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ABSTRACT 

 

 

GROUPS WITH THE BERGMAN PROPERTY 

 

The aim of the thesis is the study of groups with the Bergman property. This property has 

been named after George Bergman who proved in 2003 that infinite symmetric groups 

have finite width relative to all their generating sets (the property which is now called the 

Bergman property). We shall expand the proofs of a number of results on the Bergman 

property, including the results from Bergman's original paper, in order to make the material 

understandable by senior undergraduate students. 
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ÖZET 

 

 

BERGMAN ÖZELLİĞİNE SAHİP GRUPLAR 

 

Tezin amacı Bergman özelliğine sahip gruplar hakkında bir çalışma yapmaktır. Bu özellik 

2003 de George Bergman tarafından ispatlandı ve bu özelliğe göre sonsuz simetri grupları 

üretici kümelerine göre sonlu bir genişliğe sahiptirler(bu özellik Bergman özelliği olarak 

adlandırılıyor). Bergman özelliği hakkında birtakım sonuçların ispatını genişleteceğiz ve 

bu sonuçların bazıları Bergmanın kendi makalesinden alınmıştır. Amacımız bu tezi son 

sınıf lisans ögrencileri için anlaşılır hale getirmektir. 
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1. PRELIMINARIES

1.1. SYMMETRIC GROUPS

In this section we reproduce some facts on infinite symmetric groups we shall need in the

subsequent sections. Occasionally we shall recall some basic facts on finite symmetric

groups; such facts, though, are assumed to be known.

1.1.1. Permutations

Let X be an arbitrary nonempty set; a bijection (a one-to-one, onto mapping) of X onto

itself is called a permutation of X . The set of all permutations of X forms a group, under

composition of mappings, called the symmetric group on X . We shall denote this by

Sym(X),and write Sn to denote the special group Sym(X) when X = {1, 2, . . . , n}. A

permutation group is just a subgroup of a symmetric group.

Proposition 1.1.1. For an infinite set X , set λ = |X|. Then

| Sym(X)| = 2λ.

Proof. Let P (X) denote the power set of X . Then |P (X)| = 2λ. Also

|Sym(X)| 6 |{g : X → X}|

6 |{g : X → P (X)}|

= (2λ)λ

= 2λ

as λ is an infinite cardinal. Therefore |Sym(X)| 6 2λ.

To prove the reverse inequality, let us write X as a disjoint union of 2-element subsets of

X . That is, let X =
⊔

i∈I {xi, yi}. For every subset J of I , define a permutation πJ :=∏
i∈J(xi, yi). Then different subsets J, J ′ of I will produce different permutations πJ , πJ ′ .
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Since |I| = λ, there are 2λ such subsets of I . So there are at least that many permutations in

Sym(X).

A permutation σ ∈ Sym(X) is called an r-cycle (r = 1, 2, ...) if for r distinct points

x1, x2, . . . , xr of X , σ maps xi onto xi+1 (i = 1, ..., r − 1), maps xr onto x1, and leaves

all other points fixed; and σ is called an infinite cycle if for some doubly infinite sequence xi

(i ∈ Z), σ maps xi onto xi+1 for each i and leaves all other points fixed.

A 1-cycle (x) is the identity permutation and a 2-cycle is called a transposition. Also, the

inverse of the cycle (i1i2 . . . ir) is the cycle (irir−1 . . . i1).

As we know, one of the common ways is to specify a permutation in Sn is to write it as a

product of disjoint cycles, by disjoint we mean that no two cycles move a common point. In

infinite permutation groups, such a product is only a formal product.

Definition (Supports, fixed-point sets, orbits of permutations). Let σ ∈ Sym(X) then the

support supp(σ) of σ is the set

supp(σ) = {x ∈ X : σx ̸= x}

and the fixed-point set fix(σ) of σ is the set

fix(σ) = {x ∈ X : σx = x}.

Evidently,

X = supp(σ) ⊔ fix(σ)

where ⊔ denotes the disjoint union of sets.

The orbit orbσ(x) of an x ∈ X under σ is the set

orbσ(x) = {σm(x) : m ∈ Z}.

Any set of the form orbσ(x) where x ∈ X is called an orbit of σ. An orbit of σ is called
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nontrivial if it has at least two elements.

Claim 1.1.2. The relation "to be in the same orbit of σ" is an equivalence relation on X .

Proof. We know that orbσ(x) = {σm(x) : m ∈ Z}. Now let σ ∈ Sym(X) and a, b ∈ X ,

then

a ≡σ b ⇔ ∃m ∈ Z such that b = σm(a).

Since a ≡σ a ⇒ σ0(a) = a (reflexive), a ≡σ b ⇒ σm(a) = b ⇒ a = σ−m(b) ⇒ b ≡σ a

(symmetric), and a ≡σ b, b ≡σ c ⇒ σm(a) = b, σn(b) = c ⇒ σm+n(a) = σn(σm(a)) =

σn(b) = c ⇒ a ≡σ c (transitive).

Claim 1.1.3. Let σ ∈ Sym(X) be a permutation. Then

(i) supp(σ) = supp(σ−1).

(ii) supp(σ1σ2) ⊆ supp(σ1) ∪ supp(σ2);

(iii) supp(πσπ−1) = π supp(σ).

Proof. (i) Clearly,

supp(σ) = {x ∈ X : σx ̸= x} = {x ∈ X : x ̸= σ−1x} = supp(σ−1).

(ii) Now, let x ∈ supp(σ1σ2) ⇒
︷ ︸︸ ︷
σ1σ2(x) ̸= x ⇒

︷ ︸︸ ︷
σ1(x) ̸= x or σ2(x) ̸= x. Switching to the

contrapositive statement, we get that

︷ ︸︸ ︷
σ1(x) = x and σ2(x) = x ⇒

︷ ︸︸ ︷
σ1σ2(x) = σ1(x) = x

Therefore,

supp(σ1σ2) ⊆ supp(σ1) ∪ supp(σ2).

(iii) Easy.
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Claim 1.1.4. For every σ ∈ Sym(X), the support supp(σ) of σ is the (disjoint) union of all

nontrivial orbits of σ.

supp(σ) =
⊔
i∈I

orbσ(yi)

where {yi : i ∈ I} is a complete set of representatives of nontrivial orbits of σ.

Proof. By Claim 1.1.2.

For a σ ∈ Sym(X), let χn(σ) (1 6 n 6 ℵ0) denote the cardinality of the set of all n-element

orbits of σ.

Lemma 1.1.5. Permutations σ, σ′ ∈ Sym(X) are conjugate if and only if

χn(σ) = χn(σ
′)

for all cardinals 1 6 n 6 ℵ0.

Proof. (⇒). Let σ ∈ Sym(X) and let

supp(σ) =
⊔
i∈I

Oi

is the disjoint union of nontrivial orbits of σ. Then for every π ∈ Sym(X), for the conjugate

πσπ−1 of σ by π we have that

supp(πσπ−1) =
⊔
i∈I

πOi

and hence the set {πOi : i ∈ I} is the set of all nontrivial orbits of πσπ−1. Now since π is a

bijection,

χn(σ) = χn(πσπ
−1)



5

Since, further,

fix(πσπ−1) = π(fix(σ))

we have that,

χ1(πσπ
−1) = |fix(πσπ−1)| = |πfix(σ)| = |fix(σ)| = χ1(σ)

(⇐). Take a σ ∈ Sym(X). For each n with 1 6 n 6 ℵ0 choose an index set In so that sets

In are pairwise disjoint and the cardinality of the family of all n-element orbits of σ and the

cardinality of In are equal. Let then

Xn(σ) =
⊔
i∈In

Oi,n,

where Oi,n is an n-element orbit of σ, be the disjoint union of all n-element orbits of σ.

Suppose now that σ, σ′ have the same cardinality of n-element orbits for all n with 1 6 n 6
ℵ0 . Then for every n with 1 6 n 6 ℵ0 we can write

Xn(σ) =
⊔
i∈In

Oi,n, Xn(σ
′) =

⊔
i∈In

O′
i,n.

where O′
i,n is an n-element orbit of σ′ . Set

σi,n = σ|Oi,n
, σ′

i,n = σ|O′
i,n

(1 6 n 6 ℵ0) (1, 1)

Now since

X =
⊔

16n6ℵ0

Xn(σ) =
⊔

16n6ℵ0

⊔
i,In

Oi,n,
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one can define the permutation π of X as follows:

π(x) = πi,n

if x ∈ Oi,n for suitable n and i ∈ In. Then it follows from (1.1) that

πσπ−1 = σ′

as we wished to prove.

1.1.2. Normal Subgroups of Symmetric Groups

Since the alternating group An is simple whenever n ̸= 4 (that is, An has no nonidentity

proper normal subgroups whenever n ̸= 4) [8], it follows quite easily that the only normal

subgroups of the symmetric group Sn are

{id}, An, and Sn.

Now let X be an infinite set; we will fix X till the end of this subsection. According to the

famous theorem by Baer--Schreier--Ulam, any normal subgroup of Sym(X) is (exactly) one

of the following:

{id},Alt(X), Sym(X,λ), and Sym(X).

Let λ 6 |X| be a cardinal. The subgroup Sym(X,λ), which is called a bounded symmetric

group is defined as follows:

Sym(X,λ) = {σ ∈ Sym(X) : |supp(σ)| < λ}.
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In the case when λ = ℵ0,

Sym(X,ℵ0) = {σ ∈ Sym(X) : |supp(σ)| < ℵ0}

is the subgroup of Sym(X) which consists of all permutations ofX with finite support. The

group Sym(X,ℵ0) is called then the finitary symmetric group ofX , and it also is denoted by

FS(X).

