

AUTOMATED TOLERANCE INSPECTION OF FREE FORM OBJECTS

by

Çağkan EKİCİ

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Electrical and Electronics Engineering

Yeditepe University

2012

ii

iii

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Assoc. Prof. Dr. Cem Ünsalan for his patient

attention and guiding me throughout the thesis.

This work could not be possible without backing from my family, friends and loved ones

and I express my thankfulness to them.

iv

ABSTRACT

AUTOMATED TOLERANCE INSPECTION OF FREE FORM

OBJECTS

In quality control applications it is an important task to determine if a manufactured object

deviates from the design requirements. Inspection involves with measurement and

tolerance check of geometric dimensions of manufactured products. There had been

presented many inspection solutions for products with regular features, such as

quadrangular and circular shapes. However for products with free-form surfaces

manufactured by CNC machines, turn benches or plastic injection, the inspection process is

still a big problem. By being end-product or sub-product, free-form surfaces are widely

used in many fields such as automotive, aerospace, biomedical and machining industries.

In this thesis, a vision-based inspection system is proposed for the purpose of improving

the speed and the accuracy of the process. We will develop a vision based inspection

system which will inspect geometrical and also free form objects within given tolerances.

The system will alert if the inspected object dimensions are not in given tolerances, thus

the object is faulty. The system can be used in all manufacturing environments, where

tolerances of objects are important. Several matching methods were investigated and some

of them were tested to major on single method. The Hausdorff distance method is found to

be robust and works stable with different shape features, but the processing speed of the

method is still a big problem. By considering robustness and promising features, Hausdorff

Distance method was studied to improve the speed of the matching process with using

different auxiliary techniques. Finally, the results of the applied techniques will be

discussed to present the best solution.

v

ÖZET

SERBEST ŞEKİLLİ NESNELERİN OTOMATİK TOLERANS

İNCELEMESİ

Kalite kontrol uygulamalarında, imal edilen üründe tasarım gereksinimlerinden sapma olup

olmadığının belirlenmesi son derece önemlidir. İncelemede imal edilen ürünlerin

geometrik boyutlarının ölçümü ve tolerans kontrolü gerçekleştirilir. Dörtgen veya dairesel

şekilli ürünlere yönelik çok sayıda inceleme çözümü sunulmaktadır ancak CNC

makineleri, torna tezgahları veya plastik enjeksiyon yoluyla üretilen serbest şekilli yüzeye

sahip ürünlerin incelenmesindeki sorunlar henüz çözülmemiştir. Bu tezde ölçüm

işlemlerinin daha hızlı ve daha yüksek doğrulukla gerçekleştirilmesine yönelik görüntü

işleme temelli inceleme sistemi önerilmektedir. Geometrik nesnelerin yanı sıra belirli

tolerans aralığına sahip serbest şekilli nesnelerin incelenmesine olanak tanıyan görüntü

işleme temelli inceleme sistemi geliştirilecektir. Boyutları belirtilen tolerans aralığının

dışında olan hatalı nesneler için sistem uyarı verecektir. Bu sistem, nesne boyut

toleranslarının önemli olduğu her türlü üretim ortamında kullanılabilecektir. Çeşitli

eşleştirme yöntemleri incelenmiştir ve üzerinde yoğunlaşılacak yöntemin belirlenmesi

amacıyla bunlardan bazıları test edilmiştir. Farklı şekil özelliklerine sahip nesneler için

Hausdorff mesafe yönteminin en sağlıklı ve kararlı çalışan yöntem olduğu

gözlemlenmiştir. Bununla birlikte bu yöntemin işleme hızının düşük olması sorun

oluşturmaktadır. Hausdorff mesafe yönteminin güvenilirliği ve ileride sunması beklenen

özellikleri göz önünde tutularak, çeşitli yardımcı teknikler yoluyla bu yöntemdeki

eşleştirme hızının artırılması üzerinde çalışılmıştır. Sonuç olarak en iyi çözümün sunulması

için uygulanan tekniklerin sonuçları tartışılacaktır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT ... iv

ÖZET…….……. ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES ... x

LIST OF SYMBOLS AND ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

 1.1 PROBLEM DEFINITION ... 1

 1.1.1 Inspection of Free-form Objects ... 1

 1.1.2 Automated Inspection ... 2

 1.2. PREVIOUS WORK .. 3

 1.2.1 Type of Inspection Systems .. 3

 1.2.1.1. Non-Contact Inspection Systems ... 3

 1.2.1.2. Contact Inspection Systems ... 4

 1.2.2. Alignment Methods in Automated Inspection Systems 6

 1.2.2.1. Principal Axis Method ... 6

 1.2.2.2. Polar Transform Method .. 8

 1.2.2.3. Iterative Closest Point Method .. 9

 1.2.2.4. Hausdorff Distance Method ... 11

2. SOFTWARE OF THE PROPOSED SYSTEM .. 15

 2.1. IMAGE PREPROCESSING... 15

 2.1.1. Image Acquisition .. 15

 2.1.2. Color Space Conversion .. 15

 2.1.3. Shape Feature Extraction ... 16

 2.1.4. Image Enhancement ... 16

 2.1.5. Boundary Detection ... 17

 2.2. SHAPE ALIGNMENT ... 17

 2.2.1. Hausdorff Distance .. 18

 2.2.2. Improved Hausdorff Distance .. 18

vii

 2.3. INSPECTION ... 20

 2.3.1. Dimensional Measurements ... 20

 2.3.2. Shape Tolerance Inspection ... 20

3. HARDWARE OF THE PROPOSED SYSTEM .. 22

 3.1. CAMERA ... 22

 3.2. LENSE .. 25

 3.3. ILLUMINATION ... 26

 3.4. PROCESSOR.. 28

4. IMPLEMENTATION ISSUES .. 29

 4.1. SYSTEM SETUP ... 29

 4.2. TRAINING THE OBJECT ... 30

 4.3. PROGRAM OPERATION FLOW ... 30

5. EXPERIMENTS ... 35

 5.1. Tests on objects with no fault ... 37

 5.2. Tests on faulty objects .. 39

 5.3. Software Speed Tests .. 56

6. CONCLUSION ... 58

REFERENCES .. 59

APPENDIX A: ALGORITHMS ... 63

viii

LIST OF FIGURES

Figure 1.1. A vision based inspection system ... 4

Figure 1.2. A Coordinate Measuring Machine ... 5

Figure 2.1. Laplacian Filter Mask ... 17

Figure 3.1. UI-1245LE camera ... 24

Figure 3.2. Specifications of UI-1245LE camera .. 24

Figure 3.3. 16mm Lens ... 25

Figure 3.4. Backlighting ... 27

Figure 3.5. System Setup .. 29

Figure 5.1. Object to be inspected... 35

Figure 5.2. Reference Image and its edges ... 36

Figure 5.3. Inspection regions and measurements on test image1 36

Figure 5.4. Hausdorff distance between two shape points .. 37

Figure 5.5. Maximum distances and mean distances of good objects 39

Figure 5.6. Maximum distances and mean distances of faulty objects 43

Figure 5.7. Before fine tuning alignment .. 44

ix

Figure 5.8. After fine tuning alignment .. 45

Figure 5.9. Inspection and measurements ... 46

Figure 5.10. Reference images of other test objects ... 47

Figure 5.11. Mean distances of good objects (object2) .. 48

Figure 5.12. Maximum distances and mean distances of faulty objects (object2) 49

Figure 5.13. Mean distances of good objects (object3) .. 50

Figure 5.14. Maximum distances and mean distances of faulty objects (object3) 51

Figure 5.15. Mean distances of good objects (object4) .. 52

Figure 5.16. Maximum distances and mean distances of faulty objects (object4) 53

Figure 5.17. Mean distances of good objects (object5) .. 54

Figure 5.18. Maximum distances and mean distances of faulty objects (object5) 55

x

LIST OF TABLES

Table 5.1. Results of alignment experiments for object1 .. 38

Table 5.2. Iterations and results for image11 .. 40

Table 5.3. Iterations and results for image12 .. 40

Table 5.4. Iterations and results for image13 .. 41

Table 5.5. Iterations and results for image14 .. 42

Table 5.6. Iterations and results for image15 .. 42

Table 5.7. Distance errors before and after fine tuning algorithm (object1) 43

Table 5.8. Results of alignment experiments for object2 .. 48

Table 5.9. Distance errors before and after fine tuning algorithm (object2) 49

Table 5.10. Results of alignment experiments for object3 .. 50

Table 5.11. Distance errors before and after fine tuning algorithm (object3) 51

Table 5.12. Results of alignment experiments for object4 .. 52

Table 5.13. Distance errors before and after fine tuning algorithm (object4) 53

Table 5.14. Results of alignment experiments for object5 .. 54

Table 5.15. Distance errors before and after fine tuning algorithm (object5) 55

xi

Table 5.16. Time consumption of alignment process for 360 Angle Trials 56

Table 5.17. Time consumption of alignment process for 56 Angle Trials 57

xii

LIST OF SYMBOLS AND ABBREVIATIONS

 (⃗ ⃗) Euclidian distance between two points

(,) Centroid of the image

 ⃗⃗() Directed Hausdorff distance from A to B.

 () Mean Hausdorff distance

N Number of points in the point set

P Point set

R Rotation Matrix

 Rotation Angle

1

1. INTRODUCTION

1.1. PROBLEM DEFINITION

1.1.1. Inspection of free-form objects

Free-form geometrical shapes have begun to be used frequently in many areas today.

Because of the production difficulties of free form models, quality control process is a

need to confirm if the object is produced in desired geometrical criteria. According to the

material content that the free form object was made, production type of the object is either

plastic injection forming or CNC machines. Free form models are used especially where

aesthetics have great importance or advanced engineering designs are needed. Automotive

sector and sculpturing are some examples of aesthetic based usage areas of free form

objects while aerospace or defense industries are the examples of advanced engineering

designs.

For products with free-form surfaces, such as marine propellers, the complex sculptured

surfaces are produced with extremely high fidelity to the original design. As an example

study of free-form surfaces, Jinkerson et al. proposed methods for the inspection and feature

extraction of marine propellers [1]. The inspection of sculptured surfaces is essential since

many products with sculptured surfaces are designed and manufactured with a requirement

for high precision. Menq et al. also studied on free form surfaces that they presented

method for precision measurement of surface profile [2].

It is an important task to ensure that the object is produced in its standard design

parameters which the precision inspection of parts with free-form surfaces is becoming

increasingly critical. Although there had been presented many techniques for tolerance

inspection of geometrical objects, inspection of free-form objects is still a challenging

topic regarding high speed and robustness prospects of manufacturers.

2

1.1.2. Automated Inspection

Today, with rising competition in global production market, time and cost parameters have

gain great importance. Automation systems are the use of machines and information

technologies together to improve manufacturing in the terms of time and cost optimization.

Machine vision based inspection systems are the part of automation systems that take role

in the quality control phase. As machine vision systems are fast and reliable systems, they

are capable of processing much more products as compared with the classical human based

inspection studies.

In the consideration of tolerance inspection studies, automated alignment of object is the

main objective as manually inspection systems are time consuming. Newman and Jain

performed a survey of automated visual inspection techniques [3]. For the system being

automated, first, the object shape must be aligned to be ready for the inspection phase and

then the target object shape must be compared with the reference object shape. Alignment

plays the most important role in the automated inspection. Alignment is the determination

of the position and orientation of an object according to reference object that provides

rotation and translation invariant inspection that under all different position conditions the

software enables the precise measurement.

There has been presented some methods like Principal axis, Iterative closest point,

Hausdorff distance and Polar transform that deals with the alignment process of inspection

application. However, process time and accuracy is still a big problem. While some

methods provide good accuracy among different shape forms they suffer from lack of

speed. Thus, position invariant inspection is still one of the big challenges in measurement

and tolerance inspection studies.

3

1.2. PREVIOUS WORK

1.2.1. Type of Inspection Systems

As considering the technique of collecting data, the inspection systems divided into two

types: Non-Contact Inspection Systems and Contact Inspection Systems. Non-contact

inspection systems such as machine vision systems and scanning laser systems collect data

by imaging technologies and reflecting of light photons, respectively. Contact inspection

systems such as Coordinate Measuring Machines collect the data by touching probe with

its own coordinate system.

1.2.1.1. Non-Contact Inspection Systems

There are two kinds of non-contact inspection systems: Machine vision and laser scanning.

Machine vision deals with images or sequences of images with the objective of analyzing

them for the industrial application manner. It describes the understanding of technically

obtained images for controlling production processes. Machine vision technology is an

interdisciplinary technology that combines electronics, optics and software engineering.

One of the typical applications of machine vision technology is inspection systems. A

machine vision inspection system is composed of camera, lighting, processor and

appropriate software for purpose specific. Machine vision inspection system is based on

analyzing the image of the object to be inspected. The system decides manufactured object

is produced whether within given tolerances or not.

For an example of industrial developments on vision inspection systems, measurement

instruments manufacturer company, KEYENCE, has newly presented a vision based

dimensional inspection system IM6500.

4

Figure 1.1. A vision based inspection system

Other non-contact inspection system is laser scanning. Laser scanners work with the

principle of reflecting light photons. Laser systems scan the predetermined path as sending

light to the target object surface and receiving them back to generate measurement data.

The data provided from the laser scanning system can be used for many applications such

as tolerance inspection of free form objects. Compared with the vision systems, laser

scanning can provide very accurate position measurements of the components however

they are suffered from high cost and low speed.

1.2.1.2. Contact Inspection Systems

Coordinate Measuring Machine (CMM) is a measuring device that acquires surface

geometric information by physically touching the parts using tactile sensors such as

probes. The probe is the part of the CMM which is rigidly attached to a movable

component of the CMM. When contact with the object to be inspected occurs, the

coordinates of the contact point are computed.

