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ABSTRACT

GROUPS WITH THE BERGMAN PROPERTY

The aim of the thesis is the study of groups with the Bergman property. This property has
been named after George Bergman who proved in 2003 that infinite symmetric groups
have finite width relative to all their generating sets (the property which is now called the
Bergman property). We shall expand the proofs of a number of results on the Bergman
property, including the results from Bergman's original paper, in order to make the material

understandable by senior undergraduate students.



OZET

BERGMAN OZELLIiGINE SAHIiP GRUPLAR

Tezin amac1 Bergman 6zelligine sahip gruplar hakkinda bir ¢alisma yapmaktir. Bu 6zellik
2003 de George Bergman tarafindan ispatlandi ve bu 6zellige gore sonsuz simetri gruplari
tiretici kiimelerine gdre sonlu bir genislige sahiptirler(bu 6zellik Bergman 6zelligi olarak
adlandiriliyor). Bergman 6zelligi hakkinda birtakim sonuglarin ispatin1 genisletecegiz ve
bu sonuglarin bazilar1 Bergmanin kendi makalesinden alinmistir. Amacimiz bu tezi son

siif lisans dgrencileri i¢in anlagilir hale getirmektir.
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1. PRELIMINARIES

1.1. SYMMETRIC GROUPS

In this section we reproduce some facts on infinite symmetric groups we shall need in the
subsequent sections. Occasionally we shall recall some basic facts on finite symmetric

groups; such facts, though, are assumed to be known.
1.1.1. Permutations

Let X be an arbitrary nonempty set; a bijection (a one-to-one, onto mapping) of X onto
itself is called a permutation of X. The set of all permutations of X forms a group, under
composition of mappings, called the symmetric group on X. We shall denote this by
Sym(X),and write S,, to denote the special group Sym(X) when X = {1,2,...,n}. A

permutation group is just a subgroup of a symmetric group.

Proposition 1.1.1. For an infinite set X, set A = | X|. Then

| Sym(X)| = 2*.

Proof. Let P(X) denote the power set of X. Then |P(X)| = 2*. Also

| Sym(X)| < {g: X — X}
<Hg: X = P(X)}
:(2/\))\

— oA

as \ is an infinite cardinal. Therefore | Sym(X)| < 2*.

To prove the reverse inequality, let us write X as a disjoint union of 2-element subsets of
X. Thatis, let X = | |,.;{zs,v:}. For every subset J of I, define a permutation 7; :=

[Lic,(wi, y;). Then different subsets .J, J' of I will produce different permutations 7 ;, 7.



Since |I| = ), there are 2* such subsets of /. So there are at least that many permutations in

Sym(X). O

A permutation ¢ € Sym(X) is called an r-cycle (r = 1,2,...) if for r distinct points
x1,%,..., o, of X, 0 maps x; onto x;11 (¢ = 1,...,r — 1), maps x, onto z1, and leaves
all other points fixed; and o is called an infinite cycle if for some doubly infinite sequence x;

(i € Z), o maps z; onto x; for each i and leaves all other points fixed.

A l-cycle () is the identity permutation and a 2-cycle is called a transposition. Also, the

inverse of the cycle (i1is . . .14, ) is the cycle (4,41 ... 11).

As we know, one of the common ways is to specify a permutation in S,, is to write it as a
product of disjoint cycles, by disjoint we mean that no two cycles move a common point. In

infinite permutation groups, such a product is only a formal product.

Definition (Supports, fixed-point sets, orbits of permutations). Let 0 € Sym(X) then the

support supp(c) of o is the set

supp(c) = {z € X : ox # x}

and the fixed-point set fix(o) of o is the set

fix(c) ={r € X : ox = z}.

Evidently,

X = supp(o) U fix(o)

where U denotes the disjoint union of sets.

The orbit orb,(z) of an x € X under o is the set

orb,(x) = {o™(z) : m € Z}.

Any set of the form orb,(z) where € X is called an orbit of 0. An orbit of ¢ is called



nontrivial if it has at least two elements.

Claim 1.1.2. The relation "to be in the same orbit of 0" is an equivalence relation on X.

Proof. We know that orb,(z) = {¢"(z) : m € Z}. Now let 0 € Sym(X) and a,b € X,

then
a=,b< Im € Zsuchthatb = o™ (a).

Since a =, a = 0°(a) = a (reflexive),a =, b = 0™(a) =b=a=0""(b) = b=, a
(symmetric), and a =, b,b =, ¢ = 0™(a) = b,0™(b) = ¢ = """ (a) = o™(c™(a)) =

o"(b) = ¢ = a =, c (transitive). O
Claim 1.1.3. Let 0 € Sym(X) be a permutation. Then

(i) supp(o) = supp(o™).

(ii) supp(0102) € supp(o1) U supp(o);

(iii) supp(wor~!) = 7w supp(o).
Proof. (i) Clearly,

supp(oc) ={r € X:ov £z} ={r e X :x# 0 'z} =supp(c™).

A A

(ii) Now, let # € supp(0102) = 0102(2) # & = 01(x) # x or 05(x) # x. Switching to the

contrapositive statement, we get that

A A\
7 N la N

o1(x) =x and 0s(x) = © = 0109(x) = 01(z) =@

Therefore,

supp(0102) C supp(o1) U supp(oa).

(111) Easy. []



Claim 1.1.4. For every o € Sym(X), the support supp(c) of o is the (disjoint) union of all

nontrivial orbits of o.

supp(0) = |_orbs(y;)

iel
where {y; : i € 1} is a complete set of representatives of nontrivial orbits of o.

Proof. By Claim 1.1.2. [

Forao € Sym(X), let x,,(¢) (1 < n < Xy) denote the cardinality of the set of all n-element

orbits of o.

Lemma 1.1.5. Permutations 0,0’ € Sym(X) are conjugate if and only if

Xn(0) = Xn(0')
for all cardinals 1 < n < N,.

Proof. (=).Leto € Sym(X) and let

supp(a) = | | O

el

is the disjoint union of nontrivial orbits of o. Then for every 7 € Sym(.X), for the conjugate

mom ! of o by m we have that

supp(ror ) = |_|7TOZ'

il

and hence the set {wO; : i € I} is the set of all nontrivial orbits of mow~!. Now since 7 is a

bijection,

Xn (0) = Xn (77077—1)



Since, further,
fix(ror 1) = n(fix(o))
we have that,

vi(ror™) = [fix(ron )| = [rfix(0)| = [fix(0)] = x1(0)

(«<). Take a 0 € Sym(X). For each n with 1 < n < R choose an index set [,, so that sets
I,, are pairwise disjoint and the cardinality of the family of all n-element orbits of o and the

cardinality of [,, are equal. Let then

Xa(0) = | | O,

i€ln

where O, ,, is an n-element orbit of o, be the disjoint union of all n-element orbits of o.
Suppose now that o, ¢’ have the same cardinality of n-element orbits for all n with 1 < n <

Ny . Then for every n with 1 < n < Ny we can write

X,(o) = |_| O, Xp(0') = |_| Oi -

1€ln i€ln

where O; ,, is an n-element orbit of o’ . Set

Oin=0 Oi’n,ag’n =olo (1 <n <Ry (1,1)

i,mn

Now since

X= || %)= || [|Oin

1<n<Ng 1<n<Ng 2,1



one can define the permutation 7 of X as follows:

m(z) =iy

if x € O, ,, for suitable n and ¢ € I,,. Then it follows from (1.1) that

as we wished to prove. ]

1.1.2. Normal Subgroups of Symmetric Groups

Since the alternating group A, is simple whenever n # 4 (that is, A, has no nonidentity
proper normal subgroups whenever n # 4) [8], it follows quite easily that the only normal

subgroups of the symmetric group S,, are

{id}, A,,, and S,,.

Now let X be an infinite set; we will fix X till the end of this subsection. According to the
famous theorem by Baer--Schreier--Ulam, any normal subgroup of Sym(.X) is (exactly) one

of the following:

{id}, Alt(X), Sym(X, A), and Sym(X).

Let A < | X]| be a cardinal. The subgroup Sym(.X, \), which is called a bounded symmetric

group is defined as follows:

Sym(X,\) = {o € Sym(X) : [supp(c)| < A}.



In the case when A = N,

Sym(X,Ng) = {0 € Sym(X) : [supp(c)| < No}

is the subgroup of Sym(X') which consists of all permutations of X with finite support. The
group Sym(X, Xy) is called then the finitary symmetric group of X, and it also is denoted by
FS(X).

