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ABSTRACT 

REAL TIME ACTIVITY MONITORING 

Activity monitoring systems (AMS) are responsible for detecting actions performed by 

humans. For AMS to be effectively deployed in daily life, they should be operating in real-

time and partition the continuously streaming activity data to determine what activity 

corresponds to each partition. In this thesis, a Support Vector Machine based real time 

continuous activity monitoring system, named RT-CAM, is proposed. We approach 

continuous activity detection problem by modelling the activities as simple and composite 

actions. Simple actions being the smallest meaningful actions which can not be further 

divided into smaller logical actions whereas composite actions are combinations of simple 

actions. The proposed model detects simple and composite activities in real time, 

collecting the data with a single 3D accelerometer to produce a non-invasive solution. We 

verified our model on hand oriented set of simple actions eat, pour, drink, toothBrush and 

turnKey, with real data acquired from human subjects instead of computer generated 

synthetic data. We showed that the selected activities can be distinguished in real time 

though they generate quite similar patterns to each other. The strength and novelty of the 

proposed model lies in the fact that the system does not necessitate being trained with 

patterns of transitions and does not run a dedicated algorithm for transition detection. We 

carried out experiments on 4 different subjects and present our best achieved results. Intra-

person test results are the following: ToothBrush, drink, drink_toothBrush, 

toothBrush_drink and toothBrush_pour are recognized with 100% accuracy. 

Drink_toothBrush_pour and toothBrush_drink_pour_turnKey are detected with 80% and 

70% accuracy respectively. Inter-person test results are the following: ToothBrush, drink 

and pour are detected with 100% accuracy. Drink_toothBrush, drink_toothBrush_pour and 

drink_toothBrush_turnKey are recognized with 80% accuracy. Real time overhead 

introduced by RT-CAM is 0.055 seconds, which is better than best achieved result in the 

literature. Considering all these features, RT-CAM is an applicable solution in real time 

continuous activity monitoring.
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ÖZET 

GERÇEK ZAMANLI AKT V TE TAK B  

Aktivite takip sistemleri (ATS), ki ilerin aktivitelerinin tespitinden sorumludur. ATS’nin 

etkinli i,  gerçek zamanlı çalı abilmesine ve kesintisiz ekilde akan aktivite verisini 

bölümlendirerek her bölümün hangi aktiviteye kar ılık geldi ini belirleyebilmesine 

ba lıdır. Bu tez kapsamında, RT-CAM olarak adlandırılan, Destek Vektör Makinaları 

tabanlı bir gerçek zamanlı kesintisiz aktivite takibi sistemi önerilmi tir. Aktiviteler, basit 

ve bile ik hareketler olarak modellenmekte; basit hareketler, anlamlı daha küçük 

hareketlere bölünemeyen aktiviteler olmak üzere, bile ik hareketler basit hareketlerin 

kombinasyonlarından olu maktadır. Önerdi imiz model, basit ve bile ik hareketleri gerçek 

zamanlı olarak tespit etmekte, günlük hayata müdahale etmeyen bir çözüm sunmak için 

verileri tek bir 3B ivmeölçer ile toplamaktadır. Yöntemimizi, elin baskın oldu u basit 

hareketler olan ye, dök, iç, di Fırçala ve anahtarÇevir aktivitelerinden olu an veri kümesi 

üzerinde, bilgisayar tarafından üretilmi  yapay verilerle de il, insan deneklerle yapılmı  

gerçek testlerle do ruladık. Seçilmi  aktivitelerin, birbirine oldukça benzer modeller 

üretti i halde, gerçek zamanlı olarak ayırt edilebildi ini gösterdik. Önerdi imiz yöntemin 

gücü ve yenili i, sistemimizin, hareketler arası geçi lerin modellerini tutmayı 

gerektirmemesinden ve bu geçi lerin tespitine tahsis edilmi  bir algoritma 

çalı tırmamasından kaynaklanmaktadır. 4 farklı denek üzerinde yaptı ımız deneylerde elde 

etti imiz en ba arılı sonuçlar a a ıda belirtilmektedir: ntra-ki isel testlerde, di Fırçala, iç, 

iç_di Fırçala, di Fırçala_iç ve di Fırçala_dök 100% ba arıyla; iç_di Fırçala_dök ve 

di Fırçala_iç_dök_anahtarÇevir ise sırasıyla 80% ve 70% ba arıyla yakalanmı tır. nter-

ki isel testlerde, di Fırçala, iç ve dök 100% ba arıyla, iç_di Fırçala, iç_di Fırçala_dök ve 

iç_di Fırçala_anahtarÇevir ise 80% ba arıyla tespit edilmi tir. RT-CAM’in gerçek 

zamanlı i letime getirdi i ek yük 0.055 saniyedir ve bu sonuç literatürde ula ılmı  en iyi 

sonuçtan daha ba arılıdır. Tüm bu özellikleri göz önünde bulunduruldu unda, RT-CAM, 

gerçek zamanlı kesintisiz aktivite takibinde uygulanabilecek bir çözümdür. 
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1. INTRODUCTION 

 

 

Elderly and disabled people need assistance of other people in the course of their daily 

routines. Assistive technology emerges as a way of substituting the assisting people so that 

elderly and disabled people can live without relying on other people’s assistance. Assistive 

technology aids people by means of ambient care systems. Featured by the ability of 

comprehending the people’s needs and generating responses accordingly, ambient care 

systems have to detect what action is being performed by a person at first. Activity 

Monitoring Systems (AMS) are the components which are responsible for action detection 

in ambient care systems. Though health care is the predominant field where AMS is used, 

there are also other application areas such as security [1] and process control.   

 

1.1. WHY DESIGN AMS 

 

Activities performed by people contain a rich spectrum of information about how to 

improve or fix problematic situations. Utilizing activity information to come up with such 

improvements can be exemplified as follows: Fall detection [2] can be used in determining 

a person is about to fall and reacting in  a fall preventing manner. Chronic disease 

management [3,4], rehabilitation systems [5], disease prevention [6,7], monitoring of 

health status [8] are some of the application areas of activity monitoring in the field of 

health care. Another aspect where activity monitoring is extensively useful is process 

control. Monitoring activities of people responsible for implementing procedures in 

production facilities, such as water purification plants, helps output quality increase since 

production steps are ensured to be fulfilled as planned. Also in bomb disposal missions [1], 

performance of cooling systems integrated to operators’ suits is highly effected by the 

operators’ posture which raises monitoring activity as one of the essentials in security 

applications. Increasing performance of sportsmen by means of injure prevention [9] is 

another domain showing the usefulness of activity monitoring for young and healthy part 

of the population. 
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1.2. PHASES OF ACTIVITY MONITORING SYSTEMS 

 

Activity monitoring systems are composed of data collection and data classification 

techniques. Discriminating characteristics of the collected data are determined by feature 

extraction methods. To find out which features are more discriminating, feature selection 

methods are employed. Selected features are processed with classification techniques and 

type of activity is generated.  

 

Sensors utilized in data collection phase can be grouped as environmental and wearable. 

Environmental sensors [10-15] are placed on objects and can detect complex activities 

thanks to interaction between these objects and people. Nevertheless, they are insufficient 

in detecting activities performed without interacting with the objects equipped with 

sensors. Cameras [16-19] are also environmental sensors but they are regarded as an 

element intervening with the daily life, thus people tend to reject being monitored by AMS 

with cameras. Wearable sensors are preferred because of reasons such as not requiring 

interaction with objects, not interfering with daily life and not limiting people’s actions. 

Accelerometer and gyroscope [20-30] are commonly used wearable sensors. Though 

wearable smart systems are frequently utilized in activity monitoring, most of them can not 

go beyond prototyped structures and studies are needed to determine problems which will 

arise as a result of using these prototypes in daily basis. For this reason, more research 

should be done in the fields such as smart signal processing, interoperability of 

communication standards, efficiency of electronic components and energy [31]. Statistical 

features [32-34], wavelet coefficients [35-37] and custom coefficients [38,39] are examples 

of features extracted. Central and independent component analysis [40], forward-backward 

selection [41], correlation [33] are methods used in feature selection. Artificial Neural 

Networks [42-44], Support Vector Machines [5] [45,46], Bayesian classifiers [47] and 

Hidden Markov Models [6,48] can be mentioned as classification procedures.   

 

1.3. PARAMETERS AFFECTING SYSTEM DESIGN 

 

AMS are built considering a number of parameters which effect performance, 

interoperability and usability.  
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• Invasiveness/obtrusiveness: Some data collection tools incorporated in AMS tend to 

limit the actions of people. Such a restriction influences the decision of a person on 

using the design. Consequently, sensors are categorized in terms of invasiveness and 

obtrusiveness. Cameras are regarded as invasive data collection devices since they 

limit the person’s actions by interfering with the privacy. Wearable sensors such as 

accelerometers emerge as non-invasive alternatives to cameras. A data collecting tool 

which is invisible to user is characterized as unobtrusive such as sensors embedded 

within environment. In terms of being comfortably used by subjects, unobtrusive 

sensors may seem to  be superior to wearable sensors but they have to be placed 

anywhere the subject may be which is another infeasibility justifying use of wearable 

sensors.   

• Heterogeneity of sensor types: Data collecting tools can also be a WSN (wireless 

sensor network) of heterogeneous sensors types. This leads to deciding on whether 

data classification had better be carried out in distributed (in-network) or centralized 

(on gateway) fashion. Data collecting tool should also satisfy interoperability since 

integrating AMS to existing WSNs is preferable to establishing a new WSN specific 

to AMS. Incorporating AMS to available WSNs raises other issues like service 

differentiation [49].  

• Number of sensors and sensor location: Number of sensors and sensor location can 

impact classification accuracy however, sensors placed in excessive amounts or 

uncomfortable locations may challenge people’s movements.  

• Activity set: Activity set to recognize are affected by the subject profile/context and 

application scenarios.  

• Spatiality: Spatiality of AMS deployment should be taken into consideration as well. 

Indoor and outdoor monitoring can differ in terms of technologies to use since some 

technologies are not operable in both indoors and outdoors such as GPS. Also, layout 

of objects can vary in different environmental settings which results in deviations 

between the way same activity is performed.  

• Variance in activity practice: Another concern making AMS design intricate is that 

same person can perform the same activity differently even under same deployment 

conditions in terms of spatiality.  

• Uncertainty of sensor data: Uncertainty of sensor data is another source of unstable 

data, which enforces loss resilient feature extraction and classification techniques.  
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• Complexity of the activities: Complexity of activities may require employing 

multiple types of sensors, making uncertain sensor data a more challenging problem. 

• Availability of data set: Having to acquire excessive amount of training and test data 

is another point which makes AMS system design challenging. 

 

1.4. PROBLEM DEFINITION 

 

Activity monitoring is mapping the data representing the activity signal such as 

acceleration, pressure, etc. to classes of activity such as walking, sitting, lying and so on. 

Activity data are acquired using sensors and sensor data are exposed to knowledge 

discovery methods, which are feature extraction and data classification, in order to obtain 

activity classes. Real time continuous activity monitoring is a subset of the activity 

monitoring problem. Real time monitoring introduces more complexity than off-line 

analysis since sensor data acquisition and data classification should be concurrent, which 

results in data loss and real time delay. Similarly, continuous monitoring is harder to 

handle compared to monitoring individual actions. Continuous monitoring is the 

recognition of the sequence of individual actions between which activity transitions exist. 

Because continuous data contains both individual actions and transitions, the start and end 

point of the actions have to be found within the continuous data, which introduces 

segmentation problem. 

 

Mapping the sensor data to activity classes accurately is not enough when real time 

continuous monitoring is considered to be deployed in real life conditions. The system 

should respond in a reasonable amount of time, therefore a perfectly accurate  

classification technique which deteriorates responsiveness is not preferred. Also, the 

system should be acceptable by users, hence should not incorporate sensors enforcing 

inconveniences for the user.  

 

1.5. MOTIVATION & AIM 

 

Activity monitoring systems are widely studied but in terms of real time continuous 

monitoring, still several problems exist in the literature. These problems can be 

summarized as the following: 
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• Segmenting the continuous data: Activity data contain sequences of actions which 

makes determining start and end of actions controversial. 

• Training the system with patterns of transitions: Methods following this approach are 

not suitable for extending the set of actions, damaging scalability and restricting the 

system for being used in specific cases. 

• Necessitating large amount of training data: Acquiring training data is a very 

challenging part of AMS, therefore it is necessary to be able to generate patterns with 

minimum amount of training data. 

• Necessitating person-specific training data: Monitoring activities of different people 

upon training the system with only one subject greatly simplifies deployment of 

AMS. 

• Real time prediction delay: Since ultimate goal of AMS is operating in real-time, 

they should respond as quickly as the application domain necessitates.  

 

Considering the criteria mentioned above, this dissertation aims to produce an applicable 

model for real time continuous activity monitoring based on 3D acceleration data from one 

sensor on the body.   

 

1.6. OVERVIEW OF THE PROPOSED MODEL 

 

Since activity data are acquired from sensors, activities are represented as row sensor data 

in the beginning of activity monitoring procedures. To extract the action sequences and 

map raw sensor data to activity labels, actions should be modelled. In this study, activities 

are modelled as simple and composite actions. Activities which can not be divided into 

meaningful smaller actions are called simple actions whereas combinations of simple 

actions are evaluated as composite actions. 

 

The ultimate goal of the proposed AMS is marking simple actions incorporated in a given 

composite action in real time since all other AMS requirements are based on continuously 

monitoring people. For this reason, a composite action stores two types of knowledge to be 

extracted: Constituting simple actions and transitions between those simple actions, 

splitting the activity monitoring problem to two subproblems.  



6 
 

 

Our previous works [50] and [51] present simple and composite activity detection schemes 

we proposed prior to this thesis. In the work published in [50], the simple and composite 

action model is developed and experimented, classifying walk, sit, lie and stand activities 

with 92%, 100%, 88%, 96% accuracy respectively, data collection tool being a single 3D 

acceleration sensor. In our other work [51], our model is enhanced incorporating two 

sensors, each of which contains a 3D accelerometer, and classifying with a combination of 

classifiers to evaluate real time continuous activity monitoring success. Naïve Bayes, 

Susan Corner Detector (SCD) and Hidden Markov Model (HMM) are combined to form 

our hybrid classification module. Our method containing multiple sensors and multiple 

classifiers identify simple actions walk, walk while hands in pocket, sit, stand and 

wheelchair driving with 94%, 96%, 94%, 94%, 98% accuracy respectively. Though this 

model identifies transitions yielding 100% accuracy, due to real time processing delay, 

detection success rate of individual actions deteriorate, hence in this thesis we develop a 

real time continuous activity monitoring scheme, which we call RT-CAM. RT-CAM, 

which stands for real time continuous activity monitoring system, is a solution to identify 

the composite actions in real-time. Figure 1.1 illustrates the system architecture of RT-

CAM. Operation of RT-CAM is initiated by sensor transmitting continuous activity signal, 

which is composed of cs segments, to the DA (Data acquisition) unit. Each segment, 

lasting for the period t, is forwarded from DA unit to SAD (Simple action detection) 

module. Then, the segment is  processed by SAD for being labelled as one of the simple 

actions (SA) in the action set after knowledge extraction process is applied. We intend to 

address the following features with RT-CAM: 

 

• Transition detection is achieved without training the system with patterns of 

transitions. Transition detection model does not necessitate combining features 

either. 

• Presented results are achieved with real data acquired from human subjects instead of 

computer generated synthetic data, resulting in a more realistic proof of model. 

• RT-CAM utilizes a single 3D accelerometer which makes it a non-invasive solution. 
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Figure 1.1. System architecture of RT-CAM 

 

1.6.1. Contribution 

 

Considering the problems highlighted in Chapter 1.5, the following contributions are 

made: We develop a non-invasive solution which we call RT-CAM, pursuing real time 

continuous monitoring of hand oriented activities. A preliminary study of this work is 

accepted as a publication [52]. RT-CAM does not require generating combinations of 

features and carries out transition detection without being trained with patterns of 

transitions. RT-CAM is evaluated regarding the following criteria: 

 

• Intra-person and inter-person classifiaction accuracy  

• Successful recognition rate of simple actions 

• Successful recognition rate of composite actions as a whole  

• Real time delay 

 

According to our findings, our model RT-CAM is promising for real time continuous 

monitoring of hand oriented activities. Also, it does not necessitate large number of 

subjects who should provide training data. With regard to the features of RT-CAM 

mentioned, the contribution of the thesis can be summarized as follows: 

 

• Designing a tool which can detect transitions 

• Recognizing hand based activities with high detection rates 
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• Distinguishing the selected activities in real time though they are similar to each 

other 

 

1.7. ORGANIZATION OF THE THESIS 

 

The rest of the thesis is organized as follows: Chapter 2 presents the related work, 

categorizing the activity monitoring studies in terms of data acquisition, knowledge 

discovery, continuous real-time monitoring and transition detection aspects. Chapter 3 

elaborates on the Support Vector Machines method which we adapt for real time 

continuous monitoring. Chapter 4 explains RT-CAM in terms of knowledge discovery. 

