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ABSTRACT 

 

 

A HYBRID MULTI-OBJECTIVE GENETIC ALGORITHM FOR BANDWIDTH 

MULTI-COLORING PROBLEM 

 

Genetic Algorithms (GAs) have been successfully applied on different kinds of problems. 

Multi-objective Genetic Algorithms (MOGAs) are capable of improving different 

objectives in a parallel manner. Various applications of MOGAs exist for combinatorial 

optimization problems. However, the MOGA approach yields a limited success rate 

especially on grouping problems. The crossover operation, one of the reproduction 

methods in GAs, is the main reason for the low performance. The crossover operation is 

quite destructive in grouping problems and it is difficult to produce successful offspring 

with this operator in this domain. In this study, a novel method that can increase the 

success rate of crossover operation is proposed for grouping problems. The method is a 

hybridization of MOGA with Artificial Neural Networks (ANNs), where ANNs guide the 

crossover process in the genetic search. The bandwidth multicoloring problem where 

standard MOGA yields limited performance has been used as the testbed for the method. 

The problem is solved using a multi-objective framework that minimizes bandwidth as 

well as conflict number in a parallel fashion. It has been observed that the crossover 

operation guided by the trained ANN improves the possibility of producing high fit 

offspring and the quality of the overall solution obtained at the end of MOGA runs. 
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ÖZET 

 

 

ÇİZGEYİ KÜMELİ BOYAMA PROBLEMİ İÇİN KULLANILAN ÇOK HEDEFLİ 

HİBRİT GENETİK ALGORİTMA 

 

Genetik Algoritmalar (GAs) çeşitli problemler üzerinde başarıyla uygulanmıştır. Çok 

hedefli Genetik Algoritmalar (ÇHGAs) birbirinden farklı hedefleri paralel olarak 

iyileştirebilmektedir. Kombinatoryal optimizasyon problemleri için çeşitli ÇHGA uyguları 

vardır. Ancak, ÇHGA yaklaşımı özellikle gruplama problemi üzerinde sınırlı seviyede 

başarı oranına sahiptir. Bu düşük başarı oranından çoğalma yöntemlerinden biri olan 

çaprazlama operatörü sorumludur. Çaprazlama operatörü, gruplama problemi üzerinde 

yıkıcıdır ve bu tür problemler üzerinde çaprazlama operatörü kullanarak başarılı yeni 

bireyler üretilmesi zordur. Bu çalışmada, çaprazlama operatörünün gruplama problemleri 

üzerindeki başarı oranını arttıran yenilikçi bir metot sunulmuştur. Metot ÇHGA’nın Yapay 

Sinir Ağları (YSA) ile melezlenmesinden oluşmaktadır; YSA çaprazlama operasyonuna 

genetik arama işlemi sırasında yol göstermektedir. Sunulan metot, standart ÇHGA’ların 

sınırlı başarı elde ettiği Çizgeyi Kümeli Boyama problemi üzerinde test edilmiştir. 

Problem, bant genişliği ve çakışma sayısının aynı anda azaltılmaya çalışıldığı bir çok-

hedefli gerçekleme kullanılarak çözülmüştür. Yapılan testler sonucunda, YGS tarafından 

yönlendirilmiş olan çaprazlama operasyonunun başarılı birey üretme olasılığını arttırdığı 

ve elde edilen genel çözümlerin kalitesinin de yükseldiği görülmüştür. 
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1.  INTRODUCTION 

 

 

Genetic algorithms (GA) have been widely used to solve various optimization problems. 

GAs keep a population of individuals named as chromosomes. The potential solutions have 

to be encoded as chromosome structures in GAs. Each chromosome has a fitness value 

denoting how close it is to the global solution.  Genetic operators are utilized to generate 

the offspring by using the parents chosen from the population using a selection method. 

The search is carried out until the optimum solution appears in the population or until a 

predefined threshold value is reached for breeding new populations. 

 

Reproduction process consists of crossover and mutation operations. Chromosomes with 

high fitness value have more chance to be selected to create the offspring. Crossover and 

mutation operators help carrying genetic materials to the next generations.  The search 

process is mainly carried out with the help of the crossover and mutation operators. The 

crossover operation is expected to create more fit offspring compared to the parents and 

mutation is utilized in order to avoid converging to local optimum. 

 

Artificial Neural Networks (ANNs) are computational models that have been used for 

machine learning and pattern recognition tasks successfully. ANNs have three elements; 

network properties, vertex properties and system dynamics. The network properties consist 

of network topology, type of connections, order of connections and weight range. The 

vertex properties are activation range and activation function. The system dynamics 

include weight initialization scheme, activation-calculating formula and the learning rule. 

If sufficient number of layers is utilized in an ANN, it is expected to approximate any 

arbitrary continuous function [1].  

 

Graph Coloring Problem (GCP) is a well known NP-Hard combinatorial optimization 

problem. The aim in GCP is to assign a color to each vertex such that there will no 

adjacent vertices with the same color in the coloring schema formed. If two vertices are 

connected with an edge, then they are named as adjacent. Certainly, the optimum solution 

of the problem is the coloring that would be obtained by using minimum number of colors. 
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Different real-world problems such as time scheduling and resource assignment can be 

reduced to graph coloring problem.  

 

This thesis focuses on Bandwidth Multi-Coloring Problem (BMCP), which is a 

generalization of GCP. There is a color separation within the vertices as well as adjacent 

vertices and a vertex can have multiple colors. In BMCP, each vertex and edge has a 

weight where the weight of a vertex denotes how many colors should be assigned to that 

vertex and the edge weight denotes the minimum color separation that should exist 

between the vertices sharing this edge. BMCP can be reduced to GCP by setting all vertex 

and edge weights to one. 