Also, the subgroup Alt(X) of FS(X), consisting of all even permutations, that is,
permutations that can be written as a product of even number of transpositions is called the

alternating group of X and is denoted by Alt(.X).

In what follows we shall give a brief outline of the proof of Baer--Schreier--Ulam theorem.

Lemma 1.1.6. For every infinite cardinal A < |X
Sym(X).

, Sym(X, \) is a normal subgroup of

Proof. By Claim 1.1.3. ]

Definition (Involutions). Let GG be a group. An element = of G is called an involution if x is

of order two.

Clearly, an element of the finite symmetric group S, is an involution if and only if it is a

product of disjoint transpositions (2-cycles).

In the infinite symmetric group Sym(.X) an element is an involution if and only if all its

nontrivial orbits are of length two.

Definition (Normal closures). Let G be a group and let S be a subset of G. The normal

closure NC(S) of S in G is the intersection of all normal subgroups of GG containing S

NC(S) = ﬂ H={(gsg':ge€G,se8l).

SCHLG

Clearly, NC(.S) is a normal subgroup of G. In particular, if S = {s} is a singleton set,

NC(s) = (gsg~" : g € G),



that is, NC(s) is generated by all conjugates of s.

Let A < |X]| be an infinite cardinal. The main idea of one of the classical proofs of Baer-
-Schreier--Ulam theorem (see e.g. [4, Chapter 8]) is to write Sym(X, \) as the union of a
chain of normal closures of suitable involutions 7,, where 1+ < A is a cardinal, for every

A< | X

Sym(X, \) = | NC(m,).

pn<A

Now we explain how to define the involutions 7,. Let ;1 be a cardinal with ¢ < |X|. We

define an involution 7, as follows:

e we choose two disjoint infinite subsets Y, Z,, of X of cardinality j;

e (i1) we use an index set [ of cardinality p to write
Y,={yi:i€l}
and
Z,=A{z:i€el}
e we then construct 7, as a unique permutation of X whose nontrivial orbits are exactly
{vizi} (el
o it follows that
mu(yi) = 2 and 7, (2) = v

for every 7 € I and



foreveryt € X \ (Y, UZ,);

e we observe that

supp(m,) = the union of all nontrivial orbits of 7,

= U{yuzi}

i€l

=Y, UZ,
and hence the support of 7, is of cardinality
YU Z | =Y, UZu| = Y[+ |2, = p+ p=2p;
it follows that if y is an infinite cardinal, the support of 7, is of cardinality y, since in

this case p1 + p = p.

e finally, we observe that 7, has
[ X\ (Yu U Zu)’ = | X]

fixed points.

We also construct one more involution 7 = x| corresponding to the cardinal | X| itself. To
construct 7* we choose subsets Y, Z of cardinality | X | of X as before, but we shall require
in addition the complement Y U Z of X also be of cardinality | X|:

(X =[Y=[Z2]=[X\ (YU 2]

Then the construction of 7* goes forth as above: if



10
then nontrivial orbits of 7* must be exactly two-element sets
Yi, 25 (Z S ])

The special feature of 7* = 7 x| which distinguishes it from other involutions 7, with 1 <

| X| is that as we shall see that 7* normally generates Sym(X), that is,

Sym(X) = NC(r*).

Note that in the case when 1 = 1, 7, is just a transposition; hence the normal closure of
7, is the subgroup FS(X) of all finitary permutations of X. If, further, y = 2, then 7, is a
product of two disjoint transpositions, an even permutation, and hence NC(r,) = Alt(X).

More generally, if y is a finite cardinal, then

FS(X), ifp < Ngisodd,
NC(m,) =

Alt(X), ifp < Ny iseven.

Proposition 1.1.7. Let u < | X| be an infinite cardinal and let o € Sym(X) be such that
[supp(o)| < p

Then o € NC(WM)7 and, consequently,

NC(o) < NC(m,).

The following three results are rather easy corollaries of Proposition 1.1.7.

Proposition 1.1.8. (i) Let A < | X| be an infinite cardinal. Then

Sym(X, \) = | NC(m,)

p<A
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where 1 is a cardinal.
(i) Sym(X) = NC(7).
Corollary 1.1.9. The symmetric group Sym(X) is generated by involutions.

Proposition 1.1.10. Let ¢ € Sym(X) be a permutation whose support is of infinite

cardinality \. Then the normal closure of o contains the involution 7y, and, in effect,

NC(0) = NC(m).

Theorem 1.1.11 (Schreier-Ulam, R. Baer). Let X be an infinite set. A proper nonidentity
normal subgroup N of Sym(X) either equals to Alt(X), or there is an infinite cardinal \ <
| X | such that N = Sym(X, \). It follows that the normal subgroups of Sym(X) form a

chain:

{id} <9 Alt(X) < Sym(X,Ro) <I... <1 Sym(X, | X|) <t Sym(X)

in which the subgroup Sym(X,|X|) is the largest proper normal subgroup and hence the

quotient group

Sym(X)/Sym(X;, | X])

is simple.

1.1.3. Writing Every Element of Sym(X) As a Commutator, X an Infinite Set

It is well-know that in an infinite symmetric group every element is a commutator [12]. In this

subsection we reproduce one of the most recent proofs of this result due to George Bergman
[1].

Definition (Replete permutations). Let X be an infinite set, we call an element f € Sym(X)
a replete permutation if it has | X | orbits of each positive cardinality< Nq (including orbits
of cardinality 1). For a subset Y C X of cardinality | X |, we call that "o is replete on Y" if

o(Y) = (Y) and 0|y is a replete permutation of Y.
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A permutation of X which is replete on a subset Y C X of cardinality | X| is necessarily

replete on X and the replete permutations of X form a conjugacy class.

Lemma 1.1.12. Let X be an infinite set, every o € Sym(X) is the product of two replete

permutations.

Proof. Given o € Sym(X), choose a moiety Y of X such that o moves only finitely many

elements from Y, to X — Y| or from X — Y| to Y.

Now if X is uncountable then the existence of such a Y|, is immediate, since X is uncountable
we can break X into two families and these two families have | X| orbits in each, then take

Y,the union of one of these families.

Now let's check when X is countable, we can apply the same method if ¢ has infinitely many
orbits, and can get the same conclusion in an obvious way if f has more than one infinite
orbit. If o has exactly one infinite orbit, (o) (z), finitely many finite orbits, we can take

Yy = {0™(z0) : n < 0}; clearly 0 moves exactly one element out of Y{, and none into it.

After choosing Yy, let us split X — Y into two disjoint moities Y; and Y5, ((X -Yy) = Y1UYs
Y1 NY, = &) so that Y; contains the finitely many elements of (o(Yy) U o (Y)) — Yo.

If 7y € Sym(Y}) and my € Sym(Y3), then there exist a permutation p of X such that (cp =
70)|y, and (p = m2)|y,. This pair of conditions specifies the values of p on the two disjoint
sets 0(Yp) and Y5 in a one to one fashion, and both the set on which it leaves p unspecified
and the set of elements that it does specify as values for p are of cardinality | X|. Hence the
former set can be mapped bijectively to the latter, and the resulting bijection will complete

the definition of p.

Now if we take 7y € Sym(Y) and m, € Sym(Y5) as replete permutations, then op will be

replete on Yj hence replete, and p will be replete on Y5 hence replete.

Therefore, ¢ = (op)p~! is a product of two replete permutations. ]

Corollary 1.1.13. Every element of Sym(X) is a commutator.

Proof. The inverse of a replete permutation is, as it easy to see, also a replete permutation.

So the conjugacy class of all replete permutations in Sym(X) is closed under taking inverses.
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Now if 005 is a product of two replete permutations we have for a suitable 7 € Sym(X)

0109 = 7T0'2_17T_10'2,

and the result follows. ]

1.2. GENERAL LINEAR GROUPS
1.2.1. Modules

Let A be a ring with identity. A left module M over A is an abelian group, usually written
additively, together with the scalar multiplication by elements of A on M (viewing A as a

multiplicative monoid) such that for all a,b € A and x,y € M we have

(a+b)x = ar + br and a(z + y) = ax + ay.

So a(—z) = —(ax) because a(0 + (—z)) = a0 + a(—x) = —(ax) and 0z = 0 because
(0 + 0)z = 0x 4+ 0z = 0x = O0x = 0. By definition of an operation, we have 1z = x. Ina

similar way, one defines a right A-module.

Let M be an A-module. By a submodule N of M we mean an additive subgroup such that
AN C N. Then N is a module(with the operation induced by that of A on M).