Chapter 5 defines the experimental setup and Chapter 6 contains the performance analysis 

and evaluation of RT-CAM. Finally, Chapter 7 presents the conclusions and future work 

regarding RT-CAM. 
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2. RELATED WORK 

 

 

In this chapter, activity monitoring studies are investigated considering how they approach 

the activity monitoring problem. These studies are gouped by the following criteria:  

 

• Data acquisition modules/sensors they employ: Since one of the predominant sensor 

categorization issues is wearability, we group the data acquisition modules as 

wearable sensors and environmental sensors. 

• Knowledge discovery methods involved: Studies are categorized by feature 

extraction and classification techniques. Also, a section is dedicated to SVM since 

our proposed method is an SVM based solution.    

• Continuous real time monitoring: Some studies target only activity detection and 

does not perform continuous real time monitoring, hence we seperately investigate 

studies on continuous real time monitoring.  

• Transition detection: Which segmentation policy is used and whether a dedicated 

algorithm is needed for transition detection are important in terms of transition 

detection, hence studies are reviewed in terms of segmentation and the necessity of 

a dedicated transition detection algorithm.      

 

2.1. DATA ACQUISITION 

 

2.1.1. Wearable Sensors 

 

Accelerometer has been used in a wide variety of activity monitoring studies. Clarke-

Moloney et. al. [20] used accelerometer (ActivPALTM) to measure effect of mobility, age 

and ulcer size on ulcer healing. Considering a set of actions including walking, standing, 

sitting and lying, they concluded that mobility patterns do not vary remarkably by age 

between control group and the patients with leg ulcers. 

 

Bourke et. al. [21] located tri-axial accelerometer sensors on trunk and thigh to 

differentiate between falls and activities of daily living (ADL). The tri-axial accelerometer 

is formed with two bi-axial Analog Devices ADXL210. They conclude that the most 
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suitable location for a fall sensor seems to be the trunk. In another research distinguishing 

between falls and ADL by thresholding the vertical velocity of the trunk by means of a 

wearable inertial sensor, Bourke et. al. [22] profile the vertical velocity of elderly people in 

a home environment. Godfrey et. al. [23] developed a system to evaluate the ability of 

detecting postural activity and postural transition using a single triaxial accelerometer 

located on the trunk, as shown in Figure 2.1, and an algorithm with lower complexity 

compared to the one executed in [53]. They compared their method Velocity Estimate and 

Scalar Product Activity (VESPA) to Discrete Wavelet Transform (DWT). Velocity 

estimation for VESPA, compares the absolute values of negative and positive peaks around 

the time of postural transitions to determine whether the postural transition is stand to sit 

(StSi) or sit to stand (SiSt) and detect walking. Results regarding VESPA are shown in 

Table 2.1.  

 

Moore et. al. [24] monitored the gait in Parkinson’s disease using combined accelerometer 

and gyroscope sensor array located on ankle. They calculated stride evaluating vertical 

linear acceleration and pitch angular velocity of the leg with an accuracy of 5 cm. Culhane 

et. al. [25] evaluated mobiliy of older adults using an accelerometer based system 

consisting two Analog Devices ADXL202 accelerometers. Their monitoring system 

detected static activities sitting, standing and lying along with dynamic activities with 92% 

accuracy and higher using a threshold setting approach. Leonard et. al. [26] researched on 

people with hyperactive, hypoactive and combinations of delirium monitoring them with 

 

 

 

 

Figure 2.1. Sensor  located on the chest for evaluating VESPA [23] 

 

 

 



11 
 

 

Table 2.1.  Results of VESPA [23] in the form of (mean ± standard deviation) 

 

Action Sensitivity 

(%) 

Specifity 

(%) 

Total postural transitions Type of subject 

lying 100 ± 0 - -  

Young and 

healthy  

(10 subjects) 

StSi 92 ± 9 85 ± 11 42 ± 0 

SiSt 85 ± 11 92 ± 9 

walking 100 ± 0 - - 

lying 100 ± 0 - - Elderly and 

healthy  

(10 subjects) 

StSi 89 ± 8 83 ± 11 42 ± 0 

SiSt 83 ± 11 89 ± 8 

walking 98 ± 1 - - 

 

 

 

 

Figure 2.2. Motion analysis equipment used in the study of Leonard et. al. [26] 

 

an accelerometer based system during 24 hours. They distinguished between static and 

dynamic activities  and posture changing frequency. Their motion analysis equipment, 

shown in Figure 2.2, incorporates a discrete accelerometer located on the waist and, for 

comparison purpose, activPALTM mobility monitor which can detect sitting/lying, standing 

along with stepping [54] and could be found in the market. Kangas et. al. [27] compare 

low-complexity fall detection algorithms in a triaxial accelerometer setting where sensors 

are positioned in waist, wrist and head. Three algorithms with different complexity are 

studied on beginning of the fall, falling velocity, fall impact and posture after fall. Simple 

threshold-based algorithms  are found to sufficiently detect falls with a sensitivity of 97-

98% and specifity of 100% employing a triaxial accelerometer on the waist or head. Each 

accelerometer is formed with three uniaxial capacitive accelerometers (VTI Hamlin SCA 
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CDCV1G, amplitude range ±12g) [55] and are connected to a distinct data logger, with the 

sampling frequency being 400 Hz.  

 

Karantonis et. al. [28] studied on real time classification of movements using a single 

triaxial accelerometer located on the waist with embedded intelligence fulfilling most of 

the signal processing operations on wearable unit. They tested their system in a laboratory 

environment with six subjects and obtained 90.8% overall accuracy. Table 2.2 displays the 

results of their study in more detail. Triaxial accelerometer utilized in measurement is a 

wireless module with 22x50x50 mm dimensions, except for the antenna, and 51 g weight.    

  

Table 2.2. Results related to the study of Karantonis et. al. [28] 

 

Discrimination Accuracy (%) 

Activity - rest 100 

Postural orientation 94.1 

Walking 83.3 

Falls 95.6 

 

Triaxial accelerometer unit is built using two orthogonally united dual axis accelerometers 

(MXR7210GL, MEMSIC, Inc., North Andover, MA) with the range ± 10g, noise level 

5.06 mg rms and bandwidth roughly 100 Hz. Lyons et. al. [29] formed a system 

monitoring older adults using an accelerometer based threshold method. The system they 

defined can differentiate between static and dynamic activities, also it is capable of 

detecting sitting, standing and lying postures. They monitored one older adult subject 

during four days for an average seven hours per day with two accelerometers, one of which 

is located on the trunk whereas the other is positioned at the thigh. Their testing unit 

employed two dual axis accelerometers (Analog Devices, ADXL202) and sampled the 

accelerometer signals at 50 Hz. They compared two thresholding techniques and their best 

achieved results on a daily basis are shown in   Table 2.3.  

 

Godfrey  et. al. [30] reviews the studies which measure human movement by 

accelerometry. Properties of commercial accelerometer based activity monitors listed in 

their research are summarized in Table 2.4 and the products are shown in Figure 2.3. 
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Table 2.3. Best achieved results in the work of Lyons et. al. [29] 

 

Activity Accuracy (%) ( ) 

sitting 93 (7.0) 

standing 95 (4.1) 

lying 84 (2.3) 

moving 97 (1.8) 
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Table 2.4. Properties of commercial accelerometer based activity monitors listed in the 

work by Godfrey  et. al. [30] 

 

Proprietary activity monitors by 

accelerometry 

Features 

RT3 tri-axial research tracker kit [56] Waist mounted 

activPALTM Professional Uni-axial piezoresistive accelerometer, also 

cadence, number of steps and energy 

expenditure 

ActiGraph GT1M Single axis piezoelectric accelerometer, auto-

turn on feature upon programming [56] 

Cyma Step Watch3 Programmed through a PC, microprocessor 

controlled step counter (can record steps for up 

to two months) 

Dynastream AMP331 Ankle mounted, two accelerometers (one uni-

axial and one bi-axial), data analysis with 

SpeedMax technology (Dynastreams), data 

downloaded to a PC using an RF protocol 

(established commercially by Dynastream) and 

available for further processing in Excel. 

Ossur PAM: Prosthetic Activity MonitorTM Lower leg mounted, one bi-axial and one uni-

axial accelerometer 

IDEEA: intelligent device for energy 

expenditure and physical activity® 

Identify and differentiate more than 40 types of 

activities, including 15 different parameters of 

gait. Provides information on the onset, 

duration and frequency of each activity and 

computes the amount and intensity of these 

activities. Multiple sensors on a wide variety of 

locations on the upper and lower leg, wrist, 

sternum and foot via cables. 
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(a) RT3 tri-axial research tracker kit [56] 

 

(b) activPALTM Professional 

 

 
 

(c) ActiGraph GT1M 

 

 
 

(d) Step Watch3 

 

 

 

 

(e) AMP331 Pod and attachment sleeve 

 

 

(f) Ossur PAM: Prosthetic Activity 

MonitorTM 

 

 

 

(g) IDEEA: Intelligent Device for Energy Expenditure and Physical Activity 

 

Figure 2.3. Accelerometry based proprietary activity monitors explained in the work by 

Godfrey  et. al. [30] 
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2.1.2. Environmental Sensors 

 

Kasteren et. al. [10] monitor the activities with a wireless sensor network as well as 

generative hidden Markov model and discriminative conditional random field as the 

monitoring model. Their proposed system employ reed switches, pressure mats, mercury 

contacts, passive infrared (PIR), float sensors and temperature sensors. Table 2.5 shows 

how they utilize these sensors for activity monitoring. 

 

Yang et. al. [12] propose an activity recogniton method using simple object information 

related to activities. Their method involves a penalized naive Bayes classifier. They 

compare their method with hidden Markov models and conditional random fields  and 

conclude that their method achieves reduction in computation up to an order of magnitude 

in both learning and inference, without damaging accuracy. 

 

Table 2.5. Sensors and their functionality in the work by Kasteren et. al. [10] 

 

Sensor type Sensor role in the activity monitoring setting 

Reed switches Measuring open-close states of doors and cupboards 

Pressure mats Measuring sitting on a couch or lying in bed 

Mercury contacts Movement of objects (e.g. drawers) 

Passive infrared (PIR) To detect motion in a specific area 

Float sensors Measuring the toilet being flushed 

Temperature sensors Measuring the use of the stove or shower 

 

2.2. KNOWLEDGE DISCOVERY 

 

Sensor data are mapped to activity labels upon knowledge discovery which incorporates 

feature extraction and classification operations. Feature extraction process generates a set 

of representative data, namely features, from the sensor data. Feature extraction can be as 

simple as calcuating the mean value of the sensor data or other more complex methods 

such as signal processing algorithms. Another part of knowledge discovery is data 

classification. Features are input to classification schemes to obtain the activity mappings. 
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A data classification method processes the features to find which activity class they belong 

to.  

 

2.2.1. Feature Extraction 

 

Feature extraction methods utilized in the following studies reviewed can be briefly 

explained in the list below, before going on with presenting the studies in more detail:  

 

• Wavelet analysis can provide information on both time and frequency domain 

characteristics of a signal unlike Fourier analysis [37].  

• Frequency-domain features require transforming a window of sensor data to feature 

domain, generally using a fast Fourier transform [37].  

• Time-domain features are generally statistical features obtained from a window of 

sensor data [37]. 

• Heuristic features are generated from a fundamental understanding which can be 

intuitive [37].  

• Median filter affects the energy contained in the signal. A greater length of the 

median filter yields a smoother signal, resulting in greater amount of lost energy 

[39]. 

• Independent component analysis tries to solve the mixing matrix knowing the 

observed signals, that is a sample of the random variable x.  

i. n being the number of observed signals (These signals are different linear 

mixtures of n statistically independent, non-gaussian source signals),  

ii. s being an n-dimensional random vector, whose elements are the sources,  

iii. The elements of the observed random vector x are different mixtures of the 

sources x=As, where A is an nxn mixing matrix which is to be solved [40].    

• Principal components can be calculated using the eigendecomposition of the sample 

covariance matrix [40].  

 

Maurer et. al. [33] designed an AMS with multiple sensors on different body positions 

identifying activities in real-time. They tested on sitting, standing, walking, ascending 

stairs, descending stairs and running with a separate sensing device (eWatch) worn on left 

wrist, belt, necklace, in the right trouser pocket, shirt pocket and bag. eWatch, which is 



18 
 

 

shown in Figure 2.4, incorporates a bi-axial accelerometer, light and temperature sensors 

along with microphone. In their experiments, they used both axes of the accelerometer and 

the light sensor, values being recorded at 50 Hz and accelerometer’s both axes functioning 

at ±2g range. Averaging the percentage of correctly classified feature vectors for all 

activities to express the recognition accuracy, they reported the most successful results to 

be around 88% with sensing device placed in the bag. This result is achieved in two 

different experimental configurations one of which is set up with features from Y axis of 

the accelerometer whereas the other one includes features from the x2+y2 value of the 

accelerometer. Decision tree classifier (C4.5 algorithm) with a 5-fold cross validation is 

used. They trained the classifier with the data acquired from six subjects to obtain a general 

classifier. The wrist is conveyed to be the best performing sensor location.  

 

 

Figure 2.4. eWatch device used in the work by Maurer et. al. [33] 

 

Preece et. al. [36] reviews feature extraction techniques targeting acceleration data to 

classify dynamic activities. Methods extracting time and frequency domain signal 

properties are compared considering two data sets acquired from 20 subjects. They 

conclude that although non-stationary activities could be classified using wavelet 

transform, dynamic activities of healthy subjects can better be classified with frequency 

based features. Success of their study is higher than 95% accuracy in intersubject 

classification with the best feature set they experimented.   
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Preece et. al. [37] investigates methods applied on data acquired from body-mounted 

sensors in order to classify normal activities and falls. They split features into several 

groups including heuristic, time-domain, frequency-domain or time-frequency (wavelet). 

They state that distinguishing between postures and dynamic activities and identifying falls 

accurately is possible with these features and simple classification techniques based on 

thresholding, adding that activity sets involving larger number of activities require more 

advanced classification methods, sometimes combining different features. 

 

Mathie et. al. [39] differentiate between activity and rest, with sensitivities larger than 0.98 

and specifities ranging between 0.88 and 0.94. They applied their method on data collected 

from 26 subjects using a single tri-axial accelerometer located on the waist. They studied 

three characteristics of the signal: length of a smoothing median filter, width of the 

averaging window and the acceleration magnitude threshold. 

 

Mantyjarvi et. al. [40] achieved 83-90% accuracy in recognizing motions using 

independent component analysis and principal component analysis, observing ignorable 

differences between these two methods. One tri-axial accelerometer is placed on each of 

left and right side of the hip, classifying the collected data with multilayer perceptron 

classifier. Activities recognized are start-stop points, level walk, down stairs walking and 

up stairs walking. 

 

Some studies pursuing activity monitoring with SVM necessitate trying different features 

and using combinations of features to increase classification success.  

 

Foubert et. al. [57] detected sitting and lying postures, collecting the data with optical 

sensor arrays deployed on bed. In their work, eight types of features extracted from 

pressure signal and three classification techniques are experimented. Sitting and lying 

postures are detected with 100% accuracy using SVM, but combining different types of 

features. Most successful result they achieved is 94% when a single type of feature is used.  

 

Qian et. al. [58] monitored activities using video samples, classifying the actions with 

Binary Tree Integrated SVM (BT-SVM). However, the algorithm presented necessitates 

determining which features are the best for BT-SVM. With this algorithm regarding best 
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classifying features as the best features; static actions such as standing, sitting and 

squatting along with walking, jogging, sitting while standing, squatting while standing and 

falling are classified with 95% accuracy on the average. The same algorithm classified 

walking, jogging, running, boxing, clapping, waving hands actions in Schüldt’s database 

with 88.69% accuracy.  

 

Kim et. al. [59]  detect running, walking, walking with a stick, crawling, forward boxing, 

boxing in standing position and sitting related activity data collected from Doppler radar, 

using SVM. In the classification pursued by training SVM with six different features, 

success of the features ranges between 30.3% and 70.1%. Most successful result (92.8%) is 

achieved combining features. Decision tree structure is integrated to carry out multi-class 

categorization with SVM.       

 

2.2.2. Classification 

 

Studies reviewed in terms of classification methods incorporate ANN, Decision Tree and 

SVM. ANN employs a mathematical function representing the relationships between 

features to classify and classes to which these features belong. An optimization process is 

followed to map features to classes. Decision trees introduce a hierarchy of rules to group 

features into different hierarchies of classes based on the level of discriminativeness [43]. 

