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ABSTRACT 

 

 

SEAMLESS INTERCONNECTION OF WSN AND IP NETWORKS 

 

In this thesis, an interconnection approach, named as WiSEGATE (Wireless Sensor 

Gateway), with addressing the end-to-end reliable interconnection problem between 

multiple internet entities and sensor nodes is proposed. For the derivation of proposed 

approach, firstly, we analyze the recent interconnection approaches and highlight their 

advantages and disadvantages, secondly, we combine their advantages . A prototype of a 

new web server which supports three tier service scheme with a data acquisition 

mechanism of WSN to access the physical data in a particular location by remote entities is 

developed. In the proposed model, an interconnection gateway handles operations required 

for the interoperability. Since, this gateway maintains reliable TCP/IP connections of the 

interconnected entities, the resource constrained sensor nodes do not require a TCP/IP 

stack for handling end-to-end connections. A lightweight service layer is implemented on a 

sensor node for operations required by the interconnection. The strength and novelty of the 

proposed model lies in the fact that this lightweight service layer relieves extra memory 

usage for end-to-end connection management. For determining the limits of the proposed 

model, firstly, we examined steps for request/response mechanism and formulize the 

queuing system. By doing this, we derived a definition of the request traffic. As a proof of 

concept, we have performed comprehensive tests in simulation and real environments. 

WiSEGATE can achieve reasonable response times up to 80 simultaneous connections 

from remote entities to WSN when WiFi PER is less than 0.2.  
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ÖZET 

 

 

KDA VE IP AĞLARININ KALICI OLARAK BİRBİRİNE BAĞLANMASI 

 

Bu tezde, uçtan uca güvenilir bağlanma sorunu ele alınarak çoklu ve aynı zamanlı internet 

varlıkları ile duyarga ağ düğümleri arasında kurulacak bir karşılıklı bağlantı modeli 

önerilmiştir. Önerilen modelin ortaya çıkarılması için, birinci olarak, şimdiye kadar ortaya 

atılmış karşılıklı bağlantı modelleri incelenmiş ve onların avantajları ve dezavantajları 

ortaya çıkarılmıştır, ikinci olarak ise, avantajları birleştirilmesi suretiyle model ortaya 

konulmuştur. İnternet varlıkları tarafından dünyanın herhangi bir noktasında fiziksel veriye 

ulaşılabilmesi için KDAdan veri alımı mekanizmasına sahip olan üç aşamalı servis 

modelini destekleyen yeni bir web sunucu prototipi geliştirilmiştir. Önerilen modelde, bir 

ağ geçidi birlikte işlerlikle ilgili işlemleri uygulamaktadır. Bu ağ geçidi güvenilir TCP/IP 

bağlantılarının sağlanmasından sorumlu olduğu için, kaynak kısıtlı duyarga ağ 

düğümlerinde TCP/IP katmansal modeline ihtiyaç olmamaktadır. Ağların birbiriyle 

karşılıklı olarak bağlanması gereken operasyonlar için duyarga ağ düğümlerinde 

kaynakları fazla tüketmeyen bir katman kullanılmaktadır. Önerilen modeli güçlü ve 

diğerlerine göre yeni kılan tarafı, bu katmanın duyarga ağ düğümlerini uç uca bağlantıların 

sağlanması için gerekli olan fazla bellek kullanımından kurtarmasıdır. Önerilen modelin 

limitlerinin görülebilmesi için, ilk olarak, sistemin istem ve cevap mekanizmasının 

adımları incelenmiş ve bir kuyruk sistemi formülize edilmiştir. Böylece, kuyruk sisteminin 

trafik tanımı ortaya konulmuştur. Modelin gerçeklenmesi amacıyla, bir dizi simülasyon ve 

gerçek testler yapılmıştır. Önerilen model, WiFi paket kayıp oranı 0.2nin altında iken 80 

tane eş zamanlı olarak çalışan internet istemcisine kadar düzgün çalışmaktadır. 
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1. INTRODUCTION 

 

 

A new era of ubiquity is coming[1]. In this era, the computing view based on human 

generated data is losing the ground to the physical data centric view of computing [2]. This 

change bears the Internet of things paradigm. This paradigm is used for building the 

technological backbone required to bring the traditional Internet concept to anything, 

anytime and anywhere[3]. Internet of the real world requires the information autonomously 

obtained from the observations, actions and events occur over time at particular locations 

in the real world. Therefore, this concept highly demands with technologies with a tight 

connection to the physical world [4-6]. 

 

Internet of the real world data requires highly deployed WSNs which are able to 

interoperate with IP networks. The main reason for this that WSNs are usually deployed 

for data acquisition and actuation mechanism for a physical phenomenon [2,7]. This 

network augments the traditional IP with sensing services at a global scale [8]. In addition, 

IP is the traditional communication standard used on internet hosts. 

 

The interconnection with WSN and IP networks is necessary in several application 

scenarios such as remote health-care systems [9], in-home healthcare monitoring [10], 

activity monitoring [11] , agricultural yield control systems [12], industrial control systems 

[13], safety monitoring systems [14], smart home environments [15,16], traffic control 

systems [17], data center monitoring systems [18] and among others [4,8]. 

 

1.1. PROBLEM DEFINITION 

 

Interoperability between WSN and IP networks is important for remote data acquisition 

about a physical phenomenon. This can be achieved by the seamless interconnection of 

WSN and IP networks. This is a challenging research problem since WSNs do not support 

IP networks directly. So an indirect interconnection mechanism, in which an intermediate 

gateway operates, is required between these networks. In addition, a data transformation 

and adaptation scheme is necessary in such interconnection mechanism. 
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In this thesis, the end-to-end interconnection problem between multiple IP hosts and a 

WSN node is addressed. To lay a ground for the proposed solution to this problem, the 

factors which affect the interconnection performance are examined and the recent 

approaches for the solution are elaborated in the following subsections. 

 

1.1.1. Factors Affecting Interconnection Performance 

 

Several factors affect end-to-end interconnection performance, its usability and 

interoperability. These factors are summarized below: 

 

 Packet Length: Today’s WSN technologies use small size frames due to low 

bandwidth and unreliable physical channels between nodes. Since a WSN frame size 

is much smaller than the minimum MTU of IP, a data fragmentation and reassembly 

mechanism should be added in the interconnection mechanism. 

 Bandwidth and Delay: A physical radio channel of WSN has about 250 kbps transfer 

capacity due to low bandwidth. Thus, data transmission over a WSN channel 

introduces higher delays. 

 Loss Rates: Since a WSN node has low transmit power and because of the harsh 

radio conditions of WSN, the transmission channels in WSN are more prone to noise 

and interference. So, packet loss rates in WSNs are higher than in a typical wireless 

IP network. Higher packet loss rates affect the end-to-end transmission performance 

negatively. If a typical reliable data delivery protocol such as TCP is required in 

connections between a WSN node and an IP host, this protocol will misinterpret the 

packet loss as a congestion and packets will be resent due to false timeouts which is a 

known problem for TCP over unreliable wireless links [19]. 

 Multi Hop Transmission of WSN: Low transmit power for WSN channels leads the 

packets to travel in shorter distances. So, for acquisition of data in remote 

environments, a multi hop data transmission scheme is used in a typical WSN. As the 

number of hop increases in WSN, end-to-end delay between sink node and any one 

of the remote sensor node increases. Thus, end-to-end transmission is affected 

negatively in term of response time. 
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1.1.2. Interconnection Approaches 

 

There are two basic categories of approaches for solving the interoperability problem[8]. 

First is the proxy-based approach [20] which simply separates the WSNs and IP networks 

and lets WSN to operate its own dedicated protocols and a proxy server is used for the 

interconnection. The second approach, named as gateway-approach [8,21], considers the 

sensor nodes as the individual IP hosts and aims to interconnect these nodes to the IP hosts 

with an end-to-end interconnection mechanism. 

 

1.1.2.1. Proxy Based Approach 

It is simple to resolve the interconnection problem through the setup of WSN-IP proxies 

[20]. A WSN-IP proxy periodically acquire sensor data from WSN connected to its back-

end with using protocols dedicated to WSNs. Then it records the data obtained from WSN  

to a relational database. For its front-end, it acts like a server and it responds clients with 

the data in its relational database. In addition, data inquiry mechanisms may help the 

proxies for an intelligent decision system. Figure 1.1 illustrates the connection scheme for 

the proxy approach. 

 

 

 

 

Figure 1.1. Proxy approach 
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1.1.2.2. Gateway Based Approach 

Gateway based approach [21] aims to solve the interconnection problem with an end-to-

end communication scheme as illustrated in Figure 1.2. This approach considers the sensor 

nodes as individual IP hosts. Thus, this approach aims to integrate the IP concept into these 

nodes. For achieving this, sensor nodes require an IP communication stack on themselves. 

With this approach,  a data communication standard, named as 6LoWPAN, is defined for 

the integration of IP to the sensor nodes [22].  In addition, this approach requires a gateway 

node for the interconnection mechanism. An adaptation layer should be added between 

layer-2 and layer-3 of TCP/IP stack for necessary packet transformation [22] on the 

gateway. 

 

 

 

Figure 1.2. Gateway Approach 

 

1.1.2.3. Discussion 

These approaches are basic definitive models for the solution of the  interconnection 

problem. These approaches have some advantages and disadvantages in their nature. The 

former approach relieves sensor nodes from IP stack activities and it does not require extra 

computational and storage resources of sensor nodes. Hence, the overall WSN only 

operates protocols tailored to its constraints. In addition, a typical web server operation can 

be applied on the proxies and a proxy can be configured with security and authorization 

schemes for the multiple users [20]. However, this approach lacks a standardized 

interoperability model so everyone can have their proxies and significant semantic 

translations are required between those proxies [23]. 
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For the latter approach, a direct end-to-end intercommunication model between IP and 

sensor nodes is offered. In this model, a data adaptation standard [22] for the 

interoperability is used. This standard requires an adaptation layer both in gateway and 

sensor nodes. Whenever overall adaptation and interconnection mechanism is setup on 

sensor nodes and the gateway, this approach can be easily used for the interoperability. 