5

Figure 1.2. A Coordinate Measuring Machine

CMM has the advantages of high accuracy, repeatability and reliability that make it the

main tool for part validation in manufacturing. The measured data is used with various

algorithms to determine positions, orientations and dimensions of objects. CMM usually

acquires data using a touch trigger probe that contacts individual points on a work-piece. It

can be used to accurately measure objects with widely varying size and geometric

configuration, and provide the relationship between the features of a work-piece. Thus, it

does not require clean surfaces or special illumination, whereas a vision system always

does. With the use of position free probes, CMM can inspect surfaces that a light beam

cannot reach or a camera cannot acquire the appropriate image. However, CMM is a low

speed method for inspection that makes it impossible to measure many points on the

object. The part needs to be stationary and carefully placed and they have a slower

measuring speed than optical systems. One other disadvantage of CMM is the

programming because it is a manual system and needs a highly trained operator usage.

Vision Guided Coordinate Measuring Machines is a hybrid system that combines both

vision system and CMM functionalities to improve the process speed and accuracy. The

system is based on CMM that image processing algorithms only provide an enhancement

through working capabilities of CMM.

6

There are some applications on integrating multiple sensors and vision probes with CMM

in order to achieve high measuring quality and speed [4], [5], [6]. Global information

generated by the vision systems was used to guide the movement of the touch probe.

Vision provided information about the positions of part features of interest, and then the

probe was guided to the features to make actual measurements.

1.2.2. Alignment Methods in Automated Inspection Systems

In order to implement feature based matching, the image features must initially be

extracted. After the features are extracted, the attributes of the features are compared

between two images. The feature pair having the attributes with the best fit is recognized as

a match. Researchers have proposed several techniques based on Principal Axis Method,

Polar Transform Method, Iterative Closest Point Method and Hausdorff Distance Method

to improve the speed and robustness of the matching utility. Matching of two shapes is the

main part of the inspection process thus some researchers who deals with matching studies

also deals with inspection studies. There have been presented many tolerance inspection

techniques in recent years [7]. The methods based on ICP and Hausdorff distance can also

handle inspection process as they are also used in alignment phase [8]. Unlike these

methods, implicit polynomials were also used in tolerance inspection process [9] with prior

alignment constraint.

1.2.2.1. Principal Axis Method

Principal axes of a given shape can be uniquely defined as the two segments of lines that

cross each other orthogonally in the centroid of the shape and represent the directions with

zero cross-correlation. Ellipses are generally used with principal axis method as they

provide a useful representation of objects. Since they are more convenient to manipulate

than the corresponding sequences of straight lines needed to represent the curve, and their

detection is reasonably simple and reliable. Thus they are often used by computer vision

systems for model matching.

Over the years much attention has been paid to fitting ellipses to data samples, and many

variations of the standard method for finding the least squares (LS) solution exist. Gander

et al. [10] surveyed the Gauss-Newton method to solve the nonlinear least squares

7

problem. Their experiments resulted that all algorithms are prohibitively expensive

compared to the simple algebraic solution. If the problem is well posed, and the accuracy

of the result should be high, the Newton method applied to the parameterized algorithm is

the most efficient. The odr algorithm purpose optimizing scheme is competitive with

algorithms specifically written for the ellipse fitting problem. If one takes into

consideration further, that we didn't use a highly optimized odr procedure, the method of

solution is surprisingly simple and efficient. The varpro algorithm seems to be the most

expensive. Reasons for its inefficiency are that most parameters are non-linear and that the

algorithm does not make use of the special matrix structure for this problem.

Stojmenovic and Nayak [11] dealt with ellipse fitting and measuring shape ellipticity. They

proposed a method to measure how elliptical a finite set of point is. Most other ellipticity

measures are area-based therefore are linked to closed curve. Their algorithm has the edge

on works on both open and closed curves. This method can also be guaranteed to return an

ellipse, work with open and closed curves, and meaningful number in the interval.

Rosin [12] proposed a method which fit ellipse to curve data. This technique used for

accumulate ellipse hypotheses as minimal subset method. Regrettably this method has

some imperfections as involving the treatment of circular parameters, statistical efficiency

and correlation between the five parameters. He introduced solutions to these problems and

describes some variations on the theme of robust ellipse fitting. He presented certain

subjects related the sampling of points to form the minimal subsets. Essential parameter set

used to generate the contaminated data sets to calculate deviation in the parameter

estimates. In addition to this many of the fits which produced low scores according to this

criterion still represent the data decently.

Yu et al. [13] proposed the ellipse fitting problem is formulated and significant algorithms

are surveyed. They introduced an objective function based on the geometric definition of

ellipse is performed and it is amplified to three ellipse fitting algorithms. They used

Penalized Objective Function, Axial Guided Ellipse Fitting and Weighted Objective

Function results for a spheroid fitting algorithm. They defined a series of experiments

which synthetic data has been used for the simulations in different settings to demonstrate

the efficacy of the algorithm.

8

Principal axis method is used in industrial applications frequently owing to its speed and

implementation advantages. Principal Axis methods like ellipse fitting are very fast but

may be unstable with objects of unfavorable proportions.

1.2.2.2. Polar Transform Method

Polar coordinate system is a two dimensional coordinate system in which a point in two

dimensional space is described by distance and angle values according to the origin. A

point that is described in Cartesian coordinate system x and y can be converted to polar

coordinates r and θ with r≥0 and θ in the interval (−π, π] by:

 √ (1.1)

 () (1.2)

Log-polar coordinates is a coordinate system in two dimensions, where a point is identified

by two numbers, one for the logarithm of the distance to a certain point, and one for

an angle. Log-polar coordinates are closely connected to polar coordinates, which are

usually used to describe domains in the plane with some sort of rotational symmetry. An

invariant shape representation can be formed using the log-polar mapping.

There have been proposed some techniques based on Polar Transform method, one of them

is Adaptive Polar Transform, the translation parameter between the two images is

determined. Fourier phase correlation is used to fix the translation before calculating the

log-polar matching [14, 15] in the frequency domain.

Koroutchev and Korutcheva [16] introduced a method which has criteria to choose figures

suitable for coding and easy recognition are formulated. They analyzed complexity of the

criteria. Their experiments show that the information can be coded using the orientation of

the specially designed printed figures, based on the first geometrical moments of the

figures. They calculated the errors in the scanning and decoding of the figures can be kept

within reasonable limits. They achieved coding of the coordinates by using random coding

of the printed pattern. They optimized the code thus the length can be just one figure more

than the optimal coding length if the scanning is errorless.

9

Matungka et al. [17] designed an algorithm that registers two images to occlusion and

alteration in addition to scale, rotation and translation. They introduced a technique based

on Adaptive Polar Transform (APT) in the spatial domain that samples the image. They

used the projection transform to the transformed image to reduce the image 2-D to 1-D

vector. They designed a new algorithm that uses the scale and rotation invariant feature

point to eliminate the detailed search for all the possible translation of the model image.

Their algorithm works the image comparison scheme in the projection domains that is

designed for locating the areas that are subjected to occlusions and alterations in the image.

Their method uses the innovative projection transform to reduce the dimensions and

sampling the image in the Cartesian coordinates.

Pan et al. [18] proposed a new method which for calculating both the polar and the log-

polar Fourier transforms in two dimensions. The algorithm is also usable for higher

dimensions. They named the algorithm Multilayer Fractional Fourier Transform (MLFFT).

Their algorithm has an interpolation process from a multilayer method to the real polar or

log-polar grid. MLFFT has advantages over the pseudo polar-based image registration as

high accuracy in recovering large scale factors and large rotation angles, adaptability, for

different precision requirements, working well with both the log-polar and the polar

transforms, easy implementation and fast and parallel able computing with just serial

fractional FFT algorithms.

1.2.2.3. Iterative Closest Point Method

Iterative Closest Point (ICP) is an algorithm that is used for registration process of two

images which is first proposed by Besl and McKay [19] ICP algorithm iteratively updates

the translation and rotation parameters needed to minimize the distance between the two

point clouds. ICP is one of the well-known algorithms for alignment methods as there are

many modified techniques in literature which are based on ICP algorithm [20].

The goal of the ICP algorithm is to find the transformation parameters, for which the error

(mostly least squares) between the transformed data shape points and the closest points of

the model shape gets minimal. This characteristic can be divided to six stages:

1. Selection of some set of points in one or both meshes.

10

2. Matching these points to samples in the other mesh.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs based on looking at each pair individually or considering the

entire set of pairs.

5. Assigning an error metric based on the point pairs.

6. Minimizing the error metric.

The primary advantages of most ICP based methods are simplicity and relatively quick

performance when implemented with kd-trees for closest-point look up. However

initialization is the critical issue that most of the ICP algorithms we have searched were

time consuming. The drawbacks include the implicit assumption of full overlap of the

shapes being matched. One other disadvantage is the theoretical requirement that the points

are taken from a known geometric surface rather than measured.

Zinßer et al. [21] dealt with to estimate the scale factor within the ICP algorithm. Their

method based on to find correct estimate of the scale factor in a correct registration. In

addition their method allows the simultaneous use of wide range of other extensions to the

ICP algorithm. They introduced a solution for simultaneous estimation of rotation,

translation and scale factor. Their algorithm used for aligning two differently scaled 3-D

point sets in every iteration successfully.

Kaneko et al. [22] proposed a method based on the iterative closest point algorithm. Their

algorithm extended by M-estimation. They focused on the problem of robustly matching

three dimensional contours of rigid bodies with no additive measurement but only depth

data. They introduced the improved ICP algorithm. Their method used of the real contour

data with ill-conditions in comparison with the original ICP method.

Yang et al. [23] proposed Random Sample Consensus (RANSAC) matching algorithm

utilizing a multi-scale representation of range image. Their algorithm solves the problem of

registration and segmentation of range image. They introduced a method which takes into

account data association uncertainty simultaneously in the RANSAC paradigm. They used

the algorithm to overcome a range of limitations possessed by least squares approaches and

poor degradation to outliers.

11

Gelfand et al. [24] focused on a technique for identifying whether a pair of meshes will be

unstable in the ICP algorithm by estimating the covariance matrix from a sparse uniform

sampling of the input. They used this technique for minimizing instability by drawing a

new set of sample points primarily stable areas of the input meshes. They dealt with

translational and rotational uncertainties in registration. They introduced a method which

uses a point selection technique that improves geometric stability of the ICP algorithm.

They achieved to provide the best convergence of the algorithm to the correct pose by

using sample of the input meshes.

1.2.2.4. Hausdorff Distance Method

In two dimensional Euclidean plane, if ⃗ = () and ⃗ = () then the distance

between two points is given by:

 (⃗⃗ ⃗⃗) = √(()
 ()

) (1.3)

The Hausdorff distance is a measure of the maximum of the minimum distances between

two sets of objects. For a set A = {a1,….,ap} and B = {b1,….,bp} Hausdorff distance can

be defined as:

 () (() ()) (1.4)

with the directed Hausdorff distance defined as:

 ⃗⃗()

‖ ‖ (1.5)

This distance proved to be an efficient and robust measure of similarity between two

shapes. Its robustness to noisy and incomplete objects makes it suitable for using it for

inspection of faulty objects. With regarding these attributes, The Hausdorff distance is

commonly used in similarity determination and registration of two shapes however the

computation of classical Hausdorff distance is very time consuming. Some techniques

were proposed to improve the speed of the algorithm.

12

Huttenlocher et al. [25] proposed algorithms for computing Hausdorff distance between all

relative positions of a binary image and a model. They focused on matching process of two

images. They studied to improve the techniques to rigid motion. The method is quite

tolerant of small position errors. The algorithms they have proposed was not tested on

shape features, thus algorithm efficiency may become unsatisfactory for inspection studies.

Rotter et al. [26] focused on simplifying the computation of the Hausdorff distance. They

proposed a method which allows for a given set of pixels to check whether it is sufficient

to compute the Hausdorff distance using only the boundary pixels. They also present a

method to eliminate a part of the contour for improving the speed of the algorithm.

Rucklidge [27] proposed a method for efficiently searching a space of transformations of a

model to find transformations that minimize the Hausdorff distance between the

transformed model and an image. Hausdorff distance was used for locating an affine

transformation of a model in an image. He proposed a method to locate all transformations

of the model that satisfy two quality criteria that can also efficiently locate only the best

transformation. The experiments were performed for matching an image part to the

original image. He presented a hierarchical search method that is guaranteed to produce the

same results as an exhaustive search. The search techniques which can be performed in

parallel used to locate the best transformation at high speeds.

Chetverikov and Khenokh [28] proposed a fast and robust method for a shape defect

detection problem. The method is applied to inspection of ferrite cores. A modified mean

Hausdorff distance was used for determining the error. Target shape was positioned on the

reference shape by minimizing the error. Then measurement and inspection algorithms

applied to check whether the object is faulty or not. Distance transform method was used

for speeding up the process computation time.

Alt et al. [29] Proposed algorithms for computing Hausdorff algorithm which geometric

objects are represented by finite collections of k-dimensional simplices in d-dimensional

space. More efficient algorithms for special cases like sets of points, line segments or

triangulated surfaces in three dimensions were also presented.

13

Nutanong et al. [30] proposed three algorithms which utilize hierarchical indexes and the

branch and bound search principal. They introduced a method that to compute Hausdorff

distance between two point sets and browses trajectories in increasing order of Hausdorff

distance. They analyzed a method which proposed a baseline based and two basic branch

and bound algorithms. They compared their proposed method with these three algorithms.