SVM finds a separating hyperplane between two classes and tries to map test data to one of 

these classes considering which region of the hyperplane they are located. The following 

are studies employing these methods for classification. 

 

Engin et. al. [42] classified human tremor signals collecting acceleration data from 

Parkinsonian, essential and healthy subjects. Linear prediction coefficients, wavelet 

transform detail coefficients, wavelet transform based entropy and variance, power ratio 

and higher order cumulants are features extracted and then input to artificial neural 

network (ANN) classifier. They used scaled-conjugate (SCG) and Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithms and concluded that BFGS (91.02%) outperforms 

SCG (88.48%) in terms of accuracy. 
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Parkka et. al. [43] describes classification methods used in daily activities. They 

experimented on 16 people, logging roughly 31 h data in total inside an everyday 

environment. Experiments recorded in 2 h sessions with a set of wearable sensors placed 

on subjects. They tried three classification algorithms, which are custom decision tree 

(82%), automatically generated decision tree (86%) and artificial neural network (82%), 

total accuracy being designated in parenthesis. Experimented activities are lying, rowing 

(with a rowing machine), cycling with an exercise bike, sitting/standing, running, Nordic 

walking and walking. 

 

Zhang et. al. [44] presented an ANN to identify activities level walking, running, 

ascending and descending stairs, speeds of activities being determined by subjects as slow, 

normal and fast. Accurate identification success is 98.78%, 98.33%, 97.33%, and 97.29% 

for walking, running, ascending and descending stairs respectively. Also, speed of walking 

and running is estimated with average error 0.050 ± 0.747 km/h (mean ± standard 

deviation). Their data collection device, which is in the form of insole, is the multiple 

pressure sensors containing SIMS illustrated in Figure 2.5.   

 

 

 

Figure 2.5. The SIMS used in work by Zhang et. al. [44] 

 

2.2.3. SVM 

 

Begg et. al. [45] developed a method to recognize aging based changes in gait using SVM. 

In the experiments applied on 12 young and 12 elderly subjects, 91.7% overall accuracy is 

achieved in differentiating between two gait patterns. Selecting features from more than 

one gait type increases gate recognition success. Differentiating between three age groups 

with 100% accuracy is achieved thanks to using features from three data types, selecting 

one feature set form each type. Foot-ground reaction forces are logged using AMTI, USA. 

For logging lower limb movement,  a 3D PEAK (Peak Performance Inc., USA) Motion 
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analysis component is used with reflective markers worn on hip, knee, ankle, heel and toe. 

Extracted features are basic, kinetic and kinematic gait attributes, totalling 24. 

 

Sazonov et. al. [5] classified postures and activities of subjects suffering from stroke using 

a multi-class SVM [60] based method on data acquired through a shoe-based sensing tool. 

They achieved the classification accuracy results shown in Table 2.6 for sit, stand, walk, 

ascend and descend activities using SVM with linear and Gaussian kernels.   

 

Table 2.6. SVM classification accuracy (%) with different kernels in the work by Sazonov 

et. al. [5] 

 

Action name Linear kernel (%) Gaussian kernel (%) 

sit 100 100 

stand 100 100 

walk 99 100 

ascend 81 96 

descend 97 99 

 

 

Figure 2.6 illustrates a detailed view of the sensing tool used in the work by Sazonov et. al. 

[5]. Five force-sensitive sensors are placed within the insole per shoe such that they are in 

contact with heel, metatarsal bones and the toe, which significantly effect the contact of the 

foot with ground. Sensor data are sampled at 25 Hz and sent to the computer wirelessly. 

Their wireless data acquisition tool is on top of Wireless Intelligent Sensor and Actuator 

Network (WISAN) [61]. Collected data are composed of 116 segments lasting 15 to 25 

seconds, totaling roughly half an hour.  
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(a) Shoe based sensing tool 

 

(b) 3D accelerometer, 

battery and power 

switch mounted at 

the back of the shoe 

 

(c) Insole specialized for pressure sensing 

 

Figure 2.6. Sensing module used in the work by Sazonov et. al. [5] 

 

2.3. CONTINUOUS REAL TIME MONITORING 

 

Aiello et. al. [62] develops a human activity monitoring system, which is a MAPS (Mobile 

Agent Platform for Sun SPOTs) based application. Their system is capable of recognizing 

lyingDown, sitting, standingStill and walking in real-time with in-node signal processing. 

Their system is built on top of a wireless body sensor network with a pair of 3D 

accelerometers, one of them positioned on the waist and the other one located on the thigh. 

The waist sensor computes mean of X, Y and Z axis measurements as well as minimum 

and maximum of values along X axis while the thigh sensor computes minimum along X 

axis. Practising transitions standingStill_walking, walking_standingStill, 

standingStill_sitting, sitting_lyingDown, lyingDown_sitting and sitting_standingStill, they 

identified all transitions with 100% accuracy when transition period  lasts five seconds. 

Among transitions completed in less than five seconds, only transition 

standingStill_walking can be recognized with 100% accuracy, which puts a restriction on 

transition duration as a prerequisite of correct identification. Their study incorporates a K-

Nearest neighbour based classifier where K=1 and Manhattan distance is used. Table 2.7 

specifies transition detection accuracy values with corresponding transition periods in the 

study of Aiello et. al. [62]. Comparison of our work RT-CAM with Aiello et. al. [62] is 

presented in Section 6.4.   
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Table 2.7. Accuracy of transition detection for various transition periods 

 

Transition type Matching percentage Duration of transition period (s) 

walking_standingStill 0 <1 

standingStill_sitting 0 <1 

sitting_lyingDown 0 <1 

lyingDown_sitting ~67 <1 

sitting_standingStill 90 <4 

standingStill_walking 100 Any duration between 0 to 9 seconds 

 

Okeyo et. al. [63] presents a dynamic segmentation model for real time continuous activity 

recognition. They utilize varying time windows, benefitting from temporal properties of 

the acquired data from sensors. They develop an ontology based prototype and achieve 

84.4%, 91.9% and 88.7% accuracy, applying three different methods.. Table 2.8 shows the 

effect of shrinking and expanding the window on recognition accuracy. They calculate the 

accuracy according to Equation (2.1) where tp, fp, tn, fn indicate true positive, false 

positive, true negative and false negative respectively. They feed activity segments to 

ontology module.  
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Table 2.8. Effect of shrinking and expansion on recognition accuracy in the work by 

Okeyo et. al. [63] 

    

Action name Accuracy (%) 

Without shrinking 

or expansion 

With shrinking With shrinking and 

expansion 

MakeTea 95.1 95.1 95.1 

MakeCoffee 100 100 100 

MakeChocalate 100 100 100 

MakePasta 96.6 89.7 72.4 

BrushTeeth 73.7 89.5 89.5 

HaveBath 67.9 85.7 85.7 

WashHands 100 100 100 

WatchTelevision 41.7 75 66.7 

Average 84.4 91.9 88.7 

 

They experimented on data synthetically generated by a computer application. Activity set 

they study includes the actions makaTea, makeCoffee, makeChocolate, makePasta, 

brushTeeth, haveBath, washHands, and watchTelevision. 

 

 Accuracy=(tp+tn)/(tp+fp+tn+fn) (2.1)

 

2.4. TRANSITION DETECTION 

 

Muscillo et. al. [64] detect individual actions walking, stair climbing, stair descending and 

the transition stair descending to walking with 96%, 98%, 78% and 40% accuracy 

respectively. They collect the activity data using a single 2 axis accelerometer and carry 

out classification with Markov Chain Model integrated to naïve Bayes classifier. They 

classify the activities in an off-line manner.  

 

Ganea et. al. [65] detect sit-to-stand and stand-to-sit transitions with accuracy higher than 

95% on healthy subjects and 89% on chronic pain subjects.   
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2.5. SEGMENTATION  

 

Monitoring activity sequences necessitates determining the start and end of simple actions, 

in other words segmentation, in addition to identifying the constituent simple actions. 

There exist three commonly preferred methods [66] in order to segment continuous data: 

explicit segmentation, time based windowing and sensor event based windowing. In 

explicit segmentation [67], sensor data are partitioned such that each segment corresponds 

to an action. It necessitates finding the optimal segment size in the training phase where 

activity model is extracted. Segments used in prediction phase can be different from 

segments generating models in the training phase which can lead to deterioration in 

classification performance. In time based windowing [10] [68, 69], each segment lasts for 

equal amount of time. Time based windowing makes learning activity models easier in 

training phase compared to explicit segmentation. However, it necessitates selecting 

optimal time interval. Finally, with sensor event based windowing, each segment contains 

equal number of sensor events. Disadvantage of this method is the possibility of placing 

events, which are not really related to each other (for instance two sensor events between 

which a significant amount of time passed), into the same segment. Despite exhibiting this 

problematic behaviour, sensor event based windowing could be a beneficial solution if it is 

applied considering the relation between sensor events.         

 

2.6. APPROACHES APPLYING A DEDICATED ALGORITHM FOR 

DETECTING TRANSITIONS 

 

Boyd et. al. [70] detect individual actions sitting, standing, walking, reaching for an object 

on a table and eating along with transitions sitting-standing-walking-sitting, sitting-

reaching-walking, sitting-eating-walking and sitting-walking-standing with 94% accuracy. 

They classify the data acquired through a single tri-axis accelerometer using log-likelihood 

ratio test and Hidden Markov Model. They first detect transitions and then actions between 

them which necessitates running a dedicated algorithm for transition detection. On the 

contrary, our approach first detects individual actions and infers the existence and 

identification of a transition based on the type of detected simple actions, eliminating the 

necessity of running a dedicated transition detection algorithm. They catch transitions 

within a one second delay.      
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Jarchi et. al. [71] recognize walking vs reading (90.5%), walking vs lying down and getting 

up (95.75%), walking vs lying (82.084%, average over 5 subjects), walking vs falling 

(90%, average over 4 subjects), values in paranthesis designating accuracy results. 

Transition accuracy they achieve is 90% which is the average over five subjects. They 

collect the data using a single ear-worn sensor and apply Singular Spectrum Analysis for 

classification. They generate similarity patterns for each transition. 

 

Foubert et. al. [57] recognize lie-to-sit transition on young healthy and older healthy (98 

%) and on hip fracture group and stroke group (90 %), with accuracy results designated in 

paranthesis. They classify the data using Support Vector Machines with the help of a 

combination of features. Their data collection tool is an array of optical pressure sensors 

deployed on bed. They run an algorithm dedicated for transition detection. 

 

2.7. SUMMARY 

 

We reviewed activity monitoring systems in terms of type of sensors (wearable or 

environmental sensors) and knowledge discovery modules (feature extraction and 

classification) they utilize. Also, we included an investigation of studies performing 

continuous real time monitoring of activities, segmentation policies and approaches 

applying a dedicated algorithm for detecting transitions. Considering the studies reviewed, 

our proposed approach RT-CAM can be placed in the categories in the literature, being 

described as follows: Our proposed real time continuous activity monitoring method is an 

adaptation of SVM where feature extraction phase is also responsible for most of the 

classification phase. To come up with a wearable solution which is non-invasive, we 

employ a single accelerometer. We do not run a dedicated algorithm to detect transitions, 

instead we infer the existence and type of transition considering the detected types of 

actions right before and after the transition. For segmenting the real time continuous data 

stream, we pick explicit segmentation as the segmentation policy.    
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3. SUPPORT VECTOR MACHINES 

 

 

In this chapter, Support Vector Machines (SVM) method is explained since RT-CAM is an 

SVM based solution. We utilize SVM considering its advantages over the alternatives in 

application areas such as image based digit recognition [72,73], text classification [74] 

along with person detection and recognition [75].  

 

General SVM architecture comprises generation of a seperating hyperplane comparing 

features of two classes for training phase, followed by the prediction stage where test data 

features are checked to see on which side of the hyperplane they lie. This procedure is 

summarized in Figure 3.1. The concept of support vector indicates the features which 

determine the position of the seperating hyperplane. Parameters of seperating hyperplane 

are found calculating the solution of systems of equations in the form shown as Equation 

(3.1). Aim of SVM is to find X, which is the unknown of this equation. A is the coefficient 

matrix and B is the vector containing class labels, which are 1 or -1, since SVM is a binary 

classifier, meaning that SVM differentiates between only two classes. For multi-class 

problems, one-against-the-rest approach can be used. If M classes exist, M SVM’s are 

formed, determining a hyperplane between class k and other classes. In prediction for a 

new instance, the decision generated by the SVM which puts the prediction furthest into 

the positive region of the instance space is picked [76]. Though solving multi-class 

problems with SVM is generally carried out using some voting schemes involving a set of 

binary classification decision functions [77,78], methods for multi-class classification 

which do not use the combination of binary rules also exist [79].        
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Figure 3.1. SVM arhitecture 

 

 AX=B (3.1)

 

For a more detailed explanation, a numerical example [80] is presented as follows: Given 

the positively labelled data set P and negatively labelled data set N in 2 ; P= {  , , 

, } and N= {  , , , }, which are illustrated in Figure 3.2. Because 

data points are linearly seperable as can be seen in Figure 3.2, a linear SVM, meaning that 

kernel function () is the identity function, could be used.    

 

 
 

Figure 3.2. Elements in sets P (in blue) and N (in red) 
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Figure 3.3. Three support vectors marked in yellow 

 

It could be visually determined that the following vectors are support vectors, considering  

Figure 3.3: S= {s1=  , s2= , s3= }. Vectors will be used with a bias input 1 and 

they will be denoted by a superscripted d, which means if  s1= , then s1
d= . The goal 

is finding values for the i corresponding to Equation (3.2), (3.3) and (3.4). 

  

 1 (s1). (s1)+ 2 (s2). (s1) + 3 (s3). (s1)=-1 (3.2)

 

 
1 (s1). (s2)+ 2 (s2). (s2) + 3 (s3). (s2)=+1 (3.3)

 1 (s1). (s3)+ 2 (s2). (s3) + 3 (s3). (s3)=+1 (3.4)

 

Since ()=I, meaning that kernel function is the identity function, Equation (3.2), (3.3) and 

(3.4) reduce to Equation (3.5), (3.6) and (3.7). 

 

 1 s1
d

. s1
d

 + 2 s2
d

. s1
d

 + 3 s3
d

. s3
d =-1 (3.5)

 

 
1 s1

d
. s2

d
 + 2 s2

d
. s2

d
+ 3 s3

d
. s2

d=+1 (3.6)

 1 s1
d

. s3
d

+ 2 s2
d

. s3
d

+ 3 s3
d

. s3
d=+1 (3.7)

  

After dot products are calculated, Equation (3.8), (3.9) and (3.10) are obtained. Carrying 

out algebraic operations, the solution to the system identified by Equation (3.8), (3.9) and 

(3.10) is found to be 1 =-3.5; 2 =0.75 and 3 =0.75.   
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 2 1+4 2 +4 3 =-1 (3.8)

 

 
4 1+11 2 +9 3 =+1 (3.9)

 4 1+9 2 +11 3 =+1 (3.10)

 

In order to find the discriminating hyperplane using the  values, Equation (3.11) is used, 

yielding the result shown with Equation (3.12). 

 

 wd = si
d

  (3.11)

   

 
wd = si

d
 =-3.5 +0.75 +0.75 =  (3.12)

 

Last entry in wd corresponds to hyperplane offset b since vectors are augmented with a bias 

previously, resulting in seperating hyperplane equation y=wx+b using w=  and b=-2. 

The discriminating hyperplane, which successfully classifies the data points, is plotted in 

Figure 3.4. 

 

The following is another numerical example [80], which elaborates the nonlinear case:  

Given the positively labelled data set P and negatively labelled data set N in 2 : P= {  , 

, , } and N= {  , , , } which are plotted in Figure 3.5. As can 

be seen, a discriminating hyperplane to seperate these data points does not exist in the 

original input space. Using the kernel function defined in Equation (3.13), data points in 

sets P and N are transformed to P’= (P) and N’= (N) respectively as follows:  

 

 

 

Figure 3.4. The discriminating hyperplane 
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P’= {  , , , } and N’= {  , , , } which are illustrated in Figure 

3.6. 

 

 1  =  (3.13)

 

 

 

 

Figure 3.5. Set of data points P (in blue) and N (in red) 

 

 

 

Figure 3.6. Feature space representation of data points 
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Two support vectors exist, which are S= {s1=  , s2= } as illustrated in Figure 3.7. 

After augmenting vectors with 1 as the bias input, i values are calculated according to 

Equation (3.14) and (3.15). 

 

 

 

Figure 3.7. Support vectors in feature space (in yellow) 

 

 

 1 1(s1). 1(s1)+ 2 1(s2). 1(s1) =-1 (3.14)

 
 

1 1(s1). 1(s2)+ 2 1(s2). 1(s2) =+1 
(3.15)

 

Using the kernel function shown in Equation (3.13); the problem is reduced to Equation 

(3.16) and (3.17).  

