function defined over a set of valid groupings.

Graph Coloring Problem (GCP) (also known as vertex coloring problem) could be

considered as a grouping problem. Given a graph G = (V,E), being V the vertex set and E

the edge set, the set of vertices V are partitioned into k number of groups and the objective is

to minimize k. The constraint for GCP is that the groups are formed such that only vertices

not sharing an edge (without a conflict) are placed into the same group. In other words,

vertices of the graphG are colored with a minimum number of colors (the chromatic number

χ(G)) where each color represents a group and no two adjacent vertices are colored with the

same color.

v9
v8

v6

v5

v4
v3v2

v1

v11

v12
v10

v7

Figure 2.1. Example of coloring a graph

In the example given in Figure 2.1, a small graph with twelve vertices is colored using

6

four colors. As seen in the figure, no adjacent vertices have the same color. Hence, there

are no conflicting vertices and this is a valid coloring. The minimum number of colors used

to color this graph is four since it is a dense graph having many vertices connected to each

other with an edge. Unlike sparse graphs, more colors are needed to color dense graphs to

avoid having conflicting vertices. Hence, dense graphs are difficult to tackle.

The graph coloring problem could be solved as a constraint satisfaction problem. From

this perspective, it is equal to solving a series of k-coloring problems [22]. The algorithms

solving GCP with this approach, start with a number of colors 1 ≤ k ≤ |V | and solve the

k-coloring problem. Once it is solved, algorithm tries to solve the k-coloring problem for

k − 1 colors until no legal coloring could be found [9]. There are basically three approaches

to vertex coloring based on this perspective. The third approach on which SABT is based,

is rather rare among researchers. Before explaining these approaches, let us give some basic

definitions that will be used in the thesis;

A stable set is defined to be a set of mutually non-adjacent vertices. Then k-coloring

can be defined as the partition of the vertex set V into k stable sets S1, ..., Sk which are called

color classes. Hence, a k-coloring is a potential solution to the problem at hand.

A solution containing no conflicting vertices is a valid (proper) solution. Any

constructed solution, which is referred to as (valid) candidate solution is a partial solution. A

candidate solution that colors the graph using k number of colors is called a valid k-coloring.

Hence, any candidate solution that SABT constructs is a valid partial k-coloring which is

simply referred to as k-coloring throughout the thesis. An improper k-coloring may contain

conflicting vertices. Given a fixed integer k, the optimization problem k-GCP is the attempt

to determine a k-coloring of G with a minimum number of conflicting edges. If the optimal

value of the k-GCP is zero, then G has a valid (legal) k-coloring. Also individual and partial

solution will be used interchangeably throughout the thesis.

The first and most common approach is to produce k-colorings while attempting to

decrease k. In the second approach, the algorithm starts with an improper k-coloring. Then

the number of conflicts are tried to be reduced to zero. If the algorithm succeeds, it is restarted

7

with an improper (k − 1) coloring. If no k-coloring is found, the algorithm is restarted to

search for a (k + 1) coloring. The stopping criteria is to consider a k twice. Thus, the

output solution is a k-coloring with the smallest k possible. The last approach uses partial

k-colorings which consists of k mutually disjoint sets and a set of uncolored vertices. Thus,

a partial k-coloring contains no conflicting vertices. The goal is to increase the size of the

partial solution by coloring the uncolored vertices. Although this approach is rare, there are

algorithms utilizing this methodology [12,23]. The algorithm presented in this study is based

on this approach. For a detailed explanation about these approaches, one can refer to [12].

2.3. OVERVIEW OF THE SOLUTION METHODOLOGIES FOR GRAPH

COLORING

Exact algorithms are able to color small graphs with at most 100 vertices [24].

For larger graphs, more sophisticated methods are needed. Many algorithms have been

developed and many more have been utilized together (hybrid algorithms) to create more

general, robust and efficient algorithms. Heuristics and meta-heuristics have been widely

utilized to attack GCP. These methods could be classified under three categories; sequential

construction, local search and population based search.

The first heuristics developed for GCP belong to the sequential construction category.

These heuristics mainly have a greedy approach. Given a permutation of the vertices, these

heuristics attack the problem by trying to color the vertices of the graph one by one using a

greedy function. Unlike these heuristics, largest saturation degree heuristic (DSATUR) [25]

and the recursive largest first heuristic (RLF) [5] generate permutations of vertices in a graph

G dynamically. Among constructive heuristics with a greedy approach, both DSATUR and

RLF algorithms choose the vertex with the highest number of differently colored adjacent

vertices [12].

Another heuristic of the same approach is XRLF [5,26]. This method which is utilized

to extract stable sets, combines exhaustive search with a variant of RLF algorithm. Although

these are fast algorithms, their efficiency is not satisfactory in terms of solution quality.

8

For better solutions, local search based meta-heuristics such as tabu search (TS) [27,

28] and simulated annealing (SA) [26, 29, 30] have been utilized. These methods which

belong to the second category, have extensively been utilized by many researchers especially

in hybrid algorithms as a local search operator.

Tabucol is a well-known tabu search algorithm that was proposed in 1980s [27]. It

is developed and improved by several researchers [28, 31]. Tabucol accepts solutions with

conflicting edges (edges with both vertices having the same color) and uses penalties for

these solutions. Tabucol has been utilized in many hybrid algorithms as the local search

mechanism.

Simulated annealing is among the first meta-heuristic approaches utilized to solve GCP.

It is first applied to GCP by Chams et al [30] and Johnson et al. [26] who intensively tested

SA on random graphs. It is a famous local search method based on the physical process

of heating a solid to a high temperature and cooling it down gradually. The algorithm is

based on Monte Carlo Method. At each step, the current state is compared to the next state

trying to bring the system to a state with minimum possible energy. The algorithm decides

probabilistically whether to accept or reject the new state according to Boltzman Distribution.

Hence, the system tends to move to states with lower energy [29].

The first local search algorithm for GCP was proposed in 1987 by Chams et al. [30].

The algorithm operates on k-colorings that are not necessarily legal and the number of

conflicts in the individual is attempted to be minimized. The color of a single vertex is

changed in each iteration. SA algorithm is utilized as the local search mechanism.

The following study on GCP was done by the same authors either. It is a two phase

algorithm. The first phase is a preprocessing phase to extract stable sets in the graph. In

the second phase, again, SA algorithm is utilized. The results obtained were better for large

graphs [22].

Short after this study, Hertz and Werra implemented a new local search algorithm

while keeping the solution space, neighborhood and objective function the same. Again, the

9

algorithm has two phases. But instead of a greedy approach, this algorithm utilizes a tabu

search algorithm to extract the stable sets [22].

Other local search meta-heuristic methods include Iterated Local Search (ILS)

[11], Reactive Partial Tabu Search [12], Greedy Randomized Adaptive Search Procedure

(GRASP) [32], Variable Neighborhood Search [20], Variable Space Search [33] and

Clustering-Guided Tabu Search [8].

Iterated Local Search algorithm is a simplified version of the Variable Neighborhood

Search algorithm. In this algorithm, the perturbations (neighbors) of the current search point

are exposed to the local search which is done iteratively leading to a random walk in the

space of the local optima [34].

Reactive Partial Tabu Search method is designed to solve k-GCP problem. Tabu search

algorithm is utilized in which the tabu list reacts to the oscillations of the objective function.

The authors proposed two new algorithms namely PARTIALCOL FOO-PARTIALCOL.

They claim could be an alternative to TABUCOL and its variations. FOO-PARTIALCOL

is proposed to improve the performances of both TABUCOL and PARTIALCOL. The tabu

tenure of the algorithm is able to adjust itself depending on both the graph and the state of the

search. The algorithm proposed is a general purpose algorithm not relying on the problem

definition. The results obtained from the experiments are promising [12].

GRASP is used to color sparse graphs. Although it is a fast algorithm, the results are far

from being optimal. It has two phases, namely construction and improvement phase. In the

construction phase, a randomized version of the RLF algorithm is utilized for the generation

of the initial colorings. In the improvement phase, a local search method is utilized to find

improved neighbor solutions [32].

In Variable Neighborhood Search (VNS) method, various neighborhoods are utilized

instead of a single neighborhood. The method attempts to escape from local minima by

utilizing more than one neighborhood [20]. The local search method utilized in the algorithm

is either Tabucol or SA. Experiments show that the results are better when compared to a pure

10

implementation of the Tabucol algorithm.

Variable Space Search is another local search methodology which utilizes more than

one search space. It is an extension of VNS method. In addition, more than one objective

function is considered. The algorithm moves from one neighborhood to another when the

search is stuck at a local optimum. The problem at hand is solved by combining different

formulations of the problem which differ from each other in terms of constraints. While some

constraints are possibly relaxed in one search space, they are always satisfied in another. The

results are competitive with other hybrid evolutionary algorithms. The algorithm is applied

on the k-coloring problem [33].

For Clustering-Guided Tabu Search, two different algorithms, namely TS-Div and

TS-Int which are both based on Tabucol are implemented in [8]. TS-Int is a second stage

algorithm exploiting the colorings that TS-Div found. TS-Div performs a search space

analysis on the spatial distribution of the high quality configurations (local optima) obtained

by Tabucol. The authors introduce a clustering hypothesis: The high quality solutions are

not randomly scattered in the search space, but rather grouped in clusters within spheres of

specific diameter. The results are competitive for difficult graphs.

Although these heuristics are favored, their inability of solving some instances

efficiently has weaken their reputation. These methods have a low performance on some

large random graphs [22]. Thus, several approaches have been proposed to deal with these

difficult instances [22] also resulting in the emergence of a third group of methods.

The third category which is highly favored among researchers recently includes

population based algorithms [21, 35–37] and evolutionary hybrid algorithms [31, 38–40].

A well-known example of population based algorithms is the genetic algorithm (GA). A

population is created and genetic operators such as mutation and crossover are applied to

evolve the candidate solutions. In a genetic algorithm, mutation resembles a random walk in

the search space, whereas crossover passes the genetic material from the current population

to the next generation. The genetic operators preserve the diversity of the individuals in the

population while exploring the search space.

11

An implementation of genetic algorithm to solve GCP first appeared in the early 90s

[22]. In this implementation, the solutions are encoded as permutations of vertices of the

graph G. A greedy algorithm is utilized to color the vertices of a solution sequentially giving

each vertex the first color still available. Unfortunately, the results of the experiments are of

poor quality [22].

Another example is provided in [41]. In this study, a genetic algorithm is applied on

constrained optimization problems. Penalty functions are utilized to handle contraints. Since

GCP can be solved as a constrained optimization problem, this algorithm can be utilized to

solve the problem.

Second approach in this group is to embed a local search algorithm within the

framework of an evolutionary algorithm. Among first studies of this approach, there is one

done by Costa et al. [42] and Fleurent and Ferland [31]. They have developed a genetic

local search algorithm (GLS) to color graphs. Just like the classical GAs, GLS operates on

a population of solutions and it has a crossover operator. But instead of a random mutation

operator, GLS utilizes a local search (LS) operator [22]. The algorithm also extracts stable

sets from the graph leaving a residual graph to be colored.

Other implementations of GLS [39, 40] obtained better results on large graphs than

their predecessors. In addition, GLS algorithms proposed in [39] and [40] do not have a

preprocessing step to extract stable sets.

The technique of utilizing algorithms together (hybrid algorithms) has proved to be

promising especially when dealing with very large random graphs. In addition, many

studies have been conducted on the structure of the search space that exists in GCP with the

expectation of using the information to improve the algorithm. An example to this approach

is extracting several stable sets and then coloring the residual graph [5, 22].

