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ABSTRACT

TWO DIMENSIONAL CHANGE DETECTION METHODS FOR

SATELLITE IMAGES

Change detection using remotely sensed images has many applications such as urban

monitoring, land-cover change analysis, and disaster management. Therefore, we

investigated two dimensional change detection methods in this thesis study. We grouped the

existing methods in the literature into four categories as: pixel based, transformation based,

texture analysis based, and structure based. Besides testing the existing ones, we introduce

four new change detection methods as: fuzzy logic based, shadow detection based, local

feature based, and bipartite graph matching based. The last two novel methods are the

basis for structural analysis of change detection. We compare three thresholding algorithms

and measure their effects on the performance of change detection methods. In testing the

existing and newly introduced change detection methods, we use a total of 35 panchromatic

and multi-spectral Ikonos image sets. We provide quantitative test results as well as their

interpretation.
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ÖZET

UYDU İMGELERİNDE İKİ BOYUTLU DEĞİŞİM BULMA

YÖNTEMLERİ

Uzaktan algılanan görüntülerle değişim bulunması kentsel gelişimin izlenmesine yardımcı

olmakta, deprem, sel gibi doğal felaketlerde hasar tespiti yapılmasını sağlamaktadır. Bu

tez çalısmasında iki boyutlu değişim bulma yöntemleri ele alınmıştır. Çalışmamızda

yer alan yöntemleri dört kategori altında topladık: piksel tabanlı yöntemler, dönüşüm

tabanlı yöntemler, doku analizi tabanlı yöntemler ve yapı tabanlı yöntemler. Bu calışmada

literaturde bilinen yöntemleri test etmenin yanı sıra dört yeni değişim bulma yöntemi

öneriyoruz: bulanık mantık tabanlı yöntem, gölge karşılastırması tabanlı yöntem, yerel

öznitelik tabanlı yöntem ve graf eşleştirmesi tabanlı yöntem. Önerdiğimiz son iki

yöntem yapı tabanlı değişim bulmanın temelini oluşturmaktadır. Değişim bulmada

kullanılan eşikleme algoritmalarından üçünü karşılastırdık ve değişim bulma yöntemlerinin

performansına etkilerini ölçtük. Yöntemlerin test edilmesinde toplam 35 pankromatik ve

multispektral Ikonos görünütü çifti kullandık. Çalışmanın sonunda test sonuclarını ve

yorumlarını verdik.
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1. INTRODUCTION

Change detection is the process of identifying differences in a region by comparing images

taken at different times. It finds applications in several fields such as video surveillance,

medical imaging, and remote sensing (using satellite imagery). Especially for remote

sensing applications, manually labeling and inspecting changes is a cumbersome task. Also,

manual inspection is prone to errors and is highly subjective depending on the expertise of

the inspector. On the other hand, several applications of change detection using satellite

images are land use and cover change, forest or vegetation change, change after forest fire,

wetland change, urban change and flood monitoring. Therefore, in this thesis study we

focus on automated change detection methods for remote sensing applications using satellite

images.

1.1. LITERATURE REVIEW ON CHANGE DETECTION IN SATELLITE

IMAGES

We start by giving a survey of change detection review articles in the literature. In the

following sections, we explore the existing methods in detail. In this section, we benefit

from these survey articles by their comparative results and summary of the advantage and

disadvantage of each method in the literature.

In satellite image based change detection applications, the resolution is one of the most

important factors. While the first earth observation satellites (such as LANDSAT) were

equipped with 30-100 meter resolution sensors; modern sensors can capture images up to

0.5 meter resolution. This also led to the evolution of change detection methods for satellite

images. Early change detection methods were generally pixel based. As the detail in the

image increased, more sophisticated approaches emerged (such as feature based methods)

for change detection. Therefore, initial survey papers only focused on pixel based methods.

Singh [1] summarized several change detection methods such as image differencing, image

regression, image ratioing, vegetation index differencing, Principal Component Analysis
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(PCA), post-classification comparison, and change vector analysis in terms of land cover

change. Singh indicated the relationship between the land cover change and the intensity

values of the satellite images as: “The basic premise in using remote sensing data for change

detection is that changes in land cover must result in changes in radiance values and changes

in radiance due to land cover change must be large with respect to radiance changes caused

by other factors”. These other factors are counted as differences in atmospheric conditions,

sun angle, and soil moisture. We can add intensity variations caused by the camera to

the list. These cause unimportant changes most of the times. On the other hand, we are

interested in important changes. Singh recommended the use of images belonging to the

same time of the year for reducing the intensity change caused by the sun angle differences

and vegetation phenology change. Accurate image registration is also necessary before

using satellite images for change detection. Using images without registration can lead

to false alarms. In his survey paper, Singh quantitatively evaluated the change detection

methods. He concluded that, image regression produced the highest change detection

accuracy followed by image ratioing and image differencing. Simple techniques such as

image differencing performed better than much more sophisticated transforms such as PCA.

Mas [2] in his survey article compared six change detection methods in terms of land cover

change. He focused on a tropical area which is subject to forest clearing. Here, land cover

can be classified based on the spectral reflectance of the vegetation area. Mas pointed out

that, classification based on the spectral reflectance is difficult for the areas where vegetation

diversity is high (such as humid tropics). Therefore, change between land cover types

(presenting similar spectral signatures) is difficult to detect. As we referred previously, we

can reduce the spectral change caused by the sun angle differences and vegetation phenology

change by using images from the same time of the year. Mas indicated that it is extremely

difficult to obtain multi-date images taken exactly at the same time of the year, particularly

in tropical regions where cloud cover is common. Therefore, he compared the performance

of different change detection techniques using images captured at different times of the year.

Accurate image registration is vital before using the multi-temporal images for change

detection. In addition to geometrical rectification, images should also be comparable in

terms of radiometric characteristics. Mas referred to two ways to achieve radiometric
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compensation: radiometric calibration (converting images from digital number values into

ground reflection values) and relative radiometric normalization between the multi-temporal

images. Mas found that, radiometric normalization is sufficient for change detection. In

relative normalization, one image is normalized using the statistical parameters of the other

image.

Mas grouped change detection methods under three categories as: image enhancement,

multi-date data classification, and comparison of two land cover classifications. He

explained each category as: “The enhancement approach involves the mathematical

combination of imagery from different dates such as subtraction of bands, rationing,

image regression, and PCA. Thresholds are applied to the enhanced image to isolate

the pixels that have changed. The direct multi-date classification is based on the single

analysis of a combined dataset of two or more different dates, in order to identify areas

of changes. The post-classification comparison is a comparative analysis of images

obtained at different moments after previous independent classification”. He compared the

following six methods on the test area: image differencing, vegetation index differencing,

selective PCA, direct multi-date classification, post-classification analysis, and combination

of image enhancement and post-classification analysis. Mas reported that post-classification

comparison produced the highest accuracy. In single band analysis such as single band

differencing, Landsat MSS band 2 (red) produced better results compared to Landsat MSS

band 4 (infrared). Based on the same band, PCA produced better accuracy than image

differencing. Superior performance of the post-classification comparison is attributed to the

difficulty in classifying the land cover using the spectral data. Mas indicated that methods

that are directly using the spectral data have problems in classifying land cover which has

similar spectral signatures. He mentioned that, the use of classification techniques avoids

this problem.

Lu et al. [3] investigated a wide range of change detection techniques in their recent

survey paper. They listed change detection applications which have attracted attention in

the remote sensing community so far. These are: land use and land cover change, forest

or vegetation change, forest mortality, defoliation and damage assessment, deforestation,

regeneration and selective logging, wetland change, forest fire, landscape change, urban
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change, environmental change, and other applications such as crop monitoring. Lu et

al. grouped change detection methods into seven categories. For our application, the

most important of these are: algebra, transformation, and classification based change

detection. The algebra category includes image differencing, image regression, image

ratioing, vegetation index differencing and Change Vector Analysis (CVA). Lu et al. listed

the advantages and disadvantages of these methods as follows. “These methods (excluding

CVA) are relatively simple, straightforward, easy to implement and interpret, but these

cannot provide complete matrices of change information. ... One disadvantage of the algebra

category is the difficulty in selecting suitable thresholds to identify the changed areas. In

this category, two aspects are critical for the change detection results: selecting suitable

image bands or vegetation indices and selecting suitable thresholds to identify the changed

areas”. Due to the simplicity of the mentioned methods, they only provide the change and

no-change information.

Lu et al. also addressed the concept of change matrix in the quotation. A change matrix

covers a full range of from-to change classification. A common example includes land

cover type changes such as from agricultural to urban or from forest to grassland. They

considered the PCA, Kauth-Thomas (KT), Gram-Schmidt, and Chi-square transformations

under the transformation category. They listed the advantages and disadvantages of these

methods as follows. “One advantage of these methods is in reducing data redundancy

between bands and emphasizing different information in derived components. However,

they cannot provide detailed change matrices and require selection of thresholds to identify

changed areas. Another disadvantage is the difficulty in interpreting and labeling the

change information on the transformed images”. Their classification category includes post-

classification comparison, spectral-temporal combined analysis, expectation-maximization

algorithm (EM) based change detection, unsupervised change detection, hybrid change

detection, and artificial neural networks. The advantage of these methods is the capability

of providing a change matrix. The disadvantage is the need for a qualified and large training

sample set for good classification results.
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1.2. LAYOUT OF THE THESIS

In this thesis study, we investigate several change detection methods. We group them into

four categories as: pixel based, transformation based, texture based, and structure based

change detection methods. We explain each method in detail (with their references) in the

following chapters. Here, we briefly summarize these chapters.

We investigate pixel based change detection methods in Chapter 2. In this chapter, we

investigate direct algebraic calculations such as image differencing and image ratioing;

image regression which estimates second-date image by use of linear regression; CVA which

accepts pixel values as vectors and provides change information based on vector differences

and use of pixelwise fuzzy xor operator for change detection. Pixelwise fuzzy xor operator

based method is the novel contribution for any change detection problem.

In Chapter 3, we investigate the transformation based change detection methods. In this

chapter, we investigate PCA which is a common technique from the field of multivariate

statistical analysis; Kauth-Thomas transformation where the transformed data is directly

attributed to the analysis of land-cover; vegetation indices and the time-dependent vegetation

indices (commonly used in analysis of change in vegetation) and color invariants. Among

these methods, color invariants based change detection is a novel adaptation to this field.