1.2.2. Vector Spaces

A module over a field is called a vector space.

Theorem 1.2.1. Let V' be a vector space over a field K, and assume that V # {0}. Let T
be a set of generators of V over K and let S be a subset of I which is linearly independent.

Then there exists a basis B of V such that S C B C I.

Proof. Let J be the set whose elements are subsets 7" of I" which contain S and are linearly
independent. Then J is not empty (it contains S), and we contend that J is inductively

ordered. Indeed, if {7}} is a totally ordered subset of J (by ascending inclusion), then | J 7; is
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again linearly independent and contains S. By Zorn's lemma, let 8 be a maximal element of
J. Then B is linearly independent. Let 11/ be the subspace of V' generated by B. If W # V,
there exist some element = € T" such that z ¢ W. Then B U {z} is linearly independent, for

given a linear combination

Yyemsayy +bxr =0, a,,b € K,

we must have b = 0, otherwise we get

=Y, cnb ta,y € W.

By construction, we now see that a, = 0 for all y € B, thereby proving that B U {z} is
linearly independent, and contradicting the maximality of 8. It follows that W = V/, and

furthermore that ®B is not empty since V' # {0}. This proves our theorem. ]

If a vector space # {0}, then in particular, we see that every set of linearly independent
elements of V' can be extended to a basis, and that a basis may be selected from a given set

of generators.

Proposition 1.2.2. Let V be a vector space over a field K. Then two bases of V over K have

the same cardinality.

Proof. Let us first assume that there exists a basis of V' with a finite number of elements, say
{v1,v9,...,0m}, m > 1. We shall prove that any other basis must also have m elements.
For this it will suffice to prove: If wq,ws,...,w, are elements of V' which are linearly

independent over K, then n < m (for we can then use symmetry). We proceed by induction.

There exists elements, ¢, ca, . . ., ¢, of K such that
Wy = U1 + -+ U, (1.2.1)
and some ¢;, say cq, is not equal to 0. Then v; lies in the space generated by wy, vo, ..., vy,

over K, and this space must therefore be equal to V' itself. Furthermore, wy, v, ..., v,, are
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linearly independent, for suppose b1, bs, . . ., b, are elements of K such that

bywy + bove + - - - + by v, = 0.

If b; # 0, divide by b; and express w, as a linear combination of vs, vs, . . . , v,,. Subtracting
from (1.2.1) would yield a relation of linear dependence among the v;, which is impossible.

Hence b; = 0, and again we must have all b; = 0 because the v; are linearly independent.

Suppose inductively that after a suitable renumbering of the v;, we have found

wy, ..., w,(r < n) such that

{wy, .., W, U1y oo U}

is a basis of V. We express w,1 as a linear combination

Wpy1 = CLW + -+ + Wy + Cry1Vpy1 + -+ - + CUm, (1.2.2)

with ¢; € K. The coefficients of the v; in this relation cannot all be 0; otherwise there would
be a linear dependence among the w;. Say c¢,;; # 0. Using an argument similar to that used
above, we can replace v,1 by w,11 and still have a basis of . This means that we can repeat

the procedure until » = n, and therefore that n < m, thereby proving our theorem. [l

If a vector space V' admits one basis with a finite number of elements, say m, then we shall
say that V' is finite dimensional and that m is its dimension. In view of Proposition 1.2.2,
we see that m is the number of elements in any basis of V. If V' = {0}, then we define its
dimension to be 0, and say that V' is 0-dimensional. We abbreviate "dimension" by "dim" or

"dimg" if the reference to K is needed for clarity.

When dealing with vector spaces over a field, we use the words subspace and factor space

instead of submodule and factor module.

Proposition 1.2.3. Let V' be a vector space over a field K, and let W be a subspace of V.
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Then

If f 'V — U is a homomorphism of vector spaces over K, then

dimV = dimKerf + dimIm f.

(the rank-nullity theorem)

Proof. The first statement is a special case of the second, taking for f the canonical map.
Let {v; };cs be a basis of Imf, and let {w, } ;c; be a basis of Kerf. Let {v; };c; be a family of

elements of V' such that f(v;) = u; for each i € I. We contend that

{Uia wj}z‘el,jeJ

is a basis for V. This will obviously prove our assertion.

Let = be an element of V. Then there exist elements {a; };,c; of K almost all of which are 0

such that

f(l") = Yiera;u;.

Hence f(x — Ya;v;) = f(x) — Xa; f(v;) = 0. Thus

T — 2a;v;

is in the kernel of f, and there exist elements {b;};c, of K almost all of which are 0 such

that

Xr — Eaﬂ)i = Z]bjwj.
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From this we see that x = Ya;v; + 3bjw;, and that {v;, w;} generates VIt remains to be
shown that the family {v;,w,} is linearly independent. Suppose that there exist elements
¢;, d; such that
0= ECZ'UZ' + Edjwj.
Applying f yields

0 = ZCZf(UZ> = ZCZ'UZ‘,

whence all ¢; = 0. From this we conclude at once that all d; = 0, and hence that our family

{v;, w;} is a basis for VV over K, as was to be shown. O

Corollary 1.2.4. Let V be a vector space and W a subspace. Then

dimW < dimV.

If'V is finite dimensional and dim W = dimV then W = V.

1.2.3. General Linear Groups

If V' is a vector space, then the family GL(V) of all invertible (bijective) linear operators of

V' is called the general linear group of V.

For any element 0 € GL(V') we can define the residual space R(o) of o as

R(o) =Im(c —id) = {ox —x: 2 € V}

and the fixed-point subspace P (o) as

P(o)=Ker(c —id) ={z € V : 00 = 2}

(notice the similarity---and more to follow---with the notions of the support and the fixed-
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point set of a permutation). Due to the rank-nullity theorem (Proposition 1.2.3),
dim R(0) + dim P(0) = dim V.
The dimension dim R(o) of the residual space of ¢ is called the residue and is denoted by
res(o).
Proposition 1.2.5. Let o, 7,01, 09 € GL(V). Then
(i) res(c™1) = res(o);

(ii) res(mom™t) = res(o);

(iii) res(o109) < res(oq) + res(oy).
Proof. (i). We have that R(6~') = R(0), since

RloY={olz—2:2eV}={oYox)—ox:00 €V}

={z—ox:2e€V}=R(o).

(ii). It is easy to see that R(mor~ ') = 7 R(0).
(iii). We have that R(cy09) C R(01) + R(02), since

01098 — & = 01(092) — 09 + 09z —
—_—— N\ —

in R(o1) in R(02)
forallz € V. [

Next, we shall reproduce a result by A. Rosenberg (1958) on the structure of normal
subgroups of the general linear group of an infinite-dimensional vector space [13]. Fix an

infinite-dimensional vector space V' over a field K.

Let A < dimV be an infinite cardinal. Set

['(A) = {0 € GL(V) : res(0) < A}.
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Proposition 1.2.6. For every infinite cardinal A\ < dimV, I'(\) is a normal subgroup of
GL(V).

Proof. By Proposition 1.2.5. U

Theorem 1.2.7 (A. Rosenberg, [13]). If' N is a normal subgroup of I' = GL(V), then either
N is contained in the center of ', that is in the subgroup RL(V') of all radiations of V, or
there exist an infinite cardinal A\ < dim V' and a subgroup D of the multiplicative group K*
of K such that N = DTI'(X\). Consequently, the normal subgroup K*T'(s) where s = dim V'

contains all proper normal subgroups of I and the quotient group I/ K*T'(¢) is simple.

1.3. FIRST-ORDER STRUCTURES

1.3.1. Predicates, Operations, and Constants

Recall that if A is a some set, then by A x A we denote the set of all ordered pairs (a1, az),
where a1, as are elements of A, by A x A x A we denote the set of all ordered triples of

elements of A, etc. In general, the set

Ax ... xA=A"={(ay,...,a,) 1 a; € A}

is called the n-th Cartesian power of A.

Definition (Predicates). Let A be a non-empty set. Then an n-placed predicate on A is an
arbitrary map P : A™ — {T,F}. So that we assign to every n-tuple, (a4, ..., a,), consisting of
elements of A, the value T (true) or F (false). The set {(ay,...,a,) € A" : P(ay,...,a,) =

T} is said to be the set of realizations of P.

We can consider a predicate as a condition which either holds (T), or does not hold (F) at a

given n-tuple of elements A.

Note that one-placed predicates are also called unary, two-placed predicates---binary, three-

placed ones---fernary. In the general case we say in such a manner about n-ary predicates.