 

 1 s1
d

. s1
d

+ 2 s2
d

. s1
d =-1 (3.16)

 

 
1 s1

d
. s2

d
+ 2 s2

d
. s2

d =+1 (3.17)

 

After dot products are calculated, the system of equations shown in Equation (3.18) and 

(3.19) are obtained and the solution is found to be 1 = -7 and 2 = 4.   

  

 3 1+5 2 =-1 (3.18)

 5 1 +9 2 =+1 (3.19)
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Then, the discriminating hyperplane is evaluated using Equation (3.20), yielding the result 

designated in Equation (3.21). Hence, seperating hyperplane equation y=wx+b is formed 

using w=  and b=-3, which is plotted in Figure 3.8. 

 

 wd = si
d

  (3.20)

 

 
wd = si

d
  =-7 +4 =  (3.21)

 

 

 

Figure 3.8. Dicriminating hyperplane calculated for nonlinear example 

 

So far, how the seperating hyperplane generation, which is the training phase is explained. 

In order to predict the class of the test data, Equation (3.22) is used where (z) yields the 

sign of z, identifying the test data to be in positive or negative class. For instance, the 

kernel function being the one shown in Equation (3.13), x=(4,5) is labelled to be in 

negative class as illustrated in Equation (3.23). 

 

 f(x)=  (3.22)

 

 

f  =  

                                       =  

                                       = (-2) 

(3.23)
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What generalization accuracy will be achieved is not certain. If the generalization ability of 

the SVM model produced is not satisfactory, this is probably caused by the selection of 

kernel function.   

 

3.1. SUMMARY 

 

Being a binary classifier, SVM comprises generation of a seperating hyperplane comparing 

features of two classes for training phase, followed by the prediction stage where test data 

features are checked to see on which side of the hyperplane they lie. For multi-class 

problems, several approaches exist which use and do not use combination of binary rules. 
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4. REAL TIME CONTINUOUS MONITORING  

 

 

In this chapter, operations of RT-CAM components are explained. RT-CAM, employs an 

adaptation of SVM to recognize simple actions within the composite action they consitute 

and partitions the continuous activity data using explicit segmentation. For avoiding the 

use of a dedicated algorihm to detect transitions, RT-CAM relies on accurate classification 

of simple actions to infer the existence and identification of transitions based on the types 

of recognized simple activities.      

 

4.1. KNOWLEDGE DISCOVERY 

 

4.1.1. Segmentation 

 

We follow explicit segmentation scheme explained in Section 2.5. Hence, each segment 

corresponds to a simple action. As elaborated in Section 2.5, optimal segment size should 

be determined in explicit segmentation since segment sizes differing in training and 

prediction phases can lead to deterioration in classification performance. We apply fixed 

sized partitioning on the continuous data where the subjects are made to perform activities 

such that each simple action and transition performed fit into the fixed segment size.     

 

4.1.2. Adaptation of SVM 

 

The proposed method, which is formed as an SVM adaptation, differs from the SVM in the 

following aspects: 

 

• SVM is a binary classifier, which means only two classes can be differentiated using 

SVM. RT-CAMKD approaches differently to the multi-class problem which is multi-

activity differentiation in our context. RT-CAMKD introduces the notion of reference 

action and assigns the reference action to be a pseudo class to form a basis of 

comparison between the actual classes. An error value, which is the measure of the 

difference between the training and test data, is calculated. Then, the action yielding 

the smallest error value is assigned to be the detected action. 
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• SVM tries to find a seperating hyperplane between two classes to be differentiated 

and the type of the test data is determined considering which side of the hyperplane 

the test data lie whereas RT-CAMKD avoids seperating hyperplane calculation. By 

doing that, the operation of solving systems of equations carried out in SVM is 

replaced by the operation of multiplying a matrix by a vector in RT-CAMKD where 

inverse matrix calculation, which is necessary for solving systems of equations, is 

eliminated. 

• SVM maps the data to a new space using proper Kernel functions if the data are not 

linearly seperable so that a seperating hyperplane can be found in the new space. 

Though RT-CAMKD eliminates the seperating hyperplane calculation, a Kernel 

function is still used because we used the same Kernel function in our preliminary 

study of this work which is accepted as a publication [52] and we obtained successful 

results and we went on using the Kernel function.       

 

Knowledge discovery module of RT-CAM, which we abbreviate as RT-CAMKD is formed 

of the procedures explained in Equation (4.1)-(4.5) and Algorithm 4.1 to Algorithm 4.3.  

 

Firstly, Z, av, Kernel and error functions are presented since they are used in the 

algorithms that follow. The legend shown below explains the notations used throughout the 

algorithms and equations. 

 

• Cmxn:a matrix with size mxn 

• C-1: Inverse of Cmxn 

• c(i,:): ith row of Cmxn 

• c(:,i): ith column of Cmxn 

• bn=(b1
n, b2

n, ..., bn
n) where bn represents a vector of size n 

• A={a1, a2, ..., as} where A denotes the set of simple actions 

• Pa
mxn:pattern matrix for simple action a 

• Rmxn :reference action where rij=1  

• If Cmx3 is an acceleration matrix, then c(:,1), c(:,2) and c(:,3) are x, y and z axis 

acceleration values respectively. 
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Padding function Z, explained in Equation (4.1), takes two vectors as the input and pads 

the vector, having smaller number of elements, with zero until number of elements in two 

vectors become equal. In Equation (4.1), V denotes an ordered pair such that V=(ax, by). 

When a vector operation necessitates the vectors having equal number of elements but it is 

possible that the vectors may not satisfy this requirement, Z function is used.  

 

 
V’=Z(V)=  

 

(4.1)

Equation (4.2) shows av function which adds corresponding entries in two input vectors 

after padding them if they have different number of entries. The ordered pair (xr,yr) is 

calculated using Z function.  

 

 

 

 

(xr,yr)= Z(am,bn) 

(4.2)

 

Equation (4.3) describes Kernel function K which appends a new entry to the input vector. 

The appended entry is calculated using the other entries in the input vector.  

 

  (4.3)
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error function, explained in Equation (4.4), finds an average error value to find a measure 

of difference between the two input vectors so that the difference between training and the 

test data can be determined.   

 
 

 

(4.4)

 

Algorithm 4.1 explains coreTraining module. The input matrix Cmxn represents the 

acceleration matrix processed as will be described in featureExtraction procedure. Row 

vectors c(i,:)  1  belong to one of actual actions whereas c(i,:)   

belong to the pseudo class which is the reference action. Each row vector in the input Cmxn 

is exposed to function K. Vectors output by K are compared in terms of number of 

elements they contain to pad the one having less elements wih zeros. Dot product ( ) of the 

padded vectors are calculated and are stored in matrix Fmxm. Vector bm is populated with 1 

and -1 values indicating the positive and negative class labels. As mentioned previously, 

RT-CAMKD does not calculate a seperating hyperplane, hence RT-CAMKD does not 

calculate inverse of Fmxm to find the unknowns of the system of linear equations.  Finally 

pattern vector wn+1 is calculated, using the xm vector. wn+1 is the discriminative value 

which we calculate instead of the seperating hyperplane and is used in the prediction phase 

to compare against the test data.  
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Algorithm 4.1. Core training algorithm 

 

wi=0 1  i  t  

coreTraining(Cmxn) 

for i from 1 to m 

        for j from 1 to m 

                (p0,p1)=Z(K(c(i,:)),K(c(j,:))) 

    =p0  p1 

        end for 

end for 

xm=mult(Fmxm, bm) where bm  

for i from 1 to m 

        wn+1=av(wn,mult(K(c(i,:)),xi
m)) 

end for 

return wn+1 

 

featureExtraction procedure merges reference action matrix Rmxn with acceleration matrix 

Cmxn whose features are extracted after Kernel function K is applied. Row vectors, which 

originate from Cmxn, are the data representing action class whereas the ones originating 

from Rmxn represent the pseudo class. Then, the resulting matrix D(2m)x(n+1) shown in 

Equation (4.5) is processed in coreTraining procedure to return wn+1 patterns. 

 

 

=  
(4.5)

 

Training algorithm is explained in Algorithm 4.2. Pattern Pa
mxn for each simple action is 

composed of the features of each training sample Mi
mxn belonging to that action where 

Mi
mxn represents an acceleration matrix. Hence, each action is characterized by a matrix 

whose rows are feature vectors extracted from training samples.    

 

In the prediction phase elaborated in Algorithm 4.3, features of acceleration matrix Cmxn to 

be labelled are extracted. Generated feature vector fn+1 is compared against each previously 

generated pattern Pa
mxn to calculate an error value for each simple action, which is g(ai), 
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using the error function. The simple action yielding the smallest error value is assigned as 

the detected action. 

Algorithm 4.2. Training algorithm 

 

Ta={M1
mxn, M2

mxn, ..., Ms
mxn } where Mi

mxn is a training sample for simple  

action a  

training() 

for each a  A 

        pa(i,:)= featureExtraction(Mi
mxn) Mi

mxn Ta 

end for 

 

A numerical example is given in Appendix A to demonstrate how RT-CAMKD works. 

Algorithm 4.3. Prediction algorithm 

 

L:set of error values such that g:A L 

 

prediction(Cmxn) 

fn+1=featureExtraction(Cmxn); 

g(ai) ,  ai A given uxv 

  

 

4.2. SUMMARY 

 

We explained how knowledge discovery module of RT-CAM, which is RT-CAMKD, 

works. Being an adaptation of SVM, RT-CAMKD performs feature extraction phase and 

most of the classification phase at once. Unlike SVM, RT-CAMKD can differentiate 

between multiple classes, comparing the similarity between actual classes and the psudo 

action introduced, which is the reference action. As the segmentation policy to partition 

continuous real time data stream, RT-CAMKD follows explicit segmentation where each 

segment corresponds to either a simple action or a transition.   
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5. EXPERIMENTAL SETUP 

 

 

In this chapter, experimental context for testing RT-CAM is explained. Firstly, ambient 

assisted living scenario is given to elaborate on the activity set, mentioning the way the 

actions in the activity set are practiced. Also, the reason why this activity set is chosen is 

justified. Secondly, analysis of the sensor data is presented, introducing the data collection 

tool and generation of the data set. Then, the real testbed is described.   

 

5.1. AMBIENT ASSISTED LIVING SCENARIO 

 

The set of simple actions is composed of eating, pouring, turningKey, drinking and 

toothBrushing. These actions are selected since they can be the constituents of more 

complex actions performed in a natural setting of a smart home environment as well as 

professional contexts such as process control. Being hand oriented activities, these actions 

are also suitable for our data collection tool since we acquire data using a single 3D 

accelerometer placed on the right wrist.  The following list explains how these actions can 

form more complex activities in different contexts. 

 

• Pouring could be both pouring cornflakes from its package to a bowl for breakfast 

and pouring food ingredients to a saucepan for cooking in a home setting while it 

could also be performed for pouring chemicals to tanks in water purification plants.  

• TurningKey can be for opening the door of a room at home and for starting an engine 

in the plant.   

• People can perform a drinking-like movement pattern with a glass for clearing the 

mouth after toothBrushing apart from regular drinking while eating. 

 

Contextual properties of the simple actions mentioned above enables forming logical 

combinations of them.    
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5.2. SENSOR DATA ANALYSIS 

 

In this chapter, sensor data structure and the sensor itself are introduced. The nature of the 

data set is discussed, elaborating on the conditions under which the activity data are 

acquired.  

 

5.2.1. Data Collection and Processing Tools 

 

The raw sensor data are composed of X, Y and Z axis acceleration values acquired from 

the 3D accelerometer built in TI Chronos eZ-430 [81] shown in Figure 5.1-a, which is a 

CC430 based wearable device. The RF access point illustrated in Figure 5.1-b is connected 

to the PC with USB interface and enables wireless communication between the sensor and 

PC. Being the unit where data receipt and classification are carried out employing a Java 

application, the PC operates with a 3.07 GHz processor and 1.86 GB of RAM.  

 

 

(a) TI Chronos eZ-430 with built in 

accelerometer 

 

 

 

(b) RF access point 

 

Figure 5.1. Sensing device 

5.2.2. Data Set Generation 

 

Fifteen training samples per simple action and ten test samples per simple and composite 

action are acquired. Each chunk of data lasts for 2.7 s. A chunk corresponds to a simple 

action or the transition between the simple actions when the activity is composite. The raw 

sensor data related to simple actions toothBrushing, drinking, turningKey, pouring and 

eating are plotted in Figure 5.2-Figure 5.4. The plotted data belong to the training data set. 

Time axis whose dimension is denoted to be 1/f s in these plots represents a virtual notion 

of time. This means that time axis shows the sequence number of the acceleration vector in 

the form of <X, Y and Z> triple; X, Y and Z being acceleration values along corresponding  



44 
 

 

   
 

(a) toothBrushing 

 

 

 

(b) drinking 

 

Figure 5.2. Raw sensor data for toothBrushing and drinking 

 



45 
 

 

 

 

(a) turningKey 

 

 

 

(b) pouring 

 

Figure 5.3. Raw sensor data for turningKey and pouring 
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Figure 5.4. Raw sensor data for eating 

 

axes. Though time axis designates sequence number, it can be regarded as a way of 

representing time, considering a vector with sNoi+1 arrives at the classification unit 1/f s 

later than the vector with sNoi, where f is the transmission frequency. All real time 

continuous monitoring experiments are implemented with f=23.26 Hz. Mentioned 

transmission frequency value is calculated by averaging the number of vectors across 

training data set for a simple action, containing 15 training samples. Figure 5.5 illustrates 

the histogram related to the data points from which f is derived. Horizontal axis indicates 

the number of 3D vectors acquired as a sample whereas the vertical axis shows how many 

training samples contain corresponding number of vectors. Number of 3D vectors acquired 

as a sample are the data which manage to reach the classification unit. 

 

5.3. REAL TESTBED ENVIRONMENT 

 

In this chapter, testbed model is elaborated and testing methodology is reviewed, 

addressing the test categories. Then testbed setup is presented, emphasizing how the  
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Figure 5.5. Histogram modelling the data set from which f is derived 

 

actions are practised. Also, the application of testbed is explained, illustrating the output of 

the training phase.    

 

5.3.1. System Model 

 

Experimental context is summarized in Figure 5.6. The subject sits by the table, wearing 

the sensor on the right wrist. He uses an auxiliary object depending on the action being 

performed. The watch (TI Chronos ez430), incorporating the sensor, wirelessly 

communicates with the USB access point, which is connected to the PC. The watch with 

sensing and transmitting capability comprises the data acquisition unit whereas the PC is 

the module where knowledge extraction takes place.   

 

5.3.2. Methodology 

 

We tested our prototype with two kinds of tests named as TiPi and TiPj tests. TiPi tests are 

for evaluating intra-person classification accuracy, meaning that system predicts activities 

of the person who provides the training data. TiPj tests are for assessing inter-person 

classification accuracy, which means the system is trained with the training data acquired 
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from person i and predicts activities of another person j. Apart from classification 

accuracy, real time prediction delay is also measured. 

 

 

 

Figure 5.6. Testbed overview 

 

5.3.3. Testbed Setup 

 

Training and test data are acquired in an office setting. The subject sits at a table to 

perform the actions with a single sensor worn on right wrist. A glass, a knife, which are 

made of plastic, a punched pocket and a key, shown in Figure 5.7, are used to perform the 

actions. As shown in Figure 5.8, drinking action is composed of taking the glass from the 

table, carrying it upwards then leaving it back to the table. When the glass is at the closest 

point to the mouth, the head slightly leans backwards. The time allocated for a chunk 

expires when the hand is hooked in the air during the downwards movement. 

 

 

 

Figure 5.7. Auxiliary objects used in performing the activities 
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(a) 
 

(b) 

 

(c) 
 

(d) 

 

Figure 5.8. Drinking action as the combination of (a), (b), (c) and (d) with given order 

 

Pouring action, illustrated in Figure 5.9,  is shaking a punched pocket up and down with a 

regular rhythm. The subject, who provides the training data, reports that he performs the 

upwards and downwards shaking of the punched pocket seven or eight times at a chunk 

period. Eating action, shown in Figure 5.10, is carrying a knife upwards, and then 

downwards to the point from which it was picked. TurningKey action, illustrated in Figure 

5.11, is turning a key placed on the table to the right and then to the left to reach back to  

 

 

Figure 5.9. Pouring action 
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(a) 
 

(b) 

             

(c) 

 

(d) 

 

(e) 

 

Figure 5.10. Eating action as the combination of (a), (b), (c), (d) and (e) with given order 

 

 

Figure 5.11. TurningKey action 

 

the initial position. ToothBrushing, illustrated in Figure 5.12, is shaking the knife upwards 

and downwards right in front of the mouth, considering the knife as a toothbrush. The  
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Figure 5.12. ToothBrushing action 

 

subject providing the training data reports that he performs the upwards and downwards 

shaking of the knife seven or eight times at a chunk period. 