Time-dependent vegetation indices are improved in this study.

We investigate texture based change detection methods in Chapter 4. In this chapter, we

benefit from Gray Level Co-occurrence Matrix (GLCM) features. We also benefit from the

entropy of the image windows as another texture feature.

In Chapter 5 we investigate structure based change detection methods. These can be

summarized as the use of edge information, gradient magnitude based support regions,

matched filtering, mean shift segmentation, use of local features, bipartite graph matching

with local features, and shadow information. Among these methods, use of local features,

bipartite graph matching with local features and shadow information are novel contributions

to change detection for remote sensing.
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We test all our change detection methods on 35 panchromatic and multi-spectral Ikonos

satellite test image sets. We provide the quantitative comparison results on these images as

well as the strengths and weaknesses of each method in Chapter 6. Finally, in Chapter 7 we

summarize the conclusions that we have reached in this study.
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2. PIXEL BASED METHODS

In this chapter, we consider pixel based change detection methods. First, we provide well-

known methods in the literature. Then, we propose two novel pixel based change detection

methods.

2.1. IMAGE DIFFERENCING

In this technique, images of the same area obtained from times t1 and t2 are simply

subtracted pixel by pixel. Mathematically, the difference image is defined as

Id(x, y) = I1(x, y)− I2(x, y) (2.1)

where I1 and I2 are the images obtained from t1 and t2. x, y are the coordinates of the

pixels. Resulting image Id represents the intensity difference of image I1 from image I2.

This technique works only if images are registered.

Here for an interpretation of the difference image, we need to recall the quotation from

Singh [1]. “The basic premise in using remote sensing data for change detection is that

changes in land cover must result in changes in radiance values and changes in radiance due

to land cover change must be large with respect to radiance changes caused by other factors”.

Based on this principle, we can expect that intensity differences due to land cover change

resides at the tails of the difference distribution of the image. Assuming that changes due to

land cover are less than changes by other factors, we expect that most of the difference is

distributed around the mean. We can illustrate the difference distribution as in Figure 2.1.

For a zero mean difference distribution, we normalize one image according to the

probabilistic parameters of the other image as

Ĩ2(x, y) =
σ1
σ2

(I2(x, y)− µ2) + µ1 (2.2)



8

Figure 2.1. Distribution of a difference function. Significant changes are expected at the

tails of the distribution

where Ĩ2 is the normalized form of I2. µ1, σ1 and µ2, σ2 are the mean and the standard

deviation of I1 and I2 respectively. After normalization, the mean and standard deviation of

the images are equalized. Hence the difference image will have zero mean. Now, we can

update Eqn. 2.1 as

Id(x, y) = |I1(x, y)− Ĩ2(x, y)| (2.3)

To detect the change, we can apply simple thresholding to Id(x, y) as

T (x, y) =

1, Id(x, y) ≥ τ

0, otherwise.

(2.4)

where the threshold τ is often determined empirically.

Since the threshold value in Eqn. 2.1 is important, various automated threshold selection

algorithms are proposed. Most of the time, the performance of these algorithms is scene

dependent due to the assumptions they are based on. Rosin et al. [4] investigated the

performance of several automated thresholding algorithms using a large set of difference

images calculated from an automatically created ground truth database. They give results
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based on several measures for a complete evaluation. In this study, we benefit from three

different threshold selection methods. These are percentile thresholding, Otsu’s method [5]

and Kapur’s algorithm [6].

Thresholding methods will be briefly explained next. To this end, we make some

assumptions about Id as follows. Id is a grayscale image which is represented by Ng gray

levels {1, 2, . . . , Ng}. The number of pixels at level i is denoted by ni and the total number

of pixels by N = n1 + n2 + . . .+ ng.

The first thresholding method is the percentile. Percentile is a statistics of ordinal scale data.

Assume that A is a sorted array of pixel values of Id in ascending order. Rank of the P-th

percentile of Id is given by

R = ceil(
P

100
×N) (2.5)

where ceil function rounds its argument to the nearest greater integer. P-th percentile is

found by indexing A using that rank.

The second thresholding method is proposed by Otsu. It uses measures of class separability

in finding an optimal threshold value. Relative frequencies of pixel values at level i are given

by

pi =
ni

N
, pi ≥ 0,

L∑
i=1

pi = 1 (2.6)

A threshold value at gray level k divides the histogram of Id into two classes. Each class

has its own probability of occurrence (total probability of its samples) and own mean value.

Evaluation function of the Otsu’s method is the between-class variance given by

σ2
b =

[µHId
ω(k)− µω]

2

ω(k)[1− ω(k)]
(2.7)

where µHId
is the mean of the histogram of Id; ω(k) is the probability of the class which
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includes gray levels up to k and µω is the mean of the class ω. Optimal threshold value k∗

maximizes

σ2
b (k

∗) = max
1≤k≤Ng

σ2
b (k) (2.8)

The last thresholding method we use is Kapur’s algorithm. Similar to the Otsu’s method,

it divides the image histogram into two classes and then utilizes the sum of the entropy of

these two classes as an evaluation function. The value which maximizes this sum is taken

as the optimal threshold value. For two classes A and B, Shannon entropy of these classes

are defined as

H(A) = −
k∑

i=1

pi
ω(k)

ln
pi
ω(k)

(2.9)

H(B) = −
Ng∑

i=k+1

pi
[1− ω(k)]

ln
pi

[1− ω(k)]
(2.10)

where the histogram is divided at gray level k. The optimal threshold value k∗ maximizes

the sum

ϕ(k) = H(A) +H(B), ϕ(k∗) = max
1≤k≤Ng

ϕ(k) (2.11)

To explain different change detection methods, we pick the Adana test image set given

in Figure 2.2. The two images, taken in different times, in this set represent a region with

construction activity. These images are registered. Therefore, they can be used for pixelwise

change detection methods. The difference between these two images is clearly seen. We will

use this image set in the following sections also.

The difference image obtained from the Adana image set is as in Figure 2.3.a. This image

is color coded with the color scale given next to it. We also provide the thresholding result

in Figure 2.3.b. In thresholding, we benefit from Kapur’s method.
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Figure 2.2. Images taken at two different times from a developing region of Adana.

a. b.

Figure 2.3. Image differencing applied to the Adana image set: a. The difference image; b.

Thresholded version
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Griffiths [7] used image differencing for estimating the urban change. He used Landsat

TM (30 m resolution) data, SPOT XS (20 m resolution) multispectral data and SPOT

panchromatic (10 m resolution) data in his study. He proposed some refinements to image

differencing for the purpose of finding urban change. An urban mask is produced from the

SPOT panchromatic data. Griffiths indicated that mix of buildings, streets and small gardens

in urban areas produces a highly textured appearance compared with the much smoother

texture of arable fields. He used a standard deviation filter to quantify the texture. Urban

mask was multiplied by the difference image to eliminate non-urban areas. Furthermore,

he refined the results based on a previous study. In this technique, changes that occur far

from the urban areas are assumed to be non-urban change. This is because new urban

development generally occurs at the periphery of existing urban areas. Griffiths presented

his results for each technique by comparing them with visual interpretation.

Saksa et al. [8] used image differencing for detecting clear cut areas in boreal forests. They

tested three methods using Landsat satellite imagery and aerial photographs as: pixel-

by-pixel differencing and segmentation, pixel block-level differencing and thresholding,

and pre-segmentation and unsupervised classification. In the first method, they found the

difference image. Then they used a segmentation algorithm to delineate the clear cut areas.

In the second method, they included neighboring pixels into the calculation of the difference

image. Therefore, negative effects of misregistration is reduced in the resulting image. In the

third method, they first segmented the images. Then, they obtained a segment-level image

difference. They labeled clear cut areas by using an unsupervised classification algorithm.

Saksa et al. concluded that predelineated segments or pixel blocks should be used for image

differencing in order to decrease the amount of misinterpreted small areas.

Lu et al. [9] compared 10 binary change detection methods to detect land cover change

in Amazon tropical regions. They used TM (Thematic Mapper) data in their study. In

addition to band differencing, they tested a modified version of image differencing where

pixels are accepted as changed when majority of the bands indicate change. For six-band

TM data, if four of the bands indicate change then the pixel value is labeled as changed.

They reported that difference of TM band 5, modified image differencing and principal

component differencing produced best results.
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2.2. IMAGE RATIOING

In this method, images are compared pixel by pixel as in the previous method. Similar to

image differencing, images must be registered before applying image rationing. The ratio

image is calculated by

Ir(x, y) =
I1(x, y)

Ĩ2(x, y)
(2.12)

In Eqn. 2.12, the Ir image takes values in the range [0,∞). If the intensity values are equal,

it takes the value 1. To normalize the value of Ir, we can benefit from the arctangent function

as

Ir(x, y) = arctan

(
I1(x, y)

Ĩ2(x, y)

)
− π

4
(2.13)

Now, ratio image takes values in the range [−π/4, π/4]. To threshold Ir, we can benefit

from the same methods as we did in the previous section. In Figure 2.4.a, we provide the Ir

image obtained from the Adana test image set. We provide the thresholded version of this

image in Figure 2.4.b. As in the previous section, we used Kapur’s method to obtain the

optimal threshold value.

a. b.