 

In BMCP, there are multiple objectives to be optimized. The number of colors used in a 

coloring scheme is named as the bandwidth in BMCP. The bandwidth size forms the first 

objective to be minimized. Certainly, a coloring scheme might have conflicts which are the 

colors violating the constraints defined in the previous paragraph. Minimizing the number 

of conflicting colors is the second objective of the problem. Due to multi-objective nature 

of the problem, it is not possible to determine the superior chromosome, unless one 

dominates the other in both of the objectives. A MOGA approach similar to [2, 3] is 

utilized in this study. The main advantage of MOGA approach is the fact that it is possible 

to obtain an approximation of the entire Pareto front in a single algorithm run. Hence, the 

optimal bandwidth size does not need to be determined beforehand unlike other approaches 

in the literature. 

 

The frequency assignment problem (FAP) can be modeled as BMCP. In the last decade, 

wireless services like digital cellular phone networks have developed rapidly. This 

increased the need for the important resource which is the frequencies in the radio 

spectrum. Frequencies within a wireless communication network can be reused. However, 

this may decrease the quality of communication links. The frequency assignment problem 

tries to balance the reuse of frequencies and the loss of quality in the network [4].  

 

MOGAs have been used for solving combinatorial optimization problems in the literature. 

Evolutionary approaches have a limited success especially on grouping problems. 

Crossover is the main operator that provides convergence in evolutionary methods. 
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However, the operation is quite destructive in grouping problems and it is difficult to 

produce high fit offspring with this operator in this domain. Therefore the genetic 

algorithm applications provided for grouping problems are usually hybrid methods that 

include hill climbers or search methods like Tabu search [5, 6]. In this study, a new 

crossover method is proposed for grouping problems. It is tested with the MOGA 

framework on BMCP in this study, but it can be generalized to other evolutionary 

approaches and other problems. The method is based on guiding the crossover process by 

Artificial Neural Networks. Standard MOGA yields limited performance on BMCP. 

Therefore this problem has been selected as the testbed for the method.  

 

Group crossover is widely used for grouping problems [7]. GCP and its generalizations are 

also grouping problems. GCP can be considered as partitioning the vertices of a graph into 

groups such that the vertices in the same group can be colored with the same color. In 

group crossover operation, after the parents are chosen, the groups that exist in the parents 

are determined. Then these groups are transferred to the offspring using a strategy. For 

instance in [7] the largest groups are transferred one by one to the offspring by switching 

from one parent to another. However, this operation has a low performance on BMCP due 

to the characteristic of the problem. In this study, uniform crossover operation is utilized 

on BMCP. However, the strategy used to select the genes in parents is guided by a trained 

ANN. In the initial phase of the MOGA search, the standard uniform crossover is utilized 

where the colors that will be transferred to the offspring are selected randomly. However, 

the crossover operations carried out and the resulting offspring created are collected to 

form a training data. After a certain amount of generations, this data is used to train an 

ANN. Then whenever the crossover operation is to be performed, different transfer 

scenarios are formed and the trained ANN is used to select the best alternative. Then the 

crossover operation is performed accordingly.  

 

It has been observed that the crossover operation guided by the trained ANN improves the 

possibility of producing high fit offspring. Certainly, the quality of the overall solution 

obtained at the end of a MOGA run also increases when better offspring are obtained as the 

result of the crossover operation. 
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Layout of the thesis is as follows: the formal problem definitions are presented and an 

overview of the solution methodologies for GCP and BMCP are given in the next chapter. 

The hybrid use of ANNs and evolutionary approaches is also presented in the next chapter. 

Overview of the proposed framework is given in Chapter 3. The detailed explanations of 

utilized methods and operators are also given in the Chapter 3. 

 

The benchmark problem set utilized in this study is explained in the Chapter 4. 

Experimental results and comparison with the other state-of-the-art algorithms are also 

provided in this chapter. In the last chapter, the conclusion and future works are presented. 
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2.  BACKGROUND 

 

 

2.1.  MULTI OBJECTIVE GENETIC ALGORITHMS 

 

Most of the optimization problems involve more than one objective to be optimized in real 

world application. The objectives in the most of real life problems are often conflicting. 

One solid solution would not satisfy both objective functions and the optimal solution of 

one objective will not necessary be the best solution for the problem’s other objective. 

Therefore, a set of solutions is required to represent the optimal solutions for all objectives 

in multi objective optimization problems. 

 

The characteristic of evolutionary methods which use a population based solutions is well 

suited for multi objective optimization problems (MOOPs). The approaches that are used 

to solve MOOP aims to find a set of non-dominated solutions. These approaches can 

generate approximation of a pareto front, which is a set of non-dominated solution, in each 

generation. This aspect makes these approaches suitable for the MOOP. Requirement of 

little prior knowledge from the problem, less vulnerability to shape and continuity of 

pareto-front, easy implementation, robustness and the ability to be carried out in parallel 

are some of the advantages of evolutionary algorithms. 

 

GAs which being a population based approach are well suited for solving MOOPs. GAs 

are inspired by the evolutionist theory explaining the origin of species. In nature, the strong 

individuals have greater opportunity to pass their genes to future generation via 

reproduction than week and low-fit individuals. A generic single objective GA can be 

modified to find a set of multiple non-dominated solutions in a single run. GAs are able to 

simultaneously search different regions of a solution space. This allows GAs to find a 

diverse set of solutions which is required for difficult MOOPs. The crossover operator of 

GA may exploit critical points of good solutions with respect to different objectives to 

create new non-dominated individuals in unexplored regions of the pareto front. These 

features make GA the most popular heuristic approach to MOOPs. 
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2.2.  PROBLEM DEFINITION 

 

The definition of the classical GCP is as follows. Given an undirected graph that consists 

of a set of vertices V and a set of edges E, the aim is to find a minimum color number k and 

a mapping R of these k colors to each V in the graph such that two vertices that share an 

edge cannot have the same color. Hence, each vertex in the graph is assigned a single color 

and the adjacent vertices have different colors. 