 

5.3.4. Examination 

 

Figure 5.13 to Figure 5.15 illustrate plots related to training output for the simple actions 

toothBrushing, drinking, turningKey, pouring and eating. Since training phase is also the 

feature extraction phase, the data points shown in these plots are the features generated for 

simple actions. A set of features with five elements are generated per training sample, 

which constitute the simple action patterns. Observing the patterns are close to each other, 

we can conclude that our training and feature extraction modules yield consistent activity 

models.  

 

5.4. DISCUSSION 

 

Using the testbed we set up, we verify that training module of RT-CAM can produce 

discriminative features. Also, we observe that RT-CAM is applicable for the ambient 

assisted living scenario we formed. 
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(a) toothBrushing 

 

 

 

(b) drinking 

 

Figure 5.13. Training output for toothBrushing and drinking 
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(a) turningKey 

 

 

 

(b) pouring 

 

Figure 5.14. Training output for turningKey and pouring 

 

5.5. SUMMARY 

 

We overviewed the ambient assisted living scenario for which we defined our action set. 

Then, we analyzed the sensor data, presenting the tools we used for data collection and 

processing, followed by the description of data set generation process. Finally, we 

described our testbed and examined how our proposed method processes the experimental 

data.        
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Figure 5.15. Training output for eating 
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6. PERFORMANCE ANALYSIS & EVALUATION 

 

 

In this chapter, we present results obtained upon testing RT-CAM. We evaluate our system 

in terms of intra-person accuracy, inter-person accuracy and real time delay. We test for 

accuracy in real-time classification for two metrics: 

 

• Simple action accuracy (SA): Correct recognition rate for simple actions  

• Composite action accuracy (CA): Correct recognition rate for composite actions as a 

whole. A composite action is recognized correctly if all simple actions forming that 

composite action are successfully detected.  

 

We tested RT-CAM across four subjects, one female and three male, being numbered from 

1 to 4 and referred with these numbers throughout the text. One of the male subjects is the 

training subject, who is subject 1, and the female subject is the subject 3. Male subjects, 

though their physical profiles are similar, can be ordered from tallest to shortest as subjects 

1, 2 and 4 and they are in the same age range. Detailed results of T1P1 tests regarding 

accuracy and real time delay can be seen in Appendix B and C respectively.    

 

Since there are numerous real time tests to be maintained, a testing tool is programmed so 

that errors resulting from manual maintanance can be eliminated. However, using this tool 

costs 70-90 minute setup for each testing session and a group of 10 tests can be acquired in 

approximately 30 minutes. For subjects to practice until they can correctly imitate the 

actions, even more time is necessary. Due to the fact that tasks mentioned can not be 

completed at a single session, testing phase spreads accross many days, leading to a great 

number of sessions. Since acquisition of test samples is such a time consuming operation, 

the number of tests presented is restricted.         

 

6.1. TiPi DETECTION ACCURACY 

 

TiPi is the term we use to formalize intra-person accuracy. It means that training data are 

acquired from subject i and the model is used to predict and classify the activities of 
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subject i as well. We carry out TiPi tests on subject 1, meaning that our intra-person tests 

are formalized as T1P1.  

 

6.1.1. Simple Action Accuracy (SA) 

 

Recognition accuracy for simple actions are shown in Table 6.1. Number of tests column 

indicates the number of samples used to calculate accuracy. We also carried out 10 tests on 

eating action, obtaining 80% accuracy, but we excluded it from our analysis. Because of 

the nature of this action, a single sensor on right wrist is not enough to produce accurate 

results though we obtained 80% accuracy. Actions pouring and turningKey are detected 

with lower accuracies than eating but they are not excluded since number of tests for 

pouring and turningKey are sufficient. The rest of the analysis is based on the actions 

shown in Table 6.1 and their combinations.   

 

Table 6.1. Real time classification accuracy of simple actions (TiPi) 

 

Simple action Accuracy (%) Number of tests 

toothBrushing 100 130 

drinking 100 130 

pouring 61.82 110 

turningKey 72.73 110 

 

Composite actions we tested include the simple actions except eating and the accuracy for 

these simple actions is calculated incorporating the successful detection accuracy of the 

simple actions within the composite action they constitute. 

 

6.1.2. Composite Action Accuracy (CA) 

 

Table 6.2 shows the accuracy of recognizing composite actions with several number of 

transitions. Each composite action is repeated ten times to form the test data set and the  
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Table 6.2. Recognition accuracy of composite actions (TiPi) 

 

Number of 

transitions 

Composite action Accuracy 

(%) 

Number 

of tests 

1 drinking_pouring 60 10 

drinking_toothBrushing 100 10 

drinking_turningKey 60 10 

pouring_turningKey 80 10 

toothBrushing_drinking 100 10 

toothBrushing_pouring 100 10 

toothBrushing_turningKey 90 10 

turningKey_pouring 40 10 

2 drinking_toothBrushing_pouring 80 10 

drinking_toothBrushing_turningKey 70 10 

toothBrushing_drinking_pouring 30 10 

toothBrushing_drinking_turningKey 70 10 

3 drinking_toothBrushing_pouring_turningKey 20 10 

drinking_toothBrushing_turningKey_pouring 20 10 

toothBrushing_drinking_pouring_turningKey 70 10 

toothBrushing_drinking_turningKey_pouring 30 10 

 

shown results are the mean of ten tests. Comparing the TiPi results related to pouring 

action and the composite action drinking_toothBrushing_pouring which contains pouring, 

it can be observed that 61.82% and 80% accuracy are achieved for them respectively. The 

fact that a composite action results in a better accuracy than a simple action it contains may 

seem contradictory. However, as explained before, accuracy for simple actions are 

calculated including the successful detection accuracy of simple actions within the 

composite actions they constitute.   

 

Considering Table 6.2, we can observe that if a composite action contains one of pouring 

and turningKey actions, its accuracy deteriorates compared to its subactions where pouring 

and turningKey are excluded, which agrees with the results shown in Table 6.1. The fact 

that toothBrushing_drinking_pouring and toothBrushing_drinking_pouring_turningKey 

are detected with 30% and 70% accuracy respectively is contradictory in this aspect. 
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However, even the same person can not perform the actions the same way all the time, 

resulting in such a contradictory observation.       

 

6.2. TiPj DETECTION ACCURACY 

 

TiPj is the term we use to formalize inter-person classification tests. For the tests in this 

category, we evaluate RT-CAM, acquiring training data from subject 1 and classifying the 

activities of subjects 2, 3 and 4, formalizing our TiPj tests as T1P2, T1P3, and T1P4 

respectively.  

 

6.2.1. Simple Action Accuracy (SA) 

 

Successful recognition accuracy of simple actions are shown in Table 6.3. Height of the 

subject also affects successful recognition rate according to our observations. Because 

turningKey action was poorly recognized in T1P4 tests and successful recognition rate for 

this action is observed to increase as can be seen in Table 6.3 when subject 4 performs 

turningKey action on a higher chair as training subject is taller than subject 4. The column 

named as # indicates number of tests acquired to obtain the corresponding accuracy value. 

Also in Table 6.3, normalized results calculated for each simple action are shown as norm. 

Normalized results are determined using the formula given in Equation (6.1). Test 

categories T1P2, T1P3 and T1P4 are shown as c1, c2 and c3 respectively. Also, a and n 

designate accuracy and number of tests respectively for the corresponding test categories. 

If the terms in the formula match the group of tests marked as “Not tested” in Table 6.3, 

those terms are ignored in normalized result calculation. Observing the normalized results, 

we can say that RT-CAM can predict the activities of different people in a training data 

independant way.     

        

 norm=  (6.1)

    

6.2.1.1. Discussion 

For SA results, T1P2 tests are consistent with T1P1 case. Though turningKey results in 

higher accuracy with T1P2 than T1P1, it is still a similar value to what is generated in T1P1 
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Table 6.3. Recognition accuracy of simple actions (TiPj) 

 

Action T1P2 T1P3 T1P4 norm 

Accuracy 

(%) 

# Accuracy 

(%) 

# Accuracy 

(%) 

# 

toothBrushing 100 50 42.86 21 100 5 84.2 

drinking 82.86 70 100 11 57 7 82.9 

pouring 100 10 100 2 Not tested 100.0 

turningKey 80 20 Not tested 50 8 71.4 

 

case. The fact that pouring results in a much higher accuracy with T1P2 than T1P1 is 

contradictory. Nevertheless, test data are collected from subject 1 a couple of weeks later 

than acquisition of training data. Therefore, subject 1 may have forgotten the exact way of 

how he performed the actions during training data acquisition, which can explain the 

reason why subject 2 performs the actions more similarly to the training samples than 

training subject.  

 

In T1P3 tests, toothBrushing results in much lower accuracy than drinking though these two 

actions are expected to generate high accuracy yielding similar values as the T1P1 case is 

considered. This could be explained regarding that toothBrushing is performed differently 

from the way the training subject performs during training data acquisition. The fact that 

pouring results in such higher accuracy than T1P1 case could result from either the number 

of tests being small or training subject having forgotten the exact way he performed this 

action.   

 

T1P4 results agrees with T1P1 category since in the case of subject 4, toothBrushing is 

detected with high accuracy and turningKey is detected with accuracy deteriorated. The 

reason why drinking is detected with such a poor accuracy compared to toothBrushing in 

T1P4 category looks contradictory but subject 4 had much difficulty in performing the 

exact action which could be the reason for it. 
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6.2.2. Composite Action Accuracy (CA) 

 

Table 6.4 shows inter-person recognition accuracy for composite actions. Subject 2 is 

exposed to testing before and after watching the video recordings of training subject, hence 

T1P2 tests are marked as A and B, which indicate after-watch and before-watch cases  

 

Table 6.4. Composite action accuracy results (TiPj) 

 

Number of 

transitions 

Test 

category 

Composite action Accuracy 

(%) 

Number 

of tests 

1 T1P2 toothBrushing_drinking B:0 

A:70 

B:10 

A:10 

T1P2 drinking_toothBrushing B:0 

A:80 

B:10 

A:10 

T1P3 toothBrushing_drinking 45 11 

2 T1P2 drinking_toothBrushing_pouring B:0 

A:80 

B:10 

A:10 

T1P2 drinking_toothBrushing_turningKey B:0 

A:80 

B:10 

A:10 

T1P2 toothBrushing_drinking_turningKey B:0 

A:60 

B:10 

A:10 

 

respectively. The fact that after-watch success rate is higher than before-watch success rate 

is that same action is performed differently by subject 1 and 2 in the before-watch case. 

Observing that before-watch case results in false detection and after-watch results are high, 

we can say that our method is affected by how the activities are performed. As mentioned 

in Section 6.2.1, height of the subject is observed to affect successful recognition rate 

according to our observations. Same effect is observed for turningKey tests in T1P2 

category as training subject is taller than subject 2. Because turningKey action was poorly 

recognized in T1P2 tests, subject 2 is made to perform turningKey action on a higher chair, 

hence successful recognition rate for this action is observed to increase as can be seen in 

the field marked as A in Table 6.4.   
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6.2.2.1. Discussion 

It is expected that TiPj accuracy becomes lower compared to TiPi accuracy since different 

people are monitored. Hence, T1P2 results are consistent except 

drinking_toothBrushing_pouring and drinking_toothBrushing_turningKey which are 

observed to be the same and a little higher compared to their T1P1 counterparts 

respectively. However, the difference mentioned is not extreme, hence a contradiction is 

not introduced. In the case of T1P3 tests, the action toothBrushing_drinking is expected to 

be detected with an accuracy around the obtained value since T1P3 tests for toothBrushing 

yields a similar value as can be seen in Table 6.3. Comparing the CA results and values 

illustrated in Table 6.3 related to T1P2, it can be observed that CA values do not exceed the 

SA values for simple actions contained in the composite actions yielding the corresponding 

CA values which agrees with our expectations.       

 

6.3. REAL TIME OVERHEAD 

 

Real time overhead introduced by RT-CAM is illustrated in Figure 6.1 for simple actions 

and in Figure 6.2 for composite actions, bars showing the average real time overhead and 

lines indicating the confidence intervals with 95% confidence level. Indicating time taken 

for knowledge discovery, real time overhead values illustrated in these plots belong to the 

tests whose accuracy results are shown in Sections 6.1 and 6.2 where duration of each 

segment is 2.7 s. Figure 6.2 evaluates real time overhead seperately for each type of 

segment where a segment type is either a simple action or a transition.         

 

 

 

Figure 6.1. Real time overhead for simple actions 
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Si and Ti designate ith simple action and ith transition in the composite action respectively. 

The real time overhead is almost the same across simple actions and segment types as 

given in Figure 6.1 and Figure 6.2 respectively. 

 

 

 

Figure 6.2. Real time overhead for composite actions 

 

 

6.4. COMPARISON OF RT-CAM 

 

Finding a study which is evaluated on top of a setting which is equal to ours in terms of 

sensor count, sensor locations, etc., is difficult and to present a comparison, we have to 

choose a work which we find closest to our study. Hence, we compare RT-CAM with the 

work by Aiello et. al. [62] as shown in Table 6.5. Their work employs a pair of 3D 

accelerometers, one of them positioned on the waist and the other one located on the thigh 

whereas RT-CAM utilizes only a single 3D accelerometer on the right wrist. To create a 

better basis of comparison, we tested RT-CAM with the actions shown in Table 6.5 which 

are also tested in the work by Aiello et. al. [62]. The results regarding their work belong to 

their experiments where transition duration is less than or equal to one second.    
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Table 6.5. Comparison of RT-CAM with the work by Aiello et. al. [62] 

 

Action name Accuracy (%) 

RT-CAM/single 

sensor 

Aiello et. al. 

[62]/two sensors 

SA1 SA2 

lyingDown_sitting 100 70 100 100 

sitting_lyingDown 50 0 100 50 

sitting_standingStill 40 90 100 40 

standingStill_sitting 30 0 30 90 

walking_standingStill 0 0 60 0 

standingStill_walking 50 100 50 90 

 

 

The results belonging to RT-CAM are obtained with duration of each chunk being set to 

one second. We acquired 15 training samples and 10 test samples for each action. SA1 and 

SA2 columns denote the SA accuracy of simple action 1 and 2 respectively for RT-CAM. 

Namely, if the composite action is lyingDown_sitting, SA1 and SA2 correspond to 

lyingDown and sitting respectively. The comparison between RT-CAM and the work by 

Aiello et. al. [62] yields that in actions which are easier to distinguish with waist or thigh 

sensors, their method performs better as expected. The only case which contradicts with 

our expectations is standing_sitting action. RT-CAM performs better in standing_sitting 

action which is the point contradicting with our expectations but this is still a valid case. 

Because though RT-CAM performs better in standing_sitting action, it generates a similar 

result to what it produces for the reverse version which is sitting_standing as expected. 

 

6.5. SUMMARY 

 

For evaluating RT-CAM, we selected an action set, which is suitable for being captured via 

wrist motions. We showed that the selected activities can be distinguished in real time 

though they are similar to each other. The successful detection rate is influenced by the 

way activities are performed and the physical profile of the subjects such as height. The 

proposed method achieves activity recognition in reasonable amount of time, yielding a 

light-weight activity recognizer.  
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7. CONCLUSION AND FUTURE WORK 

 

 

We proposed a method, which we call RT-CAM, addressing real time continuous 

monitoring of activities which are combinations of a set of hand oriented actions. We 

modelled the action set as the simple and composite actions and formalized the transition 

detection problem as identifying the sequence of simple actions within a composite action 

which they constitute. We carried out data collection using a 3D accelerometer to present a 

non-invasive solution. RT-CAM carries out transition detection without being trained with 

patterns of transitions. Also, RT-CAM does not  require large number of subjects who 

should provide training data. We showed that the selected activities can be distinguished in 

real time though they are similar to each other. All these features of RT-CAM make it an 

applicable solution in real time continuous activity monitoring.  

 

As the future work, we will be addressing the following points: In the literature, various 

ways of windowing is studied [63] for partitioning the continuous sensor input, in other 

words, for determining the start and end point for simple actions within a data stream 

containing composite actions. Contrary to these studies, we are after a method to abandon 

the importance of windowing by means of establishing a robust way of simple activity 

detection. By doing that, it is expected to achieve correct identification of segments no 

matter how improperly the window size is selected. To evaluate our system in this aspect, 

we will test our system with the subject performing actions in his natural pace and not 

trying to fit in a timely restriction.  

 

Another case which we will study as the future work is training AMS without human 

supervision since after deployment, people’s needs may change or extending their 

functionality may be desired. AMS should be able to extract knowledge even when 

training data include unnecessary, perhaps misleading information since it is expected to 

train itself within the home environment of the end user without the support of a 

supervising person. Therefore, we will improve RT-CAM targeting this requirement. 