Figure 2.4. Image ratio applied to the Adana image set: a. The ratio image; b. Thresholded

version
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2.3. IMAGE REGRESSION

In image regression, the I2 image (obtained from t2) is assumed to be a linear function of

the I1 image (obtained from t1). Under this assumption, we can find an estimate of I2 by

using least-squares regression as

Î2(x, y) = b+ aI1(x, y) (2.14)

To estimate the parameters a and b, we define the squared error between the measured data

and predicted data (for each pixel) as

e2 = (I2(x, y)− Î2(x, y))
2 = (I2(x, y)− b− aI1(x, y))

2 (2.15)

The sum of the squared error becomes

S =
∑

e2 =
∑

(I2(x, y)− b− aI1(x, y))
2 (2.16)

Here, we assume that we have N observations. We want to find the parameters a and b to

minimize the sum of the squared error S. Therefore, we first the partial derivatives of S with

respect to a and b as

∂S

∂b
= −2

∑
(I2(x, y)− b− aI1(x, y)) (2.17)

∂S

∂a
= −2

∑
[(I2(x, y)− b− aI1(x, y))I1(x, y)] (2.18)

By equating Eqn. 2.17 and 2.18 to zero, we obtain two equations with two unknowns as

0 =
∑

I2(x, y)−
∑

b−
∑

aI1(x, y) (2.19)

0 =
∑

I2(x, y)I1(x, y)−
∑

bI1(x, y)−
∑

aI1(x, y)
2 (2.20)
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Solving these equations, we obtain

a =
n
∑N

n=1 I2(xn, yn)I1(xn, yn)−
∑N

n=1 I2(xn, yn)
∑N

n=1 I1(xn, yn)

n
∑N

n=1 I1(xn, yn)
2 − (

∑N
n=1 I1(xn, yn))

2
(2.21)

b =

∑N
n=1 I2(xn, yn)− a

∑N
n=1 I1(xn, yn)

N
(2.22)

We manually picked the observations (for n = 1, . . . , N ) from I1 and I2 (from the

unchanged areas). As a result, the estimate of I2 carries unimportant differences due

to factors referred in the image differencing section. When we subtract I2 from Î2 as

Id(x, y) = I2(x, y) − Î2(x, y), we expect to find the changes originating from land cover.

When we apply this method to the normalized I2 (Ĩ2), we further eliminate the insignificant

changes that still remain after normalization. Consequently, this technique gives slightly

better performance than image differencing.

We provide the difference image obtained by image regression using our Adana image test

set in Figure 2.5.a. We provide the thresholded version of this image in Figure 2.5.b. As in

the previous sections, we benefit from Kapur’s method in threshold selection.

a. b.

Figure 2.5. Image difference after regression applied to the Adana image set: a. The

difference image; b. Thresholded version
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2.4. CHANGE VECTOR ANALYSIS

Change Vector Analysis (CVA) is a change analysis technique where multiple image bands

can be analyzed simultaneously. As its name suggests, CVA does not only function as a

change detection method but also helps analyzing and classifying change. In CVA, pixel

values are vectors of spectral bands. Change vectors (CV) are calculated by subtracting

vectors pixel by pixel as in image differencing. Magnitude and direction of the change

vectors are used for change analysis. In Figure 2.6 a changed pixel and an unchanged pixel

are given in a two-band spectral space.

Figure 2.6. Unchanged and changed pixel vectors in a 2-D spectral space

Change vector magnitude can be used as a measure of change and thus for change and

no-change classification. Under ideal conditions, such as perfect image registration and

normalization, unchanged pixel magnitudes must be equal to zero. However, this is not

the case in practical applications. Therefore, thresholding must be applied to the change

magnitude. While change vector magnitude behaves like a multi-band version of the

image differencing, change direction gives us information about the type of change. This

information is often more valuable than the amount of change, since in most applications

we are interested in a specific type of change.

In application, the number of CV directions are uncountable. Therefore, it is necessary to

divide the CV space into subsets and assign directions accordingly. A simple discretization
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Figure 2.7. Change vector space divided into four subsets

of CV directions can be achieved by dividing the space by its main axes. In Figure 2.7 a

two dimensional CV space is divided into four subsets (quadrants) by the axis of band 1 and

band 2. For three band images, subsets can be octants. CVs can be assigned to subsets via

signs of their components. For an n-D space components, the CVs can take 2n different sign

combinations so that there exists 2n subsets.

As mentioned earlier, CV directions can be used in classifying the change. By using subsets,

we can determine 2n classes of change for an n dimensional space. CVA can also be

applied to transformed data such as Kauth-Thomas Transformation (KTT) (explained in

Section 3.2) rather than to raw data. For instance from KTT space, a simultaneous increase

in the greenness feature and decrease in the brightness feature indicates gain of vegetation.

Therefore, in the change vector space of KTT bands, we can assign this class of change

(change towards vegetation) to the subsets where greenness is positive and brightness is

negative.

CVA for change detection is introduced by Malila [10]. Malila used the KTT with

CVA and reported results for change of forestation. Change directions were used to
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distinguish between changes due to harvesting and changes due to regrowth. Jonhnson et

al. [11] provided a comprehensive investigation of CVA. They provided the details to the

implementation of CVA after a functional description. They reported that, CVA can be used

in applications which require a full-dimensional data processing and analysis technique and

require capturing all changes. They also found CVA to be useful for applications in which:

the changes of interest and their spectral manifestation are not well known a priori; changes

of interest are known or thought to have high spectral variability; and/or changes in both

land cover type and condition may be of interest.

In Figure 2.8.a, we provide the change vector magnitude image which can be used for

change and no-change classification. In Figure 2.8.b the change vector magnitude image

is thresholded by Kapur’s algorithm.
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a. b.

Figure 2.8. CVA (in terms of magnitude value) applied to the Adana image set: a. The

magnitude image; b. Thresholded version

2.5. PIXELWISE FUZZY XOR OPERATOR

The last method for pixelwise change detection is a novel contribution to the community. In

this method, the binary XOR operation is taken as a benchmark and its fuzzy version is used

for change detection. Our rationale is as follows. Assume that we have two binary images

(composed of only ones and zeros) and we want to detect the changed pixels in these images.

Each pixel p(x, y) in a binary image B is valued according to a characteristic function βB,
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which could also be called the “whiteness” function defined as

p(x, y) = βB(x, y) =

1, ifB(x, y) is white

0, otherwise
(2.23)

Between two pixels p1 and p2 at the same (x, y) coordinates of the two binary images B1

andB2, the existence of a change can only mean that either “p1 is white and p2 is not” or “p1

is not white and p2 is”. This wording directly implies the XOR operation in binary logic.

Hence the obvious solution to the change detection problem is XOR-ing the two binary

images pixel-by-pixel, defined as

C(x, y) = B1(x, y)⊕B2(x, y) (2.24)

This operation gives ‘0’ for pixels having the same values in both images, and gives ‘1’ for

pixels having different values. Therefore, white pixels in the resulting binary image C(x, y)

represent the changed regions.

Unfortunately, this method cannot be applied to panchromatic or multispectral satellite

imagery (having pixel values in a certain range). In order to perform a similar change

detection on satellite imagery, we propose a fuzzy representation for the images and a

corresponding change detection method on a combination of fuzzy and crisp (binary)

operations.

Panchromatic images are composed of pixels with values p(x, y) in a certain range.

Normalizing these values and mapping them to the range [0, 1] effectively translates the

image into a fuzzy set, whose elements (pixels) have membership grades in proportion to

their “whiteness”. The membership grade g(x, y) of each pixel p(x, y) in the grayscale
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image G is thus defined by the fuzzy membership function µG as

g(x, y) = µG(x, y) =



1.00, if G(x, y) is pure white

... ...

0.50, if G(x, y) is gray

... ...

0.00, if G(x, y) is pure black

(2.25)

Comparison of two binary images involves the crisp question “Are these two pixels

different?”. Whereas a fuzzy comparison of two panchromatic images involves the fuzzy

question “How different are these two pixels?”. Also the question of “Above what amount of

difference shall the two pixels be labeled as changed?”. The amount of difference between

gray level values in the image domain directly corresponds to the difference between the

degrees of membership in the fuzzy domain. For this particular application, the fuzzy

complement (NOT) operation, defined as

ḡ(x, y) = µG(x, y) = 1− g(x, y) (2.26)

and the algebraic representation of the fuzzy intersection (AND) operation, defined as the

multiplication of membership functions

µG1∩G2 = µG1(x, y)µG2(x, y) = g1(x, y)g2(x, y) (2.27)

were used to obtain a fuzzy difference metric [12].

In a manner similar to the binary case, the measure of change between two pixels p1 and p2

is given by the degree of truth of the following statement: either “p1 is lighter AND p2 is

darker” OR “p1 is darker AND p2 is lighter”; which can be rephrased as, either “p1 has a high

membership grade AND p2 has a low membership grade” OR “p1 has a low membership

grade AND p2 has a high membership grade”.
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Considering that “having a low membership grade” is the opposite of “having a high

membership grade”, the former statement’s degree of truth is the complement of the latter’s,

and the degree of truth in “having a high membership grade” is equivalent to the membership

grade g(x, y) itself. Consequently, the above fuzzy rule can be formulated as

C(x, y) = µ(G1∩Ḡ2)∪(Ḡ1∩G2)(x, y) = (g1(x, y)ḡ2(x, y)) ∪ (ḡ1(x, y)g2(x, y)) (2.28)

The fuzzy value C(x, y) represents the measure of change between two images at

coordinates (x, y). The decision of a significant change can be made by means of applying

an appropriate threshold and converting C(x, y) to a crisp YES/NO value. Experiments

have shown that, the results from the two fuzzy AND operations are distributed in a way

that automatically indicates an appropriate threshold for defuzzification. More explicitly,

threshold values are obtained for both fuzzy AND operations from τ = argmax(Ha)+2σa.

Here, Ha is the histogram of the corresponding fuzzy AND operation and σa is the standard

deviation of the corresponding fuzzy AND operation. In fact, applying this threshold and

converting the fuzzy AND results to a crisp binary value, and then combining them with the

binary OR operator yielded better results in detecting changed regions in satellite images.

Therefore, the proposed method was eventually established as an ensemble of both fuzzy

and binary logic operations.

We provide the images obtained by fuzzy AND operations using our Adana images in

Figure 2.9.a and Figure 2.9.b. We provide the thresholded version after finding the C(x, y)

in Figure 2.9.c.
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a. b.

c.

Figure 2.9. Fuzzy XOR applied to the Adana image set: a. Fuzzy AND (g1(x, y)ḡ2(x, y));

b. Fuzzy AND (ḡ1(x, y)g2(x, y)); c. Thresholded version
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3. TRANSFORMATION BASED METHODS

This chapter deals with change detection methods based on color or multispectral space

transformations. They are based on Principal Component Analysis, Kauth-Thomas

transformation, and vegetation indices.

3.1. PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA is the transformation of the multivariate data to a new set of components where data

variation can be expressed by a few first components. PCA achieves this by removing the

redundancy in the data set. This redundancy is quantified by the correlation of the variables,

and PCA transforms a correlated set of data to an uncorrelated set.