Also, the subgroup Alt(X) of FS(X), consisting of all even permutations, that is,

permutations that can be written as a product of even number of transpositions is called the

alternating group of X and is denoted by Alt(X).

In what follows we shall give a brief outline of the proof of Baer--Schreier--Ulam theorem.

Lemma 1.1.6. For every infinite cardinal λ 6 |X|, Sym(X,λ) is a normal subgroup of

Sym(X).

Proof. By Claim 1.1.3.

Definition (Involutions). Let G be a group. An element x of G is called an involution if x is

of order two.

Clearly, an element of the finite symmetric group Sn is an involution if and only if it is a

product of disjoint transpositions (2-cycles).

In the infinite symmetric group Sym(X) an element is an involution if and only if all its

nontrivial orbits are of length two.

Definition (Normal closures). Let G be a group and let S be a subset of G. The normal

closure NC(S) of S in G is the intersection of all normal subgroups of G containing S:

NC(S) =
∩

S⊆HEG

H = ⟨gsg−1 : g ∈ G, s ∈ S⟩.

Clearly, NC(S) is a normal subgroup of G. In particular, if S = {s} is a singleton set,

NC(s) = ⟨gsg−1 : g ∈ G⟩,
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that is, NC(s) is generated by all conjugates of s.

Let λ 6 |X| be an infinite cardinal. The main idea of one of the classical proofs of Baer-

-Schreier--Ulam theorem (see e.g. [4, Chapter 8]) is to write Sym(X,λ) as the union of a

chain of normal closures of suitable involutions πµ, where µ < λ is a cardinal, for every

λ 6 |X|:

Sym(X,λ) =
∪
µ<λ

NC(πµ).

Now we explain how to define the involutions πµ. Let µ be a cardinal with µ < |X|. We

define an involution πµ as follows:

• we choose two disjoint infinite subsets Yµ, Zµ of X of cardinality µ;

• (ii) we use an index set I of cardinality µ to write

Yµ = {yi : i ∈ I}

and

Zµ = {zi : i ∈ I}

• we then construct πµ as a unique permutation ofX whose nontrivial orbits are exactly

{yi, zi} (i ∈ I);

• it follows that

πµ(yi) = zi and πµ(zi) = yi

for every i ∈ I and

πµ(t) = t
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for every t ∈ X \ (Yµ ∪ Zµ);

• we observe that

supp(πµ) = the union of all nontrivial orbits of πµ

=
∪
i∈I

{yi, zi}

= Yµ ∪ Zµ

and hence the support of πµ is of cardinality

|Yµ ∪ Zµ| = |Yµ ⊔ Zµ| = |Yµ|+ |Zµ| = µ+ µ = 2µ;

it follows that if µ is an infinite cardinal, the support of πµ is of cardinality µ, since in

this case µ+ µ = µ.

• finally, we observe that πµ has

|X \ (Yµ ∪ Zµ)| = |X|

fixed points.

We also construct one more involution π∗ = π|X| corresponding to the cardinal |X| itself. To

construct π∗ we choose subsets Y, Z of cardinality |X| of X as before, but we shall require

in addition the complement Y ∪ Z of X also be of cardinality |X|:

|X| = |Y | = |Z| = |X \ (Y ∪ Z)|.

Then the construction of π∗ goes forth as above: if

Y = {yi : i ∈ I} and Z = {zi : i ∈ I}
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then nontrivial orbits of π∗ must be exactly two-element sets

yi, zi (i ∈ I).

The special feature of π∗ = π|X| which distinguishes it from other involutions πµ with µ <

|X| is that as we shall see that π∗ normally generates Sym(X), that is,

Sym(X) = NC(π∗).

Note that in the case when µ = 1, πµ is just a transposition; hence the normal closure of

πµ is the subgroup FS(X) of all finitary permutations of X . If, further, µ = 2, then πµ is a

product of two disjoint transpositions, an even permutation, and hence NC(πµ) = Alt(X).

More generally, if µ is a finite cardinal, then

NC(πµ) =

FS(X), if µ < ℵ0 is odd,

Alt(X), if µ < ℵ0 is even.

Proposition 1.1.7. Let µ 6 |X| be an infinite cardinal and let σ ∈ Sym(X) be such that

|supp(σ)| 6 µ.

Then σ ∈ NC(πµ), and, consequently,

NC(σ) 6 NC(πµ).

The following three results are rather easy corollaries of Proposition 1.1.7.

Proposition 1.1.8. (i) Let λ < |X| be an infinite cardinal. Then

Sym(X,λ) =
∪
µ<λ

NC(πµ)
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where µ is a cardinal.

(ii) Sym(X) = NC(π∗).

Corollary 1.1.9. The symmetric group Sym(X) is generated by involutions.

Proposition 1.1.10. Let σ ∈ Sym(X) be a permutation whose support is of infinite

cardinality λ. Then the normal closure of σ contains the involution πλ, and, in effect,

NC(σ) = NC(πλ).

Theorem 1.1.11 (Schreier-Ulam, R. Baer). Let X be an infinite set. A proper nonidentity

normal subgroup N of Sym(X) either equals to Alt(X), or there is an infinite cardinal λ 6
|X| such that N = Sym(X,λ). It follows that the normal subgroups of Sym(X) form a

chain:

{id}▹ Alt(X)▹ Sym(X,ℵ0)▹ . . .▹ Sym(X, |X|)▹ Sym(X)

in which the subgroup Sym(X, |X|) is the largest proper normal subgroup and hence the

quotient group

Sym(X)/Sym(X, |X|)

is simple.

1.1.3. Writing Every Element of Sym(X) As a Commutator, X an Infinite Set

It is well-know that in an infinite symmetric group every element is a commutator [12]. In this

subsection we reproduce one of the most recent proofs of this result due to George Bergman

[1].

Definition (Replete permutations). LetX be an infinite set, we call an element f ∈ Sym(X)

a replete permutation if it has |X| orbits of each positive cardinality6 ℵ0 (including orbits

of cardinality 1). For a subset Y ⊆ X of cardinality |X|, we call that "σ is replete on Y " if

σ(Y ) = (Y ) and σ|Y is a replete permutation of Y.
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A permutation of X which is replete on a subset Y ⊆ X of cardinality |X| is necessarily

replete on X and the replete permutations of X form a conjugacy class.

Lemma 1.1.12. Let X be an infinite set, every σ ∈ Sym(X) is the product of two replete

permutations.

Proof. Given σ ∈ Sym(X), choose a moiety Y0 of X such that σ moves only finitely many

elements from Y0 to X − Y0 or from X − Y0 to Y0.

Now ifX is uncountable then the existence of such a Y0 is immediate, sinceX is uncountable

we can break X into two families and these two families have |X| orbits in each, then take

Y0the union of one of these families.

Now let's check whenX is countable, we can apply the same method if σ has infinitely many

orbits, and can get the same conclusion in an obvious way if f has more than one infinite

orbit. If σ has exactly one infinite orbit, ⟨σ⟩(x0), finitely many finite orbits, we can take

Y0 = {σn(x0) : n 6 0}; clearly σ moves exactly one element out of Y0, and none into it.

After choosing Y0, let us splitX−Y0 into two disjoint moities Y1 and Y2,
(
(X−Y0) = Y1∪Y2

Y1 ∩ Y2 = ∅
)
so that Y1 contains the finitely many elements of (σ(Y0) ∪ σ−1(Y0))− Y0.

If π0 ∈ Sym(Y0) and π2 ∈ Sym(Y2), then there exist a permutation ρ of X such that (σρ =

π0)|Y0 and (ρ = π2)|Y2 . This pair of conditions specifies the values of ρ on the two disjoint

sets σ(Y0) and Y2 in a one to one fashion, and both the set on which it leaves ρ unspecified

and the set of elements that it does specify as values for ρ are of cardinality |X|. Hence the

former set can be mapped bijectively to the latter, and the resulting bijection will complete

the definition of ρ.

Now if we take π0 ∈ Sym(Y0) and π2 ∈ Sym(Y2) as replete permutations, then σρ will be

replete on Y0 hence replete, and ρ will be replete on Y2 hence replete.

Therefore, σ = (σρ)ρ−1 is a product of two replete permutations.

Corollary 1.1.13. Every element of Sym(X) is a commutator.

Proof. The inverse of a replete permutation is, as it easy to see, also a replete permutation.

So the conjugacy class of all replete permutations in Sym(X) is closed under taking inverses.
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Now if σ1σ2 is a product of two replete permutations we have for a suitable π ∈ Sym(X)

σ1σ2 = πσ−1
2 π−1σ2,

and the result follows.

1.2. GENERAL LINEAR GROUPS

1.2.1. Modules

Let A be a ring with identity. A left module M over A is an abelian group, usually written

additively, together with the scalar multiplication by elements of A on M (viewing A as a

multiplicative monoid) such that for all a, b ∈ A and x, y ∈ M we have

(a+ b)x = ax+ bx and a(x+ y) = ax+ ay.

So a(−x) = −(ax) because a(0 + (−x)) = a0 + a(−x) = −(ax) and 0x = 0 because

(0 + 0)x = 0x + 0x = 0x ⇒ 0x = 0. By definition of an operation, we have 1x = x. In a

similar way, one defines a right A-module.

Let M be an A-module. By a submodule N of M we mean an additive subgroup such that

AN ⊂ N . Then N is a module(with the operation induced by that of A onM ).

1.2.2. Vector Spaces

A module over a field is called a vector space.

Theorem 1.2.1. Let V be a vector space over a field K, and assume that V ̸= {0}. Let Γ

be a set of generators of V over K and let S be a subset of Γ which is linearly independent.