However, this approach requires IPv6 because it assumes the sensor nodes as individual IP 

hosts and these nodes should have unique IP addresses [22]. It is difficult to realize this 

with IPv4 because of its addressing space [23]. In addition, sensor nodes require extra 

operations for the adaptation of the packets and an adapted TCP/IP stack in it. Moreover, 

for a fully interactive sensor service, the sensor nodes require additional functionalities for 

end-to-end connection management, application message coding and client session 

management. For example, if any one of the sensor node is used as a multi client web 

server, end-to-end TCP/IP connections should be maintained by the sensor node and HTTP 

message coding mechanism should be added to these nodes. The overall operation for a 

web server in a sensor node is a memory intensive and complex way to solve the problem. 

Thus, this might lead unfeasible solutions for the sensor nodes because of their resource 

constraint nature. In addition, gateway machine requires additional operations to extract 

link layer frames and by-pass the unnecessary parts in it. This is an extra overhead for the 

system. 

 

1.2. MOTIVATION AND AIM 

 

Considering the factors affecting interconnection design and approaches mentioned in the 

previous section, a new approach combining these two approaches is proposed in this 

thesis as an alternative solution for the interconnection problem. The proposed model has 

the following design considerations. 

 

 Small memory footprint for sensor nodes: Sensor nodes are resource constrained 

devices and operations for IP interoperability and end-to-end connection 

management require intensive resources. We can easily deploy a resource intensive 

interconnection gateway as the intermediate node and since this interconnection 

gateway handles such operations required for end-to-end connection management 
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between the client and a sensor node, we can relieve sensor nodes from these 

resource intensive operations. 

 Standardized Interconnection: Between interconnection entities, several packet 

transmission and messaging standards should be operated. So, such network entities 

which are in the interconnected heterogenous networks can interoperate with each 

other.  

 Application Gateway: A multi-client sensor service requires simultaneous session 

management and message coding mechanism for these sessions. A web application 

over TCP/IP is generally used for these operations. So an application gateway is 

designed to handle simultaneous  clients’ requests and for necessary semantic 

translations between client messages and sensor node messages. 

 Transparency of Underlying Network: Application gateway scheme mentioned 

above is helpful to implement the server logic with a transparency of underlying 

network. So this scheme can be easily operated over some network protocols such as 

IP, GSM and 3G. 

 Modular Gateway Design: The application gateway is responsible to handle various 

application layer messages. A generic modular design for the application components 

is helpful to extend the application gateway for operations with various application 

layer protocols. 

 

Considering the properties mentioned above, this dissertation aims to produce a new 

interconnection mechanism at which multiple simultaneous remote clients can reach to the 

sensor service seamlessly. 

 

1.3. OVERWIEW OF THE PROPOSED MODEL 

 

In this thesis, a hybrid interconnection mechanism named as WiSEGATE (Wireless Sensor 

Network Gateway) which combines proxy and gateway approaches mentioned in the 

previous section is proposed. It addresses the seamless interconnection problem 

highlighted in Section 1.1. WiSEGATE design is composed of two functioning 

components; an interconnection gateway and a lightweight service layer on WSN node. 
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WiSEGATE uses a new server scheme in which a WSN and the interconnection gateway 

operate together as a web server. In this scheme, when a WSN is used to gather sensor data 

from the environment for incoming requests from clients, an application gateway is used 

for the interconnection. This gateway establishes connections between the sensor server 

and multiple clients via TCP/IP socket interface. Then, it accepts incoming requests in the 

form of application messages from the clients, exchanges the data between the 

interconnected networks and make sensor data ready to service to the client. Additionally, 

the interconnection gateway handles TCP connections between WSN and the clients 

because of high loss rates in WSNs. If a sensor node handled the reliability of the 

connections in itself, more false TCP timeouts would have occured due to high wireless 

loss rates in WSN side. In addition, for this approach, the overall WSN is considered as a 

local IPv6 network and the 6LoWPAN datagrams are used to carry sensor data between 

WSN nodes and the gateway. 

 

On the WSN side, the sensor nodes do not implement a TCP/IP stack. There are two 

reasons for this with considering the resource constrained nature of the sensor nodes. 

Firstly, TCP handles its connections independently and for each connection, it requires 

computational and storage resources for this mechanism. Secondly, for each session of a 

client, every server requires extra computational and storage resources. So, as the number 

of simultaneous clients increases, extremely large number of resources will be needed in a 

sensor node. Therefore, some studies [2,24] show that operating the TCP/IP over WSN is 

not suitable for sensor nodes even for the small number of simultaneous clients. This 

situation would get worse if we want to bring the sensor service to multiple simultaneous 

clients. Since the sensor nodes are resource constrained devices, in our model,  a 

lightweight service layer is employed on sensor node for the interconnection. 

 

Table 1.1 gives the comparison of WiSEGATE with proxy and gateway approaches. The 

strength of WiSEGATE is that it handles reliability of the interconnection channels 

between clients and WSN with the gateway and it relieves operations for TCP/IP and 

application layer messaging in a sensor node for multiple simultaneous connections of 

clients. 
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Table 1.1. Comparison of interconnection approaches 

 

Proxy Based Approach Gateway Based Approach WiSEGATE  

no TCP/IP activity on 

sensor node  

TCP/IP activity on sensor 

node  

IP activity on sensor 

node  

no TCP/IP stack  TCP/IP Stack  lightweight service layer  

WSN: protocols for its 

constraints  

WSN: Protocol for IP and 

WSN constraints  

WSN: protocols for its 

constraints  

Proxy: Multiclient web 

server  

Gateway: data adaptation. 

Sensor Node: Server 

Gateway: Multiclient 

web server, data 

adaptation  

End-to-end 

interconnection to proxy  

End-to-end interconnection 

to sensor node  

End-to-end 

interconnection to 

sensor node  

Web server logic on 

proxy  

Web server logic on sensor 

node  

Web server logic on 

gateway  

Sessions for semantic 

translation.  

No semantic translation, 

direct messaging to clients 

Sessions for semantic 

translation  

Reliability: between 

proxy and client by 

proxy  

Reliability: between sensor 

node and client by sensor 

node  

Reliability: between 

sensor node and client 

by gateway  
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1.4. CONTRIBUTIONS 

 

Considering the problem highlighted in Section 1.1 and the specification of the model 

defined above, the following contributions are made: An interconnection model is designed 

combining the traditional three-tier server approach with a data acquisition mechanism of 

WSN. A gateway operation model is designed for  the interoperability and adaptation of 

interconnected networks. In this approach, since TCP/IP connections are maintained by the 

gateway node, TCP/IP adaptation is not required in sensor nodes. In this model, while 

sensor data requests from multiple number of clients are served from this gateway with 

application message protocols, a lightweight data acquisition and adaptation mechanism is 

used in WSN side. The data can be obtained from WSN and viewed easily using a web 

browser from the client side. 

 

For the proof of concept, a series of comprehensive tests are performed in a simulation 

environment to investigate the scalability of the WiSEGATE with increasing number 

simultaneous clients in a wireless transmission environment. A Poisson-based traffic 

model is defined and used to generate a constant bit rate (CBR) request traffic. With stable 

and bursty request traffic, the performance of the multiple TCP connections over 

WiSEGATE is observed in a WLAN.  

 

Moreover, the performance and implementation costs of the proposed interoperability 

model is evaluated on a real implementation environment. For this, a real WSN testbed 

with Telos equivalent TmoteSky nodes is constructed. This testbed is connected with 

multiple web clients via a gateway machine which implements the proposed gateway 

model. Several performance tests have been done and early performance results for the 

proposed approach in the real environment have been obtained. This preliminary study is 

accepted as a publication [6]. 

 

1.5. ORGANIZATION OF THESIS 

 

The rest of the thesis is organized as follows: Chapter 2 presents the related work, 

categorizing the studies in terms of interconnection models, data communication standards 

and gateway performance aspects. In Chapter 3, the operational units of the  proposed 
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interconnection model are introduced. Chapter 4 explains the traffic model which is 

derived for the performance analysis of WiSEGATE in a simulation environment. In 

Chapter 5, the performance analysis of the WiSEGATE is presented. Lastly, Chapter 6 

presents the conclusion and the future work for the thesis. 
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2. RELATED WORK 

 

 

In this chapter, background information and the state of art are introduced. In Section 2.1, 

the interconnection models used by several studies are provided. In Section 2.2, several 

data communication standards which specify transmission of data technique in the 

interconnected networks and way of interpretation for data in network entities are 

presented. 

 

2.1. INTERCONNECTION MODELS 

 

Proxy and gateway approaches are implemented with several interconnection models. 

These models have specific design considerations such as data collection scheme,  

interconnection method, implementation area of the models, data adaptation and the 

implementation method in those models. 

 

2.1.1. Proxy Based Models 

 

For the proxy approach, there are two common patterns used in the models for collection 

of data [20]. First pattern is the forward-server and second is the front-end server. For the 

former, the data is forwarded directly and a database in the proxy is not necessary. For the 

latter, it is necessary to use a database for the collected sensor data and these data are used 

to provide services, in analysis, management and inquiry. The physical data can be 

obtained using SQL queries or a web browser from the client. 

 

Ting et al. [20] use a proxy approach for the interconnection in their work. As presented in 

Figure 2.1,  this work uses user agents (UA) for the connection between clients and  the 

proxy. When a client requests data from the WSN, a UA is  established for this request. 

This UA sends the request to the Resource Management (RM) module. This module is 

responsible for the data inquiry from the WSN. This module gets recent data from the 

database (DB) at the proxy or with the help of a transceiver (TR) module, it gets the fresh 

data from the WSN. The data inquiry flow which expresses their implementation for proxy 

is depicted in Figure 2.2. 
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Figure 2.1. Interoperability model by Ting et al. [20] 

 

UA Registration
User Agent

Resource 

Management

Data in 

database

Database

Transceiver

TCP/IP

WSN

Y

N

1

2

3

4

5

6

1

2 Data check in DB

3 Aquire data from WSN

4 WSN Response to TR

5 Update DB

6 Data to UA

 
 

Figure 2.2. Data inquiry flow chart by Ting et al. [20] 
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Chen et al. [25] present a prototype of a smart gateway which operates as a proxy for the 

WSN. This smart gateway is built for indoor health care systems and provides 

interconnection and services management platform. It is compatible with an on-board data 

decision system and a database which enable to make the patient’s health state decision in 

the proxy. The proxy model is divided into two models: simple model and intelligent 

model. In so called simple model, the proxy acts as a forward-server and the proxy only 

forwards health state data to the health-care centers. In the second model, proxy has a 

decision making mechanism and acts as a front-end server. This decision making 

mechanism is used to detect real time health state of the elderly people for remote health-

care. 