Most of the recent graph coloring heuristics belong to either second or third group

explained above. Generally, local search techniques are utilized in the framework of a

population based algorithm. Population based algorithms are considered to be inefficient

12

algorithms due to the fact that the process of creating new individuals undergoes a

considerable fitness calculation. The fitness value of an individual is the measure of how

close this candidate solution is to the best solution that can exist for the current problem.

By means of a selecting mechanism, individual(s) are chosen according to their fitnesses

to create new individuals (offspring). But this is a costly operation affecting the overall

performance of the algorithm.

On the other hand, local search methods are fast and efficient algorithms. They provide

a fast searching mechanism in the search space moving from one solution to a neighbor

solution. They do not need to undergo heavy fitness calculations as genetic algorithms. In

most of the case, these are constructive algorithms in which the fitness of the candidate

solution can be determined directly during the construction process. Several studies show

that hybridization of population based algorithms with local search methods seems to be

promising [40].

There are several studies in which similar approaches to that of SABT are utilized. A

new algorithm based on Parallel Simulated Annealing (PSA) algorithm is presented in [43]

to solve GCP. The algorithm proposed combines two popular approaches of parallelization

of the classical SA algorithm. The first approach is to evaluate the current solution by

calculating possible moves from one state to another on multiple processing units. The

second approach is to compute independent solutions by multiple threads and exchange the

obtained results on a regular basis. The algorithm uses multiple processors. The coordination

of the algorithm is based on the master-slave model in which a processing unit is responsible

for collecting and distributing data among slave units. Unfortunately the results are poor in

quality.

Another similar approach is observed in [44]. The algorithm which is called FCNS is a

hybridization of DSATUR [25] backtracker and IMPASSE local search algorithm [45]. It is

applied on bandwidth multicoloring problem. The backtracking mechanism that FCNS uses

is a randomized form of Dynamic Backtracking [46] where a previously assigned variable

canbe unassigned without unassigning those assigned after this variable. In this approach,

the backtrack variables are selected randomly. Whenever the search is stuck, B backtrack

13

variables are unassigned where B ≥ 1.

The next study we will mention [12], presents the algorithm FOO-PARTIALCOL

which considers feasible and partial solutions only and tries to increase the size of the current

partial solution. A solution consists of k disjoint stable sets and a set of uncolored vertices.

As mentioned in the previous section, SABT uses the same approach for vertex coloring.

The Evolutionary Annealing (EVA) Algorithm [47] maintains a population of

individuals and SA approach is utilized as a local search method. By starting SA with low

temperatures, the algorithm exploits quickly any good solutions that exist in the neighorhood

(intensification phase). On the contrary, when SA is started on high temperatures the

diversity of the population is maintained allowing random jumps in the search space

(diversification phase). In this study, SA framework is utilized in a similar way with SABT.

14

3. SIMULATED ANNEALING ALGORITHM

Recent developments in local search algorithms have been inspired by nature. Physical

annealing of metals is one of the naturally occurring phenomena which led to a strongly

improved algorithmic approach known as simulated annealing. Simulated annealing is a

general powerful searching scheme. It can be applied to several problems to improve local

search performance [48].

Simulated annealing approach is based on the physical process of heating a solid up by

increasing the temperature to a maximum value and then cooling it slowly. When maximum

temperature provided is sufficiently high and cooling down process is carried out sufficiently

slowly, all particles arrange themselves in the low energy ground state of a corresponding

lattice which are perfect crystal structures. Cooling needs to be done very slowly in order

to avoid defects (irregularities) in the crystal which correspond to meta-stable sets in the

model [48].

The simulated annealing process is started at the maximum temperature T and T is

slowly decreased providing the solid to reach thermal equilibrium at each temperature value

T . Thermal equilibrium is characterized by the probability of being in a state with energy E

given by the Boltzman distribution.

Pr{E = E} =
1

Z(T)
∗ exp(− E

kBT
) (3.1)

where Z(T) is a normalization factor depending on T , kB is the Boltzman constant and

exp(−E/kBT) is the Boltzman factor.

As T converges to zero, Boltzman distribution concentrates on the states with lowest

energy. The cooling down process must be sufficiently slow to allow the solid to reach

thermal equilibrium for each temperature value [29].

Simulated annealing algorithm starts from a randomly created initial solution. In each

15

step a neighbor s′ of the current solution s is randomly chosen (proposal mechanism), then

an acceptance criterion which is parametrized by the temperature parameter T is used to

decide whether to accept s′ or stay at s. One standard choice for this acceptance criterion is a

probabilistic choice according to the Metropolis condition. It was proposed as early as 1953

in [49].

An annealing schedule (cooling schedule) is a function that determines a temperature

value T (t). It is commonly identified with an initial temperature T0, a temperature update

scheme, a number of search steps performed at each temperature and a termination condition.

The initial temperature T0 is generally determined by the properties of the given problem

instance. Among the temperature update schemes, a common one is a geometric cooling

schedule. In this update scheme, the temperature is updated as Tt+1 = αTt. This update

scheme is proved to be efficient in many cases [29, 50]. For the number of steps performed

at each temperature, often a multiple of the neighborhood size is used. Among a variety of

termination conditions, a specific one is based on the acceptance ratio which is the ratio of

the proposed steps to accepted steps. The search process is terminated if acceptance ratio

falls below a certain threshold or when no improving candidate solution has been found for

a given number of search steps [51].

As an example, to simulate the evolution to thermal equilibrium of a solid, the classical

simulated annealing method based on Monte Carlo method (Metropolis Algorithm) [49] is

provided. In the following paragraphs, the simulated annealing method is introduced in

detail, followed by a general pseudo code.

The algorithm generates a sequence of states of the solid. The current state of the solid

is characterized by the positions of its particles. A randomly chosen particle is exposed to a

small, randomly generated perturbation caused by a small displacement of the particle. If in

the new state the solid has a lower energy, the process is continued with the new state. i.e.

the difference in energy between the new state and the current state being ∆E, if ∆E ≤ 0

the process accepts the new state. if ∆E > 0 then the probability of acceptance is given

by exp(−∆E/kBT). This acceptance criterion is called Metropolis criterion. Hence, the

system evolves into thermal equilibrium.

16

A given annealing schedule (cooling schedule) is used to adjust the temperature T .

Initially a control parameter c is given a high value representing T . Given a configuration i

(representing a state of the solid), configuration j could be obtained by randomly choosing

an element which belongs to the neighborhood of i. This process corresponds to the

small perturbation in the Metropolis Algorithm. The configurations are the states of the

combinatorial optimization problem at hand. Given ∆Cij = C(j)−C(i) where Ci denoting

configuration i, the probability of C(j) being the next configuration in the sequence which

is denoted by Prob(Cj) is given below;

Prob(Cj) =

 ∆Cij ≤ 0 1

∆Cij > 0 exp(−∆Cij

c
)

(3.2)

This process is continued until the thermal equilibrium is reached. The algorithm terminates

for a small value of c for which no deteriorations are accepted any more. The final frozen

configuration is the solution of the current problem.

Below the algorithm of simulated annealing is given. The algorithm starts with an

initial state(configuration). The cooling schedule is a series of temperature values of an

annealing process provided to the algorithm. Variable t is set to the maximum value of the

temperature T and it takes the values that cooling schedule provides. The next state (s′) is

chosen among the neighbors of the current state (s). The difference in the energy (∆E) of

s
′ and s is used in the decision phase of the algorithm. s

′ becomes the new state with a

probability given by the Metropolis condition.

17

Algorithm 3.1. Simulated Annealing Algorithm

s← initialState;

t← Tmax;

while t ≤ Tmax do
t← coolingSchedule(t);

if t = 0 then
return s;

end

s
′ ← randomly selected neighbor of s;

∆E ← s
′
V ALUE − sV ALUE ;

if ∆E ≤ 0 then
s← s

′ ;

else
s← s

′ with probability exp(−∆E
T);

end

end

18

4. BACKTRACKING ALGORITHM

Backtracking algorithm is a method based on the famous brute force approach. It

systematically searches for a solution among all available options. Beginning with a partial

solution, it searches for an exact solution by extending the partial solution at every iteration.

When the search is stuck, in other words, when the extended partial solution is not valid any

more, the algorithm backtracks and tries to extend the partial solution in an alternative way.

In this method, a solution is created sequentially. Validity of a given constraint is

checked when all the elements in the solution relevant to this constraint are inserted in the

individual. A partial solution violates a constraint if it contains a element violating this

constraint. If a partial solution violates any of the constraints, backtracking is performed to

the most recently inserted element that still has alternatives available. Hence, backtracking

algorithm is able to eliminate a subspace from the search space [52].

v0

..
..
..
..

...........

vN−1

......

................ vN

vNv2v1

v2v1 vN

v2v1

Figure 4.1. Example of a tree representing the search space of all possible solutions

19

Algorithm 4.1. Backtracking Algorithm

Func: BT(vi)

if vi is a leaf node then

if the leaf node is a goal node then
return true;

else
return false;

end

else

foreach child vci of vi do

if BT(vci) == true then
return true;

end

end

return false;
end

The algorithm for backtracking is provided in Algorithm 2. The search space of a

problem consists of all possible solutions both valid and invalid. Thus, the search space can

be constructed as a search tree which contains all the candidate solutions. The complete

search space for n elements consists of nn candidate solutions. Note that in Figure 4.1 the

search tree has
∑n
i=0 n

i nodes. Since backtracking is generally used to traverse a tree in a

depth-first manner (DFS), it can be used to search in the search space for the exact solution

to the problem at hand. DFS searches in the vertical direction on the tree rather than in the

horizontal direction. Hence, the algorithms tends to search toward the leaf nodes on the tree.

The recursive algorithm provided constructs a partial solution by adding an element to

the solution at every iteration and checks its validity. If the newly added element violates

a constraint, the algorithm removes that element and tries to add another element to the

solution. An element corresponds to a node in the search tree. leaf node is a node without

any children. A child vci of vi is an element that is reachable from vi where vci is below vi

on the tree. goal node is the last element to be added to the solution in order to construct the

complete solution to the problem.

20

Backtracking algorithm is extensively utilized in constraint satisfaction problem

(CSP). Examples of CSP can be given as crosswords, verbal arithmetic and sudoku. Many

modern algorithms designed to solve CSP [52–54] are simple backtracking-style algorithms

with certain improvements [48]. Apart from CSP, backtracking method is also utilized to

solve the famous N-queens puzzle.

21

5. SIMULATED ANNEALING WITH BACKTRACKING

The algorithm proposed in this thesis utilizes a backtracking algorithm within a

framework based on simulated annealing (SA). It is called Simulated Annealing with

Backtracking (SABT). SABT combines simulated annealing algorithm with a backtracking

mechanism and proposes a new hybrid local search algorithm to solve GCP efficiently. It has

a simple design based on the classical simulated annealing algorithm. As noted in chapter

1, SABT can be utilized for any partitioning problem. In this thesis, it is only used to solve

GCP.

Before introducing the algorithm briefly, let us remind a few terms used in the thesis;

As discussed in the previous section, we refer to a valid partial (candidate) solution as a

valid k-coloring of the graph. We should also note that, a set of uncolored vertices exists in

the algorithm that contains vertices that the algorithm has not attempted to color yet and the

conflicting vertices that cannot be inserted into the current individual.

The algorithm starts with a randomly created individual which is a valid k-coloring.

