

SEAMLESS INTERCONNECTION OF WSN AND IP NETWORKS

by

Kemal Çağrı Serdaroğlu

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Engineering

Yeditepe University

2013

iii

ACKNOWLEDGEMENTS

It is with immense gratitude that I acknowledge the support and help of my Professor

Şebnem Baydere. Her support and infinite tolerance were a big motivation for me.

I thank members of Wireless Network Laboratory, Summer 2013 Wireless Network

Laboratory Internship Trainers: Erman Gonul, Baturay Ozcan, Orhan Can, İlbey Kurt, also

Uğur Arpacı and Erdem Çakır for helping in development of this project. I thank Anıl Avcı

for his kindly support.

Finally, I would like to thank my family for their endless love and support, which makes

everything more beautiful.

iv

ABSTRACT

SEAMLESS INTERCONNECTION OF WSN AND IP NETWORKS

In this thesis, an interconnection approach, named as WiSEGATE (Wireless Sensor

Gateway), with addressing the end-to-end reliable interconnection problem between

multiple internet entities and sensor nodes is proposed. For the derivation of proposed

approach, firstly, we analyze the recent interconnection approaches and highlight their

advantages and disadvantages, secondly, we combine their advantages . A prototype of a

new web server which supports three tier service scheme with a data acquisition

mechanism of WSN to access the physical data in a particular location by remote entities is

developed. In the proposed model, an interconnection gateway handles operations required

for the interoperability. Since, this gateway maintains reliable TCP/IP connections of the

interconnected entities, the resource constrained sensor nodes do not require a TCP/IP

stack for handling end-to-end connections. A lightweight service layer is implemented on a

sensor node for operations required by the interconnection. The strength and novelty of the

proposed model lies in the fact that this lightweight service layer relieves extra memory

usage for end-to-end connection management. For determining the limits of the proposed

model, firstly, we examined steps for request/response mechanism and formulize the

queuing system. By doing this, we derived a definition of the request traffic. As a proof of

concept, we have performed comprehensive tests in simulation and real environments.

WiSEGATE can achieve reasonable response times up to 80 simultaneous connections

from remote entities to WSN when WiFi PER is less than 0.2.

v

ÖZET

KDA VE IP AĞLARININ KALICI OLARAK BİRBİRİNE BAĞLANMASI

Bu tezde, uçtan uca güvenilir bağlanma sorunu ele alınarak çoklu ve aynı zamanlı internet

varlıkları ile duyarga ağ düğümleri arasında kurulacak bir karşılıklı bağlantı modeli

önerilmiştir. Önerilen modelin ortaya çıkarılması için, birinci olarak, şimdiye kadar ortaya

atılmış karşılıklı bağlantı modelleri incelenmiş ve onların avantajları ve dezavantajları

ortaya çıkarılmıştır, ikinci olarak ise, avantajları birleştirilmesi suretiyle model ortaya

konulmuştur. İnternet varlıkları tarafından dünyanın herhangi bir noktasında fiziksel veriye

ulaşılabilmesi için KDAdan veri alımı mekanizmasına sahip olan üç aşamalı servis

modelini destekleyen yeni bir web sunucu prototipi geliştirilmiştir. Önerilen modelde, bir

ağ geçidi birlikte işlerlikle ilgili işlemleri uygulamaktadır. Bu ağ geçidi güvenilir TCP/IP

bağlantılarının sağlanmasından sorumlu olduğu için, kaynak kısıtlı duyarga ağ

düğümlerinde TCP/IP katmansal modeline ihtiyaç olmamaktadır. Ağların birbiriyle

karşılıklı olarak bağlanması gereken operasyonlar için duyarga ağ düğümlerinde

kaynakları fazla tüketmeyen bir katman kullanılmaktadır. Önerilen modeli güçlü ve

diğerlerine göre yeni kılan tarafı, bu katmanın duyarga ağ düğümlerini uç uca bağlantıların

sağlanması için gerekli olan fazla bellek kullanımından kurtarmasıdır. Önerilen modelin

limitlerinin görülebilmesi için, ilk olarak, sistemin istem ve cevap mekanizmasının

adımları incelenmiş ve bir kuyruk sistemi formülize edilmiştir. Böylece, kuyruk sisteminin

trafik tanımı ortaya konulmuştur. Modelin gerçeklenmesi amacıyla, bir dizi simülasyon ve

gerçek testler yapılmıştır. Önerilen model, WiFi paket kayıp oranı 0.2nin altında iken 80

tane eş zamanlı olarak çalışan internet istemcisine kadar düzgün çalışmaktadır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

ÖZET ... v

LIST OF FIGURES ... ix

LIST OF TABLES ... xiii

LIST OF SYMBOLS / ABBREVIATIONS .. xiv

1. INTRODUCTION .. 1

 1.1. Problem Definition .. 1

 1.1.1. Parameters Affecting Interconnection Performance .. 2

 1.1.2. Alternative Interconnection Approaches ... 3

 1.1.2.1. Proxy Based Approach... 3

 1.1.2.2. Gateway Based Approach .. 4

 1.1.2.3. Discussion .. 4

 1.2. Motivation and Aim .. 5

 1.3. Overview of the Proposed Model ... 6

 1.4. Contributions ... 9

 1.5. Organization of Thesis .. 9

2. RELATED WORK ... 11

 2.1. Interconnection Models .. 11

 2.1.1. Proxy Based Models .. 11

 2.1.1.1. Discussion .. 13

 2.1.2. Gateway Based Models .. 14

 2.1.2.1. Discussion .. 19

 2.2. Data Communication Standards.. 19

 2.2.1. 6LOWPAN Standard ... 19

 2.2.2. Application Layer Standards .. 21

 2.2.2.1. BinaryWS (Binary Web Services) ... 21

 2.2.2.2. CoAP (Constrained Application Protocol) .. 22

vii

 2.2.2.3. Discussion .. 24

3. WISEGATE .. 25

 3.1. Gateway Node ... 27

 3.1.1. Gateway Application .. 27

 3.1.2. Gateway Application for Sensor Web ... 29

 3.1.3. Adaptation Layer .. 32

 3.1.4. Adaptation Layer for Sensor Web ... 33

 3.2. Sensor Nodes... 34

 3.2.1. Interconnection Service .. 35

 3.2.2. Sensor Service .. 36

 3.2.3. WSN Service .. 37

4. TRAFFIC MODEL ... 38

 4.1. Operational Flow... 38

 4.2. TCP Operation .. 41

 4.3. Queueing Analysis .. 42

 4.4. Request Model .. 44

 4.5. Queue for Bursty Traffic ... 45

 4.6. Service Model of WSN ... 46

5. PERFORMANCE ANALYSIS .. 47

 5.1. Performance Metrics ... 47

 5.2. Simulation Environment ... 47

 5.2.1. Service Model-1 ... 50

 5.2.1.1. Effect of Service Rate .. 50

 5.2.1.2. Effect of WiFi PER .. 51

 5.2.2. Service Model-2 ... 55

 5.2.2.1. Scalability Tests in Stable Traffic Conditions 55

 5.2.2.2. Tests with Bursty Traffic Conditions ... 62

 5.3. Real Testbed .. 65

 5.3.1. Response Time Analysis .. 66

 5.3.2. Round Trip Time (RTT) Analysis ... 67

 5.4. Comparison of WiSEGATE.. 68

viii

6. CONCLUSION AND FUTURE WORK ... 70

REFERENCES .. 72

ix

LIST OF FIGURES

Figure 1.1. Proxy Approach .. 3

Figure 1.2. Gateway Approach ... 4

Figure 2.1. Interoperability model by Ting et al. [20] .. 12

Figure 2.2. Data inquiry flowchart by Ting et al. [20] .. 12

Figure 2.3. Motes, the tunneling daemon and internet by Harvan et al. [27]. 15

Figure 2.4. Interconnection scheme for Tiny TCP/IP by Han et al. [33] 18

Figure 2.5. TCP state diagram used in the sink node for Tiny TCP/IP by Han et al.

[33] ... 18

Figure 2.6. 6LoWPAN datagram types. (Figure from [5]) ... 20

Figure 2.7. Stack model and interaction scheme of BWS by Castellani et al. [3] 21

Figure 2.8. Connection scheme, dual stacks and interaction example for CoAP [47] 23

Figure 3.1. Service scheme for the proposed solution .. 25

Figure 3.2. Interconnection scheme of WiSEGATE .. 26

Figure 3.3. Gateway Application and User Agent .. 28

Figure 3.4. HTTP Message Parser in action. (Echo Example) ... 29

x

Figure 3.5. Payload Generator in action. (Echo Example) ... 30

Figure 3.6. Metadata Generator in action. (Echo Example) ... 31

Figure 3.7. Data Presenter Module in action. (Echo Example) .. 31

Figure 3.8. Adaptation Layer and Datagram Manipulator .. 32

Figure 3.9. Flow diagram for choosing datagram type ... 34

Figure 3.10. Interconnection scheme between Gateway and WSN node 35

Figure 3.11. State diagram of the service model of a sensor node ... 36

Figure 3.12. Sensor node stack models ... 37

Figure 4.1. Timing sequence of the request/response system ... 39

Figure 4.2. Timing diagram for a request ... 40

Figure 4.3. Overall system model and time costs ... 40

Figure 4.4. TCP operation for segments ... 41

Figure 4.5. Queue handling methods for busty traffic .. 46

Figure 5.1. Histogram for service time traces obtained from WSN simulation 49

Figure 5.2. Average Goodput results of Service-1 Model Tests... 51

Figure 5.3. Average Throughput results of Service-1 Model Tests 51

xi

Figure 5.4. Average Goodput Results of Service-1 Model Tests with different WiFi

PERs and service rate is 64kbps .. 52

Figure 5.5. Average Response Time results of Service-1 Model Tests with different

WiFi service rate is 64kbps ... 53

Figure 5.6. Consecutive RTT samples obtained from a client when N=40 and

service rate is 64kbps... 53

Figure 5.7. Consecutive RTT Samples obtained from a client when N=40 and

service rate is 250 kbps.. 54

Figure 5.8. Average Goodput results of Service-1 Model Tests with different WiFi

PERs and service rate is 250 kbps .. 55

Figure 5.9. Average Goodput results of Service-2 Model Tests with different WiFi

PERs .. 56

Figure 5.10. Average Response Time results of Service-2 Model Tests when WiFi

PER is up to 0.4 ... 57

Figure 5.11. Average Response Time results of Service-2 Model Tests with different

WiFi PERs ... 57

Figure 5.12. Average RTT results of Service-2 Model Tests with different WiFi

PERs ... 58

Figure 5.13. Consecutive RTT samples obtained from a client when N=40 for

Service-2 Model .. 58

Figure 5.14. Average Response Time results of Service-2 Model when WiFi PER is

up to 0.2 ... 59

xii

Figure 5.15. Average RTT results of Service-2 Model when WiFi PER is up to 0.2 60

Figure 5.16. Consecutive RTT results obtained from a client with Service-2 Model

when WiFi PER is up to 0.2 .. 60

Figure 5.17. Average Queue Size (i.e, n) of Service-2 Model when WiFi PER is up to

0.2 .. 61

Figure 5.18. Packet number changing in the queue of Service-2 Model when WiFi

PER is 0.2 .. 61

Figure 5.19. Packet number changing in the queue with different request traffic rate 62

Figure 5.20. Average Response Time results with different request traffic rate 63

Figure 5.21. Average Response Time results in the queue with different request

traffic rate when N=10 .. 64

Figure 5.22. Drop rate in the queue with different request traffic rate when N=10 64

Figure 5.23. Comparison of caching mechanism and non-caching mechanism with

Response Time results ... 65

Figure 5.24. Real testbed interconnection scheme... 66

Figure 5.25. Response Time results obtained from real testbed scenario .. 67

Figure 5.26. Timing sequence for RTT tests in real testbed .. 67

Figure 5.27. RTT results of consecutive segment transmission for increasing number

of hops ... 68

xiii

LIST OF TABLES

Table 1.1. Comparison of interconnection approaches ... 8

Table 2.1. Memory footprint for uIPv6 stack of Dunkel et al. [28] 16

Table 2.2. Memory footprint for lwIP stack of Dunkel et al. [28] 16

Table 2.3. Memory footprint for BACNet of Zhou et al. [32] .. 17

Table 2.4. Memory footprint for BWS (Castellani et al.[3]) ... 22

Table 5.1. WiFi parameters used at simulations .. 48

Table 5.2. TCP parameters used at simulations .. 48

Table 5.3. Application parameters used at simulations ... 49

Table 5.4. WSN parameters used at simulations ... 50

Table 5.5. Memory footprint comparison results .. 69

xiv

LIST OF SYMBOLS/ABBREVIATIONS

3G Third Generation

6LoWPAN Internet Protocol Version 6 over Low power Wireless Personal Area

Networks

DAD Duplicate Address Detection

GSM Global System for Mobile Communications

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

ICMPv6 Internet Connection Management Protocol Version 6

IETF Internet Engineering Task Force

IP Internet Protocol

IPv6 Internet Protocol Version 6

kbps Kilobits per second

Kbytes Kilobytes

LoWPAN Low power Wireless Personal Area Network

MAC Medium Access Control

MTU Maximum Transmission Unit

ND Neighbourhood Discovery

OS Operating System

PER Packet Error Rate

PMF Probability Mass Function

PHY Physical Layer

RAM Random Access Memory

RFC Request for Comment

ROM Read Only Memory

SIP Session Initiation Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

WSN Wireless sensor network

UDP User Datagram Protocol

WiFi Wireless Fidelty

xv

WMSN Wireless Media Sensor Networks

XML Extended Markup Language

1

1. INTRODUCTION

A new era of ubiquity is coming[1]. In this era, the computing view based on human

generated data is losing the ground to the physical data centric view of computing [2]. This

change bears the Internet of things paradigm. This paradigm is used for building the

technological backbone required to bring the traditional Internet concept to anything,

anytime and anywhere[3]. Internet of the real world requires the information autonomously

obtained from the observations, actions and events occur over time at particular locations

in the real world. Therefore, this concept highly demands with technologies with a tight

connection to the physical world [4-6].