 

Narmada et al. [26] present an intelligent parking guidance and management system which 

uses a proxy for the interconnection. This system is based on gathering data from sensor 

nodes which determines the free slot of the parking area and forwarding them to the some 

operational units such as a motorized barrier control, a ticket machine, a help console, a 

sign boards, a GSM modem and the internet. There is no requirement for any external data 

storage since this proxy uses forward-server approach. 

 

2.1.1.1. Discussion 

Proxy based models are important to examine the interoperability behavior of the proposed 

model. A User Agent or a session management module in the proxy is important for 

semantic analysis for the requests. WiSEGATE can be considered as a proxy because it 

does a semantic analysis of the request messages coming from simultaneous clients in its 

session management modules (i.e., user agents). It can interpret the request messages and 

create a byte-coded representation of these messages. In addition, for a response, it 

interprets the byte coded data coming from the WSN and creates application messages 

with this byte coded data. However, WiSEGATE cannot also be considered as a proxy 

since, a client application establishes end-to-end connection to the sensor service on the 

sensor node rather than to a user agent in the proxy. User agent in the proposed model 

forwards the request message with its byte coded representation to the WSN. 

 

 



14 

 

 

2.1.2. Gateway Based Models 

 

Gateway based approach provides an end to end interconnection mechanism between 

clients and sensor nodes. This mechanism needs two operational units for the 

interconnection. The former is the adaptation layer in a gateway machine [22]. The latter is 

an adapted communication stack on sensor nodes. This stack is used to handle various 

communication protocols for the end to end interconnection of sensor nodes and clients 

and the gateway. 

 

The studies in [27-33] aim communication stack design for sensor nodes. The main 

property of these stacks is the compatibility of 6LoWPAN [22]. These so-called 

6LoWPAN stacks aim to adapt sensor nodes to IPv6. 

 

Harvan et al. [27] introduced a 6LoWPAN stack specifically designed for TinyOS 2.0 

operating system [34] and tested on TelosB [35] and MicaZ [36] sensor nodes. This stack 

supports UDP transport protocol on sensor nodes and necessary header compression 

schemes of 6LoWPAN [11]. For the design of the gateway, as seen in Figure 2.3., an 

adaptation mechanism requires a tunneling daemon and Tun device [37] to bypass link 

layer frames. This mechanism is required to extract necessary data from the frame and do 

necessary data transformation. 
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Figure 2.3. Motes, tunelling daemon and Internet by Harvan et al. [27] 

 

Blip (Berkeley IP Information) [38] is another 6LoWPAN stack which is an 

interconnection model coded for TinyOS 2.1.1 [39]. Blip uses UDP as the transport 

protocol and includes IPv6 neighbour discovery (ND) [40], default route selection, point-

to-point routing and network programming support. 

 

Dunkels et al. [28-31] introduced uIPv6 (microIPv6) and lwIP (lightweight IP) stacks for 

IP based sensor nodes. Their work is among the first to be recognized for integration TCP 

to the sensor nodes for end-to-end reliable communication. When uIPv6 were designed for 

small devices, lwIP supports extra IPv6 operations such as ICMPv6, ND and DAD. These 

stacks were integrated in Contiki OS [41].  A memory usage analysis have been done for 

these stacks. The results are given in Tables 2.1 and 2.2. The values in these tables exclude 

the memory usage by the hardware drivers, 802.14.5 PHY and MAC, 6LoWPAN with 
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fragmentation and header compression, Contiki OS implementation. If those values are 

added, for the uIPv6, total memory usage reaches to 39K. 

 

Table 2.1. Memory footprint for uIPv6 stack (Dunkels et. al [28]) 

 

Function Code Size(bytes) 

Check Summing 464 

IP, ICMP and TCP 4452 

Total 5188 

 

Table 2.2. Memory footprint for lwIP stack (Dunkels et. al [28]) 

 

Function Code Size(bytes) 

Memory Management 2512 

Checksumming 504 

Network Interfaces 364 

IP 1624 

ICMP 392 

TCP 9192 

Total 14588 

 

High packet drop rates are common in wireless networks because of high error rates in the 

transmission medium. Since TCP always interprets packet drops as a sign of congestion, it 

misinterprets a packet drop which is a result of bit error as a sign of congestion. So in a 

wireless network which has a harsh radio conditions (e.g., WSN), TCP will decrease the 

sending rate, even though congestion does not occur in the network [19]. Therefore, end-

to-end data recovery performance for interconnection is affected with this paradigm, 

especially in the gateway models. Dunkels et al. [42] extends the lwIP stack with a data 

recovery method named as Distributed TCP Caching (DTC). DTC was mainly designed 

for error recovery on the communication stack of the sensor nodes. In DTC, each data 

segment is cached in an intermediate node. When a data segment is lost, the cached 

segment is sent with local retransmissions rather than an end-to-end retransmission of the 

segment. For higher performance, in their model, they devise a node selection algorithm 
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for determining cacher node for a segment. They did a packet load analysis of nodes with 

detecting number of packets sent in each node. This analysis show that DTC reduces the 

load of the node. 

 

BACNet [32] is an extension of uIPv6 stack which is the interoperability model for remote 

building automation and control. It is used to collect information from other devices or 

objects (read property), command a device to execute a particular operation (write 

property) and notify the occured event to the device. The memory footprint analysis of 

BACNet is given in Table 2.3. 

 

Table 2.3. Memory footprint for BACNet of Zhou et. al [32] 

 

Read 

Property 

Write 

Property 

 

Memory Consumption 

ROM (Bytes) RAM (Bytes) 

No No 30356 2564 

Yes No 35765 3042 

Yes Yes 39743 3341 

 

Han et al. [33] introduces a subset of TCP/IP stack for sensor nodes, which they call Tiny 

TCP/IP. In this interconnection model, full functionality of the TCP/IP protocol suite is not 

implemented. Figure 2.4 illustrates the architecture of their design. As seen in this figure, 

in a WSN cloud, there could be a sink node, mobile nodes and fixed nodes. The application 

layer is only implemented in the sink node for handling request of a client. UDP is used as 

the transport protocol between the sink node and other nodes in the WSN. Their model 

supports mobility for the sensor nodes and SIP is implemented in those nodes. 

 

They excluded some propoerties of Network Layer, Transport Layer and Application 

Protocols in TCP/IP protocol suite for their design. The most important exclusion had been 

done in the TCP. The Figure 2.5 illustrates the reduced TCP state diagram for a connection 

established between their sink node model and a client. Tiny TCP/IP uses 11.6 Kbytes of 

code to accomplish its tasks. 
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Figure 2.4. Interconnection scheme for Tiny TCP/IP by Han et al. [33] 

 

 

 

 

Figure 2.5. TCP state diagram used in sink node for Tiny TCP/IP by Han et al. [33] 
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2.1.2.1. Discussion 

These models use end-to-end interconnection scheme and the gateway is used for data 

adaptation and packet forwarding toward the destination node. A sensor node should 

handle the incoming packets in its communication stack using specifically designed 

protocols and it requires extra operations for the interconnection. The memory usage 

results given in tables show that gateway models need require resources on a sensor node. 

In the presented analysis of the models given above, any analysis for evaluation of these 

models with a simultaneous multi-client request traffic was not found. So we cannot  

comment about their memory usage on a sensor node when simultaneous multi-clients 

request sensor service from it. On the other hand, our interconnection model eliminates this 

uncertainity with handling simultaneous end-to-end connections on the interconnection 

gateway. 

 

Since WiSEGATE aims to solve the interconnection problem with a end-to-end connection 

scheme, the proposed model can be considered as a gateway model. As mentioned earlier, 

instead of using a protocol stack in a sensor node, a lightweight service layer is used for the 

interconnection operations in WiSEGATE. The memory usage analysis of this layer is 

given in memory comparison section in Chapter 5. 

 

2.2. DATA COMMUNICATION STANDARDS 

 

Several studies focus on data communication standards for the interoperability. These 

standards specify the packet formats, the data adaptation scheme of the interconnection, the 

messaging scheme for the interconnection entities. 

 

2.2.1. 6LoWPAN Standard 

 

In RFC 4644 and RFC 6282 [22,43], the IETF working group had introduced an 

interconnection standard for IPv6 networks and LoWPANs.  This is called 6LoWPAN 

standard and used in a broad research community for solution of the interconnection 

problem. As mentioned earlier, this standard is generally used in the gateway-based 

solutions.  
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The 6LoWPAN standard mainly focuses on the frame formats for transmission of IPv6 

datagrams on LoWPANs and IPv6 addressing scheme [44] for the nodes in a LoWPAN 

[22]. Since minimum MTU for IP datagrams is 1280 octets and the remaining size for a IP 

datagram in an IEEE 802.15.4 frame is  81 octets, a data fragmentation and reassembly 

mechanism are introduced for the interconnection. So this standard requires an adaptation 

layer below IPv6 in the TCP/IP protocol suite for this operation. In addition to this, to carry 

large amount of data for an application message which is going to be inserted in a 

LoWPAN frame,  header compression mechanisms are introduced for eliminating the 

unnecessary and redundant infromation in a IPv6 datagram. In addition, 6LoWPAN 

standard supports multihop transmission of a LoWPAN frame, so this standard defines a 

multihop data transmission mechanism for 6LoWPANs. Figure 2.6 illustrates the frame 

formats defined in 6LoWPAN standard. As seen in this figure, four different frame formats 

are defined to support fragmentation and multi hop frame handling mechanism of the 

adaptation layer. Every type of frame has its own 6LoWPAN datagram header to specify 

the operation which should be carried out for it. Creation mechanism of such datagrams 

and the overall adressing scheme for the IPv6 sensor nodes which is included in the 

standard are introduced in detail in RFC 4644 [22]. 