In terms of linear algebra what PCA does is a basis rotation. The basis rotation can be

defined in an algorithmic manner as follows. Variance of the projections onto the first basis

vector (e1) takes its maximum after the rotation. Under the assumption that e1 is fixed

(e.g. rotation axis is e1), variance of the projections onto the second basis vector (e2) takes

its possible maximum after the rotation. Variance of the projections onto the basis vector

em takes its possible maximum under the assumption that vectors from the previous steps

(e1, e2, . . . , em−1) are fixed. Data is redefined under a new basis (e1, e2, . . . , en).

PCA is algebraically defined as follows. The sample covariance of N observations of K

variables (X1, X2, . . . , XK) is the K by K matrix Cx = [cjk] with the entries

cjk =
1

N − 1

N∑
i=1

(xij − µj)(xik − µk) (3.1)

where xij is the ith observation of the jth variable. µj and µk are the mean of jth and kth

variables respectively. Based on these, the PCA transformation can be defined as Y = XU

where U is the K by K rotation matrix whose columns are the eigenvectors of Cx. X is

the N by K data matrix whose columns represent the variables and its rows represent the
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observations. Columns of Y are Principal Components (PCs). Correlation of the variables

to the PCs is a special measure and named as principal component loadings. The principal

component loadings indicate how much variance in each of the variables is accounted for

by the PCs.

Application of the PCA to change detection requires the analysis of the PC loadings.

There exist two approaches to analyze the multi-temporal images in the context of change

detection. The first approach is called separate rotation. In this approach, the PCA is applied

to multi-band images separately. Then, any of the change detection techniques such as image

differencing is applied to the PCs. The second approach is called merged rotation. In this

approach, data from the bitemporal images are merged into one set and PCA is applied to

it. PCs which account for the change are selected via analysis of the PC loadings. These

PCs have negative correlation to the bitemporal data. Negative correlation is found in PCs

whose loadings are positive to one image and negative to the other image.

Fung and LeDrew [13] applied PCA to land cover change detection. They calculated the

eigenvectors from the correlation matrix and covariance matrix, and compared the change

detection performance when PCA is applied using each eigenvector. They reported that

PCA with eigenvectors calculated from the correlation matrix gives better results. They

first reported results from the separate rotation of the multi-temporal data. They indicated

that a careful examination of the PC loadings is necessary before applying change detection

to PCs found after separate rotation. Second, they analyzed the results from the merged

rotation. They listed the PCs which are responsible for the change in terms of brightness

and greenness. They reported that PC loadings from the correlation matrix are better aligned

compared to PC loadings from the covariance matrix. In applying the PCA to our test

images, we observed that the separate rotation approach has given better results compared

to the merged rotation approach.

We used multi-spectral images in our PCA application. Therefore, we benefit from the

near infrared band as well as visible bands red, green, and blue. Since multi-spectral

images have lower resolution compared to panchromatic counterparts, results are not as

rich as panchromatic images in terms of visual interpretation. Still PCA gives good
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results compared to the pixel based methods. In Figure 3.1, we provide the differences

of principal components for the Adana image set. As in the previous sections, we benefit

from Kapur’s method in threshold selection. As can be seen, the difference of the third

principal components emphasized the changes fairly well.

3.2. KAUTH-THOMAS TRANSFORMATION

Kauth-Thomas transformation (KTT) is a linear transformation from the multi-spectral data

space to a new space where dimensions are directly attributed to analyze the land cover [14].

In fact, similar to PCA, KTT is a redefinition of the data. Different from PCA, KTT is a

fixed transformation and is described as


br

gr

ye

ns

 =


0.433 0.632 0.586 0.264

−0.290 −0.562 0.6 0.491

−0.829 0.522 −0.039 0.194

0.223 0.012 −0.543 0.810




g

r

n1

n2

 (3.2)

where X is the multi-spectral data matrix. In the original work, X consists of data from the

green(g), red(r) and two near infrared (n1, n2) bands of the Landsat Multi Spectral Scanner

(MSS) [14]. KTT features are brightness, greenness, yellowness and non-such.

Fixed character of this transformation is explained by the invariant nature of the correlation

between the visible bands and the near infrared bands. While the correlation between the

visible bands and the correlation between the near infrared bands are always high, the

correlation between the visible bands and the near infrared bands is always low. Kauth

and Thomas described this character by visualizing the four band data via their principal

components. They had a three dimensional representation of the data which resembles a

tasseled cap. Hence, this transformation is also known as the Tasseled Cap transformation.

By this character, KTT is scene independent and often referred as a better choice against

PCA.

Kauth and Thomas [14] used this transformation to describe the lifecycle of the croplands.
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Figure 3.1. Difference of principal components for the Adana image set: a. Difference of

the first PCs; c. Difference of the second PCs; e. Difference of the third PCs; g. Difference

of the fourth PCs; b.,d.,f. and h. Thresholded versions
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They used the brightness feature to find the soil where crop grows on. Increase in the

greenness feature indicates the growth of crop until it matures. At the end of the lifecycle,

the crop reaches to senescent stage and yellowness feature increases in parallel.

Seto et al. [15] applied the Kauth-Thomas transformation for land use change detection in a

fast developing area, The Pearl River Delta in the Peoples Republic of China. They referred

to the direct association between the physical scene attributes and KTT bands and found

that KTT space is easily comprehensible. Land cover types such as forest and urban are

determined by the spectral locations in the KTT space (e.g. amount of brightness, greenness

and yellowness). Land use change, such as agricultural to urban, is classified based on the

change from one land cover type to another.

In applying KTT to our test images, we first need a transformation matrix convenient for

Ikonos images. As defined earlier, KTT is applied to the data from green, red and two near

infrared bands. However, in Ikonos images we have only one near infrared band. In order

to use KTT matrix with green, red and one near infrared band, we first remove the fourth

row and fourth column of the matrix. Since resulting matrix is not orthogonal, we applied

Gram-Schmidt orthogonalization [16] and obtain


br

gr

ye

 =


0.4489 0.6552 0.6076

−0.2669 −0.5506 0.7910

−0.8528 0.5172 0.0723



g

r

n

 (3.3)

We provide the differences of brightness, greenness and yellowness bands for the Adana

image set in Figure 3.2. As in the previous sections, we used Kapur’s algorithm in finding

the threshold value. As can be seen, the brightness and yellowness bands indicate changed

regions.

3.3. VEGETATION INDEX DIFFERENCING

Vegetation indices are obtained by transforming the data from the near infrared and red

bands of the multi-spectral data. They are used as a measure of vegetation which depends
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Figure 3.2. Difference of KTT bands for the Adana image set: a. Difference of the

brightness; c. Difference of the greenness; e. Difference of the yellowness; b.,d. and f.

Thresholded versions
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on the fact that vegetation absorbs most of the light in the red band and equally reflects in

the infrared band. There are several types of vegetation indices such as Ratio Vegetation

Index (RVI), Normalized Difference Vegetation Index (NDVI), Transformed Vegetation

Index (TVI), Soil Adjusted Vegetation Index (SAVI), and Modified Soil Adjusted Vegetation

Index (MSAVI). These indices are defined as

RV I =
n

r
(3.4)

NDV I =
n− r

n+ r
(3.5)

TV I =

√
n− r

n+ r
+ 0.5 (3.6)

SAV I =
n− r

n− r + L
(1 + L) (3.7)

MSAV I =
2n+ 1−

√
(2n+ 1)2 − 8(n− r)

2
(3.8)

where n is the near infrared band and r is the red band. L in SAVI confirms the same bounds

between NDVI and SAVI.

RVI is an earlier attempt for explaining vegetation by band ratios and introduced in [17].

NDVI and TVI are proposed as an alternative to RVI [18]. Jackson and Huete [19] showed

that NDVI is more sensitive to sparse vegetation compared to RVI, but less sensitive to dense

vegetation. Lautenschlager and Perry [20] mathematically showed that RVI and NDVI are

highly correlated and thus contains the same information. Huete introduced the SAVI to

minimize soil brightness influences from spectral vegetation indices involving red and near-

infrared wavelengths [21]. He studied on cotton and grassland canopies and showed that

SAVI can eliminate soil originating variations in vegetation indices. MSAVI is defined in

[22].

In terms of change detection, vegetation indices can be used for measuring alteration of
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a vegetation area in time. Any of the pixel based methods described in this study can be

applied using vegetation indices for an estimation of change in vegetation.

Lunetta et al. [23] investigated the applicability of high resolution NDVI (250 m), MODUS

NDVI, to land-cover change detection. They studied on a geographic area where biological

diversity and regrowth rates are high. Their results indicate up to 87% correct change

detection rates. Guerra et al. [24] used the MSAVI with bi-temporal Landsat TM (Thematic

Mapper) images for identification of vegetation changes. Guerra et al. distinguished six

types of land-cover from a tropical area based on the spectral locations in the MSAVI space.

They applied normalized image differencing (Eq. 3.9) for quantifying change as

D =
MSAV It2 −MSAV It1
MSAV It2 +MSAV It1

(3.9)

In Figure 3.3, we provide the difference images of RVI, NDVI, TVI and SAVI for our Adana

image set. Unfortunately, none of the indices provided useful results for change detection

on the Adana image set.

3.4. TIME DEPENDENT VEGETATION INDEX

A Time Dependent Vegetation Index (TDVI) is a bi-temporal vegetation index which

calculated by using multi-spectral bands from t1 and t2 [25]. Red and near infrared bands

from different times are involved in the same index formula. In the original paper, Ünsalan

used angle vegetation indices [26] as

ψ =
4

π
arctan

(n
r

)
(3.10)

θ =
4

π
arctan

(
n− r

n+ r

)
(3.11)
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e. f.

g. h.

Figure 3.3. Difference of RVI, NDVI, TVI and SAVI for the Adana image set: a.

Difference of RVI; c. Difference of NDVI; e. Difference of TVI; g. Difference of SAVI;

b.,d.,f. and h. Thresholded versions
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where ψ represents the angle obtained from RVI and θ represents angle obtained from NDVI.