Definition (Operations). Let A be a set. Then a n-placed operation on A is any mapping of
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the form f : A™ — A. Therefore, an n-ary operation assigns to each n-tuple of elements of

A an element A.

Some elements of mathematical objects have special properties that differentiates
(distinguish) them from other elements. As examples we can consider 0, the neutral element
of the addition operation on the set of reals, and 1, the neutral element of the multiplication
on the set of reals. The special symbol & denotes the empty set, etc. Such distinguished

elements are called constants.

Definition (Structures). A non-empty set A equipped with a set { P, : i € I} of predicates, a

set { f; : j € J} of operations on A, and some set {c;, : k € K} of constants,

A=A A{P :iel},{f;:jeJ},{a ke K})

is called a structure. The set A is said to be the domain (or the universe) of the structure A,

symbolically,

dom(A) = A.

The relations in

{P,riel}u{f;:5eJ}U{c: ke K}

are called the basic or the primitive relations of A.

In the case when A is equipped with no predicates, that is, in the case when {P; : i € I} = &,

the structure A is also called an algebra.

The key word in the definition of a structure is the word “together': the domain of a structure,
predicates and operations defined on the domain and constants have to be all considered as

an organic whole.

Examples
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(i) A = (N;+, -, Sc, 0) (Peano's structure). The domain of this structure is the set of naturals

N, Sc (the successor function) is the unary function

Sc(n) =n+1,

and the constant is 0.

(ii) (R;+,-,0, 1, <) (the ordered field of real numbers). This structure has two operations,

one binary predicate and two constants.

(ii1) Groups and rings are algebras in the sense of the above definition. Indeed, a group G may
be considered as: either as an algebra with one basic binary operation (G -) where - is the
multiplication on G, or as an algebra (G-, 7!, ) with two basic operations and a constant;
here we add the unary operation ~! for taking inverses, and a constant e for the identity

element of G.
Similarly, one sees that any ring can be viewed an algebra.

(iv) Let V' be a vector space over a division ring D. For each a € D, consider a unary

operation f, on V defined as follows:

falz) =a-x [z € V]

where - is the scalar multiplication. Then V| viewed as an algebra, is the structure

V=(V;+,{fa:a€D})

where -+ is the vector addition on V.

1.3.2. Structures in a First-Order Language

A first-order language L is a collection of distinct symbols partitioned into three parts:

L=PUFUC,
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where the set P is the set of predicate symbols, F is the set of symbols of operations (function

symbols) and C is the set of constant symbols.

As it is almost universally done in the textbooks on model-theory, we shall assume P contains

the two-placed predicate symbol =) (to be always interpreted by the equality relation).

Each predicate and function symbol from £ comes in the following specified form:
Pi(m) and f](mj)

where superscripts (n;) and (m;) indicate the arity (number of arguments, number of places)

of the associated symbol.

Definition (Interpretations of first-order languages). Let £L = P U F U C be a first-order
language. Suppose that

P={P"™ iecl}
F={f" ey,
C=A{c,:keK}.

Then the process of an interpretation of the language L is realized as follows:

e we fix some non-empty set A;

e for each predicate symbol Pi(m) from the set P of predicate symbols we define on A

an n;-placed predicate P (i € I);

By the agreement, the predicate symbol =(?) is a member of P, and we always interpret

it by the equality relation on A;

e for each function symbol fj(mj ) from the set F of all function symbols of £ we define

on the set A an (m;)-placed operation f;“;

e we link each constant symbol ¢;, from C with some element c;* from A.
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The structure A
A= (A{Prie LS i e NAq ke K})

obtained in the way described above is called a structure in the language L.

1.3.3. Alphabets and Words. Terms of First-Order Languages

Let X be any set which we shall call an alphabet, meaning that we are going to construct

words over X.

A word of the alphabet X (or, simply, over X) is an ordered sequence
Tol1 ... Tp—1

of elements of X. It is convenient to consider empty sequence of elements of X, the so-called
of empty word, which is denoted by (). By the definition, the length of the empty word is 0,

the length of a word zoz; . ..z, 1 # () is n.
The family of all words of length n (n € N) is denoted by X".

The family of all words over X is denoted by W (X). Thus

w(x)=]Jx"

neN

Lemma 1.3.1. Let X be a nonempty alphabet. Then the cardinality |W (X )| of the set of all

words over X is equal to | X | + No:
(WX = [X] + Ro.

Accordingly, if X is infinite then,

W(X)| = |X].



Proof. If X is finite, then of course there are exactly N, words over X:

On the other hands, as X is finite, then
Ng = | X| + No.
Let then X be infinite. Then foralln > 1
X7 = X" =X,
Now

X[+ R =X < W) =[x < U 1X7

neN n>1
:U|X|<N0'|X|
n=1
= |X| = |X|+ No.

We define the operation of the concatenation on W (X):

u,v € W(X) — uv.

If w € W(X) and w can be written as

W = U1UU

then w is called a subword of w.

24
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One of the reasons to have the empty word over X is to have a workable definition of a

subword of a given word.

Now let £ be a first-order language. Our goal is to give the formal definition of a term in L.

First, we recall the definition of the alphabet of the first-order logic in L.

Definition (The alphabet of first-order logic in £). The alphabet of first-order logic in the

language L is the set that contains the following elements:

e predicate, function and constant symbols from £;

logical connectives A, V, — and —;

quantifiers V (the universal quantifier) and 3 (the existential quantifier);

parentheses (,) ;

the infinite list of so-called free variables xo,x1 ..., xp_1,. ..

e the infinite list of bound variables yo,y1 ..., Yn_1,- - -

Definition (Terms). A term of the language £ (sometimes an L-term, for convenience's sake)
is a word in the alphabet of the first-order logic in £ which can be obtained by subsequent

applications of the following rules:

(T1). each free variable x; and each constant symbol ¢ in £ is a term in the language £;

(T2). if f = f™ is a function symbol from £ and words ¢, . . ., t, are terms, then the word

fltr, ... tn)

is a term in the language L.
We also state that

(T3). there are no L-terms other than those that are obtained by application of rules (T1) and
(T2).

It is helpful to observe that L-terms are words of the alphabet

FUuCU{zr: ke NYU{(,)}U{, }.

This is an infinite language, and then there are at most |F| 4+ |C| + Ng L-terms. On the
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other hand, it is clear from the definition that there at least |C| + N + |F| £-terms. Thus the

following result is true.

Proposition 1.3.2. There are exactly | F| + |C| + Ry L-terms.

Suppose that £ = {=?) (1) () ¢} (one unary, one binary function symbol and a constant).

Then the following words are L-terms:

Z‘O,C,f(x1), f(C),g(C, C)7 f(f(@)),g(f(%),f(f(l’z)))

1.3.4. Cartesian Products of First-Order Structures

Fix a first-order language £ = P U F UC and a family { M, : i € I} of first-order structures
in £. We shall explain how to introduce a L-structure on the Cartesian product [ [,_, M; of

the said family of structures.

Let M; denote dom(M;) for every i € I. Recall that the Cartesian product | [,.; M; is the

iel

family { f} of all functions of the form
fI—= M
i€l

such that f(i) € M; foralli € I. Given an element = € [, M; such that
x(i) = x; [i € I]

it is convenient to write x as (x;);e;.

If P € L is a predicate symbol we shall denote by F; its interpretation on M, that is, the

predicate PMi (i € ).

Similarly, if f € L is a function symbol we shall denote by f; its interpretation on M;, that

is, the operation f*i on domM; (i € I).
Finally, if ¢ € £ is a constant symbol we denote by c; the element ¢ of M; (i € I).

We denote the structure we are going to construct, the Cartesian product [, ; M; of the
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family {M, : i € I} by M.
The domain: dom(M) = [],_, M.

Interpretation of the constants: if c € £ we set

M = (c)ier = (M )ier.

Intepretations of the function symbols: let f € £ be a function symbol of arity n and let

(al,i)iela ceey (an,i)iel

be an n-tuple of elements of Hie ; M;. Then, by the definition,

fM((al,i)ieb cee (an,i)iel) = (filarz, -, an3))icr-

Intepretations of the predicate symbols: let P € £ be a predicate symbol of arity n and let

(al,i)iela ceey (an,i)iel

be an n-tuple of elements of [ [,_; M;. Then

el

PM((CLLi)iE], e (am)ig) =T «<— Pi(al,i7 . ,am) =T forall: € I.
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2. GROUPS WITH THE BERGMAN PROPERTY

2.1. INTRODUCTION

Let G be a group and let S be a generating set of G. Then the width wid(G, S) of G relative
to S is the least natural number k such that any element of GG is expressible as a product of at
most k elements of S U S™!, or oo, otherwise. In the case when the width of G with regard

to .S is a finite number £, it is also customary to say that GG is generated by S in £ steps.