Consequentially their method exceed in terms of the traversal cost, priority queue

maintenance cost, distance calculation cost and the total execution time.

Agarwal et al. [31] proposed a method which adopt Hausdorff distance and extend it to

sets of non-point objects and apply it to several variants of the shape matching problem,

with and without constraints on the allowed transformations. Their method related to

minimizing Hausdorff distance between sets of points, disks and balls. They studied two

main topics, one of them to compute exactly or approximately the smallest Hausdorff

distance over all possible rigid motions and the other one to approximate efficiently the

best Hausdorff distance under certain transformations when partial matching is allowed.

Tang et al. [32] proposed a novel algorithm which to compute the Hausdorff distance

between complicated polygonal models at interactive rates in real-time. Their algorithm

approximates the distance within a user specified error bound. The algorithm based on to

calculate tight upper and lower bounds to the exact Hausdorff distance value and then it

refines these bound by polygon subdivision until the error bound is obtained. They proved

inclusion properties related to Hausdorff distance measures, and utilized these properties to

perform efficient bounding volume hierarchy (BVH) culling on the input models. Thus, the

algorithm is able to calculate Hausdorff distance for polygon-soup models consisting of

tens of thousands of triangles in real-time. In addition their algorithm is able to calculate a

similarity between polygonal models of shape analysis and also the algorithm is able to

compute penetration depth (PD) efficiently for physically-based animation.

Aspert et al. [33] introduced a method to evaluate the distance between 3D models, similar

to Metro. They proposed Hausdorff distance application to distance measurements between

3D models have been introduced. In addition they studied an efficient implementation of

the Hausdorff distance for triangular meshes. They compared the method with Metro.

Consequentially, Mesh is fast, memory efficient and provides stable distance measures.

14

Alt and Scharf [34] introduced an algorithm for the computation of the Hausdorff distance

between sets of plane algebraic rational parametric curves. They studied on general curve

sets, including the parametric curves up to the fourth degree. The computation accuracy of

the implemented software depends on the underlying algebra system. They examined the

appropriate detection mechanisms and handling procedures.

15

2. SOFTWARE OF THE PROPOSED SYSTEM

For a typical gauging application, there are three phases to achieve the solution. First,

image must be captured and preprocessed for to be ready for the core processes. Then, in

the alignment phase, object must be re-positioned with according to position and

orientation of reference object. After alignment was done, in the third phase, the target

object dimensions are compared with the reference object’s as if it was manufactured in the

tolerance interval.

2.1. IMAGE PREPROCESSING

2.1.1. Image Acquisition

The first stage of any image processing software is the image acquisition stage. After the

image has been obtained into the physical memory of processor, various processing

techniques can be applied. In this study, image acquisition process was done with OpenCV

functions. USB interface camera was used in the system setup thus no external image

acquisition hardware was needed. When the target object was placed on the inspection

area, software was triggered manually by pressing an assigned button. The video frame

was captured as a Bitmap or JPEG image and saved to a pre-created directory. Then the

image was loaded to the software as an IplImage structure, thus ready to be processed.

2.1.2. Color Space Conversion

In image processing, a color image is encoded in memory with three layers: red, green,

and blue (RGB). RGB images store color information using 8 bits each for the red, green,

and blue planes. Before processing the feature extraction algorithms, image must be

converted to grayscale image format.

A grayscale image is composed of a single plane of pixels. Each pixel is encoded using one

of the following single numbers:

16

 An 8-bit unsigned integer representing grayscale values between 0 and 255

 A 16-bit signed integer representing grayscale values between –32,768 and +32,767

In this study, OpenCV function cvCvtColor was used for grayscale conversion of the

image. The grayscale image encoded with 8 bit unsigned integer. Thus, image pixel values

differ between 0 and 255 that 0 is representing black and 255 is representing white.

2.1.3. Shape Feature Extraction

Shape feature extraction plays an important role in shape alignment and registration

processes. Thresholding is one of the methods that segment an image into two regions, as

object region and background region. Thresholding works by setting 0 (zero) to all pixels

below a gray-level value which is called threshold value, and setting all other pixels in the

image to 255 if the image is encoded with 8 bits. Then, background region of the image

appear to be white, and foreground (object) is black.

In this study, regarding the system illumination, threshold value was selected to be 80, thus

the algorithm sets 0 to all pixels below the value 80 and all other pixels to 255.

2.1.4. Image Enhancement

Image enhancement is the pre-process application that improves the quality of the image

by manipulating it with appropriate software algorithms. There are many enhancement

methods that differ along the usage of the application. In this study, it is used for

eliminating the noise that could occur because of the dust particles or scratches on the

inspection area. In the other words, it is used for cleaning the unwanted pixels from the

background region. The algorithm was developed in the manner of recognizing fewer

neighbor pixels than a pre-assigned value; it removes them by converting them to the same

color as background. For this occasion, if there are fewer than 10 black pixels bonded with

each other, algorithm converts them to white pixels.

17

2.1.5. Boundary Detection

After the processes of feature extraction and enhancement, shape of the object was

interpreted as an area of many pixels. It is unnecessary to process all the pixels of the

object because object contours are sufficient to process the shape alignment algorithms.

Then a sharpening filter mask (Laplacian Filter Mask) was applied to the image for

detecting the boundaries of the object. Therefore, a highly improvement on process time

was achieved by constructing a shape with fewer elements (pixels) which it is still similar

to the original.

Figure 2.1. Laplacian Filter Mask

2.2. SHAPE ALIGNMENT

Shape alignment is the process of rotating and translating one shape to another to obtain

best match. In many tolerance inspection applications, the object to be inspected may be at

different locations in the image. The main attribute of the system is being automated, thus,

position and rotation invariantly system will be capable to do the inspection process.

Rotation and translation parameters will be calculated precisely in the alignment phase.

Hausdorff method is found to be a robust method for inspection however the speed of the

algorithm is unsatisfactory. By considering robustness and promising features, Hausdorff

Distance method was studied deeply to improve the speed of the matching process with

using different auxiliary techniques. Also, a more precise alignment algorithm was

proposed for inspection of faulty objects.

18

2.2.1. Hausdorff distance

Firstly, classical Hausdorff Distance (HD) algorithm code was developed and processed to

have benchmarking information.

The classical Hausdorff distance between two finite sets of points, A and B, is defined as:

 ⃗⃗()

‖ ‖ (2.1)

Where ⃗⃗() is the directed Hausdorff distance from A to B.

The main steps of the Hausdorff matching method are as follows:

 Step1: Find the edges of reference object

 Step2: Find the edges of target object

 Step3: Rotate and translate the target object, for each relative pose compute the HD

 Step4: Select the rotation degree and translation value that yields minimum value

 Step5: Transform the target object

2.2.2. Improved Hausdorff distance

In this study, classical Hausdorff distance algorithm for alignment process was improved

in two manners: Precision and time consumption.

For the improvement on precision, Hausdorff distances were calculated and the mean

Hausdorff distances were determined for each trial of rotation angle variations. Using

classical Hausdorff distance for alignment might cause unstable results in which object to

be inspected was a faulty object, a modified approach “mean Hausdorff distance” was

used.

The mean Hausdorff distance between two finite sets of points, A and B, is defined as:

19

 ()

∑

‖ ‖ (2.2)

Where N is the number of points in A.

As we were using superimposing the centroids for translation process, we considered that

faulty regions on target image might affect centroids and could cause translation errors.

Thus, an iterative algorithm that calculates mean distance values was developed for best

match.

Using classical Hausdorff method for alignment process iteratively for all angle values is

found to be a time consuming method, thus new techniques were applied for speeding up

the software computation time. When we reviewed computational costs of the inspection

software, we found that the calculation of Hausdorff distance was the major function that

consumed process time. Thus, methods for speeding-up the computation of Hausdorff

distance between two shape models were studied.

Translation and rotation are the two transformation process that must be applied for the

alignment of two objects. For translation, we used superimposing the centroids for the

initial positioning which was very fast. Rotation angle was computed as the minimum of

the mean Hausdorff distance value was found for all angle trials.

When we considered that the shape of the object was rotated by one degree in each

iteration process, there were 360 iterations. Thus, an algorithm was developed for

decreasing the number of angle trials to make less computation. First, rotation angles were

tried ten by ten and minimum error was obtained. Then iterations were processed on the

angle value (±10) that included the minimum error. Thus, the trial number of overall

process was decreased to 56 instead of 360.

The other technique we implemented was to construct the shape with fewer elements

(pixels) as it was still similar to the original. The robustness attribute of Hausdorff distance

to sampled images was used in this process. Considering the system we have built (1 pixel

corresponds to 13 micron), the shape of the object was represented by many points which

20

were unnecessary for the alignment process. Thus we used an optimized interval of

sampled data to speed up the process time.

2.3. INSPECTION

2.3.1. Dimensional Measurements

Dimensional measurement and inspection of product parameters such as length, distance

and diameter is one of the most common processes in quality control applications.

The process of determination if the product under inspection is manufactured correctly by

dimensional manner is also called gauging. Depending on whether the gauged parameters

fall inside or outside of the user-defined tolerance limits, the component or part is either

classified or rejected.

Inspection of length along the axis can be divided into two as x-axis length inspections and

y-axis length inspections. While x-axis length inspections are used for to measure the

distance between two sides of the object which are along the width of the image, y-axis

length inspections are used for to measure the distance between two sides of the object

which are along the height of the image. If the object has circular figures, dimensions

special to circles like diameter, radius and perimeter can also be calculated. To set where to

inspect, predefined inspection regions (ROIs) which is defined in the training mode are

used for inspection.

2.3.2. Shape Tolerance Inspection

Nowadays, shape tolerance inspection of parts is a necessity for several manufacturing

industries. It’s essential to inspect free form objects that the unique method is to inspect

from their shape descriptors. One another usage area of shape tolerance inspection is to

check if a manufactured part has the faulty effects like chips and burrs. To verify the

acceptance of a manufactured surface, one needs to compare the measured data with the

design model to determine if the manufactured surface falls in the designed tolerance zone.

21

When the best alignment occurs, tolerance values of shape features were obtained

automatically as the distance values from reference object points to target object points

were preserved in distance error arrays. Thus, the proposed system did not need a different

inspection algorithm for inspection processes that improvement on the overall computation

time had gained.

22

3. HARDWARE OF THE PROPOSED SYSTEM

3.1. CAMERA

An image sensor is a device that converts an optical image into an electronic signal. It is

used mostly in digital cameras, camera modules and other imaging devices. There are three

main types of camera: Vidicons, charge coupled devices (CCDs) and, more recently,

CMOS cameras (Complementary Metal Oxide Silicon – now the dominant technology for

logic circuit implementation). Vidicons are the older (analogue) technology, which though

cheap (mainly by virtue of longevity in production) are now being replaced by the newer

CCD and CMOS digital technologies. The digital technologies, currently CCDs, now

dominate much of the camera market because they are lightweight and cheap (with other

advantages) and are therefore used in the domestic video market.

Today, most digital still cameras use either a CCD image sensor or a CMOS sensor. Both

types of sensor accomplish the same task of capturing light and converting it into electrical

signals.

A CCD image sensor is an analog device. When light strikes the chip it is held as a small

electrical charge in each photo sensor. The charges are converted to voltage one pixel at a

time as they are read from the chip. Additional circuitry in the camera converts the voltage

into digital information.

A CMOS imaging chip is a type of active pixel sensor made using the CMOS

semiconductor process. Extra circuitry next to each photo sensor converts the light energy

to a voltage. Additional circuitry on the chip may be included to convert the voltage to

digital data. Neither technology has a clear advantage in image quality. On one hand, CCD

sensors are more susceptible to vertical smear from bright light sources when the sensor is

overloaded; high-end frame transfer CCDs in turn do not suffer from this problem. On the

other hand, CMOS sensors are susceptible to undesired effects that come as a result of

rolling shutter.

23

CMOS can potentially be implemented with fewer components, use less power, and/or

provide faster readout than CCDs. CCD is a more mature technology and is in most

respects the equal of CMOS. CMOS sensors are less expensive to manufacture than CCD

sensors.

Another hybrid CCD/CMOS architecture, sold under the name "sCMOS", consists of

CMOS readout integrated circuits (ROICs) that are bump bonded to a CCD imaging

substrate – a technology that was developed for infrared staring arrays and now adapted to

silicon-based detector technology. Another approach is to utilize the very fine dimensions

available in modern CMOS technology to implement a CCD like structure entirely in

CMOS technology.

This can be achieved by separating individual poly-silicon gates by a very small gap.

These hybrid sensors are still in the research phase, and can potentially harness the benefits

of both the CCDs and the CMOS imagers.

Choosing the camera and its lens is related with each other seriously. The cameras can be

chosen as monochrome (RS-170), composite (Y/C), RGB or Line Scan according to the

application. In addition to this, for taking the required data, sensor resolution should be

high adequately. Triggering and integration control specifications may also be a

requirement. The last important point is to protect the camera against the soil, dust and heat

that they should be produced very qualified and strong. To consider those specifications,

using the industrial cameras would be the best choice.

In machine vision systems, Line Scan and array cameras are typically used.

Conventionally, an array camera, takes the picture that has a shape of a square or a

rectangle in one time. However a Line Scan camera has linearly sequenced detectors that

scan the image as a line. Assuming all those criteria, the IDS UI-1245LE camera has been

chosen as the image sensor of the system.

24

Figure 3.1. UI-1245LE camera

The UI-1245LE is an extremely compact camera with modern e2v CMOS sensor in 1.3

Megapixel resolution (1280x1024 pixels). Through the use of the widespread USB 2.0

technology the camera can be interfaced with a vast variety of systems without problems.

The light-weight housing of the UI-1245LE features a C/CS lens mount with adjustable

flange back distance.