 

 

 

Figure 2.6. 6LoWPAN datagram types (figure from [5]) 
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2.2.2. Application Layer Standards 

 

2.2.2.1. BinaryWS (Binary Web Services) 

Castellani et. al. [3] introduce a REST (Representational State Transfer) standard, named 

as BinaryWS (BWS), which is used to deliver byte coded data in an application message. 

This byte coded data represents the compact form of a Web Service message in which the 

sensor node response is carried.  This work was the part of the SENSEI project [45] which 

is a pan-european testbed for IoTs in the global scale network. 

 

 
 
 

(a) Dual Stack Model used by Castellani et al. [3] 
 

 
 

(b) Interaction Scheme for BWS. 
 

 

Figure 2.7. Stack model and interaction scheme of BWS by Castellani et al. [3] 
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As illustrated in Figure 2.7-a, BWS uses a dual stack in the gateway machine. The stack of 

the back end operates for the LoWPAN. BWS Plug-in of this stack converts XML 

messages into BWS messages and sends them to wireless node on LoWPAN. An example 

of interaction of BWS between a wireless node and the gateway is given in Figure 2.7-b. It 

is clear that the front-end of the gateway is a traditional web service interface and XML 

and HTTP [46] are used to carry web service messages between the gateway and the 

clients. BWS messages are converted to XML messages by the BWS Plug-in.  

 

BinaryWS had been implemented with several 6LoWPAN stacks. The table 2.4 gives the 

ROM/RAM utilization of BWS on those stacks. BWS costs 19K in a TinyOS [34] 

compatible sensor node which operates blip [38] as 6LoWPAN Stack. 

 

Table 2.4. Memory Footprint for BWS (Castellani et al. [3]) 

 

Component 

 

Memory Consumption(bytes) 

TinyOS ContikiOS 

ROM RAM ROM RAM 

TinyOS + 802.15.4 10816 332   

UDP/6LoWPAN (blip) 5182 1936   

Contiki + IPv6/802.15.4 (uIPv6)[17]   40960 3024 

libBWS (BWS logic)[3] 2950 326 1454 0 

Total 18948 2594 42414 2858 

 

2.2.2.2. CoAP(Constrained Application Protocol) 

CoRE (IETF Constrained RESTful Environments working group)  defines CoAP [47] 

which is a REST standard for resource constraint devices. With the help of CoRE, these 

devices can communicate with network nodes which use HTTP messaging. 

 

Figure 2.8-a illustrates the communication scheme for CoAP. CoAP uses a proxy between 

constrained environments (e.g. a WSN) and internet. With the help of the CoAP proxy,  

HTTP server in the internet cloud can communicate with a resource constraint node. A 

CoAP proxy operates a dual stack for interconnection. The elements of this dual stack is 
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illustrated in Figure 2.8-b. In addition, HTTP server can use CoAP to communicate 

directly with a resource constrained device by using an external application in it.  

 

Within UDP headers, CoAP uses a four byte binary-header followed by a sequence of 

options. In its payload, it uses familiar four HTTP request methods: GET, PUT, POST and 

DELETE. The resources (i.e., the constrained device) are identified with URIs (Universal 

Resource Identifiers) which is a well-known resource identifier method for RESTful 

services. 

 

 
 

 
(a) Connection Scheme of CoAP 

 

 
 

(b) Stacks used by CoAP 

 
 

(c) Interaction Example for CoAP 

 

Figure 2.8. Connection scheme, dual stacks and interaction scheme for CoAP 
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On the resource constrained device, CoAP operates UDP for transmission of application 

data. Since the data transmission is unreliable, CoAP provides an timeout mechanism for 

retransmission of lost packets, as illustrated with the interaction diagram in Figure 2.8-c. 

 

CoAP had been integrated for several constrained environments. Colliti et al. [48] had 

studied the integration of CoAP to WSNs. In [49], Chander et al. had given the 

specification of CoAP based integration model for Web of Things (WoT) [50]. Laum et al. 

[51] had specified an architecture for augmenting CoAP in wireless cellular systems. 

Rajesekaran et al. [52] had introduced a remote toll gate system which uses CoAP for 

messaging. Chatzigiannakis et al. [53] had studied for a CoAP based network self-

configuration tool integrated for IoT of consrained environments. Park et al. [54] had 

presented a CoAP based method for monitoring 6LoWPAN testsbeds. 

 

2.2.2.3. Discussion 

These application layer standards determine the interoperability between the gateway node 

and the destination node which gathers sensor data from the environment. Gateway node 

uses a dual stack in which the first stack accepts incoming connections and requests in the 

form of HTTP messages from clients and second stack interprets the messages in well 

known XML and HTTP formats and creates compact representations of them. In addition, 

the second stack operates UDP for connection between the gateway node and the 

destination sensor node. 

 

WiSEGATE has an interoperability scheme as in the connection models developed for 

these application layer standards. However, when it is configured as a web server, it 

eliminates all HTTP headers in an HTTP message and with the help of a pre-determined 

data structure, it creates a byte coded representation of the request in that message. Since 

connection channels between a sensor node and the gateway is unreliable, the proposed 

model has a timeout mechanism in the gateway like in CoAP to maintain a reliable 

communication over WSN. 
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3. WISEGATE : WIRELESS SENSOR NETWORK GATEWAY 
 

 

This chapter describes the components of WiSEGATE. As shown in Figure 3.1, 

WiSEGATE is based on the design of the service scheme in which the whole WSN and the 

gateway operate as a web server together. WiSEGATE uses an application gateway which 

operates over TCP/IP for multiple clients. This application uses an adaptation layer for 

transformation of data packets to be understood in each networks. In addition, for the 

adaptation of sensor nodes to this application gateway, a lightweight middleware is 

designed.  With WiSEGATE, multiple remote clients are able to reach any sensor data over 

WSN without the need of an external storage. 

 

 

 

 

Figure 3.1. Service scheme for the proposed solution 

 

Figure 3.2 illustrates the whole scheme of the request/response system. As seen, the system 

has three tiers which are the presentation, service and the WSN tiers. In this three tier 

model, a WSN node is the physical data acquisition device for the server and the whole 

WSN is used to gather physical data in a particular area. This data gathering mechanism is 

a data tier for the server and it can be specifically called as the WSN tier. 

The gateway node is responsible for replying the sensor data requests coming from the 

clients and request the sensor data from the WSN tier. Thus, gateway provides the service 
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tier functionality. The application under the client serves the function of the presentation of 

the data and this tier is called as the presentation tier similar to traditional server-client 

model. 
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Figure 3.2. Interconnection scheme of WiSEGATE 

 

3.1. GATEWAY NODE 

 

Gateway node is the network unit which is used to exchange packets between WSN and IP 

networks. It has an adaptation layer which is responsible for transforming packets to be 

understandable in each interconnected network. In addition, the gateway node maintains 

the established TCP/IP connections. 
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In our model, gateway handles application messages arriving from clients via IP network. 

Thus, it is responsible for handling various application protocols such as HTTP so it uses 

various network applications. Each application operates on a specific port for the protocol 

and handles incoming messages under it. For example, if the gateway operates as a web 

server, it uses HTTP messaging protocol, port 80 over the socket interface and TCP as the 

transport layer protocol. 

 

For its operation, the gateway should communicate with both WSN and IP networks. So, 

communication interfaces are required by the gateway node. These communication 

interfaces are used to send/receive data packets to/from the corresponding network. For the 

communication with IP, TCP/IP socket interface is used and for the communication with 

the WSN, serial communication interface is used. 

 

The gateway has the following components. It has the gateway application and the 

adaptation layer. These components are described in the following sections. 

 

3.1.1. Gateway Application 

 

WiSEGATE communicates with clients via various application protocols. It exploits the 

request messages in the form of these application protocols to understand the service 

expected from the WSN server. Hence, various gateway applications are designed to 

handle these application layer protocols. The common form for gateway application design 

in WiSEGATE is illustrated in Figure 3.3. These gateway applications are the combination 

of user agents that are handling the requests coming from the clients. Each user agent 

represents one remote client which connects to the server and waiting for the sensor 

service. 
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Figure 3.3. Gateway Application and User Agent 

 

A common form of a user agent is illustrated in Figure 3.3. A user agent operates with two 

steps for handling incoming messages from the IP network. In the former, Application 

Message Parser Module in User Agent decomposes incoming application messages into 

the understandable parts. These parts are used for determining the service and its options. 

In this step, the User Agent specifies if this service requires any response from WSN or 

not. If so, in the latter, Message Generator Module in User Agent creates the byte coded 

query into a payload. In addition, this module adds a byte coded label to this payload. This 

byte-coded label is the query id obtained from the gateway application and the right user 

agent is specified with this label in a response. So, this field cannot be changed in a 

transmission of a packet. After creation of the payload, the user agent specifies the 

destination node. Then, the destination node information and the payload are sent to the 

adaptation layer. 

 

User Agent operates with two steps for outgoing messages to the IP network. In the 

former, user agent extracts the byte coded payload from the datagram coming from the 

adaptation layer. Then, with using the byte-coded data in this payload, metadata generator 
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module specifies the data parts of the response and prepare a metadata table for the 

response message. In the latter, client message generator module generates a response 

message with this metadata table. 

 

3.1.2. Gateway Application for Sensor Web 

 

In this section, the gateway application specified for a sensor service which uses HTTP for 

presentation is discussed. This gateway application is composed of  user agents which 

accept the client requests in the form of HTTP messages and present the sensor data with 

HTTP messages. 

 

As illustrated in Figure 3.4, for the service and its options, HTTP message received from 

the web client (i.e. browser) is parsed and its GET query part is extracted. Then, from the 

GET query, some operational parts are extracted. Firstly, these operational parts are used to 

determine the service type. Then, with help of the service definition table specified for this 

requested service, the meaning of other parts are determined. These parts are then sent to 

the payload generator module for further operations. 