Internet of the real world data requires highly deployed WSNs which are able to

interoperate with IP networks. The main reason for this that WSNs are usually deployed

for data acquisition and actuation mechanism for a physical phenomenon [2,7]. This

network augments the traditional IP with sensing services at a global scale [8]. In addition,

IP is the traditional communication standard used on internet hosts.

The interconnection with WSN and IP networks is necessary in several application

scenarios such as remote health-care systems [9], in-home healthcare monitoring [10],

activity monitoring [11] , agricultural yield control systems [12], industrial control systems

[13], safety monitoring systems [14], smart home environments [15,16], traffic control

systems [17], data center monitoring systems [18] and among others [4,8].

1.1. PROBLEM DEFINITION

Interoperability between WSN and IP networks is important for remote data acquisition

about a physical phenomenon. This can be achieved by the seamless interconnection of

WSN and IP networks. This is a challenging research problem since WSNs do not support

IP networks directly. So an indirect interconnection mechanism, in which an intermediate

gateway operates, is required between these networks. In addition, a data transformation

and adaptation scheme is necessary in such interconnection mechanism.

2

In this thesis, the end-to-end interconnection problem between multiple IP hosts and a

WSN node is addressed. To lay a ground for the proposed solution to this problem, the

factors which affect the interconnection performance are examined and the recent

approaches for the solution are elaborated in the following subsections.

1.1.1. Factors Affecting Interconnection Performance

Several factors affect end-to-end interconnection performance, its usability and

interoperability. These factors are summarized below:

 Packet Length: Today’s WSN technologies use small size frames due to low

bandwidth and unreliable physical channels between nodes. Since a WSN frame size

is much smaller than the minimum MTU of IP, a data fragmentation and reassembly

mechanism should be added in the interconnection mechanism.

 Bandwidth and Delay: A physical radio channel of WSN has about 250 kbps transfer

capacity due to low bandwidth. Thus, data transmission over a WSN channel

introduces higher delays.

 Loss Rates: Since a WSN node has low transmit power and because of the harsh

radio conditions of WSN, the transmission channels in WSN are more prone to noise

and interference. So, packet loss rates in WSNs are higher than in a typical wireless

IP network. Higher packet loss rates affect the end-to-end transmission performance

negatively. If a typical reliable data delivery protocol such as TCP is required in

connections between a WSN node and an IP host, this protocol will misinterpret the

packet loss as a congestion and packets will be resent due to false timeouts which is a

known problem for TCP over unreliable wireless links [19].

 Multi Hop Transmission of WSN: Low transmit power for WSN channels leads the

packets to travel in shorter distances. So, for acquisition of data in remote

environments, a multi hop data transmission scheme is used in a typical WSN. As the

number of hop increases in WSN, end-to-end delay between sink node and any one

of the remote sensor node increases. Thus, end-to-end transmission is affected

negatively in term of response time.

3

1.1.2. Interconnection Approaches

There are two basic categories of approaches for solving the interoperability problem[8].

First is the proxy-based approach [20] which simply separates the WSNs and IP networks

and lets WSN to operate its own dedicated protocols and a proxy server is used for the

interconnection. The second approach, named as gateway-approach [8,21], considers the

sensor nodes as the individual IP hosts and aims to interconnect these nodes to the IP hosts

with an end-to-end interconnection mechanism.

1.1.2.1. Proxy Based Approach

It is simple to resolve the interconnection problem through the setup of WSN-IP proxies

[20]. A WSN-IP proxy periodically acquire sensor data from WSN connected to its back-

end with using protocols dedicated to WSNs. Then it records the data obtained from WSN

to a relational database. For its front-end, it acts like a server and it responds clients with

the data in its relational database. In addition, data inquiry mechanisms may help the

proxies for an intelligent decision system. Figure 1.1 illustrates the connection scheme for

the proxy approach.

Figure 1.1. Proxy approach

4

1.1.2.2. Gateway Based Approach

Gateway based approach [21] aims to solve the interconnection problem with an end-to-

end communication scheme as illustrated in Figure 1.2. This approach considers the sensor

nodes as individual IP hosts. Thus, this approach aims to integrate the IP concept into these

nodes. For achieving this, sensor nodes require an IP communication stack on themselves.

With this approach, a data communication standard, named as 6LoWPAN, is defined for

the integration of IP to the sensor nodes [22]. In addition, this approach requires a gateway

node for the interconnection mechanism. An adaptation layer should be added between

layer-2 and layer-3 of TCP/IP stack for necessary packet transformation [22] on the

gateway.

Figure 1.2. Gateway Approach

1.1.2.3. Discussion

These approaches are basic definitive models for the solution of the interconnection

problem. These approaches have some advantages and disadvantages in their nature. The

former approach relieves sensor nodes from IP stack activities and it does not require extra

computational and storage resources of sensor nodes. Hence, the overall WSN only

operates protocols tailored to its constraints. In addition, a typical web server operation can

be applied on the proxies and a proxy can be configured with security and authorization

schemes for the multiple users [20]. However, this approach lacks a standardized

interoperability model so everyone can have their proxies and significant semantic

translations are required between those proxies [23].

5

For the latter approach, a direct end-to-end intercommunication model between IP and

sensor nodes is offered. In this model, a data adaptation standard [22] for the

interoperability is used. This standard requires an adaptation layer both in gateway and

sensor nodes. Whenever overall adaptation and interconnection mechanism is setup on

sensor nodes and the gateway, this approach can be easily used for the interoperability.

However, this approach requires IPv6 because it assumes the sensor nodes as individual IP

hosts and these nodes should have unique IP addresses [22]. It is difficult to realize this

with IPv4 because of its addressing space [23]. In addition, sensor nodes require extra

operations for the adaptation of the packets and an adapted TCP/IP stack in it. Moreover,

for a fully interactive sensor service, the sensor nodes require additional functionalities for

end-to-end connection management, application message coding and client session

management. For example, if any one of the sensor node is used as a multi client web

server, end-to-end TCP/IP connections should be maintained by the sensor node and HTTP

message coding mechanism should be added to these nodes. The overall operation for a

web server in a sensor node is a memory intensive and complex way to solve the problem.

Thus, this might lead unfeasible solutions for the sensor nodes because of their resource

constraint nature. In addition, gateway machine requires additional operations to extract

link layer frames and by-pass the unnecessary parts in it. This is an extra overhead for the

system.

1.2. MOTIVATION AND AIM

Considering the factors affecting interconnection design and approaches mentioned in the

previous section, a new approach combining these two approaches is proposed in this

thesis as an alternative solution for the interconnection problem. The proposed model has

the following design considerations.

 Small memory footprint for sensor nodes: Sensor nodes are resource constrained

devices and operations for IP interoperability and end-to-end connection

management require intensive resources. We can easily deploy a resource intensive

interconnection gateway as the intermediate node and since this interconnection

gateway handles such operations required for end-to-end connection management

6

between the client and a sensor node, we can relieve sensor nodes from these

resource intensive operations.

 Standardized Interconnection: Between interconnection entities, several packet

transmission and messaging standards should be operated. So, such network entities

which are in the interconnected heterogenous networks can interoperate with each

other.

 Application Gateway: A multi-client sensor service requires simultaneous session

management and message coding mechanism for these sessions. A web application

over TCP/IP is generally used for these operations. So an application gateway is

designed to handle simultaneous clients’ requests and for necessary semantic

translations between client messages and sensor node messages.

 Transparency of Underlying Network: Application gateway scheme mentioned

above is helpful to implement the server logic with a transparency of underlying

network. So this scheme can be easily operated over some network protocols such as

IP, GSM and 3G.

 Modular Gateway Design: The application gateway is responsible to handle various

application layer messages. A generic modular design for the application components

is helpful to extend the application gateway for operations with various application

layer protocols.

Considering the properties mentioned above, this dissertation aims to produce a new

interconnection mechanism at which multiple simultaneous remote clients can reach to the

sensor service seamlessly.

1.3. OVERWIEW OF THE PROPOSED MODEL

In this thesis, a hybrid interconnection mechanism named as WiSEGATE (Wireless Sensor

Network Gateway) which combines proxy and gateway approaches mentioned in the

previous section is proposed. It addresses the seamless interconnection problem

highlighted in Section 1.1. WiSEGATE design is composed of two functioning

components; an interconnection gateway and a lightweight service layer on WSN node.

7

WiSEGATE uses a new server scheme in which a WSN and the interconnection gateway

operate together as a web server. In this scheme, when a WSN is used to gather sensor data

from the environment for incoming requests from clients, an application gateway is used

for the interconnection. This gateway establishes connections between the sensor server

and multiple clients via TCP/IP socket interface. Then, it accepts incoming requests in the

form of application messages from the clients, exchanges the data between the

interconnected networks and make sensor data ready to service to the client. Additionally,

the interconnection gateway handles TCP connections between WSN and the clients

because of high loss rates in WSNs. If a sensor node handled the reliability of the

connections in itself, more false TCP timeouts would have occured due to high wireless

loss rates in WSN side. In addition, for this approach, the overall WSN is considered as a

local IPv6 network and the 6LoWPAN datagrams are used to carry sensor data between

WSN nodes and the gateway.

On the WSN side, the sensor nodes do not implement a TCP/IP stack. There are two

reasons for this with considering the resource constrained nature of the sensor nodes.

Firstly, TCP handles its connections independently and for each connection, it requires

computational and storage resources for this mechanism. Secondly, for each session of a

client, every server requires extra computational and storage resources. So, as the number

of simultaneous clients increases, extremely large number of resources will be needed in a

sensor node. Therefore, some studies [2,24] show that operating the TCP/IP over WSN is

not suitable for sensor nodes even for the small number of simultaneous clients. This

situation would get worse if we want to bring the sensor service to multiple simultaneous

clients. Since the sensor nodes are resource constrained devices, in our model, a

lightweight service layer is employed on sensor node for the interconnection.

Table 1.1 gives the comparison of WiSEGATE with proxy and gateway approaches. The

strength of WiSEGATE is that it handles reliability of the interconnection channels

between clients and WSN with the gateway and it relieves operations for TCP/IP and

application layer messaging in a sensor node for multiple simultaneous connections of

clients.

8

Table 1.1. Comparison of interconnection approaches

Proxy Based Approach Gateway Based Approach WiSEGATE

no TCP/IP activity on

sensor node

TCP/IP activity on sensor

node

IP activity on sensor

node

no TCP/IP stack TCP/IP Stack lightweight service layer

WSN: protocols for its

constraints

WSN: Protocol for IP and

WSN constraints

WSN: protocols for its

constraints

Proxy: Multiclient web

server

Gateway: data adaptation.

Sensor Node: Server

Gateway: Multiclient

web server, data

adaptation

End-to-end

interconnection to proxy

End-to-end interconnection

to sensor node

End-to-end

interconnection to

sensor node

Web server logic on

proxy

Web server logic on sensor

node

Web server logic on

gateway

Sessions for semantic

translation.

No semantic translation,

direct messaging to clients

Sessions for semantic

translation

Reliability: between

proxy and client by

proxy

Reliability: between sensor

node and client by sensor

node

Reliability: between

sensor node and client

by gateway

9

1.4. CONTRIBUTIONS

Considering the problem highlighted in Section 1.1 and the specification of the model

defined above, the following contributions are made: An interconnection model is designed

combining the traditional three-tier server approach with a data acquisition mechanism of

WSN. A gateway operation model is designed for the interoperability and adaptation of

interconnected networks. In this approach, since TCP/IP connections are maintained by the

gateway node, TCP/IP adaptation is not required in sensor nodes. In this model, while

sensor data requests from multiple number of clients are served from this gateway with

application message protocols, a lightweight data acquisition and adaptation mechanism is

used in WSN side. The data can be obtained from WSN and viewed easily using a web

browser from the client side.

For the proof of concept, a series of comprehensive tests are performed in a simulation

environment to investigate the scalability of the WiSEGATE with increasing number

simultaneous clients in a wireless transmission environment. A Poisson-based traffic

model is defined and used to generate a constant bit rate (CBR) request traffic. With stable

and bursty request traffic, the performance of the multiple TCP connections over

WiSEGATE is observed in a WLAN.