Figure 3.2. Specifications of UI-1245LE camera

25

3.2. LENSE

Industrial machine vision cameras come without lenses that also a machine vision lens

should be chosen for the system setup. To maintain the high performance machine vision

camera, it needs to be matched with appropriate lens.

There are three important factors that contribute in the selection process:

1. Field Of View (FOV)

2. Working distance

3. Sensor size of the camera

Magnification of the image acquired is (Sensor Size of the camera)/(Field of View). To

estimate the required focal length for the application: Focal Length is

(Magnification)*(Working Distance)/(1+Magnification)

The lens that is used in the system is a 16mm fixed focal length lens from Azure Optics

which is suitable for the use with 1.3 mega-pixel color and monochrome cameras.

Figure 3.3. 16mm Lens

26

3.3. ILLUMINATION

Illumination is the one of the most important aspects in a machine vision system. If

illumination method is not well-suited for the specific purpose, then undesirable results

may occur. Performance of a vision inspection system is affected by illumination method

directly. The illumination components are just as important as image quality and

electronics to specifying the best system for the application.

Subject vision illumination sources and spectral content should take into consideration of

two major issues which are the environmental structure for immediate inspection necessity

and interaction of sample with light with regards to ambient contribution. Thus for

choosing a more efficient decisive actions have to be improved in the manner of following

paradigms and much of them could be answered before and through the process;

1. Surface condition: composed of flat, slights with bump, matte, shiny aspects

2. Object condition: being flat or curved

3. Color: range of the marks and details

4. Mobility: moving or stationary positions of parts

5. Intensity: combining of diffuse backlights, LEDs (towards other emitters like fiber

optic lights, fluorescent, quartz halogen, metal halide, Xenon and high pressure

sodium), telecentric illuminators, mounting accessories, large area and linear

auxiliary lights, edge to edge forms as light guide adapters might be needed to mate

with fiber optic illuminators in case of design factors.

Backlighting as a prerequisite is a machine vision lighting method that provides a high

contrast silhouette of a part or parts’ segments. For instance the object appears black

against a uniform white background. Backlights can also be used with color filters, placed

at the illuminator input end, to improve the contrast of colored components.

Backlight technique is a main requirement for the object is lit from behind. Utilization

helps to maintain the silhouette of opaque objects or for imaging through transparent

objects. High contrast for edge detection is a very advantageous facility. The negative

27

reaction that comes from elimination of surface detail is derived and minimized by enough

powerful LED lighting used for homogenous lighting distribution.

In this study, a backlighting system which is composed of white power led lighting were

designed and created. Illumination of the system provided high contrast for detection of

edges.

Figure 3.4. Backlighting

28

3.4. PROCESSOR

In this study, a PC based vision system was developed. The machine vision camera that

was used for acquiring the images had USB interface, thus we did not need a frame

grabber board to retrieve the images. The experiments were processed under Visual Studio

2008 environment and C++ language, on a PC with Intel Core i7 2GHz clock speed and

6GB RAM.

29

4. IMPLEMENTATION ISSUES

4.1. SYSTEM SETUP

The imaging system set up must be designed before processing by giving importance to

five vision concepts which are field of view, working distance, resolution, depth of field,

and sensor size. The smallest feature size of the object that can be distinguished by the

imaging system is resolution. Tolerance of the inspection system is defined by the

resolution. Field of view, the viewable area of the object under inspection is another

concept that the system must be configured as the whole part of the object must be

acquired by the camera. The field of view of our system was (133 mm height)*(166 mm

width).

Figure 3.5. System Setup

30

The distance from the front of the camera lens to the object under inspection is working

distance. The size of a camera sensor’s active area parameter is important in determining

the proper lens magnification required to obtain a desired field of view. For the tolerance

inspection systems, camera must be positioned perpendicular to the object to reduce

perspective errors. In our setup, according to our calibration measurements 1 pixel

corresponds 0.13 mm that means 13 microns precise measurements can be performed.

4.2. TRAINING THE OBJECT

Training is the important part of the inspection process if the operation of the system is

based on the comparison of an arbitrarily positioned object to a reference object. We

developed a training program that image information was gathered and the inspection

regions were determined.

Reference image must be loaded prior to the inspection program was started, thus a

reference object image had to be previously acquired in the training mode. After triggering

the program with user interface button, camera captures the frame and saved to the

predefined computer directory. Color image was loaded and converted to grayscale image

with the OpenCV functions. Then we applied binary thresholding to extract the object from

the image. There could be some noises on the image because of the dust on the

environment so image enhancement algorithms were processed to clear these pixels which

are not related with the object. Inspection regions could be acquired by mouse clicking.

4.3. PROGRAM OPERATION FLOW

The operation of the system is based on the comparison of an arbitrarily positioned object

to a reference object generated from the standard dimensions set. For this purpose,

alignment parameters must be calculated first, and then the object must be translated and

rotated to normalize the position.

When the program has started, it automatically loads the predefined values of the target

object. The software is triggered with pressing the defined button. Then it captures the

frame and loads it to the software as IplImage structure to be processed. IplImage is one of

31

the main structures of Intel Image Processing Library that holds image information like

width, height, channels and pixel values of data arrays. After shape extraction processes,

the data of image matrixes were gathered and stored in two arrays, row and column

coordinates.

As we are using superimposing the centroids technique for translation, center of gravity of

shapes must be found first. The center of gravity which is also called centroid is the

coordinates of average distribution points of the shape extracted from the image.

Where the general function f(x, y) is:

 () {
 ()

 (4.1)

Where D is the domain of the binary shape, its centroid (,) is:

{

∑

∑

 (4.2)

Where N is the number of point in the shape, () {()| () }

After centroids of reference object and target object was found, translation parameters

were calculated by taking the difference of centroids. Rotation process of the target shape

also changes the centroid of the target object, thus we calculated the translation parameters

by applying the rotation operations.

Two dimensional Rotation Matrix (R) is defined by:

 [] [

] (4.3)

32

The new coordinates of a point can be calculated by using matrix operations:

 [

] [

] [

] (4.4)

Rotated coordinates () of the point () after rotation are as follows:

 (4.5)

 (4.6)

By using the equations above, we calculated translation parameters of row and column for

each angle :

 = – (x * – y *) (4.7)

 = – (x * + y *) (4.8)

Where is translation parameter of row coordinate, is translation parameter of column

coordinate, is reference shape centroid row value, is reference shape centroid

column value, x is target shape centroid row value and y is target shape centroid row value.

As all elements (points) of the target shape was stored in row array and column array, the

new coordinates of the target object after transformation was calculated by:

 = x * – y * + (4.9)

 = x * + y * + (4.10)

Where is target shape row values after transformation, is target shape column values

after transformation, x is target shape row values before transformation and y is target

shape column values before transformation.

33

The rotation angle was found by iterative trials of different angle values. In each trial,

target shape was transformed to its new position and the error of the matching process was

calculated. The error we had defined was mean Hausdorff distance, thus we searched for

the minimum of mean Hausdorff distances.

To find the minimum of mean Hausdorff distances, first, distances of two point sets were

calculated with using the formula below.

 = √(()
 ()

) (4.11)

Where is the Hausdorff distance between two set of points, is reference

shape row values, is target shape row values after transformation, is reference shape

row values, is target shape row values after transformation.

Then, for each trial of rotation, mean Hausdorff distances were calculated and stored in an

array. The minimum of the mean Hausdorff distance value and the angle that matched with

the trial were found. The angle was determined as correct angle of rotation.

After determination of the correct angle of rotation, transformation phase was started. The

same shapes that were placed on the image with different angles could be interpreted with

different number of pixels. Target object boundaries could be affected with the missing

pixels problem thus inspection of the missing part might become impossible. To avoid the

missing pixels problem, the target object was rotated in binary mode and then edge of the

object was found by boundary detection.

After rotation process, target shape was positioned to the reference shape by

superimposing the centroids. If the target object was not a faulty object, the best match

would be achieved. However, if the target object was a faulty object, superimposing the

centroids might not give the best match of two objects. The reason of that incident was the

faulty parts of the target object might affect the centroid position, thus, a fine tuning

algorithm was applied which calculated the error (mean Hausdorff distance) in each

relative pose iteratively. This algorithm shifted the image in +x, -x, +y, -y coordinates

34

system iteratively and calculated error in every shifting. The iteration which gave the

lowest error value was determined as the best match.

After successful alignment of the reference shape and the target shape, inspection

algorithms were processed. Length and distance measurements of the shape were

calculated by taking distances between the shape boundaries that placed on predefined

regions. Dimensions special to circles like diameter, radius and perimeter calculated by

founding the center of the circle first. After center of the circle was found, radius was

found by taking the distances of pixel coordinates of center and the nearest circle

boundary. By using the formulas above, diameter and perimeter were also calculated.

 (4.12)

 (4.13)

The results that were calculated as pixel values, then converted to millimeter with

predefined calibration parameters. According to the calibration parameters which was used

in our system 1 pixel corresponds to 0.13 mm, thus real world measurements were found

by multiplying calculated pixel value with 0.13.

35

5. EXPERIMENTS

The object to be inspected that was chosen for the experimental studies was a mechanical

part which was manufactured in turn benches. It is used as connection apparatus in

machining industry. Its raw material is aluminum that makes it easy to be formed however

aluminum material causes a shiny surface that makes it hard to inspect with machine vision

applications.

Figure 5.1. Object to be inspected

As mentioned in the third chapter before, backlighting illumination was used for neglecting

shiny effects of the part and acquiring the best shape image for inspection. The part was

chosen for having holes on it thus not only the outer boundaries but also inner boundaries

would be important for alignment process.

36

Figure 5.2. Reference Image and its edges

The object to be inspected was measured with a caliper to extract its dimensional data.

These values were used for the benchmarking of the visual inspection results.

Measurement data that is measured by caliper were also used for verification of the system

calibration parameters. Six different region of the object were chosen for inspection and

measurement process. These inspection regions are height (M1), width (M2), two circles

(M5-M6), width measurement of the ellipsoid (M3) and height measurement the ellipsoid

(M4). The inspection regions and their measurements are also shown for test image1, in

Figure 5.3.

Figure 5.3. Inspection regions and measurements on test image1

37

5.1. Tests on objects with no fault

Before the inspection phase, target shape must be well aligned to reference shape for

performing precise measurements. Hausdorff distances between reference shape and target

shape pixels (two set of points) were calculated. Minimum distances were found for all

rotation angle trials and then the average values of minimum distances calculated. The

maximum value of the average values was chosen as best match. For the best match

occasion, Minimum Hausdorff distances is shown in Figure 5.4.

Figure 5.4. Hausdorff distance between two shape points

Ten different image of the object with different orientations and positions were processed

under alignment algorithms. The results of translation parameters, rotation angle,

maximum distance and mean distance are shown in the Table 5.1.

0

1

2

3

4

5

6

7

8

1
8

4
1

6
7

2
5
0

3
3
3

4
1
6

4
9
9

5
8
2

6
6
5

7
4
8

8
3
1

9
1
4

9
9
7

1
0
8

0
1

1
6

3
1

2
4

6
1

3
2

9
1

4
1

2
1

4
9

5
1

5
7

8
1

6
6

1
1

7
4

4
1

8
2

7
1

9
1

0
1

9
9

3
2

0
7

6
2

1
5

9
2

2
4

2
2

3
2

5
2

4
0

8

M
in

 D
is

ta
n

ce

Image Array

Image1

38

Table 5.1. Results of alignment experiments for object1

Images
Translation

Row

Translation

Column

Rotation

Angle

Max

Distance

Mean

Distance

Object1-image1 123 -162 26 7 1,56

Object1-image2 128 -12 100 4 0,97

Object1-image3 41 43 199 3 0,81

Object1-image4 76 -68 69 3 0,99

Object1-image5 20 14 161 4 0,94

Object1-image6 45 -109 49 5 1,12

Object1-image7 -63 -172 24 5 1,42

Object1-image8 45 34 135 4 1,00

Object1-image9 154 38 114 4 1,16

Object1-image10 133 -56 343 6 1,36

One of the main disadvantages of classical Hausdorff distance algorithm is that it looks for

the information for just one point (which is maximum of minimums) while mean distance

gathers information from all minimum points. As the maximum distance can be easily

affected from shape dissimilarities, mean distance has more stable attitude. The

comparison of maximum distances and mean distances are shown with a graphical

representation that is given in Figure5.5.

39

Figure 5.5. Maximum distances and mean distances of good objects (object1)

5.2. Tests on faulty objects

The other experiments were done with using the faulty object images. The results showed

that if the target object was a faulty object, superimposing the centroids might not give the

best match. The reason of that incident was the faulty parts of the target object might affect

the centroid position, thus, a fine tuning algorithm was applied which calculated the error

(mean Hausdorff distance) in each relative pose iteratively. The proposed algorithm shifted

the image in +x, -x, +y, -y coordinates system iteratively and calculated error in every

shifting. The iteration which gave the lowest error value was determined as the best match.

Shifting 1 pixel in +x axis corresponds to adding 1 to all pixel values in column array,

shifting 1 pixel in -x axis corresponds to subtracting 1 to all pixel values in column array,

shifting 1 pixel in +y axis corresponds to subtracting 1 to all pixel values in column array

and shifting 1 pixel in +y axis corresponds to adding 1 to all pixel values in column array.

First, the algorithm searched for the mean distance error lower than the original, if it was

found, the shape was shifted unless the error was minimized. The algorithms were applied

five different faulty object images and the mean distance errors with iterations for five

0,17

0,2

0,32

0,25

0,33

0,43

0,26

0,31

0,21

0,28

0,2

0,26

0,35

0,31
0,33

0,44

0,26

0,35

0,27

0,32

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 6 7 8 9 10

mean distance

max distance

of experiments

Distances (px)

40

faulty objects are shown in table 5.2, 5.3, 5.4, 5.5, 5.6. The iterations for rows described as

r and iterations for columns described as c.