Then there exists a basis B of V such that S ⊂ B ⊂ Γ.

Proof. Let I be the set whose elements are subsets T of Γ which contain S and are linearly

independent. Then I is not empty (it contains S), and we contend that I is inductively

ordered. Indeed, if {Ti} is a totally ordered subset of I (by ascending inclusion), then
∪
Ti is
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again linearly independent and contains S. By Zorn's lemma, letB be a maximal element of

I. ThenB is linearly independent. LetW be the subspace of V generated byB. IfW ̸= V ,

there exist some element x ∈ Γ such that x /∈ W . ThenB∪ {x} is linearly independent, for

given a linear combination

Σy∈Bayy + bx = 0, ay, b ∈ K,

we must have b = 0, otherwise we get

x = −Σy∈Bb
−1ayy ∈ W.

By construction, we now see that ay = 0 for all y ∈ B, thereby proving that B ∪ {x} is

linearly independent, and contradicting the maximality of B. It follows that W = V , and

furthermore thatB is not empty since V ̸= {0}. This proves our theorem.

If a vector space ̸= {0}, then in particular, we see that every set of linearly independent

elements of V can be extended to a basis, and that a basis may be selected from a given set

of generators.

Proposition 1.2.2. Let V be a vector space over a fieldK. Then two bases of V overK have

the same cardinality.

Proof. Let us first assume that there exists a basis of V with a finite number of elements, say

{v1, v2, . . . , vm}, m > 1. We shall prove that any other basis must also have m elements.

For this it will suffice to prove: If w1, w2, . . . , wn are elements of V which are linearly

independent overK, then n 6 m (for we can then use symmetry). We proceed by induction.

There exists elements, c1, c2, . . . , cm ofK such that

w1 = c1v1 + · · ·+ cmvm, (1.2.1)

and some ci, say c1, is not equal to 0. Then v1 lies in the space generated by w1, v2, . . . , vm

over K, and this space must therefore be equal to V itself. Furthermore, w1, v2, . . . , vm are
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linearly independent, for suppose b1, b2, . . . , bm are elements of K such that

b1w1 + b2v2 + · · ·+ bmvm = 0.

If b1 ̸= 0, divide by b1 and express w1 as a linear combination of v2, v3, . . . , vm. Subtracting

from (1.2.1) would yield a relation of linear dependence among the vi, which is impossible.

Hence b1 = 0, and again we must have all bi = 0 because the vi are linearly independent.

Suppose inductively that after a suitable renumbering of the vi, we have found

w1, . . . , wr(r < n) such that

{w1, . . . , wr, vr+1, . . . , vm}

is a basis of V . We express wr+1 as a linear combination

wr+1 = c1w1 + · · ·+ crwr + cr+1vr+1 + · · ·+ cmvm, (1.2.2)

with ci ∈ K. The coefficients of the vi in this relation cannot all be 0; otherwise there would

be a linear dependence among the wj . Say cr+1 ̸= 0. Using an argument similar to that used

above, we can replace vr+1 bywr+1 and still have a basis of V . This means that we can repeat

the procedure until r = n, and therefore that n 6 m, thereby proving our theorem.

If a vector space V admits one basis with a finite number of elements, say m, then we shall

say that V is finite dimensional and that m is its dimension. In view of Proposition 1.2.2,

we see that m is the number of elements in any basis of V . If V = {0}, then we define its

dimension to be 0, and say that V is 0-dimensional. We abbreviate "dimension" by "dim" or

"dimK" if the reference toK is needed for clarity.

When dealing with vector spaces over a field, we use the words subspace and factor space

instead of submodule and factor module.

Proposition 1.2.3. Let V be a vector space over a field K, and let W be a subspace of V.
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Then

dimK V = dimK W + dimK V /W.

If f : V → U is a homomorphism of vector spaces over K, then

dimV = dimKerf + dim Imf.

(the rank-nullity theorem)

Proof. The first statement is a special case of the second, taking for f the canonical map.

Let {vi}i∈I be a basis of Imf , and let {wj}j∈J be a basis of Kerf . Let {vi}i∈I be a family of

elements of V such that f(vi) = ui for each i ∈ I . We contend that

{vi, wj}i∈I,j∈J

is a basis for V . This will obviously prove our assertion.

Let x be an element of V . Then there exist elements {ai}i∈I of K almost all of which are 0

such that

f(x) = Σi∈Iaiui.

Hence f(x− Σaivi) = f(x)− Σaif(vi) = 0. Thus

x− Σaivi

is in the kernel of f , and there exist elements {bj}j∈J of K almost all of which are 0 such

that

x− Σaivi = Σbjwj.
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From this we see that x = Σaivi + Σbjwj , and that {vi, wj} generates V .It remains to be

shown that the family {vi, wj} is linearly independent. Suppose that there exist elements

ci, dj such that

0 = Σcivi + Σdjwj.

Applying f yields

0 = Σcif(vi) = Σciui,

whence all ci = 0. From this we conclude at once that all dj = 0, and hence that our family

{vi, wj} is a basis for V overK, as was to be shown.

Corollary 1.2.4. Let V be a vector space and W a subspace. Then

dimW 6 dimV.

If V is finite dimensional and dimW = dimV then W = V .

1.2.3. General Linear Groups

If V is a vector space, then the family GL(V ) of all invertible (bijective) linear operators of

V is called the general linear group of V.

For any element σ ∈ GL(V ) we can define the residual space R(σ) of σ as

R(σ) = Im(σ − id) = {σx− x : x ∈ V }

and the fixed-point subspace P (σ) as

P (σ) = Ker(σ − id) = {x ∈ V : σx = x}

(notice the similarity---and more to follow---with the notions of the support and the fixed-
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point set of a permutation). Due to the rank-nullity theorem (Proposition 1.2.3),

dimR(σ) + dimP (σ) = dimV.

The dimension dimR(σ) of the residual space of σ is called the residue and is denoted by

res(σ).

Proposition 1.2.5. Let σ, π, σ1, σ2 ∈ GL(V ). Then

(i) res(σ−1) = res(σ);

(ii) res(πσπ−1) = res(σ);

(iii) res(σ1σ2) 6 res(σ1) + res(σ2).

Proof. (i). We have that R(σ−1) = R(σ), since

R(σ−1) = {σ−1x− x : x ∈ V } = {σ−1(σx)− σx : σx ∈ V }

= {x− σx : x ∈ V } = R(σ).

(ii). It is easy to see that R(πσπ−1) = πR(σ).

(iii). We have that R(σ1σ2) ⊆ R(σ1) +R(σ2), since

σ1σ2x− x = σ1(σ2x)− σ2x︸ ︷︷ ︸
in R(σ1)

+σ2x− x︸ ︷︷ ︸
in R(σ2)

for all x ∈ V.

Next, we shall reproduce a result by A. Rosenberg (1958) on the structure of normal

subgroups of the general linear group of an infinite-dimensional vector space [13]. Fix an

infinite-dimensional vector space V over a fieldK.

Let λ 6 dimV be an infinite cardinal. Set

Γ(λ) = {σ ∈ GL(V ) : res(σ) < λ}.
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Proposition 1.2.6. For every infinite cardinal λ 6 dimV, Γ(λ) is a normal subgroup of

GL(V ).

Proof. By Proposition 1.2.5.

Theorem 1.2.7 (A. Rosenberg, [13]). If N is a normal subgroup of Γ = GL(V ), then either

N is contained in the center of Γ, that is in the subgroup RL(V ) of all radiations of V, or

there exist an infinite cardinal λ 6 dimV and a subgroup D of the multiplicative group K∗

ofK such thatN = DΓ(λ). Consequently, the normal subgroupK∗Γ(κ) where κ = dimV

contains all proper normal subgroups of Γ and the quotient group Γ/K∗Γ(κ) is simple.

1.3. FIRST-ORDER STRUCTURES

1.3.1. Predicates, Operations, and Constants

Recall that if A is a some set, then by A × A we denote the set of all ordered pairs (a1, a2),

where a1, a2 are elements of A, by A × A × A we denote the set of all ordered triples of

elements of A, etc. In general, the set

A× . . .× A = An = {(a1, . . . , an) : ai ∈ A}

is called the n-th Cartesian power of A.

Definition (Predicates). Let A be a non-empty set. Then an n-placed predicate on A is an

arbitrarymapP : An → {T,F}. So that we assign to everyn-tuple, (a1, . . . , an), consisting of

elements of A, the value T (true) or F (false). The set {(a1, . . . , an) ∈ An : P (a1, . . . , an) =

T} is said to be the set of realizations of P.

We can consider a predicate as a condition which either holds (T), or does not hold (F) at a

given n-tuple of elements A.

Note that one-placed predicates are also called unary, two-placed predicates---binary, three-

placed ones---ternary. In the general case we say in such a manner about n-ary predicates.

Definition (Operations). Let A be a set. Then a n-placed operation on A is any mapping of
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the form f : An → A. Therefore, an n-ary operation assigns to each n-tuple of elements of

A an element A.

Some elements of mathematical objects have special properties that differentiates

(distinguish) them from other elements. As examples we can consider 0, the neutral element

of the addition operation on the set of reals, and 1, the neutral element of the multiplication

on the set of reals. The special symbol ∅ denotes the empty set, etc. Such distinguished

elements are called constants.

Definition (Structures). A non-empty set A equipped with a set {Pi : i ∈ I} of predicates, a

set {fj : j ∈ J} of operations on A, and some set {ck : k ∈ K} of constants,

A = ⟨A; {Pi : i ∈ I}, {fj : j ∈ J}, {ck : k ∈ K}⟩

is called a structure. The set A is said to be the domain (or the universe) of the structure A,

symbolically,

dom(A) = A.