Then, at each iteration, a new individual is constructed out of the previous one in

the following way; A backtracking amount is calculated by a stochastic backtracking

mechanism. Based on the backtracking amount, some of the groups are removed from

the current individual and the vertices in these groups are put back into the set containing

the uncolored vertices. Then the new individual is constructed by using the vertices in the

uncolored vertices set. The simulated annealing framework is used to determine if the newly

constructed individual will be accepted or not.

SABT operates on a single individual. The individual has a variable length, depending

on how many of the vertices could be colored. The partial solution constructed is always a

valid k-coloring without any conflicts. The number of vertices in the individual is used as the

utility value. The more vertices in the individual, the higher its utility is, making it a better

individual.

22

This chapter is divided into sections for an easy follow of the whole work. First, the

general design of the algorithm and a simple mathematical definition of the approach are

introduced. Then the specific details of the algorithm are presented.

5.1. MAIN SCHEME AND EVALUATION FUNCTION

SABT is initialized by the construction of a randomly created individual. It is created

by inserting randomly selected vertices into groups until no more vertices can be inserted

without causing conflicts. The conflicting vertices are put into the set of uncolored vertices.

SABT algorithm carries out the search process by constructing a new individual exploiting

the previous one.

As stated before, to construct a new individual, some of the vertices already placed

in the current one are removed; The evaluation function of SA algorithm (f(iterCnt))

is also utilized to determine the number of vertices to be removed from the individual

(backtracking amount). Hence, the backtracking operation is also carried out in a stochastic

manner. The amount of vertices determined by the backtracking amount are removed from

randomly selected groups of the individual and they are put back into the set of uncolored

vertices. Then the new individual is constructed by extending the current individual with

the uncolored vertices. At this point, SABT decides whether to accept the reconstructed

individual or not using the SA approach. In this approach, if the reconstructed individual

is better than the previous one, it is always accepted. If it is worse, it is accepted with

the probability given by the evaluation function of SA. Current and next (reconstructed)

individuals are compared using their utility values. Hence, the evaluation function of SA is

utilized in both deciding whether to accept the newly constructed individual or not and in the

calculation of the backtracking amount. That is why, it is more probable to have considerably

large backtracking amounts at the beginning of the search while it gets smaller toward the

end of the search. The algorithm terminates if one of the following termination criteria are

met; Constructing an individual with |V | number of vertices divided into k mutually disjoint

sets (successfully coloring the graph with k colors) or maximum number of iterations has

been reached. The general algorithm for SABT is given in Algorithm 5.1.1.

23

In Algorithm 5.1, VV set is the set containing the vertices to be colored and the

separators that are used to indicate the group boundaries. Indcurrent refers to the individual

constructed in the current iteration, whereas, Indold refers to the individual constructed in

the previous iteration. elementCountcurrent refers to the number of vertices in Indcurrent

and elementCountold refers to the number of vertices in Indold. Hence, elemetCount of

an individual gives its utility value. ∆E is the parameter used in the decision phase of the

algorithm in which the utility values of the current and the next (reconstructed) individual are

compared. ∆E is set to the difference between elementCountold and elementCountcurrent.

If ∆E is a positive value, then Indcurrent is worse than Indold. Hence, it is accepted with

a probability given by the evaluation function of SA. The probability of accepting a worse

individual decreases with time. If it is rejected, Indold is replaced with Indcurrent.

Algorithm 5.1. General algorithm for SABT

Initialize VV set;

Construct the individual;

power← 0.25;

elementCountbest← elementCountcurrent;

iterCnt← 0;

while There are uncolored vertices in VV set do

Select a backtrackAmount determined by f(iterCnt)
iterCntmax

;

Copy Indcurrent to Indold;

Move all vertices till backtrackPoint from Indcurrent to VV set;

Reconstruct Indcurrent;

∆E ← elementCountold − elementCountcurrent;

if ∆E > 0 then
Copy Indold to Indcurrent only with probability

iterCntmax − iterCntpower ∗ koeff ;
end

iterCnt← iterCnt+ 1;

if iterCnt == iterCntmax then
break;

end

end

24

The algorithm begins with an initialization part; An initial individual is created and the

parameter power is set to 0.25. This is a parameter used for the evaluation function of SA. It

is a user defined parameter. We kept it at 0.25 in all our experiments.

The most well-known evaluation function used for the cooling down schedule of

simulated annealing is e−∆E/T . This function which makes use of the difference of the

utility values of current and next individuals is based on temperature T . This function has

a logarithmic behavior and it converges to zero as T goes to zero. However, in this thesis,

we propose an evaluation function based on a simple exponential function. The exponential

function is based on the iteration count only. Since the difference between the utility values

of current and next individuals is considerably small, in this study it is neglected in the

evaluation function. The behavior of the function depends on parameter power. It is possible

to adjust the pace of the function by alternating this parameter. The evaluation function

f(iterCnt) is given below;

f(iterCnt) = iterCntmax − iterCntpower ∗
iterCntmax

iterCntmax
power (5.1)

where power = 0.25 and iterCnt = 0, 1,, iterCntmax

As one could notice easily, iterCntpower grows slowly as iterCnt goes to iterCntmax

and iterCntpower ∈ [0, iterCntmax
power]. The evaluation function f(x) makes use of

iterCntpower to obtain a function decreasing gradually. To obtain a function slowly

dropping down from iterCntmax to 0, we must scale this function with a coefficient

(iterCntmax/iterCntmaxpower). Then this value is subtracted from iterCntmax.

The evaluation function should decrease gradually so that at the beginning, the

algorithm is more likely to accept bad moves. In other words, the algorithm has more

tendency to construct individuals with relatively bad utility value. This is a simple

diversification phase. The search must be carried out in the whole search space rather than

focusing on a region of individuals with high utility values. The ratio of accepting the bad

25

moves decreases with time allowing the algorithm to intensificate the search on individuals

with higher utility values.

Below, an example of how evaluation function changes according to the parameter

power is given in Figure 5.1. In the figure, the evaluation function is given for three different

values of power (0.05,0.25 and 0.40). As seen in the figure, if we increase power, algorithm

tends to accept more worse individuals. In this case, the search becomes too diversified

in a similar way to random walk. This might lead the algorithm to destroy high-quality

individuals. If power is decreased, more worse individuals are rejected. Hence, the algorithm

behaves like a hill-climber leading the destruction of the diversification phase.

0

0.2

0.4

0.6

0.8

1

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Evaluation Function of DSJC125.5

power = 0.05
power = 0.25
power = 0.40

Figure 5.1. Change of evaluation function based on power

The parameter power has to be chosen carefully in order to balance the diversification

and the intensification phase. On the other hand, one can alter power to change the behaviour

of the algorithm to obtain a hill-climbing algorithm or a random walk on the graph. Since,

power is user defined. it gives the user this flexibility.

26

5.2. INDIVIDUAL STRUCTURE IN SABT

The search space consists of partial k-colorings. As mentioned in section 2.2, SABT

evaluates partial solutions in order to search for the exact solution. In this approach, the

vertices are distributed into k + 1 sets. The first set contains the uncolored vertices and k

mutually disjoint sets constitute the partial solution. The goal is to increase the size of the

partial solution by coloring the uncolored vertices. Let us give the formal definition of a

partial solution. Given S to denote the set of all possible valid partial solutions of the graph

coloring problem, a partial solution si ∈ S would be defined as; si = {ϑ⋃
[
⋃k
i Vi] | where

∀x, y, x ∈ Vi, y ∈ Vi then ex,y /∈ E where i = 1,, k, such that ∀z, z /∈ Vi, z ∈ ϑ where

i = 1,, k, V = V1
⋃
V2

⋃
V3

⋃
......

⋃
Vk

⋃
ϑ}. ex,y denotes an edge between vertices x

and y.

As given in the above definition for a partial solution, apart from the sets containing

the colored vertices, there is a set containing the uncolored vertices. The partial solution

constructed by the algorithm is always a valid k-coloring. Thus, it contains no conflicting

vertices. The conflicting vertices and the vertices that the algorithm has not attempted to

color yet belong to the set ϑ.

Now let us introduce how a partial solution is designed in the algorithm. SABT uses

separators to denote group boundaries. It basically operates on two sets, vertex set and

conflict set. Vertex set contains all of the vertices that have not been colored yet and also the

separators to denote the group boundaries. As one can guess, k − 1 separators must be used

for a valid k-coloring. The cardinality of the vertex set is then defined as 0 ≤ |vertex set| ≤

|V | + (k − 1). The other set is the set of vertices that could not be placed in any group of

the individual as they conflict. Note that this set, along with the vertices that the algorithm

has not attempted to color yet corresponds to the set ϑ of uncolored vertices in the definition

given above. We will name the set containing the vertices to be colored and separators as

VV set and the set of vertices that conflicts with already colored vertices (thus could not be

placed in the individual) as VCset.

To create an initial individual, SABT fills the array for VV set with the vertices and the

27

separators. Then, shuffles them to create a homogeneous distribution of both type of items

in the set. Each group of the individual is a linked list. Note that, each group in an individual

represents a different color set. The values of the vertices are kept in the nodes of a group.

Initially, a fixed number of nodes are created for each group which is determined by |V | /k.

This value gives a good estimation of the number of nodes to be created in each group. When

all the nodes of a group are occupied with vertices, a new node is created for the new coming

vertex. A node physically is deleted from a group if and only if the vertex it contains in that

node is removed as a result of a backtrack operation. This is due to the fact that the algorithm

starts removing vertices from the beginning of a group.

SABT operates on an individual which consists of k number of groups each one linked

to a header. These headers are stored in a header array. A header consists of two pointers,

one pointing to the first item of the group and the other pointing to the last. In addition,

there is a mark field indicating whether the group is constituted or not and a field where

the number of vertices in the group is stored. The mark field is set to zero if the group is

filled otherwise it is set to one. The Figure 5.2 there is an example of an individual of 75

vertices. Here k is seven and six groups are constituted by the construction mechanism.

The first group in the individual is constituted as its mark field is set to zero and it has seven

nodes. Note that separators are not directly inserted into the individual. Instead, when the

construction mechanism selects a separator from VV set, it is understood that a new group will

be constituted.

73

64

56

54

53

51

50

4946

45

41

40

393635 29

28

27

26

2120

19

14

12

10

9

3

1

481922860243

62

61

60

59

58

5755

5248

47

43 42

38

37

34

33

32

31

30

25

24 2318

17

16

15

13

11

8

7 6

2

0

0

0

0

8

13

7

1

0

0

0

0

14

16

7

67 72

68

70

Figure 5.2. Structure of an individual

28

5.3. CONSTRUCTION MECHANISM

Construction of an individual is a straight-forward operation. As mentioned in section

5.1 selecting an item from VV set is a random operation. Both the vertices and separators in

VV set have an equal probability to be selected by the algorithm. The algorithm selects the first

group in the individual that is marked as one. We call this group as the current group. The

algorithm selects an item from VV set randomly and tries to insert it into the current group.

If this item is a vertex and if it conflicts with any of the vertices in the current group, the

vertex is put into VCset. Otherwise, it is inserted into the current group. If the item randomly

selected is a separator, an empty group (marked as one) is selected and all the vertices in

VCset are put back into VV set. Then, another item is chosen from VV set randomly starting

the process again. When both VV set and VCset are empty the algorithm terminates returning

the valid k-coloring found. If VV set is empty and VCset is not, then there are still uncolored

vertices but no separator is left to create new groups. In this case, it becomes impossible to

proceed with the insertion operation. Hence, the backtracking mechanism has to be invoked

at this point to deform the individual partially.