Table 5.2. Iterations and results for image11

of Iterations

for Image11

Max

Distance

Error

Mean

Distance

Error

Iterations

1 12 1,91 original

2 12 1,93 r +1

3 12 2,21 r -1

4 13 1,54 c +1

5 11 2,31 c -1

6 14 1,48 c +2

7 15 1,78 c +3

Table 5.3. Iterations and results for image12

of Iterations

for Image12

Max

Distance

Error

Mean

Distance

Error

Iterations

1 12 2,23 original

2 12 2,27 r +1

3 12 2,39 r -1

4 13 1,84 c +1

5 11 2,64 c -1

6 13 1,5 c +2

7 13 1,65 c +3

41

Table 5.4. Iterations and results for image13

of Iterations

for Image13

Max

Distance

Error

Mean

Distance

Error

Iterations

1 12 3,36 original

2 12 3,05 r +1

3 12 3,72 r -1

4 12 3,92 c +1

5 12 2,8 c -1

6 12 2,26 c -2

7 12 1,75 c -3

8 12 1,31 c -4

9 12 1,07 c -5

10 12 1,25 c -6

11 12 0,7 c -5 r +1

12 12 0,61 c -5 r +2

13 12 0,87 c -5 r +3

42

Table 5.5. Iterations and results for image14

of Iterations

for Image14

Max

Distance

Error

Mean

Distance

Error

Iterations

1 11 2,54 original

2 11 2,23 r +1

3 11 2,93 r -1

4 11 3,06 c +1

5 11 2,06 c -1

6 11 1,84 c -2

7 11 1,87 c -3

8 11 1,5 c -2 r +1

9 11 1,42 c -2 r +2

10 11 1,48 c -2 r +1

Table 5.6. Iterations and results for image15

Maximum distance errors and mean distance errors before and after application of fine

tuning algorithm for five faulty objects are shown in table 5.7.

of Iterations

for Image15

Max

Distance

Error

Mean

Distance

Error

Iterations

1 14 2,72 original

2 14 2,35 r +1

3 14 3,13 r -1

4 15 3,16 c +1

5 13 2,34 c -1

6 12 2,24 c -2

7 13 2,51 c -3

8 12 1,58 c -2 r +2

9 12 1,6 c -2 r +3

43

Table 5.7. Distance errors before and after fine tuning algorithm (object1)

Images
Translation

Row

Translation

Column

Rotation

Angle

Max

Distance

Error

(1)

Mean

Distance

Error

(1)

Max

Distance

Error

(2)

Mean

Distance

Error

(2)

Image11 -83 5 132 12 1,91 14 1,48

Image12 91 123 97 12 2,23 13 1,5

Image13 -38 16 352 12 3,36 12 0,61

Image14 -155 -137 202 11 2,54 11 1,42

Image15 -110 -184 164 14 2,72 12 1,58

The graphical representation of maximum distance errors and mean distance errors before

and after application is shown in figure 5.6.

Figure 5.6. Maximum distances and mean distances of faulty objects (object1)

As it is seen in figure 5.6, after application of fine tuning algorithm the mean distance

errors were decreased significantly. The figure also shows us that using maximum

12 12 12

11

14

1,91 2,23

3,36

2,54 2,72

14

13

12

11

12

1,48 1,5

0,61

1,42 1,58

0

2

4

6

8

10

12

14

16

1 2 3 4 5

max distance1

mean distance1

max distance2

mean distance2

Distances (px)

of experiments

44

distances for alignment is an unstable method as they are affected from faulty parts of

objects.

Matching of reference object and target object before applying the fine tuning algorithm is

shown in Figure 5.7. It can be seen that best alignment match could not be achieved and

incorrect matching could cause unstable results for tolerance inspection of shape

boundaries. The image after applying the fine tuning algorithm, reference object and target

object is shown in Figure 5.8.

Figure 5.7. Before fine tuning alignment

45

Figure 5.8. After fine tuning alignment

After successful alignment of the reference shape and the target shape, inspection

algorithms were processed and results were shown. If the measurement of the inspected

parameter was in the tolerance interval, the result was displayed on screen as OK. If it was

not in the tolerance interval, then the result of the inspection process was displayed on

screen as NOK (Not OK). An inspection result of faulty object is shown in Figure 5.9,

width length measurement was more than given tolerance values (50±2) thus it was

displayed as NOK.

46

Figure 5.9. Inspection and measurements

47

The algorithms were also implemented on different test objects. Reference images and test

results that were applied on other four different objects are shown below:

Figure 5.10. Reference images of other test objects

48

Table 5.8 Results of alignment experiments for object2

Images Mean Distance Error (1)

Object2-image1 1,78

Object2-image2 0,96

Object2-image3 1,54

Object2-image4 1,56

Object2-image5 1,51

Object2-image6 0,60

Object2-image7 0,94

Object2-image8 0,88

Object2-image9 1,21

Object2-image10 1,51

Figure 5.11. Mean distances of good objects (object2)

3,01

1,42

2,18

2,81

2,09
1,94

2,03

2,4

2,12 2,09

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10

Object2 Distances (px)

of experiments

49

Table 5.9. Distance errors before and after fine tuning algorithm (object2)

Images Mean Distance Error (1) Mean Distance Error (2)

Object2-Image11 1,29 1,11

Object2-Image12 1,55 1,21

Object2-Image13 6,14 2,99

Object2-Image14 5,85 3,55

Object2-Image15 5,73 3,75

Figure 5.12. Maximum distances and mean distances of faulty objects (object2)

2,56
2,9

9,64

3,83

9,81

2,12

1,57

3,41

1,82

3,09

0

2

4

6

8

10

12

1 2 3 4 5

mean distance1

mean distance2

Distances (px)

of experiments

50

Table 5.10 Results of alignment experiments for object3

Images Mean Distance Error (1)

Object3-image1 3,01

Object3-image2 1,42

Object3-image3 2,18

Object3-image4 2,81

Object3-image5 2,09

Object3-image6 1,94

Object3-image7 2,03

Object3-image8 2,40

Object3-image9 2,12

Object3-image10 2,09

Figure 5.13. Mean distances of good objects (object3)

0,2

0,26

0,35

0,31
0,33

0,44

0,26

0,35

0,27

0,32

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 6 7 8 9 10

Object3 Distances (px)

of experiments

51

Table 5.11. Distance errors before and after fine tuning algorithm (object3)

Images Mean Distance Error (1) Mean Distance Error (2)

Object3-Image11 2,56 2,12

Object3-Image12 2,90 1,57

Object3-Image13 9,64 3,41

Object3-Image14 3,83 1,82

Object3-Image15 9,81 3,09

Figure 5.14. Maximum distances and mean distances of faulty objects (object3)

2,56
2,9

9,64

3,83

9,81

2,12
1,57

3,41

1,82

3,09

0

2

4

6

8

10

12

1 2 3 4 5

mean distance1

mean distance2

Distances (px)

of experiments

52

Table 5.12 Results of alignment experiments for object4

Images Mean Distance Error (1) Distance Max

Object4-image1 0,10 2,83

Object4-image2 0,25 3,16

Object4-image3 0,90 1,00

Object4-image4 0,36 5,66

Object4-image5 0,32 6,32

Object4-image6 0,16 3,00

Object4-image7 0,30 4,47

Object4-image8 0,22 5,00

Object4-image9 0,22 5,10

Object4-image10 0,28 3,00

Figure 5.15. Mean distances of good objects (object4)

0,2

0,26

0,35

0,31
0,33

0,44

0,26

0,35

0,27

0,32

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 6 7 8 9 10

Object4 Distances (px)

of experiments

53

Table 5.13. Distance errors before and after fine tuning algorithm (object4)

Images Mean Distance Error (1) Mean Distance Error (2) Distance Max

Object4-Image11 0,56 0,45 25,96

Object4-Image12 1,79 0,78 30,41

Object4-Image13 0,83 0,33 27,20

Object4-Image14 1,33 0,62 28,16

Object4-Image15 0,49 0,31 19,03

Figure 5.16. Maximum distances and mean distances of faulty objects (object4)

0,69

9,8

1,58
1,91

1,37

0,52

4,96

1,23 1,29 1,14

0

2

4

6

8

10

12

1 2 3 4 5

mean distance1

mean distance2

Distances (px)

of experiments

54

Table 5.14 Results of alignment experiments for object5

Images Mean Distance Error (1) Distance Max

Object5-image1 0,20 3

Object5-image2 0,26 5

Object5-image3 0,35 5

Object5-image4 0,31 3,61

Object5-image5 0,33 4,47

Object5-image6 0,44 6,40

Object5-image7 0,26 5,10

Object5-image8 0,35 5,00

Object5-image9 0,27 5,83

Object5-image10 0,32 4,00

Figure 5.17. Mean distances of good objects (object5)

0,2

0,26

0,35

0,31
0,33

0,44

0,26

0,35

0,27

0,32

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 6 7 8 9 10

Object5 Distances (px)

of experiments

55

Table 5.15. Distance errors before and after fine tuning algorithm (object5)

Images Mean Distance Error (1) Mean Distance Error (2) Distance Max

Object5-Image11 0,69 0,52 18,00

Object5-Image12 9,80 4,96 222,77

Object5-Image13 1,58 1,23 47,17

Object5-Image14 1,91 1,29 49,82

Object5-Image15 1,37 1,14 44,00

Figure 5.18. Maximum distances and mean distances of faulty objects (object5)

0,69

9,8

1,58
1,91

1,37

0,52

4,96

1,23 1,29 1,14

0

2

4

6

8

10

12

1 2 3 4 5

mean distance1

mean distance2

Distances (px)

of experiments

56

5.3. Software Speed Tests

Finally, the time consumptions for the algorithm that we proposed were calculated. Our

proposed system that processed alignment with 56 angle trials was compared with classical

360 angle trials. Results of using fewer pixels for Hausdorff distance calculations were also

given with total computation data.

Table 5.16. Time consumption of alignment process for 360 Angle Trials

360 Angle Trials

Iterations

1 by 1

Time

(sec)

of

Computations

1 27 894.600

2 14 447.300

3 10 298.200

4 7 223.650

5 6 178.920

57

Table 5.17. Time consumption of alignment process for 56 Angle Trials

56 Angle Trials

Iterations

10 by 10

Iterations

1 by 1

Time

(sec)

of

Computations

1 1 6 139.160

2 1 4 94.430

3 1 3 79.520

4 1 3 72.065

5 1 3 67.592

5 2 2 42.742

5 3 1 34.459

5 4 1 30.317

5 5 1 27.832

58

6. CONCLUSION

In this study, a real-time inspection system was proposed for the tolerance inspection of

free form objects. Our system was able to inspect two dimensional free form shapes within

given tolerances. Our inspection method is based on Hausdorff distance algorithm that we

concentrate on improving the speed and precision of the matching process with using

different auxiliary techniques. We developed a fast, robust and automated system that

calculates geometrical measurements of manufactured objects.

For further research topic, as Hausdorff distance can be applied to three dimensional

objects, our method can also be suitable for inspection of three dimensional forms.

As vision systems carry out statistical data of production, statistical modeling of

productivity may become a further research topic. By the statistical information gathered

from the inspection process, the system may become self-learning in that it recognizes and

classifies recurrent defects.

The system can be implemented conveniently to the precision manufacturing process of

free-form surfaces. The tests on sample parts have been carried out to verify the developed

techniques. The process time is less than 2 seconds which makes it suitable for industry

processes.

59

REFERENCES

1. Jinkerson R. A., Abrams S. L., Bardis L., Chryssostomidis C., Clement A.,

Patrikaiskis N. M., Wolter F. E., “Inspection and feature extraction of marine

propellers”, Journal of Ship Production, Vol. 9, No. 2, pp. 88-106, 1993.

2. Menq C. H., Yau H. T., Lai G. Y., “Automated precision measurement of surface

profile in CAD-directed inspection”, Journal of IEEE Transactions on Robotics and

Automation, Vol. 8, No. 2, pp. 268-278, 1992.

3. Newman T. S., Jain A. K., “A survey of automated visual inspection”, Journal of

Computer Vision and Image Understanding, Vol. 6, No. 2, pp. 231-262, 1995.

4. Cheng W. L., Menq C. H., “Integrated laser/CMM system for the dimensional

inspection of objects made of soft material”, International Journal of Advanced

Manufacturing Technology, Vol. 10, pp. 36-45, 1995

.

5. Nashman M., Hong T. H., Rippey W. G., Herman M., “An integrated vision touch-

probe system for dimensional inspection tasks”, Proceedings of SME Applied Machine

Vision ’96 Conference, Cincinnati, pp. 196-205, 1996.

6. Shen T., Huang J., Menq C. H., “Multiple-sensor integration for rapid and high-

precision coordinate metrology”, IEEE/ASME Transaction on Mechatronics, Vol.5,

No. 2, pp. 110-121, 2000.

7. Chin R. T., “Automated Visual Inspection: 1981 to 1987”, Computer Vision Graphics

and Image Processing, Vol. 41, pp. 346-381, 1988.

8. Verestoy J. and Chetverikov D., “Shape Defect Detection in Ferrite Cores”, Machine

Graphics and Vision, Vol. 6, No. 2, pp. 225-236, 1997.

60

9. Unsalan C. and Ercil A., “Automated tolerance inspection by implicit polynomials”,

Proceedings of ICIAP’99, Venice, Italy, September; pp. 1218-1225, 1999.