Time dependent form of the angle vegetation indices is defined as

ψt =
4

π
arctan

(
ni

rj

)
(3.12)

θt =
4

π
arctan

(
ni − rj

ni + rj

)
(3.13)

where i and j are the time indices of the near infrared and red bands. For bi-temporal images

i and j can take values from {1, 2}. Ünsalan tested TDVIs for every combination of i and

j and compared them to each other and to the results from image differencing and NDVI

differencing techniques. Among all techniques, time dependent RVI (ψt) produced the best

result. In this study, we extend the previous method by using all the multispectral band

combinations in index calculation.

In Figure 3.4, we provide the following TDVIs for our Adana image set. We used the

percentile thresholding, by 97.5%, in finding the threshold value.

ψ
′

t =
4

π
arctan

(
r2

g1

)
(3.14)

ψ
′′

t =
4

π
arctan

(
r2

b1

)
(3.15)

θ
′

t =
4

π
arctan

(
r2 − g1

r2 + g1

)
(3.16)

θ
′′

t =
4

π
arctan

(
r2 − b1

r2 + b1

)
(3.17)
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Figure 3.4. ψ′
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t applied to the Adana image set: a. ψ′

t; c. ψ′′
t ; e. θ′

t; g. θ′′
t ;

b.,d.,f. and h. Thresholded versions
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3.5. COLOR INVARIANTS

Color invariants are transformations of the color images based on the correlations between

multiple bands. These correlations are between the sensor response of the camera described

in two parts: body reflection and specular reflection [27]. Gevers and Smeulders [28]

evaluated the invariance of several transformations from RGB color space in terms of

sensor responses based on the following criteria: Viewing direction and object geometry,

illumination direction, intensity of the illumination, varying illumination color. They

showed that ratio of sum of the sensor responses are insensitive to surface orientation (object

geometry), illumination direction and illumination intensity. They proposed the following

color invariants based on this information.

c1 = arctan

(
r

max(g, b)

)
(3.18)

c2 = arctan

(
g

max(r, b)

)
(3.19)

c3 = arctan

(
b

max(r, g)

)
(3.20)

Furthermore, they showed that ratio of sum of differences of the sensor responses

is insensitive to highlights (e.g. specular reflectance) as well as surface orientation,

illumination direction and illumination intensity. They proposed the following color

invariants based on this information.

l1 =
(r − g)2

(r − g)2 + (r − b)2 + (g − b)2
(3.21)

l2 =
(r − b)2

(r − g)2 + (r − b)2 + (g − b)2
(3.22)

l3 =
(g − b)2

(r − g)2 + (r − b)2 + (g − b)2
(3.23)
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Gevers and Smeulders pointed out to the trade off between the discriminative power and the

invariance of the color invariants. Suppose that color model A is invariant to illumination

conditions w, x, y and z, and color model B is invariant to illumination conditions y and z

only. Under the illumination conditions where w, x, y and z are uncontrolled (varies from

sample to sample) color model A produces better results than B. On the other hand, the

color model B gives better results than A under the illumination conditions where w and

x are controlled and y and z are uncontrolled. Hence, while the invariance of the color

model increases, its discriminative power decreases. For this reason, Gevers and Smeulders

proposed color invariants for several invariance levels.

In change detection applications, highlights and illumination color are controlled imaging

conditions. Therefore, we need surface orientation and illumination intensity invariant

models. Gevers and Smeulders recommended (c1, c2, c3) color model for this type of

invariance. As in the other transformation based change detection methods, we can apply

any of the pixel based methods after transformation.

In Figure 3.5, we provide the differences of c1, c2, c3 color invariants for our Adana test

image set. As can be seen, c1 and c3 color invariants mostly emphasize shadow regions

in images. Therefore, they can not be used for change detection directly. On the other

hand, difference of the c2 color invariant emphasizes significant changes such as missing

and developing buildings. Hence, it can be used for change detection. In Figure 3.6, we

provide its thresholded version. As can be seen, while some of the important changes are

kept, several other minor changes are enchanted. For this reason, the performance of c2

difference is no better than simple image differencing.
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Figure 3.5. Difference of c1, c2, c3 for the Adana image set

Figure 3.6. Thresholded difference of c2 for the Adana image set
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4. TEXTURE ANALYSIS BASED METHODS

In this chapter, we provide two texture based change detection methods. In both methods,

we calculate the texture descriptors for bitemporal images separately. In order to detect

possible changes, we find their difference. We start with gray level co-occurrence matrix

based texture descriptors next.

4.1. GRAY LEVEL CO-OCCURRENCE MATRIX

Texture analysis focuses on the statistical explanation to the spatial distribution of the

image pixels in a given image. There are several texture analysis methods proposed in the

literature. A frequently used one is Gray Level Co-occurrence Matrix (GLCM) introduced

by Haralick et al. [29]. GLCM entries are number of occurrences of spatial adjacency of

gray tone values in an image. Adjacency is defined by the distance in pixel units. An

occurrence of spatial adjacency of two gray tones is shown in Figure 4.1. In this sample,

gray tones are (41) and (42) and the adjacency is defined as two pixels.

Figure 4.1. Pixels in red circles are adjacent and distance between them is two pixels

In Figure 4.1, adjacent pixels lie on a horizontal line. When we calculate the GLCM

by counting only horizontal adjacency values, we find the zero degree (0o) co-occurrence

matrix. Similarly, we can calculate 45o, 90o and 135o co-occurrence matrices by counting in

these directions. In Figure 4.2, 0o, 45o, 90o and 135o adjacency values for two pixel distance
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are given.

Figure 4.2. Four adjacent pixels of a pixel from four directions

The formal definition of GLCM is as follows. Let I(x, y) be a grayscale image which takes

values from the set G = {1, 2, . . . , Ng}. The horizontal coordinate x of I(x, y) takes values

from the set Lx = {1, 2, . . . , Nx}. The vertical coordinate y of I(x, y) takes values from the

set Ly = {1, 2, . . . , Ny}. Then, the image I(x, y) can be defined as a function from the set

Lx × Ly to G.

The relative frequency of the spatial adjacency of gray tones i and j is mathematically

defined for four directions as

P (i, j, d, 0o) =#{((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx)|

k −m = 0, |l − n| = d, I(k, l) = i, I(m,n) = j} (4.1)

P (i, j, d, 45o) =#{((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx)|

(k −m = d, l − n = −d) or (k −m = −d, l − n = d),

I(k, l) = i, I(m,n) = j} (4.2)
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P (i, j, d, 90o) =#{((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx)|

|k −m| = 0, l − n = d, I(k, l) = i, I(m,n) = j} (4.3)

P (i, j, d, 135o) =#{((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx)|

(k −m = d, l − n = d) or (k −m = −d, l − n = −d),

I(k, l) = i, I(m,n) = j} (4.4)

where d is the adjacency value, # sign indicates the number of occurrences under the given

conditions. As we mentioned earlier, GLCM entities are number of occurrences. Therefore,

i and j are matrix indices and GLCM is an Ng by Ng matrix.

Haralick et al. calculated an average matrix from the four co-occurrence matrices, and used

this matrix in calculating texture features. Thus, extracted features are rotation invariant for

45o of rotation. The average matrix is defined as

P (i, j, d) =
1

4

3∑
n=0

P (i, j, d, n× 45o) (4.5)

Several texture features can be extracted from GLCM. The most useful ones for our purposes
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are as

Contrast:
∑
i

∑
j

(i− j)2P (i, j, d) (4.6)

Correlation:

∑
i

∑
j (ij)P (i, j, d)− µxµy

σxσy
(4.7)

Energy:
∑
i

∑
j

P (i, j, d)2 (4.8)

Inverse Difference Moment (IDM):
∑
i

∑
j

P (i, j, d)

1 + (i− j)2
(4.9)

where µx, µy, σx and σy are the means and standard deviations of the marginal probability

matrices Px =
∑Ng

j=1 P (i, j, d) and Py =
∑Ng

i=1 P (i, j, d).

As far as change detection is concerned, it is obvious that we can measure the amount of

change by finding the difference in the amount of texture. Here, our approach must be

slightly different from the pixel based methods since in texture analysis we study a region.

One appropriate method is dividing the image into smaller windows and calculating texture

features for these. This way, we can calculate differences in texture by comparing the

features window by window. As in the pixel based methods, for a healthy comparison,

images must be geometrically registered.

Tomowskia et al. [30] applied texture analysis methods to detect changes in satellite

imagery. They used four change detection methods as image differencing, image ratioing,

image regression, and PCA. These methods are applied on texture features instead of the

intensity values of the image. Transformations are carried out via GLCM. They benefit

from four texture features as: contrast, correlation, energy and IDM. Texture features are

calculated in different window sizes ranging from 3 × 3 to 13 × 13. The best results were

obtained using 13 × 13 windows. Tomowskia et al. presented 16 change images from

application of four change detection methods with four texture features. Performance of

each application is assessed based on the visual output. They reported the use of PCA with
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the energy feature produced best results.

We now give results from texture analysis applied to our test images. We calculated contrast,

energy, and inverse difference moment features for 13 × 13 windows on our Adana test

image set. We applied image differencing, image ratioing and PCA using texture features.

All change detection methods produced similar results. Therefore, we only present results

from image differencing in Figure 4.3 where the difference images calculated using texture

features are presented. In obtaining the change map, we apply percentile thresholding,

percentile being 97.5%.

4.2. ENTROPY

Entropy is a measure of randomness and can be used in quantifying texture [31]. The formal

definition of entropy is

E =

Ng−1∑
i=0

pi log2 pi (4.10)

where pi is the relative frequency of the intensity levels in the region and Ng is the number

of possible intensity levels.

In using the entropy for change detection, we apply the following strategy. We calculate the

entropy of our test images separately for 11×11 windows around each pixel. For the Adana

test image set, we provide the obtained results in Figure 4.4. As can be seen, developing

regions are well emphasized by the second entropy image.

In our tests, we observed that taking the difference of entropy images does not produce

expected results. Therefore, we first thresholded the images separately, then obtain their

difference. We provide the thresholded (by 80% percentile) entropy images in Figure 4.5.a

and Figure 4.5.b. Then, we obtain the difference by the binary xor operation. To refine

results, we removed noise in the difference image by applying morphological opening with

a disk shaped structuring element. We provide the final result in Figure 4.5.c.
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Figure 4.3. Image differencing applied on GLCM features: a. Difference of the contrast; c.