 

 

http://.../wsnecho?query=RESP&nodeid=1(Browser Message)

GET /wsnecho?query=RESP&nodeid=1 HTTP/1.1 ...(HTTP Message)

wsnecho?query=RESP&nodeid=1(Parsed Message)

wsnecho query=RESP nodeid=1

Service type

RESP

Application Message
1

Node ID

service: wsnecho

query_key: query

nodeid_key:nodeid 

data structure: Echo_Request 

(Service Definition)

Parse HTTP Message and 

get query part

 

 

Figure 3.4. HTTP Message Parser in action. (Echo example) 

 

When the necessary data parts are parsed in an HTTP message, the payload generator 

module creates the payload for the adaptation layer. As seen in Figure 3.5., this module 
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creates byte-coded payload in the sequence of data structure pre-determined for the request 

of the service. In this payload, it adds a byte coded query id to let the system to determine 

the right user agent in a response. After the payload is generated, a datagram manipulator 

is allocated at the adaptation layer and the payload is sent to this datagram manipulator. 

 

wsnecho

Service type

RESP 1

Application Message Node ID

1 52|45|53|50|

QUERYID ADDED

5d|1|4|52|45|53|50

(queryid=5d)

(Generated Payload)

4(Byte Codes) (in HEX)

(to adaptation layer)

Echo_request{

byte queryid;

byte servicetype=1;

byte echo_length;

char[100] message;

}

(Data Structure)  

 

Figure 3.5. Payload Generator in action. (Echo example) 

 

The response mechanism of the gateway application to HTTP requests is as follows: When 

the payload containing the response from the WSN node reaches to one of the user agents 

from the adaptation layer, for the first step, the data parts in the byte coded data are 

extracted by the metadata generator module. Then, these data parts are used to generate the 

metadata table for the further step in the data presenter module. This mechanism is 

illustrated in Figure 3.6. 
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(payload)

(coming from adaptation layer)

Response of echo

res: RESP

(metadata table)

Echo_Response{

char[] res;

}

52|45|53|50

(structure for response)

(to client message generator)

5d|1|4|52|45|53|50

 

 

 

Figure 3.6. Metadata Generator in action. (Echo example) 

 

After the metadata table and the response type are prepared, the data presenter module 

generates the HTTP message with using metadata table and response type as seen in Figure 

3.7. The response type helps the data presenter module to generate right response HTML 

message. After the response message is generated in an HTTP message, it is sent to the 

remote client which is connected to this user agent. 

 

 

Response of echo res: RESP
(generation of presentable 

HTTP message)

HTTP/1.1 200 OK

...

<html><body>RESP</body></html>

<html>

<body>

#{res}

</body>

</html>

(page: echo)
 

 

 

Figure 3.7. Data Presenter in action. (Echo example) 
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3.1.3. Adaptation Layer 

 

The adaptation layer in WiSEGATE is used to transform packets to be understandable by 

sensor nodes and the gateway application. This layer has two functionalities to exchange 

data packets. The former is to encapsulate payload coming from the gateway application 

into a data packet understandable by the sensor nodes.  The latter is to extract the payload 

in the packet coming from a sensor node. The packet format for these operations is 

determined by the interconnection protocol used between the sensor nodes and the 

adaptation layer itself. For example if the interconnection protocol defined in RFC 4644 

[22] is used, then 6LoWPAN datagrams are used to carry the payload between the gateway 

and the destination sensor node. 
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Figure 3.8. Adaptation Layer and Datagram Manipulator 
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As seen in Figure 3.8, the adaptation layer consists of datagram manipulators to create the 

datagram and extract the payload in the datagram. The datagram encapsulator module is 

used to create datagrams. This module determines the requirement for the routing of the 

payload over WSN using destination address. In addition, this module determines the 

necessity of the fragmentation of the payload. For this, it calculates the size of the payload. 

These criteria are used to create the appropriate datagram in this module. After the 

datagram is created, it is sent to a common send buffer by the datagram encapsulator 

module. Since the datagram manipulators operate concurrently with threads, the 

synchronization between these threads is required when they acquire the common send 

buffer. So a mutual exclusion mechanism is used for synchronization. 

 

Whenever a datagram is taken from the send buffer at the adaptation layer, the payload of 

the datagram is extracted using datagram manipulator’s data extractor module. Then it is 

sent to the right waiting user agent. 

 

3.1.4. Adaptation Layer for Sensor Web 

 

In this section, an adaptation layer design for the sensor web is presented. For the WSN tier 

of the web server, a 6LoWPAN based interconnection mechanism is used. Thus, the 

modules under the datagram manipulator handles 6LoWPAN standard. 

 

As illustrated in Figure 3.9, firstly, the address of the destination node is looked up to 

determine if it is directly reachable or not. After that, the requirement of the fragmentation 

is determined. A suitable datagram format is chosen after these operations and the payload 

is encapsulated in a 6LoWPAN datagram. Then, this datagram is sent to a common 

sending buffer. 

 

Whenever the datagram is taken from the common sending buffer, it is encapsulated in an 

Active Message packet and an 802.15.4 frame to be understandable by sensor nodes. Then 

it is sent to the WSN. 
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Figure 3.9. Flow diagram for choosing datagram type 

 

For the messages coming from the WSN, the data extractor module firstly determines if the 

destination is the gateway or not. If so, it determines if the reasseambly of the data is 

necessary. Then it extracts the payload from the datagram and it creates the understandable 

data by the gateway application and forwards these data to the gateway application. 

 

3.2. SENSOR NODES 

 

In this thesis, sensor nodes are the sensor data acquisition devices for WiSEGATE. As 

mentioned earlier, operation of these devices are specifically called as the WSN tier. This 

tier has two operations. In the former, one sensor node in WSN tier only determine the 

requirement of the routing of a packet and they do not extract the sensor request in that 

packet. For this operation, the sensor nodes use the destination address information for 

routing. In the latter, a sensor node requires the request data in the payload for creating the 

response. 

For the operations in WSN tier, two types of sensor nodes are defined. The former is 

named as the intermediate node and  used for the first operation. The latter is named as the 
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destination node and used for  the second operation. Any one of the sensor node in a WSN 

can be in one of the intermediate node or a destination node both. The destination node is 

determined with the destination address information in the datagram. 

 

In the following sections, the design issues for the overall WSN tier is discussed. Firstly, 

the interconnection service is presented and secondly, the response mechanism of the 

sensor nodes is presented. Then overall service under the sensor nodes is discussed. 

 

3.2.1. Interconnection Service 

 

The overall interconnection scheme between the sensor nodes and the gateway node is 

illustrated in Figure 3.10. As seen in this figure, the sensor service and gateway application 

is abstracted from the interconnection service and the interconnection service is operated as 

a middleware to manipulate the datagrams. This middleware determines the requirement of 

the routing of the packets. If a datagram needs routing, payload is not extracted from the 

datagram and it is routed towards the destination. If the destination is reached, the payload 

is extracted from the datagram and sent to the sensor service or the gateway application. 

 

 

GATEWAY APPLICATION

ADAPTATION LAYER

SERIAL INTERFACE
802.15.4 PHYS/MAC 

LAYER

INTERCONNECTION 

SERVICE LAYER

SENSOR SERVICE

INTERCONNECTION 

SERVICE

SERVICE INTERFACE SERVICE INTERFACE

 
 

 

Figure 3.10. Interconnection scheme between Gateway and a WSN node 

 

The interconnection service is operated on a lightweight interconnection service layer in  

sensor nodes. This layer is used for determining if any of the datagram is reached to the 

destination node or need of forwarding. As depicted in Figure 3.11, if the datagram reaches 
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the destination node, the data is extracted and sent to the sensor service application, else 

this datagram is routed to any one of the sensor nodes using some WSN routing policies. 
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Figure 3.11. State diagram of the service model of a sensor node 

 

3.2.2. Sensor Service 

 

The sensor service is the application-based data acquisition mechanism on the sensor node. 

The byte-coded payload in the datagram is used to determine the service type required by 
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the remote client. With using a data structure pre-determined for the service, the service 

type is determined and then the sensor data is extracted from the sensor node. Then, a byte-

coded response is created with this sensor data. 

 

3.2.3. WSN Service 

 

In the previous sections, we define two service types for the overall operation of WSN tier. 

With these criteria, two types of service stacks can be defined. The structure of these stacks 

is illustrated in the Figure 3.12. An intermediate node only operates the lightweight service 

layer to forward the datagram towards the destination. The sensor service layer is operated 

only on the destination node. 

 

 

INTERCONNECTION 

SERVICE LAYER

IEEE 802.4.15 MAC/PHYS LAYER

DESTINATION NODEINTERMEDIATE NODE

INTERCONNECTION 

SERVICE LAYER

APPLICATIONS

IEEE 802.4.15 MAC/PHYS LAYER

 
 

 

Figure 3.12. Sensor node stack models 
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4. TRAFFIC MODEL 
 

 

This chapter provides the traffic model used for the evaluation of WiSEGATE. Firstly, the 

operational flow for the system and time costs affecting the performance of the system are 

given. Secondly, the derivation of the queue model for the system is provided. A request 

traffic model is derived to evaluate the stable behavior of the gateway. Then, an extension 

in the gateway model is provided to evaluate it in bursty traffic conditions. Finally, a 

service scheme is given for the back end network. 

 

4.1. OPERATIONAL FLOW 

 

WiSEGATE is used to connect multiple clients to the WSN. So the interconnection 

gateway is responsible for handling multiple requests coming from these clients. As 

described in Chapter 3, three tiers exists in the request/response mechanism for handling 

these requests. Presentation tier represents the client and in this tier, client creates the 

request for the presentation of the sensor data. After that, client sends this request to the 

gateway. The time cost for transmission of the request from client to the gateway is 

represented with t11. In the service tier, gateway handles this request in two steps. In the 

former, the user agent handles the application message and creates the payload which has 

the request data. In the latter, adaptation layer creates the datagram which carries the 

request to a sensor node. The adaptation layer may enqueue this datagram in its send buffer 

(i.e., the waiting queue). t2 represents the waiting time of a packet in this queue. When a 

datagram is ready, the gateway sends it to the destination sensor node. The time for 

transmission of this datagram from gateway to the destination sensor node is represented 

with t31. In WSN tier, sensor node takes the request and prepares a response for it. After 

creation of the datagram which has the sensor response, the sensor node sends it to the 

gateway node. The time cost for transmission of this datagram from the destination node to 

the gateway is represented with t32. 