The relations in

{Pi : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K}

are called the basic or the primitive relations of A.

In the case whenA is equipped with no predicates, that is, in the case when {Pi : i ∈ I} = ∅,

the structure A is also called an algebra.

The key word in the definition of a structure is the word `together': the domain of a structure,

predicates and operations defined on the domain and constants have to be all considered as

an organic whole.

Examples
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(i)A = ⟨N; +, ·,Sc, 0⟩ (Peano's structure). The domain of this structure is the set of naturals

N, Sc (the successor function) is the unary function

Sc(n) = n+ 1,

and the constant is 0.

(ii) ⟨R; +, ·, 0, 1, <⟩ (the ordered field of real numbers). This structure has two operations,

one binary predicate and two constants.

(iii) Groups and rings are algebras in the sense of the above definition. Indeed, a groupGmay

be considered as: either as an algebra with one basic binary operation ⟨G; ·⟩ where · is the

multiplication on G, or as an algebra ⟨G; ·, −1, e⟩ with two basic operations and a constant;

here we add the unary operation −1 for taking inverses, and a constant e for the identity

element of G.

Similarly, one sees that any ring can be viewed an algebra.

(iv) Let V be a vector space over a division ring D. For each α ∈ D, consider a unary

operation fα on V defined as follows:

fα(x) = α · x [x ∈ V ]

where · is the scalar multiplication. Then V, viewed as an algebra, is the structure

V = ⟨V ; +, {fα : α ∈ D}⟩

where + is the vector addition on V.

1.3.2. Structures in a First-Order Language

A first-order language L is a collection of distinct symbols partitioned into three parts:

L = P ∪ F ∪ C,
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where the setP is the set of predicate symbols,F is the set of symbols of operations (function

symbols) and C is the set of constant symbols.

As it is almost universally done in the textbooks onmodel-theory, we shall assumeP contains

the two-placed predicate symbol =(2) (to be always interpreted by the equality relation).

Each predicate and function symbol from L comes in the following specified form:

P
(ni)
i and f (mj)

j

where superscripts (ni) and (mj) indicate the arity (number of arguments, number of places)

of the associated symbol.

Definition (Interpretations of first-order languages). Let L = P ∪ F ∪ C be a first-order

language. Suppose that

P = {P (ni)
i : i ∈ I},

F = {f (mj)
j : j ∈ J},

C = {ck : k ∈ K}.

Then the process of an interpretation of the language L is realized as follows:

• we fix some non-empty set A;

• for each predicate symbol P (ni)
i from the set P of predicate symbols we define on A

an ni-placed predicate PA
i (i ∈ I);

By the agreement, the predicate symbol=(2) is a member ofP , and we always interpret

it by the equality relation on A;

• for each function symbol f (mj)
j from the set F of all function symbols of L we define

on the set A an (mj)-placed operation fA
j ;

• we link each constant symbol ck from C with some element cAk from A.



23

The structure A

A = ⟨A; {PA
i : i ∈ I}, {fA

j : j ∈ J}, {cAk : k ∈ K}⟩

obtained in the way described above is called a structure in the language L.

1.3.3. Alphabets and Words. Terms of First-Order Languages

Let X be any set which we shall call an alphabet, meaning that we are going to construct

words over X.

A word of the alphabet X (or, simply, over X) is an ordered sequence

x0x1 . . . xn−1

of elements ofX. It is convenient to consider empty sequence of elements ofX, the so-called

of empty word, which is denoted by ⟨⟩. By the definition, the length of the empty word is 0,

the length of a word x0x1 . . . xn−1 ̸= ⟨⟩ is n.

The family of all words of length n (n ∈ N) is denoted by Xn.

The family of all words over X is denoted byW (X). Thus

W (X) =
∪
n∈N

Xn.

Lemma 1.3.1. Let X be a nonempty alphabet. Then the cardinality |W (X)| of the set of all

words over X is equal to |X|+ ℵ0:

|W (X)| = |X|+ ℵ0.

Accordingly, if X is infinite then, |W (X)| = |X|.
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Proof. If X is finite, then of course there are exactly ℵ0 words over X:

|W (X)| = ℵ0.

On the other hands, as X is finite, then

ℵ0 = |X|+ ℵ0.

Let then X be infinite. Then for all n > 1

|Xn| = |X|n = |X|.

Now

|X|+ ℵ0 = |X| 6 |W (X)| = |
∪
n∈N

Xn| 6
∪
n>1

|Xn|

=
∪
n>1

|X| 6 ℵ0 · |X|

= |X| = |X|+ ℵ0.

We define the operation of the concatenation onW (X):

u, v ∈ W (X) 7→ uv.

If w ∈ W (X) and w can be written as

w = u1uu2

then u is called a subword of w.
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One of the reasons to have the empty word over X is to have a workable definition of a

subword of a given word.

Now let L be a first-order language. Our goal is to give the formal definition of a term in L.

First, we recall the definition of the alphabet of the first-order logic in L.

Definition (The alphabet of first-order logic in L). The alphabet of first-order logic in the

language L is the set that contains the following elements:

• predicate, function and constant symbols from L;

• logical connectives ∧,∨,→ and ¬;

• quantifiers ∀ (the universal quantifier) and ∃ (the existential quantifier);

• parentheses (,) ;

• the infinite list of so-called free variables x0, x1 . . . , xn−1, . . .

• the infinite list of bound variables y0, y1 . . . , yn−1, . . .

Definition (Terms). A term of the languageL (sometimes anL-term, for convenience's sake)

is a word in the alphabet of the first-order logic in L which can be obtained by subsequent

applications of the following rules:

(T1). each free variable xk and each constant symbol c in L is a term in the language L;

(T2). if f = f (n) is a function symbol from L and words t1, . . . , tn are terms, then the word

f(t1, . . . , tn)

is a term in the language L.

We also state that

(T3). there are no L-terms other than those that are obtained by application of rules (T1) and

(T2).

It is helpful to observe that L-terms are words of the alphabet

F ∪ C ∪ {xk : k ∈ N} ∪ {(, )} ∪ {, }.

This is an infinite language, and then there are at most |F| + |C| + ℵ0 L-terms. On the
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other hand, it is clear from the definition that there at least |C|+ ℵ0 + |F| L-terms. Thus the

following result is true.

Proposition 1.3.2. There are exactly |F|+ |C|+ ℵ0 L-terms.

Suppose thatL = {=(2), f (1), g(2), c} (one unary, one binary function symbol and a constant).

Then the following words are L-terms:

x0, c, f(x1), f(c), g(c, c), f(f(x2)), g(f(x1), f(f(x2))).

1.3.4. Cartesian Products of First-Order Structures

Fix a first-order language L = P ∪F ∪C and a family {Mi : i ∈ I} of first-order structures

in L. We shall explain how to introduce a L-structure on the Cartesian product
∏

i∈I Mi of

the said family of structures.

Let Mi denote dom(Mi) for every i ∈ I. Recall that the Cartesian product
∏

i∈I Mi is the

family {f} of all functions of the form

f : I →
∪
i∈I

Mi

such that f(i) ∈ Mi for all i ∈ I. Given an element x ∈
∏

i∈I Mi such that

x(i) = xi [i ∈ I]

it is convenient to write x as (xi)i∈I .

If P ∈ L is a predicate symbol we shall denote by Pi its interpretation on Mi, that is, the

predicate PMi (i ∈ I).

Similarly, if f ∈ L is a function symbol we shall denote by fi its interpretation on Mi, that

is, the operation fMi on domMi (i ∈ I).

Finally, if c ∈ L is a constant symbol we denote by ci the element cMi ofMi (i ∈ I).

We denote the structure we are going to construct, the Cartesian product
∏

i∈I Mi of the
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family {Mi : i ∈ I} byM.

The domain: dom(M) =
∏

i∈I Mi.

Interpretation of the constants: if c ∈ L we set

cM = (ci)i∈I = (cMi)i∈I .

Intepretations of the function symbols: let f ∈ L be a function symbol of arity n and let

(a1,i)i∈I , . . . , (an,i)i∈I

be an n-tuple of elements of
∏

i∈I Mi. Then, by the definition,

fM((a1,i)i∈I , . . . , (an,i)i∈I) = (fi(a1,i, . . . , an,i))i∈I .

Intepretations of the predicate symbols: let P ∈ L be a predicate symbol of arity n and let

(a1,i)i∈I , . . . , (an,i)i∈I

be an n-tuple of elements of
∏

i∈I Mi. Then

PM((a1,i)i∈I , . . . , (an,i)i∈I) = T ⇐⇒ Pi(a1,i, . . . , an,i) = T for all i ∈ I.
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2. GROUPS WITH THE BERGMAN PROPERTY

2.1. INTRODUCTION

Let G be a group and let S be a generating set of G. Then the width wid(G,S) of G relative

to S is the least natural number k such that any element ofG is expressible as a product of at

most k elements of S ∪ S−1, or ∞, otherwise. In the case when the width of G with regard

to S is a finite number k, it is also customary to say that G is generated by S in k steps.

A group is said to have the Bergman property [6] (or to be a group of finite width) if its width

relative to any generating set is finite. The property is named after George M. Bergman who

found that it is satisfied by all infinite symmetric groups [1]. The first example of an infinite

group with the Bergman property had been found by Shelah in the 1980s [14].

A preprint version of [1] attracted a considerable attention and very soon other examples

of groups of uniformly finite width have been found: the automorphism groups of doubly

transitive chains [7], the automorphism group of R as a Borel space [6], infinite-dimensional

general linear groups over fields [15], the automorphism groups ofω-stable and ω-categorical

structures and the automorphism group of the random graph [9] etc.