In Algorithm 5.2, the construction method for SABT is given. The variable flag is used

to prevent the algorithm from choosing two separators one after the other. As the items in

VV set are chosen randomly, it is possible for construction method to select two separators

consecutively. This causes two groups to be selected and the first group to be left empty but

marked as filled. By setting the flag to 1 whenever a separator is encountered, the algorithm

guarantees that a vertex will be chosen next. The parameter groupCount indicates the number

of groups that are filled with vertices so far. Whereas, groupElements indicates the number

of vertices in a group. elementCount is used to indicate the number of all vertices in the

individual and VCount indicates the number of items in the VV set that are not chosen to be

colored yet.

After VV set is empty, another method called addToIndividual is invoked in the

construction algorithm. This method simply searches for any group that a vertex in VCset

29

Algorithm 5.2. Construction algorithm for an individual

if there is no empty group left then
return;

else
Select an empty group;

Mark the group as filled;

flag← 1;

groupCount← groupCount+1;
end

while VV set is not empty do
Select an item from VV set randomly;

if selected item is a vertex then
flag← 0;

if selected vertex conflicts with any of the vertices of the selected group then
Put the selected vertex into VCset;

else
Insert the selected vertex into the selected group;

groupElements← groupElements+1;

elementCount← elementCount+1;
end

else

if flag == 1 then
continue;

end

Put all items in VCset into VV set;

Select an empty group;

Mark the selected group as filled;

flag← 1;

groupCount← groupCount+1;
end

Swap the selected vertex and the last item in VV set;

VCount← VCount-1;
end

Call addToIndividual;

30

could be inserted into. Note that, at this point, all the vertices that could not be inserted into

the ultimately selected group are in VCset. This is due to the fact that whenever a separator is

selected all vertices in VCset are put back into VV set. As separators and vertices have equal

probability to be chosen, some of the vertices that could be inserted into a group without

a conflict are possibly left in VV set. Hence, at the end of the construction process, such

elements are inserted into the previously created groups by the method addToIndividual.

In the algorithm, we used simple arrays for VV set and VCset. Whenever an item is

removed from VV set, the construction algorithm simply swaps the item to be removed with

the last item in the array. And a simple index keeper (VCount) that keeps the index of the

last element is decremented by one. In this way, removing an item from the array costs

only constant time and the algorithm always removes an item without any shift or search

operations.

784235 1

VCount

5 3 2 4 87 1

VCount

Figure 5.3. Extraction from VV set

5.4. BACKTRACKING MECHANISM

Now let us explain the backtracking mechanism in detail. Backtracking mechanism

transfers some of the vertices inserted in the individual back into VV set, letting a partial

reconstruction of the individual at hand. The amount of backtracking determines the nature

of the search. We could jump to a very different point in the search space by backtracking

a considerable amount or we could continue our search in the neighborhood of the current

individual by tiny backtracks.

As mentioned before, when the algorithm is unable to extend the individual any more,

backtracking algorithm is invoked. A value stochastically determined by the evaluation

function is used to backtrack to a point in the individual. Hence, the number of vertices that

will be removed from the individual is determined by the evaluation function. The groups

31

to be extracted are randomly chosen and the vertices in these groups are removed from the

individual. All the groups of the individual are equally likely to be removed keeping the

algorithm from concentrating the search on a specific part of the search space. The algorithm

for backtracking mechanism is given below;

As seen in Algorithm 5.3, backTrackAmount is determined by the evaluation function

f(iterCnt) in a stochastic manner. Initially, a random value is chosen (randIdx). Then the

value of f(iterCnt) is calculated using the iteration count (iterCntpower).

backTrackAmount = randIdx ∗ f(iterCnt)
iterCntmax

randIdx = rand(1, elementCount)
(5.2)

f(iterCnt)/iterCntmax is utilized to let backTrackAmount take a value between

[1, randIdx]. As iterCnt increases in time, f(iterCnt)/iterCntmax decreases causing

backTrackAmount to take smaller values. backTrackAmount is high at the beginning of the

algorithm, hence the backtracking mechanism removes a considerable amount of vertices

from the individual. It becomes relatively smaller toward the end of the algorithm. In other

words, the algorithm decreases the rate of deformation in the individual in time. In this

way the algorithm is allowed to jump to different regions in the search space (diversification

phase) at the beginning of the search process while the immediate neighbors of the individual

are searched toward the end (intensification phase). Although the utility value of the

individuals constructed at the beginning of the search are relatively low, it increases in time.

And in a parallel manner, the algorithm drops the rate of backtracking to search for the exact

solution.

There might be times that backTrackAmount becomes zero, either because randIdx or

f(iterCnt)/iterCntmax becomes very close to zero. In this case, the algorithm is unable

to continue the search. At this point, the algorithm recalculates backTrackAmount. This

time, according to the number of vertices to be colored(|V |), a random value is chosen as the

backTrackAmount. This approach guarantees that backtrackAmount does not fall below a

certain threshold. However, this random backtrackAmount is kept very small to prevent the

algorithm from jumping to a different part of the search space. The parameters lowerBound

32

Algorithm 5.3. Backtracking algorithm for an individual

randIdx← rand(1, elementCount);

backTrackAmount← randIdx ∗ f(iterCnt)
iterCntmax

;

if backTrackAmount == 0 then

if numberofvertices ∗ lowerBound ≥ 1 then
backTrackAmount← rand (numberofvertices ∗ lowerBound);

else
backTrackAmount← rand (numberofvertices ∗ upperBound);

end

end

Copy Indcurrent to Indold;

backtrackCount← 0;

randomGroup← randomly selected non-empty group;

while backtrackCount < backTrackAmount do
i← 0;

while i < groupElements and backtrackCount < backTrackAmount do
VV set← randomGroupelementi ;

VCount← VCount+1, i← i+1, backtrackCount← backtrackCount+1;
end

randomGroup← randomly selected non-empty group;
end

if No group becomes empty then
Move all items in VV set to VCset and Call addToIndividual;

else
Move all items in VCset to VV set and Call construct;

end

if elementCountcurrent > elementCountbest then
Copy Indcurrent to Indbest;

end

∆E ← elementCountold − elementCountcurrent;

if ∆E > 0 then
prob of acceptance← rand (iterCntmax);

if prob of acceptance > (f(iterCnt)) then
Copy Indold to Indcurrent;

end

end

33

and upperBound are used in this approach. They are user defined parameters. Below, in

Figure 5.4 an example of how backTrackAmount changes along the algorithm is provided.

The example provided is one of the instances which is utilized in the experiments.

0

10

20

30

40

50

60

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Backtracking Amount of DSJC125.5

backtrackAmount

Figure 5.4. Backtracking Amount of DSJC125.5

5.5. INITIAL VERSION OF SABT (SABT0)

In this section, the initial version of SABT (SABT0) is explained briefly. It is the

first framework proposed to solve GCP. This version lacks both in solution quality and

performance due to some design issues. There are a few differences in the design of the

individual, evaluation function of SA and the backtracking mechanism compared to SABT.

Instead of a group of linked lists, an array is used to represent an individual in SABT0.

In the Figure 5.5 below, an example individual is given. As seen in the figure, the vertices are

inserted into an array of length |V | + k − 1. In addition, the separators are directly inserted

into the array denoting the boundaries of the groups.

The evaluation function for SABT0 is provided below. Instead of the exponential

function proposed for SABT, a linear function is utilized. It is based on the iteration count.

34

5−129681025−17328−142

Figure 5.5. Example of an individual in the old version of SABT

The parameter α ∈ [0, 1] is a user defined value. This is a simple but inefficient function in

terms of calculating the backtracking amount. Hence, there is not a good balance between

diversification and intensification phases and the solution quality is directly affected.

f(iterCnt) = α ∗ iterCnt (5.3)

In this version, backtracking is done either starting from the left or right end of the individual.

Initially, a backtracking direction is selected randomly. Then the backtracking amount is

calculated. Again, the backtrack amount is determined stochastically.

backtrackIndex = fitnessutility − (randIdx ∗ (f(iterCnt)/iterCntmax)) (5.4)

According to the direction of the backtracking, some vertices, determined by the

backtracking amount, are removed from the individual. Toward the end of the algorithm, as

backtracking amount decreases, fewer vertices are removed from the individual. However,

in this way, a bias is introduced to some groups. As backtracking is done starting from left

or right end of the individual, the groups which are not in the middle of the array are more

likely to be selected for backtracking. Hence, the search is carried out on a specific region of

the search space affecting the diversity of the individual constructed. The experiment results

obtained with this framework are not satisfactory in terms of solution quality. This is based

on the unequal probability distribution for being selected in the backtracking mechanism.

In Figure 5.6, backtracking operation is illustrated. In this example, there are four

groups and 12 vertices in total and backtracking is done starting from right end of the

individual. The backtracking point is indicated by an arrow. The last two groups and one

element of the second group (7) are removed from the individual. Hence, eight vertices are

removed from the individual in total.

35

5 321−129681025−17328−142

Figure 5.6. Example of backtracking on an individual of SABT0

Another disadvantage is that whenever backtracking is done starting from the left of

the individual, the remaining vertices have to be shifted to left. This is a costly operation.

To eliminate these issues, the design of the individual is altered and linked lists are used. In

addition, backtracking mechanism is redesigned such that the groups to be removed from the

individual are selected randomly with equal probability. In the following chapter where the

experiment results are presented, a comparison between SABT and SABT0 is also presented

in terms of solution quality.

36

6. EXPERIMENTAL RESULTS

In this chapter, we present the experimental results on several benchmark instances

obtained from DIMACS challenge suite. In addition, SABT is compared with some other

state-of-the-art algorithms in the literature. The comparison is carried out in terms of solution

quality.

6.1. PROBLEM INSTANCES AND EXPERIMENTAL DETAILS

All problem instances that we use in our experiments are selected from DIMACS

challenge suite. The collection of instances provided by DIMACS is recognized as a standard

for testing the algorithms on graph coloring problem [55]. The instances of DIMACS

challenge suite are classified into two categories according to their difficulty. The instances

in the first category are solved easily by most of the modern graph coloring heuristics in the

literature. However it is quite difficult to color the instances in the second category with

the corresponding chromatic numbers or with the minimum (best) number of colors reported

so far (for those whose chromatic numbers are unknown). In the experiments, a mixture of

instances from both categories are utilized. DSJC500.5, DSJC1000.1, DSJC1000.5, R250.5

and le450_25c are the difficult instances selected for the experiments. The rest of the

instances are among the easy instances. In the experiments, 18 different instances are utilized

in total.

The instances used in the experiments have different structural characteristics

including randomly generated graphs, leighton graphs and instances obtained from register

allocation problems in real codes. The algorithm is run on each instance 20 times

independently with different random seeds. The test runs terminate either when the desired

solution is obtained or when the maximum number of iteration count is reached. The

maximum number of iteration count used in the experiments range from 3 ∗ 106 to 90 ∗ 106.

The parameter power utilized in the evaluation function of SA is set to 0.25 for all the

experiments. The other parameter Factor0, which is utilized when backtrackAmount goes

down to zero, takes its value between 0.01 and 0.005. The upper limit of this range (0.01)

37

is selected such that the backtracking amount for the smallest instances (instances with 125

vertices) is guaranteed not to become zero. Lower limit (0.005) is used for all of the other

instances. All these parameters are user defined providing a certain flexibility to the user

in demonstrating different scenarios for the experiments. The average computational times

are given in terms of CPU time (in seconds). The algorithm is coded with C programming

language and compiled with GNU GCC compiler. The hardware of the platform used for the

experiments is a 2.66 Core Duo PC with 2GB RAM.