A group is said to have the Bergman property [6] (or to be a group of finite width) if its width
relative to any generating set is finite. The property is named after George M. Bergman who
found that it is satisfied by all infinite symmetric groups [1]. The first example of an infinite

group with the Bergman property had been found by Shelah in the 1980s [14].

A preprint version of [1] attracted a considerable attention and very soon other examples
of groups of uniformly finite width have been found: the automorphism groups of doubly
transitive chains [7], the automorphism group of R as a Borel space [6], infinite-dimensional
general linear groups over fields [ 15], the automorphism groups of w-stable and w-categorical

structures and the automorphism group of the random graph [9] etc.

In the first section we give the proof of finiteness of width of infinite symmetric groups [1].

It is based on the ideas developed in papers [5, 10, 15].

In the next section we shall consider some basic properties of the class B of all groups with

the Bergman property.

The third section will be devoted to the proof of the fact that infinite-dimensional linear

groups over fields have the Bergman property [15].

In the final, fourth section we shall discuss sufficient conditions on algebras (in particular,

on groups) in terms of their Cartesian powers to satisfy an analogue of the Bergman property

[2].
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2.2. INFINITE SYMMETRIC GROUPS

The primary of goal of this section is to show all infinite symmetric groups have the Bergman
property [1]. The proof we are going to give is different from the original proof found by
Bergman in [1]: it is rather an adaptation for the (easier) case of the infinite symmetric groups

of the proof that infinite-dimensional linear groups have the Bergman property given in [15].

We shall use the standard notation of the theory of permutation groups. If a group G acts on

aset X and if Y is a subset of X, then by Gy we shall the pointwise stabilizer of Y in G,

Gyy=1{9e€G:g-y=yforally € Y}

and by G'{y we shall denote the setwise stabilizer of Y in G

Gyy={9eG:g Y=Y}

Any notation like G, ., means the intersection G, N G, of subgroups G, and G, of G.

Let us fix an infinite set X till the end of this section

2.2.1. Writing Sym(X') as a Power of a Conjugacy Class

Along with fixing X, fix also a partition of X

X:X1|_|X2|_|Y

into moieties. Consider an involution 7* € Sym(X) which interchanges X; and X, and
fixes Y pointwise. Thus both the support and the fixed-point sets of 7* are moieties, and as
we have seen in the previous chapter, 7* normally generates Sym(X') (Proposition I.1.1.8).

Now we claim that C'(7*) generates Sym(.X) in finitely many steps.

Proposition 2.2.1. Let C(7*) be the conjugacy class of ©* in the group Sym(X). Then

Sym(X) = C(7")",
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that is, every permutation of X can be written as a product of at most 12 conjugates of 7*.

We start with a classical result on generation of Sym(.X) due to J. Dixon, P. M. Neumann

and S. Thomas [5].

Theorem 2.2.2. The symmetric group I' = Sym(X) is generated in three steps by the union

of the stabilizers

Y =Tixovnoe) = Fixe), 22 = Dixouvyoa) = Fix,

or, equivalently,

wid(Sym(X),>; UX,y) < 3.

Proof. Leto € Sym(X). AsY is of cardinality | X| and as

oY = (Y N(X;UuY)) U (oY NXy),

oY = (Y N (X, UY))U (0¥ N X))

one of the sets

oY N(X;UY), oraY N(XyUY)

is of cardinality |X|.

Suppose then that

oY N (X UY)| = |X] (2.2.1)

Let Z C Y be a subset of Y such that

oZ isamoiety of oY N (X; UY)
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It means that there is a subset 7" of Y such that

oZUoT =0cY N(X;UY).

Now since ¢ is a bijection and since 07 is a moiety of cY N (X; LY, then T is also of

cardinality | X| and is disjoint to Z. Consequently,

e Zisamoiety of Y (of X; UY')and
e 0/ ismoiety of X; NY.

It follows that there is a permutation p € >; which maps 07 onto Z and, moreover, such

that

ploz) = (po)z =z (2.2.2)

forall z € Z.

Since, further, X and Z are both moieties of X LI'Y, there is a m € 3J; which takes X onto
Z:

m(Xy) = Z.

Consider the product 7~ (po)w. We have that for all z; € X, w(z1) is in Z, and hence by
(2.2.2),

(po)(ray) = w1,

whence

7 tpon(xy) = 77 (wry) = 24

for all x; € X;. It follows that

7 lpor € Lo,
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or

o € p_17r227r_1 = 212221.

Summing up, we see that if (2.2.1) is true, then

Sym(X) = 212221.

By symmetry, if

oY N (X, UY)| = |X],

we get that

Sym(X) = 2221227

and the result follows. ]

Proof of Proposition 2.2.1. Let

X=AUuCUB

be a partition of X into moieties. Take an index set / of cardinality | X |. Suppose that

A={a;:iel}and B={b;:i € I}.

Take a bijection f : I — I. Write « for the permutation

afa;) = agq i e 1]

of A induced by f. Consider involutions 71, 7o which both fix C' pointwise and act on A as
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follows

Wlai:bi, [ZGI]

7T26Lf(7;) = bz

Clearly, m, mo are conjugates of 7*, since their supports (= A U B) and fixed-point sets

(= C') are moieties. We have that
moma; = ma(b;) = aysq) [i € I].
On the other hand,
mamibi = ma(a;) = ma(ag-10)) = br-1)

forall 7 € I. We see that

the action of momi on B = {b; : i € I} is isomorphic to the action of a~! on

A:{aiZiEI},

or, informally, one can write that

Tom = a UidUa ™!,

Extending the principle of the construction of me7;, one can represent as a product of two

conjugates of m* any permutation of X of the form

| Jeuidu| |a™, (2.2.3)

neN neN

where the latter disjoint union of maps corresponds to a disjoint union moieties and « is the

isomorphism type of a permutation of one of these moieties.
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Let us consider permutations oy, 05 of X of the form (2.2.3):

oi=idU(a Ua'Ua Ua™'U...)Uid,

oy=a U(a 'Ua  Ua 'Ua U...)Uid,

both constructed over the same partition of X into a countable disjoint union of moieties. It

is clear that

o0y =a U | |iduid (2.2.4)

neN

is a product of four conjugates of 7*.

The equation (2.2.4) demonstrates that each element of the subgroup I'yx,uyy,(x,) (resp. the
subgroup I'(x,uyy,(x,)) 1s @ product of at most four conjugates of 7*. Then by Theorem 2.2.2

any element of Sym(.X) is a product of at most 3 - 4 = 12 conjugates of 7*. [l

Theorem 2.2.3. Let U be a generating set of the group Sym(X ). Then the width of Sym(X)
with respect to U is finite. Consequently, Sym(X) has the Bergman property.

Proof. We start with the diagonal argument which has been used in a number of papers on

the automorphism groups of classical structures (see e.g. [10]).

Lemma 2.2.4. Let V = U UU L. There exist a power V™ of V and a partition X =Y U Z

of X into moieties such that the set
V™) vyaz)

induces the group Sym(Y) on'Y.

Proof. Let

be a partition of X into moieties countably many moieties indexed by natural numbers > 1.



Write

Xl: = |_| X;
itk

forall £ > 1.

If for some pair (V*, X;) we have that
(V’“){Xj}y{x;} induces Sym(X;) on X;
then the conclusion of the lemma is true. Suppose otherwise. Then, in particular, for all &
(V’“){ka{x;;} does not induce Sym(Xj) on Xj.

Hence for each k£ € N we can find o, € Sym(Ly) such that

o} is not equal to the restriction on X}, of any element from (V¥ )Xk 11 Xr}-

Set
g = 0.
Since Sym(X) = |J, V¥, we have o € V7 for some j € N. It is clear, however, that

o€ (V) xpxsy

But then the restriction of o to X is 0, a contradiction.
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O

Let V™Y, Z satisfy the conclusion of the lemma. Take an involution 7 € Sym(X') which is

conjugate to 7, fixes Y setwise and fixes Z pointwise. Then by Proposition 2.2.1 the set

permutations

of

Y ={omoi"...00m0y 101,...,012 € (V™) 120} (2.2.5)
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is the group I'(y},(z), since any permutation ooy, " acts trivially on Z due to triviality of the
action of m on Z. Clearly, X is contained in some power of . Now, by Theorem 2.2.2, for

the conjugate set pXp~! by a suitable permutation p € Sym(X) we have that

wid(Sym(X), X U pZpt) < 3.