 

In bandwidth coloring problem (BCP), again an undirected graph consisting of set of 

vertices V and a set of edges E is colored. However the edges are assigned edge weights 

d(i,j), where i and j are two vertices. The aim is again to find a minimum color number k 

and a mapping R between the colors and vertices in a such that two vertices i, j that share 

an edge should have a color difference greater than or equal to the edge weight d(i,j) 

assigned to this edge. Hence, the colors have to be indexed in BCP and vertices that share 

an edge should be assigned to two colors that have a index difference that satisfy the edge 

weight constraint. 

 

The Multi Coloring Problem (MCP) is another generalization of the GCP. In this problem, 

each vertex can be assigned multiple colors. Color count is determined by the vertex 

weight. For example, if a vertex has weight four, then four distinct colors have to be 

assigned to this vertex. Adjacent vertices still cannot share the same color. 

 

BMCP is a combination of BCP and MCP. It is the most complex version of the GCP 

generalizations. The graph can contain self loops. Formally, given that a graph G(V,E) 

which has vertex weights k(i) for all individual      , and edge weights d(i,j) for       

  , intent is to determine a minimum k and subsets                  for each      , in a 

way that               for each       and also                 and where, for each 

        and         ,                for each          . As an example consider 

the graph in Figure 2.1. In this figure,          and       . Hence, four colors should 

be assigned to vertex one and the difference between the colors assigned should be at least 

three. 
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Figure 2.1. An example of BMCP graph 

 

2.3.  EXAMPLE STUDIES FOR GCP AND BMCP 

 

GAs have been utilized for grouping problems by researchers. However, the performance 

of GAs fall behind compared to the other methods used to solve grouping problems. The 

genetic operators might be destructive on the individuals when GAs are applied. This is 

usually the main reason for the low performance of GAs compared to the other methods. 

Representation is a critical issue in order to prevent the damage of genetic operators in the 

GA search. 

 

Linear Linkage Encoding (LLE) is proposed for GAs as an encoding scheme for grouping 

problems and it has been used with a multi-objective GA in [8]. When LLE is used with 

standard reproduction operator such as one-point crossover, the convergence is not 

acceptable due to the bias produced in the search process. In [8], a new crossover operator 

is proposed for LLE. The operator is introduced to remove the bias caused by one-point 

crossover. All potential offspring have equal probability to be produced by the new 

crossover operator. 
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The elements of a single group can be spread along the chromosome in a grouping 

problem. Therefore one-point crossover is destructive when the building blocks are 

separated from each other. The ordering in the linear structure of LLE prevents one-point 

crossover to exploit all regions of the search space. Some partitions cannot be produced by 

using one-point crossover. Uniform crossover does not cause the same bias, because the 

genetic material to be passed to the offspring is chosen randomly from the parents. 

However, in some cases this process can introduce random perturbations on the individuals 

which are not an acceptable case. The crossover proposed in [9] is named as group-

crossover. This operator aims to remove the disadvantages of one-point and uniform 

crossover operations.  

 

In Figure 2.2, an example chromosome represented in LLE is given. In this representation 

each cluster is represented as a linked list of objects. A different gene is reserved for each 

object. The value of a gene denotes the id of the next object in the same group. Two 

objects are in the same group, if either one can be reached from the other one using the 

links. 

 

 

 

Figure 2.2. An example chromosome represented in LLE 

 

Each group in LLE has a vertex in the chromosome that is linked to itself. These vertices 

are named as ending vertices. There ending vertices are focused in the group-crossover 
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operator. The crossover operator ignores the ordering of the elements in a group. Genetic 

materials are passed to the offspring from the parents based on these ending vertices. 

 

If both P1[i] and P2[i], i is the vertex number, are ending vertices; then O[i] is set as an 

ending vertex. If only one of the parents is ending vertex, O[i] is set as an ending vertex 

with probability 0,5. If O[i] is not set as an ending vertex by the previous item, then the 

ending vertex of the groups that the i
th

 element belongs to both parents are determined. If 

one of these ending vertex is transferred previously to the offspring, then O[i] is linked to 

this ending vertex. If both of them are transferred, then O[i] is randomly linked to one of 

them. If none of the ending vertices are transferred, then O[i] is linked to the element that 

i
th

 element is linked in one of the parents randomly. 

 

Apart from the representation issue, researchers have focused on different methods to solve 

graph coloring problem and its generalizations. For instance, Tabu Search (TS) is utilized 

to solve graph coloring, T-coloring and set T-coloring problems in the literature. In [9], a 

generic TS is presented for three-coloring problem. Proposed algorithm integrates 

important features such as greed initialization, solution re-generation, dynamic tabu tenure, 

incremental evaluation of solutions and constraint handling techniques. A Generic Tabu 

Search (GTS) is presented in the study. The proposed GTS algorithm is consisting of three 

parts: Greedy construction of initial coloring, configuration re-generation and searching for 

proper coloring are the three algorithms used in the method. A Dsatur-based greedy 

algorithm [10] is used in the greedy construction of initial coloring. This greedy approach 

is fast and provides a good initial configuration. Getting fast and good initial configuration 

plays crucial role for the convergence. In the configuration re-generation part, the aim is to 

produce a     coloring, k being the maximum color value, with a minimum conflict 

number. This is obtained by coloring the vertices that are assigned color k with a new color 

in the range          . While coloring the vertices with a new color, conflict number is 

tried to be kept as low as possible. When searching for proper coloring, the tabu algorithm 

takes an improper coloring, (a coloring that has conflicts) and tries to remove all the 

conflicts by using the given k
th

 color. If the algorithm finds a proper coloring by using the 

k
th

 color, it proceeds to re-generation part to produce a new improper coloring with     

colors again. 
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Simulated Annealing (SA) is another method that has used to solve GCP. SA is a generic 

probabilistic metaheuristic for the global optimization problem. The technique of 

controlled cooling of a material to increase the size of its crystals and reduce its defects, 

annealing in metallurgy, is the inspiration of the SA method in optimization. At each step, 

the SA heuristic considers some neighboring state s' of the current state s. Then, it 

probabilistically decides moving the system to state s' or staying in state s. 