 

For the incoming messages from WSN, the gateway operates in two steps. In the first step, 

the response data is taken from the datagram by the adaptation layer. In the second step, it 

is sent to the gateway application and the presentable message is generated. This message 
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is sent to the client by the gateway. Transmission time cost of the response from gateway 

to the client is represented with t12. Then this message is interpreted by the client 

application for the presentation of the sensor data. 
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Figure 4.1. Timing sequence of request/response system 
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Figure 4.2. Timing diagram for a request 

 

Figure 4.1 and 4.2 illustrates the sequence of the steps and the time costs of the 

request/response mechanism. With the help of the steps of the operational flow, we can 

derive a connection scheme for the interconnection system as illustrated in Figure 4.3. 
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Figure 4.3. Overall system model and timing costs 

 

In the system, whenever a request from a client arrives the gateway, if another request is on 

transmit within the WSN, the request packet is enqueued to the waiting queue. Since a stop 

and wait service is operated for handling the packets in the queue, the dequeue of the 
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request packet in the front is done when a reply packet is received from the WSN. As a 

server, the gateway operate with a very slow network at its backend. So the service rate 

might be very low and request packets are enqueued to wait for long times. In addition, the 

gateway should handle requests coming simultaneously from clients, so the requests shall 

compete for the same WSN node and may wait in the resource queue, if the WSN is busy.  

 

Considering that t11, t12, t2, t31 and t32 are independent random variables as given above, the 

mean response time for a request can be represented as follows: 

 

                                         (4.1) 

 

4.2. TCP OPERATION 

 

From TCP perspective of transmission, the segments for the request and response travel in 

a manner illustrated in Figure 4.4. 
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Figure 4.4. TCP operation for segments 

 

The timing sequence for the TCP is defined by the steps below: 
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 When a client wants to send a request to the WSN, it uses TCP/IP; this TCP 

connection is handled by the gateway machine. In client's TCP layer, the request is 

encapsulated in a TCP segment and passed to the MAC layer for transmission. 

 When the segment which has the request for the sensor data reaches to the gateway's 

TCP layer, an acknowledgment for this segment is sent immediately to the client. 

This segment is deleted and the application data is sent to the gateway application. 

 There is no operation of TCP for this connection at the gateway machine till any one 

of the response for the client reaches to the gateway. Gateway determines the right 

outgoing client which the response should send to with the label id given by the user 

agent. Then the gateway’s TCP encapsulates the response in a segment and this 

segment is sent to the client. An acknowledgement for this segment is sent 

immediately to the gateway. 

 

We can elaborate on the steps of TCP operation given above with some arguments. The 

first is that each TCP connection between the gateway and the clients is handled 

independently. So in the perspective of TCP, request/response mechanism maintained for a 

client does not affect the request/response mechanism maintained for other clients. The 

second is that, for a periodic request/response mechanism of a TCP connection, idle times 

occur as seen in Figure 4.4. Considering the operation of independent TCP connections 

with immediate ACKs by the gateway, these idle times do not affect the timeout 

mechanism of TCP connections. 

 

4.3. QUEUEING ANALYSIS 

 

We can model the gateway as M/M/1 queue since all incoming requests of simultaneous 

clients join a single waiting queue. So, this section gives analysis of this queue in our 

approach. 

 

Since a stop and wait mechanism is used for the service of requests in WSN, a request 

packet is enqueud to the queue in the gateway when the WSN is busy. So, the best case for 

a request is that, it is in front of the queue and immediately gets a service from WSN. The 

worst case is that it waits all the packets in the queue to be served from the system. 
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Therefore, the average wait time in the queue can be found by the followifng in which n 

represents the average number of packets in the queue and t2 is the waiting time in queue: 

 

 

 

      
                                  

 
 

 

 
                    

 
 

(4.2) 

 

 

As illustrated in this formula, E[t2] is dependent to E[t31] and E[t32] because dequeue of the 

packets requires transmission of a packet over WSN and reach back to the gateway. The 

service rate for the queue is dependent to these timing costs so it can be found by the 

following formula: 

 

   
 

             
 (4.3) 

 

 

The second element for the queueing analysis is the arrival rate  . It is clear that this value 

is dependent to the request traffic rate of the network. However, finding an arrival rate for 

a stable queueing system is critical for the performance analysis of the interconnection 

model because high arrival rate causes packets to pile up in the queue and so increase of n. 

Higher n means higher average response time of the system. 

 

An ideal   for the gateway queue can be obtained using Little’s law. The average waiting 

time in the queue and service rate for the system has already been obtained above. Thus, 

the ideal   can be found using the following formula: 
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(4.4) 

 

With this formula, an arrival rate value for the stable behavior of the system can be 

obtained. If any arrival rate is smaller than   , then the gateway is stable, else packets pile 

up in the queue. 

 

4.4. REQUEST MODEL 

 

The stable condition for the interconnection system is defined with a queueing analysis in 

the previous section. In this subsection, a traffic model for the requests is defined for the 

analysis of our system. In addition, a model for a bursty traffic condition is given using the 

traffic rate of the system. 

 

A typical web traffic can be modeled as a Poisson-based CBR request traffic. Thus, for the 

multi client web traffic model, the PMF values obtained from the Poisson process are 

assigned to each client in the system. This value represents the request rate distributed to 

each one of these clients. Thus, if PMF value for a client is   , the arrival rate of client i for 

a stable traffic is represented with: 

 

         (4.5) 

 

With using    value obtained from this formula, the sending period of a client can be found 

as follows: 

 

    
 

  
 (4.6) 
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An expansion for    can be done for traffic rates. Using a traffic rate value r, the request 

sending rate of a client can be represented with: 

 

         r (4.7) 

 

When r<1, the gateway can handle packets without a pile up in the queue. Thus, the system 

is stable. However when r>1, the packets starts to pile up in the queue as time flows. This 

means a bursty request traffic for the queueing system. 

 

In Formula 4.4, we assume that n is ignorable and    is dependent on only  . There are two 

cases for this. Firstly, when r>1, n is very great, thus,    will be very close to   . Secondly, 

when r<1, the birth-death period of the queue is more reasonable and all the packets in the 

queue can be served with a short periods of time. So, with a small error, we can predict the 

average response time of the system. 

 

4.5. QUEUE FOR BURSTY TRAFFIC 

 

Traffic rate value r is used to determine the traffic condition for the gateway. If r>1, the 

request traffic is bursty for gateway and packets pile up in its waiting queue. Therefore, 

average response time of the request/response system increases as time goes by due to 

waiting packets in the queue. In this section, we examine packet handling mechanisms of 

the proposed approach in such bursty traffic conditions. 

 

When a bursty traffic exists in the system, n increases with the time. Since, the average 

response time depends on this value as expressed in the Formula 4.2, average response 

time increses with the time. If we use an infinite queue to handle simultaneous packets in 

the gateway, n reaches to the infinity with a continous bursty traffic in the system which 

results higher response times of the system. Thus, a bounded size queue should be used to 

limit n and average response time. 
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Figure 4.5. Queue handling methods for bursty traffic 

 

Figure 4.5. illustrates three bounded queue handling mechanisms used in this thesis. In the 

first (a), queue is not full and the gateway can enqueue a new request packet. In the second 

(b), when the queue is full, gateway drops new incoming request packets. This means loss 

of any one of requests of a client. In the third (c), to avoid loss of requests, a caching 

mechanism is introduced. In this mechanism, the recent sensor data acquired from WSN is 

recorded temporarily in the gateway (i.e., in a temporary cache). So when the queue is full, 

rather than dropping new incoming request packet, the gateway sends an immediate 

response with the sensor data in the cache to the corresponding client. 

 

4.6. SERVICE MODEL OF WSN 

 

In this thesis, WSN service is modelled as the single server of the queuing system. Hence, 

it operates with service rate   where inter service time is exponentially distibuted. This 

model gives us a backend network that returns a response packet to the gateway in every 

1/   time period in average. It can be argued that this assumption is over simplistic 

considering the dynamics of a real WSN. For a more realistic service rate of the queue, 

service time traces could be obtained with a WSN simulation scenario. 
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5. PERFORMANCE ANALYSIS 
 

 

For the performance analysis of WiSEGATE, firstly we performed comprehensive 

simulation tests using OMNET++  discrete event simulator [55] to evaluate the 

performance of the gateway with the traffic model defined in Chapter 4. Consequently, we 

conducted experiments to evaluate the proposed model in a real test environment. This 

chapter presents the analysis of these performance tests. 

 

5.1. PERFORMANCE METRICS 

 

In performance analysis of WiSEGATE, the following performance metrics are used: 

 

 Response Time: Response time is the time slice lagged between one of clients request 

and the corresponding sensor data response to this request. In Chapter 4, the response 

time is represented with t2. 

 Throughput of WSN: Average rate of successful packet delivery over a WSN channel 

in bits.  

 Goodput: Average rate of successful application data delivery (i.e., the sensor data 

response) over clients in bits. 

 RTT (Round Trip Time): Round Trip Time for a TCP connection is the difference 

between the time at which a segment is sent and the time at which an 

acknowledgement (ACK) arrives for the data in that segment [56]. In a send/response 

system, this value cannot be higher than theoretical request sending period of a client 

for reasonable response times. For example, the maximum expected RTT value of 

Service-2 Model is 480ms for N=40. If a RTT value for a request/response is greater 

than this value, we can consider that in front-end wireless network, the packets are 

dropped due to high collisions or high packet errors. 

 

5.2. SIMULATION ENVIRONMENT 

 

For analysis for the scalability of the gateway model with increasing number of 

simultaneous clients and wireless transmission errors, we conducted comprehensive tests 
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in a simulation environment. For these simulation tests, we used OMNET++ and its inet-

manet simulation package. 