10. Gander W., Golub G.H., and Strebel R., “Least squares fitting of circles and ellipses”,

BIT Numerical Mathematics, Vol. 34, pp. 558-578, 1994.

11. Stojmenovic M., and Nayak A., “Direct Ellipse Fitting and Measuring Based on Shape

Boundaries”, Proceedings of PSIVT 2007, Vol. 4872, pp. 221-235, 2007.

12. Rosin P. L., “Further five-point fit ellipse fitting”, Graphical Models and Image

Processing, Vol. 61, No. 5, pp. 245-259, 1999.

13. Yu J., Kulkarni S. R., and Poor H. V., “Robust Fitting of Ellipses and Spheroids”,

Proceedings of the 43rd Asilomar Conference on Signals, Systems and Computers, pp.

94–98, 2009.

14. Traver V. J., and Pla F., “Dealing with 2D translation estimation in log polar

imagery”, Image Visual Computation, Vol. 21, No. 2, pp. 145–160, February 2003.

15. Araujo H., and Dias J. M., “An introduction to the logpolar mapping”, Proceedings of

2nd Workshop Cybernetic Vision, pp. 139–144, December 1996.

16. Korutcheva E., and Koroutchev K., “Figures design for surface coding with

orientation”, Proceedings of 14th International Workshop on Combinatorial Image

Analysis, Robust Multi-Class Gaussian Process Classification, 2011.

17. Matungka R., Zheng Y. F., and Ewing R. L., “Image registration using adaptive polar

transform”, IEEE Transactions on Image Processing, Vol. 18, No. 10, pp. 2340–2354,

2009.

18. Pan W., Qin K., and Chen Y., “An adaptable-multilayer fractional fourier transform

approach for image registration”, Pattern Analysis and Machine Intelligence, IEEE

Transactions on Image Processing, Vol. 31, No. 3, pp. 400–414, March 2009.

61

19. Besl P.J. and Mckay N., “A Method for Registration of 3-D Shapes”, Proceedings of

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp.

239-256, February 1992.

20. Bispo E. M., and Fisher R. B., “Free-Form Surface Matching for Surface Inspection”,

Proceedings of the 6th IMA Conference on the Mathematics of Surfaces, p. 119-136,

September 01, 1994

21. Zinser T., Schmidt J., and Niemann H., ”Point Set Registration with Integrated Scale

Estimation”, Proceedings of the Eighth International Conference on Pattern

Recognition and Image Processing, R. Sadykhov, S. Ablameiko, A. Doudkin, and L.

Podenok, eds., pp. 116–119, 2005.

22. Kaneko S., Kondo T., and Miyamoto A., “Robust Matching of 3D Contours Using

Iterative Closest Point Algorithm Improved by M-Estimation”, Pattern Recognition,

Vol. 36, pp. 2041-2047, 2003.

23. Yang S., Wang C., and Chang C., “RANSAC Matching: Simultaneous Registration

and Segmentation”, Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA2010), Anchorage, Alaska, May 2010.

24. Gelfand N., Ikemoto L., Rusinkiewicz S., and Levoy M., “Geometrically Stable

Sampling for the ICP Algorithm”, Fourth International Conference on 3D Digital

Imaging and Modeling, pp. 260-267, 2003.

25. Huttenlocher D. P., Klanderman G. A., and Rucklidge W., ”Comparing images using

the hausdorff distance”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.

15, No. 9, pp. 858–863, 2009.

26. Rotter P., Skulimowski A.M.J., Kotropoulos C. and Pitas I., “Fast shape matching

using the Hausdorff distance”, Mirage 2005: Computer Vision / Computer Graphics

Collaboration Techniques and Applications, March, 1-2 2005, INRIA Rocquencourt,

France, 2005.

62

27. Rucklidge W.J., “Efficiently Locating Objects Using the Hausdorff Distance”,

International Journal of Computer Vision, Vol. 24, No. 3, pp. 251–271, 1997.

28. Chetverikov D. and Khenokh Y., “Matching for shape defect detection”, Computer

Analysis of Images and Patterns, pp. 367-374, Springer, Verlag, 1999.

29. Alt H., Braß P., Godau M., Knauer C., and Wenk C., ”Computing the Hausdorff

distance of geometric patterns and shapes”, Discrete and Computational Geometry,

pp. 65–76. Springer, Verlag, 2003.

30. Nutanong S., Jacox E. H., and Samet H., “ An incremental Hausdorff distance

calculation algorithm”. Journal of PVLDB, Vol. 4, No. 8, pp. 506–517, 2011.

31. Agarwal P. K., Har-Peled S., Sharir M., and Wang Y., “Hausdorff distance under

translation for points, disks, and balls”, Proceedings of the. 19th Annual ACM

Symposium on Computational Geometry, pp. 282–291, 2003.

32. Tang M., Lee M., and Kim Y.J., “Interactive Hausdorff distance computation for

general polygonal models”, ACM Transactions on Graphics (SIGGRAPH), 2009.

33. Aspert N., Santa-Cruz D. and Ebrahimi T., “MESH: Measuring Error between

Surfaces using the Hausdorff distance”, Proceedings of the IEEE International

Conference on Multimedia and Expo (ICME), Vol. 1, pp. 705-708, 2002.

34. Alt H., and Scharf L., “Computing the Hausdorff distance between sets of curves”,

Proceedings of the 20th European Workshop on Computational Geometry (EWCG),

pp. 233–236, 2004.

63

APPENDIX A: ALGORITHMS

Algorithm 5.1. The selection sort algorithm implemented in C++ programming language

#include "stdafx.h"

#include <stdio.h>

#include "highgui.h"

#include "cv.h"

#include "cxcore.h"

#include <math.h>

#include <cstdlib>

#include <iostream>

#include <windows.h>

#define square(x) x*x

#define PI 3.14159265

using namespace std;

#include <time.h>

#include <fstream>

// ********* Reference image variables *****

 int size_w1;

 int size_h1;

 int mat1r[20000]={};

 int mat1c[20000]={};

 uchar* data1;

 int refcenr;

 int refcenc;

// ********* Target image variables *****

 uchar* data2;

 IplImage* img2;

64

 IplImage* edge1;

 int c1r;

 int c1c;

 int size_w;

 int size_h;

 int mat2r[20000]={};

 int mat2c[20000]={};

 int mattr[20000]={};

 int mattc[20000]={};

 int k1;

 int k2;

 // ***** Variables for angle finding ***********

 int s;

 int degree;

 int transr;

 int transc;

 double maxDistBA;

 int i;

 int j;

 double distanceMax;

 double distanceH;

 double distcont;

 double distance1[360] = {};

 double degree1[360] = {};

 double distance2[360] = {};

 double degree2[360] = {};

 double mindist;

 int degr;

 int angle;

 double minA;

65

double meanMin(int k3)

{

 distanceMax=0;

int minim;

int toplam_minim=0;

for(i=0; i<k1; i+=5) // performing with less pixels with the same intervals

 {

 minim=1000;

 for (j=0; j<k3; j++)

 {

 distanceH=sqrt(square(double(mat1r[i]-

mattr[j]))+square(double(mat1c[i]-mattc[j])));

 if (distanceH < minim)

 {

 minim = distanceH;

 }

 }

toplam_minim = minim + toplam_minim;

 if (distanceMax < minim)

 {

 distanceMax = minim;

 }

 }

double mean_minim = double (toplam_minim)/ double (k1) ;

return mean_minim;

66

}

// ten by ten algorithm

int maxmiddist(int degr)

{

 int s;

 for (s=0; s<20; s++)

 {

 int toplam_minim1=0;

 degree=degr+s;

 transr = refcenr - c1r*cos(degree*PI/180) + c1c*sin(degree*PI/180);

 transc = refcenc - c1r*sin(degree*PI/180) - c1c*cos(degree*PI/180);

 for (i=0; i<k2;i++)

 {

 mattr[i]=(mat2r[i]*cos(degree*PI/180))-

(mat2c[i]*sin(degree*PI/180))+transr;

 mattc[i]=(mat2r[i]*sin(degree*PI/180))+

(mat2c[i]*cos(degree*PI/180))+transc;

 }

 // ************ Hausdorff algorithm ************

 maxDistBA=0;

 distanceMax=0;

 int counter=0;

 for(i=0; i<k1; i+=5) // performing with less pixels with the same intervals

67

 {

 minA=1000;

 for (j=0; j<k2; j++)

 {

 distanceH=sqrt(square(double(mat1r[i]-

mattr[j]))+square(double(mat1c[i]-mattc[j])));

 if (distanceH < minA)

 {

 minA = distanceH;

 }

 }

 toplam_minim1 = minA + toplam_minim1;

 counter++;

 if (distanceMax < minA)

 {

 distanceMax = minA;

 }

 }

 double mean_minim1 = double (toplam_minim1)/ double (counter) ;

 distcont=mean_minim1;

 distance2[s]=distcont;

 degree2[s]=degree;

 if (distcont < mindist)

 {

 mindist = distcont;

 }

 }

68

 for (s=0; s<angle;s++)

 {

 if (distance2[s] == mindist)

 {

 break;

 }

 }

 degr=degree2[s];

 return degr;

}

//********************************

// function lefttoright (c1: left point, c2: right point, rt: rowtarget)

int lefttoright (int c1, int c2, int rt, int size_w)

{

 int j;

 for (j=c1;j<c2;j++)

 {

 if(data2[rt*size_w+j] == 255)

 {

 break;

 }

 }

 return j;

}

//function righttoleft (c1: left point, c2: right point, rt: rowtarget)

int righttoleft (int c1, int c2, int rt, int size_w)

{

 int j;

 for (j=c2;j>=c1;j--)

69

 {

 if(data2[rt*size_w+j] == 255)

 {

 break;

 }

 }

 return j;

}

// function uptodown (r1: up point, r2: down point, ct: columntarget)

int uptodown (int r1, int r2, int ct, int size_w)

{

 int i;

 for (i=r1;i<r2;i++)

 {

 if(data2[i*size_w+ct] == 255)

 {

 break;

 }

 }

 return i;

}

//function downtoup (r1: up point r2: down point, ct: columntarget)

int downtoup (int r1, int r2, int ct, int size_w)

{

 int i;

 for (i=r2;i>=r1;i--)

 {

 if(data2[i*size_w+ct] == 255)

 {

 break;

 }

 }

70

 return i;

}

//********************************

// ****************** Finding centroid row value ****************

int centroidr (int roi_row1, int roi_col1, int roi_row2,int roi_col2, int size_w)

{

int r;

int c;

int k=0;

int rowsum=0;

int rowavg;

 for (r=roi_row1;r<=roi_row2;r++)

 {

 for (c=roi_col1;c<=roi_col2;c++)

 {

 if(data2[r*size_w+c] == 255)

 {

 k++;

 rowsum=r+rowsum;

 }

 }

 }

 if (k==0)

 {

 k=1;

 }

 rowavg=rowsum/k;

 return rowavg;

}

71

// ****************** Finding centroid col value ****************

int centroidc (int roi_row1, int roi_col1, int roi_row2,int roi_col2, int size_w)

{

int r;

int c;

int k=0;

int colsum=0;

int colavg;

 for (r=roi_row1;r<=roi_row2;r++)

 {

 for (c=roi_col1;c<=roi_col2;c++)

 {

 if(data2[r*size_w+c] == 255)

 {

 k++;

 colsum=c+colsum;

 }

 }

 }

 if (k==0)

 {

 k=1;

 }

 colavg=colsum/k;

 return colavg;

}

//********************************

72

//// ****************** Finding diameter *********************

float diameter(int roi_row1, int roi_col1, int roi_row2, int roi_col2)

{

int right;

int left;

int up;

int down;

 int c1r = centroidr (roi_row1, roi_col1, roi_row2, roi_col2, size_w);

 int c1c = centroidc (roi_row1, roi_col1, roi_row2, roi_col2, size_w);

right = lefttoright (c1c, size_w , c1r, size_w);

int radius1 = right-c1c;

left = righttoleft (0, c1c , c1r, size_w);

int radius2 = c1c-left;

up = downtoup (0, c1r , c1c , size_w);

int radius3 = c1r-up;

down = uptodown (c1r, size_h, c1c, size_w);

int radius4 = down - c1r;

float diameter;

diameter= float (radius1+radius2+radius3+radius4);

diameter=diameter/2;

return diameter;

}

73

//********************************

// ****** Finding coordinates by mouse click *******

void on_mouse(int event, int x, int y, int flags, void* param)

{

 if (event == CV_EVENT_LBUTTONDOWN)

 printf("row:%d\n column:%d \n ", y, x);

}

//********************************

// *********** bwareaopen **************

void bwareaopen(IplImage* image, int size)

{

 CvMemStorage *storage;

 CvSeq *contour;

 IplImage *input;

 double area;

 if (image == NULL || size == 0)

 return;

 input = cvCloneImage(image);

 storage = cvCreateMemStorage(0);

 cvFindContours(input, storage, &contour, sizeof (CvContour),

 CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

 while(contour)

 {

 area = cvContourArea(contour, CV_WHOLE_SEQ, 1);

 if (-size <= area && area <= 0)

 {

 // removes white dots

 cvDrawContours(image, contour, CV_RGB(0,0,0), CV_RGB(0,0,0), -1, CV_FILLED, 8,

cvPoint(0, 0));

74

 }

 else if (0 < area && area <= size)

 {

 // fills in black holes

 cvDrawContours(image, contour, CV_RGB(0xff,0xff,0xff),CV_RGB(0xff,0xff,0xff), -1,

CV_FILLED, 8, cvPoint(0,0));

 }

 contour = contour->h_next;

 }

 cvReleaseMemStorage(&storage);

 cvReleaseImage(&input);