Let [ be a natural number such that ¥ U pXp~t C V. Then evidently

Sym(X) = Y?.

2.3. BASIC PROPERTIES OF THE CLASS OF ALL GROUPS WITH THE
BERGMAN PROPERTY

It is quite clear that the class B of all groups that have the Bergman property is closed under
homomorphic images: whenever G is a group, any homomorphic image of GG also has the

Bergman property.

Next, we are going to show that the class B is closed under group extensions.
Definition (Group extensions). We say a given group G is an extension of a group A by a
group B, if GG has a normal subgroup /N such that

N=Aand G/N = B.

A class K of groups is said to be closed under group extensions if given any groups A, B € K,

any extension of A by B is again in K.

An example: a direct product A x B of groups A, B is an extension of A by B.

Lemma 2.3.1. [1] Let H < G be groups and U a generating set for G. For some n > 0,

suppose every right coset of H in G contains a group word of length < n in the elements



37

of U. Then the set of elements of H that can be written as words of length < 2n + 1 in the

elements of U generates H.

Proof. Let V be a set of right coset representatives of H in G consisting of words of length
< n in the elements of U, with the coset H represented by the element 1, and letr : G — V
be the retraction collapsing each coset to its representative. Let IV denote the set of elements

of H that can be written as words of length < 2n + 1 in the elements of U.

Forany v € Vand u € U U U™}, note that vu = (vur(vu)™')r(vu). Since r(vu) by
definition lies in the same right coset as vu, then vur(vu)~! lies in H, and since v and r(vu)
are members of V, each have length < n, then the factor vur(vu)~! has length < 2n + 1,

then vur(vu)~t € W.
It follows that vu = (vur(vu)™!)r(vu) € WV and then

Viouu ) cwv cJwiv.. ().

icl
It follows that | J,_, W'V is closed under right multiplication by UUU !, hence | J,.; W'V =
G.
If we intersect both sides by

H=GnH=(|JWV)nH=JWVnH)=JW'.

{ierl} el iel

The intersection (TW*V N H) has the effect of discarding elements having right factors from
V other than 1, therefore | J,., Wt = H, and completing the proof. ]

Corollary 2.3.2. Let G be a group. Suppose that there is a normal subgroup N of G such
that both N and the quotient group G /N have the Bergman property. Then G also has the
Bergman property.

Accordingly, the class of all groups with the Bergman property is closed under group

extensions.

Proof. By Lemma 2.3.1. O
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Definition (Groups of uncountable cofinality). Let G be a group which is not finitely
generated. Then G is said to have an uncountable cofinality, if whenever GG is written as

the union of a chain of subgroups

Go<Gi<Gy<...

indexed by N (or, for short, as the union of an exhaustive countable chain of subgroups of
(7), then for some n, G,, = G. Equivalently, any countable exhaustive chain of subgroups of

G terminates at G after finitely many steps.

Observe that in a finitely generated group any countable exhaustive chain terminates after
finitely many steps. Thus the notion we introduced in the last definition is more interesting

for groups that are not finitely generated.

Recall that given a group G and a metric space (M, d), an action of G on M for which

d(ga, gb) = d(a, b)

forall g € G and for all a,b € M is called an action by isometries.

Several authors studied the conjunction of the Bergman property and uncountable cofinality.
Following [6], we call a group G having both these properties a group of the strong
uncountable cofinality. The following proposition that appeared in a number of papers on the

Bergman property provides a number of criteria of the strong uncountable cofinality [1, 3, 6].

Proposition 2.3.3. Let G be a group. Then the following are equivalent:
(1). G has the strong uncountable cofinality,

(ii). every exhaustive chain (Uy,)

UogUlg...CUkC...CG

of subsets of G such that for every i € N

e U, closed under taking inverses;
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e the product U;U; is contained in a suitable Uy,
terminates after finitely many steps;

(iii). orbits of every action of G by isometries on a metric space (M,d) have bounded

diameters;
(iv). every function L : G — R such that

e L(g)=0ifandonly if g = 1,
e L(97') = L(g) and L(gh) < L(g) + L(h) forall g.h € G

is bounded from above.

Proof. (1) = (ii). Clearly, the chain of subgroups of G generated by sets U,

(Uo) < (Un) <...<(Uy) <... <G,
is an exhaustive chain of subgroups of G. Then G = (U;) for a suitable natural number j,
because G is a group of uncountable cofinality. It follows that U; = U ]'—1 is a symmetric
generating set of G. As G has the Bergman property, G = U for some natural number s. By

the conditions on the chain (Uy), the power U 7 1s contained in some Uy, for an appropriate

m € N, whence U,, = G.

(i1) = (iii). Let a be an arbitrary element of a metric space M satisfying (iii). Set
U,={9€ G :d(a,ga) <n} (n €N).
Let g, h € U,,. Then we have that
d(a, gha) < d(a, ga) + d(ga, gha) = d(a, ga) + d(a, ha) < n+n = 2n.

Consequently, U,U,, C Uy,. As the chain (U,) terminates, we get that G = U, for some

m € N. Hence

d(a,ga) <m
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for all ¢ € G. Thus the diameter of the orbit {ga : g € G} of a € M is at most 2m.

(i) = (iv). Leta, b € G. Set
d(a,b) = L(ab™).

It is easy to see that d is a metric on G satisfying the conditions in (iii) for the left action G

on itself. Indeed, we have that

d(a,b) =0 < L(ab™) =0 <= ab' =1 < a=b,

(
d(a,b) = L(ab™") = L(ba™") = d(b, a),
d(a,b) = L(ab™) = L(ac™ - cb™") < L(ac™) + L(cb™") = d(a, c) + d(c, b),
(

d(ga, gb) = L(gab~"g™!) = L(ab™") = d(a,b),

foralla, b, g, h € G. Then the orbit of 1 € GG under the left action of GG on itself has a bounded

diameter m € N, or
L(g)=d(gl,1) <m (9 €q).

(iv) = (i). Let S = S~! be a symmetric generating set of G. Then the function

Li(g) =lgls  (9€@G)

that is, the length function with regard to .S, which meets all conditions mentioned in (iv),

must be bounded from above by some natural number m. Accordingly, G = S™.

Let further (V) be an exhaustive countable chain of subgroups of GG. For every g € G set

Ly(g) = min{k € N: g € N;} (g € G).
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It is readily seen that L, satisfies all conditions in (iv). For example,

Lg(ab) < max(Lg(a), Lg(b)) < LQ((Z) + Lg(b)

for all a,b € G. One again concludes that L, is bounded from above by a certain natural

number m, whence G = N,,,. 0

We shall discuss the property of the strong uncountable cofinality in a more general settings,

for arbitrary algebras, in Section 2.5.

2.4. INFINITE-DIMENSIONAL LINEAR GROUPS

Throughout the section we shall denote by V' a left infinite-dimensional vector space over
a field. T" stands for the general linear group GL(V') of V, the group of all invertible linear

transformations from V into itself.

Following [10], we call a subspace U of V' moietous (clearly, it is an analogue of the notion

of a moiety of an infinite set), if

dimU = codimU = dimV.

Let Uy, U, W be moietous subspaces of V' with

V=UoU oW

We also fix throughout an involution 7* of V' which interchanges Uy, U,, that s,

7T*U1 = UQ and 7T*UQ = Ul

and preserves all elements of V.

Similarly to the main result of Section 2.2, the main result stating that GL(V") has the

Bergman property will be obtained as a consequence of the following statement. According
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to Rosenberg's theorem (Theorem 1.1.2.7), 7* normally generates GL(1/), since the residual

space of 7* is of dimension dim V.

Theorem 2.4.1. The width of GL(V) relative to the conjugacy class C(r*) of 7* is at most
28.

Theorem 2.4.1, in turn, is based on obtaining an estimate of the width of GL (V") relative to the
union of a pair of naturally defined subgroups introduced by Macpherson in [10]. The reader
will notice similarities with the proof of the Bergman property for the infinite symmetric

groups we give in Section 2.2.

Lemma 2.4.2. Suppose that Uy, Uy, W are moietous subspaces of V' such that

V=UoUodW.