Moreover, the performance and implementation costs of the proposed interoperability

model is evaluated on a real implementation environment. For this, a real WSN testbed

with Telos equivalent TmoteSky nodes is constructed. This testbed is connected with

multiple web clients via a gateway machine which implements the proposed gateway

model. Several performance tests have been done and early performance results for the

proposed approach in the real environment have been obtained. This preliminary study is

accepted as a publication [6].

1.5. ORGANIZATION OF THESIS

The rest of the thesis is organized as follows: Chapter 2 presents the related work,

categorizing the studies in terms of interconnection models, data communication standards

and gateway performance aspects. In Chapter 3, the operational units of the proposed

10

interconnection model are introduced. Chapter 4 explains the traffic model which is

derived for the performance analysis of WiSEGATE in a simulation environment. In

Chapter 5, the performance analysis of the WiSEGATE is presented. Lastly, Chapter 6

presents the conclusion and the future work for the thesis.

11

2. RELATED WORK

In this chapter, background information and the state of art are introduced. In Section 2.1,

the interconnection models used by several studies are provided. In Section 2.2, several

data communication standards which specify transmission of data technique in the

interconnected networks and way of interpretation for data in network entities are

presented.

2.1. INTERCONNECTION MODELS

Proxy and gateway approaches are implemented with several interconnection models.

These models have specific design considerations such as data collection scheme,

interconnection method, implementation area of the models, data adaptation and the

implementation method in those models.

2.1.1. Proxy Based Models

For the proxy approach, there are two common patterns used in the models for collection

of data [20]. First pattern is the forward-server and second is the front-end server. For the

former, the data is forwarded directly and a database in the proxy is not necessary. For the

latter, it is necessary to use a database for the collected sensor data and these data are used

to provide services, in analysis, management and inquiry. The physical data can be

obtained using SQL queries or a web browser from the client.

Ting et al. [20] use a proxy approach for the interconnection in their work. As presented in

Figure 2.1, this work uses user agents (UA) for the connection between clients and the

proxy. When a client requests data from the WSN, a UA is established for this request.

This UA sends the request to the Resource Management (RM) module. This module is

responsible for the data inquiry from the WSN. This module gets recent data from the

database (DB) at the proxy or with the help of a transceiver (TR) module, it gets the fresh

data from the WSN. The data inquiry flow which expresses their implementation for proxy

is depicted in Figure 2.2.

12

TCP/IP

UA1

UA2

UAn

RM

DB

TR

Proxy

Server

WSN

Figure 2.1. Interoperability model by Ting et al. [20]

UA Registration
User Agent

Resource

Management

Data in

database

Database

Transceiver

TCP/IP

WSN

Y

N

1

2

3

4

5

6

1

2 Data check in DB

3 Aquire data from WSN

4 WSN Response to TR

5 Update DB

6 Data to UA

Figure 2.2. Data inquiry flow chart by Ting et al. [20]

13

Chen et al. [25] present a prototype of a smart gateway which operates as a proxy for the

WSN. This smart gateway is built for indoor health care systems and provides

interconnection and services management platform. It is compatible with an on-board data

decision system and a database which enable to make the patient’s health state decision in

the proxy. The proxy model is divided into two models: simple model and intelligent

model. In so called simple model, the proxy acts as a forward-server and the proxy only

forwards health state data to the health-care centers. In the second model, proxy has a

decision making mechanism and acts as a front-end server. This decision making

mechanism is used to detect real time health state of the elderly people for remote health-

care.

Narmada et al. [26] present an intelligent parking guidance and management system which

uses a proxy for the interconnection. This system is based on gathering data from sensor

nodes which determines the free slot of the parking area and forwarding them to the some

operational units such as a motorized barrier control, a ticket machine, a help console, a

sign boards, a GSM modem and the internet. There is no requirement for any external data

storage since this proxy uses forward-server approach.

2.1.1.1. Discussion

Proxy based models are important to examine the interoperability behavior of the proposed

model. A User Agent or a session management module in the proxy is important for

semantic analysis for the requests. WiSEGATE can be considered as a proxy because it

does a semantic analysis of the request messages coming from simultaneous clients in its

session management modules (i.e., user agents). It can interpret the request messages and

create a byte-coded representation of these messages. In addition, for a response, it

interprets the byte coded data coming from the WSN and creates application messages

with this byte coded data. However, WiSEGATE cannot also be considered as a proxy

since, a client application establishes end-to-end connection to the sensor service on the

sensor node rather than to a user agent in the proxy. User agent in the proposed model

forwards the request message with its byte coded representation to the WSN.

14

2.1.2. Gateway Based Models

Gateway based approach provides an end to end interconnection mechanism between

clients and sensor nodes. This mechanism needs two operational units for the

interconnection. The former is the adaptation layer in a gateway machine [22]. The latter is

an adapted communication stack on sensor nodes. This stack is used to handle various

communication protocols for the end to end interconnection of sensor nodes and clients

and the gateway.

The studies in [27-33] aim communication stack design for sensor nodes. The main

property of these stacks is the compatibility of 6LoWPAN [22]. These so-called

6LoWPAN stacks aim to adapt sensor nodes to IPv6.

Harvan et al. [27] introduced a 6LoWPAN stack specifically designed for TinyOS 2.0

operating system [34] and tested on TelosB [35] and MicaZ [36] sensor nodes. This stack

supports UDP transport protocol on sensor nodes and necessary header compression

schemes of 6LoWPAN [11]. For the design of the gateway, as seen in Figure 2.3., an

adaptation mechanism requires a tunneling daemon and Tun device [37] to bypass link

layer frames. This mechanism is required to extract necessary data from the frame and do

necessary data transformation.

15

Figure 2.3. Motes, tunelling daemon and Internet by Harvan et al. [27]

Blip (Berkeley IP Information) [38] is another 6LoWPAN stack which is an

interconnection model coded for TinyOS 2.1.1 [39]. Blip uses UDP as the transport

protocol and includes IPv6 neighbour discovery (ND) [40], default route selection, point-

to-point routing and network programming support.

Dunkels et al. [28-31] introduced uIPv6 (microIPv6) and lwIP (lightweight IP) stacks for

IP based sensor nodes. Their work is among the first to be recognized for integration TCP

to the sensor nodes for end-to-end reliable communication. When uIPv6 were designed for

small devices, lwIP supports extra IPv6 operations such as ICMPv6, ND and DAD. These

stacks were integrated in Contiki OS [41]. A memory usage analysis have been done for

these stacks. The results are given in Tables 2.1 and 2.2. The values in these tables exclude

the memory usage by the hardware drivers, 802.14.5 PHY and MAC, 6LoWPAN with

16

fragmentation and header compression, Contiki OS implementation. If those values are

added, for the uIPv6, total memory usage reaches to 39K.

Table 2.1. Memory footprint for uIPv6 stack (Dunkels et. al [28])

Function Code Size(bytes)

Check Summing 464

IP, ICMP and TCP 4452

Total 5188

Table 2.2. Memory footprint for lwIP stack (Dunkels et. al [28])

Function Code Size(bytes)

Memory Management 2512

Checksumming 504

Network Interfaces 364

IP 1624

ICMP 392

TCP 9192

Total 14588

High packet drop rates are common in wireless networks because of high error rates in the

transmission medium. Since TCP always interprets packet drops as a sign of congestion, it

misinterprets a packet drop which is a result of bit error as a sign of congestion. So in a

wireless network which has a harsh radio conditions (e.g., WSN), TCP will decrease the

sending rate, even though congestion does not occur in the network [19]. Therefore, end-

to-end data recovery performance for interconnection is affected with this paradigm,

especially in the gateway models. Dunkels et al. [42] extends the lwIP stack with a data

recovery method named as Distributed TCP Caching (DTC). DTC was mainly designed

for error recovery on the communication stack of the sensor nodes. In DTC, each data

segment is cached in an intermediate node. When a data segment is lost, the cached

segment is sent with local retransmissions rather than an end-to-end retransmission of the

segment. For higher performance, in their model, they devise a node selection algorithm

17

for determining cacher node for a segment. They did a packet load analysis of nodes with

detecting number of packets sent in each node. This analysis show that DTC reduces the

load of the node.

BACNet [32] is an extension of uIPv6 stack which is the interoperability model for remote

building automation and control. It is used to collect information from other devices or

objects (read property), command a device to execute a particular operation (write

property) and notify the occured event to the device. The memory footprint analysis of

BACNet is given in Table 2.3.

Table 2.3. Memory footprint for BACNet of Zhou et. al [32]

Read

Property

Write

Property

Memory Consumption

ROM (Bytes) RAM (Bytes)

No No 30356 2564

Yes No 35765 3042

Yes Yes 39743 3341

Han et al. [33] introduces a subset of TCP/IP stack for sensor nodes, which they call Tiny

TCP/IP. In this interconnection model, full functionality of the TCP/IP protocol suite is not

implemented. Figure 2.4 illustrates the architecture of their design. As seen in this figure,

in a WSN cloud, there could be a sink node, mobile nodes and fixed nodes. The application

layer is only implemented in the sink node for handling request of a client. UDP is used as

the transport protocol between the sink node and other nodes in the WSN. Their model

supports mobility for the sensor nodes and SIP is implemented in those nodes.

They excluded some propoerties of Network Layer, Transport Layer and Application

Protocols in TCP/IP protocol suite for their design. The most important exclusion had been

done in the TCP. The Figure 2.5 illustrates the reduced TCP state diagram for a connection

established between their sink node model and a client. Tiny TCP/IP uses 11.6 Kbytes of

code to accomplish its tasks.

18

Figure 2.4. Interconnection scheme for Tiny TCP/IP by Han et al. [33]

Figure 2.5. TCP state diagram used in sink node for Tiny TCP/IP by Han et al. [33]

19

2.1.2.1. Discussion

These models use end-to-end interconnection scheme and the gateway is used for data

adaptation and packet forwarding toward the destination node. A sensor node should

handle the incoming packets in its communication stack using specifically designed

protocols and it requires extra operations for the interconnection. The memory usage

results given in tables show that gateway models need require resources on a sensor node.

In the presented analysis of the models given above, any analysis for evaluation of these

models with a simultaneous multi-client request traffic was not found. So we cannot

comment about their memory usage on a sensor node when simultaneous multi-clients

request sensor service from it. On the other hand, our interconnection model eliminates this

uncertainity with handling simultaneous end-to-end connections on the interconnection

gateway.

Since WiSEGATE aims to solve the interconnection problem with a end-to-end connection

scheme, the proposed model can be considered as a gateway model. As mentioned earlier,

instead of using a protocol stack in a sensor node, a lightweight service layer is used for the

interconnection operations in WiSEGATE. The memory usage analysis of this layer is

given in memory comparison section in Chapter 5.

2.2. DATA COMMUNICATION STANDARDS

Several studies focus on data communication standards for the interoperability. These

standards specify the packet formats, the data adaptation scheme of the interconnection, the

messaging scheme for the interconnection entities.

2.2.1. 6LoWPAN Standard

In RFC 4644 and RFC 6282 [22,43], the IETF working group had introduced an

interconnection standard for IPv6 networks and LoWPANs. This is called 6LoWPAN

standard and used in a broad research community for solution of the interconnection

problem. As mentioned earlier, this standard is generally used in the gateway-based

solutions.

20

The 6LoWPAN standard mainly focuses on the frame formats for transmission of IPv6

datagrams on LoWPANs and IPv6 addressing scheme [44] for the nodes in a LoWPAN

[22]. Since minimum MTU for IP datagrams is 1280 octets and the remaining size for a IP

datagram in an IEEE 802.15.4 frame is 81 octets, a data fragmentation and reassembly

mechanism are introduced for the interconnection. So this standard requires an adaptation

layer below IPv6 in the TCP/IP protocol suite for this operation. In addition to this, to carry

large amount of data for an application message which is going to be inserted in a

LoWPAN frame, header compression mechanisms are introduced for eliminating the

unnecessary and redundant infromation in a IPv6 datagram. In addition, 6LoWPAN

standard supports multihop transmission of a LoWPAN frame, so this standard defines a

multihop data transmission mechanism for 6LoWPANs. Figure 2.6 illustrates the frame

formats defined in 6LoWPAN standard. As seen in this figure, four different frame formats

are defined to support fragmentation and multi hop frame handling mechanism of the

adaptation layer. Every type of frame has its own 6LoWPAN datagram header to specify

the operation which should be carried out for it. Creation mechanism of such datagrams

and the overall adressing scheme for the IPv6 sensor nodes which is included in the

standard are introduced in detail in RFC 4644 [22].

Figure 2.6. 6LoWPAN datagram types (figure from [5])

21

2.2.2. Application Layer Standards

2.2.2.1. BinaryWS (Binary Web Services)

Castellani et. al. [3] introduce a REST (Representational State Transfer) standard, named

as BinaryWS (BWS), which is used to deliver byte coded data in an application message.

This byte coded data represents the compact form of a Web Service message in which the

sensor node response is carried. This work was the part of the SENSEI project [45] which

is a pan-european testbed for IoTs in the global scale network.