 

An application of Parallel Simulated Annealing (PSA) is described in [11] to solve GCP. 

Proposed PSA algorithm utilizes multiple processors that are working at the same time on 

individual chains to find a solution at a fixed time. Then the routine minimizes the cost 

function by storing the best solution. The master-slave model has been used to provide 

coordination in the algorithm. Collection of states, choosing the next state and distributing 

it among the slave units is done by master processing unit. 

 

There are also some hybrid methods that have been used to solve GCP and its 

generalizations in the literature. Iterated Greedy (IG) algorithm and Squeaky Wheel 

Optimization (SWO) have been adapted to develop a hybrid method in [14]. Given a 

permutation of vertices, the Greedy algorithm selects a vertex sequentially and assigns the 

next color that has not been used in any of its neighboring vertices. The IG algorithm is an 

extension of the greedy method. The IG algorithm uses a new permutation in each 

iteration. The new permutation is formed by ordering the vertices that have the same color 

in the previous coloring scheme [13]. Hence, the new coloring scheme will not have more 

colors compared to the previous coloring scheme. The three main components of SWO are 

Constructor, the Analyzer and the Prioritizer [14]. SWO also uses a permutation sorted in 

decreasing order of the vertex degrees; it is similar to IG method. The Constructor’s job is 

to greedily construct a coloring scheme. Then the Analyzer assigns a blame to each vertex, 

if the vertex has a color beyond the target range. The target range is set as one less than 

number of colors in the current best solution. After the blames are set, the Prioritizer 

updates the previous permutation based on how much blame the vertices have. In the 

proposed method the Constructor component of SWO is replaced by a Hill-Climbing (HC) 

procedure. The HC method tries to improve the greedily generated solution by downhill 

moves. The HC method orders the vertices based on the color index they have. Again the 

approach is similar to the IG method. 
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TS heuristic is utilized in a SWO framework in [15]. In the proposed framework, solutions 

are modeled as sequences of vertices. A greedy algorithm is used to assign colors at the 

beginning. Then meta-heuristics are applied to find better solutions by adjusting these 

sequences. A vertex that has vertex weight k is split into k vertices to reduce the 

complexity in the representation model. The framework has two parts. The SWO method is 

used to adjust sequences in the first part. Then the best solution found by SWO is passed to 

TS for further improvement. TS strengthen the search procedure and avoid local optima in 

the search space. The greedy algorithm is used to determine the number of colors required 

to color the graph. Also a new method is used to calculate the blame values in the SWO 

module. Vertices that have a color index greater than the multiplication of blame rate and 

the maximum color index k are assigned a constant blame value. TS operates based on 

neighborhood moves. The exchange of two vertices in the solution sequence is considered 

as a neighborhood move. TS uses a tabu memory to prevent some unwanted reverse moves 

to happen. 

 

Using hybrid evolutionary algorithms (HEA) on the GCP is also common in the literature. 

An algorithm that combines a highly specialized crossover operator and a well known tabu 

search algorithm is proposed in [7]. The algorithm performs a series of iterations called 

generations after the initial population is formed. In each generation, two parents are 

selected to apply crossover operation on them. The offspring produced by the crossover 

operation is improved by using a Local Search (LS) operator. Finally, the improved 

offspring is inserted back to the population. This process continues until a stopping 

criterion is met. This hybrid algorithm differs from a standard genetic algorithm, because 

the mutation operator in GA is replaced with a LS operator. Also a new crossover operator 

is proposed in this study. In crossover operation, firstly the group with maximum number 

of vertices is chosen from the selected parent and passed to the offspring. Then this group 

is removed from both parents. This process is repeated k times, k being number of groups 

that exist in both parents. After k steps, remaining unassigned vertices assigned to a 

random class in the offspring. The purpose of the LS operator is to improve the offspring 

produced by the crossover operator. Tabu search is utilized as the LS method. The 

algorithm chooses a vertex that is conflicting with another vertex and the conflicting vertex 

is moved to a different group to explore the neighbors of the current coloring scheme. 

Certainly, previously visited neighbors are prevented using a Tabu list. 
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E. Malaguti and p. Toth also proposed an evolutionary approach for BMCP in [16]. 

DSATUR [10] uses an ordering that maximizes a given score on the vertices. Then the 

algorithm chooses the first vertex from the ordered list and colors it. This ordered list is 

kept to color the vertices that are harder to color, at the beginning of the process. The 

number of distinctly colored adjacent vertices as well as the distance of color indexes 

within the vertex and its adjacent vertices determines the score of a vertex. Certainly, the 

vertices with a higher score are harder to color. A constructive heuristic is also used in this 

study. The population based TS utilized in the study uses partial solutions and tries to find 

perfect solution by coloring and uncoloring selected vertices. Distance Crossover is 

proposed in this research. Parents are selected randomly from the population pool. The 

important structures are transferred from the parents to the offspring based on color index 

distance between the vertices. First, the “tight distance” pairs from first parent are copied 

to the offspring. Then the “tight distance” pairs that do not cause conflict with the already 

colored vertices are copied to the offspring from the second parent. If a vertex cannot be 

colored without causing conflicts, it is uncolored. The vertices left uncolored are assigned 

colors by using a TS operator at the end of the process. 