LetT' = GL(V) and let

21 = F{U1+W},(U2) Cll’ld 22 = F{U2+W},(U1)-

Then the width of GL(V) relative to the set ¥, U ¥ is at most 7.

Proof. Our proof is based on Macpherson's proof of the fact that GL(V') is generated by
Y11 U X, (see the proof of Proposition 2.2 in [10]).

We prove first that

U 1wy © 2o 2y, (2.4.1)

that is, the width of Iy, ;) with respect to ¥y U X5 is at most 4. Take ¢ € I'y, 4w and

assume that (z; : ¢ € I) is a basis for Us. Then we have that

Hxi:x;—kai—i-bi, [ZE[]

where a; is an element of I, b; an element of Uy, and the system (z} : i € I) is a basis for

7
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U,. Consider the automorphism 7; of >3 which acts trivially on U; + W and such that

Tlx;:xi—ai, [ZG]]

Now let 7, be an element of >J; which takes U; onto W. Therefore we have that

7271972_1332- =x; + a;, [i € I].

where a, = 7yb; is an element of 1. Then, as above, for a suitable 73 in >, we have that

7372719751 = idy,

which proves (2.4.1).

Consider now an arbitrary o € GL(V'). Let By = (y; : ¢ € I) be a basis for U;. We have that

oyY; = z; + t;, [ZGI],

where z; € Uy and t; € U, + W. There exists a moiety J of I such that the set (¢; : j € J)
is contained in a moietous subspace, say L of Us 4+ V. Then an appropriate element v; € ¥,
takes L to a moietous subspace of W. It follows that the subspace v1(z; +¢; : j € J)isa

moietous subspace of Uy + W. Let y; denote 71 (z; + t;), where j € J.

Suppose that By, is a basis for W and B, is a moiety of By,. We follow v;0 by a
transformation ~, of 3J; which takes (yg : j € J) onto By UBY), and then apply some 73 € ¥

which maps B}, onto By,. We obtain therefore that

V3YaN10Y; = V3V = vy, [ € J],

where (v; : j € J) = By U By . In a similar way, the system (y; : j € .J) is taken by the

product of some d, € £, and 05 € X5 onto (v; : j € J):

d203y; = v;, [j € J].
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Hence

V37271005 105 oy = vy, [ € J).

Thus the automorphism ~372y,06; 19, ! is in the subgroup I, +w)- Since 73 € ¥ and 02 €

)1, the equation (2.4.1) implies that

s 2221 (22212221)22

and then wid(GL(V), 3, U 3y) < 7, as desired. O

Proof of Theorem 2.4.1. Let Ly, Ly, M be moietous subspaces such that V' is their direct

sum:

V:Ll@M@LQ

Let I be an index set of cardinality dim V' and

(a; :i€l), (af:i€l)

be bases of L; and

(bZZEI)

a basis for L. Involutions 7, 2 which both fix M pointwise and act on the bases (a;) and

(a}) as follows

T™a; = bi, [’l € []

Uy (I;-k = bl
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are conjugates of 7*. We have that
moma; = al, i € I].

Now let v denote the automorphism of the vector space L; that takes the basis (a;) onto the

basis (a}). Suppose that for all 7 € 1
a tal = Z@-ja;.
J
We then have
Ty = moa; = mo(a ay) = 7r2(2 Bijaz) = Zﬂijbj
J J

for all i € 1. We see that the action of mom; on Ly = (b; : @ € I) is isomorphic to the action

ofa™lon L; = (a} : i € I), or, again, using convenient informal notation as we did in the

)

proof of Proposition 2.2.1, one can write that

Tom = o @ id Da L.

Similarly, any automorphisms of V' of the form

PevidaPa, (2.4.2)

neN neN

where the latter direct sum corresponds to a direct sum of moietous subspaces and « is the
isomorphism type of an automorphism of one of these subspaces, can be obtained as a product

of two conjugates of 7.

Let us consider two automorphisms o1, 0 of V' of the form (2.4.2):

o1=id®(a ®a'®a @a'®..)did,

oo=a B(a'®a Ga'®a @...)®id
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(both constructed over the same decomposition of V' into a countable infinite direct sum of

moietous subspaces.) Then

o0y = ® @Pideid (2.4.3)

neN

is a product of four conjugates of 7*.

Let Uy, U, W be subspaces of V' with
V=U&WeUs.

Now each element of the subgroup I'(y/,), (v, 1wy, or of the subgroup I' 17, (1, 4w} ) 1s a product
of at most four conjugates of 7*. Then by Lemma 2.4.2 any element of GL(V') is a product

of at most 7 - 4 = 28 conjugates of 7*. O

Remark 2.4.3. It is easy to see that 7* is a commutator. Indeed, let
(a;,a;,b; 21 €1)

be a basis for V' and let / be a moiety of /. We define two involutions 7 and 75, conjugates

*

of *:

T a; = Toll; = CL;(, [Z < ]0],

™Ma; = (lf;, [Z ¢ ]0],
ToQ; = Ay, [Z ¢ [0],

7T1bi == 7T2bi = bi, [Z S I]

As Ty is a conjugate of 7, the product 775 is a commutator which is, moreover, a conjugate
of m*. Hence 7* is a commutator. By Theorem 2.4.1 this provides an elementary proof of
the fact that I" = GL(V/) is perfect, that is, I" coincides with the commutator subgroup [I', I']
(this had been proved by Rosenberg in [13] as a corollary of his main result of [13], we have

quoted in Theorem 1.1.2.7 above)
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Theorem 2.4.4. Let X be any generating set of GL(V'). Then the width of GL(V') with respect

to X is finite.

Proof- We are repeating the diagonal argument we have used in the proof of Lemma 2.2.4,

making necessary changes.

Lemma 2.4.5. LetY = X*'. There exist a power Y™ of Y and a decompositionV = USW

of V into a direct sum of moietous subspaces such that the set

Y™)wy, 0y

induces the group GL(U) on U.

Proof. Let

keEN

be decomposition of V' into a direct sum of moietous subspaces. Write

LZZEBLi

ik
for all k¥ € N.

If for some pair (Y*, L;) we have that
(Yk){LjML;} induces GL(L,) on L;
then the conclusion of the lemma is true. Suppose otherwise. Then, in particular, for all &
(Yk){Lk},{L;;} does not induce GL(Ly) on Ly.

Hence for each k € N we can find o), € GL(Ly) such that

o is not equal to the restriction on Ly, of any element from (Y* ){ Leb{L:}-
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Set

Oz@ak.

keN

Since GL(V) = |J,. Y*, we have o € Y7 for some j € N. It is clear, however, that

o€ (Y) 0,000

But then the restriction of o on L; is 0}, a contradiction. O

Let Y™ U, W be as in the Lemma 2.4.5.

Consider a conjugate m € GL(V') of 7%, which fixes U setwise and which fixes IV pointwise.
By Theorem 2.4.1, if

Y= {omo;t. . owmoy 1 01,..., 00 € Y™ wy, v} (2.4.4)

then ¥ coincides with I'g;7) (w), because any automorphism oy 7o, Lacts trivially on W. Now

3’ can be found in an appropriate power of Y. By Lemma 2.4.2, we have that
wid(GL(V), X U p¥p) < 7.

for a suitable involution p. Finally, suppose that [ is a natural number with ¥ U pXp C Y.

Then GL(V) = Y™ and we are done. O

2.5. CARTESIAN POWERS OF ALGEBRAS AND THE BERGMAN PROPERTY

In this section we shall discuss some generalizations of the results from [1] George Bergman

came up with in his 2006 paper [2].

Let £ be a first-order language which contains no predicate symbols. Recall that first-order
L-structures are called algebras. Apart from the notion of the length of a term ¢ of £ we have

considered in the introductory chapter, there is also a convenient notion of the depth depth(t)
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of'aterm ¢ of L. The definition is by induction on the length of ¢. Variables and constants are

declared to be terms of the depth zero. Now if

t= f(tl, ‘e ,tn)
is a term of £ where f € L is a function symbol and ¢, are terms, then

depth(t) = max(depth(t;), ..., depth(¢,)) + 1.

If M is an L-structure, a € dom(M), B C dom(M ), we say that a is a term (more formally,
but less conveniently, the value of a term) of elements of B if there is an L-term ¢(vy, . .., vy,)

such that @ = t(by, ..., b,) for some elements by, ..., b, of B.

Let M be an L-algebra and let X be a generating set of M: M = (X). Then given m € N,

the m-th power X™ of X is the set of all terms of elements of X of depth < m. Clearly,

dom(M) = U X,

m=0

In [2] Bergman introduced, in development the ideas of the notions of the uncountable
cofinality and of the strong uncountable cofinality for groups (see discussion of these

properties in Section 2 above), the following definitions.