(a) Dual Stack Model used by Castellani et al. [3]

(b) Interaction Scheme for BWS.

Figure 2.7. Stack model and interaction scheme of BWS by Castellani et al. [3]

22

As illustrated in Figure 2.7-a, BWS uses a dual stack in the gateway machine. The stack of

the back end operates for the LoWPAN. BWS Plug-in of this stack converts XML

messages into BWS messages and sends them to wireless node on LoWPAN. An example

of interaction of BWS between a wireless node and the gateway is given in Figure 2.7-b. It

is clear that the front-end of the gateway is a traditional web service interface and XML

and HTTP [46] are used to carry web service messages between the gateway and the

clients. BWS messages are converted to XML messages by the BWS Plug-in.

BinaryWS had been implemented with several 6LoWPAN stacks. The table 2.4 gives the

ROM/RAM utilization of BWS on those stacks. BWS costs 19K in a TinyOS [34]

compatible sensor node which operates blip [38] as 6LoWPAN Stack.

Table 2.4. Memory Footprint for BWS (Castellani et al. [3])

Component

Memory Consumption(bytes)

TinyOS ContikiOS

ROM RAM ROM RAM

TinyOS + 802.15.4 10816 332

UDP/6LoWPAN (blip) 5182 1936

Contiki + IPv6/802.15.4 (uIPv6)[17] 40960 3024

libBWS (BWS logic)[3] 2950 326 1454 0

Total 18948 2594 42414 2858

2.2.2.2. CoAP(Constrained Application Protocol)

CoRE (IETF Constrained RESTful Environments working group) defines CoAP [47]

which is a REST standard for resource constraint devices. With the help of CoRE, these

devices can communicate with network nodes which use HTTP messaging.

Figure 2.8-a illustrates the communication scheme for CoAP. CoAP uses a proxy between

constrained environments (e.g. a WSN) and internet. With the help of the CoAP proxy,

HTTP server in the internet cloud can communicate with a resource constraint node. A

CoAP proxy operates a dual stack for interconnection. The elements of this dual stack is

23

illustrated in Figure 2.8-b. In addition, HTTP server can use CoAP to communicate

directly with a resource constrained device by using an external application in it.

Within UDP headers, CoAP uses a four byte binary-header followed by a sequence of

options. In its payload, it uses familiar four HTTP request methods: GET, PUT, POST and

DELETE. The resources (i.e., the constrained device) are identified with URIs (Universal

Resource Identifiers) which is a well-known resource identifier method for RESTful

services.

(a) Connection Scheme of CoAP

(b) Stacks used by CoAP

(c) Interaction Example for CoAP

Figure 2.8. Connection scheme, dual stacks and interaction scheme for CoAP

24

On the resource constrained device, CoAP operates UDP for transmission of application

data. Since the data transmission is unreliable, CoAP provides an timeout mechanism for

retransmission of lost packets, as illustrated with the interaction diagram in Figure 2.8-c.

CoAP had been integrated for several constrained environments. Colliti et al. [48] had

studied the integration of CoAP to WSNs. In [49], Chander et al. had given the

specification of CoAP based integration model for Web of Things (WoT) [50]. Laum et al.

[51] had specified an architecture for augmenting CoAP in wireless cellular systems.

Rajesekaran et al. [52] had introduced a remote toll gate system which uses CoAP for

messaging. Chatzigiannakis et al. [53] had studied for a CoAP based network self-

configuration tool integrated for IoT of consrained environments. Park et al. [54] had

presented a CoAP based method for monitoring 6LoWPAN testsbeds.

2.2.2.3. Discussion

These application layer standards determine the interoperability between the gateway node

and the destination node which gathers sensor data from the environment. Gateway node

uses a dual stack in which the first stack accepts incoming connections and requests in the

form of HTTP messages from clients and second stack interprets the messages in well

known XML and HTTP formats and creates compact representations of them. In addition,

the second stack operates UDP for connection between the gateway node and the

destination sensor node.

WiSEGATE has an interoperability scheme as in the connection models developed for

these application layer standards. However, when it is configured as a web server, it

eliminates all HTTP headers in an HTTP message and with the help of a pre-determined

data structure, it creates a byte coded representation of the request in that message. Since

connection channels between a sensor node and the gateway is unreliable, the proposed

model has a timeout mechanism in the gateway like in CoAP to maintain a reliable

communication over WSN.

25

3. WISEGATE : WIRELESS SENSOR NETWORK GATEWAY

This chapter describes the components of WiSEGATE. As shown in Figure 3.1,

WiSEGATE is based on the design of the service scheme in which the whole WSN and the

gateway operate as a web server together. WiSEGATE uses an application gateway which

operates over TCP/IP for multiple clients. This application uses an adaptation layer for

transformation of data packets to be understood in each networks. In addition, for the

adaptation of sensor nodes to this application gateway, a lightweight middleware is

designed. With WiSEGATE, multiple remote clients are able to reach any sensor data over

WSN without the need of an external storage.

Figure 3.1. Service scheme for the proposed solution

Figure 3.2 illustrates the whole scheme of the request/response system. As seen, the system

has three tiers which are the presentation, service and the WSN tiers. In this three tier

model, a WSN node is the physical data acquisition device for the server and the whole

WSN is used to gather physical data in a particular area. This data gathering mechanism is

a data tier for the server and it can be specifically called as the WSN tier.

The gateway node is responsible for replying the sensor data requests coming from the

clients and request the sensor data from the WSN tier. Thus, gateway provides the service

26

tier functionality. The application under the client serves the function of the presentation of

the data and this tier is called as the presentation tier similar to traditional server-client

model.

APPLICATION

(end-user component)

TCP SOCKET INTERFACE

GATEWAY APPLICATION

ADAPTATION LAYER

SERIAL INTERFACE

W
S

N
 T

IE
R

S
E

R
V

IC
E

 T
IE

R
P

R
E

S
E

N
TA

TI
O

N
 T

IE
R

APPLICATION PROTOCOL

LightWeight Protocol

WSN

Figure 3.2. Interconnection scheme of WiSEGATE

3.1. GATEWAY NODE

Gateway node is the network unit which is used to exchange packets between WSN and IP

networks. It has an adaptation layer which is responsible for transforming packets to be

understandable in each interconnected network. In addition, the gateway node maintains

the established TCP/IP connections.

27

In our model, gateway handles application messages arriving from clients via IP network.

Thus, it is responsible for handling various application protocols such as HTTP so it uses

various network applications. Each application operates on a specific port for the protocol

and handles incoming messages under it. For example, if the gateway operates as a web

server, it uses HTTP messaging protocol, port 80 over the socket interface and TCP as the

transport layer protocol.

For its operation, the gateway should communicate with both WSN and IP networks. So,

communication interfaces are required by the gateway node. These communication

interfaces are used to send/receive data packets to/from the corresponding network. For the

communication with IP, TCP/IP socket interface is used and for the communication with

the WSN, serial communication interface is used.

The gateway has the following components. It has the gateway application and the

adaptation layer. These components are described in the following sections.

3.1.1. Gateway Application

WiSEGATE communicates with clients via various application protocols. It exploits the

request messages in the form of these application protocols to understand the service

expected from the WSN server. Hence, various gateway applications are designed to

handle these application layer protocols. The common form for gateway application design

in WiSEGATE is illustrated in Figure 3.3. These gateway applications are the combination

of user agents that are handling the requests coming from the clients. Each user agent

represents one remote client which connects to the server and waiting for the sensor

service.

28

U

A

U

A

U

A

U

A

GATEWAY APPLICATION

.

ADAPTATION LAYER

D

M
D

M

D

M

D

M

APPLICATION

MESSAGE

PARSER

PAYLOAD

GENERATOR

CLIENT

MESSAGE

GENERATOR

METADATA

GENERATOR

USER AGENT (UA)

Figure 3.3. Gateway Application and User Agent

A common form of a user agent is illustrated in Figure 3.3. A user agent operates with two

steps for handling incoming messages from the IP network. In the former, Application

Message Parser Module in User Agent decomposes incoming application messages into

the understandable parts. These parts are used for determining the service and its options.

In this step, the User Agent specifies if this service requires any response from WSN or

not. If so, in the latter, Message Generator Module in User Agent creates the byte coded

query into a payload. In addition, this module adds a byte coded label to this payload. This

byte-coded label is the query id obtained from the gateway application and the right user

agent is specified with this label in a response. So, this field cannot be changed in a

transmission of a packet. After creation of the payload, the user agent specifies the

destination node. Then, the destination node information and the payload are sent to the

adaptation layer.

User Agent operates with two steps for outgoing messages to the IP network. In the

former, user agent extracts the byte coded payload from the datagram coming from the

adaptation layer. Then, with using the byte-coded data in this payload, metadata generator

29

module specifies the data parts of the response and prepare a metadata table for the

response message. In the latter, client message generator module generates a response

message with this metadata table.

3.1.2. Gateway Application for Sensor Web

In this section, the gateway application specified for a sensor service which uses HTTP for

presentation is discussed. This gateway application is composed of user agents which

accept the client requests in the form of HTTP messages and present the sensor data with

HTTP messages.

As illustrated in Figure 3.4, for the service and its options, HTTP message received from

the web client (i.e. browser) is parsed and its GET query part is extracted. Then, from the

GET query, some operational parts are extracted. Firstly, these operational parts are used to

determine the service type. Then, with help of the service definition table specified for this

requested service, the meaning of other parts are determined. These parts are then sent to

the payload generator module for further operations.

http://.../wsnecho?query=RESP&nodeid=1(Browser Message)

GET /wsnecho?query=RESP&nodeid=1 HTTP/1.1 ...(HTTP Message)

wsnecho?query=RESP&nodeid=1(Parsed Message)

wsnecho query=RESP nodeid=1

Service type

RESP

Application Message
1

Node ID

service: wsnecho

query_key: query

nodeid_key:nodeid

data structure: Echo_Request

(Service Definition)

Parse HTTP Message and

get query part

Figure 3.4. HTTP Message Parser in action. (Echo example)

When the necessary data parts are parsed in an HTTP message, the payload generator

module creates the payload for the adaptation layer. As seen in Figure 3.5., this module

30

creates byte-coded payload in the sequence of data structure pre-determined for the request

of the service. In this payload, it adds a byte coded query id to let the system to determine

the right user agent in a response. After the payload is generated, a datagram manipulator

is allocated at the adaptation layer and the payload is sent to this datagram manipulator.

wsnecho

Service type

RESP 1

Application Message Node ID

1 52|45|53|50|

QUERYID ADDED

5d|1|4|52|45|53|50

(queryid=5d)

(Generated Payload)

4(Byte Codes) (in HEX)

(to adaptation layer)

Echo_request{

byte queryid;

byte servicetype=1;

byte echo_length;

char[100] message;

}

(Data Structure)

Figure 3.5. Payload Generator in action. (Echo example)

The response mechanism of the gateway application to HTTP requests is as follows: When

the payload containing the response from the WSN node reaches to one of the user agents

from the adaptation layer, for the first step, the data parts in the byte coded data are

extracted by the metadata generator module. Then, these data parts are used to generate the

metadata table for the further step in the data presenter module. This mechanism is

illustrated in Figure 3.6.

31

(payload)

(coming from adaptation layer)

Response of echo

res: RESP

(metadata table)

Echo_Response{

char[] res;

}

52|45|53|50

(structure for response)

(to client message generator)

5d|1|4|52|45|53|50

Figure 3.6. Metadata Generator in action. (Echo example)

After the metadata table and the response type are prepared, the data presenter module

generates the HTTP message with using metadata table and response type as seen in Figure

3.7. The response type helps the data presenter module to generate right response HTML

message. After the response message is generated in an HTTP message, it is sent to the

remote client which is connected to this user agent.

Response of echo res: RESP
(generation of presentable

HTTP message)

HTTP/1.1 200 OK

...

<html><body>RESP</body></html>

<html>

<body>

#{res}

</body>

</html>

(page: echo)

Figure 3.7. Data Presenter in action. (Echo example)

32

3.1.3. Adaptation Layer

The adaptation layer in WiSEGATE is used to transform packets to be understandable by

sensor nodes and the gateway application. This layer has two functionalities to exchange

data packets. The former is to encapsulate payload coming from the gateway application

into a data packet understandable by the sensor nodes. The latter is to extract the payload

in the packet coming from a sensor node. The packet format for these operations is

determined by the interconnection protocol used between the sensor nodes and the

adaptation layer itself. For example if the interconnection protocol defined in RFC 4644

[22] is used, then 6LoWPAN datagrams are used to carry the payload between the gateway

and the destination sensor node.

D

M

D

M

D

M

D

M
.

RECEIVE BUFFER SEND BUFFER

ADAPTATION LAYER

DATAGRAM

ENCAPSULATOR
DATA EXTRACTOR

DATAGRAM MANIPULATOR(DM)

Figure 3.8. Adaptation Layer and Datagram Manipulator

33

As seen in Figure 3.8, the adaptation layer consists of datagram manipulators to create the

datagram and extract the payload in the datagram. The datagram encapsulator module is

used to create datagrams. This module determines the requirement for the routing of the

payload over WSN using destination address. In addition, this module determines the

necessity of the fragmentation of the payload. For this, it calculates the size of the payload.