In the first section we give the proof of finiteness of width of infinite symmetric groups [1].

It is based on the ideas developed in papers [5, 10, 15].

In the next section we shall consider some basic properties of the class B of all groups with

the Bergman property.

The third section will be devoted to the proof of the fact that infinite-dimensional linear

groups over fields have the Bergman property [15].

In the final, fourth section we shall discuss sufficient conditions on algebras (in particular,

on groups) in terms of their Cartesian powers to satisfy an analogue of the Bergman property

[2].
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2.2. INFINITE SYMMETRIC GROUPS

The primary of goal of this section is to show all infinite symmetric groups have the Bergman

property [1]. The proof we are going to give is different from the original proof found by

Bergman in [1]: it is rather an adaptation for the (easier) case of the infinite symmetric groups

of the proof that infinite-dimensional linear groups have the Bergman property given in [15].

We shall use the standard notation of the theory of permutation groups. If a group G acts on

a set X and if Y is a subset of X, then by G(Y ) we shall the pointwise stabilizer of Y in G,

G(Y ) = {g ∈ G : g · y = y for all y ∈ Y }

and by G{Y } we shall denote the setwise stabilizer of Y in G:

G{Y } = {g ∈ G : g · Y = Y }.

Any notation like G∗1,∗2 means the intersection G∗1 ∩G∗2 of subgroups G∗1 and G∗2 of G.

Let us fix an infinite set X till the end of this section

2.2.1. Writing Sym(X) as a Power of a Conjugacy Class

Along with fixing X, fix also a partition of X

X = X1 ⊔X2 ⊔ Y

into moieties. Consider an involution π∗ ∈ Sym(X) which interchanges X1 and X2 and

fixes Y pointwise. Thus both the support and the fixed-point sets of π∗ are moieties, and as

we have seen in the previous chapter, π∗ normally generates Sym(X) (Proposition I.1.1.8).

Now we claim that C(π∗) generates Sym(X) in finitely many steps.

Proposition 2.2.1. Let C(π∗) be the conjugacy class of π∗ in the group Sym(X). Then

Sym(X) = C(π∗)12,
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that is, every permutation of X can be written as a product of at most 12 conjugates of π∗.

We start with a classical result on generation of Sym(X) due to J. Dixon, P. M. Neumann

and S. Thomas [5].

Theorem 2.2.2. The symmetric group Γ = Sym(X) is generated in three steps by the union

of the stabilizers

Σ1 = Γ{X1∪Y },(X2) = Γ(X2), Σ2 = Γ{X2∪Y },(X1) = Γ(X1),

or, equivalently,

wid(Sym(X),Σ1 ∪ Σ2) 6 3.

Proof. Let σ ∈ Sym(X). As Y is of cardinality |X| and as

σY = (σY ∩ (X1 ⊔ Y )) ⊔ (σY ∩X2),

σY = (σY ∩ (X2 ⊔ Y )) ⊔ (σY ∩X1)

one of the sets

σY ∩ (X1 ⊔ Y ), or σY ∩ (X2 ⊔ Y )

is of cardinality |X|.

Suppose then that

|σY ∩ (X1 ⊔ Y )| = |X| (2.2.1)

Let Z ⊆ Y be a subset of Y such that

σZ is a moiety of σY ∩ (X1 ⊔ Y )
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It means that there is a subset T of Y such that

σZ ⊔ σT = σY ∩ (X1 ⊔ Y ).

Now since σ is a bijection and since σZ is a moiety of σY ∩ (X1 ⊔ Y ), then T is also of

cardinality |X| and is disjoint to Z. Consequently,

• Z is a moiety of Y (of X1 ⊔ Y ) and

• σZ is moiety of X1 ∩ Y.

It follows that there is a permutation ρ ∈ Σ1 which maps σZ onto Z and, moreover, such

that

ρ(σz) = (ρσ)z = z (2.2.2)

for all z ∈ Z.

Since, further,X1 and Z are both moieties ofX1 ⊔ Y, there is a π ∈ Σ1 which takesX1 onto

Z:

π(X1) = Z.

Consider the product π−1(ρσ)π. We have that for all x1 ∈ X1, π(x1) is in Z, and hence by

(2.2.2),

(ρσ)(πx1) = πx1,

whence

π−1ρσπ(x1) = π−1(πx1) = x1

for all x1 ∈ X1. It follows that

π−1ρσπ ∈ Σ2,
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or

σ ∈ ρ−1πΣ2π
−1 = Σ1Σ2Σ1.

Summing up, we see that if (2.2.1) is true, then

Sym(X) = Σ1Σ2Σ1.

By symmetry, if

|σY ∩ (X2 ⊔ Y )| = |X|,

we get that

Sym(X) = Σ2Σ1Σ2,

and the result follows.

Proof of Proposition 2.2.1. Let

X = A ⊔ C ⊔B

be a partition of X into moieties. Take an index set I of cardinality |X|. Suppose that

A = {ai : i ∈ I} and B = {bi : i ∈ I}.

Take a bijection f : I → I.Write α for the permutation

α(ai) = af(i) [i ∈ I]

of A induced by f. Consider involutions π1, π2 which both fix C pointwise and act on A as
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follows

π1ai = bi, [i ∈ I]

π2af(i) = bi.

Clearly, π1, π2 are conjugates of π∗, since their supports (= A ⊔ B) and fixed-point sets

(= C) are moieties. We have that

π2π1ai = π2(bi) = af(i) [i ∈ I].

On the other hand,

π2π1bi = π2(ai) = π2(af(f−1(i))) = bf−1(i)

for all i ∈ I.We see that

the action of π2π1 on B = {bi : i ∈ I} is isomorphic to the action of α−1 on
A = {ai : i ∈ I},

or, informally, one can write that

π2π1 = α ⊔ id⊔α−1.

Extending the principle of the construction of π2π1, one can represent as a product of two

conjugates of π∗ any permutation of X of the form

⊔
n∈N

α ⊔ id⊔
⊔
n∈N

α−1, (2.2.3)

where the latter disjoint union of maps corresponds to a disjoint union moieties and α is the

isomorphism type of a permutation of one of these moieties.
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Let us consider permutations σ1, σ2 of X of the form (2.2.3):

σ1= id⊔(α ⊔α−1⊔α ⊔α−1⊔ . . .)⊔ id,

σ2=α ⊔(α−1⊔α ⊔α−1⊔α ⊔ . . .)⊔ id,

both constructed over the same partition of X into a countable disjoint union of moieties. It

is clear that

σ1σ2 = α ⊔
⊔
n∈N

id⊔ id (2.2.4)

is a product of four conjugates of π∗.

The equation (2.2.4) demonstrates that each element of the subgroup Γ{X2∪Y },(X1) (resp. the

subgroup Γ{X1∪Y },(X2)) is a product of at most four conjugates of π∗. Then by Theorem 2.2.2

any element of Sym(X) is a product of at most 3 · 4 = 12 conjugates of π∗.

Theorem 2.2.3. Let U be a generating set of the group Sym(X). Then the width of Sym(X)

with respect to U is finite. Consequently, Sym(X) has the Bergman property.

Proof. We start with the diagonal argument which has been used in a number of papers on

the automorphism groups of classical structures (see e.g. [10]).

Lemma 2.2.4. Let V = U ∪U−1. There exist a power V m of V and a partitionX = Y ⊔Z

of X into moieties such that the set

(V m){Y },{Z}

induces the group Sym(Y ) on Y.

Proof. Let

X =
⊔
k>1

Xk

be a partition of X into moieties countably many moieties indexed by natural numbers > 1.
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Write

X∗
k =

⊔
i ̸=k

Xi

for all k > 1.

If for some pair (V k, Xj) we have that

(V k){Xj},{X∗
j } induces Sym(Xj) on Xj

then the conclusion of the lemma is true. Suppose otherwise. Then, in particular, for all k

(V k){Xk},{X∗
k} does not induce Sym(Xk) on Xk.

Hence for each k ∈ N we can find σk ∈ Sym(Lk) such that

σk is not equal to the restriction onXk of any element from (V k){Xk},{X∗
k}.

Set

σ =
⊔
k>1

σk.

Since Sym(X) =
∪

k V
k, we have σ ∈ V j for some j ∈ N. It is clear, however, that

σ ∈ (V j){Xj},{X∗
j }.

But then the restriction of σ to Xj is σj, a contradiction.

Let V m, Y, Z satisfy the conclusion of the lemma. Take an involution π ∈ Sym(X) which is

conjugate to π∗, fixes Y setwise and fixes Z pointwise. Then by Proposition 2.2.1 the set of

permutations

Σ = {σ1πσ
−1
1 . . . σ12πσ

−1
12 : σ1, . . . , σ12 ∈ (V m){Y },{Z}} (2.2.5)
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is the group Γ{Y },(Z), since any permutation σkπσ
−1
k acts trivially on Z due to triviality of the

action of π on Z. Clearly, Σ is contained in some power of V. Now, by Theorem 2.2.2, for

the conjugate set ρΣρ−1 by a suitable permutation ρ ∈ Sym(X) we have that

wid(Sym(X),Σ ∪ ρΣρ−1) 6 3.

Let l be a natural number such that Σ ∪ ρΣρ−1 ⊆ V l. Then evidently

Sym(X) = Y 3l.

2.3. BASIC PROPERTIES OF THE CLASS OF ALL GROUPS WITH THE

BERGMAN PROPERTY

It is quite clear that the class B of all groups that have the Bergman property is closed under

homomorphic images: whenever G is a group, any homomorphic image of G also has the

Bergman property.

Next, we are going to show that the class B is closed under group extensions.