 

Chunk duration is the same for training and prediction data. Hence, it can be questioned 

whether it is possible to handle the case of people performing the actions at a different 
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speed compared to the training data. To modify our model for handling this case, we can 

avoid explicit segmentation by doing the following: A threshold interval can be generated 

for each action in the training set, applying our algorithm on the training samples. Then, 

the real time activity data are partitioned into much smaller chunks, being a couple of 

vectors long only. Then, each segment is exposed to our algorithm to see whether it 

corresponds to the threshold interval. As the real time activity data are recived, they are 

appended to previously processed chunks and the newly obtained chunk is again exposed 

to our algorithm for being evaluated in terms of threshold compliance. Segment checking 

lasts until the segment is detected to be in the threshold interval for a simple action which 

determines its type. Naming the identified chunk as chunk i, the second step is to identify 

chunk i+1 which could be either a transition or continuation of chunk i. If it is the 

continuation of the previous chunk, it should be remaining within the specified threshold 

interval. If it is a transition, since transitions are not stored in the training set, difference 

between the value our algorithm generates for it as the threshold and threashold values for 

the simple actions in the training set should become larger and larger as real time activity 

data are continuously received. When the difference stops becoming larger and starts 

decreasing, then transition is over and chunk i+2 is identified in a similar way to that of 

chunk i. It is obvious that successful operation of this alternative is possible with obtaining 

unique threshold intervals for simple actions and thresholds responding to situations 

described as expected which requires further research and development. 

 

Our model infers the existence and type of a transition based on the simple actions which 

are predecessor and successor of the transitions. Considering chunks i, i+1 and i+2, where 

i is equal to 1, if chunk i and chunk i+2 are detected to be different, then chunk i+1 is 

identified to be a transition. It may be questioned that if the person performs the same 

action twice, making the explicit classification of chunk i+1 essential. However, since our 

aim is identifying transitions, we do not need to know the type of chunk i+1 as long as its 

type is identical to that of chunk i. Whether chunk i+2 is a transition or simple action 

should also be determined but this issue will be handled with the enhancements, mentioned 

in the previous paragraph, are carried out. 



66 
 

 

REFERENCES 

 

 

1. Brusey, J., R. Rednic, E. I. Gaura, J. Kemp and N. Poole, “Postural Activity 

Monitoring for Increasing Safety in Bomb Disposal Missions”, Measurement Science 

and Technology, Vol. 20, pp. 75204-75215, 2009. 

 

2. Selvabala, V. S. N. and A. B. Ganesh, “Implementation of Wireless Sensor Network 

Based Human Fall Detection System”, Procedia Engineering, Vol. 30, pp. 767-773, 

2012. 

 

3. Amft, O. and G. Tröster, “Recognition of Dietary Activity Events Using On-body 

Sensors”, Artificial Intelligence in Medicine, Vol. 42, pp. 121-136, 2008. 

 

4. Zwartjes, D.G.M., T. Heida, J.P.P. van Vugt, J.A.G. Geelen and P.H. Veltink, 

"Ambulatory Monitoring of Activities and Motor Symptoms in Parkinson's Disease," 

Biomedical Engineering, IEEE Transactions, Vol. 57, pp. 2778-2786, 2010. 

 

5. Sazonov, E.S., G. Fulk, N. Sazonova and S. Schuckers, "Automatic Recognition of 

Postures and Activities in Stroke Patients," Engineering in Medicine and Biology 

Society, 2009, EMBS 2009, Annual International Conference of the IEEE, Minneapolis, 

Minnesota, USA, 2 September-6 September 2009,  pp. 2200-2203, 2009. 

 

6. Sazonov, E.S., G. Fulk, J. Hill, Y. Schutz and R. Browning, “Monitoring of Posture 

Allocations and Activities by A Shoe-based Wearable Sensor”, IEEE Transactions on 

Biomedical Engineering, Vol. 58, pp. 983-990, 2011. 

 

7. Warren, J.M., U. Ekelund, H. Besson, A. Mezzani, N. Geladas and L. Vanhees, 

“Assessment of Physical Activity - A Review of Methodologies with Reference to 

Epidemiological Research: A Report of the Exercise Physiology Section of the 

European Association of Cardiovascular Prevention and Rehabilitation”, European 

Journal of Cardiovascular Prevention and Rehabilitation, Vol. 17, pp. 127-139, 2010. 

 



67 
 

 

8. Arcelus A., C. L. Herry, R. A. Goubran, F. Knoefel, H. Sveistrup and M. Bilodeau, 

“Determination of Sit-to-Stand Transfer Duration Using Bed and Floor Pressure   

Sequences”, Biomedical Engineering, IEEE Transactions, Vol. 56, pp. 2485-2492, 

2009. 

 

9. Sivaraman V., A. Dhamdhere, H. Chen, A. Kurusingal and S. Grover, “An 

Experimental Study of Wireless Connectivity and Routing in Ad Hoc Sensor Networks 

for Real-Time Soccer Player Monitoring”, Ad Hoc Networks, Vol. 11, pp. 798–817, 

2013. 

 

10. Kasteren T. L. M. V., G. Englebienne and B. Krse, “An Activity Monitoring System 

for Elderly Care Using Generative and Discriminative Models”, Journal of Personal 

and Ubiquitous Computing, Vol. 14, pp. 489-498, 2010.     

 

11. Tolstikov A., X. Hong, J. Biswas, C. Nugent, L. Chen and G. Parente, “Comparison 

of Fusion Methods Based on DST and DBN in Human Activity Recognition”, Journal 

of Control Theory and Applications, Vol. 9, pp. 18-27, 2011.  

 

12. Yang J., J. Lee and J. Choi, “Activity Recognition Based on RFID Object Usage for 

Smart Mobile Devices”, Journal of Computer Science and Technology, Vol. 26, pp. 

239-246, 2011. 

 

13. Sarkar J., L. T. Vinh, Y. K. Lee and S. Lee, “GPARS: A General-purpose Activity 

Recognition System”, Applied Intelligence, Vol. 35, pp. 242-259, 2011.   

 

14. Jihoon, H. and T. Ohtsuki, “A State Classification Method Based on Space-Time 

Signal Processing Using SVM for Wireless Monitoring Systems”, Personal Indoor and 

Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium, 

Toronto, 11 September-14 September 2011, pp. 2229-2233, 2011. 

 

15. Lara, O. and M. Labrador, “A Survey on Human Activity Recognition Using 

Wearable Sensors”, Communications Surveys & Tutorials IEEE , Vol. PP, pp. 1 – 18, 

2012. 



68 
 

 

16. Turaga, P., R. Chellappa, V.S. Subrahmanian and O. Udrea, “Machine Recognition of 

Human Activities: A Survey”, Circuits and Systems for Video Technology, IEEE 

Transactions, Vol. 18, pp. 1473-1488, 2008. 

 

17. Candamo, J., M. Shreve, D.B. Goldgof, D.B. Sapper and R. Kasturi, “Understanding 

Transit Scenes: A Survey on Human Behavior-Recognition Algorithms”, Intelligent 

Transportation Systems, IEEE Transactions, Vol. 11, pp. 206-224, 2010. 

 

18. Joseph, C.N., S. Kokulakumaran, K. Srijeyanthan, A. Thusyanthan, C. Gunasekara 

and  C.D. Gamage, “A Framework for Whole-Body Gesture Recognition from Video 

Feeds”, Industrial and Information Systems (ICIIS), International Conference, India, 29 

July-1 August 2010, pp. 430-435. 

 

19. Ahad, M., J.K. Tan, H.S. Kim and S. Ishikawa, “Human Activity Recognition: 

Various Paradigms”, Control, Automation and Systems, 2008, ICCAS 2008, 

International Conference, Seoul, Korea, 14 October-17 October 2008, pp. 1896-1901. 

 

20. Clarke-Moloney, M., A. Godfrey, V. O'Connor, H. Meagher, P.E. Burke, E.G. 

Kavanagh, P.A. Grace and G.M. Lyons, “Mobility in Patients with Venous Leg 

Ulceration”, European Journal of Vascular and Endovascular Surgery, Vol. 33, pp. 

488-493, 2007.  

 

21. Bourke, A.K., J.V. O’Brien and G.M. Lyons, “Evaluation of a Threshold-based Tri-

axial Accelerometer Fall Detection Algorithm”, Gait & Posture, Vol. 26, pp. 194-199, 

2007. 

 

22. Bourke, A. K., K. J. O’Donovan and G. ÓLaighin, “The Identification of Vertical 

Velocity Profiles Using an Inertial Sensor to Investigate Pre-impact Detection of Falls”, 

Medical Engineering & Physics, Vol. 30, pp. 937-946, 2008. 

 

23. Godfrey, A., A. K. Bourke, G. M. Ólaighin, P. van de Ven and J. Nelson, “Activity 

Classification Using a Single Chest Mounted Tri-axial Accelerometer”, Medical 

Engineering & Physics, Vol. 33, pp. 1127-1135, 2011. 



69 
 

 

24. Moore, S. T., H. G. MacDougall, J. M. Gracies, H. S. Cohen and W. G. Ondo, “Long-

term Monitoring of Gait in Parkinson's Disease”, Gait & Posture, Vol. 26, pp. 200-207, 

2007. 

 

25. Culhane, K. M., G. M. Lyons, D. Hilton, P. A. Grace and D. Lyons, “Long-term 

Mobility Monitoring of Older Adults Using Accelerometers in A Clinical 

Environment”, Clinical Rehabilitation, Vol. 18, pp. 335-343, 2004. 

 

26. Leonard, M., A. Godfrey, M. Silberhorn, M. Conroy, S. Donnelly, D. Meagher and G. 

Ólaighin, “Motion Analysis in Delirium: A Novel Method of Clarifying Motoric 

Subtypes”, Neurocase, Vol. 13, pp. 272-277, 2007. 

 

27. Kangas, M., A. Konttila, P. Lindgren, I. Winblad and T. Jämsä, “Comparison of Low-

complexity Fall Detection Algorithms for Body Attached Accelerometers”, Gait & 

Posture, Vol. 28, pp. 285-291, 2008. 

 

28. Karantonis, D. M., M. R. Narayanan, M. Mathie, N. H. Lovell and B. G. Celler, 

“Implementation of a Real-time Human Movement Classifier Using a Triaxial 

Accelerometer for Ambulatory Monitoring”, Information Technology in Biomedicine, 

IEEE Transactions, Vol. 10, pp. 156-167, 2006. 

 

29. Lyons, G. M., K. M. Culhane, D. Hilton, P. A. Grace and D. Lyons, “A Description of 

An Accelerometer-based Mobility Monitoring Technique”, Medical Engineering & 

Physics, Vol. 27, pp. 497-504, 2005. 

 

30. Godfrey, A., R. Conway, D. Meagher and G. ÓLaighin, “Direct Measurement of 

Human Movement by Accelerometry”, Medical Engineering & Physics, Vol. 30, pp. 

1364-1386, 2008. 

 

31. Chan, M., D. Estève, J. Y. Fourniols, C. Escriba and E. Campo, “Smart Wearable 

Systems: Current Status and Future Challenges”, Artificial Intelligence in Medicine, 

Vol. 56, pp. 137-156, 2012. 

 



70 
 

 

32. Baek, J., G. Lee, W. Park and B. J. Yun, “Accelerometer Signal Processing for User 

Activity Detection”, in M. G. Negoita, R. J. Howlett, L. C. Jain (eds.), Knowledge-

Based Intelligent Information and Engineering Systems, pp. 610-617, Springer Berlin 

Heidelberg, 2004.    

 

33. Maurer, U., A. Smailagic, D. P. Siewiorek and M. Deisher, “Activity Recognition and 

Monitoring Using Multiple Sensors on Different Body Positions”, Wearable and 

Implantable Body Sensor Networks, BSN 2006 International Workshop, Cambridge, 3 

April-5 April 2006, pp. 113-116, IEEE Computer Society, Washington, DC, USA, 

2006. 

  

34. Ravi, N., N. Dandekar, P. Mysore and M. L. Littman, “Activity Recognition from 

Accelerometer Data”, Proceedings of the National Conference on Artificial Intelligence, 

Pittsburgh, Pennsylvania, 2005, Vol. 3, pp. 1541-1546, AAAI Press, 2005. 

 

35. Nyan, M. N., F. E. H. Tay, K. H.W. Seah and Y.Y. Sitoh, “Classification of Gait 

Patterns in the Time–Frequency Domain”, Journal of Biomechanics, Vol. 39, pp. 2647-

2656, 2006. 

 

36. Preece, S. J., J. Y. Goulermas, L. P. J. Kenney and D. Howard, “A Comparison of 

Feature Extraction Methods for the Classification of Dynamic Activities From 

Accelerometer Data”, Biomedical Engineering, IEEE Transactions, Vol. 56, pp. 871-

879, 2009. 

 

37. Preece, S. J., J. Y. Goulermas, L. P. J. Kenney, D. Howard, K. Meijer and R. 

Crompton, “Activity Identification Using Body-Mounted Sensors—A Review of 

Classification Techniques”, Physiological Measurement, Vol. 30, 2009. 

 

38. Zhenyu, H., L. Zhibin, J. Lianwen, L. X. Zhen and J. C. Huang, “Weightlessness 

Feature - A Novel Feature for Single Tri-axial Accelerometer Based Activity 

Recognition”, Pattern Recognition, ICPR 2008, 19th International Conference, Tampa, 

FL, 8 December-11 December 2008, pp. 1-4. 

 



71 
 

 

39. Mathie, M. J., A. C. F. Coster, N. H. Lovell and B. G. Celler, “Detection of Daily 

Physical Activities Using A Triaxial Accelerometer”, Medical and Biological 

Engineering and Computing, Vol. 41, pp. 296-301, 2003. 

 

40. Mantyjarvi, J., J. Himberg and T. Seppanen, “Recognizing Human Motion with 

Multiple Acceleration Sensors”, Systems, Man, and Cybernetics, IEEE International 

Conference, Tucson, AZ, 7 October-10 October 2001, Vol. 2, pp. 747-752. 

 

41. Pirttikangas, S., K. Fujinami and T. Nakajima, “Feature Selection and Activity 

Recognition from Wearable Sensors”, in H. Y. Youn, M. Kim and H. Morikawa (eds.), 

Ubiquitous Computing Systems, pp. 516-527, Springer Berlin Heidelberg, 2006. 

 

42. Engin, M. , S. Demira , E. Z. Engin, G. Çelebi, F. Ersan, E. Asena and Z. Çolako lu, 

“The Classification of Human Tremor Signals Using Artificial Neural Network”, Expert 

Systems with Applications, Vol. 33, pp. 754-761, 2007. 

 

43. Parkka, J., M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola and I. Korhonen, “Activity 

Classification Using Realistic Data From Wearable Sensors”, Information Technology 

in Biomedicine, IEEE Transactions, Vol. 10, pp. 119-128, 2006. 

 

44. Zhang, K., M. Sun, D. K. Lester, F. X. Pi-Sunyer, C. N. Boozer and R. W. Longman, 

“Assessment of Human Locomotion by Using An Insole Measurement System and 

Artificial Neural Networks”, Journal of Biomechanics, Vol. 38, pp. 2276-2287, 2005. 

 

45. Begg, R. and J. Kamruzzaman, “A Machine Learning Approach For Automated 

Recognition of Movement Patterns Using Basic, Kinetic and Kinematic Gait Data”, 

Journal of Biomechanics, Vol. 38, pp. 401-408, 2005.  

 

46. Parera, J., C. Angulo, A. Rodríguez-Molinero and J. Cabestany, “User Daily Activity 

Classification from Accelerometry Using Feature Selection and SVM”, in J. Cabestany, 

F. Sandoval, A. Prieto and J. M. Corchado (eds.), Bio-Inspired Systems: Computational 

and Ambient Intelligence, pp. 1137-1144, Springer Berlin Heidelberg, 2009. 

 



72 
 

 

47. Jianxin, W., A. Osuntogun, T. Choudhury, M. Philipose and J. M. Rehg, “A Scalable 

Approach to Activity Recognition Based on Object Use”, Computer Vision, 2007, ICCV 

2007, IEEE 11th International Conference, Rio de Janeiro, 14 October-21 October 

2007, pp. 1-8, 2007. 

 

48. Minnen, D., S. Thad, E. Irfan and I. Charles, “Discovering Characteristic Actions 

from On-Body Sensor Data”, Proceedings of IEEE International Symposium on 

Wearable Computing, 2006, pp. 11-18, 2006.  

 

49. Demir, A. K., K. Irgan, . Baydere and E. Demiray, “Transmitting Objects in Images 

with Service Differentiation Based Source Coding in Wireless Sensor 

Network”, IEEE/ACM IWCMC, Sardinia, 1 July-5 July 2013, accepted. 