 

The researchers have been inspired by the natural events and processes. GAs form an 

example to this fact. Ants and their nature have inspired the researchers as well. An 

algorithm called Ant Local Search (ALS) is proposed for GCP in [17]. In the ant algorithm 

proposed in [17], each ant builds a solution step by step. At each step, an element is added 

to the current partial solution by an ant. The greedy force and the trails are the two 

ingredients of the ant algorithms. The greedy force can be defined as the short term profit 

for the considered ant. The information obtained from other ants is defined as the trails. In 

the ALS, each ant is considered as a local search to get competitive results. Each ant 

evolves the solution by performing random modification on it. 

 

The IMPASSE class local search algorithms have given competitive results on many 

coloring benchmark problems. S. Prestwich has proposed an IMPASSE style LS algorithm 

in [19]. The IMPASSE class algorithms work on the coloration neighborhoods. The 

coloration neighborhood consists of the vertices that are colored and no adjacent vertices 

share the same color. Remaining uncolored vertices are called the impasse set. The LS 

algorithm tries to remove all vertices from the impasse set by coloring and uncoloring 
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some selected vertices. Vertices with large domain and small forward degree are selected 

for uncoloring. A vertex has large domain if it has many colors in the coloring scheme. The 

forward degree of a vertex is the number of uncolored adjacent vertices. While selecting a 

color index to color a vertex, remembering the colors used in the previous iterations 

increases the performance. The coloring rule flips between two modes; picking up a new 

color and picking up a color that is successfully used in the previous iterations. When a 

color id successfully assigned to a vertex, rule flips to the other method. This rule is used 

to minimize disruption in the coloration. 

 

The frequency assignment problem (FAP) can be modeled as BMCP. Constraint handling 

methods have been used in evolutionary search. R. Dorne and J. Hao have developed 

constraint handling techniques for FAP in [20]. They aimed to minimize the 

electromagnetic interference due to frequency reuse and minimize the number of 

frequencies used in FAP in cellular radio networks. In this study EAs utilized without a 

crossover operator. Crossover operation is very destructive for the FAP. Selecting parents 

and the evaluation of offspring have been used as EA features. Mutation operator has been 

used as the single reproduction operator in the study. 

 

A Memetic Algorithm (MA) has been proposed for multi objective optimization problems 

in [21].  The method employs the LS method used in the Pareto Archived Evolution 

Strategy (PAES) and it utilizes the LS together with a population based approach that 

includes reproduction operators. The memetic-PAES algorithm (M-PAES) is based on the 

local search multi objective algorithm used in [22]. It adds a population based approach 

and reproduction methods to local optima found by using the PAES approach. A finite 

sized archive consists of non-dominated solutions that are maintained by PEAS approach.  

The elements of this archive are the best solutions of the search process. The final solution 

is obtained from this archive and also the archive uses as a comparison set to determine the 

dominance rank of the new solutions. M-PEAS approach uses two different archives to 

manage these tasks; a global archive that maintains a finite set of the best solutions found 

so far and a local archive H that is used for the comparison procedure. These archives help 

the search process to converge quickly and steadily. 
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The Strength Pareto Evolutionary Algorithm (SPEA) [23] is a technique for finding or 

approximating Pareto-optimal set for multi objective optimization problems. Pareto 

approach guides the solutions in the search space for better convergence rate. SPEA2, an 

improved version of SPEA, is proposed by E. Zitzler et al. in [24]. A fine-grained fitness 

assignment strategy, a density estimation technique and an enhanced archive truncation 

method are used in SPEA2. These techniques are the main differences of SPEA2 compared 

to SPEA. Each individual is assigned to a fitness value based on how many individuals it 

dominates and it is dominated by. Each solution has a density estimation determined by the 

distance of k-th nearest neighbor of the solution in the close proximity. This neighbor 

density estimation technique allows a more precise guidance of the search process. A new 

archive truncation method is used to provide diversity in the pareto set. The method 

removes the solutions that are close to each other in the archive. The proposed framework 

is applied successfully to three instances of the knapsack problem and SPH-m which is a 

multi objective generalization of the Sphere Model. 

 

2.4.  ARTIFICIAL NEURAL NETWORKS (ANNS) AND EVOLUTIONARY 

APPROACHES 

 

In computer science and related fields, Artificial Neural Networks (ANNs) are 

computational models inspired from the central nervous system. The method is applicable 

to machine learning as well as pattern recognition problems. These computational models 

are capable of learning from samples and making decisions [25].  

 

The structure of the network determines whether one neuron may influence another. The 

extent of possible influence is specified by the weight assigned to each connection. It is a 

straightforward idea to use the Evolutionary Approach (EA) to assist neural network 

design and training. A global and very broad search process supplied by EAs can increase 

performance of the previous methods used in neural network design and training. 

 

Setting the weights of a network can be seen as an optimization problem. The aim is to find 

a set of weights that minimizes the network’s error on the training phase. The search space 

is highly complex and usually contains many local minima. The most commonly used 

algorithm for the problem is the backpropagation method [26]. The algorithm often yields 
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poor result without problem specific parameter settings. EAs usually avoid local minima 

by running the search process on several regions of the search space simultaneously. This 

makes EAs suitable for optimization problems with many local minima. EAs only need a 

fitness evaluation function to carry out the search process and they are not restricted by the 

network topology. Due to these characteristics of the EAs, they have been used in neural 

network training in various studies in literature [27, 28, 29]. 

 

If number of neurons and number of connection between those neurons are small, the 

network might not be able to learn the desired input-output mapping. On the other hand, if 

large amount of neurons are used with highly connected network topology, inputs might be 

mapped to undesired outputs. The topology also influences speed and accuracy of the 

learning process in the network. EAs are also used to determine the structure of a neural 

network in [30]. As seen in the literature EAs are used to determine the structure of a 

neural network as well as to train the network separately. There are also some studies that 

EAs have been used to determine weights and structure of a neural network at the same 

time. [31, 32] are the examples to these cases. 