}

// *********** Rotate image *************

IplImage *rotateImage(const IplImage *src, float angleDegrees)

{

 float m[6]; // Create a map_matrix, where the left 2x2 matrix

 CvMat M = cvMat(2, 3, CV_32F, m); // is the transform and the right 2x1 is the

dimensions.

 int w = src->width;

 int h = src->height;

 float angleRadians = angleDegrees * ((float)CV_PI / 180.0f);

 m[0] = (float)(cos(angleRadians));

 m[1] = (float)(sin(angleRadians));

 m[3] = -m[1];

 m[4] = m[0];

 m[2] = w*0.5f;

 m[5] = h*0.5f;

 CvSize sizeRotated; // Make a spare image for the result

 sizeRotated.width = cvRound(w);

 sizeRotated.height = cvRound(h);

 IplImage *imageRotated = cvCreateImage(sizeRotated, src->depth, src-

>nChannels); // Rotate

75

 cvGetQuadrangleSubPix(src, imageRotated, &M); // Transform the image

 return imageRotated;

}

//

**

// ******************************** main program

int main(int argc, char** argv)

{

// *************** reference image datas *************

IplImage* img1 = cvLoadImage("C:\\appgui\\mec\\reference.jpg"); // load reference image

 IplImage* img1g = cvCreateImage(cvSize(img1->width,img1->height), img1->depth, 1);

// create an image for grayscale

 cvCvtColor(img1, img1g ,CV_BGR2GRAY); // convert rgb image to grayscale image

 IplImage* BW1 = cvCreateImage(cvSize(img1g->width,img1g->height), img1g->depth,

img1g->nChannels); // Create an image for BW

 edge1 = cvCreateImage(cvSize(img1g->width,img1g->height), img1g->depth, img1g-

>nChannels); // Create an image for edge

 cvThreshold(img1g, BW1, 80, 255, CV_THRESH_BINARY);

bwareaopen(BW1, 10);

76

cvSaveImage("C:\\appgui\\mec\\results\\thresh.jpg",BW1);

CvMat* mask=0;

mask = cvCreateMat(3,3,CV_32FC1);

cvSet2D(mask, 0, 0, cvRealScalar(0));

cvSet2D(mask, 0, 1, cvRealScalar(-1));

cvSet2D(mask, 0, 2, cvRealScalar(0));

cvSet2D(mask, 1, 0, cvRealScalar(-1));

cvSet2D(mask, 1, 1, cvRealScalar(4));

cvSet2D(mask, 1, 2, cvRealScalar(-1));

cvSet2D(mask, 2, 0, cvRealScalar(0));

cvSet2D(mask, 2, 1, cvRealScalar(-1));

cvSet2D(mask, 2, 2, cvRealScalar(0));

cvFilter2D(BW1, edge1, mask, cvPoint(-1,-1));

 data1 = (uchar *)edge1->imageData; // imageData dan gelecek veriyi data1 arrayine at

 size_w1 = img1->width;

 size_h1 = img1->height;

// ******************* object coordinates to two arrays ****************

 k1=0;

for (i=0; i<(size_w1*size_h1);i++)

{

 if (data1[i]== 255)

 {

 mat1r[k1]=i/size_w1;

 mat1c[k1]=i%size_w1;

 k1++;

 }

}

// ******************* Reference image Centroid Coordinates

 // for image1

77

 int trow1=0;

 for (i=0; i<k1;i++)

 {

 trow1 += mat1r[i];

 }

 int tcol1=0;

 for (i=0; i<k1;i++)

 {

 tcol1 += mat1c[i];

 }

refcenr=trow1/k1;

refcenc=tcol1/k1;

 ROIs for the target object1

// ROIs for Height (uzunluk 1)

int height_r1 = 176;

int height_c1 = 598;

int height_r2 = 820;

int height_c2 = height_c1;

// ROIs for Width (uzunluk 2)

int width_r1 = 605;

int width_c1 = 336;

int width_r2 = 605;

int width_c2 = 1020;

// ROIs for uzunluk 3-4 (elips)

int ellipse_r1 = 284;

int ellipse_c1 = 706;

78

int ellipse_r2 = 474;

int ellipse_c2 = 822;

// ROIs for Circle1 (cap 1)

int circle1_r1 = 310;

int circle1_c1 = 492;

int circle1_r2 = 400;

int circle1_c2 = 582;

// ROIs for Circle2 (cap 2)

int circle2_r1 = 626;

int circle2_c1 = 592;

int circle2_r2 = 716;

int circle2_c2 = 698;

restart:

int iii=0;

char folder[256];

CvCapture* capture = cvCreateCameraCapture(2); // 2 is for external cam

 assert(capture);

 IplImage *image = cvQueryFrame(capture);

 cvNamedWindow("video_stream",0);

 cvResizeWindow("video_stream", 640, 512);

while(image)

79

 {

 IplImage *image = cvQueryFrame(capture);

 iii++;

 char c = cvWaitKey(1);

 if(c == 99)

 {

 sprintf(folder,"%s\\img-%d.jpg", "C:\\appgui\\results",iii);

 cvSaveImage(folder,image);

 break;

 }

 cvShowImage("video_stream", image);

 char e = cvWaitKey(1);

 if(e == 27)

 {

 goto exit;

 }

 }

 img2 = cvLoadImage(folder);

 //************* Inspect Command ***********

 IplImage* img2g = cvCreateImage(cvSize(img2->width,img2->height), img2->depth, 1);

// create an image for grayscale

 IplImage* BW2 = cvCreateImage(cvSize(img2g->width,img2g->height), img2g->depth,

img2g->nChannels); // Create an image for BW

 IplImage* edge2 = cvCreateImage(cvSize(img2g->width,img2g->height), img2g->depth,

img2g->nChannels); // Create an image for edge

 cvCvtColor(img2, img2g ,CV_BGR2GRAY); // convert rgb image to grayscale image

 cvThreshold(img2g, BW2, 80, 255, CV_THRESH_BINARY);

 bwareaopen(BW2, 10);

80

 cvFilter2D(BW2, edge2, mask, cvPoint(-1,-1));

 size_w = img2->width;

 size_h = img2->height;

 data2 = (uchar *)edge2->imageData;

// ******************* object coordinates to two arrays ****************

 k2=0;

for (i=0; i<(size_w*size_h);i++)

{

 if (data2[i]== 255)

 {

 mat2r[k2]=i/size_w;

 mat2c[k2]=i%size_w;

 k2++;

 }

}

// ******************* Target image Centroid Coordinates **********************

 c1r = centroidr (1,1,size_h,size_w,size_w);

 c1c = centroidc (1,1,size_h,size_w,size_w);

mindist = 10000;

angle = 360;

for (s=0; s<angle; s+=10)

{

 degree = s;

 transr = refcenr - c1r*cos(degree*PI/180) + c1c*sin(degree*PI/180);

 transc = refcenc - c1r*sin(degree*PI/180) - c1c*cos(degree*PI/180);

81

 for (i=0; i<k2; i++)

 {

 mattr[i]=(mat2r[i] * cos(degree*PI/180)) - (mat2c[i] * sin(degree*PI/180))

+ transr;

 mattc[i]=(mat2r[i] * sin(degree*PI/180)) + (mat2c[i] *

cos(degree*PI/180)) + transc;

 }

 // ************ Hausdorff algorithm ************

 maxDistBA=0;

 distanceMax=0;

 for(i=0; i<k1; i+=5) // performing with less pixels with the same intervals

 {

 minA=1000;

 for (j=0; j<k2; j++)

 {

 distanceH=sqrt(square(double(mat1r[i]-

mattr[j]))+square(double(mat1c[i]-mattc[j])));

 if (distanceH < minA)

 {

 minA = distanceH;

 }

 }

 if (distanceMax < minA)

 {

 distanceMax = minA;

 }

 }

 distcont=distanceMax;

 distance1[s]=distcont;

 degree1[s]=degree;

82

 if (distcont < mindist)

 {

 mindist = distcont;

 }

}

for (s=0; s<angle;s++)

{

 if (distance1[s] == mindist)

 {

 break;

 }

}

degr=degree1[s];

if (degr==0)

{

 degr = maxmiddist(350);

}

else

{

 degr = maxmiddist(degr-10);

}

// ****************** Create translated image *********************

 BW2=rotateImage(BW2, -degr);

 IplImage* edge3 = cvCreateImage(cvSize(img2g->width,img2g->height), img2g->depth,

img2g->nChannels); // Create an image for edge

83

cvFilter2D(BW2, edge3, mask, cvPoint(-1,-1));

int mat3r [10000]= {};

int mat3c [10000]= {};

uchar* data3;

data3 = (uchar *)edge3->imageData;

// ******************* object coordinates to two arrays ****************

int k3=0;

for (i=0; i<(size_w1*size_h1);i++)

{

 if (data3[i]== 255)

 {

 mat3r[k3]=i/size_w;

 mat3c[k3]=i%size_w;

 k3++;

 }

}

// ******************* Rotated Target image Centroid Coordinates

 int rtrow1=0;

 for (i=0; i<k3;i++)

 {

 rtrow1 += mat3r[i];

 }

 int rtcol1=0;

 for (i=0; i<k3;i++)

 {

 rtcol1 += mat3c[i];

 }

int c2r=rtrow1/k3;

int c2c=rtcol1/k3;

84

int transr2=refcenr - c2r;

int transc2=refcenc - c2c;

printf("transr2 : %d \n",transr2);

printf("transc2 : %d \n",transc2);

for (i=0; i<k3;i++)

{

mattr[i]= mat3r[i] + transr2;

mattc[i]= mat3c[i] + transc2;

}

double mean_minim;

bool bCont = true;

while(bCont)

{

 double mean_minall = 9999;

 int iShift = 0;

 mean_minim = meanMin(k3);

 if (mean_minim < mean_minall)

 {

 mean_minall = mean_minim;

 iShift = 0;

 }

 for (i=0; i<k3;i++)

 {

 mattr[i]= mattr[i] - 1;

 }

 double mean_minim_r_1 = meanMin(k3);

 if (mean_minim_r_1 < mean_minall)

 {

85

 mean_minall = mean_minim_r_1;

 iShift = -1;

 }

 for (i=0; i<k3;i++)

 {

 mattr[i]= mattr[i] + 2;

 }

 double mean_minim_r1 = meanMin(k3);

 if (mean_minim_r1 < mean_minall)

 {

 mean_minall = mean_minim_r1;

 iShift = 1;

 }

 for (i=0; i<k3;i++)

 {

 mattr[i]= mattr[i] - 1;

 mattc[i]= mattc[i] - 1;

 }

 double mean_minim_c_1 = meanMin(k3);

 if (mean_minim_c_1 < mean_minall)

 {

 mean_minall = mean_minim_c_1;

 iShift = -2;

 }

 for (i=0; i<k3;i++)

 {

 mattc[i]= mattc[i] + 2;

 }

 double mean_minim_c1 = meanMin(k3);

 if (mean_minim_c1 < mean_minall)

 {

 mean_minall = mean_minim_c1;

 iShift = 2;

86

 }

 for (i=0; i<k3;i++)

 {

 mattc[i]= mattc[i] - 1;

 }

 if (iShift == -1)

 {

 for (i=0; i<k3;i++)

 {

 mattr[i]= mattr[i] - 1;

 }

 }

 else

 if (iShift == 1)

 {

 for (i=0; i<k3;i++)

 {

 mattr[i]= mattr[i] + 1;

 }

 }

 else

 if (iShift == -2)

 {

 for (i=0; i<k3;i++)

 {

 mattc[i]= mattc[i] - 1;

 }

 }

 else

 if (iShift == 2)

 {

 for (i=0; i<k3;i++)

 {

 mattc[i]= mattc[i] + 1;

 }

87

 }

 if (iShift == 0)

 break;

}

// ********* comparing the new image with reference **************

 IplImage* img9 = cvCreateImage(cvSize(img1->width,img1->height), img1->depth, 3); //

create an image for grayscale

// ********* tolerance inspection phase ***************

 maxDistBA=0;

 distanceMax=0;

for(i=0; i<k1; i+=1) // performing with less pixels with the same intervals

 {

 minA=1000;

 for (j=0; j<k3; j++)

 {

 distanceH=sqrt(square(double(mat1r[i]-

mattr[j]))+square(double(mat1c[i]-mattc[j])));

 if (distanceH < minA)

 {

 minA = distanceH;

 }

 }

 if (minA > 10) // tolerance inspection

 {

 CvPoint p1m=cvPoint(mat1c[i], mat1r[i]);

 cvCircle(img9, p1m, 10, cvScalar(255, 0, 255, 0), 1);

 }

88

 if (distanceMax < minA)

 {

 distanceMax = minA;

 }

 }

 for (i=0;i<k3;i++)

 {

 CvPoint p1t=cvPoint(mattc[i], mattr[i]);

 CvPoint p2t=cvPoint(mattc[i], mattr[i]);

 cvLine(img9,p1t, p2t, cvScalar(0, 0, 255, 0), 1);

 }

 for (i=0;i<k1;i++)

 {

 CvPoint p1r=cvPoint(mat1c[i], mat1r[i]);

 CvPoint p2r=cvPoint(mat1c[i], mat1r[i]);

 cvLine(img9,p1r, p2r, cvScalar(255, 255, 255, 0), 1);

 }

IplImage* imgt = cvCreateImage(cvSize(size_w,size_h), img2->depth, 1);

 for (i=0;i<k3;i++)

 {

 CvPoint p1=cvPoint(mattc[i], mattr[i]);

 CvPoint p2=cvPoint(mattc[i], mattr[i]);

 cvLine(imgt,p1, p2, cvScalar(255, 255, 255, 255), 1);