In Table 6.1 the parameters used in the experiments and best colorings that SABT has

found are presented. In the first column, the instances used in the experiments are given.

They are grouped according to their types. There are six groups of instances. First group

of instances are the random graphs which are generated by Johnson et al. [26]. They are

denoted by the prefixDSJC followed by a fractional number. The integer part of the number

denotes the number of vertices in the graph (|V |). The fractional part of the number denotes

the density of the graph. For example, the instance DSJC125.5 has 125 vertices and 50% of

the vertex pairs are connected with an edge in this graph. Second group consist of random

geometric graphs. These graphs are generated by picking points uniformly in a square and

then by setting an edge between all pairs of vertices situated within a certain distance. Again

the density of the graph is denoted by the fractional part of the number in the name of an

instance. In the third group, there exist the Leighton graphs. They all have the same fixed

number of vertices (450) and the second number in the instance name denotes the chromatic

number of the graph [5]. In the following group, there is only one instance of a flat graph by J.

Culberson [56]. Flat graphs are generated by partitioning the vertex set into K almost equal

sized classes and then by selecting edges only between vertices of different classes. The next

group also has only one instance which is an example of class scheduling graphs generated

by Gary Lewandowski in the second DIMACS challenge. The last group is again generated

by Gary Lewandowski and the instances are based on register allocation for variables in real

codes.

The first column in Table 6.1 gives the group names of the instances and in the second

column the names of the instances are given. Third and fourth columns denote the number

of vertices for each instance and the density of the graph. In the fifth column the chromatic

38

Table 6.1. Best colorings for SABT

Instances n dens. χ/k∗ SABT Diff. avg CPU Time

random

DSJC125.5 125 0.50 ?/17 17 − 61.95 sec

DSJC125.9 125 0.89 ?/44 44 − 31.45 sec

DSJC250.1 250 0.10 ?/8 8 − 38.40 sec

DSJC250.9 250 0.90 ?/72 72 − 255.50 sec

graphs DSJC500.5 500 0.50 ?/48 51 3 2895.30 sec

DSJC1000.1 1000 0.10 ?/20 21 1 1336.40 sec

DSJC1000.5 1000 0.50 ?/83 92 9 2916.31 sec

random geo. DSJR500.1 500 0.03 ?/12 12 − 62.15 sec

graphs R250.5 250 0.48 65/65 68 3 246.3187 sec

leighton
le450_15b 450 0.08 15/15 16 1 88.15 sec

graphs le450_25c 450 0.17 25/25 27 2 1299.60 sec

flat graphs flat300.20 300 0.48 20/20 20 − 173.15 sec

sched. graphs school1_nsh 352 0.24 14/14 14 − 147.55 sec

reg. alloc.

fpsol2.i.2 451 0.08 30/30 30 − 43.75 sec

inithx.i.2 645 0.07 31/31 31 − 71.6315 sec

mulsol.i.1 197 0.20 49/49 49 − < 1 sec

graphs mulsol.i.4 185 0.23 31/31 31 − 13.00 sec

zeroin.i.1 211 0.18 49/49 49 − 8.25 sec

number of the instance (χ) and the minimum number of colors reported so far (k∗) given. If

(χ) is unknown for an instance (denoted by ?), k∗ is taken into consideration. The following

column gives the best number of colors for each instance that SABT has found. The colors

matching χ or k∗ are indicated in bold face. The seventh column gives the difference between

SABT and χ/k∗ in terms of number of colors. The average CPU time (in seconds) of 20

runs is presented in the last column of Table 6.1. Since the software specifics and physical

conditions of the test environments differ for different studies, it has not been possible to

compare SABT with other state-of-the-art algorithms in terms of computational time.

The Table 6.2 gives the user-defined parameters utilized in the algorithm. In the first

column, the group names of the instances are given. The second column denotes the names

of the instances. Third column denotes the number of vertices for each instance. In fourth

39

column, the value of the parameter used when backtrackAmount becomes zero (Factor0) is

presented. The next column presents the maximum iteration count used for each instance

(iterCntmax).

Table 6.2. User-defined parameters

Instances n Factor0 IterCntmax

random

DSJC125.5 125 0.01 6 ∗ 106

DSJC125.9 125 0.01 3 ∗ 106

DSJC250.1 250 0.005 3 ∗ 106

DSJC250.9 250 0.005 6 ∗ 106

graphs DSJC500.5 500 0.01 80 ∗ 106

DSJC1000.1 1000 0.005 6 ∗ 106

DSJC1000.5 1000 0.007 90 ∗ 106

random geo. DSJR500.1 500 0.005 6 ∗ 106

graphs R250.5 250 0.005 80 ∗ 106

leighton
le450_15b 450 0.005 3 ∗ 106

graphs le450_25c 450 0.005 80 ∗ 106

flat graphs flat300.20 300 0.005 3 ∗ 106

sched. graphs school1_nsh 352 0.005 3 ∗ 106

reg. alloc.

fpsol2.i.2 451 0.005 3 ∗ 106

inithx.i.2 645 0.005 3 ∗ 106

mulsol.i.1 197 0.01 3 ∗ 106

graphs mulsol.i.4 185 0.01 3 ∗ 106

zeroin.i.1 211 0.005 3 ∗ 106

Tables 6.3, 6.4 and 6.5 give the comparison of SABT with some other state-of-the-art

coloring algorithms in terms of solution quality. Most of these algorithms are among the most

effective algorithms in the literature covering the best known results for the tested instances.

In the first column, the names of the groups of instances are provided. Name of the instances

are given in the following column. Third column in the table indicates the chromatic number

(χ) of the instance and the best number of colors reported (k∗). In the fourth column, the best

number of colors found by SABT are given. The following columns give the best number

of colors found by the algorithms compared with SABT and the differences between the

number of colors that are found by SABT and the algorithms compared with it. The best

40

colorings are indicated in bold face. Four local search algorithms, four hybrid algorithms,

three population-based algorithms, and an algorithm based on branch-and-bound method

are selected for comparison. Below, some explanation for initialization phase, preprocessing

step and usage of domain-specific knowledge are provided. These three approaches exist in

some of the algorithms compared to SABT. Then, these algorithms are explained briefly.

Initialization phase is the utilization of a fast algorithm to create a single initial coloring

or a collection of initial colorings if the algorithm is population-based. The algorithm utilized

is generally an exact algorithm or a heuristic. The aim is to start the main algorithm with a

high-quality solution or solutions so that the convergence for the problem at hand could be

improved.

Preprocessing can be applied to a graph G to reduce it to another graph G′ . There

are two reduction rules for preprocessing step in [57]. The first rule is extracting stable sets

from the graph G and the remaining graph is called the residual graph which is mentioned in

Section 2.3. This process involves removing all the vertices in G that have a degree less than

k where k is the chromatic number. Degree of a vertex is the number of edges that vertex

has. Since the degree of a vertex u is less than k, it is guaranteed that a color that is not used

in the set of adjacent vertices can be directly assigned to u. Certainly this assignment would

not break the feasibility of the coloring formed. Second rule is to remove any vertex v ∈ V ,

for which there is a u ∈ V , v 6= u, eu,v /∈ E, and u is connected to every vertex to which

v is connected (subsumption). In this case, any color that can be assigned to u can also be

assigned to v. In the preprocessing step, these two rules are applied iteratively until no other

vertex can be removed from the graph [58].

Domain-specific knowledge which is processed by the algorithm is the information

related to the problem instance itself. Examples of domain-specific knowledge are measuring

diversity among the individuals constructed (for population-based algorithms) [9, 10] and

utilizing a digraph [33]. Also, preprocessing step itself exploits domain-specific knowledge.

In [59], the authors present an ant-based algorithm named ABAC. Unlike the previous

ant algorithms, in this algorithm, an ant colors just a portion of the graph using only local

41

information instead of coloring the whole graph. The algorithm has a initialization step.

MXRLF, which is a modified version of the XRLF algorithm [5, 26] is utilized to obtain a

proper k-coloring. Here k is an upper bound on the χ(G) of graph G. An initial coloring

of G which may not be proper is derived from the coloring generated by MXRLF. Then the

algorithm utilizes its ants.

Table 6.3. Comparison of SABT with population based algorithms and other algorithms

Instances χ /k∗ SABT Population-based Algorithms Other Alg.

[59] [35] [37]1 [37]2

random

DSJC125.5 ?/17 17 17 - 19 −2 20 −3 20 −3

DSJC125.9 ?/44 44 44 − 44 - - - - -

DSJC250.1 ?/8 8 8 - 9 −1 - - - -

DSJC250.9 ?/72 72 72 - 74 −2 - - - -

graphs DSJC500.5 ?/48 51 50 1 56 −5 59 −8 65 −14

DSJC1000.1 ?/20 21 21 - 23 −2 - - - -

DSJC1000.5 ?/83 92 91 1 - - - - - -

random geo. DSJR500.1 ?/12 12 12 - - - 12 - 12 -

graphs R250.5 65/65 68 - - - - 65 3 66 2

leighton
le450_15b 15/15 16 15 1 17 −1 17 −1 15 1

graphs le450_25c 25/25 27 26 1 29 −2 - - - -

flat graphs flat300.20 20/20 20 20 - 20 - 23 −3 39 −19

sched. graphs school1_nsh 14/14 14 14 - 14 - 20 −6 26 −12

reg. alloc.
fpsol2.i.2 30/30 30 30 - - - - - - -

graphs inithx.i.2 31/31 31 31 - - - - - - -

mulsol.i.1 49/49 49 49 - - - 49 - 49 -

mulsol.i.4 31/31 31 31 - - - - - - -

zeroin.i.1 49/49 49 49 - - - - - - -

In [35], a multi-objective genetic algorithm (MOGA) named LLE&LLE-e MOGA

is presented. The algorithm is based on the encoding scheme LLE which discards the

redundancy of other traditional encoding schemes. And a supplementary encoding scheme

named LLE-e is utilized whenever a genetic operator is costly in LLE, enhancing the

performance of the algorithm.

In [37], an evolutionary algorithm named Evolve-P is introduced. It is based on genetic

42

programming whose aim is to produce a program that will provide any graph of n nodes

with a minimal coloring while attempting to minimize k. The algorithm works on sequences

which are arranged in non-increasing order of node degrees. Node degree is the number of

edges a node has. The algorithm is denoted as [37]2 in Table 6.3.

The algorithm T_B&B [37], is a branch-and-bound algorithm that employs the

elements that are utilized in tabu search for control. The algorithm is good for either exact

or heuristic graph coloring. T_B&B is denoted as [37]1 in Table 6.3.

In [33] a local search algorithm called VSS-Col is proposed. Three different search

spaces along with their own formulations of the problem are used. Third space is a digraph

which is a directed graph with an orientation on each edge of the graph G. Hence, the

algorithm exploits domain-specific knowledge. VSS moves from a search space to another

when it is trapped in a local optimum. The algorithm is based on tabu search algorithm.

In [11], an application of iterated local search algorithm (ILS) is presented. The authors

claim that in real applications, it is not possible to solve GCP by first guessing a very good

coloring and then running the algorithm. Hence, a good initial feasible coloring has to

be determined. The algorithm proposed has an initialization phase; An initial coloring is

constructed using the exact coloring algorithm implemented by Trick [60]. This algorithm is

based on DSATUR [25]. Also, the algorithm has a pre-processing step. As the local search

algorithm, tabu search (TS) is utilized.