 

In these tests, the gateway node and clients are on the same WLAN and communicate with 

each other via WiFi. A sensor node is connected at the back-end of the gateway. Table 5.1-

5.3 shows the simulation parameters for these tests. In analysis of these tests, N represents 

the number of simultaneously requesting clients in the system. 

 

Table 5.1. WIFI parameters used in simulations 

 

Parameter Name Value 

WIFI Type 802.11g 

WIFI Bandwidth 2 Mbps 

WIFI Carrier Frequency 2.4 GHz 

SNR Threshold 4 dB 

Sensitivity -85 dBm 

Base Noise Level -110 dB 

Channel Model Rayleigh 

WIFI PER 0.05 -0.6 

MTU for Linklayer Frames 1500B 

 

Table 5.2. TCP parameters used in simulations 

 

Parameter Name Value 

Maximum Segment Size (MSS) 536B 

Congestion Control Protocol TCPReno 

Connection Model Asynchronous 
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Table 5.3. Application parameters used in simulations 

 

Parameter Name Value 

Request Size 30Bytes 

Send Queue Size Infinite – (1 2 4 8 16 32 64) KBytes 

 

For the service model of the WSN, the first group of tests used the simplistic generic 

service model defined in Section 4.6 and we call this as Service-1 Model. In the second 

group of tests, for a more realistic analysis, we performed external simulations for the 

transfer of a single echo packet to the sensor node using TOSSIM simulator [57] and 

obtained a sequence of service time traces. The histogram of these service time values is 

given in Figure 5.1. We then fed these service time values to the gateway simulator as 

WSN response times for TCP requests. Table 5.4 shows the parameters of these external 

simulations. We call this service model as Service-2 model. 

 

 

 

Figure 5.1. Histogram for service time traces obtained from a WSN Simulation 
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Table 5.4. WSN parameters 

 

Parameter Name Value 

Bandwidth 250kbps 

Radio Attenuation 30 dB 

Scheduling Policy Stop and Wait 

MTU for Link Layer Frames 104 Bytes 

Base Noise Level -98 dB 

 

Following subsections describe the analysis of the simulation tests done for evaluation of 

WiSEGATE. Section 5.1.1 presents the analysis of the results of the tests performed with 

Service-1 Model. In Section 5.1.2, we describe the analysis of results of the scalability tests 

performed with Service-2 Model. 

 

5.2.1. Service Model-1 Tests 

 

This section presents the analysis of the results obtained from tests with generic service 

model in stable traffic conditions. These tests have been done to observe the performance 

of the gateway in different service rates and different WiFi PERs. 

 

5.2.1.1. Effect of Service Rate 

This analysis focuses on the effect of the increasing service rate of the backend network. 

So, we have conducted tests with 64 kbps, 128 kbps and 250 kbps as the data rate of the 

back end network. 

 

As depicted in Figure 5.2 and Figure 5.3, the average goodput and throughput of WSN 

decreases as N increases and these values are relatively lower as increasing of the service 

time of the back end network. 
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Figure 5.2. Average Goodput results of Service-1 Model Tests 

 

 

 
 

Figure 5.3. Average Throughput Results of Service-1 Model Tests 

 

5.2.1.2. Effect of WiFi PER 

To analyze the effect of WiFi PER in different data rate of the backend network for a 

stable system, several tests have been performed. For these tests, WiFi PER is increased 
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from 0.1 to 0.6. The first group of tests have been done with 64 kbps service rate and the 

second group of tests have been done with 250 kbps service rate. 

 

When the service rate is 64 kbps, for a stable traffic, clients send their request in  relatively 

long periods of time. Hence, WiFi MAC of the gateway and clients can handle this request 

traffic entirely even in higher PERs. So the system has constant average goodput with 

WIFI PERs up to 0.6 as depicted in Figure 5.4 even it decreases with increasing N. 

 

As illustrated in Figure 5.5, when the service rate is 64kbps, a dramatic increase in average 

response time is not observed as increasing WIFI PER and N up to 40. So the average 

response time of the system is not higher than 480ms which is the theoretical average 

request sending time period of clients when N=40 and service rate is 64kbps. Hence, a 

stable request traffic for a slow service rate leads reasonable average response times. 

 

 

 
 

 

Figure 5.4. Average Goodput results of Service-1 Model Tests with different WiFi PERs 

and service rate  is 64 kbps 
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Figure 5.5. Average Response Time results of Service-1 Model Tests with different WiFi 

PERs and service rate is 64kbps 

 

 

 
 

Figure 5.6. Consecutive RTT samples obtained from a client when N=40 and data rate is 

64 kbps 

 

As depicted in Figure 5.6, although consecutive RTT values obtained from a client 

increase and start to deviate in a long interval with increasing of WIFI PER, the maximum 
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value of RTT is not higher than 480 ms which is the maximum expected RTT value when 

N=40 and service rate is 64kbps. This is due that underlying service of TCP can handle the 

low request traffic of the system without higher RTTs. 

 

When the service rate of the backend network is 250kpbs, even for a stable system, the 

clients send their requests in relatively short periods of time. This leads a denser traffic 

condition on the network. Within this traffic condition and increasing WIFI PER, more 

TCP segments are lost in wireless channels and they are sent again by TCP layer. Thus, as 

seen in the Figure 5.7, the RTT on the connections are extremely high and sometimes they 

are greater than 120ms which is the maximum expected RTT value for N=40 and service 

rate is 250kbps. 

 

Although the service rate is high and this situation leads relatively high goodput, as 

illustrated in the Figure 5.8, the goodput of the system decreases while increasing of WIFI 

PER. High RTT values lead in decrease of the goodput of the system. 

 

 

 
 

Figure 5.7. Consecutive RTT samples obtained from a client when N=40 and data rate is 

250 kbps 
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Figure 5.8. Average Goodput results of Service-1 Model Tests with different WiFi PERs 

and service rate  is 250 kbps 

 

5.2.2. Service Model-2 Tests 

 

5.2.2.1. Scalability Tests With Stable Traffic Conditions 

We have conducted two sets of scalability tests for the performance analysis of the 

WiSEGATE in stable traffic conditions. In former set of test, we have focused on the 

scalability of the gateway in higher WiFi PERs. So these tests involve the experiments 

with increasing WiFi PER up to 0.6 and N limited to 40. In latter set of tests, we observe 

the scalability of WiSEGATE with increasing N in reasonable WiFi PERs. So, these tests 

have been performed with WiFI PER up to 0.2. 

 

Figure 5.9 illustrates the average goodput results of clients obtained from first set of tests. 

As depicted in this figure, the goodput of the system is constant when the WiFi PER is less 

than 0.4. This means that the gateway can handle entire request traffic generated  by the 

clients soundly within WIFI PER up to 0.4. 

 

Figure 5.10 and Figure 5.11 illustrate the average response time results obtained from first 

set of tests. The average response time increases nearly linearly as N increases up to 40 
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when WiFi PER is less than 0.4. This is due to the periodic and stable request traffic in the 

system and gateway can handle this traffic soundly. Within these PERs, the average 

response times are not higher than the expected maximum value for response time as 

illustrated in Figure 5.10. When WiFi PER is 0.5, a dramatic increase in average response 

time is observed as depicted in Figure 5.11. This means that the request traffic of the 

network cannot be entirely handled by the WiFi MAC of the gateway and TCP layer of the 

gateway resends the segments again and again for false timeouts because of high packet 

drop rate and high collusion in the wireless transmission media. 

 

Figure 5.12 illustrates the average RTT results obtained from first set of tests. When WiFi 

PER is 0.5, average RTT values are extremely higher than values when WiFi PER is less 

than 0.5. In addition, consecutive RTT values obtained from a client is larger and deviates 

in a longer interval when WiFi PER is 0.5 as depicted in Figure 5.13. The overall 

scalability analysis for the first group of tests reveal that when the number of simultaneous 

clients is limited to 40, the gateway model can be applied with WiFi PER which is less 

than 0.5. 

 

 

 
 

Figure 5.9. Average Goodput results of Service-2 Model Tests with different WiFi PERs  
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Figure 5.10. Average Response Time results of Service-2 Model Tests when WiFi PER is 

up to 0.4 

 

 

 
 

Figure 5.11. Average Response Time results of Service-2 Model Tests with different WiFi 

PERs 
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Figure 5.12. Average RTT results of Service-2 Model Tests with different WiFi PERs 

 

 

 
 

Figure 5.13. Consecutive RTT samples obtained from a client when N=40 for Service-2 

Model 
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Figure 5.14 illustrates average response time results when WiFi PER is less than 0.2. When 

N increases up to 80, the average response time results obtained from the tests of the same 

N are close to each other. However, when N is 160, a dramatic increase in average 

response time is observed. In addition, when N is 160, the average response time increases 

with increasing WiFi PER. If we examine the results of RTT, as illustrated in Figures 5.15 

and 5.16, we do not observe an significant change in RTT so this is not the reason for this 

dramatic change. 

 

However, if we examine results of the average number of packets collected in the queue 

(i.e. n), we observe a dramatic increase as illustrated in Figure 5.17. In addition, when N is 

160 and WiFi PER is 0.2, the birth-death period for the queue is extremely longer as 

illustrated in Figure 5.18. Since Formula 4.2 expresses that the average response time is 

dependent to n, dramatic increase in n means dramatic increase in the average response 

time. So the dramatic increase in average response time when N is 160 is due to this 

performance metric. As illustrated in Figure 5.18, although the birth-death period for the 

queue increases when N is up to 80, the whole enqueued request packets are served from 

server as time goes by. Hence, in overall, this analysis reveals that when WiFi PER is less 

than 0.2, this gateway model can handle 80 simultaneous clients for a stable operation. 

 

 

 

Figure 5.14. Average Response Time results of Service-2 Model when WiFi PER is up to 

0.2 
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Figure 5.15. Average RTT results of Service-2 Model when WiFi PER is up to 0.2 

 

 

 
 

Figure 5.16. Consecutive RTT results obtained from a client with Service-2 Model when 

WiFi PER is up to 0.2 
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Figure 5.17. Average Queue Size (i.e, n) of Service-2 Model when WiFi PER is up to 0.2 

 

 

 
 

 

Figure 5.18. Packet number changing in the queue of Service-2 Model when WiFi PER is 

0.2 
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5.2.2.2. Tests with Bursty Traffic Conditions 

 

In first group of tests with bursty traffic conditions, we evaluate WiSEGATE with different 

arrival rates when we are using an infinite queue in the gateway. Since the queue size is not 

limited, any one of the request packets is not dropped by the gateway. 