 

The method proposed in [28] is one of the studies that use a genetic algorithm to train a 

feedforward neural network. The weights in the neural network are encoded as a list of real 

numbers. Evaluation function is a critical feature in GAs. First, the weights in 

chromosomes are initialized. Then, the network is run over the training set and the sum of 

the squared errors is set as the fitness value of the chromosome. While the population is 

initialized, the weights are uniformly distributed between -1.0 and 1.0. After the population 

initialization phase, the standard GA operators are applied on the chromosomes to get a 

new set of weights and the genetic search is carried out until the best set of the weights are 

determined. 

 

The architecture of an ANN is also important for getting satisfactory results when the 

method is applied to practical problem domains. Different architectures can be chosen and 

trained in order to determine the architecture with best performance for the problem. But 

still there might be more suitable topologies not taken into consideration for the problem. 

A GA driven network generator that evolves ANN architecture is presented in [31]. The 
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framework is called as Evolutiver Netzwerk-Optimierer (ENZO). ENZO optimizes both 

the network topology and the connection weights simultaneously. 

 

Network architecture is encoded into the chromosome structure. Every gene in a 

chromosome represents one connection in the network. The number of possible 

connections is fixed and GA is used to find the optimal topology. ENZO generates an 

initial population where each chromosome represents a different network. Each network 

has about        of the total number of connections, P1 being the connection density 

between zero and one. Each of the potential connections is established with the given 

probability P1. These networks are trained, evaluated and sorted due to their fitness values. 

Then ENZO starts to create offspring using crossover and/or mutation. In the crossover 

procedure, if a connection is present in both parents, it is transferred to the offspring. If the 

connection is present in only one of the parents, it is transferred to the offspring by using a 

certain probability. Mutation operator changes the state of each potential connection by 

using again a given probability. After the reproduction procedures, the offspring is 

evaluated and inserted into the population according to its fitness value. Then the 

chromosome with the lowest fitness value is removed from the population. The framework 

is able to search the optimal topology in the search space that has high diversity. The 

quality of the learning process is increased due to GA’s ability to find the optimum 

solution in the search space. 

 

GAs are used to design and train ANNs, in all of the studies presented above. There is only 

one study where ANNs are used to enhance the search process in Gas. In [33], ANNs are 

used to determine parent pairs for the crossover operation.  In this study, the convenient 

parent pairs that have the potential to produce high fit offspring are determined by a trained 

neural network. The structural properties of the chromosomes that are likely to produce 

high fit offspring are analyzed by an ANN. The ANN is expected to combine the parents in 

such a way that the fitness of the offspring would be high. Coherent building blocks of the 

chosen chromosomes are considered by the ANN while combining the parents. The 

training data is formed by the parents that are used in the crossover operator and the fitness 

value of the corresponding offspring. In the proposed framework, the first parent is chosen 

by using tournament selection. Then, the ANN is used to determine an appropriate mate for 

the first parent.  



 17 

3.  METHODOLOGY 

 

 

3.1.  OVERVIEW OF THE FRAMEWORK 

 

In this thesis a Genetic Algorithm (GA) that is hybridized with a Local Search (LS) 

algorithm is proposed to solve the Bandwidth Multi Coloring Problem (BMCP). 

Bandwidth size and number of conflicts in the coloring scheme are both reduced in a 

parallel manner by the algorithm. The population is expected to converge as shown in 

Figure 3.1 in terms of both objective functions. MOGAs have not been utilized for BMCP 

before. The framework proposed is enhanced by a novel crossover operator where the 

process is guided by a trained ANN. 

 

 

 

Figure 3.1. The convergence in the search process  
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Genetic operators are used to provide high variety chromosomes in the population. The 

chromosomes that are produced by the genetic operators are improved by using local 

search.  Local search improves the convergence in the search process, since it covers the 

lack of fine tuning in GAs. Basic structure of the main algorithm utilized in this thesis can 

be seen in Algorithm 3.1. 

 

Algorithm 3.1. Main structure of the algorithm 

 

Main Program: 

Initialize Population; 

while MaxGeneration is not reached do 

    while GAperGeneration is not reached do 

        select two different parent from population pool; 

        create an offspring by using the parents; 

        offspringopt ← LocalSearch(offspring); 

        insertToPopulation(offspringopt); 

    end while 

    while LSperGeneration is not reached do 

        select a random chromosome from population pool; 

        chromosomeopt ← LocalSearch(chromosome); 

        insertToPopulation(offspringopt); 

    end while 

    while MutationperGeneration is not reached do 

        select a random chromosome from population pool; 

                                                                       
        chromosomemut ← MutationOp(chromosome); 

        chromosomeopt ← LocalSearch(chromosomemut); 

        InsertToPopulation(chromosomeopt); 

    end while 

end while 

 

Population initialization is a crucial component of a GA. Main algorithm is initiated by 

randomly generating initial population. Then, the reproduction operators, crossover and 

mutation, are applied on the initial population. LS operations are also applied on the 

population to further improve the chromosomes in the population. GA and LS operations 

are individually utilized on the population over and over until the MaxGeneration is 

reached.  MaxGeneration represents the number of generations that a program runs.  The 

main loop in Algorithm 3.1 presents the steps that are carried out in each generation. Also 

the activity diagram of this framework can be seen in Figure 3.2.  
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Figure 3.2. Activity diagram of the general framework 

 

The number of times the genetic operators are applied and local search iteration count are 

determined by the user as input parameters. GAperGeneration, LSperGeneration and 

MutationperGeneration are parameters denoting the number of genetic and local search 

operations carried out on the population at each generation.  GAperGeneration parameter 

denotes the number crossover operations that take place at each generation.  