 

50. Uslu, G., O. Altun, and S. Baydere, “A Bayesian Approach for Indoor Human 

Activity Monitoring”, Hybrid Intelligent Systems (HIS), 2011 11th International 

Conference, Melacca, 5 December-8 December 2011, pp. 324 – 327, 2011. 

 

51. Uslu, G., H. I. Dursunoglu, O. Altun, and S. Baydere, “Human Activity Monitoring 

with Wearable Sensors and Hybrid Classifiers”, International Journal of Computer 

Information Systems and Industrial Management Applications, Vol. 5, pp. 345-353, 

2013. 

 

52. Uslu, G. and S. Baydere, “Support Vector Machine Based Activity Detection”, Signal 

Processing and Communications Applications Conference (SIU), 2013 21st, Haspolat, 

24 April-26 April 2013, pp. 1-4, 2013. 

 

53. Najafi, B., K. Aminian, A. Paraschiv-Ionescu, F. Loew, C. J. Bula and P. Robert, 

“Ambulatory System for Human Motion Analysis Using A Kinematic Sensor: 

Monitoring of Daily Physical Activity in the Elderly”, Biomedical Engineering, IEEE 

Transactions, Vol. 50, pp. 711-723, 2003. 

 



73 
 

 

54. Godfrey, A., K. M. Culhane and G. M. Lyons, “Comparison of the Performance of the 

activPALTM Professional Physical Activity Logger To A Discrete Accelerometer-Based 

Activity Monitor”, Medical Engineering and Physics, Vol. 29, pp. 930-934, 2007. 

 

55. Vihriala, E., R. Saarimaa, R. Myllyla and T. Jamsa, “A Device for Long Term 

Monitoring of Impact Loading on the Hip”., Molecular and Quantum Acoustics, Vol. 

24, pp. 211-224, 2003. 

 

56. de Vries, S. I., I. Bakker, M. Hopman-Rock, R. A. Hirasing and W. Mechelen, 

“Clinimetric Review of Motion Sensors in Children and Adolescents”, Journal of 

Clinical Epidemiology, Vol. 59, pp. 670-680, 2006. 

 

57. Foubert, N., A. McKee, R. Goubran, and F. Knoefel, “Lying and Sitting Posture 

Recognition and Transition Detection Using A Pressure Sensor Array”, Medical 

Measurements and Applications Proceedings (MeMeA), 2012 IEEE International 

Symposium, Budapest, 18 May-19 May 2012, pp. 1-6, 2012. 

 

58. Qian, H., Y. Mao, W. Xiang, and Z. Wang, “Recognition of Human Activities Using 

SVM Multi-class Classifier”, Pattern Recognition Letters, Vol. 31, pp. 100-111, 2010. 

 

59. Kim, Y. and H. Ling, “Human Activity Classification Based on Microdoppler 

Signatures Using A Support Vector Machine”, Geoscience and Remote Sensing, IEEE 

Transactions, Vol. 47, pp. 1328-1337, 2009. 

 

60. Hsu, C., and C. Lin, “A Comparison of Methods for Multiclass Support Vector 

Machines”, Neural Networks, IEEE Transactions, Vol. 13, pp. 414-425, 2002. 

 

61. Krishnamurthy, V., K. Fowler, and E. Sazonov, “The Effect of Time Synchronization 

of Wireless Sensors on the Modal Analysis of Structures”, Smart Materials and 

Structures, Vol. 17, 13 pages, 2008. 

 

62. Aiello, F., F. L. Bellifemine, G. Fortino, S. Galzarano and R. Gravina, “An Agent-

Based Signal Processing In-node Environment for Real-Time Human Activity 



74 
 

 

Monitoring Based on Wireless Body Sensor Networks”, Engineering Applications of 

Artificial Intelligence, Vol. 24, pp. 1147-1161, 2011.   

 

63. Okeyo, G., L. Chen, H. Wang and R. Sterritt, “Dynamic Sensor Data Segmentation 

for Real-Time Knowledge-Driven Activity Recognition”, Pervasive and Mobile 

Computing, Available online 3 December 2012, ISSN 1574-1192, 

http://dx.doi.org/10.1016/j.pmcj.2012.11.004. 

 

64. Muscillo, R., M. Schmid, S. Conforto, and T. DAlessio, “An Adaptive Kalman-Based 

Bayes Estimation Technique To Classify Locomotor Activities in Young and Elderly 

Adults Through Accelerometers,” Medical Engineering & Physics, Vol. 32, pp. 849 - 

859, 2010. 

 

65. Ganea, R, A. Paraschiv-lonescu, and K. Aminian, “Detection and Classification of 

Postural Transitions in Real-World Conditions,” Neural Systems and Rehabilitation 

Engineering, IEEE Transactions, Vol. 20, pp.  688 - 696, 2012. 

 

66. Krishnan, N. C. and D. J. Cook, “Activity Recognition on Streaming Sensor Data”, 

Pervasive and Mobile Computing, available online 2012, in press. 

 

67. Junker, H., O. Amft, P. Lukowicz and G. Tröster, “Gesture Spotting with Body-Worn 

Inertial Sensors to Detect User Activities”, Pattern Recognition, Vol. 41, pp. 2010 -

2024, 2007. 

 

68. Krishnan, N. C. and S. Panchanathan, “Analysis of Low Resolution Accelerometer 

Data for Continuous Human Activity Recognition”, Acoustics, Speech and Signal 

Processing, 2008, ICASSP 2008, IEEE International Conference, Las Vegas, NV, 31 

March-4 April 2008, pp. 3337-3340, 2008. 

 

69. Wang, L., T. Gu, X. Tao and J. Lu, “A Hierarchical Approach To Real-Time Activity 

Recognition in Body Sensor Networks”, Pervasive and Mobile Computing, Vol. 8, pp. 

115-130, 2012. 

 



75 
 

 

70. Boyd, J. and H. Sundaram, “A Framework to Detect and Classify Activity Transitions 

in Low-Power Applications”, Proceedings of the 2009 IEEE International Conference 

on Multimedia and Expo, ser. ICME’09, New York, NY, USA, 2009, pp. 1712–1715, 

IEEE Press, Piscataway, NJ, USA, 2009. 

 

71. Jarchi, D., L. Atallah, and G. Z. Yang, “Transition Detection and Activity 

Classification from Wearable Sensors Using Singular Spectrum Analysis”, Wearable 

and Implantable Body Sensor Networks (BSN), 2012 Ninth International Conference, 

London, 9 May-12 May 2012, pp. 136-141, 2012.   

 

72. Vapnik, V. N., The Nature of Statistical Learning Theory, Springer-Verlag New York, 

Inc., New York, 1995. 

 

73. Vapnik, V. N., Statistical Learning Theory, John Wiley and Sons Inc., New York, 

1998. 

 

74. Rennie, J. D. M. and R. Rifkin, Improving Multiclass Text Classification with the 

Support Vector Machine, AI Memo 2001-026, CBCL Memo 210, 2001. 

 

75. Nakajima, C., N. Itoh, M. Pontil and T. Poggio, “Object Recognition and Detection by 

A Combination of Support Vector Machine and Rotation Invariant Phase Only 

Correlation”, Pattern Recognition, 2000, Proceedings, 15th International Conference, 

Barcelona, 3 September-7 September 2000, Vol. 4, pp. 787-790, 2000. 

 

76. Yang, M. H. and A. Cornuejols, “Introduction To Support Vector Machines”, Dr. 

Gabriela (Serban) Czibula’s homepage, 

http://www.cs.ubbcluj.ro/~gabis/ml/Lectures/6_SVM.pdf [retrieved 24 April 2012]. 

 

77. Blanz, V., B. Schölkopf, H. Bülthoff, C. Burges, V. Vapnik, and T. Vetter, 

“Comparison of View-Based Object Recognition Algorithms Using Realistic 3D 

Models”, in C. Malsburg, W. Seelen, Jan C. Vorbrüggen and B. Sendhoff (eds.), 

Artificial Neural Networks - ICANN 96, pp. 251-256, Springer Berlin Heidelberg, 1996.  

 



76 
 

 

78. Schölkopf, B., C. Burges, and V. Vapnik. “Extracting Support Data for A Given 

Task”, Proceedings of First International Conference on Knowledge Discovery & Data 

Mining, Menlo Park, 1995, pp. 252-257, AAAI Press, 1995.    

 

79. Weston, J. and C. Watkins, Multi-class Support Vector Machines, Egham, 1998. 

 

80. Ventura, D., “SVM Example”, 

http://axon.cs.byu.edu/Dan/678/miscellaneous/SVM.example.pdf, [retrieved 15 May 

2012].   

 

81. Texas Instruments, “eZ430-Chronos™ Development Tool User's Guide”, 

http://www.ti.com/lit/ug/slau292d/slau292d.pdf [retrieved 1 October 2011]. 

  

 

 

  



77 
 

 

APPENDIX A:  NUMERICAL EXAMPLE FOR RT-CAMKD 

 

 

A={a1, a2, a3, a4, a5} where a1, a2, a3, a4 and a5 correspond to drinking, eating, pouring, 

toothBrushing and turningKey respectively. Let’s assume that Ta={M1
2x3}  and 

M1
2x3 =  for a=a1. (We are demonstrating the operations only on a1 since 

operations on other simple actions are handled in a similar way.) To generate the pattern 

for a1, we start from the training algorithm: featureExtraction(M1
2x3|a=a1) 

 

Then execution swiches to featureExtraction module: C2x3=  and m=2 and 

n=3,  R2x3= , d(1,:)=K((-46 3 8)), d(2,:)=K((-46 3 8)), d(3,:)=K((1 1 1)), 

d(4,:)=K((1 1 1)). Taking e=2.72 and using the K function: d14=  +  + 

 =1.047, di4 are calculated as d14, yielding 

D4x4=  where 2m=4 and n+1=4. 

 

Execution switching to coreTraining algorithm with the input being D4x4: 

F4x4= , b4=(1 1 -1 -1), x4=F4x4b4=(4449.004 

4449.004 -75.180 -75.180), w5=(-409459.000 26543.660 71033.700 9195.024 11462.050) 

which is the pattern for a1. After w5 is computed,  is set to w5. 

 

The prediction algorithm is demonstrated as the following: Since featureExtraction 

procedure is numerically explained above, how fn+1 is generated from Cmxn can be skipped. 

We assume to have 1 training sample for each simple action as previously mentioned, 

therefore u becomes one in g(ai) calculation, yielding: 
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g(a1)=error( fn+1)=error((-409459.000 26543.660 71033.700 9195.024      

11462.050),fn+1) 

       = . 

 

Similarly, g(a2), g(a3), g(a4) and g(a5) are calculated, finally the simple action yielding the 

minimum of these values becomes the detected action. 
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APPENDIX B:  DETECTED ACTIVITIES IN T1P1 TESTS 

 

 

Table B.1 to Table B.20 illustrate detected activities in T1P1 tests. For a more concise 

presentation, toothBrushing and turningKey actions are abbreviated as tB and tK 

respectively within the tables. testId showing the number of the test, action names given in 

the column names indicate the actual type of action whereas action names within the table 

entries show detected activity result corresponding to the actual activity whose type is 

specified by the related column name. Therefore, when a table entry matches the related 

column name, it means a successful detection. The composite action tests incorporate 

several columns named as chunk_2, chunk_4 and chunk_6, which represents first, second 

and third transitions respectively. Since transition type is inferred considering the simple 

actions right before and after the transition, the types detected for them are ignored. 

 

Table B.1. Drinking 

 

testId drinking 

1 drinking 

2 drinking 

3 drinking 

4 drinking 

5 drinking 

6 drinking 

7 drinking 

8 drinking 

9 drinking 

10 drinking 
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Table B.2. Drinking_pouring 

 

testId drinking chunk_2 pouring 

1 drinking pouring pouring 

2 drinking pouring pouring 

3 drinking pouring pouring 

4 drinking pouring tB 

5 drinking pouring tB 

6 drinking pouring pouring 

7 drinking pouring pouring 

8 drinking pouring tB 

9 drinking pouring pouring 

10 drinking pouring tB 

 

 

Table B.3. Drinking_toothBrushing 

 

testId drinking chunk_2 tB 

1 drinking drinking tB 

2 drinking drinking tB 

3 drinking drinking tB 

4 drinking drinking tB 

5 drinking drinking tB 

6 drinking drinking tB 

7 drinking drinking tB 

8 drinking drinking tB 

9 drinking drinking tB 

10 drinking drinking tB 

 

 

 

 

 

 



81 
 

 

Table B.4. Drinking_toothBrushing_pouring 

 

testId drinking chunk_2 tB chunk_4 pouring 

1 drinking drinking tB drinking pouring 

2 drinking drinking tB pouring pouring 

3 drinking drinking tB pouring tB 

4 drinking drinking tB pouring pouring 

5 drinking drinking tB pouring pouring 

6 drinking drinking tB pouring pouring 

7 drinking drinking tB pouring pouring 

8 drinking drinking tB pouring pouring 

9 drinking drinking tB pouring tB 

10 drinking drinking tB drinking pouring 

 

 

Table B.5. Drinking_toothBrushing_pouring_turningKey 

 

testId drinking chunk_2 tB chunk_4 pouring chunk_6 tK 

1 drinking drinking tB pouring tB tK tK 

2 drinking drinking tB drinking tB tK tK 

3 drinking drinking tB pouring pouring tK tK 

4 drinking drinking tB pouring tB tK tK 

5 drinking drinking tB pouring tB tK tK 

6 drinking drinking tB drinking pouring tK tK 

7 drinking drinking tB pouring tB tK tK 

8 drinking drinking tB pouring pouring tK tB 

9 drinking drinking tB pouring tB tK tK 

10 drinking drinking tB pouring tB tK tK 
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Table B.6. Drinking_toothBrushing_turningKey 

 

testId drinking chunk_2 tB chunk_4 tK 

1 drinking drinking tB tK tK 

2 drinking drinking tB tK tK 

3 drinking drinking tB tK tK 

4 drinking drinking tB tK tK 

5 drinking drinking tB pouring pouring 

6 drinking drinking tB tK tB 

7 drinking drinking tB tK tK 

8 drinking drinking tB tK tK 

9 drinking drinking tB pouring tK 

10 drinking drinking tB tK tB 

 

 

Table B.7. Drinking_toothBrushing_turningKey_pouring 

 

testId drinking chunk_2 tB chunk_4 tK chunk_6 pouring 

1 drinking drinking tB tK tB pouring pouring 

2 drinking drinking tB tK tK pouring tB 

3 drinking drinking tB tK tK pouring pouring 

4 drinking drinking tB tK tK pouring tB 

5 drinking drinking tB tK tK pouring tB 

6 drinking drinking tB tK tB pouring pouring 

7 drinking drinking tB tK tB pouring pouring 

8 drinking drinking tB pouring tK pouring tB 

9 drinking drinking tB tK tK pouring pouring 

10 drinking drinking tB tK tK pouring tB 
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Table B.8. Drinking_turningKey 

 

testId drinking chunk_2 tK 

1 drinking pouring pouring 

2 drinking pouring tK 

3 drinking pouring tK 

4 drinking pouring tK 

5 drinking pouring pouring 

6 drinking pouring pouring 

7 drinking pouring tK 

8 drinking pouring pouring 

9 drinking pouring tK 

10 drinking pouring tK 

 

 

Table B.9. Pouring 

 

testId pouring 

1 pouring 

2 pouring 

3 tB 

4 tB 

5 tB 

6 tB 

7 pouring 

8 tB 

9 tB 

10 tB 
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Table B.10. Pouring_turningKey 

 

testId pouring chunk_2 tK 

1 pouring pouring tK 

2 pouring pouring tK 

3 pouring pouring tK 

4 tB pouring tK 

5 tB pouring tK 

6 pouring pouring tK 

7 pouring pouring tK 

8 pouring pouring tK 

9 pouring pouring tK 

10 pouring pouring tK 

 

 

Table B.11. ToothBrushing_drinking 

 

testId tB chunk_2 drinking 

1 tB tK drinking 

2 tB tK drinking 

3 tB tK drinking 

4 tB tK drinking 

5 tB tK drinking 

6 tB tK drinking 

7 tB tK drinking 

8 tB tK drinking 

9 tB tK drinking 

10 tB tK drinking 

 

 

 

 

 

 



85 
 

 

Table B.12. ToothBrushing_drinking_pouring 

 

testId tB chunk_2 drinking chunk_4 pouring 

1 tB tK drinking pouring pouring 

2 tB tK drinking pouring tB 

3 tB tK drinking pouring tB 

4 tB tK drinking pouring tB 

5 tB tK drinking pouring tB 

6 tB tK drinking pouring tB 

7 tB tK drinking pouring pouring 

8 tB tK drinking pouring tB 

9 tB tK drinking pouring pouring 

10 tB tK drinking pouring tB 

 