A local search algorithm (FOO-TABUCOL), again based on tabu search algorithm

is proposed in [12]. The reactive tabu list size (tabu tenure) adjusts itself depending on

both the graph and the state of the search. Hence, the algorithm exploints domain-speciic

knowledge. As mentioned in chapter 2 section 2.3, SABT is based on the third approach

of vertex coloring. FOO-TABUCOL is also based on this approach. The algorithm has

an initialization phase in which a greedy algorithm is used to generate an initial partial

k-coloring.

Another local search based algorithm is presented in [61]. In this study, a multilevel

43

Table 6.4. Comparison of SABT with local search algorithms

Instances χ /k∗ SABT Local Search Algorithms

[33] [11] [12] [61]

random

DSJC125.5 ?/17 17 - - - - - - 18 −1

DSJC125.9 ?/44 44 - - - - - - 44 -

DSJC250.1 ?/8 8 - - - - - - 9 -

DSJC250.9 ?/72 72 - - - - - - 74 -

graphs DSJC500.5 ?/48 51 48 3 49 2 48 3 54 −3

DSJC1000.1 ?/20 21 20 1 20 1 20 1 23 −2

DSJC1000.5 ?/83 92 86 6 89 3 89 3 97 −5

random geo. DSJR500.1 ?/12 12 - - - - - - 12 -

graphs R250.5 65/65 68 - - - - 66 2 68 -

leighton graphs
le450_15b 15/15 16 - - 15 1 - - 16 -

le450_25c 25/25 27 25 2 26 1 25 2 27 -

flat graphs flat300.20 20/20 20 - - - - - - 20 -

sched. graphs school1_nsh 14/14 14 - - - - - - 14 -

reg. alloc.
fpsol2.i.2 30/30 30 - - - - - - 30 -

graphs inithx.i.2 31/31 31 - - - - - - 31 -

mulsol.i.1 49/49 49 - - - - - - 49 -

mulsol.i.4 31/31 31 - - - - - - 31 -

zeroin.i.1 49/49 49 - - - - - - 49 -

approach to coloring is presented. The multilevel paradigm involves recursive coarsening

to create a hierarchy of approximations to the original problem. An initial solution is found

and then iteratively refined at each level. The algorithm utilizes either iterated greedy search

or tabu search algorithm as the local search mechanism. The multilevel operations involve

domain-specific knowledge heavily.

In [40] a hybrid evolutionary algorithm (HEA) is implemented. The mutation operator

is replaced with a LS operator. A CX operator is used to produce an offspring from two

parents s1 and s2. DSATUR [25] is used to produce an initial population. Hence, the

algorithm has a initialization phase. Also, the algorithm exploits domain-specific knowledge

as it extracts stable sets from the graph. Tabu search algorithm is used as the local search

(LS) operator.

44

Table 6.5. Comparison of SABT with hybrid algorithms

Instances χ /k∗ SABT Hybrid Algorithms

[40] [38] [10] [9]

random

DSJC125.5 ?/17 17 - - 17 - - - 17 -

DSJC125.9 ?/44 44 - - 44 - - - 44 -

DSJC250.1 ?/8 8 - - 8 - - - 8 -

DSJC250.9 ?/72 72 - - 72 - - - 72 -

graphs DSJC500.5 ?/48 51 48 3 48 3 48 3 48 3

DSJC1000.1 ?/20 21 20 1 20 1 20 1 20 1

DSJC1000.5 ?/83 92 83 9 84 8 83 9 83 9

random geo. DSJR500.1 ?/12 12 - - 12 - - - 12 -

graphs R250.5 65/65 68 - - - - - - 65 3

leighton graphs
le450_15b 15/15 16 - - 15 1 - - 15 1

le450_25c 25/25 27 26 1 26 1 25 2 25 2

flat graphs flat300.20 20/20 20 - - 20 - - - - -

sched. graphs school1_nsh 14/14 14 - - 14 - - - 14 -

reg. alloc.
fpsol2.i.2 30/30 30 - - 30 - - - - -

graphs inithx.i.2 31/31 31 - - 31 - - - - -

mulsol.i.1 49/49 49 - - 49 - - - - -

mulsol.i.4 31/31 31 - - 31 - - - - -

zeroin.i.1 49/49 49 - - 49 - - - - -

AMACOL [38] is a hybrid evolutionary heuristic that uses a central memory M . This

central memory contains pieces of solutions. A recombination operator is applied to create

offspring (s). Then a LS operator is applied on the offspring. Solutions created by the

LS operator (s′) are not necessarily legal ones. Pieces of (s′) are used to update M . The

algorithm also utilizes domain-specific knowledge.

EVACOL, which is proposed in [10] is an evolutionary hybrid algorithm. An enhanced

CX operator that extracts best color classes from more than two parents is used. In addition, a

new method to assure population diversity is introduced; The distances between individuals

of the population are kept as large as possible.

In [9], a hybrid meta heuristic algorithm named MACOL is proposed. MACOL,

45

which is based on tabu search algorithm is combined with an evolutionary algorithm. A

new CX operator called adaptive multi-parent CX operator is proposed. Furthermore, a

new replacement criterion is proposed for updating the population. This criterion takes

into account both the quality and the diversity among the individuals. In both, EVACOL

and MACOL, domain-specific knowledge is utilized for assuring the diversity among the

individuals.

As seen in Table 6.1, SABT can color all of the instances in less than 1 CPU hour. For

the relatively easier instances where the iteration count is set as 3 ∗ 106 or 6 ∗ 106, SABT can

color all of these instances with the corresponding χ/k∗ colors except for le450_15b. Even

if the iteration count is increased to high values, SABT could not color le450_15b with less

than 16 colors while k∗ is 15 for this instance.

On the other hand, DSJC1000.1 is a difficult instance and again, better colorings could

not be achieved on this instance despite large iteration counts. DSJC1000.1 could be colored

with 21 colors while k∗ is 20. For other difficult instances, again, higher iteration counts are

utilized. DSJC500.5 is colored with 51 colors while k∗ is 48, DSJC1000.5 with 92 colors

while k∗ is 83, R250.5 with 68 colors while k∗ is 65 and le450_25c with 27 colors while k∗

is 25.

As seen from Tables 6.3, 6.4 and 6.5, the performance of SABT is the same with

the other state-of-the-art algorithms on easy instances. SABT performs better than the local

search algorithm proposed in [61], T_B&B and all of the population-based algorithms except

for ABAC [59]. As seen in Table 6.3, ABAC can color the difficult instances DSJC500.5,

DSJC1000.5, le450_15b and le450_25c with one less color than SABT. The local search and

hybrid algorithms in Table 6.4 and 6.5, are chosen among the coloring algorithms covering

the best results in the literature except for [61].

For the difficult instances, some local search algorithms and hybrid algorithms

are better than SABT. The reason behind this is that all these algorithms utilize an

initialization phase, a pre-processing step or they exploit domain-specific knowledge. SABT

performs slightly worse than these algorithms for difficult instances as it is a simple and

46

basic meta-heuristic without any initialization or pre-processing step. In addition, no

domain-specific knowledge is exploited in the algorithm. SABT is designed to be utilized to

solve any grouping problem. Hence, we have focused on obtaining the best results possible

without utilizing any domain-specific knowledge to GCP.

Below, the graphs of utility values and backtracking amounts are provided for each

instance. The graphs give the average utility values and backtracking amounts of 20 runs.

The test runs are sampled at each 1000th iteration. The average values are obtained from

these samples. As mentioned in Section 5.1, the utility value is determined by the number

of elements in an individual. The graph for the utility value gives the change in the element

count of the individual. In other words, it is the graph that presents how the algorithm

converges to the solution of the problem. The graph of backtracking amount shows how the

backtracking amount changes throughout the run. As mentioned in Section 5.4, backtracking

amount decreases gradually toward the end of the algorithm as it is calculated in a stochastic

manner based on the evaluation function of the simulated annealing (SA) approach.

90

95

100

105

110

115

120

125

130

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Utility Value of DSJC125.5

elementCount

Figure 6.1. Utility value of DSJC125.5

As seen in the figures below, SABT can color small instances 125.5, 125.9, DSJC250.1

and DSJC250.9 quickly. The algorithm terminates before the maximum iteration count is

47

0

10

20

30

40

50

60

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Backtracking Amount of DSJC125.5

backtrackAmount

Figure 6.2. Backtracking Amount of DSJC125.5

reached. As mentioned before, DSJC500.5 is a difficult graph. The iteration count is set to

80∗106 for this instance and it is observed that the algorithm has a faster convergence toward

the end of the run. Same behavior is observed for other difficult instances DSJC1000.1 and

DSJC1000.5.

DSJR500.1 can be colored much before the maximum iteration count has been reached.

The iteration count is set to 6 ∗ 106 for this instance. The point where backtracking amount

drops down to zero is more obvious in this graph. After about 1.8 ∗ 106 iterations, the

backtracking amount starts to take very small random random values. R250.5, which is

another difficult graph could be colored with a maximum iteration count of 80∗106. Again, a

faster convergence can be observed toward the end of the algorithm, although not as obvious

as in the case of DSJC1000.1 and DSJC1000.5. This is due to the fact that the iteration count

is much larger and the rate of decrease in the backtracking amount is less for this instance.

For leighton graph le450.15b, rather small iteration count (around 2.7 ∗ 106) is enough

to color it at a cost of one color. While χ is 15, SABT could color le450.15b with 16 colors.

It took SABT approximately 75 ∗ 106 iterations to color le450.25c with 27 colors. The

maximum iteration count is set to 80 ∗ 106 as this is a difficult instance. The convergence of

48

the algorithm again increases toward the end of the algorithm.

95

100

105

110

115

120

125

130

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of DSJC125.9

elementCount

Figure 6.3. Utility value of DSJC125.9

flat300.20 is an instance with many local optima. Many algorithms get stuck in one

of these local optima. However, SABT could color this instance very quickly and without

getting stuck in a local optimum. The iteration count is slightly over 2 ∗ 106. school1_nsh

was an easy instance for SABT which is again colored at around 2 ∗ 106 iterations. For both

flat300.20 and school1_nsh, SABT almost hopped to the exact solution toward the end of

the algorithm. It is observed that when backtracking amount is chosen randomly, the rate of

convergence increases, the conflict count drops really fast.

For fpsol.2.i.2 and inithx.i.2, it is observed that the algorithm converges faster toward

the end of the algorithm again due to the randomly chosen backtracking amount. mulsol.i.1

is the easiest instance to color. It takes only a few hundreds of iterations for SABT to color

this graph within a period of time less than a second. mulsol.i.4 is colored very quickly at

around 1∗106 iterations and it takes SABT again less than 1∗106 iterations to color zeroin.i.1.