LSperGeneration is the number of local search operators and lastly, 

MutationperGeneration parameter represents the number of mutation operations to be 

carried out again at each generation. Larger values are needed to be used for these 

parameters for some benchmark problems that are harder to solve. The benchmark 

problems that are denser than the others and that contain more vertices form the hard 

instances in the set. Such instances require more computation time, since more genetic and 

local search operators are applied on them. However, increasing the number of mutation 

operations utilized may affect the search process in a destructive way. On the other hand, 

keeping the number of mutations low may result a local minima. Therefore, several 

experiments need to be carried out in order to fine tune the mutation amount needed during 

the genetic search. 
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In Genetic operators are used to provide high variety chromosomes in the population. The 

chromosomes that are produced by the genetic operators are improved by using local 

search.  Local search improves the convergence in the search process, since it covers the 

lack of fine tuning in GAs. Basic structure of the main algorithm utilized in this thesis can 

be seen in Algorithm 3.1. 

 

Algorithm 3.1, it can be seen that the crossover operator is applied on the population at the 

beginning of each generation. First, two candidate chromosomes are selected from the 

current population. Tournament selection is used as the selection method. Details of 

tournament selection are explained in Section 3.3. The candidate chromosomes that are 

selected for crossover operation are called parent chromosomes. 

 

After the selection process, the parent chromosomes are sent to the crossover function to 

produce the new chromosomes. Several crossover methods has been implemented and 

tested in this study in order to determine the most suitable method for the problem at hand. 

 

The new chromosome that is produced by the crossover operation is sent to local search 

function. The fine tuning of the produced chromosome is achieved by the local search 

process. Hence, the chromosome is further improved by the local search operator. Then, 

the chromosome is sent to insertToPopulation function. The function determines whether 

the chromosome will be a member of the population or not. The chromosomes are checked 

by this method and the ones that met the criteria to be in the population are added to the 

population, while the others are discarded.  

 

The elite portion of the population is called pareto front. The Pareto front is composed of 

chromosomes that are not dominated by any other chromosome in the population. Pareto 

front is formed and managed by the insertToPopulation function. The chromosomes that 

are eligible to enter the population are tested also in terms of the pareto front list. Members 

of the pareto front list are treated specially and they are guaranteed to exist in the 

population until a chromosome that dominates them is created by the search operators. 

 

After the crossover phase is finished, local search phase is started on the population. In this 

phase, a random chromosome is selected from the population and the chromosome is 
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improved in terms of both bandwidth size and conflict number at the same time. When the 

predefined iteration count is reached in the local search method, the improved chromosome 

is sent to the insertToPopulation function again. The chromosome might be placed in the 

pareto front or into the standard population, or it may be completely discarded based on the 

fitness values. 

 

Lastly, mutation operators are applied on the population before a single generation is 

completed. Again, a random chromosome is picked from the population and it is sent to the 

mutation function. The mutation operator that is going to be applied is chosen randomly 

among a set of different mutation operators. Then, the chosen operator is applied on the 

chromosome. The mutation operator can destroy some of the successfully formed color 

groups. Therefore, local search method is also utilized on the mutated chromosomes to 

avoid the negative effects of this operation. Again, insertToPopulation function determines 

whether the mutated chromosome will be added to the population or not. 

 

The procedures that are explained above take place in a single generation. The same cycle 

is repeated until the maximum generation count is reached. The methods that are briefly 

described in this section are taken into consideration one by one and they are explained in 

detail in the following sections. 

 

3.2.  POPULATION CONTROL 

 

The proposed framework starts with the creation of the initial population as mentioned in 

the previous section. Various tests have been run to determine how the initial population 

should be created. Two different creation methods has been utilized and tested in this 

study. The first one is a greedy method and the other one is a random approach.  

 

In the greedy method utilized to create the chromosomes, the procedure starts with 

selecting a random vertex in given graph. Then, the available colors that do not cause a 

conflict with the adjacent vertices are determined and the one with the smallest index is 

assigned to the vertex. The selected color must be in range of the currently used 

bandwidth. This procedure is repeated for all vertices until the graph is fully colored. This 

approach assigns colors as close as possible to the neighbor vertices in the graph. However, 
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it has been observed that using this greedy approach decreases the diversity of the 

population and the local search method cannot be effective during the search process. 

Therefore, it has been decided to use a random approach while creating the initial 

population of chromosomes. In this approach, randomly chosen vertices are colored with 

randomly chosen colors in a predefined bandwidth size. The color bandwidth size is an 

input parameter given by the user. This bandwidth is expected to be larger than the optimal 

bandwidth size and hence a diversity of coloring schemes is obtained in the initial 

population. 

 

After the initial population is created, the genetic and local search operators are utilized to 

reproduce new chromosomes. Steady state approach has been utilized in the proposed 

algorithm. The genetic and the local search operators are applied on a portion of the 

population. When a new chromosome is reproduced, it is added to the population if it 

meets some predefined criteria. 

 

 

 

Figure 3.3. An example of adding a chromosome into the population 

 

An example of adding a chromosome into population can be seen in Figure 3.3. As 

mentioned before, LS and GA work separately and creates new candidate solutions that 

can be added to the population. These candidates are tested to see if they are adequate or 
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not. When a candidate is added to the population, it replaces an existing chromosome. In 

Figure 3.3, the candidate chromosome is denoted with the red circle. When a candidate can 

dominate some elements in the current population, it has the right to enter the population. 

In the figure, the blue circles denote the chromosomes that are dominated by the new 

element. In this case, one of these dominated elements is removed from the population 

randomly. If the candidate cannot dominate any element, there is still a chance for it to 

replace a randomly chosen element in the population. 

 

It is important to use some restrictions in order to determine which chromosomes will be 

added to the population. The population control method utilized is explained in Figure 3.4. 