 

Table B.13. ToothBrushing_drinking_pouring_turningKey 

 

testId tB chunk_2 drinking chunk_4 pouring chunk_6 tK 

1 tB tK drinking pouring pouring tK tB 

2 tB tK drinking pouring pouring tK tK 

3 tB tK drinking pouring pouring tK tK 

4 tB tK drinking pouring pouring tK tK 

5 tB tK drinking pouring pouring tK tB 

6 tB tK drinking pouring tB tK tK 

7 tB tK drinking pouring pouring tK tK 

8 tB tK drinking pouring pouring tK tK 

9 tB tK drinking pouring pouring tK tK 

10 tB tK drinking pouring pouring tK tK 
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Table B.14. ToothBrushing_drinking_turningKey 

 

testId tB chunk_2 drinking chunk_4 tK 

1 tB tK drinking pouring tB 

2 tB tK drinking pouring tK 

3 tB tK drinking pouring tB 

4 tB tK drinking pouring tK 

5 tB tK drinking pouring tB 

6 tB tK drinking tK tK 

7 tB tK drinking pouring tK 

8 tB tK drinking tK tK 

9 tB tK drinking pouring tK 

10 tB tK drinking tK tK 

 

 

Table B.15. ToothBrushing_drinking_turningKey_pouring 

 

testId tB chunk_2 drinking chunk_4 tK chunk_6 pouring 

1 tB tK drinking pouring pouring pouring pouring 

2 tB tK drinking pouring tK pouring pouring 

3 tB tK drinking pouring tK pouring tB 

4 tB tK drinking pouring tK pouring pouring 

5 tB tK drinking pouring pouring pouring pouring 

6 tB tK drinking pouring pouring pouring pouring 

7 tB tK drinking pouring tK pouring pouring 

8 tB tK drinking pouring pouring pouring pouring 

9 tB tK drinking pouring tB pouring pouring 

10 tB tK drinking pouring pouring tK pouring 
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Table B.16. ToothBrushing 

 

testId tB 

1 tB 

2 tB 

3 tB 

4 tB 

5 tB 

6 tB 

7 tB 

8 tB 

9 tB 

10 tB 

 

 

Table B.17. ToothBrushing_pouring 

 

testId tB chunk_2 pouring 

1 tB pouring pouring 

2 tB pouring pouring 

3 tB pouring pouring 

4 tB drinking pouring 

5 tB pouring pouring 

6 tB pouring pouring 

7 tB pouring pouring 

8 tB pouring pouring 

9 tB pouring pouring 

10 tB pouring pouring 
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Table B.18. ToothBrushing_turningKey 

 

testId tB chunk_2 tK 

1 tB tK tK 

2 tB tK tK 

3 tB tK tK 

4 tB tK tK 

5 tB tK tK 

6 tB tK tK 

7 tB pouring pouring 

8 tB tK tK 

9 tB tK tK 

10 tB tK tK 

 

 

Table B.19. TurningKey 

 

testId tK 

1 tB 

2 tB 

3 tK 

4 tB 

5 tK 

6 tB 

7 tB 

8 tK 

9 tB 

10 tB 
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Table B.20. TurningKey_pouring 

 

testId tK chunk_2 pouring 

1 tK pouring pouring 

2 tK pouring tB 

3 tK pouring tB 

4 tK pouring pouring 

5 tK pouring tB 

6 tK pouring tB 

7 tK pouring tB 

8 tK pouring pouring 

9 tK pouring pouring 

10 tK pouring tB 
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APPENDIX C:  REAL TIME OVERHEAD IN T1P1 TESTS 

 

 

Table C.1 to Table C.20 show the real time overhead introduced by RT-CAM in T1P1 tests. 

testId showing the number of the test, action name given in the column name indicates the 

actual type of the action whereas each table entry shows the real time overhead for 

determining the detected action specified by the related column and test number. 

 

Table C.1. Drinking 

 

testId drinking 

1 0,05310 

2 0,05487 

3 0,05584 

4 0,05663 

5 0,05745 

6 0,05856 

7 0,05664 

8 0,05607 

9 0,05586 

10 0,05762 
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Table C.2. Drinking_pouring 

 

testId drinking chunk_2 pouring 

1 0,05495 0,08276 0,08013 

2 0,05510 0,08431 0,08223 

3 0,05490 0,08153 0,07642 

4 0,05458 0,08232 0,07628 

5 0,05579 0,08498 0,08002 

6 0,05403 0,08135 0,07863 

7 0,05771 0,08631 0,08093 

8 0,05758 0,08551 0,08174 

9 0,05739 0,08064 0,08332 

10 0,05401 0,08295 0,08035 

 

 

Table C.3. Drinking_toothBrushing 

 

testId drinking chunk_2 tB 

1 0,05393 0,08205 0,07946 

2 0,05300 0,08142 0,07672 

3 0,05290 0,08311 0,08107 

4 0,05786 0,08222 0,08214 

5 0,05279 0,08228 0,08348 

6 0,05521 0,08515 0,08344 

7 0,05401 0,08115 0,07838 

8 0,05738 0,08243 0,08404 

9 0,05423 0,08104 0,07997 

10 0,05894 0,08473 0,07917 
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Table C.4. Drinking_toothBrushing_pouring 

 

testId drinking chunk_2 tB chunk_4 pouring 

1 0,05151 0,08281 0,07960 0,10584 0,07840 

2 0,05548 0,08357 0,07975 0,07875 0,07884 

3 0,05613 0,08344 0,08201 0,08195 0,08206 

4 0,05679 0,08459 0,08590 0,08288 0,08225 

5 0,05309 0,08172 0,08010 0,07966 0,07953 

6 0,05639 0,08095 0,07963 0,08194 0,07941 

7 0,05808 0,08403 0,08186 0,08391 0,08198 

8 0,05235 0,07781 0,08012 0,07900 0,07906 

9 0,05499 0,08479 0,08104 0,08288 0,08220 

10 0,05620 0,08463 0,07963 0,08278 0,08074 

 

 

Table C.5. Drinking_toothBrushing_pouring_turningKey 

 

testId drinking chunk_2 tB chunk_4 pouring chunk_6 tK 

1 0,08476 0,08151 0,08152 0,08203 0,08042 0,08402 0,08111 

2 0,05732 0,08506 0,08175 0,10901 0,08212 0,07850 0,07914 

3 0,05409 0,08179 0,08184 0,11050 0,08137 0,08075 0,08610 

4 0,05567 0,08430 0,08142 0,10747 0,08041 0,07610 0,07817 

5 0,05542 0,08291 0,07816 0,10885 0,07802 0,07868 0,08230 

6 0,05659 0,08530 0,08269 0,10722 0,08148 0,08230 0,08308 

7 0,05802 0,08514 0,08239 0,10645 0,08443 0,07841 0,08017 

8 0,05350 0,08094 0,10976 0,08249 0,08181 0,08216 0,08100 

9 0,05806 0,08438 0,08217 0,10875 0,07910 0,07996 0,08087 

10 0,05686 0,08078 0,08355 0,11045 0,08089 0,08282 0,08286 
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Table C.6. Drinking_toothBrushing_turningKey 

 

testId drinking chunk_2 tB chunk_4 tK 

1 0,05523 0,08515 0,07961 0,08106 0,07961 

2 0,05043 0,08063 0,08072 0,07929 0,07645 

3 0,05049 0,08246 0,07848 0,08210 0,08185 

4 0,05631 0,08118 0,08216 0,08167 0,07942 

5 0,05877 0,08696 0,08210 0,08500 0,07981 

6 0,05774 0,08467 0,08279 0,08303 0,07996 

7 0,05451 0,08215 0,08206 0,08421 0,08327 

8 0,05391 0,08175 0,07836 0,07865 0,07773 

9 0,05877 0,08458 0,07796 0,07928 0,08027 

10 0,05415 0,08367 0,08108 0,08214 0,08311 

 

 

Table C.7. Drinking_toothBrushing_turningKey_pouring 

 

testId drinking chunk_2 tB chunk_4 tK chunk_6 pouring 

1 0,05700 0,08145 0,08343 0,08504 0,10927 0,08019 0,07894 

2 0,05566 0,08392 0,10766 0,08202 0,08175 0,08032 0,07841 

3 0,05536 0,07937 0,08223 0,10931 0,08301 0,08144 0,07932 

4 0,05151 0,08026 0,07829 0,10960 0,07886 0,08113 0,07880 

5 0,05448 0,08170 0,08071 0,10775 0,08341 0,07793 0,07488 

6 0,05500 0,08179 0,07838 0,10996 0,07854 0,07897 0,07643 

7 0,05568 0,08093 0,10584 0,08496 0,07882 0,07820 0,07484 

8 0,05303 0,08344 0,07937 0,10808 0,08127 0,07940 0,07863 

9 0,05741 0,08255 0,08216 0,10852 0,08329 0,08285 0,07998 

10 0,05460 0,08224 0,08152 0,10957 0,08141 0,08228 0,08202 
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Table C.8. Drinking_turningKey 

 

testId drinking chunk_2 tK 

1 0,05546 0,08482 0,08308 

2 0,05681 0,08567 0,08112 

3 0,05753 0,08825 0,08320 

4 0,05299 0,08187 0,08123 

5 0,05641 0,08656 0,08230 

6 0,05794 0,08388 0,08037 

7 0,05505 0,08302 0,08010 

8 0,05591 0,08725 0,08453 

9 0,05260 0,08141 0,08049 

10 0,05298 0,08341 0,07939 

 

 

Table C.9. Pouring 

 

testId pouring 

1 0,05385 

2 0,05538 

3 0,05566 

4 0,05556 

5 0,05739 

6 0,05330 

7 0,05658 

8 0,05270 

9 0,05018 

10 0,05621 
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Table C.10. Pouring_turningKey 

 

testId pouring chunk_2 tK 

1 0,05238 0,08585 0,08337 

2 0,05551 0,08571 0,08239 

3 0,04949 0,08220 0,07938 

4 0,05145 0,08373 0,08068 

5 0,04927 0,07967 0,08034 

6 0,05808 0,08109 0,08271 

7 0,05671 0,08482 0,08227 

8 0,05746 0,08384 0,08340 

9 0,05503 0,08167 0,08015 

10 0,05416 0,08543 0,08202 

 

 

Table C.11. ToothBrushing_drinking 

 

testId tB chunk_2 drinking 

1 0,05451 0,08775 0,07813 

2 0,05468 0,08207 0,07666 

3 0,05583 0,08578 0,08014 

4 0,05371 0,08152 0,07597 

5 0,05095 0,08290 0,07879 

6 0,05528 0,08506 0,07868 

7 0,05489 0,08653 0,08182 

8 0,05445 0,08501 0,08109 

9 0,05506 0,08318 0,08151 

10 0,05591 0,08651 0,08010 
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Table C.12. ToothBrushing_drinking_pouring 

 

testId tB chunk_2 drinking chunk_4 pouring 

1 0,05408 0,08226 0,08092 0,07967 0,07964 

2 0,05543 0,08290 0,08241 0,08054 0,08241 

3 0,05242 0,08239 0,07679 0,08223 0,07656 

4 0,05686 0,08072 0,08079 0,08118 0,07814 

5 0,05450 0,08271 0,07893 0,08330 0,07805 

6 0,05802 0,08501 0,08023 0,08127 0,08008 

7 0,05521 0,08317 0,07923 0,08046 0,07914 

8 0,05250 0,08187 0,07812 0,08135 0,07957 

9 0,05427 0,08097 0,07890 0,08030 0,07766 

10 0,05476 0,08299 0,08191 0,08219 0,08395 

 

 

Table C.13. ToothBrushing_drinking_pouring_turningKey 

 

testId tB chunk_2 drinking chunk_4 pouring chunk_6 tK 

1 0,05666 0,08396 0,08063 0,08179 0,08156 0,11058 0,08019 

2 0,05797 0,08378 0,10757 0,07929 0,08040 0,08154 0,07938 

3 0,05615 0,08088 0,08267 0,11057 0,08034 0,08266 0,08123 

4 0,05822 0,08302 0,10817 0,07972 0,07902 0,08241 0,08377 

5 0,05500 0,08407 0,08155 0,10845 0,07933 0,08146 0,07870 

6 0,05379 0,08324 0,10911 0,08086 0,08040 0,08292 0,08023 

7 0,05571 0,08027 0,08086 0,10630 0,07965 0,07727 0,07659 

8 0,05575 0,08319 0,07592 0,10894 0,07822 0,07937 0,07663 

9 0,05619 0,08306 0,10601 0,07929 0,07734 0,07834 0,07945 

10 0,05637 0,08134 0,10860 0,08443 0,08036 0,07613 0,07927 
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Table C.14. ToothBrushing_drinking_turningKey 

 

testId tB chunk_2 drinking chunk_4 tK 

1 0,04964 0,08735 0,07904 0,08296 0,08425 

2 0,05607 0,08294 0,08025 0,08123 0,08301 

3 0,05596 0,08653 0,08242 0,08370 0,08321 

4 0,05627 0,08100 0,07964 0,08516 0,07926 

5 0,05715 0,08219 0,08191 0,08207 0,08313 

6 0,05254 0,08399 0,08291 0,08512 0,08233 

7 0,05779 0,08558 0,08094 0,08202 0,08613 

8 0,05074 0,08557 0,08180 0,08309 0,08289 

9 0,05640 0,08415 0,08192 0,08230 0,08384 

10 0,05922 0,08592 0,08119 0,08133 0,08571 

 

 

Table C.15. ToothBrushing_drinking_turningKey_pouring 

 

testId tB chunk_2 drinking chunk_4 tK chunk_6 pouring 

1 0,05446 0,08193 0,07809 0,07980 0,10863 0,07668 0,07677 

2 0,05493 0,08436 0,08093 0,10605 0,08249 0,07809 0,07911 

3 0,05696 0,08267 0,07993 0,10894 0,08274 0,08004 0,08215 

4 0,05429 0,08355 0,08075 0,10682 0,08233 0,07831 0,07584 

5 0,05362 0,08262 0,07930 0,11352 0,08033 0,08050 0,07632 

6 0,05531 0,08278 0,10563 0,08062 0,08009 0,07898 0,07801 

7 0,05546 0,08236 0,10458 0,08082 0,08018 0,08051 0,07872 

8 0,05304 0,08516 0,07909 0,10774 0,07822 0,07875 0,07559 

9 0,05259 0,08093 0,07953 0,11246 0,07877 0,08255 0,08089 

10 0,05447 0,08250 0,08047 0,10808 0,07884 0,07808 0,07558 
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Table C.16. ToothBrushing 

 

testId tB 

1 0,05685 

2 0,05345 

3 0,05206 

4 0,05832 

5 0,05573 

6 0,05247 

7 0,05306 

8 0,05427 

9 0,05720 

10 0,05832 

 

 

Table C.17. ToothBrushing_pouring 

 

testId tB chunk_2 pouring 

1 0,05312 0,08484 0,07802 

2 0,05541 0,08239 0,07863 

3 0,05395 0,08162 0,07612 

4 0,05720 0,08577 0,08271 

5 0,05769 0,08317 0,08172 

6 0,05644 0,08157 0,07880 

7 0,05564 0,08392 0,08230 

8 0,05752 0,08257 0,08233 

9 0,05552 0,08377 0,08087 

10 0,05803 0,08405 0,08076 

 

 

 

 

 

 



99 
 

 

Table C.18. ToothBrushing_turningKey 

 

testId tB chunk_2 tK 

1 0,05868 0,08413 0,08257 

2 0,05185 0,08465 0,08252 

3 0,05474 0,08288 0,08297 

4 0,05864 0,08558 0,08151 

5 0,05478 0,08561 0,07925 

6 0,05464 0,07851 0,07984 

7 0,05666 0,08466 0,08370 

8 0,05526 0,08243 0,08061 

9 0,05023 0,08564 0,07989 

10 0,05481 0,08077 0,07917 

 

 

Table C.19. TurningKey 

 

testId tK 

1 0,05601 

2 0,05339 

3 0,05611 

4 0,05443 

5 0,05871 

6 0,05565 

7 0,05694 

8 0,05820 

9 0,05491 

10 0,05627 
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Table C.20. TurningKey_pouring 

 

testId tK chunk_2 pouring 

1 0,05159 0,08237 0,07853 

2 0,05341 0,08304 0,08042 

3 0,05963 0,08051 0,08283 

4 0,05629 0,08236 0,08208 

5 0,05870 0,08420 0,08216 

6 0,05567 0,08095 0,07584 

7 0,05605 0,08301 0,08370 

8 0,05646 0,07856 0,07964 

9 0,05576 0,08651 0,08142 

10 0,05791 0,08081 0,07829 

 

 

 

 

 

 

 

 

 