 }

data2 = (uchar *)imgt->imageData;

89

// ************ measurements ***************

double cal=0.13;

// measurement of height

int meayup = uptodown(1,size_h,height_c1,size_w);

int meaydown = downtoup(1,size_h,height_c1,size_w);

int meay=meaydown-meayup;

double meaymm= double (meay) * cal;

 meay=meaymm;

// measurement of Width

int meaxleft = lefttoright(1,size_w-1,width_r1,size_w);

int meaxright = righttoleft(1,size_w-1,width_r1,size_w);

int meax=meaxright-meaxleft;

double meaxmm= double (meax) * cal;

 meax=meaxmm;

// measurement of uzunluk 3-4 (ellipse)

 int c1r_e = centroidr (ellipse_r1, ellipse_c1, ellipse_r2, ellipse_c2, size_w);

 int c1c_e = centroidc (ellipse_r1, ellipse_c1, ellipse_r2, ellipse_c2, size_w);

 int el1uz3 = righttoleft (ellipse_c1, c1c_e , c1r_e, size_w);

 int el2uz3 = lefttoright (c1c_e, ellipse_c2 , c1r_e, size_w);

 int eluz3 = el2uz3 - el1uz3;

double eluz3mm= double (eluz3) * cal;

eluz3=eluz3mm;

int el1uz4 = downtoup (ellipse_r1, c1r_e, c1c_e, size_w);

int el2uz4 = uptodown (c1r_e, ellipse_r2, c1c_e, size_w);

int eluz4 = el2uz4 - el1uz4;

double eluz4mm= double (eluz4) * cal;

eluz4=eluz4mm;

// measurement of diameter1(circle1)

float dia1= diameter (circle1_r1, circle1_c1, circle1_r2, circle1_c2);

double dia1mm= double (dia1) * cal;

dia1=dia1mm;

90

// measurement of diameter2(circle2)

float dia2= diameter (circle2_r1, circle2_c1, circle2_r2, circle2_c2);

double dia2mm= double (dia2) * cal;

dia2=dia2mm;

 //-------------------------------- screen print ----------------------------------

 char sbuf[10];

 CvFont font;

 cvInitFont (&font, CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0, 0, 2, CV_AA);

 //-------------------------------- end of screen print ----------------------------------

 // **************** ROI positioning-1 height ****************

degr=-degr;

 transr = c1r - refcenr*cos(degr*PI/180) + refcenc*sin(degr*PI/180);

 transc = c1c - refcenr*sin(degr*PI/180) - refcenc*cos(degr*PI/180);

int mroi1rt=(meayup*cos(degr*PI/180)) - (height_c1*sin(degr*PI/180)) + transr;

int mroi1ct=(meayup*sin(degr*PI/180)) + (height_c1*cos(degr*PI/180)) + transc;

int mroi2rt=(meaydown*cos(degr*PI/180)) - (height_c2*sin(degr*PI/180)) + transr;

int mroi2ct=(meaydown*sin(degr*PI/180)) + (height_c2*cos(degr*PI/180)) + transc;

CvPoint pt1t = {mroi1ct,mroi1rt};

CvPoint pt2t = {mroi2ct,mroi2rt};

cvLine (img2, pt1t, pt2t,cvScalar(0, 255, 255, 0),2, 8, 0);

cvPutText (img2, " M1", pt1t, &font, cvScalar (0, 255, 255, 0));

itoa(meaymm, sbuf, 10);

int writeline1=50;

cvPutText (img2, "M1= ", cvPoint(20,writeline1), &font, cvScalar (255, 0, 0, 0));

cvPutText (img2,sbuf,cvPoint(120,writeline1), &font, cvScalar(255,0,0));

cvPutText (img2, "mm", cvPoint(200,writeline1), &font, cvScalar (255,0,0));

91

int tol1 = 2;

int ref1 = 60;

if ((ref1+tol1 >= meaymm) && (meaymm >= ref1-tol1))

{

 cvPutText (img2, "OK", cvPoint(300,writeline1), &font, cvScalar (0, 255, 0, 0));

}

else

{

 cvPutText (img2, "NOK", cvPoint(300,writeline1), &font, cvScalar (0, 0, 255, 0));

}

// **************** ROI positioning-2 width ****************

 mroi1rt=(width_r1*cos(degr*PI/180)) - (meaxleft*sin(degr*PI/180)) + transr;

 mroi1ct=(width_r1*sin(degr*PI/180)) + (meaxleft*cos(degr*PI/180)) + transc;

 mroi2rt=(width_r2*cos(degr*PI/180)) - (meaxright*sin(degr*PI/180)) + transr;

 mroi2ct=(width_r2*sin(degr*PI/180)) + (meaxright*cos(degr*PI/180)) + transc;

 CvPoint pt1t2 = {mroi1ct,mroi1rt};

 CvPoint pt2t2 = {mroi2ct,mroi2rt};

cvLine (img2, pt1t2, pt2t2,cvScalar(0, 255, 255, 0),2, 8, 0);

cvPutText (img2, " M2", pt1t2, &font, cvScalar (0, 255, 255, 0));

itoa(meaxmm, sbuf, 10);

int writeline2=100;

cvPutText (img2, "M2= ", cvPoint(20,writeline2), &font, cvScalar (255, 0, 0, 0));

cvPutText (img2,sbuf,cvPoint(120,writeline2), &font, cvScalar(255,0,0));

cvPutText (img2, "mm", cvPoint(200,writeline2), &font, cvScalar (255,0,0));

int tol2 = 2;

int ref2 = 51;

92

if ((ref2+tol2 >= meaxmm) && (meaxmm >= ref2-tol2))

{

 cvPutText (img2, "OK", cvPoint(300,writeline2), &font, cvScalar (0, 255, 0, 0));

}

else

{

 cvPutText (img2, "NOK", cvPoint(300,writeline2), &font, cvScalar (0, 0, 255, 0));

}

// **************** ROI positioning-3 Ellipse 3 ****************

 mroi1rt=(c1r_e*cos(degr*PI/180)) - (el1uz3*sin(degr*PI/180)) + transr;

 mroi1ct=(c1r_e*sin(degr*PI/180)) + (el1uz3*cos(degr*PI/180)) + transc;

 mroi2rt=(c1r_e*cos(degr*PI/180)) - (el2uz3*sin(degr*PI/180)) + transr;

 mroi2ct=(c1r_e*sin(degr*PI/180)) + (el2uz3*cos(degr*PI/180)) + transc;

 CvPoint pt1t3 = {mroi1ct,mroi1rt};

 CvPoint pt2t3 = {mroi2ct,mroi2rt};

cvLine (img2, pt1t3, pt2t3,cvScalar(0, 255, 255, 0),2, 8, 0);

cvPutText (img2, " M3", pt1t3, &font, cvScalar (0, 255, 255, 0));

itoa(eluz3, sbuf, 10);

int writeline3=150;

cvPutText (img2, "M3= ", cvPoint(20,writeline3), &font, cvScalar (255, 0, 0, 0));

cvPutText (img2,sbuf,cvPoint(120,writeline3), &font, cvScalar(255,0,0));

cvPutText (img2, "mm", cvPoint(200,writeline3), &font, cvScalar (255,0,0));

int tol3 = 2;

int ref3 = 8;

if ((ref3+tol3 >= eluz3) && (eluz3 >= ref3-tol3))

{

 cvPutText (img2, "OK", cvPoint(300,writeline3), &font, cvScalar (0, 255, 0, 0));

}

else

93

{

 cvPutText (img2, "NOK", cvPoint(300,writeline3), &font, cvScalar (0, 0, 255, 0));

}

// **************** ROI positioning-4 Ellipse 4 ****************

 mroi1rt=(el1uz4*cos(degr*PI/180)) - (c1c_e*sin(degr*PI/180)) + transr;

 mroi1ct=(el1uz4*sin(degr*PI/180)) + (c1c_e*cos(degr*PI/180)) + transc;

 mroi2rt=(el2uz4*cos(degr*PI/180)) - (c1c_e*sin(degr*PI/180)) + transr;

 mroi2ct=(el2uz4*sin(degr*PI/180)) + (c1c_e*cos(degr*PI/180)) + transc;

 CvPoint pt1t4 = {mroi1ct,mroi1rt};

 CvPoint pt2t4 = {mroi2ct,mroi2rt};

cvLine (img2, pt1t4, pt2t4,cvScalar(0, 255, 255, 0),2, 8, 0);

cvPutText (img2, " M4", pt1t4, &font, cvScalar (0, 255, 255, 0));

itoa(eluz4, sbuf, 10);

int writeline4=200;

cvPutText (img2, "M4= ", cvPoint(20,writeline4), &font, cvScalar (255, 0, 0, 0));

cvPutText (img2,sbuf,cvPoint(120,writeline4), &font, cvScalar(255,0,0));

cvPutText (img2, "mm", cvPoint(200,writeline4), &font, cvScalar (255,0,0));

int tol4 = 2;

int ref4 = 19;

if ((ref4+tol4 >= eluz4) && (eluz4 >= ref4-tol4))

{

 cvPutText (img2, "OK", cvPoint(300,writeline4), &font, cvScalar (0, 255, 0, 0));

}

else

{

 cvPutText (img2, "NOK", cvPoint(300,writeline4), &font, cvScalar (0, 0, 255, 0));

}

// **************** ROI positioning-5 Dia1 ****************

 mroi1rt=(circle1_r1*cos(degr*PI/180)) - (circle1_c1*sin(degr*PI/180)) + transr;

 mroi1ct=(circle1_r1*sin(degr*PI/180)) + (circle1_c1*cos(degr*PI/180)) + transc;

 mroi2rt=(circle1_r2*cos(degr*PI/180)) - (circle1_c2*sin(degr*PI/180)) + transr;

94

 mroi2ct=(circle1_r2*sin(degr*PI/180)) + (circle1_c2*cos(degr*PI/180)) + transc;

 CvPoint pt1t5 = {mroi1ct,mroi1rt};

 CvPoint pt2t5 = {mroi2ct,mroi2rt};

CvPoint pt0t5= {(mroi1ct+mroi2ct)/2,(mroi1rt+mroi2rt)/2};

cvPutText (img2, " M5", pt0t5, &font, cvScalar (0, 255, 255, 0));

itoa(dia1, sbuf, 10);

int writeline5=250;

cvPutText (img2, "M5= ", cvPoint(20,writeline5), &font, cvScalar (255, 0, 0, 0));

cvPutText (img2,sbuf,cvPoint(120,writeline5), &font, cvScalar(255,0,0));

cvPutText (img2, "mm", cvPoint(200,writeline5), &font, cvScalar (255,0,0));

int tol5 = 2;

int ref5 = 6;

if ((ref5+tol5 >= dia1) && (dia1 >= ref5-tol5))

{

 cvPutText (img2, "OK", cvPoint(300,writeline5), &font, cvScalar (0, 255, 0, 0));

}

else

{

 cvPutText (img2, "NOK", cvPoint(300,writeline5), &font, cvScalar (0, 0, 255, 0));

}

// **************** ROI positioning-6 Dia2 ****************

 mroi1rt=(circle2_r1*cos(degr*PI/180)) - (circle2_c1*sin(degr*PI/180)) + transr;

 mroi1ct=(circle2_r1*sin(degr*PI/180)) + (circle2_c1*cos(degr*PI/180)) + transc;

 mroi2rt=(circle2_r2*cos(degr*PI/180)) - (circle2_c2*sin(degr*PI/180)) + transr;

 mroi2ct=(circle2_r2*sin(degr*PI/180)) + (circle2_c2*cos(degr*PI/180)) + transc;

 CvPoint pt1t6 = {mroi1ct,mroi1rt};

 CvPoint pt2t6 = {mroi2ct,mroi2rt};

CvPoint pt0t6= {(mroi1ct+mroi2ct)/2,(mroi1rt+mroi2rt)/2};

95

cvPutText (img2, " M6", pt0t6, &font, cvScalar (0, 255, 255, 0));

itoa(dia2, sbuf, 10);

int writeline6=300;

cvPutText (img2, "M6= ", cvPoint(20,writeline6), &font, cvScalar (255, 0, 0, 0));

cvPutText (img2,sbuf,cvPoint(120,writeline6), &font, cvScalar(255,0,0));

cvPutText (img2, "mm", cvPoint(200,writeline6), &font, cvScalar (255,0,0));

int tol6 = 2;

int ref6 = 6;

if ((ref6+tol6 >= dia1) && (dia2 >= ref6-tol6))

{

 cvPutText (img2, "OK", cvPoint(300,writeline6), &font, cvScalar (0, 255, 0, 0));

}

else

{

 cvPutText (img2, "NOK", cvPoint(300,writeline6), &font, cvScalar (0, 0, 255, 0));

}

// Tolerance inspection

cvPutText (img2, " TOLERANCE INSPECTION:", cvPoint(400,40), &font, cvScalar (255,

0, 0, 0));

if (distanceMax<10)

{

 cvPutText (img2, "OK", cvPoint(800,40), &font, cvScalar (0, 255, 0, 0));

}

else

{

 cvPutText (img2, "NOK", cvPoint(800,40), &font, cvScalar (0, 0, 255, 0));

}

// ****************** Showing the result image *********************

96

cvShowImage("video_stream", img2);

 char a = cvWaitKey(0);

 if(a == 97)

 {

 goto restart;

 }

exit:

// ****************** Releasing the memory *********************

 cvReleaseImage(&img1g);

 cvReleaseImage(&img2g);

 cvReleaseImage(&BW1);

 cvReleaseImage(&BW2);

 cvReleaseImage(&edge1);

 cvReleaseImage(&edge2);

 cvReleaseImage(&imgt);

}