Difference of the energy; e. Difference of the IDM; b.,d. and f. Thresholded versions

Figure 4.4. Entropy images calculated for test images
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a. b.

c.

Figure 4.5. Change detection by entropy texture feature: a. and b. Thresholded entropy

images; c. The final difference image obtained by entropy texture feature
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5. STRUCTURE BASED METHODS

This chapter deals with change detection methods based on the structure information in

bitemporal images. We define the structure in various ways. In the following sections, we

explore each method in detail.

5.1. EDGE DETECTION

The first method for structural change detection is based on edge information. We obtain the

edge pixels from two images using Canny’s edge detection method [32]. For the registered

image pairs, we expect to have correspondence between edge maps of the two images.

However, direct comparison is not feasible. Although the images can be registered, their

looking angle may not be the same. Moreover, there may be shadow effects. Therefore,

instead of finding the difference of both edge maps, we obtain the connected components

between them [33]. If some parts of the edge map are not matched, then that region is taken

as change.

In Figure 5.1, we provide the edge maps obtained from the Adana image set. In Figure 5.2,

we provide the non-matched edge pixels. These represent the changed areas in the Adana

image set.

Figure 5.1. Edge maps obtained from the Adana image set
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Figure 5.2. Change detection results from the edge map matching of the Adana image set

5.2. GRADIENT MAGNITUDE BASED SUPPORT REGIONS (GMSR)

Similar to edge based change detection, we can represent the edge information by gradient

magnitude based support regions. The GMSR is introduced in a previous study for land

classification [34]. Here, we apply the same methodology as we had done for edge detection

with GMSR at hand. We provide the GMSR obtained for both images in the Adana image

set in Figure 5.3. We provide the change detection results in Figure 5.4.

Figure 5.3. GMSR obtained from the Adana image set

5.3. MATCHED FILTERING

In the matched filtering approach, we assume a generic shape for buildings in the image.

Using the prototype for this shape, we detect buildings in images using the matched filtering

approach. Matched filtering is a standard method for digital communication systems [35]. In

this thesis, we picked the Laplacian of Gaussian (LoG) filter as a generic building shape. We

apply it to both images and obtain high response regions, possibly representing buildings.
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Figure 5.4. Change detection results from the GMSR matching of the Adana image set

After thresholding, we apply the same methodology as we had done in edge detection

approach. We provide the thresholded LoG responses for both Adana images in Figure 5.5.

We provide the change regions detected by this method in Figure 5.6.

Figure 5.5. GMSR obtained from the Adana image set

5.4. MEAN SHIFT SEGMENTATION

Mean shift segmentation is introduced by Comanicu and Meer [36] as an application of

feature space analysis discussed in the same study. They referred to the density estimators

for cluster analysis and in particular to the kernel density estimators. They showed that,

mean shift vectors (obtained after the calculation of the density gradient) can be used for

finding the local maxima points in the feature space. Their feature space formation consists

of both spatial domain information and spectral domain information. For segmentation, they

first applied a mean shift based edge preserving smoothing filter to the images. Then, they

found the segments by delineating the feature space clusters which are the groups of mean

shift filtered image pixels that belong to the same basin of attraction. A basin of attraction
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Figure 5.6. Change detection results from the GMSR matching of the Adana image set

is defined as the set of all locations that converge to the same mode.

As far as change detection is concerned, similar to edge based information, we consider

segmentation of both images and detect changes based on segments. We refine segments

based on their shape information using two region based shape descriptors as area and

solidity [33]. Area is the number of pixels the region contains. Solidity is the ratio between

the area and the area of the convex hull of the region. We eliminate segments having area

greater than a threshold value and solidity less than a threshold value. Finally, we apply

the methodology which we defined for the edge based comparison to the segments to detect

changes. We provide the segments obtained by mean shift clustering and shape refinement

in Figure 5.7. We provide the changed regions in Figure 5.8.

Figure 5.7. Segments obtained from the Adana image set
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Figure 5.8. Change detection results from the segments of the Adana image set

5.5. LOCAL FEATURES

We can describe any object in an image if we can find some distinctive features for it.

Once extracted, these features can be used for recognizing the object in another image

by comparing either their spatial locations or their descriptors. Local feature detectors

try to isolate these features. Lowe [37] pointed out the distinctiveness of the features as

“The features must also be sufficiently distinctive to identify specific objects among many

alternatives. The difficulty of the object recognition problem is due in large part to the lack

of success in finding such image features. However, recent research on the use of dense

local features has shown that efficient recognition can often be achieved by using local

image descriptors sampled at a large number of repeatable locations”. He also refers to the

repeatability of the local features in this quotation. A feature detector should also be able

to find distinctive features at the same location under varying conditions such as scaling or

illumination.

In this section, we propose a new change detection method based on local feature matching.

We use two widely used local feature detectors: Scale Invariant Feature Transform (SIFT)

and Features from Accelerated Segment Test (FAST) [37, 38]. SIFT is a local feature

detector with several valuable properties such as invariance to image scaling, translation,

and rotation, and partial invariance to illumination changes and affine or 3D projection.

FAST is a high-speed feature detector. It targets real-time applications which are short in

processing time.
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Our method proceeds in two steps: matching keypoints(local features) and finding changed

regions. Keypoint matching is applied in a similar manner for SIFT and FAST keypoints.

FAST keypoints are matched as follows. Keypoints in the first image are assumed to be

matched to a keypoint in the second image if they are spatially close. Closeness norm is

determined by fixed threshold values such as dx and dy for two dimensions. In this way,

if a keypoint in the first image is located at (x, y), we search the existence of a keypoint

in a region bounded by [x − dx x + dx] and [y − dy y + dy] in the second image.

For SIFT keypoint matching, in addition to the spatial constraint, we also compare the

feature descriptor distances. Descriptor of the keypoint in the first image is compared to

the descriptor of the keypoints from the previously defined bounded region. If there is a

sufficiently close keypoint, then it is assumed to be matched. No-matched keypoints are

used for finding the change mask. Centered at each non-matched keypoint, a Gaussian with

a fixed variance is added on to the mask. Gaussians are added up to determine the change

density distribution. Finally, a threshold is applied to extract the change region.

We provide the change detection results for the Adana image set for three cases: matching

only SIFT keypoints, matching only FAST keypoints and sum of separate results (SIFT and

FAST). We provide the change detection results obtained by matching SIFT keypoints in

Figure 5.9. In Figure 5.9.a and Figure 5.9.b sum of the Gaussians centered at each non-

matched keypoint is presented for test images. Separate change density distributions are

added up resulting in total change as provided in Figure 5.9.c. The change density function

is thresholded by 90%4 percentile, and the change regions are extracted. The result of this

operation is provided in Figure 5.9. In a similar manner, we provide the change detection

results obtained by matching FAST keypoints in Figure 5.10. Finally, we provide the change

detection results obtained after combining the SIFT and FAST results in Figure 5.11.

5.6. BIPARTITE GRAPH MATCHING

In this section, we propose a novel change detection algorithm based on the graph based

representation of the structural information. Our focus is detecting changes in a specific

region using local features in a graph formalism. To represent the structure, we extract local

features from both images using FAST. Then, we represent each local feature set (extracted
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a. b.

c. d.

Figure 5.9. Change detection using SIFT features: a. and b. Change density distribution for

Adana images; c. Total change density distribution; d. Thresholded version
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a. b.

c. d.

Figure 5.10. Change detection using FAST features: a. and b. Change density distribution

for Adana images; c. Total change density distribution; d. Thresholded version
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a. b.

c. d.

Figure 5.11. Change detection using the combination of FAST and SIFT features: a. and b.

Change density distribution for Adana images; c. Total change density distribution; d.

Thresholded version
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from different images) in a graph formation separately. This allows us to detect changes

using a graph matching method.

To extract the structure information from local features, we represent them in a graph form.

A graph G is represented as G = (V,E), where V is the vertex set and E is the edge matrix

showing the relations between these vertices. Here vertices are local features extracted by

FAST. The edges are formed between them just by their distance. If a distance between two

vertices are small, there will be an edge between them. In this study, we set this difference

value to 10 pixels depending on the characteristics of the objects in the image.

As we form graphs from both images separately, we apply graph matching between them. In

matching graphs, we apply constraints both in spatial domain and in neighborhood. We can

summarize this method as follows. Let the graph formed from the first and second images

be represented as G1(V1, E1) and G2(V2, E2). In these representations, V1 = {f1, ..., fn}

holds the local features from the first image and V2{s1, ..., sm} holds the local features from

the second image. We first take spatial constraints in graph matching. We assume that two

vertices match if the spatial distance between them is smaller than a threshold. In other

saying, fi and gj are said to be matched if ||fi−gj|| < δ, δ being a threshold. This threshold

adds a tolerance to possible image registration errors. Non-matched vertices from both

graphs represent possible changed objects (represented by their local features). Since local

features simply represent a single location, we add a circular tolerance to the non-matched

ones to represent possible change area. We can also add neighborhood information to graph

matching. To do so, we first eliminate vertices having neighbors less than a number. Then,

we match these refined vertices. This way, we eliminate some local features having no

neighbors (possible noise regions).

We provide the local features extracted from the Adana image set in Figure 5.12. We provide

the change detection results with just using spatial constraints and three neighborhood

constraints in Figure 5.13.
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Figure 5.12. Local features extracted by FAST which are used in graph formation.

a. b.

Figure 5.13. Graph matching based comparison results: a. Using only spatial constraints; b.

Adding three neighborhood constraint
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5.7. SHADOW INFORMATION

Shadow in a region gives an indirect information about the elevation of the objects. This

information can not be extracted by the techniques (that we considered so far in this

study). Therefore, it is valuable. Elevation information can be helpful especially in urban

monitoring, since manmade structures have height. In this study, we will use the shadow

information for two dimensional change detection. We benefit from Sırmaçek and Ünsalan’s

study. They used

ψb =
4

π
arctan

(
b− g

b+ g

)
(5.1)

for shadow detection. In this equation, b and g are the blue and green bands of the image.

In detecting changes, we compare the shadow information extracted from times t1 and t2.