Definition (Group extensions). We say a given group G is an extension of a group A by a

group B, if G has a normal subgroup N such that

N ∼= A and G/N ∼= B.

A classK of groups is said to be closed under group extensions if given any groupsA,B ∈ K,

any extension of A by B is again in K.

An example: a direct product A×B of groups A,B is an extension of A by B.

Lemma 2.3.1. [1] Let H < G be groups and U a generating set for G. For some n > 0,

suppose every right coset of H in G contains a group word of length 6 n in the elements
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of U . Then the set of elements of H that can be written as words of length 6 2n + 1 in the

elements of U generates H.

Proof. Let V be a set of right coset representatives of H in G consisting of words of length

6 n in the elements of U, with the coset H represented by the element 1, and let r : G → V

be the retraction collapsing each coset to its representative. LetW denote the set of elements

of H that can be written as words of length 6 2n+ 1 in the elements of U.

For any v ∈ V and u ∈ U ∪ U−1, note that vu = (vur(vu)−1)r(vu). Since r(vu) by

definition lies in the same right coset as vu, then vur(vu)−1 lies inH, and since v and r(vu)

are members of V , each have length 6 n, then the factor vur(vu)−1 has length 6 2n + 1,

then vur(vu)−1 ∈ W.

It follows that vu = (vur(vu)−1)r(vu) ∈ WV and then

V (U ∪ U−1) ⊆ WV ⊆
∪
i∈I

W iV . . . (6).

It follows that
∪

i∈I W
iV is closed under right multiplication byU∪U−1, hence

∪
i∈I W

iV =

G.

If we intersect both sides by H ,

H = G ∩H = (
∪

{i∈I}

W iV ) ∩H =
∪
i∈I

(W iV ∩H) =
∪
i∈I

W i.

The intersection (W iV ∩H) has the effect of discarding elements having right factors from

V other than 1, therefore
∪

i∈I W
i = H, and completing the proof.

Corollary 2.3.2. Let G be a group. Suppose that there is a normal subgroup N of G such

that both N and the quotient group G/N have the Bergman property. Then G also has the

Bergman property.

Accordingly, the class of all groups with the Bergman property is closed under group

extensions.

Proof. By Lemma 2.3.1.
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Definition (Groups of uncountable cofinality). Let G be a group which is not finitely

generated. Then G is said to have an uncountable cofinality, if whenever G is written as

the union of a chain of subgroups

G0 6 G1 6 G2 6 . . .

indexed by N (or, for short, as the union of an exhaustive countable chain of subgroups of

G), then for some n, Gn = G. Equivalently, any countable exhaustive chain of subgroups of

G terminates at G after finitely many steps.

Observe that in a finitely generated group any countable exhaustive chain terminates after

finitely many steps. Thus the notion we introduced in the last definition is more interesting

for groups that are not finitely generated.

Recall that given a group G and a metric space ⟨M,d⟩, an action of G onM for which

d(ga, gb) = d(a, b)

for all g ∈ G and for all a, b ∈ M is called an action by isometries.

Several authors studied the conjunction of the Bergman property and uncountable cofinality.

Following [6], we call a group G having both these properties a group of the strong

uncountable cofinality. The following proposition that appeared in a number of papers on the

Bergman property provides a number of criteria of the strong uncountable cofinality [1, 3, 6].

Proposition 2.3.3. Let G be a group. Then the following are equivalent:

(i). G has the strong uncountable cofinality;

(ii). every exhaustive chain (Uk)

U0 ⊆ U1 ⊆ . . . ⊆ Uk ⊆ . . . ⊆ G

of subsets of G such that for every i ∈ N

• Ui closed under taking inverses;
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• the product UiUi is contained in a suitable Uk

terminates after finitely many steps;

(iii). orbits of every action of G by isometries on a metric space ⟨M,d⟩ have bounded

diameters;

(iv). every function L : G → R such that

• L(g) = 0 if and only if g = 1;

• L(g−1) = L(g) and L(gh) 6 L(g) + L(h) for all g, h ∈ G

is bounded from above.

Proof. (i)⇒ (ii). Clearly, the chain of subgroups of G generated by sets Ui,

⟨U0⟩ 6 ⟨U1⟩ 6 . . . 6 ⟨Uk⟩ 6 . . . 6 G,

is an exhaustive chain of subgroups of G. Then G = ⟨Uj⟩ for a suitable natural number j,

because G is a group of uncountable cofinality. It follows that Uj = U−1
j is a symmetric

generating set ofG. AsG has the Bergman property,G = U s
j for some natural number s. By

the conditions on the chain (Uk), the power U s
j is contained in some Um for an appropriate

m ∈ N, whence Um = G.

(ii)⇒ (iii). Let a be an arbitrary element of a metric spaceM satisfying (iii). Set

Un = {g ∈ G : d(a, ga) 6 n} (n ∈ N).

Let g, h ∈ Un. Then we have that

d(a, gha) 6 d(a, ga) + d(ga, gha) = d(a, ga) + d(a, ha) 6 n+ n = 2n.

Consequently, UnUn ⊆ U2n. As the chain (Un) terminates, we get that G = Um for some

m ∈ N. Hence

d(a, ga) 6 m
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for all g ∈ G. Thus the diameter of the orbit {ga : g ∈ G} of a ∈ M is at most 2m.

(iii)⇒ (iv). Let a, b ∈ G. Set

d(a, b) = L(ab−1).

It is easy to see that d is a metric on G satisfying the conditions in (iii) for the left action G

on itself. Indeed, we have that

d(a, b) = 0 ⇐⇒ L(ab−1) = 0 ⇐⇒ ab−1 = 1 ⇐⇒ a = b,

d(a, b) = L(ab−1) = L(ba−1) = d(b, a),

d(a, b) = L(ab−1) = L(ac−1 · cb−1) 6 L(ac−1) + L(cb−1) = d(a, c) + d(c, b),

d(ga, gb) = L(gab−1g−1) = L(ab−1) = d(a, b),

for all a, b, g, h ∈ G. Then the orbit of 1 ∈ G under the left action ofG on itself has a bounded

diameterm ∈ N, or

L(g) = d(g1, 1) 6 m (g ∈ G).

(iv)⇒ (i). Let S = S−1 be a symmetric generating set of G. Then the function

L1(g) = |g|S (g ∈ G)

that is, the length function with regard to S, which meets all conditions mentioned in (iv),

must be bounded from above by some natural numberm. Accordingly, G = Sm.

Let further (Nk) be an exhaustive countable chain of subgroups of G. For every g ∈ G set

L2(g) = min{k ∈ N : g ∈ Nk} (g ∈ G).
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It is readily seen that L2 satisfies all conditions in (iv). For example,

L2(ab) 6 max(L2(a), L2(b)) 6 L2(a) + L2(b)

for all a, b ∈ G. One again concludes that L2 is bounded from above by a certain natural

numberm, whence G = Nm.

We shall discuss the property of the strong uncountable cofinality in a more general settings,

for arbitrary algebras, in Section 2.5.

2.4. INFINITE-DIMENSIONAL LINEAR GROUPS

Throughout the section we shall denote by V a left infinite-dimensional vector space over

a field. Γ stands for the general linear group GL(V ) of V, the group of all invertible linear

transformations from V into itself.

Following [10], we call a subspace U of V moietous (clearly, it is an analogue of the notion

of a moiety of an infinite set), if

dimU = codimU = dimV.

Let U1, U2,W be moietous subspaces of V with

V = U1 ⊕ U2 ⊕W.

We also fix throughout an involution π∗ of V which interchanges U1, U2, that is,

π∗U1 = U2 and π∗U2 = U1

and preserves all elements ofW.

Similarly to the main result of Section 2.2, the main result stating that GL(V ) has the

Bergman property will be obtained as a consequence of the following statement. According
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to Rosenberg's theorem (Theorem I.1.2.7), π∗ normally generates GL(V ), since the residual

space of π∗ is of dimension dimV.

Theorem 2.4.1. The width of GL(V ) relative to the conjugacy class C(π∗) of π∗ is at most

28.

Theorem 2.4.1, in turn, is based on obtaining an estimate of the width of GL(V ) relative to the

union of a pair of naturally defined subgroups introduced by Macpherson in [10]. The reader

will notice similarities with the proof of the Bergman property for the infinite symmetric

groups we give in Section 2.2.

Lemma 2.4.2. Suppose that U1, U2,W are moietous subspaces of V such that

V = U1 ⊕ U2 ⊕W.

Let Γ = GL(V ) and let

Σ1 = Γ{U1+W},(U2) and Σ2 = Γ{U2+W},(U1).

Then the width of GL(V ) relative to the set Σ1 ∪ Σ2 is at most 7.

Proof. Our proof is based on Macpherson's proof of the fact that GL(V ) is generated by

Σ1 ∪ Σ2 (see the proof of Proposition 2.2 in [10]).

We prove first that

Γ(U1+W ) ⊆ Σ2Σ1Σ2Σ1, (2.4.1)

that is, the width of Γ(U1+W ) with respect to Σ1 ∪ Σ2 is at most 4. Take θ ∈ Γ(U1+W ) and

assume that (xi : i ∈ I) is a basis for U2. Then we have that

θxi = x′
i + ai + bi, [i ∈ I]

where ai is an element of W, bi an element of U1, and the system (x′
i : i ∈ I) is a basis for
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U2. Consider the automorphism τ1 of Σ2 which acts trivially on U1 +W and such that

τ1x
′
i = xi − ai, [i ∈ I].

Now let τ2 be an element of Σ1 which takes U1 ontoW. Therefore we have that

τ2τ1θτ
−1
2 xi = xi + a′i, [i ∈ I].

where a′i = τ2bi is an element ofW. Then, as above, for a suitable τ3 in Σ2 we have that

τ3τ2τ1θτ
−1
2 = idV ,

which proves (2.4.1).