49

0

10

20

30

40

50

60

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of DSJC125.9

backtrackAmount

Figure 6.4. Backtracking Amount of DSJC125.9

190

200

210

220

230

240

250

260

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of DSJC250.1

elementCount

Figure 6.5. Utility value of DSJC250.1

50

0

20

40

60

80

100

120

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of DSJC250.1

backtrackAmount

Figure 6.6. Backtracking Amount of DSJC250.1

190

200

210

220

230

240

250

260

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Utility Value of DSJC250.9

elementCount

Figure 6.7. Utility value of DSJC250.9

51

0

20

40

60

80

100

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Backtracking Amount of DSJC250.9

backtrackAmount

Figure 6.8. Backtracking Amount of DSJC250.9

380

400

420

440

460

480

500

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007

Utility Value of DSJC500.5

elementCount

Figure 6.9. Utility value of DSJC500.5

52

0

50

100

150

200

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007

Backtracking Amount of DSJC500.5

backtrackAmount

Figure 6.10. Backtracking Amount of DSJC500.5

800

850

900

950

1000

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Utility Value of DSJC1000.1

elementCount

Figure 6.11. Utility value of DSJC1000.1

53

0

50

100

150

200

250

300

350

400

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Backtracking Amount of DSJC1000.1

backtrackAmount

Figure 6.12. Backtracking Amount of DSJC1000.1

800

850

900

950

1000

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007 9e+007

Utility Value of DSJC1000.5

elementCount

Figure 6.13. Utility value of DSJC1000.5

54

0

50

100

150

200

250

300

350

400

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007 9e+007

Backtracking Amount of DSJC1000.5

backtrackAmount

Figure 6.14. Backtracking Amount of DSJC1000.5

475

480

485

490

495

500

505

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Utility Value of DSJR500.1

elementCount

Figure 6.15. Utility value of DSJR500.1

55

0

50

100

150

200

250

300

0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006

Backtracking Amount of DSJR500.1

backtrackAmount

Figure 6.16. Backtracking Amount of DSJR500.1

220

225

230

235

240

245

250

255

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007

Utility Value of R250.5

elementCount

Figure 6.17. Utility value of R250.5

56

0

20

40

60

80

100

120

140

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007

Backtracking Amount of R250.5

backtrackAmount

Figure 6.18. Backtracking Amount of R250.5

400

410

420

430

440

450

460

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of le450.15b

elementCount

Figure 6.19. Utility value of le450.15b

57

0

50

100

150

200

250

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of le450.15b

backtrackAmount

Figure 6.20. Backtracking Amount of le450.15b

380

390

400

410

420

430

440

450

460

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007

Utility Value of le450.25c

elementCount

Figure 6.21. Utility value of le450.25c

58

0

50

100

150

200

250

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007

Backtracking Amount of le450.25c

backtrackAmount

Figure 6.22. Backtracking Amount of le450.25c

160

180

200

220

240

260

280

300

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of flat300.20

elementCount

Figure 6.23. Utility value of flat300.20

59

 0

 50

 100

 150

 200

 250

 300

 0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of flat300.20

backtrackAmount

Figure 6.24. Backtracking Amount of flat300.20

200

250

300

350

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of school1_nsh

elementCount

Figure 6.25. Utility value of school1_nsh

60

0

20

40

60

80

100

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of school1_nsh

backtrackAmount

Figure 6.26. Backtracking Amount of school1_nsh

430

435

440

445

450

455

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of fpsol2.i.2

elementCount

Figure 6.27. Utility value of fpsol2.i.2

61

0

50

100

150

200

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of fpsol2.i.2

backtrackAmount

Figure 6.28. Backtracking Amount of fpsol2.i.2

610

615

620

625

630

635

640

645

650

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of inithx.i.2

elementCount

Figure 6.29. Utility value of inithx.i.2

62

0

50

100

150

200

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of inithx.i.2

backtrackAmount

Figure 6.30. Backtracking Amount of inithx.i.2

190

192

194

196

198

200

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of mulsol.i.1

elementCount

Figure 6.31. Utility value of mulsol.i.1

63

0

10

20

30

40

50

60

70

80

90

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of mulsol.i.1

backtrackAmount

Figure 6.32. Backtracking Amount of mulsol.i.1

165

170

175

180

185

190

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of mulsol.i.4

elementCount

Figure 6.33. Utility value of mulsol.i.4

64

0

20

40

60

80

100

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of mulsol.i.4

backtrackAmount

Figure 6.34. Backtracking Amount of mulsol.i.4

195

200

205

210

215

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Utility Value of zeroin.i.1

elementCount

Figure 6.35. Utility value of zeroin.i.1

65

0

20

40

60

80

100

0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

Backtracking Amount of zeroin.i.1

backtrackAmount

Figure 6.36. Backtracking Amount of zeroin.i.1

In Table 6.6, the initial version of SABT (SABT0) and the current version are

compared using paired T-test on conflict counts of 20 runs for each instance. Also, the

mean values and standard deviations of both versions are provided. SABT0 is run with

the minimum number of colors that SABT colored that instance successfully (provided in

Table 6.1). Then, for each instance, mean values and standard deviations of the conflict

counts are calculated and T-test is applied on these two sets of conflict counts. A comparison

between the sets of conflict counts is done by setting the confidence interval to 99%. It is

observed that except for DSJC500.1, school1 and all the instances from register allocation

graphs group, the two sets of conflict counts are significantly different from each other. For

school1, the performance of SABT in terms of solution quality is slightly better than SABT0.

Both algorithms can color DSJC500.1 and the instances from register allocation graphs group

with the same number of colors. Hence, it is observed that SABT provides far more high

quality solutions compared to SABT0.

It is seen in the table that for some instances the mean values are negative. This is due

to the fact that, in the algorithm, a k-coloring without any conflicts is denoted by −1 conflict

count. Hence, when the algorithm terminates with a valid solution to GCP, as there is no

66

conflicting vertices left, it is denoted by −1.

Table 6.6. Comparison of initial version of SABT (SABT0) and the current version

SABT0 SABT

MEAN STDEV MEAN STDEV P-VALUE

random graphs

DSJC125.5 2.45 1.146 0.25 0.639 3.06933E − 07

DSJC125.9 −0.1 0.641 −1 0 4.96139E − 06

DSJC250.1 5.1 1.889 −0.75 0.444 3.99214E − 11

DSJC250.9 15.05 1.638 0.6 0.821 1.04336E − 18

DSJC500.5 52.8 4.34 −0.1 0.74 2.21315E − 11

DSJC1000.1 127.15 2.815 0.3 1.081 6.35646E − 32

DSJC1000.5 134.5 0.71 2.5 2.12 0.007261508

random geometric DSJC500.1 −1 0 −1 0 -

graphs R250.5 4.55 0.826 −0.8 0.41 1.01605E − 16

leighton graphs
le450.15b 10.05 1.82 −0.95 0.224 1.09376E − 16

le450.25c 12.625 1.962 −0.438 0.512 7.15027E − 14

flat graphs flat300.20 50.7 39.05 −1 0 1.06285E − 05

scheduling graphs school1 5.05 17.67 −1 0 0.142154656

reg. alloc. graphs
fpsol2.i.2 −1 0 −1 0 -

inithx.i.2 −1 0 −1 0 -

mulsol.i.1 −1 0 −1 0 -

mulsol.i.4 −1 0 −1 0 -

zeroin.i.1 −1 0 −1 0 -

In Table 6.7, a comparison with evaluation function proposed in this thesis

(f(iterCnt)) and the classical evaluation function e−∆E/αT for simulated annealing

algorithm is provided for some instances in terms of computational time. In the table, the

names of the instances, maximum iteration count (iterCntmax) and the average CPU times

for f(iterCnt) and e−∆E/αT are given. α is set to 0.999995 for all the experiments done

for each instance. 20 runs each with a different seed are made for each instance. The results

prove that f(iterCnt) is less costly in terms of computational time. Only for DSJC250.9,

e∆E/αT gives a better result. Since the best colorings found are the same for both evaluation

functions, they are not provided in Table 6.7.

67

Table 6.7. Comparison of evaluation functions

Instances iterCntmax f(iterCnt) e∆E/αT

avg CPU time avg CPU time

DSJC125.5 6 ∗ 106 61.95 sec 66.75 sec

DSJC250.9 6 ∗ 106 255.50 sec 219.37 sec

DSJC1000.1 6 ∗ 106 1336.40 sec 1425.15 sec

DSJR500.1 6 ∗ 106 62.15 sec 94.05 sec

68

7. CONCLUSION AND FUTURE WORK

In this thesis, a new hybrid meta-heuristic named SABT is proposed and applied on the

famous GCP. The novel meta-heuristic proposed in this study is based on simulated annealing

algorithm which is a well-known local search method. Simulated annealing algorithm is

combined with another search method called backtracking. A new exponential function

which avoids heavy calculations and which is based on the iteration count is proposed for

the cooling down schedule of simulated annealing algorithm. SABT is an easy to implement,

fast and efficient algorithm. It does not have an initialization phase or a pre-processing step.

And no domain-specific knowledge is utilized in the algorithm. Hence SABT proposes a

framework which can be applied to other grouping problems like bin-packing, scheduling

and etc.

The experiment results are promising. SABT achieves the best results obtained

in the literature for most of the instances used in the experiments. However, the

performance of SABT in terms of solution quality is slightly worse than the state-of-the-art

algorithms presented in Table 6.4 for large random graphs (difficult instances). As

mentioned before, these are among the state-of-the-art algorithms covering the best results

for the tested instances. Such algorithms either have a pre-processing step or they use

domain-specific knowledge heavily. Hence, we have observed that for difficult instances,

adding domain-specific knowledge will enhance the performance of SABT in terms of

solution quality.

For the future work, to color difficult instances more efficiently, a hill-climber can

be designed to search the immediate neighbors toward the end of the algorithm. Also,

a mutational or recombination operator can be added to the algorithm. Probably adding

a simple memory to the algorithm would be a better alternative. One should notice that

simulated annealing algorithm does not keep previous states, however algorithms like tabu

search has a finite memory to hold visited neighbors. This approach is obviously aiding

in terms of searching for high quality candidate solutions. As seen in Tables 6.3, 6.4 and

6.5 the state-of-the-art algorithms compared to SABT generally utilize TS as the local search

69

method. Hence, a short term memory which is like a tabu list could be added to the algorithm.

Another alternative for enhancing the algorithm would be utilizing SABT as a search method

in a population based algorithm. Hence, diversity among individuals can be maintained by

holding multiple candidate solutions at hand which could increase the performance of the

algorithm further.

70

REFERENCES

1. Karp, R. M., “Reducibility among combinatorial problems”, in R. E. Miller and J. W.

Thatcher (editors), Complexity of Computer Computations, pp. 85–103, Plenum Press,

New York, USA, 1972.

2. Arora, S. and C. Lund, “Hardness of approximations”, pp. 399–446, 1997.

3. Bellare, M., O. Goldreich and M. Sudan, “Free Bits, PCPs, and

Nonapproximability—Towards Tight Results”, SIAM J. Comput., vol. 27, no. 3,

pp. 804–915, 1998.

4. Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness (Series of Books in the Mathematical Sciences), W. H. Freeman,

January 1979.

5. Leighton, F. T., “A Graph Coloring Algorithm for Large Scheduling Problems”, Journal

of Research of the National Bureau of Standards, vol. 84, no. 6, pp. 489–506, 1979.

6. Hamiez, J.-P. and J.-K. Hao, An analysis of solution properties of the graph coloring

problem, pp. 325–345, Kluwer Academic Publishers, Norwell, MA, USA, 2004.

7. Hertz, A., B. Jaumard and M. P. de Aragao, “Local optima topology for the k-coloring

problem”, Discrete Applied Mathematics, vol. 49, no. 1-3, pp. 257 – 280, 1994.

8. Porumbel, D. C., J.-K. Hao and P. Kuntz, “A search space “cartography ”for guiding

graph coloring heuristics”, Computers & Operations Research, vol. 37, no. 4, pp. 769 –

778, 2010.