Based on these, we estimate the spatial location of the change. In this method, images

must be registered (as in most other change detection techniques) before comparison.

Additionally, images must be taken at the same time of the year for a healthy comparison.

As a final comment, the detected change locations are in terms of shadows. Therefore, they

only represent the changed objects’ shadows.

Our method has three steps. First, we extract shadow indicators by applying ψb to the test

images. Then, we threshold the results and obtain the shadow regions. Finally, we detect

shadow regions that does not exist in the other image. We provide the shadow indicators for

our test images in Figure 5.14. The thresholded (using Kapur’s method) results are given in

Figure 5.15. Finally, we eliminate shadow regions that overlap with any shadow region in

the other image in pixel basis. Remaining regions are accepted as shadow difference. We

provide the obtained results in Figure 5.16. While some new shadow regions are missed,

most of the regions are detected. We note that detected regions are located around the

developing parts of the area.
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Figure 5.14. ψb applied to test images

Figure 5.15. ψb results are threshold by Kapur’s algorithm

Figure 5.16. Shadow differences plotted on the second image
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6. EXPERIMENTS

In this chapter, we provide experimental results obtained from all change detection methods

considered in this study. We first explain the data set used in the experiments. Then, we

provide performance results in tabular form for each change detection method group in

detail.

6.1. THE DATA SET

Our data set consists of images which are extracted from high resolution Ikonos images.

These are acquired from the particular regions of Ankara and Adana in four different times

between years 2001 and 2004. Besides using three band panchromatic images, we also

used their four band multi-spectral versions. Panchromatic Ikonos images have one meter

resolution. Corresponding multi-spectral images have four meter resolution and contain

red, green, blue, and near infra red spectral bands. In our data set, 18 image pairs are

panchromatic (labeled with letter P in suffix) and 17 image pairs are multi-spectral (labeled

with letter M in suffix). Our test images are geometrically registered. Therefore, we did

not need to register them. These images are also radiometrically normalized as discussed in

Section 2.1. We provide a sample set of our test images in Figures 2.2 and 6.1.

6.2. PERFORMANCE TESTS

In evaluating each method, we have a manually generated ground truth image set. In forming

the ground truth, we specifically focused on urban changes. Therefore, we mainly labeled

the changed regions which occurred in the man-made structures such as buildings and road

segments. In Figure 6.2 we provide three ground truth images generated for AdanaP2,

AnkaraP3 and AnkaraP10 image pairs.

In Tables 6.1 and 6.2, we provide number of ground truth pixels (GT) and number of Image

Pixels (IP) for each image. ‘GT Pixels/Image Pixels’ ratio (GT/IP) indicates the amount of

change involved in the specific image pair. We provide the total panchromatic and multi-
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a.

b.

c.

Figure 6.1. Three sample image pairs acquired from Adana and Ankara: a. AdanaP2; b.

AnkaraP3; c. AnkaraP10
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a. b.

c.

Figure 6.2. Ground truth images for three test image pairs: a. AdanaP2; b. AnkaraP3; c.

AnkaraP10
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spectral image pixels in Table 6.3.

Table 6.1. Ground truth pixel information for the panchromatic test image set.

Image Size GT IP GT/IP

AdanaP1 270× 180 5893 48600 0.1213

AdanaP2 260× 220 5500 57200 0.0962

AdanaP3 200× 240 2087 48000 0.0435

AdanaP4 200× 200 7180 40000 0.1795

AdanaP5 260× 400 8383 104000 0.0806

AdanaP6 250× 280 11185 70000 0.1598

AdanaP7 350× 350 18296 122500 0.1494

AdanaP8 290× 440 9549 127600 0.0748

AnkaraP1 700× 700 97684 490000 0.1994

AnkaraP2 468× 477 41573 223236 0.1862

AnkaraP3 550× 445 40931 244750 0.1672

AnkaraP4 780× 350 36525 273000 0.1338

AnkaraP5 850× 760 187970 646000 0.2910

AnkaraP6 490× 520 89876 254800 0.3527

AnkaraP7 340× 330 36074 112200 0.3215

AnkaraP8 250× 310 15800 77500 0.2039

AnkaraP9 360× 340 18878 122400 0.1542

AnkaraP10 160× 400 21215 64000 0.3315

Our comparisons are based on the intersections, unions and complements of the ground truth

and the result set. We use four definitions as True Positive (TP ), False Positive (FP ), True

Negative (TN ), and False Negative (FN ). In terms of ground truth set (GT ) and the result
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Table 6.2. Ground truth pixel information for the multi-spectral test image set.

Image Size GT IP GT/IP

AdanaM1 65× 60 426 3900 0.1092

AdanaM2 120× 140 1386 16800 0.0825

AdanaM3 140× 260 13993 36400 0.3844

AdanaM4 75× 70 381 5250 0.0726

AdanaM5 100× 90 2063 9000 0.2292

AdanaM6 90× 90 1019 8100 0.1258

AdanaM7 120× 100 1571 12000 0.1309

AdanaM8 90× 70 1316 6300 0.2089

AnkaraM1 290× 210 4724 60900 0.0776

AnkaraM2 150× 250 6454 37500 0.1721

AnkaraM3 80× 155 4276 12400 0.3448

AnkaraM4 80× 70 1296 5600 0.2314

AnkaraM5 90× 75 2279 6750 0.3376

AnkaraM6 65× 100 1610 6500 0.2477

AnkaraM7 100× 80 1084 8000 0.1355

AnkaraM8 90× 90 1351 8100 0.1668

AnkaraM9 100× 100 1268 10000 0.1268

Table 6.3. Ground truth total pixel information for panchromatic images and multi-spectral

images.

Image Type Total GT Total IP Total GT/IP

Panchromatic 654599 3125786 0.2094

Multi-spectral 46497 253500 0.1834
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set (RE) these quantities are defined as

TP = GT ∩RE (6.1)

FP = RE −GT (6.2)

TN = (GT ∪RT )c (6.3)

FN = GT −RE (6.4)

where ‘-’ sign is the set-theoretic difference and superscript ‘c’ is the set complement. In

Figure 6.3, we provide these four set regions.

Figure 6.3. Pixel correspondence between the ground truth set and the result set

In terms of pixel based comparison, TP represent the number of change pixels correctly

detected; FP represent the number of no-change pixels incorrectly labeled as change by the

method; TN represent the number of no-change pixels correct detected; and FN represent

the number of change pixels incorrectly labeled as no-change by the method. Based on

these quantities, we benefit from three performance criteria as: The percentage correct

classification (PCC), the Jaccard coefficient (Jaccard), and the Yule coefficient (Y ule)
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[4, 39]. These are defined as

PCC =
TP + TN

TP + FP + TN + FN
(6.5)

Jaccard =
TP

TP + FP + FN
(6.6)

Y ule =
TP

TP + FP
+

TN

TN + FP
− 1 (6.7)

PCC is the most common performance measure. Literally it is the comparison of the

truly found pixels to the whole pixel set. However, this measure is not sufficient for our

comparisons for images containing little change. From Tables 6.1 and 6.2, we can see that

‘GT/IP’ value can drop as low as 0.043 which indicates too little change. In such cases, any

method can get very high PCC rating by just labeling all pixels as negative. TN dominates

the PCC measure and ratings can easily reach one. In order to avoid this situation, we use

the Jaccard measure. This measure excludes TN in its formulation. Y ule coefficient gives

a measure of association between the result set and the ground truth. PCC and Jaccard

measures are in the range [0 1]. The Y ule measure is in the range [−1 1]. The higher these

measures, the better the performance.

6.2.1. Pixel Based Change Detection Methods

We start giving our test results with pixel based methods. Pixel based methods use only

panchromatic image pairs. Therefore, in these tests we used only 18 image pairs from our

database. Instead of giving results for each image separately, we provide the total image

statistics. To this end, we sum TN, TP, FP, and FN for each image and then calculate the

performance measures. In Table 6.4 performance measures are provided for pixel based

methods. Results are obtained using Otsu’s algorithm.

As can be seen in Table 6.4, image differencing, image regression, and CVA methods

produced similar results. Image ratioing produced better Jaccard rating and worse Y ule

rating. This indicates that, while it finds more TP pixels than other methods, it labels
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Table 6.4. Performance measures for pixel based methods using Otsu’s method.

TP TN FP FN PCC Jaccard Yule

Image differencing 139599 2386573 84614 515000 0.8082 0.1888 0.4451

Image ratioing 171727 2345767 125420 482872 0.8054 0.2202 0.4072

Image regression 141249 2366909 104278 513350 0.8024 0.1861 0.3971

CVA 132453 2393494 77693 522146 0.8081 0.1809 0.4512

Fuzzy XOR 72034 2435920 35267 582565 0.8023 0.1044 0.4783

noise pixels as well. Fuzzy XOR method produced similar PCC rating compared to other

methods, but it failed to find comparable TP pixels using Otsu’s method.

6.2.2. Transformation Based Change Detection Methods

We provide performance test results for transformation based methods in Table 6.5. Results

are obtained using Otsu’s method. First four rows of the table are principal component

results. Since we used four band multispectral images in PCA, we found four principal

components. We used separate rotation type PCA (Section 3.1). First PC produced results

close to pixel based methods. Other principal components produced poor results, even the

second PC produced negative Y ule rating. Low PCC and Y ule ratings are due to the noisy

output of these principal components. For the KTT method, the brightness band performed

best. Other bands are not so bad, but not close to pixel based methods in terms of the

Jaccard measure. Vegetation indices RVI, NDVI, TVI, and SAVI performed fairly well.

For time-dependent vegetation indices (TDVI), we tested four of them. In their formulation

r2 is the red band from t2, and g1 and b1 are green and blue bands from t1. TDVI2 and

TDV4 which use red and blue bands produced better results. High PCC and Y ule ratings

indicate that threshold values can be decreased for higher Jaccard rating. Color invariant

method produced poor results.
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Table 6.5. Performance measures for transformation based methods using Otsu’s method.