These criteria are used to create the appropriate datagram in this module. After the

datagram is created, it is sent to a common send buffer by the datagram encapsulator

module. Since the datagram manipulators operate concurrently with threads, the

synchronization between these threads is required when they acquire the common send

buffer. So a mutual exclusion mechanism is used for synchronization.

Whenever a datagram is taken from the send buffer at the adaptation layer, the payload of

the datagram is extracted using datagram manipulator’s data extractor module. Then it is

sent to the right waiting user agent.

3.1.4. Adaptation Layer for Sensor Web

In this section, an adaptation layer design for the sensor web is presented. For the WSN tier

of the web server, a 6LoWPAN based interconnection mechanism is used. Thus, the

modules under the datagram manipulator handles 6LoWPAN standard.

As illustrated in Figure 3.9, firstly, the address of the destination node is looked up to

determine if it is directly reachable or not. After that, the requirement of the fragmentation

is determined. A suitable datagram format is chosen after these operations and the payload

is encapsulated in a 6LoWPAN datagram. Then, this datagram is sent to a common

sending buffer.

Whenever the datagram is taken from the common sending buffer, it is encapsulated in an

Active Message packet and an 802.15.4 frame to be understandable by sensor nodes. Then

it is sent to the WSN.

34

PAYLOADNode Directly

Reachable?

NODE ID

NOYESPAYLOAD

Is

fragmentation

necessary?

Is

fragmentation

necessary?

NOYESYES NO

Create Single Hop

No Frag.

Datagram

Create Single Hop

Frag. Datagram

Create Multi Hop

Frag. Datagram

Create Multi Hop

No Frag.

Datagram

Figure 3.9. Flow diagram for choosing datagram type

For the messages coming from the WSN, the data extractor module firstly determines if the

destination is the gateway or not. If so, it determines if the reasseambly of the data is

necessary. Then it extracts the payload from the datagram and it creates the understandable

data by the gateway application and forwards these data to the gateway application.

3.2. SENSOR NODES

In this thesis, sensor nodes are the sensor data acquisition devices for WiSEGATE. As

mentioned earlier, operation of these devices are specifically called as the WSN tier. This

tier has two operations. In the former, one sensor node in WSN tier only determine the

requirement of the routing of a packet and they do not extract the sensor request in that

packet. For this operation, the sensor nodes use the destination address information for

routing. In the latter, a sensor node requires the request data in the payload for creating the

response.

For the operations in WSN tier, two types of sensor nodes are defined. The former is

named as the intermediate node and used for the first operation. The latter is named as the

35

destination node and used for the second operation. Any one of the sensor node in a WSN

can be in one of the intermediate node or a destination node both. The destination node is

determined with the destination address information in the datagram.

In the following sections, the design issues for the overall WSN tier is discussed. Firstly,

the interconnection service is presented and secondly, the response mechanism of the

sensor nodes is presented. Then overall service under the sensor nodes is discussed.

3.2.1. Interconnection Service

The overall interconnection scheme between the sensor nodes and the gateway node is

illustrated in Figure 3.10. As seen in this figure, the sensor service and gateway application

is abstracted from the interconnection service and the interconnection service is operated as

a middleware to manipulate the datagrams. This middleware determines the requirement of

the routing of the packets. If a datagram needs routing, payload is not extracted from the

datagram and it is routed towards the destination. If the destination is reached, the payload

is extracted from the datagram and sent to the sensor service or the gateway application.

GATEWAY APPLICATION

ADAPTATION LAYER

SERIAL INTERFACE
802.15.4 PHYS/MAC

LAYER

INTERCONNECTION

SERVICE LAYER

SENSOR SERVICE

INTERCONNECTION

SERVICE

SERVICE INTERFACE SERVICE INTERFACE

Figure 3.10. Interconnection scheme between Gateway and a WSN node

The interconnection service is operated on a lightweight interconnection service layer in

sensor nodes. This layer is used for determining if any of the datagram is reached to the

destination node or need of forwarding. As depicted in Figure 3.11, if the datagram reaches

36

the destination node, the data is extracted and sent to the sensor service application, else

this datagram is routed to any one of the sensor nodes using some WSN routing policies.

IDLE DESTINATION

LOOK UP

WSN-

SENSOR

SERVICE

PACKET

ROUTING

PACKET

BUFFER LOOK-

UP

R
esponse-N

ecessary

C
reate new

 packet

No – response necessary

D
on

e

Packet_Received & Queue_Empty

D
at

ag
ra

m
 =

 E
xt

ra
ct

_D
at

ag
ra

m
(p

ac
ke

t)

! i
s_

de
st

in
at

io
n(

da
ta

gr
am

)

is
_

d
e

s
tin

a
tio

n
(d

a
ta

g
ra

m
)

P
a

c
k
e

t_
R

e
c
e

iv
e

d

E
n

q
u

e
u

e
_

P
a

c
k
e

t

P
a

c
k
e

t_
R

e
c
e

iv
e

d

E
n

q
u

e
u

e
_

P
a

c
k
e

t

Packet_Received

Enqueue_PacketPacket_Received

Enqueue_Packet

!Q
ue

ue
_e

m
pt

y

Datagram = Extract_Datagram(packet)

pa
ck

et
=D

eq
ue

ue
_B

uf
fe

r()

Q
u

e
u

e
_

e
m

p
ty

Figure 3.11. State diagram of the service model of a sensor node

3.2.2. Sensor Service

The sensor service is the application-based data acquisition mechanism on the sensor node.

The byte-coded payload in the datagram is used to determine the service type required by

37

the remote client. With using a data structure pre-determined for the service, the service

type is determined and then the sensor data is extracted from the sensor node. Then, a byte-

coded response is created with this sensor data.

3.2.3. WSN Service

In the previous sections, we define two service types for the overall operation of WSN tier.

With these criteria, two types of service stacks can be defined. The structure of these stacks

is illustrated in the Figure 3.12. An intermediate node only operates the lightweight service

layer to forward the datagram towards the destination. The sensor service layer is operated

only on the destination node.

INTERCONNECTION

SERVICE LAYER

IEEE 802.4.15 MAC/PHYS LAYER

DESTINATION NODEINTERMEDIATE NODE

INTERCONNECTION

SERVICE LAYER

APPLICATIONS

IEEE 802.4.15 MAC/PHYS LAYER

Figure 3.12. Sensor node stack models

38

4. TRAFFIC MODEL

This chapter provides the traffic model used for the evaluation of WiSEGATE. Firstly, the

operational flow for the system and time costs affecting the performance of the system are

given. Secondly, the derivation of the queue model for the system is provided. A request

traffic model is derived to evaluate the stable behavior of the gateway. Then, an extension

in the gateway model is provided to evaluate it in bursty traffic conditions. Finally, a

service scheme is given for the back end network.

4.1. OPERATIONAL FLOW

WiSEGATE is used to connect multiple clients to the WSN. So the interconnection

gateway is responsible for handling multiple requests coming from these clients. As

described in Chapter 3, three tiers exists in the request/response mechanism for handling

these requests. Presentation tier represents the client and in this tier, client creates the

request for the presentation of the sensor data. After that, client sends this request to the

gateway. The time cost for transmission of the request from client to the gateway is

represented with t11. In the service tier, gateway handles this request in two steps. In the

former, the user agent handles the application message and creates the payload which has

the request data. In the latter, adaptation layer creates the datagram which carries the

request to a sensor node. The adaptation layer may enqueue this datagram in its send buffer

(i.e., the waiting queue). t2 represents the waiting time of a packet in this queue. When a

datagram is ready, the gateway sends it to the destination sensor node. The time for

transmission of this datagram from gateway to the destination sensor node is represented

with t31. In WSN tier, sensor node takes the request and prepares a response for it. After

creation of the datagram which has the sensor response, the sensor node sends it to the

gateway node. The time cost for transmission of this datagram from the destination node to

the gateway is represented with t32.

For the incoming messages from WSN, the gateway operates in two steps. In the first step,

the response data is taken from the datagram by the adaptation layer. In the second step, it

is sent to the gateway application and the presentable message is generated. This message

39

is sent to the client by the gateway. Transmission time cost of the response from gateway

to the client is represented with t12. Then this message is interpreted by the client

application for the presentation of the sensor data.

t12

t31

t2

CLIENT
USER

AGENT

ADAPTATION

LAYER WSN

GENERATE

QUERY
CREATE

DATAGRAM

SEND DATAGRAM

RECEIVE

DATAGRAM

SEND

INFORMATION TO

A.L.

GET PAYLOADSEND DATA

GENERATE APP.

MSG.

SEND APP. MSG.

REPLY TO CLIENT

WSN TIERSERVICE TIERPRESENTATION

TIER

t11

t32

Figure 4.1. Timing sequence of request/response system

40

A
C

K

S
ensor D

ata R
eq. S

en
so

r
D

at
a

R
es

.

S
e
g
(R

e
s
p
o
n
s
e
)

A
C

K

S
e
g
(R

e
q
u
e
s
t)

t11 t11a

t32 t12a

WAIT AT

QUEUE

t2 t31 t12

CLIENT

GATEWAY

WSN NODE

WSN WSN

IP Network (WIFI)

Figure 4.2. Timing diagram for a request

Figure 4.1 and 4.2 illustrates the sequence of the steps and the time costs of the

request/response mechanism. With the help of the steps of the operational flow, we can

derive a connection scheme for the interconnection system as illustrated in Figure 4.3.

C1

C2

CN

t1x t2x t3x

Queue at gateway

WSN

Figure 4.3. Overall system model and timing costs

In the system, whenever a request from a client arrives the gateway, if another request is on

transmit within the WSN, the request packet is enqueued to the waiting queue. Since a stop

and wait service is operated for handling the packets in the queue, the dequeue of the

41

request packet in the front is done when a reply packet is received from the WSN. As a

server, the gateway operate with a very slow network at its backend. So the service rate

might be very low and request packets are enqueued to wait for long times. In addition, the

gateway should handle requests coming simultaneously from clients, so the requests shall

compete for the same WSN node and may wait in the resource queue, if the WSN is busy.

Considering that t11, t12, t2, t31 and t32 are independent random variables as given above, the

mean response time for a request can be represented as follows:

 (4.1)

4.2. TCP OPERATION

From TCP perspective of transmission, the segments for the request and response travel in

a manner illustrated in Figure 4.4.

A
C

K

S
e
g
(R

e
s
p
o
n
s
e
)

A
C

K

S
e
g
(R

e
q
u
e
s
t)

t11 t11a

t12a

IDLE TIME

t12

WSN

IP Network (WIFI)

CLIENT

GATEWAY

WSN NODE

Figure 4.4. TCP operation for segments

The timing sequence for the TCP is defined by the steps below:

42

 When a client wants to send a request to the WSN, it uses TCP/IP; this TCP

connection is handled by the gateway machine. In client's TCP layer, the request is

encapsulated in a TCP segment and passed to the MAC layer for transmission.

 When the segment which has the request for the sensor data reaches to the gateway's

TCP layer, an acknowledgment for this segment is sent immediately to the client.

This segment is deleted and the application data is sent to the gateway application.

 There is no operation of TCP for this connection at the gateway machine till any one

of the response for the client reaches to the gateway. Gateway determines the right

outgoing client which the response should send to with the label id given by the user

agent. Then the gateway’s TCP encapsulates the response in a segment and this

segment is sent to the client. An acknowledgement for this segment is sent

immediately to the gateway.

We can elaborate on the steps of TCP operation given above with some arguments. The

first is that each TCP connection between the gateway and the clients is handled

independently. So in the perspective of TCP, request/response mechanism maintained for a

client does not affect the request/response mechanism maintained for other clients. The

second is that, for a periodic request/response mechanism of a TCP connection, idle times

occur as seen in Figure 4.4. Considering the operation of independent TCP connections

with immediate ACKs by the gateway, these idle times do not affect the timeout

mechanism of TCP connections.

4.3. QUEUEING ANALYSIS

We can model the gateway as M/M/1 queue since all incoming requests of simultaneous

clients join a single waiting queue. So, this section gives analysis of this queue in our

approach.

Since a stop and wait mechanism is used for the service of requests in WSN, a request

packet is enqueud to the queue in the gateway when the WSN is busy. So, the best case for

a request is that, it is in front of the queue and immediately gets a service from WSN. The

worst case is that it waits all the packets in the queue to be served from the system.

43

Therefore, the average wait time in the queue can be found by the followifng in which n

represents the average number of packets in the queue and t2 is the waiting time in queue:

(4.2)

As illustrated in this formula, E[t2] is dependent to E[t31] and E[t32] because dequeue of the

packets requires transmission of a packet over WSN and reach back to the gateway. The

service rate for the queue is dependent to these timing costs so it can be found by the

following formula:

 (4.3)

The second element for the queueing analysis is the arrival rate . It is clear that this value

is dependent to the request traffic rate of the network. However, finding an arrival rate for

a stable queueing system is critical for the performance analysis of the interconnection

model because high arrival rate causes packets to pile up in the queue and so increase of n.