Definition (Algebras that have a UF- , or the strong UF-cofinality, the Bergman property for
algebras). Let M be an algebra and M denote the domain of M.

(1) M is said to have a UF-cofinality ("UF' stands for "Uncountable, or Finite') if any

countable exhaustive chain of subalgebras of M terminates after finitely many step;

(i1) M is said to satisfy the Bergman property if any generating set X of M generates it in
finitely many steps, or more precisely, if for every generating set X of M there is a natural

number m such that M = X™;
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(i1) M is said to have the strong UF-cofinality if given any exhaustive chain
X, CX,C...CX,C...

of subsets of the domain M of M, that is, a chain of subsets of A/ whose union is M such

that for all £ € N and for all basic operations f of M
f(Xgy oo, Xi) C© Xpa (2.5.1)

where f is a basic operation of M, we have that the chain stabilizes after finitely many steps

at M, that is, there is a natural number s with X, = M.

Proposition 2.5.1. An algebra M has the strong UF-cofinality if and only if M has a UF-
cofinality and the Bergman property.

Proof. The necessity part is easy, since both (exhaustive) chains of powers of generating
sets and exhaustive chains of subalgebras satisfy the condition (2.5.1). Conversely, write M
for dom(M) and let (X,,) be an exhaustive chain with (2.5.1). Consider then the, evidently

exhaustive, chain of subalgebras
(Xo) C(X1) C...C(X,)C...

As M has a UF-cofinality, then M = (X}) for a suitable natural number k. Then X} is a
generating set of M. As M has the Bergman property, there is a natural number m such that
M = X}, which means that every element of M/ = dom(M) is written as a term of depth
< m of elements of Xj. Clearly, by definition, terms of depth one of elements of X are

contained in Xy, 1, terms of depth two in Xy, and so on. So M = X ,,, as required. [

Let M be an algebra and let ¢ be a cardinal. We write M* for the Cartesian power

[[Mm

iel

of M where [ is an index set of cardinality ». A(M) will denote the diagonal of M* that
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is, the set of elements
{A(x) : x € dom(M)} = {(x)ies : © € dom(M)};

(we use the notation from Subsection 1.1.3; recall that given a function f € M* we write
f as (f(7))ier. Thus a diagonal element of M* is a function in M* whose values are the

same.)

In [2] Bergman found the following sufficient condition for the strong UF-cofinality.

Theorem 2.5.2. Let M be an algebra. Suppose that the countable power M™ of M is
finitely generated over its diagonal A(M). Then M has the strong UF-cofinality.

Before considering the proof of the Theorem, let us consider some examples of algebras

which satisfy its condition.

Theorem 2.5.3. Let X be an infinite set and let »« < | X| be a cardinal.

(1) Let M be the semigroup of all maps X — X. Then M* is generated by two elements over
A(M);

(ii) Let S be the symmetric group of X. Then S* is generated by one element over A(S).

Proof. (1). Fix an index set [ of cardinality »r and let

X=|]x

el
be a partition of X into moieties.

Let: € I. Take any map 7; : X — X which takes X to X;:

Now as X, is a moiety of X, there is a left inverse p; of 7;, that is, a map p; : X — X with
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Form then elements

7 = (m;)icr and p = (p;)icr

of M*. We claim that M* is generated over A(M) by two elements, namely, by 7 and p.

Indeed, let 0 = (0y)ic; be an element of M* where 0; € M (i € I). We are going to

construct a map ¢’ € M such that

pio’'m; = oy [i € I]. (2.5.2)

It will follow that

(Pi)ie[ : (Ul)ia : (m)iel = (piojﬂ-i)iel = (O-i)iela

or

which means that

M” = (A(M), p, ),

as desired.

The construction of ¢’ is as follows: we require ¢’ to be equal to m;0;p; on X; foreach i € I:

/
g

Let us check (2.5.2). Fix i € I and take € X. By the definition of 7;, m;(x) € X;. Then by
(2.5.3),

0/(7%'55) = WUiPi(Wz‘x),
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whence

pio'mi(x) = pio’ (mix) = pimoipi(mix) = pimioipymi(x)
= (pimi)oi(pimi)(x) = id oy id(x)

= O'i(.f),

which completes the proof of (i).

(11). Write X as a disjoint union of two moieties:
X=AUB
and then partition B into 23r = s moieties

B=| [(CiuDy).

el

We claim that S* is generated over the diagonal A(.S) by just one element
T = () er-

Take ¢ € I. Let us explain how 7; is to be defined:

e m; actson { A, C;, D;} as a 3-cycle, that is,
7T¢(A) = Cl’aﬂ'i(ci) = Di77Ti(Di) = A4;
e foreach j € I\ {i}, m; interchanges sets C'; and D;:

m;(C;) = Dj, m;(D;) = Cj.



54

Write S; for S(py and let o € ST, that is,
0 = (0)icr

where o; € S; foralli € 1.

As in any infinite symmetric group every element is a commutator (Corollary 1.1.1.13), for

all i € [ there are «;, 3; € Sym(A) such that
o; = [, Bi] = i 57

where o) is the restriction of o; to A.

Now we are going to construct two permutations A, u € .S for which
o= [rAN)T, T*A(v)r 2. (2.5.4)
The definition of A, y is as follows:

A=idU| |(idUes),
i€l
p=idu| |(8Uid),

el

where disjoint union of maps in the right-hand sides both correspond to the partition

X =Au| |(¢;uDy)

i€l

of X.
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Let us check (2.5.4). Take an i € I. Then

mAm = (q;Uiduid)u | | (a; Uid),
jends}

mpm = (Buiduid)u | | (idus)),
jen{i}

where disjoint unions of maps in the right-hand sides correspond to the partition

X=(AucuD)u || (c;uDy).

eI}
It follows that
mAT = (o uiduid) U | ] (a5t bid),
Jen\{i}
mp et = (B uiduid)u || (dust).
IONG:
and that

[rodm w7 = (o, B UidUid) U | | (idwid)
jendi}

= (ofuiduid)u | | (iduid)
jenfi}

= 0;
As 1 is arbitrary, we get that
[FANT T AT = o,

as required.

This implies that

S < (A(S), 7). (2.5.5)
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Recall that S; together with a suitable conjugate S, = pS;p~! generates S (Theorem 2.2.2)

in three steps:

S - 515251 U 528152 = 31525152,

which means that

§* = 87855785,

Finally, Eq. (2.5.5) implies that

Sy = A(p)SFA(p™Y) < A(p)(A(S), T)A(p) ™

N
5
2
Kl

and therefore
S < (A(S), 7).

]

Proof of Theorem 2.5.2. Write M for the domain of M and let (X,,) be an exhaustive chain
of subsets of M satisfying the condition (2.5.1).

Suppose, towards a contraction, that the chain (.X,,) never stabilizes. For an element = € M,
define the rank of x, symbolically rank(z), as the minimal r such that x € X,. Clearly, the

failure of (X,) to stabilize implies that the function rank : M/ — N is unbounded.
Let Y be a finite subset of M™ which generates M together with the diagonal A(M).

Take an 7 € N. As the function rank is unbounded, there is a x; € M such that

rank(z;) > i+ max rank(y;) (2.5.6)
ye
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where y; is the i-th component of y € Y. Form then the element 2 of M™ as
xr = (xi)ieN-
We have that
r € (AM),Y).
Hence there is a finite subset Z of M with
r € (A(Z),Y).

It follows that x is a term of some depth d of elements of A(Z) UY. In turn, for every i € N,

the element z; is also a term of depth d of elements of Z U {y; : y € Y'}.

Now we get a contradiction on taking any 7 with

i > d + maxrank(z).
2€Z

Indeed, by (2.5.6) we have that

rank(z;) > i + maxrank(y;)
yey
> d + maxrank(z) + max rank(y;).
ye

z€Z

But this is impossible: if
= max rank max rank(y; ),
m = max rank(z) + max rank{y;)

then

ZU{yicyel} C Xy
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and since x; is a term of depth d of elements of Z U {y; : y € I},
i € Xptd
and, by the condition (2.5.1)
rank(z;) <m+d=d+ max rank(z) + max rank(y;).

]

Now, as a corollary of Theorem 2.5.2 and Theorem 2.5.3, we obtain a new proof of Bergman's

theorem on finiteness of width of infinite symmetric groups.
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