9. Lü, Z. and J.-K. Hao, “A memetic algorithm for graph coloring”, European Journal of

Operational Research, vol. 203, no. 1, pp. 241 – 250, 2010.

10. Porumbel, D., J.-K. Hao and P. Kuntz, “Diversity Control and Multi-Parent

71

Recombination for Evolutionary Graph Coloring Algorithms”, in C. Cotta and

P. Cowling (editors), Evolutionary Computation in Combinatorial Optimization, vol.

5482 of Lecture Notes in Computer Science, pp. 121–132, Springer Berlin / Heidelberg,

2009.

11. Chiarandini, M., T. Stützle, F. Intellektik, F. Informatik and T. U. D. Darmstadt, “An

application of Iterated Local Search to Graph Coloring Problem”, in Proceedings of the

Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125,

2002.

12. B., I. and N. Zufferey, “A graph coloring heuristic using partial solutions and a reactive

tabu scheme”, Comput. Oper. Res., vol. 35, no. 3, pp. 960–975, 2008.

13. Qu, R., E. K. Burke and B. McCollum, “Adaptive automated construction of hybrid

heuristics for exam timetabling and graph colouring problems”, European Journal of

Operational Research, vol. 198, no. 2, pp. 392 – 404, 2009.

14. Burke, E., B. MacCloumn, A. Meisels, S. Petrovic and R. Qu, “A Graph-Based Hyper

Heuristic for Timetabling Problems”, , 2007.

15. Weicker, N., G. Szabo, K. Weicker and P. Widmayer, “Evolutionary multiobjective

optimization for base station transmitter placement with frequency assignment”, IEEE

Transactions on Evolutionary Computation, vol. 7, p. 2003, 2003.

16. Smith, D. H., S. Hurley and S. U. Thiel, “Improving heuristics for the frequency

assignment problem”, European Journal of Operational Research, vol. 107, no. 1, pp.

76 – 86, 1998.

17. de Werra, D., C. Eisenbeis, S. Lelait and B. Marmol, “On a graph-theoretical model for

cyclic register allocation”, Discrete Applied Mathematics, vol. 93, no. 2-3, pp. 191 –

203, 1999.

18. Barnier, N. and P. Brisset, “Graph Coloring for Air Traffic Flow Management”, , 2002.

72

19. Zufferey, N., P. Amstutz and P. Giaccari, “Graph colouring approaches for a satellite

range scheduling problem”, Journal of Scheduling, vol. 11, pp. 263–277, 2008,

10.1007/s10951-008-0066-8.

20. Avanthay, C., A. Hertz and N. Zufferey, “A variable neighborhood search for graph

coloring”, European Journal of Operational Research, vol. 151, no. 2, pp. 379 – 388,

2003, meta-heuristics in combinatorial optimization.

21. Ülker, z., E. Özcan and E. Korkmaz, “Linear Linkage Encoding in Grouping Problems

Applications on Graph Coloring and Timetabling”, in E. Burke and H. Rudová (editors),

Practice and Theory of Automated Timetabling VI, vol. 3867 of Lecture Notes in

Computer Science, pp. 347–363, Springer Berlin / Heidelberg, 2007.

22. Galinier, P. and A. Hertz, “A survey of local search methods for graph coloring”,

Computers & Operations Research, vol. 33, pp. 2547–2562, 2006.

23. Morgenstern, C., “Distributed coloring neighborhood search”, pp. 335–358, Discrete

Mathematics and Theoretical Computer Science, 1996.

24. Malaguti, E., M. Monaci and P. Toth, “An Exact Approach for the Vertex Coloring

Problem”, Discrete Optimization, December 2010, in Press.

25. Brélaz, D., “New methods to color the vertices of a graph”, Commun. ACM, vol. 22,

no. 4, pp. 251–256, 1979.

26. Johnson, D. S., C. R. Aragon, L. A. McGeoch and C. Schevon, “Optimization by

simulated annealing: an experimental evaluation; part II, graph coloring and number

partitioning”, Oper. Res., vol. 39, no. 3, pp. 378–406, 1991.

27. Hertz, A. and D. de Werra, “Using Tabu Search Techniques for Graph Coloring”,

Computing, vol. 39, no. 4, pp. 345–351, 1987.

28. Dorne, R., J.-K. Hao and L. Ema-eerie, “Tabu Search For Graph Coloring, T-Colorings

And Set T-Colorings”, , 1998.

73

29. Kirkpatrick, S., Gelatt, C. D., Jr and Vecchi, M. P., “Optimization by Simulated

Annealing”, Science, vol. 220, pp. 671–680, 1983.

30. Chams, M., A. Hertz and D. de Werra, “Some experiments with simulated annealing for

coloring graphs”, European Journal of Operational Research, vol. 32, no. 2, pp. 260 –

266, 1987, third EURO Summer Institute Special Issue Decision Making.

31. Fleurent, C. and J. Ferland, “Genetic and hybrid algorithms for graph coloring”, Annals

of Operations Research, vol. 63, pp. 437–461, 1996, 10.1007/BF02125407.

32. Laguna, M. and R. Martí, “A GRASP for Coloring Sparse Graphs”, Comput. Optim.

Appl., vol. 19, no. 2, pp. 165–178, 2001.

33. Hertz, A., M. Plumettaz and N. Zufferey, “Variable space search for graph coloring”,

Discrete Applied Mathematics, vol. 156, no. 13, pp. 2551–2560, 2008.

34. Stützle, T., “Iterated local search for the quadratic assignment problem”, European

Journal of Operational Research, vol. 174, no. 3, pp. 1519 – 1539, 2006.

35. Yilmaz, B. and E. Korkmaz, “Representation Issue in Graph Coloring”, in The Tenth

International Conference on Intelligent System Design and Applications (ISDA 2010),

Cairo, Egypt, 11 2010.

36. Eiben, A., J. van der Hauw and J. van Hemert, “Graph Coloring with Adaptive

Evolutionary Algorithms”, Journal of Heuristics, vol. 4, pp. 25–46, 1998,

10.1023/A:1009638304510.

37. Barbosa, V. C., C. A. Assis and J. O. Do Nascimento, “Two Novel Evolutionary

Formulations of the Graph Coloring Problem”, Journal of Combinatorial Optimization,

vol. 8, pp. 41–63, 2004, 10.1023/B:JOCO.0000021937.26468.b2.

38. Galinier, P., A. Hertz and N. Zufferey, “An adaptive memory algorithm for the

k-coloring problem”, Discrete Applied Mathematics, vol. 156, no. 2, pp. 267–279, 2008.

74

39. Dorne, R. and J.-K. Hao, “A New Genetic Local Search Algorithm for Graph Coloring”,

in A. Eiben, T. Bäck, M. Schoenauer and H.-P. Schwefel (editors), Parallel Problem

Solving from Nature Ů PPSN V, vol. 1498 of Lecture Notes in Computer Science, pp.

745–, Springer Berlin / Heidelberg, 1998.

40. Galinier, P. and J. Hao, “Hybrid evolutionary algorithms for graph coloring”, Journal of

Combinatorial Optimization, vol. 3, no. 4, pp. 379–397, 1999.

41. Özgür Yeniay, “Penalty function methods for constrained optimization with genetic

algorithms”, Mathematical and Computational Applications, vol. 10, pp. 45–56, 2005.

42. Costa, D., A. Hertz and C. Dubuis, “Embedding a sequential procedure within an

evolutionary algorithm for coloring problems in graphs”, Journal of Heuristics, vol. 1,

pp. 105–128, 1995, 10.1007/BF02430368.

43. Lukasik, S., Z. Kokosinski and G. Swieton, “Parallel Simulated Annealing Algorithm

for Graph Coloring Problem”, in R. Wyrzykowski, J. Dongarra, K. Karczewski and

J. Wasniewski (editors), Parallel Processing and Applied Mathematics, vol. 4967 of

Lecture Notes in Computer Science, pp. 229–238, Springer Berlin / Heidelberg, 2008.

44. Prestwich, S., “Constrained Bandwidth Multicoloration Neighbourhoods”, , 2002.

45. Lewandowski, G. and A. Condon, “Experiments with Parallel Graph Coloring Heuristics

and Applications of Graph Coloring”, , 1994.

46. Ginsberg, M. L., “Dynamic backtracking”, J. Artif. Int. Res., vol. 1, pp. 25–46, August

1993.

47. Fotakis, D., S. D. Likothanassis and S. K. Stefanakos, “An Evolutionary Annealing

Approach to Graph Coloring”, in Proceedings of the EvoWorkshops on Applications of

Evolutionary Computing, pp. 120–129, Springer-Verlag, London, UK, 2001.

48. Stützle, T. G., Local Search Algorithms for Combinatorial Problems Analysis,

Improvements, and New Applications, Ph.D. thesis, Technischen Universität Darmstadt,

75

1998.

49. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,

“Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., vol. 21,

pp. 1087–1092, 1953.

50. Johnson, D. S., C. R. Aragon, L. A. McGeoch and C. Schevon, “Optimization by

simulated annealing: an experimental evaluation. Part I, graph partitioning”, Oper. Res.,

vol. 37, pp. 865–892, October 1989.

51. Hoos, H. H. and T. Stützle, Stochastic Local Search : Foundations & Applications

(The Morgan Kaufmann Series in Artificial Intelligence), Morgan Kaufmann, 1 edn.,

September 2004.

52. Kumar, V., “Algorithms for constraint-satisfaction problems: a survey”, AI Mag.,

vol. 13, pp. 32–44, April 1992.

53. Mackworth, A., Constraint Satisfaction, vol. 1, pp. 205–211, John Wiley & Sons, Inc.,

New York, NY, USA, 1987.

54. Tsang, E., “Foundations of Constraint Satisfaction”, , 1993.

55. Johnson, D. S. and M. Trick (editors), Cliques, Coloring, and Satisfiability: Second

DIMACS Implementation Challenge, 1993, vol. 26 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, American Mathematical Society,

Providence, RI, USA, 1996.

56. Culberson, J. and F. Luo, “Exploring the k-colorable Landscape with Iterated Greedy”,

pp. 245–284.

57. Cheeseman, P., B. Kanefsky and W. M. Taylor, “Where the Really Hard Problems Are”,

in J. Mylopoulos and R. Reiter (editors), Proceedings of the 12th International Joint

Conference on Artificial Intelligence, pp. 331–337, Morgan Kaufmann Publishers, San

Francisco, CA, USA, 1991.

76

58. Chiarandini, M., I. Dumitrescu and T. Stützle, “Stochastic Local Search Algorithms

for the Graph Colouring Problem”, in T. F. Gonzalez (editor), Handbook of

Approximation Algorithms and Metaheuristics, Computer & Information Science Series,

pp. 63.1–63.17, Chapman & Hall/CRC, Boca Raton, FL, USA, 2007.

59. Bui, T. N., T. H. Nguyen, C. M. Patel and K.-A. T. Phan, “An ant-based algorithm for

coloring graphs”, Discrete Applied Mathematics, vol. 156, no. 2, pp. 190 – 200, 2008,

computational Methods for Graph Coloring and it’s Generalizations.

60. Mehrotra, A. and M. Trick, “A Column Generation Approach for Graph Coloring”,

INFORMS Journal On Computing, vol. 8, no. 4, pp. 344–354, 1996.

61. Walshaw, C., “A Multilevel Approach to the Graph Colouring Problem”, Tech. Rep.

01/IM/69, School of Computing and Mathematical Science, University of Greenwich,

London, UK, May 2001.