Higher n means higher average response time of the system.

An ideal for the gateway queue can be obtained using Little’s law. The average waiting

time in the queue and service rate for the system has already been obtained above. Thus,

the ideal can be found using the following formula:

44

(4.4)

With this formula, an arrival rate value for the stable behavior of the system can be

obtained. If any arrival rate is smaller than , then the gateway is stable, else packets pile

up in the queue.

4.4. REQUEST MODEL

The stable condition for the interconnection system is defined with a queueing analysis in

the previous section. In this subsection, a traffic model for the requests is defined for the

analysis of our system. In addition, a model for a bursty traffic condition is given using the

traffic rate of the system.

A typical web traffic can be modeled as a Poisson-based CBR request traffic. Thus, for the

multi client web traffic model, the PMF values obtained from the Poisson process are

assigned to each client in the system. This value represents the request rate distributed to

each one of these clients. Thus, if PMF value for a client is , the arrival rate of client i for

a stable traffic is represented with:

 (4.5)

With using value obtained from this formula, the sending period of a client can be found

as follows:

 (4.6)

45

An expansion for can be done for traffic rates. Using a traffic rate value r, the request

sending rate of a client can be represented with:

 r (4.7)

When r<1, the gateway can handle packets without a pile up in the queue. Thus, the system

is stable. However when r>1, the packets starts to pile up in the queue as time flows. This

means a bursty request traffic for the queueing system.

In Formula 4.4, we assume that n is ignorable and is dependent on only . There are two

cases for this. Firstly, when r>1, n is very great, thus, will be very close to . Secondly,

when r<1, the birth-death period of the queue is more reasonable and all the packets in the

queue can be served with a short periods of time. So, with a small error, we can predict the

average response time of the system.

4.5. QUEUE FOR BURSTY TRAFFIC

Traffic rate value r is used to determine the traffic condition for the gateway. If r>1, the

request traffic is bursty for gateway and packets pile up in its waiting queue. Therefore,

average response time of the request/response system increases as time goes by due to

waiting packets in the queue. In this section, we examine packet handling mechanisms of

the proposed approach in such bursty traffic conditions.

When a bursty traffic exists in the system, n increases with the time. Since, the average

response time depends on this value as expressed in the Formula 4.2, average response

time increses with the time. If we use an infinite queue to handle simultaneous packets in

the gateway, n reaches to the infinity with a continous bursty traffic in the system which

results higher response times of the system. Thus, a bounded size queue should be used to

limit n and average response time.

46

enqueue the packet

queue is not full

(a)

(b) (c)

queue is full

drop the packet
queue is full

cache
send sensor

data in cache

Figure 4.5. Queue handling methods for bursty traffic

Figure 4.5. illustrates three bounded queue handling mechanisms used in this thesis. In the

first (a), queue is not full and the gateway can enqueue a new request packet. In the second

(b), when the queue is full, gateway drops new incoming request packets. This means loss

of any one of requests of a client. In the third (c), to avoid loss of requests, a caching

mechanism is introduced. In this mechanism, the recent sensor data acquired from WSN is

recorded temporarily in the gateway (i.e., in a temporary cache). So when the queue is full,

rather than dropping new incoming request packet, the gateway sends an immediate

response with the sensor data in the cache to the corresponding client.

4.6. SERVICE MODEL OF WSN

In this thesis, WSN service is modelled as the single server of the queuing system. Hence,

it operates with service rate where inter service time is exponentially distibuted. This

model gives us a backend network that returns a response packet to the gateway in every

1/ time period in average. It can be argued that this assumption is over simplistic

considering the dynamics of a real WSN. For a more realistic service rate of the queue,

service time traces could be obtained with a WSN simulation scenario.

47

5. PERFORMANCE ANALYSIS

For the performance analysis of WiSEGATE, firstly we performed comprehensive

simulation tests using OMNET++ discrete event simulator [55] to evaluate the

performance of the gateway with the traffic model defined in Chapter 4. Consequently, we

conducted experiments to evaluate the proposed model in a real test environment. This

chapter presents the analysis of these performance tests.

5.1. PERFORMANCE METRICS

In performance analysis of WiSEGATE, the following performance metrics are used:

 Response Time: Response time is the time slice lagged between one of clients request

and the corresponding sensor data response to this request. In Chapter 4, the response

time is represented with t2.

 Throughput of WSN: Average rate of successful packet delivery over a WSN channel

in bits.

 Goodput: Average rate of successful application data delivery (i.e., the sensor data

response) over clients in bits.

 RTT (Round Trip Time): Round Trip Time for a TCP connection is the difference

between the time at which a segment is sent and the time at which an

acknowledgement (ACK) arrives for the data in that segment [56]. In a send/response

system, this value cannot be higher than theoretical request sending period of a client

for reasonable response times. For example, the maximum expected RTT value of

Service-2 Model is 480ms for N=40. If a RTT value for a request/response is greater

than this value, we can consider that in front-end wireless network, the packets are

dropped due to high collisions or high packet errors.

5.2. SIMULATION ENVIRONMENT

For analysis for the scalability of the gateway model with increasing number of

simultaneous clients and wireless transmission errors, we conducted comprehensive tests

48

in a simulation environment. For these simulation tests, we used OMNET++ and its inet-

manet simulation package.

In these tests, the gateway node and clients are on the same WLAN and communicate with

each other via WiFi. A sensor node is connected at the back-end of the gateway. Table 5.1-

5.3 shows the simulation parameters for these tests. In analysis of these tests, N represents

the number of simultaneously requesting clients in the system.

Table 5.1. WIFI parameters used in simulations

Parameter Name Value

WIFI Type 802.11g

WIFI Bandwidth 2 Mbps

WIFI Carrier Frequency 2.4 GHz

SNR Threshold 4 dB

Sensitivity -85 dBm

Base Noise Level -110 dB

Channel Model Rayleigh

WIFI PER 0.05 -0.6

MTU for Linklayer Frames 1500B

Table 5.2. TCP parameters used in simulations

Parameter Name Value

Maximum Segment Size (MSS) 536B

Congestion Control Protocol TCPReno

Connection Model Asynchronous

49

Table 5.3. Application parameters used in simulations

Parameter Name Value

Request Size 30Bytes

Send Queue Size Infinite – (1 2 4 8 16 32 64) KBytes

For the service model of the WSN, the first group of tests used the simplistic generic

service model defined in Section 4.6 and we call this as Service-1 Model. In the second

group of tests, for a more realistic analysis, we performed external simulations for the

transfer of a single echo packet to the sensor node using TOSSIM simulator [57] and

obtained a sequence of service time traces. The histogram of these service time values is

given in Figure 5.1. We then fed these service time values to the gateway simulator as

WSN response times for TCP requests. Table 5.4 shows the parameters of these external

simulations. We call this service model as Service-2 model.

Figure 5.1. Histogram for service time traces obtained from a WSN Simulation

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Fr
eq

u
en

cy

Service Time (ms)

50

Table 5.4. WSN parameters

Parameter Name Value

Bandwidth 250kbps

Radio Attenuation 30 dB

Scheduling Policy Stop and Wait

MTU for Link Layer Frames 104 Bytes

Base Noise Level -98 dB

Following subsections describe the analysis of the simulation tests done for evaluation of

WiSEGATE. Section 5.1.1 presents the analysis of the results of the tests performed with

Service-1 Model. In Section 5.1.2, we describe the analysis of results of the scalability tests

performed with Service-2 Model.

5.2.1. Service Model-1 Tests

This section presents the analysis of the results obtained from tests with generic service

model in stable traffic conditions. These tests have been done to observe the performance

of the gateway in different service rates and different WiFi PERs.

5.2.1.1. Effect of Service Rate

This analysis focuses on the effect of the increasing service rate of the backend network.

So, we have conducted tests with 64 kbps, 128 kbps and 250 kbps as the data rate of the

back end network.

As depicted in Figure 5.2 and Figure 5.3, the average goodput and throughput of WSN

decreases as N increases and these values are relatively lower as increasing of the service

time of the back end network.

51

Figure 5.2. Average Goodput results of Service-1 Model Tests

Figure 5.3. Average Throughput Results of Service-1 Model Tests

5.2.1.2. Effect of WiFi PER

To analyze the effect of WiFi PER in different data rate of the backend network for a

stable system, several tests have been performed. For these tests, WiFi PER is increased

52

from 0.1 to 0.6. The first group of tests have been done with 64 kbps service rate and the

second group of tests have been done with 250 kbps service rate.

When the service rate is 64 kbps, for a stable traffic, clients send their request in relatively

long periods of time. Hence, WiFi MAC of the gateway and clients can handle this request

traffic entirely even in higher PERs. So the system has constant average goodput with

WIFI PERs up to 0.6 as depicted in Figure 5.4 even it decreases with increasing N.

As illustrated in Figure 5.5, when the service rate is 64kbps, a dramatic increase in average

response time is not observed as increasing WIFI PER and N up to 40. So the average

response time of the system is not higher than 480ms which is the theoretical average

request sending time period of clients when N=40 and service rate is 64kbps. Hence, a

stable request traffic for a slow service rate leads reasonable average response times.

Figure 5.4. Average Goodput results of Service-1 Model Tests with different WiFi PERs

and service rate is 64 kbps

53

Figure 5.5. Average Response Time results of Service-1 Model Tests with different WiFi

PERs and service rate is 64kbps

Figure 5.6. Consecutive RTT samples obtained from a client when N=40 and data rate is

64 kbps

As depicted in Figure 5.6, although consecutive RTT values obtained from a client

increase and start to deviate in a long interval with increasing of WIFI PER, the maximum

54

value of RTT is not higher than 480 ms which is the maximum expected RTT value when

N=40 and service rate is 64kbps. This is due that underlying service of TCP can handle the

low request traffic of the system without higher RTTs.

When the service rate of the backend network is 250kpbs, even for a stable system, the

clients send their requests in relatively short periods of time. This leads a denser traffic

condition on the network. Within this traffic condition and increasing WIFI PER, more

TCP segments are lost in wireless channels and they are sent again by TCP layer. Thus, as

seen in the Figure 5.7, the RTT on the connections are extremely high and sometimes they

are greater than 120ms which is the maximum expected RTT value for N=40 and service

rate is 250kbps.

Although the service rate is high and this situation leads relatively high goodput, as

illustrated in the Figure 5.8, the goodput of the system decreases while increasing of WIFI

PER. High RTT values lead in decrease of the goodput of the system.

Figure 5.7. Consecutive RTT samples obtained from a client when N=40 and data rate is

250 kbps

55

Figure 5.8. Average Goodput results of Service-1 Model Tests with different WiFi PERs

and service rate is 250 kbps

5.2.2. Service Model-2 Tests

5.2.2.1. Scalability Tests With Stable Traffic Conditions

We have conducted two sets of scalability tests for the performance analysis of the

WiSEGATE in stable traffic conditions. In former set of test, we have focused on the

scalability of the gateway in higher WiFi PERs. So these tests involve the experiments

with increasing WiFi PER up to 0.6 and N limited to 40. In latter set of tests, we observe

the scalability of WiSEGATE with increasing N in reasonable WiFi PERs. So, these tests

have been performed with WiFI PER up to 0.2.

Figure 5.9 illustrates the average goodput results of clients obtained from first set of tests.

As depicted in this figure, the goodput of the system is constant when the WiFi PER is less

than 0.4. This means that the gateway can handle entire request traffic generated by the

clients soundly within WIFI PER up to 0.4.

Figure 5.10 and Figure 5.11 illustrate the average response time results obtained from first

set of tests. The average response time increases nearly linearly as N increases up to 40

56

when WiFi PER is less than 0.4. This is due to the periodic and stable request traffic in the

system and gateway can handle this traffic soundly. Within these PERs, the average

response times are not higher than the expected maximum value for response time as

illustrated in Figure 5.10. When WiFi PER is 0.5, a dramatic increase in average response

time is observed as depicted in Figure 5.11. This means that the request traffic of the

network cannot be entirely handled by the WiFi MAC of the gateway and TCP layer of the

gateway resends the segments again and again for false timeouts because of high packet

drop rate and high collusion in the wireless transmission media.

Figure 5.12 illustrates the average RTT results obtained from first set of tests. When WiFi

PER is 0.5, average RTT values are extremely higher than values when WiFi PER is less

than 0.5. In addition, consecutive RTT values obtained from a client is larger and deviates

in a longer interval when WiFi PER is 0.5 as depicted in Figure 5.13. The overall

scalability analysis for the first group of tests reveal that when the number of simultaneous

clients is limited to 40, the gateway model can be applied with WiFi PER which is less

than 0.5.