 

The Figure 5.19 illustrates the number of the request packets in the queue with different 

arrival rates when N is up to 40. It is clear that when r=1, the gateway has a stable behavior 

and the packets do not pile up in the queue. So, the average response times are not 

extremely high as depicted in Figure 5.20. 

 

When r>1, request packets start to pile up in the queue and this results with extremely high 

average response times as depicted in Figure 5.20. Hence, a bounded size queue could be 

used to limit the average response time. 

 

 

 

 

Figure 5.19. Packet number changing in the queue with different request traffic rate 
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Figure 5.20. Average Response Time results with different request traffic rate 

 

In second group of bursty traffic tests, we evaluate WiSEGATE with a bounded size 

queue. Figure 5.8 illustrates the results when the sensor data caching is not implemented in 

the gateway. Figure 5.21 gives the response time results and Figure 5.22 gives the drop rate 

of packets. As seen in Figure 5.21, response time increases as increasing size of the queue. 

Traffic rate is an important factor in increase of average response time. In addition, as 

traffic rate increases packet drop ratio increases. Thus, denser traffic results bounded size 

queue to reach its limits quickly and so more request packets are dropped by the gateway. 

 

The Fig. 5.23 illustrates comparative results of two queue handling mechanisms; in the 

first,  sensor data is not cached in the gateway and in the second, the sensor data is cached 

in the gateway. It is clear that the increase in bound of the queue results the response time 

to increase. When r≤3, using a caching mechanism slightly improves average response 

time. Note that using the caching mechanism on the gateway and dropping the packet have 

almost same effect when r=3. However, when r=4 caching worsens the average response 

time of the gateway by a factor 2. We can argue that, in bursty traffic conditions, WiFi 

cannot handle the multiclient request traffic because of high collision rates in the network 

and TCP resends the segments for false timeouts. 
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Figure 5.21. Average Response Time results in the queue with different request traffic rate 

when N=10 

 

 

 

Figure 5.22. Drop rate in the queue with different request traffic rate when N=10 
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Figure 5.23. Comparison of caching mechanism and non-caching mechanism with 

Response Time results 

 

5.3. REAL TESTBED 

 

For the experiments with a real test environment, the interconnection service layer logic is 

implemented in TelosB WSN nodes. These nodes use CC2420 radio transceiver [58] 

which is compatible with IEEE 802.15.4 radio channels for wireless communication. In 

addition, these nodes are compatible with TinyOS 2.0 [34] and NesC [59] language. A real 

testbed with a 4 hops chain topology is setup with these sensor nodes. This WSN is 

considered as a local IPv6 network and the local network addressing scheme of IPv6 is 

used to determine the sensor nodes. So the sensor nodes have unique IPv6 addresses with 

local IPv6 prefix FE80::/64 for the network identifier and 16-bit short address for the 

interface identifier. The 6LoWPAN datagrams are encapsulated in the default Active 

Messages of TinyOS [34]. 

 

The gateway logic of WiSEGATE is implemented in an Intel Core 2 Duo Machine with a 

3.00 GHz processor. This machine can communicate with the interconnected networks 

using the communication interfaces on itself. For the experiments, a test program is 

implemented on a remote machine which is on the same LAN with the gateway. Between 
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the remote machine and the gateway, Ethernet is used as the MAC protocol. The overall 

experiment scheme is illustrated in Figure 5.10. 

 

GATEWAY

HOP 1

HOP 2 HOP 3 HOP 4

WSNIP/ETHERNET

IP/ETHERNET

IP
/E

THERNET

PRESENTATION TIER SERVICE TIER WSN TIER

WEB SERVER

 

 

Figure 5.24. Real testbed interconnection scheme 

 

5.3.1. Response Time Tests 

 

The gateway logic of WiSEGATE is implemented in a Intel Core 2 Duo Machine with a 3 

GHz processor. This machine can communicate with the interconnected networks using the 

communication interfaces on itself. For the experiments, a test program is implemented on 

a remote machine which is on the same LAN of the gateway. Between the remote machine 

and the gateway, Ethernet is used as the MAC protocol. The overall experiment scheme is 

illustrated in Figure 5.24. 

 

Figure 5.25 illustrates the average, maximum and minimum response times obtained from 

each tests. The results show that the response time increases linearly as the number of 

simultaneous requests increase. In addition, end-to-end response time scales linearly with 

the increasing number of radio hops at WSN. 
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Figure 5.25. Response Time results obtained from real testbed scenario 

 

5.3.2. Round Trip Time (RTT) Tests 

 

In these tests, RTT is used to observe how both transmission media of WSN and web 

client-to-gateway behave. Figure 5.26. illustrates the time sequence of transmission of each 

TCP segment that is sent from the test program and the ACKs that are received from the 

gateway and WSN. 

 

 

 
 

 

Figure 5.26. Timing sequence for RTT tests in real testbed 
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On the remote client, a test program was implemented to divide a data stream into chunks 

that can fit into a standard TCP segment and send them to the server consecutively. During 

the tests, 50ms is introduced between consecutive sending operations. 

 

For the analysis, we have conducted tests in which clients send 50 consecutive TCP 

segments to the gateway and WSN which has up to four hops. Figure 5.27. illustrates the 

RTT results of the consecutive samples for increasing number of hops. RTT variations are 

due to the uncertain transmission behavior of the propagation media of the radio channels 

in WSN. As seen in this figure, RTT times between gateway and the client is constant 

because of the wired transmission medium between these hosts. 

 

 

 

 

Figure 5.27. RTT results of consecutive segment transmission for increasing number of 

hops 

 

5.4. COMPARISON OF WISEGATE 

 

The memory footprint of WiSEGATE is compared with memory usage of gateway-based 

models given in the Related Work Chapter. As mentioned earlier, these gateway models 

integrate IP to the resource constrained nodes with some conventional TCP/IP stack. The 
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sensor node maintains end-to-end reliable or unreliable communications with the help of 

the protocols of these stacks. On the other hand, WiSEGATE uses only a lightweight 

service layer which only handles 6LoWPAN datagrams and forwards the requests towards 

the destination node. In the proposed interconnection scheme, the gateway node maintains 

the reliability of the end-to-end connections between multiple clients and the sensor service 

on a WSN node. 

 

Table 5.5 gives the memory footprint comparison of WiSEGATE with uIPv6 and lwIP 

[28]. As seen from the table, if we use WiSEGATE in a TinyOS compatible node, at least, 

2 Kbytes of more memory is remained for other operations on this sensor node. Since 

WiSEGATE do not require memory usage for handling end-to-end reliable communication 

on a sensor node, it eliminates the uncertainity of the memory usage which a gateway 

model has for handling end-to-end reliable connections for multiple simultaneous clients. 

So, it guarantees its memory usage in a sensor node even multiple simultaneous clients 

access sensor data on this sensor node. 

 

Table 5.5. Memory footprint comparison results 

 

Function Code Size (bytes) 

Lightweight Middleware 2848 Bytes (ROM) 

 406 Bytes (RAM) 

uIPv6 5188 Bytes (Totally) 

lwIP 14588 Bytes (Totally) 
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6. CONCLUSION AND FUTURE WORK 
 

 

In this thesis, an interconnection model, named as WiSEGATE, addressing the seamless 

interconnection of multiple simultaneous clients in IP network to WSN is proposed. The 

current interconnection approaches for the proposed model is examined and a prototype of 

a new web server which supports three tier service scheme to access the physical data in a 

particular location by remote entities is developed. Our approach does not require any 

TCP/IP stack in a resource constrained node for end-to-end interconnection. For  

determining limits of the proposed model, firstly, we examined the steps for 

request/response mechanism and formulized the queuing system. By doing this, we derived 

a definition of the request traffic. For a bursty traffic, a caching mechanism was defined to 

obtain more reasonable response times. Secondly, we have performed tests in simulation 

and real testbed environment for proof of the concept. WiSEGATE can achieve reasonable 

response time up to 80 simultaneous connections when WiFi PER is less than 0.2. In 

addition, the comparison of the memory footprint for WiSEGATE have a good indication 

that the relieving the sensor node from a TCP/IP stack is important to gain more free code 

space. 

 

As a future work, we will extend the performance evaluation of the model with several 

scenarios. Firstly, we will evaluate the proposed model with a multi-hop WSN with 

considering dynamics of the network. Secondly, with a heterogenous network of static or 

mobile clients, we will evaluate the proposed service model. Then, we will examine 

dynamic caching models and derive a dynamic buffer and caching scheme for the 

evaluation of WiSEGATE in a bursty traffic. In addition, we will extend our work to 

observe interconnection model with different service traffics over WSN. For these 

observations, we will extend the gateway application to support different traffic types such 

as streaming a real time traffic between an RTP client and a sensor node. This study will 

aim to integrate our interconnection model with WMSN applications. 

 

In our model, we evaluated the gateway using a traffic scheme based on a request push to 

the WSN. It can be argued that this is a simplistic method for periodic data acquisition. 

However, our observations aim to evaluate the proposed approach with different traffic 
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rates of simultaneous client request on the front-end of the gateway and observe it with 

bursty traffic conditions. For the future work, we will integrate a forward server scheme to 

the proposed approach. This scheme will enable a sensor node to send periodic sensor data 

to remote entities without need of request push. With this scheme, when a client expects 

periodic sensor data acquisition from a sensor node, it will only send a structured message 

which represents this periodic sensor data acquisition expectation. 

 

In tests which we performed to observe the scalability of the proposed model, we used 

default TCP implementation defined for the wired networks. As a future work, we will 

examine several TCP implementations on sensor nodes and their performance and propose 

a new TCP implementation for end-to-end reliable communication for the interconnection. 

Also, we will extend our gateway-to-sensor node reliable communication mechanism 

considering the dynamics of the physical radio channels in WSN and MAC in the sensor 

node. 
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