TP TN FP FN PCC Jaccard Yule

First PC 8859 199184 7819 37638 0.8207 0.1631 0.3722

Second PC 3519 190445 16558 42978 0.7651 0.0558 -0.0088

Third PC 3928 197725 9278 42569 0.7955 0.0704 0.1203

Fourth PC 2409 197068 9935 44088 0.7869 0.0427 0.0123

KTT-brightness 9750 201605 5398 36747 0.8337 0.1879 0.4895

KTT-greenness 8122 198718 8285 38375 0.8159 0.1483 0.3332

KTT-yellowness 8022 201363 5640 38475 0.8260 0.1539 0.4268

RVI 9409 199450 7553 37088 0.8239 0.1741 0.3979

NDVI 9387 199579 7424 37110 0.8243 0.1741 0.4016

TVI 9830 199268 7735 36667 0.8248 0.1813 0.4042

SAVI 8646 199113 7890 37851 0.8196 0.1590 0.3631

TDVI1 4173 205078 1925 42324 0.8254 0.0862 0.5132

TDVI2 6093 205327 1676 40404 0.8340 0.1265 0.6198

TDVI3 4173 205078 1925 42324 0.8254 0.0862 0.5132

TDVI4 6093 205327 1676 40404 0.8340 0.1265 0.6198

c2 12282 2440180 31007 642317 0.7846 0.0179 0.0753
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6.2.3. Texture Based Change Detection Methods

We provide the texture based change detection results in Table 6.6 using Otsu’s method.

For entropy method 11 × 11 sliding window is used. For GLCM, 13 × 13 sliding window

used. As for GLCM features, Contrast, Energy and Inverse Difference Moment (IDM) are

calculated. PCC ratings are lower than all pixel methods for all texture based methods.

Y ule ratings are also poor compared to pixel based methods. In terms of the Jaccard

measure, IDM produced best result but with a very poor PCC and Y ule rating.

Table 6.6. Performance measures for texture based methods using Otsu’s method.

TP TN FP FN PCC Jaccard Yule

Entropy 111029 2344253 126934 543570 0.7855 0.1421 0.2784

Contrast 179817 2190678 280509 474782 0.7584 0.1923 0.2125

Energy 244870 1978734 492453 409729 0.7114 0.2135 0.1606

IDM 276922 1933660 537527 377677 0.7072 0.2323 0.1766

6.2.4. Comparison of Thresholding Algorithms

Up to this point, we only provided change detection results for Otsu’s method. Now, we

evaluate the effect of Kapur’s algorithm and percentile thresholding in change detection

performance. Kapur’s algorithm determines the threshold value automatically. However, a

percent value should be determined for percentile thresholding. Therefore, we tested change

detection methods starting from 99.0% to 75%. Decreasing the percentile value added more

TP to the results. This led to an increase in the Jaccard measure. Rate of increase was

high for the higher percentile values, and it gets lower when we drop the percentile to 75%.

We demonstrate this behavior for image differencing method in Table 6.7. On this table, we

focused on the Jaccard measure. As a reasonable level, we pick the percentile to be 85 %

and applied it to all our methods.

We compared percentile thresholding, Otsu’s method and Kapur’s method using results

from pixel based methods in Figure 6.4. We compared the PCC, Jaccard and Y ule

ratings produced by thresholding algorithms. If a thresholding algorithm produced better
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Table 6.7. Effect of the percentile value on the performance measures.

Percentile (%) TP TN FP FN PCC Jaccard Yule

99.0 17358 2465098 6089 637241 0.7942 0.0263 0.5349

97.5 43815 2451981 19206 610784 0.7985 0.0650 0.4958

95.0 86351 2425828 45359 568248 0.8037 0.1234 0.4658

90.0 164595 2360764 110423 490004 0.8079 0.2152 0.4266

85.0 231113 2279769 191418 423486 0.8033 0.2732 0.3903

80.0 286262 2184580 286607 368337 0.7905 0.3041 0.3554

75.0 365591 1954999 473481 283115 0.7541 0.3258 0.3092

PCC, Jaccard and Y ule rating compared to another algorithm, then we say that algorithm

performed better for the specific change detection method. Otsu’s method performed better

than Kapur’s method when used for image differencing, image regression and CVA.

Thresholding algorithms are compared in terms of PCA and KTT methods in Figure 6.5.

Otsu’s method performed better than Kapur’s method when used for KTT brightness and

greenness bands.

We compared thresholding algorithms using the results from vegetation indices, TDVIs and

color invariant in Figure 6.6. For RVI and NDVI, Kapur’s method performed better than

other algorithms. Otsu’s method performed better than Kapur’s algorithm when used with

TVI and SAVI. Percentile thresholding performed better than Kapur’s method for TDVI and

color invariant.

We finally compared thresholding algorithms in terms of texture analysis based methods in

Figure 6.7. Otsu’s method performed better than Kapur’s method when used with entropy

based change detection. Percentile thresholding performed better than Otsu’s method when

used with contrast feature of the GLCM.
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Figure 6.4. Thresholding algorithms are compared in terms of pixel based methods

Figure 6.5. Thresholding algorithms are compared in terms of PCA and KTT
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Figure 6.6. Thresholding algorithms are compared in terms of vegetation indices, TDVIs

and color invariant

Figure 6.7. Thresholding algorithms are compared in terms of texture based change

detection methods
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6.2.5. Structure Based Change Detection Methods

So far we provided results based on the comparison of the methods to a ground truth in

pixel basis. However, this can not be the case for structural methods, since every structural

method generates different type of output. For example, edge based comparison produces

thin lines representing object edges; graph matching based method produces only points;

segment based method measures the change in segment basis. Thus, in structural method

tests, we assume that smallest element a method’s output can contain is an object. Objects

are connected components which are set of spatially adjacent pixels. In order to handle

object based comparison, we represented our ground truth database in a way that the ground

truth is represented by unconnected objects. We removed some parts such as roads and areas

between structures which connect several objects. Based on this definition, the number of

objects in images AdanaP1 to AdanaP8 and AnkaraP1 to AnkaraP10 are [18, 10, 5, 14,

6, 9, 15, 14, 33, 75, 47, 46, 215, 113, 29, 21, 19, 28].

As we did for the pixel based methods, we need to find some comparison metrics between

the ground truth set and the result set. We provide following statistics before we define our

performance criteria for object based comparison. ‘TP’ is the number of truly found objects

in the ground truth image. Objects are assumed to be truly found if any object in the result

image overlaps a ground truth object. We also refer to these objects as matching objects.

‘reTrue’ is the number of objects in the result image which matches an object in the ground

truth image. ‘FN’ is the number of objects in the ground truth image which are labeled as

negative by the method. ‘reFalse’ is the number of objects in the result image which do not

overlap any object in the ground truth image. Based on these measures, we benefit from two

performance criteria named as Detection Percentage (DP) and Branching Factor (BF) used

in [40]. These measures are defined as

DP =
TP

TP + FN
(6.8)

BF =
reTrue

reTrue+ reFalse
(6.9)
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Detection percentage is the comparison of the number of truly found objects to the number

of ground truth objects. Branching factor decreases in proportion to the increase in the

amount of result image objects which do not match any ground truth objects. Branching

factor is an indication of increasing noise objects in the result image. A result image can

obtain maximum detection percentage and branching factor by rendering whole image as

true. In this case all ground truth objects are matched and since there is only one object in

the result image, ‘reTrue’ is equal to 1 and ‘reFalse’ is equal to zero. As a result DP and

BF are equal to their maximum value 1. In order to prevent this case we additionally, define

the Pixel Correspondence (PCorr) measure

PCorr =
rePxlOverlap

rePxlTrue
(6.10)

where ‘rePxlOverlap’ is the number of true pixels in the result image which overlap with

an object in the ground truth image. ‘rePxlTrue’ is the number of true pixels in the result

image. This measure gives an insight about the correspondence of the result image and the

truth image. If pixel correspondence is very low, other criteria are assumed to be untrustful.

In Table 6.8 we provide performance test results for the structure based change detection

methods.

Table 6.8. Performance measures for the structure based methods.

Structure Type TP FN reTrue reFalse DP BF Pcorr

Edge 314 403 419 643 0.4379 0.3945 0.2592

Matched Filtering 475 242 1028 2387 0.6625 0.3010 0.3854

GMSR 326 391 615 1291 0.4547 0.3227 0.3674

Segment 183 534 213 382 0.2552 0.3580 0.3257

Local Features 358 359 163 94 0.4993 0.6342 0.2980

Graph Matching 405 312 2099 2882 0.5649 0.4214 0.4713

Shadow 521 196 765 1956 0.7266 0.2811 0.1717

Shadow based comparison is best explained in terms of detection percentage. Pixel

correspondence can not be used for interpreting shadow comparison results, because this

method produces regions in the vicinity of the changed areas (not on them). When we
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discard PCorr measure for shadow comparison, it has still problem. Low BF rating

indicates high noise object production. Therefore, we can conclude that high DP rating

is result of that. Matched filtering based comparison is produced second best DP rating.

After that, comes graph matching based comparison. When we compare these two methods,

even though matched filtering based method found more objects than graph based approach,

it produced much noise and not as much associated as the graph matching based method

to the ground truth. Graph matching based method has second high BF rating after local

feature based comparison. Low correspondence of the local feature based approach depends

on the large areas produced by the sum of the Gaussians as we discussed in Section 5.5.

This method produces few large components which are low in association with the ground

truth. Segment based approach produced poor detection results. Other methods produced

moderate results. Eventually, graph matching based method produced high detection rate,

has low noise and has good association to the ground truth in pixel basis.
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7. CONCLUSIONS

In this thesis, we focused on change detection methods for satellite images. We grouped

change detection methods under four categories based on the way they process data. We

investigated several well-known methods which have already been applied and tested many

times in the change detection domain. In addition to these methods, we provided novel

structure based change analysis. We also measured the impact of three thresholding

algorithms on the performance of change detection methods. We proposed a novel pixel

based change detection method which accepts the gray scale image as a fuzzy set. Fuzzy

XOR method produced results close to other pixel based methods. We also proposed

two structure based change detection methods: local feature and graph matching based

methods. Proposed structure based methods provide better result compared to other

structure based methods. We also showed that, change detection is possible by comparison

of shadow information for bitemporal images. Our performance evaluation was based on

the comparison of the results from each method to a ground truth database composed of 35

image pairs. The ground truth database is created by visually comparing our data set. We

provided comparison results in terms of three coefficients for both pixel based and object

based comparison.
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