Figure 5.9. Average Goodput results of Service-2 Model Tests with different WiFi PERs

57

Figure 5.10. Average Response Time results of Service-2 Model Tests when WiFi PER is

up to 0.4

Figure 5.11. Average Response Time results of Service-2 Model Tests with different WiFi

PERs

58

Figure 5.12. Average RTT results of Service-2 Model Tests with different WiFi PERs

Figure 5.13. Consecutive RTT samples obtained from a client when N=40 for Service-2

Model

59

Figure 5.14 illustrates average response time results when WiFi PER is less than 0.2. When

N increases up to 80, the average response time results obtained from the tests of the same

N are close to each other. However, when N is 160, a dramatic increase in average

response time is observed. In addition, when N is 160, the average response time increases

with increasing WiFi PER. If we examine the results of RTT, as illustrated in Figures 5.15

and 5.16, we do not observe an significant change in RTT so this is not the reason for this

dramatic change.

However, if we examine results of the average number of packets collected in the queue

(i.e. n), we observe a dramatic increase as illustrated in Figure 5.17. In addition, when N is

160 and WiFi PER is 0.2, the birth-death period for the queue is extremely longer as

illustrated in Figure 5.18. Since Formula 4.2 expresses that the average response time is

dependent to n, dramatic increase in n means dramatic increase in the average response

time. So the dramatic increase in average response time when N is 160 is due to this

performance metric. As illustrated in Figure 5.18, although the birth-death period for the

queue increases when N is up to 80, the whole enqueued request packets are served from

server as time goes by. Hence, in overall, this analysis reveals that when WiFi PER is less

than 0.2, this gateway model can handle 80 simultaneous clients for a stable operation.

Figure 5.14. Average Response Time results of Service-2 Model when WiFi PER is up to

0.2

60

Figure 5.15. Average RTT results of Service-2 Model when WiFi PER is up to 0.2

Figure 5.16. Consecutive RTT results obtained from a client with Service-2 Model when

WiFi PER is up to 0.2

61

Figure 5.17. Average Queue Size (i.e, n) of Service-2 Model when WiFi PER is up to 0.2

Figure 5.18. Packet number changing in the queue of Service-2 Model when WiFi PER is

0.2

62

5.2.2.2. Tests with Bursty Traffic Conditions

In first group of tests with bursty traffic conditions, we evaluate WiSEGATE with different

arrival rates when we are using an infinite queue in the gateway. Since the queue size is not

limited, any one of the request packets is not dropped by the gateway.

The Figure 5.19 illustrates the number of the request packets in the queue with different

arrival rates when N is up to 40. It is clear that when r=1, the gateway has a stable behavior

and the packets do not pile up in the queue. So, the average response times are not

extremely high as depicted in Figure 5.20.

When r>1, request packets start to pile up in the queue and this results with extremely high

average response times as depicted in Figure 5.20. Hence, a bounded size queue could be

used to limit the average response time.

Figure 5.19. Packet number changing in the queue with different request traffic rate

63

Figure 5.20. Average Response Time results with different request traffic rate

In second group of bursty traffic tests, we evaluate WiSEGATE with a bounded size

queue. Figure 5.8 illustrates the results when the sensor data caching is not implemented in

the gateway. Figure 5.21 gives the response time results and Figure 5.22 gives the drop rate

of packets. As seen in Figure 5.21, response time increases as increasing size of the queue.

Traffic rate is an important factor in increase of average response time. In addition, as

traffic rate increases packet drop ratio increases. Thus, denser traffic results bounded size

queue to reach its limits quickly and so more request packets are dropped by the gateway.

The Fig. 5.23 illustrates comparative results of two queue handling mechanisms; in the

first, sensor data is not cached in the gateway and in the second, the sensor data is cached

in the gateway. It is clear that the increase in bound of the queue results the response time

to increase. When r≤3, using a caching mechanism slightly improves average response

time. Note that using the caching mechanism on the gateway and dropping the packet have

almost same effect when r=3. However, when r=4 caching worsens the average response

time of the gateway by a factor 2. We can argue that, in bursty traffic conditions, WiFi

cannot handle the multiclient request traffic because of high collision rates in the network

and TCP resends the segments for false timeouts.

64

Figure 5.21. Average Response Time results in the queue with different request traffic rate

when N=10

Figure 5.22. Drop rate in the queue with different request traffic rate when N=10

65

Figure 5.23. Comparison of caching mechanism and non-caching mechanism with

Response Time results

5.3. REAL TESTBED

For the experiments with a real test environment, the interconnection service layer logic is

implemented in TelosB WSN nodes. These nodes use CC2420 radio transceiver [58]

which is compatible with IEEE 802.15.4 radio channels for wireless communication. In

addition, these nodes are compatible with TinyOS 2.0 [34] and NesC [59] language. A real

testbed with a 4 hops chain topology is setup with these sensor nodes. This WSN is

considered as a local IPv6 network and the local network addressing scheme of IPv6 is

used to determine the sensor nodes. So the sensor nodes have unique IPv6 addresses with

local IPv6 prefix FE80::/64 for the network identifier and 16-bit short address for the

interface identifier. The 6LoWPAN datagrams are encapsulated in the default Active

Messages of TinyOS [34].

The gateway logic of WiSEGATE is implemented in an Intel Core 2 Duo Machine with a

3.00 GHz processor. This machine can communicate with the interconnected networks

using the communication interfaces on itself. For the experiments, a test program is

implemented on a remote machine which is on the same LAN with the gateway. Between

66

the remote machine and the gateway, Ethernet is used as the MAC protocol. The overall

experiment scheme is illustrated in Figure 5.10.

GATEWAY

HOP 1

HOP 2 HOP 3 HOP 4

WSNIP/ETHERNET

IP/ETHERNET

IP
/E

THERNET

PRESENTATION TIER SERVICE TIER WSN TIER

WEB SERVER

Figure 5.24. Real testbed interconnection scheme

5.3.1. Response Time Tests

The gateway logic of WiSEGATE is implemented in a Intel Core 2 Duo Machine with a 3

GHz processor. This machine can communicate with the interconnected networks using the

communication interfaces on itself. For the experiments, a test program is implemented on

a remote machine which is on the same LAN of the gateway. Between the remote machine

and the gateway, Ethernet is used as the MAC protocol. The overall experiment scheme is

illustrated in Figure 5.24.

Figure 5.25 illustrates the average, maximum and minimum response times obtained from

each tests. The results show that the response time increases linearly as the number of

simultaneous requests increase. In addition, end-to-end response time scales linearly with

the increasing number of radio hops at WSN.

67

Figure 5.25. Response Time results obtained from real testbed scenario

5.3.2. Round Trip Time (RTT) Tests

In these tests, RTT is used to observe how both transmission media of WSN and web

client-to-gateway behave. Figure 5.26. illustrates the time sequence of transmission of each

TCP segment that is sent from the test program and the ACKs that are received from the

gateway and WSN.

Figure 5.26. Timing sequence for RTT tests in real testbed

68

On the remote client, a test program was implemented to divide a data stream into chunks

that can fit into a standard TCP segment and send them to the server consecutively. During

the tests, 50ms is introduced between consecutive sending operations.

For the analysis, we have conducted tests in which clients send 50 consecutive TCP

segments to the gateway and WSN which has up to four hops. Figure 5.27. illustrates the

RTT results of the consecutive samples for increasing number of hops. RTT variations are

due to the uncertain transmission behavior of the propagation media of the radio channels

in WSN. As seen in this figure, RTT times between gateway and the client is constant

because of the wired transmission medium between these hosts.

Figure 5.27. RTT results of consecutive segment transmission for increasing number of

hops

5.4. COMPARISON OF WISEGATE

The memory footprint of WiSEGATE is compared with memory usage of gateway-based

models given in the Related Work Chapter. As mentioned earlier, these gateway models

integrate IP to the resource constrained nodes with some conventional TCP/IP stack. The

69

sensor node maintains end-to-end reliable or unreliable communications with the help of

the protocols of these stacks. On the other hand, WiSEGATE uses only a lightweight

service layer which only handles 6LoWPAN datagrams and forwards the requests towards

the destination node. In the proposed interconnection scheme, the gateway node maintains

the reliability of the end-to-end connections between multiple clients and the sensor service

on a WSN node.

Table 5.5 gives the memory footprint comparison of WiSEGATE with uIPv6 and lwIP

[28]. As seen from the table, if we use WiSEGATE in a TinyOS compatible node, at least,

2 Kbytes of more memory is remained for other operations on this sensor node. Since

WiSEGATE do not require memory usage for handling end-to-end reliable communication

on a sensor node, it eliminates the uncertainity of the memory usage which a gateway

model has for handling end-to-end reliable connections for multiple simultaneous clients.

So, it guarantees its memory usage in a sensor node even multiple simultaneous clients

access sensor data on this sensor node.

Table 5.5. Memory footprint comparison results

Function Code Size (bytes)

Lightweight Middleware 2848 Bytes (ROM)

 406 Bytes (RAM)

uIPv6 5188 Bytes (Totally)

lwIP 14588 Bytes (Totally)

70

6. CONCLUSION AND FUTURE WORK

In this thesis, an interconnection model, named as WiSEGATE, addressing the seamless

interconnection of multiple simultaneous clients in IP network to WSN is proposed. The

current interconnection approaches for the proposed model is examined and a prototype of

a new web server which supports three tier service scheme to access the physical data in a

particular location by remote entities is developed. Our approach does not require any

TCP/IP stack in a resource constrained node for end-to-end interconnection. For

determining limits of the proposed model, firstly, we examined the steps for

request/response mechanism and formulized the queuing system. By doing this, we derived

a definition of the request traffic. For a bursty traffic, a caching mechanism was defined to

obtain more reasonable response times. Secondly, we have performed tests in simulation

and real testbed environment for proof of the concept. WiSEGATE can achieve reasonable

response time up to 80 simultaneous connections when WiFi PER is less than 0.2. In

addition, the comparison of the memory footprint for WiSEGATE have a good indication

that the relieving the sensor node from a TCP/IP stack is important to gain more free code

space.

As a future work, we will extend the performance evaluation of the model with several

scenarios. Firstly, we will evaluate the proposed model with a multi-hop WSN with

considering dynamics of the network. Secondly, with a heterogenous network of static or

mobile clients, we will evaluate the proposed service model. Then, we will examine

dynamic caching models and derive a dynamic buffer and caching scheme for the

evaluation of WiSEGATE in a bursty traffic. In addition, we will extend our work to

observe interconnection model with different service traffics over WSN. For these

observations, we will extend the gateway application to support different traffic types such

as streaming a real time traffic between an RTP client and a sensor node. This study will

aim to integrate our interconnection model with WMSN applications.

In our model, we evaluated the gateway using a traffic scheme based on a request push to

the WSN. It can be argued that this is a simplistic method for periodic data acquisition.

However, our observations aim to evaluate the proposed approach with different traffic

71

rates of simultaneous client request on the front-end of the gateway and observe it with

bursty traffic conditions. For the future work, we will integrate a forward server scheme to

the proposed approach. This scheme will enable a sensor node to send periodic sensor data

to remote entities without need of request push. With this scheme, when a client expects

periodic sensor data acquisition from a sensor node, it will only send a structured message

which represents this periodic sensor data acquisition expectation.

In tests which we performed to observe the scalability of the proposed model, we used

default TCP implementation defined for the wired networks. As a future work, we will

examine several TCP implementations on sensor nodes and their performance and propose

a new TCP implementation for end-to-end reliable communication for the interconnection.

Also, we will extend our gateway-to-sensor node reliable communication mechanism

considering the dynamics of the physical radio channels in WSN and MAC in the sensor

node.

72

REFERENCES

1. Atzori, L., A. Iera and G. Morabito, “The Internet of things: A survey”, Computer

Networks, Vol. 54, pp. 2787-2805, 2010.

2. Roman, R., J. Lopez and C. Alcaraz, “Do Wireless Sensor Networks Need to be

Completely Integrated into the Internet”,

https://www.nics.uma.es/system/files/papers/Roman2009.pdf, [retrieved 12 May

2012].

3. Castellani, A.P., M.I. Ashraf, Z. Shelby, M. Luimula, J. Yli-Hemminki and N. Bui,

“BinaryWS: Enabling the Embedded Web”, Future Network and Mobile Summit,

2010, Florence, 16 June-18 June 2010, pp. 1-8.

4. Akyildiz, I.F., W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor

networks: A survey", Computer Networks, Vol. 38, pp. 393-422, 2002.

5. Hui, J.W., D.E. Culler, "Extending IP toLow-Power, Wireless Personal Area

Networks", IEEE Internet Computing, Vol.12, Issue 4, pp. 37-45, 2008.

6. Serdaroglu, K. C., S. Baydere, “Seamless interconnection of WSN and Internet”, 20
th

International Conference on Software, Telecommunications and Computer Networks

(SOFTCOM) 2012, Split, Croatia, 11 September – 13 September 2012, pp. 1-6.

7. Stankovic, A., “When Sensor and Actuator Networks Cover the World”, ETRI

Journal, Vol. 30, no. 5, pp. 627-633, 2008.

8. Rodrigues, J. J. P. C, P. A. C. S. Neves, “A survey on IP-based wireless sensor

network solutions”, International Journal of Communication Systems, Vol. 23, Issue

8, pp. 963-981, 2010.

https://www.nics.uma.es/system/files/papers/Roman2009.pdf

73

9. Singh, D., U. S. Tiwary, H. Lee and W. Chung, “Global healthcare monitoring system

using 6LoWPAN Networks”, Advanced Communication Technology, 2009. ICACT

2009, 11th International Conference, Phoenix Park, 15 February – 18 February 2009,

Vol.1, pp. 113-117.