Consider now an arbitrary σ ∈ GL(V ). Let B1 = (yi : i ∈ I) be a basis for U1.We have that

σyi = zi + ti, [i ∈ I],

where zi ∈ U1 and ti ∈ U2 +W. There exists a moiety J of I such that the set (tj : j ∈ J)

is contained in a moietous subspace, say L of U2 +W. Then an appropriate element γ1 ∈ Σ2

takes L to a moietous subspace of W. It follows that the subspace γ1⟨zj + tj : j ∈ J⟩ is a

moietous subspace of U1 +W. Let y′j denote γ1(zj + tj), where j ∈ J.

Suppose that BW is a basis for W and B0
W is a moiety of BW . We follow γ1σ by a

transformation γ2 of Σ1 which takes (y′j : j ∈ J) onto B1∪B0
W and then apply some γ3 ∈ Σ2

which maps B0
W onto BW .We obtain therefore that

γ3γ2γ1σyj = γ3γ2y
′
j = vj, [j ∈ J ],

where (vj : j ∈ J) = B1 ∪ BW . In a similar way, the system (yj : j ∈ J) is taken by the

product of some δ2 ∈ Σ1 and δ3 ∈ Σ2 onto (vj : j ∈ J):

δ2δ3yj = vj, [j ∈ J ].
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Hence

γ3γ2γ1σδ
−1
3 δ−1

2 vj = vj, [j ∈ J ].

Thus the automorphism γ3γ2γ1σδ
−1
3 δ−1

2 is in the subgroup Γ(U1+W ). Since γ3 ∈ Σ2 and δ2 ∈

Σ1, the equation (2.4.1) implies that

σ ∈ Σ2Σ1(Σ2Σ1Σ2Σ1)Σ2

and then wid(GL(V ),Σ1 ∪ Σ2) 6 7, as desired.

Proof of Theorem 2.4.1. Let L1, L2,M be moietous subspaces such that V is their direct

sum:

V = L1 ⊕M ⊕ L2.

Let I be an index set of cardinality dimV and

(ai : i ∈ I), (a∗i : i ∈ I)

be bases of L1 and

(bi : i ∈ I)

a basis for L2. Involutions π1, π2 which both fix M pointwise and act on the bases (ai) and

(a∗i ) as follows

π1ai = bi, [i ∈ I]

π2a
∗
i = bi
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are conjugates of π∗.We have that

π2π1ai = a∗i , [i ∈ I].

Now let α denote the automorphism of the vector space L1 that takes the basis (ai) onto the

basis (a∗i ). Suppose that for all i ∈ I

α−1a∗i =
∑
j

βija
∗
j .

We then have

π2π1bi = π2ai = π2(α
−1a∗i ) = π2(

∑
j

βija
∗
j) =

∑
j

βijbj

for all i ∈ I. We see that the action of π2π1 on L2 = ⟨bi : i ∈ I⟩ is isomorphic to the action

of α−1 on L1 = ⟨a∗i : i ∈ I⟩, or, again, using convenient informal notation as we did in the

proof of Proposition 2.2.1, one can write that

π2π1 = α⊕ id⊕α−1.

Similarly, any automorphisms of V of the form

⊕
n∈N

α⊕ id⊕
⊕
n∈N

α−1, (2.4.2)

where the latter direct sum corresponds to a direct sum of moietous subspaces and α is the

isomorphism type of an automorphism of one of these subspaces, can be obtained as a product

of two conjugates of π∗.

Let us consider two automorphisms σ1, σ2 of V of the form (2.4.2):

σ1= id⊕(α ⊕α−1⊕α ⊕α−1⊕ . . .)⊕ id,

σ2=α ⊕(α−1⊕α ⊕α−1⊕α ⊕ . . .)⊕ id
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(both constructed over the same decomposition of V into a countable infinite direct sum of

moietous subspaces.) Then

σ1σ2 = α⊕
⊕
n∈N

id⊕ id (2.4.3)

is a product of four conjugates of π∗.

Let U1, U2,W be subspaces of V with

V = U1 ⊕W ⊕ U2.

Now each element of the subgroupΓ(U1),{U2+W}, or of the subgroupΓ(U2),{U1+W}) is a product

of at most four conjugates of π∗. Then by Lemma 2.4.2 any element of GL(V ) is a product

of at most 7 · 4 = 28 conjugates of π∗.

Remark 2.4.3. It is easy to see that π∗ is a commutator. Indeed, let

(ai, a
∗
i , bi : i ∈ I)

be a basis for V and let I0 be a moiety of I.We define two involutions π1 and π2, conjugates

of π∗:

π1ai = π2ai = a∗i , [i ∈ I0],

π1ai = a∗i , [i /∈ I0],

π2ai = ai, [i /∈ I0],

π1bi = π2bi = bi, [i ∈ I].

As π2 is a conjugate of π1, the product π1π2 is a commutator which is, moreover, a conjugate

of π∗. Hence π∗ is a commutator. By Theorem 2.4.1 this provides an elementary proof of

the fact that Γ = GL(V ) is perfect, that is, Γ coincides with the commutator subgroup [Γ,Γ]

(this had been proved by Rosenberg in [13] as a corollary of his main result of [13], we have

quoted in Theorem I.1.2.7 above)



47

Theorem 2.4.4. LetX be any generating set ofGL(V ). Then the width ofGL(V )with respect

to X is finite.

Proof. We are repeating the diagonal argument we have used in the proof of Lemma 2.2.4,

making necessary changes.

Lemma 2.4.5. Let Y = X±1. There exist a power Y m of Y and a decomposition V = U⊕W

of V into a direct sum of moietous subspaces such that the set

(Y m){U},{W}

induces the group GL(U) on U.

Proof. Let

V =
⊕
k∈N

Lk

be decomposition of V into a direct sum of moietous subspaces. Write

L∗
k =

⊕
i̸=k

Li

for all k ∈ N.

If for some pair (Y k, Lj) we have that

(Y k){Lj},{L∗
j} induces GL(Lj) on Lj

then the conclusion of the lemma is true. Suppose otherwise. Then, in particular, for all k

(Y k){Lk},{L∗
k} does not induce GL(Lk) on Lk.

Hence for each k ∈ N we can find σk ∈ GL(Lk) such that

σk is not equal to the restriction on Lk of any element from (Y k){Lk},{L∗
k}.



48

Set

σ =
⊕
k∈N

σk.

Since GL(V ) =
∪

k Y
k, we have σ ∈ Y j for some j ∈ N. It is clear, however, that

σ ∈ (Y j){Lj},{L∗
j}.

But then the restriction of σ on Lj is σj, a contradiction.

Let Y m, U,W be as in the Lemma 2.4.5.

Consider a conjugate π ∈ GL(V ) of π∗,which fixes U setwise and which fixesW pointwise.

By Theorem 2.4.1, if

Σ = {σ1πσ
−1
1 . . . σ28πσ

−1
28 : σ1, . . . , σ28 ∈ (Y m){U},{W}} (2.4.4)

thenΣ coincides with Γ{U},(W ), because any automorphism σkπσ
−1
k acts trivially onW.Now

Σ can be found in an appropriate power of Y. By Lemma 2.4.2, we have that

wid(GL(V ),Σ ∪ ρΣρ) 6 7.

for a suitable involution ρ. Finally, suppose that l is a natural number with Σ ∪ ρΣρ ⊆ Y l.

Then GL(V ) = Y 7l, and we are done.

2.5. CARTESIAN POWERS OF ALGEBRAS AND THE BERGMAN PROPERTY

In this section we shall discuss some generalizations of the results from [1] George Bergman

came up with in his 2006 paper [2].

Let L be a first-order language which contains no predicate symbols. Recall that first-order

L-structures are called algebras. Apart from the notion of the length of a term t of Lwe have

considered in the introductory chapter, there is also a convenient notion of the depth depth(t)
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of a term t of L. The definition is by induction on the length of t. Variables and constants are

declared to be terms of the depth zero. Now if

t = f(t1, . . . , tn)

is a term of L where f ∈ L is a function symbol and tk are terms, then

depth(t) = max(depth(t1), . . . , depth(tn)) + 1.

IfM is anL-structure, a ∈ dom(M), B ⊆ dom(M),we say that a is a term (more formally,

but less conveniently, the value of a term) of elements ofB if there is anL-term t(v1, . . . , vn)

such that a = t(b1, . . . , bn) for some elements b1, . . . , bn of B.

LetM be an L-algebra and letX be a generating set ofM: M = ⟨X⟩. Then givenm ∈ N,

them-th power Xm of X is the set of all terms of elements of X of depth 6 m. Clearly,

dom(M) =
∪
m>0

Xm.

In [2] Bergman introduced, in development the ideas of the notions of the uncountable

cofinality and of the strong uncountable cofinality for groups (see discussion of these

properties in Section 2 above), the following definitions.

Definition (Algebras that have a UF- , or the strong UF-cofinality, the Bergman property for

algebras). LetM be an algebra andM denote the domain ofM.

(i) M is said to have a UF-cofinality (`UF' stands for `Uncountable, or Finite') if any

countable exhaustive chain of subalgebras ofM terminates after finitely many step;

(ii) M is said to satisfy the Bergman property if any generating set X of M generates it in

finitely many steps, or more precisely, if for every generating set X of M there is a natural

numberm such thatM = Xm;
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(ii)M is said to have the strong UF-cofinality if given any exhaustive chain

X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . .

of subsets of the domain M of M, that is, a chain of subsets of M whose union is M such

that for all k ∈ N and for all basic operations f ofM

f(Xk, . . . , Xk) ⊆ Xk+1 (2.5.1)

where f is a basic operation ofM, we have that the chain stabilizes after finitely many steps

atM, that is, there is a natural number s with Xs = M.