10. Safavi A. A., A. Keshavarz-Haddad, S. Khoubani, S. Mosharraf-Dehkordi and A.

Dehghani-Pilehvarani, “A remote elderly monitoring system with localizing based on

Wireless Sensor Network”, Computer Design and Applications (ICCDA), 2010

International Conference, 25 June – 27 June 2010, Vol. 2, pp. V2-553 – V2-557.

11. Tolstikov A., X. Hong, J. Biswas, C. Nugent, L. Chen and G. Parente, “Comparison of

Fusion Methods Based on DST and DBN in Human Activity Recognition”, Journal of

Control Theory and Applications, Vol. 9, pp. 18-27, 2011.

12. Suryady, Z., M. H. M. Shaharil, K.A. Bakar, R. Khoshdelniat, G. R. Sinniah and U.

Sarwar, “Performance evaluation of 6LoWPAN-based precision agriculture”,

Information Networking (ICOIN), 2010 International Conference, Barcelona, 26

January – 28 January 2011, pp. 171-176.

13. Gungor, V. C., G. P. Hancke, “Industrial Wireless Sensor Networks: Challenges,

Design Principles and Technical Approaches”, Industrial Electronics, IEEE

Transactions, Vol. 56, Issue 10, pp. 4258-4265, 2009.

14. Sadlacek, T., J. Jokinen, C. Postelnicu and J. L. M. Lastra, “Safety monitoring system

for a manufacturing using 6LoWPAN technologies”, Systems, Man and Cybernetics

(SMC), 2012 IEEE International Conference, Seoul, 14 October – 17 October 2012,

pp. 1581 – 1585.

15. Dorge, B.M., T. Scheffler, “Using IPv6 and 6LoWPAN for home automation

networks”, Consumer Electronics – Berlin (ICCE-Berlin), 2011 IEEE International

Conference, Berlin, 6 September – 8 September 2011, pp. 44-47.

74

16. Kovatch, M., M. Weiss and D. Guinard, “Embedding internet technology for home

automation”, Emerging Technologies and Factory Automation (ETFA),2010 IEEE

International Conference, Bilbao, 13 September – 16 September 2010, pp. 1 – 8.

17. Saqib, M., C. Lee, “Traffic control system using wireless sensor network”, Advanced

Communication Technology (ICACT) 2010, IEEE 12th International Conference,

Phoenix Park, 7 February 2010 – 10 February 2010, Vol. 1, pp. 352 – 357.

18. Sasidharan, S., F. Pianegiani, and D. Macii, “A protocol performance comparison in

modular WSNs for data center server monitoring”, Industrial Embedded Systems

(SIES), IEEE International Conference, Trento, 7 July – 9 July 2010, pp. 213 – 216.

19. Park, M., S. Chung and C. Ahn, “TCP’s dynamic adjustment of transmission rate to

packet losses in wireless networks”, EURASIP Journal on Wireless Communication

and Networking 2012.

20. Ting, H., “A new interconnection scheme for WSN and Ipv6-based internet”,

Information, Computing and Telecommunication, 2009, YC-ICT ’09, IEEE Youth

Conference, Beijing, 20 September – 21 September 2009, pp. 34 – 37.

21. Gopinath, R. S., Z. Suryayd, U. Sarwar and M. Abbas, “A gateway solution for IPv6

wireless sensor networks”, Ultra Modern Communications & Workshops, 2009,

ICUMT ’09, IEEE International Conference, St. Petersburg, Russia, 12 October – 14

October 2009, pp. 1 – 6.

22. Montenegro, G., N. Kushalnagar, J. Hui and D. Culler, “RFC 4644: Transmission of

IPv6 Packets over IEEE 802.15.4 Networks”, http://tools.ietf.org/html/rfc4944,

[retrieved 27 April 2011].

23. Hui, J. W., D. E. Culler, “IPv6 in Low-Power Wireless Networks”, Proceedings of the

IEEE, Vol. 98, Issue 11, pp. 1865-1878, 2010.

http://tools.ietf.org/html/rfc4944

75

24. Piccolo, F. L., D. Battaglino, L. Bracciale, A. Bragagnini, M. S. Turolla and N. B.

Melazzi, “On the IP support in IEEE 802.15.4 LR-WPANS: Self-configuring solutions

for real application scenarios”, Ad Hoc Networking Workshop (Med-Hoc-Net),2010,

The 9th IFIP Annual Mediterranean Conference , Juan Les Pins, France, 23 June – 25

June 2010, pp. 1 – 10.

25. Chen, Y., W. Shen, H. Huo and Y. Xu, “A smart Gateway Design for Health Care

System Using Wireless Sensor Network”, Sensor Technologies and Applications

(SENSORCOMM), 2010 IEEE Fourth International Conference, Venice, 18 July – 25

July 2010, pp. 545-550.

26. Narmada, A., P. S. Rao, “WSN and IP based parking management system”, Sensing

Technology (ICST), 2012 IEEE Sixth International Conference, Kolkata, 18 December

– 21 December 2012, pp. 434 – 438.

27. Harvan, M., “Connecting Wireless Sensor Networks to the Internet – 6lowpan

implementation for Tiny OS 2.0”, www.mharvan.net/papers/fgsn-2007.pdf , [retrieved

26 June 2011].

28. Dunkels, A., “Full TCP/IP for 8-bit architectures”, Proceedings of the 1st

International Conference on Mobile Systems, applications and services, MobiSys ’03,

San Francisco, CA, USA, 5 May 2003 – 8 May 2003, pp. 85 – 98.

29. Durvy, M.., J. Abeillé, P. Watterwald, C. O’Flynn, B. Leverett, E. Gnoske, M.

Vidales, G. Mulligan, N. Tsiftes, N. Finne and A. Dunkels, “Making sensor network

IPv6 Ready”, Proceedings of the 6th ACM Conference on Embedded network sensor

systems, SenSys ‘08, Raleigh, North Carolina, USA, pp. 421-422.

30. Yoon, I., S. Chung and J. Kim, “Implementation of Lightweight TCP/IP for Small,

Wireless Embedded Systems”, Advanced Information Networking and Applications,

2009. AINA ’09, IEEE International Conference, Bradford, 26 May – 29 May 2009,

pp. 965 – 970.

76

31. Dunkels, A., T. Voight, N. Bergman and M. Jönsson, “, The Design and

Implementation of an IP-based Sensor Network for Intrusion Monitoring”,

http://dunkels.com/adam/sncnw2004.pdf, [retrieved 4 July 2012].

32. Zhou, P., X. Lei and Z. Lv, “Study on Integrating BACNet with IPv6-based Wireless

Sensor Networks”, Procedia Engineering, Vol. 29, pp. 275-279, 2012.

33. Han, G., M. Ma, “Connecting Sensor Networks with IP with a Configurable tiny

TCP/IP protocol stack”, Information, Communication & Signal Processing, 2007 6th

IEEE Iinternational Conference, Singapore, 10 December – 13 December 2007, pp. 1-

5.

34. Levis, P., “TinyOS 2.0 Overview”,

http://www.tinyos.net/tinyos2.x/doc/html/overview.html, [retrieved 24 June 2009].

35. Crossbow Technology, “TelosB Mote Platform”,

http://www.willow.co.uk/TelosB_Datasheet.pdf, [retrieved 24 June 2009].

36. Crossbow Technology, “MicaZ: Wireless Measurement System”,

http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf, [retrieved 28

October 2013].

37. Kransnyansky, M., “Universal TUN/TAP Device Driver”,

http://www.kernel.org/doc/Documentation/networking/tuntap.txt, [retrieved 01

December 2012].

38. The Stanford Information Networks Group, “Blip 2.0”,

http://tinyos.stanford.edu/tinyos-wiki/index.php/Blip_2.0, [retrieved 03 December

2012].

39. The Stanford Information Networks Group, “TinyOS Documentation Wiki”,

http://tinyos.stanford.edu/tinyos-wiki/index.php/MainPage, [retrieved 13 December

2012].

77

40. Narten, T., E. Nordmark, W. Simpson and H. Soliman, “RFC 4861: Neighbour

Discovery for IP version 6”, http://tools.ietf.org/html/rfc4861, [retrieved 27 April

2011].

41. Pirttikangas, S., K. Fujinami and T. Nakajima, “Contiki – a lightweight and flexible

operating system for tiny networked sensors”, Local Computer Networks, 2004. 29th

Annual IEEE International Conference, Tampa, FL, USA, 16 November – 18

November 2004, pp. 455 – 462.

42. Dunkels, A., J. Alonso, T. Voigt and H. Ritter “Distributed TCP Caching for Wireless

Sensor Networks”, 3rd Annual Mediterranean Ad Hoc Networking Workshop (Med-

Hoc-Net 2004), Bodrum, Turkey, 27 June – 30 June 2004.

43. Hui, J., P. Thubert, “RFC 6282: Compression format for IPv6 Datagrams over IEEE

802.15.4-Based Networks”, http://tools.ietf.org/html/rfc6282, [retrieved 27 April

2011].

44. Hinden, R., S. Deering, “RFC 4291: IP Version 6 Addressing Architecture”,

http://tools.ietf.org/html/rfc4291, [retrieved 27 April 2011].

45. Rensfelt, O., F. Hermans, C. Ferms, L. Larzon and P. Gunningberg “Sensei – a

flexible testbed for heterogenous wireless sensor networks”,Testbed and Research

Infrastructures for the Development of Networks & Communities and Workshops,

2009. TridentCom 2009, 5th International Conference, Washington, DC, 6 April – 8

April 2009, pp. 1-2.

46. Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,

“RFC 2616: Hypertext Transfer Protocol – HTTP/1.1”,

http://tools.ietf.org/html/rfc2616, [retrieved 27 April 2011].

78

47. Bormann, C., A. P. Castellani and Z. Shelby, “CoAP: An application protocol for

Billions of Tiny Internet Nodes”, Internet Computing, IEEE Proceedings, Vol. 16,

Issue 2, pp. 62-67, 2012.

48. Colliti, W., K. Steenhaut, N. De Caro B. Buta and V. Dobrota, “REST Enabled

Wireless Sensor Networks for Seamless Integration with Web Applications”, Mobile

Adhoc and Sensor Systems (MASS), IEEE 2011 8th Conference, Valencia, 17 October

– 22 October 2011, pp. 867-872.

49. Chander, R. P. V., S. Elias, S. Shivashankar, and P. Manoj, “A REST Based Design

for Web of Things in smart environments”, Parallel Distributed and Grid Computing,

2012, IEEE 2nd International Conference, Solan, 6 December-8 December 2012, pp.

337-342.

50. Trifa, V., Guinard D., “Web of Things”, http://www.webofthings.org/index.php

[retrieved 01 October 2013].

51. Laum, N., C. Lerche and D. Timmermann, “A Web service-based communication

architecture for smartphone/WPAN sensor ensambles”, Emerging Technologies &

Factor Automation(ETFA), 2012 IEEE 17th International Conference, Krakow, 17

September – 21 September 2012, pp. 1-7.

52. Rajesekaran, P., R. P. Janardhan and R. P. V. Chander, “A smarter toll gate based on

Web of Things”, Electronics, Computing and Communication Technologies

(CONECCT), 2013 International Conference, Bangalore, 17 January – 19 January

2013, pp. 1-6.

53. Chatzigiannakis, I., H. Hasemann, M. Karnstedt, O. Kleine, A. Kröller, M. Leggieri,

D. Pfisterer, K. Römer, C. Truong, “Demo: True Self-Configuration for the IoT”,

Internet of Things 2012, 3rd International Conference for Industry and Academia

(IoT 2012), Wuxi, China, 24 October – 26 October 2012.

79

54. Park, Y., N. Dinh, Y. Kim, “A networking monitoring system in 6LoWPAN

networks”, Communications and Electronics (ICCE), IEEE 4th International

Conference, Hue, 1 August – 3 August 2012, pp. 69 – 73.

55. Sanchez, J. D. G., “Introduction to simulation with OMNET++”, http://web.univ-

pau.fr/~cpham/ENSEIGNEMENT/PAU-UPPA/PROTOCOLES/omnetp.pdf,

[retrieved 01 October 2012].

56. Comer, D. E., Internetworking with TCP/IP Vol. 1: Principles, Protocols and

Architecture 4th Edition, Prentice Hall, New Jersey, 2000.

57. Levis P. A., N. Lee, M. Welsh, D. E. Culler, “TOSSIM: accurate and scalable

simulation for entire TivyOS applications”, Embedded Networked Sensor Systems,

SenSys, 1st International Conference 2003, Los Angeles, CA, USA, 5 November – 7

November 2003, pp. 126 – 137.

58. Texas Instruments, “CC2420: 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver”,

http://www.ti.com/lit/ds/symlink/cc2420.pdf, [retrieved 27 June 2009].

59. Levis, P., D. Gay, TinyOS Programming, Cambridge University Press, Cambridge,

2009.