Proposition 2.5.1. An algebra M has the strong UF-cofinality if and only if M has a UF-

cofinality and the Bergman property.

Proof. The necessity part is easy, since both (exhaustive) chains of powers of generating

sets and exhaustive chains of subalgebras satisfy the condition (2.5.1). Conversely, writeM

for dom(M) and let (Xn) be an exhaustive chain with (2.5.1). Consider then the, evidently

exhaustive, chain of subalgebras

⟨X0⟩ ⊆ ⟨X1⟩ ⊆ . . . ⊆ ⟨Xn⟩ ⊆ . . .

As M has a UF-cofinality, then M = ⟨Xk⟩ for a suitable natural number k. Then Xk is a

generating set ofM. AsM has the Bergman property, there is a natural numberm such that

M = Xm
k , which means that every element of M = dom(M) is written as a term of depth

6 m of elements of Xk. Clearly, by definition, terms of depth one of elements of Xk are

contained in Xk+1, terms of depth two in Xk+2, and so on. SoM = Xk+m, as required.

LetM be an algebra and let κ be a cardinal. We writeMκ for the Cartesian power

∏
i∈I

M

of M where I is an index set of cardinality κ. ∆(M) will denote the diagonal of Mκ, that
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is, the set of elements

{∆(x) : x ∈ dom(M)} = {(x)i∈I : x ∈ dom(M)};

(we use the notation from Subsection I.1.3; recall that given a function f ∈ Mκ we write

f as (f(i))i∈I . Thus a diagonal element of Mκ is a function in Mκ whose values are the

same.)

In [2] Bergman found the following sufficient condition for the strong UF-cofinality.

Theorem 2.5.2. Let M be an algebra. Suppose that the countable power Mℵ0 of M is

finitely generated over its diagonal ∆(M). Then M has the strong UF-cofinality.

Before considering the proof of the Theorem, let us consider some examples of algebras

which satisfy its condition.

Theorem 2.5.3. Let X be an infinite set and let κ 6 |X| be a cardinal.

(i) LetM be the semigroup of all mapsX → X. ThenMκ is generated by two elements over

∆(M);

(ii) Let S be the symmetric group of X. Then Sκ is generated by one element over ∆(S).

Proof. (i). Fix an index set I of cardinality κ and let

X =
⊔
i∈I

Xi

be a partition of X into moieties.

Let i ∈ I. Take any map πi : X → X which takes X to Xi:

πi(X) = Xi.

Now as Xi is a moiety of X, there is a left inverse ρi of πi, that is, a map ρi : X → X with

ρiπi = id .
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Form then elements

π = (πi)i∈I and ρ = (ρi)i∈I

ofMκ.We claim thatMκ is generated over ∆(M) by two elements, namely, by π and ρ.

Indeed, let σ = (σi)i∈I be an element of Mκ where σi ∈ M (i ∈ I). We are going to

construct a map σ′ ∈ M such that

ρiσ
′πi = σi [i ∈ I]. (2.5.2)

It will follow that

(ρi)i∈I · (σ′)i∈I · (πi)i∈I = (ρiσ
′πi)i∈I = (σi)i∈I ,

or

ρ∆(σ′)π = σ,

which means that

Mκ = ⟨∆(M), ρ, σ⟩,

as desired.

The construction of σ′ is as follows: we require σ′ to be equal to πiσiρi onXi for each i ∈ I:

σ′|Xi
= (πiσiρi)|Xi

[i ∈ I]. (2.5.3)

Let us check (2.5.2). Fix i ∈ I and take x ∈ X. By the definition of πi, πi(x) ∈ Xi. Then by

(2.5.3),

σ′(πix) = πσiρi(πix),
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whence

ρiσ
′πi(x) = ρiσ

′(πix) = ρiπσiρi(πix) = ρiπiσiρiπi(x)

= (ρiπi)σi(ρiπi)(x) = idσi id(x)

= σi(x),

which completes the proof of (i).

(ii). Write X as a disjoint union of two moieties:

X = A ⊔B

and then partition B into 2κ = κ moieties

B =
⊔
i∈I

(Ci ⊔Di).

We claim that Sκ is generated over the diagonal ∆(S) by just one element

π = (πi)i∈I .

Take i ∈ I. Let us explain how πi is to be defined:

• πi acts on {A,Ci, Di} as a 3-cycle, that is,

πi(A) = Ci, πi(Ci) = Di, πi(Di) = A;

• for each j ∈ I \ {i}, πi interchanges sets Cj and Dj:

πi(Cj) = Dj, πi(Dj) = Cj.
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Write S1 for S(B) and let σ ∈ Sκ
1 , that is,

σ = (σi)i∈I

where σi ∈ S1 for all i ∈ I.

As in any infinite symmetric group every element is a commutator (Corollary I.1.1.13), for

all i ∈ I there are αi, βi ∈ Sym(A) such that

σ0
i = [αi, βi] = αiβiα

−1
i β−1

i

where σ0
i is the restriction of σi to A.

Now we are going to construct two permutations λ, µ ∈ S for which

σ = [π∆(λ)π, π2∆(ν)π−2]. (2.5.4)

The definition of λ, µ is as follows:

λ = id⊔
⊔
i∈I

(id⊔αi),

µ = id⊔
⊔
i∈I

(βi ⊔ id),

where disjoint union of maps in the right-hand sides both correspond to the partition

X = A ⊔
⊔
i∈I

(Ci ⊔Di)

of X.
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Let us check (2.5.4). Take an i ∈ I. Then

πiλπ
−1
i = (αi ⊔ id⊔ id) ⊔

⊔
j∈I\{i}

(αj ⊔ id),

π2
i µπ

−2
i = (βi ⊔ id⊔ id) ⊔

⊔
j∈I\{i}

(id⊔βj),

where disjoint unions of maps in the right-hand sides correspond to the partition

X = (A ⊔ Ci ⊔Di) ⊔
⊔

j∈I\{i}

(Cj ⊔Dj).

It follows that

πiλ
−1π−1

i = (α−1
i ⊔ id⊔ id) ⊔

⊔
j∈I\{i}

(α−1
j ⊔ id),

π2
i µ

−1π−2
i = (β−1

i ⊔ id⊔ id) ⊔
⊔

j∈I\{i}

(id⊔β−1
j ).

and that

[πiλπ
−1
i , π2

i µ
−1π−2

i ] = ([αi, βi] ⊔ id⊔ id) ⊔
⊔

j∈I\{i}

(id⊔ id)

= (σ0
i ⊔ id⊔ id) ⊔

⊔
j∈I\{i}

(id⊔ id)

= σi

As i is arbitrary, we get that

[π∆(λ)π−1, π2∆(µ)π−2] = σ,

as required.

This implies that

Sκ
1 6 ⟨∆(S), π⟩. (2.5.5)
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Recall that S1 together with a suitable conjugate S2 = ρS1ρ
−1 generates S (Theorem 2.2.2)

in three steps:

S = S1S2S1 ∪ S2S1S2 = S1S2S1S2,

which means that

Sκ = Sκ
1 S

κ
2 S

κ
1 S

κ
2 .

Finally, Eq. (2.5.5) implies that

Sκ
2 = ∆(ρ)Sκ

1 ∆(ρ−1) 6 ∆(ρ)⟨∆(S), π⟩∆(ρ)−1 6 ⟨∆(S), π⟩

and therefore

Sκ 6 ⟨∆(S), π⟩.

Proof of Theorem 2.5.2. WriteM for the domain ofM and let (Xn) be an exhaustive chain

of subsets ofM satisfying the condition (2.5.1).

Suppose, towards a contraction, that the chain (Xn) never stabilizes. For an element x ∈ M,

define the rank of x, symbolically rank(x), as the minimal r such that x ∈ Xr. Clearly, the

failure of (Xn) to stabilize implies that the function rank : M → N is unbounded.

Let Y be a finite subset ofMℵ0 which generatesMℵ0 together with the diagonal ∆(M).

Take an i ∈ N. As the function rank is unbounded, there is a xi ∈ M such that

rank(xi) > i+max
y∈Y

rank(yi) (2.5.6)
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where yi is the i-th component of y ∈ Y. Form then the element x ofMℵ0 as

x = (xi)i∈N.

We have that

x ∈ ⟨∆(M), Y ⟩.

Hence there is a finite subset Z ofM with

x ∈ ⟨∆(Z), Y ⟩.

It follows that x is a term of some depth d of elements of∆(Z)∪ Y. In turn, for every i ∈ N,

the element xi is also a term of depth d of elements of Z ∪ {yi : y ∈ Y }.

Now we get a contradiction on taking any i with

i > d+max
z∈Z

rank(z).

Indeed, by (2.5.6) we have that

rank(xi) > i+max
y∈Y

rank(yi)

> d+max
z∈Z

rank(z) +max
y∈Y

rank(yi).

But this is impossible: if

m = max
z∈Z

rank(z) +max
y∈Y

rank(yi),

then

Z ∪ {yi : y ∈ I} ⊆ Xm
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and since xi is a term of depth d of elements of Z ∪ {yi : y ∈ I},

xi ∈ Xm+d

and, by the condition (2.5.1)

rank(xi) 6 m+ d = d+max
z∈Z

rank(z) +max
y∈Y

rank(yi).

Now, as a corollary of Theorem 2.5.2 and Theorem 2.5.3, we obtain a new proof of Bergman's

theorem on finiteness of width of infinite symmetric groups.
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