A region in the search space is defined by using the current population. Area of the region 

is calculated by using two input parameters. These are bandwidthMaxError and 

conflictMaxError. The bandwidthMaxError determines the minimum bandwidth that is 

allowed in the population. The minimum bandwidth is calculated by subtracting the 

bandwidthMaxError from the current best bandwidth. The conflictMaxError determines 

the maximum conflict number that is allowed in the population. The maximum conflict 

number is calculated by adding the conflictMaxError to the conflict number of the best 

chromosome in the population. The coordinates of the region depend on the best 

chromosome in the current population. The best chromosome is the one that has the 

minimum conflict number. The bottom right hand side corner of the area corresponds to 

the best chromosome in the population. 

 

 

 

Figure 3.4. The acceptance region 

 

In Figure 3.4, white circles represent the chromosomes that are in the current population. 

The dotted lines show the boundaries of the region defined for the population. If a newly 
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created chromosome is in this region in terms of bandwidth size and conflict number, then 

it is added to the current population. If a chromosome with a lower bandwidth size and 

lower conflict number compared to the best chromosome is found, then the restricted 

region is reformed corresponding to this new best chromosome. This situation is 

demonstrated in Figure 3.4-2. When the region is reformed, there might be some 

chromosomes that get out of the newly defined region. The chromosomes that are not 

eligible to enter the population are represented with blue circles in the figure. These 

chromosomes are not immediately discarded from the population. However, newly created 

chromosomes replace them in latter generations. 

 

The method provides the use of a concentrated search space. Discarding the chromosomes 

with too low bandwidth values or too high conflict number increases the speed of the 

search process. 

 

3.2.1.  Pareto Effect 

 

Multi objective nature of the BMCP requires special treatment for pareto front which is the 

elite part of the population. The chromosomes that cannot be dominated by other 

chromosomes have higher chance to produce better offspring. Different approaches are 

used in multi objective applications to protect such chromosomes. In this thesis, an 

approach inspired from the methods in [21, 24], is used for this purpose. 

 

Superior chromosomes that cannot be dominated by other chromosomes should be retained 

in the population throughout the generations. The building blocks that make these 

chromosomes superior are expected to help the population to converge the global 

optimum. Hence, the superior chromosomes should be preserved in the population. This 

task is handled by a pareto efficiency algorithm. As mentioned above, the method utilized 

is similar to the approaches in [21, 24]. In [21], more than one pareto front list are utilized 

during the GA run. In our framework, one global pareto front list is used to handle the 

elitism in the population like in [24]. 

 

Pareto efficiency algorithm is used to create the pareto front list which consists of the non-

dominated chromosomes of the population. Pareto front elements are considered as elites. 
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The pareto front elements should be secured while inserting new chromosomes to the 

population. 

  

When a new chromosome deserves to be inserted to the population, first it is tested to 

determine if the chromosome belongs to pareto front or not. In this procedure, the newly 

created chromosome is compared to all members of the pareto front. If the members of the 

pareto front cannot dominate the new chromosome in terms of bandwidth and conflict 

number, the new chromosome is added to the pareto front. After this step, chromosomes 

that are the dominated by the new chromosome are determined in the pareto front list. Such 

dominated chromosomes are removed from the list.  

 

 

 

Figure 3.5. An example population and its pareto front 

 

An example population and its pareto front can be seen in Figure 3.5. Red circles represent 

chromosomes in the pareto list. As seen in the first figure, when the chromosomes in the 

pareto front are connected together, they form a line in front of the population. The rest of 

the population is represented by the white circles. There is a new chromosome that is 

recently added to the population in the second figure. It is represented by a blue circle. This 

chromosome cannot be dominated by the members of the pareto front list. Thus it is 
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eligible to enter to the pareto front. It can be seen that there is a chromosome in the pareto 

front that is dominated by the new chromosome in the third figure. Since this chromosome 

is dominated, it can no longer be a member of the pareto front list. Hence it should be 

removed from the list. 

 

Pareto front list consists of the best individuals in the population. These best individuals 

are better than the rest of the population in terms of bandwidth size and conflict number. 

Preserving these elements in the pareto front helps convergence of the search process and it 

becomes possible to find better coloring schemes during the genetic search. 

 

When a newly created chromosome fails to enter the pareto front, it still has the chance to 

be a member of the standard population. If this chromosome dominates an element in 

population, it is added to the population by replacing the dominated element. If the newly 

created chromosome cannot dominate any other elements in the population, it might be still 

added to the population with a small probability by replacing a randomly chosen 

chromosome. The probability of entering the population differs according to the operator 

used to create the new chromosome. The probability value is kept high for the 

chromosomes that are reproduced by the mutation operators. Mutation operators are rather 

destructive and using a high probability for this operation adds an extra level of diversity to 

the population. The probability used for the other genetic and local search operators is low 

compared to the mutation operator. 

 

Size of the pareto front list should be limited. The size of pareto front is a parameter and it 

is set to one-third of the population size. If the size of the list is not limited, it rapidly 

grows and covers the whole population during the search process. It is aimed to have a 

balanced dispersion among the chromosomes with different bandwidth values. The method 

used allows us to keep the size of the pareto front limited, while having some degree of 

diversity in the pareto front list in terms of bandwidth size. The chromosomes in the pareto 

front are grouped according to the bandwidth value they have. When the size of the pareto 

front exceeds its limit, a random chromosome is chosen from the most populated group 

and it is removed from the pareto front. Hence, it is guaranteed to have chromosomes that 

have different bandwidth values in the pareto front. It is also tested to remove the worst 

chromosome in the most populated group. However, this removal has created a bias and 
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disturbed the diversity of the pareto front. Therefore, the element to be removed from the 

pareto front is chosen randomly from the most populated group. 

 

3.3.  GENETIC ALGORITHM OPERATORS 

 

Standard genetic operations are very destructive on GCP. The coloring scheme in the 

chromosomes can be easily destroyed during the recombination process. Hence, standard 

crossover operations (such as the uniform, one-point or two-point crossover) usually 

produce chromosomes that have more conflict number or larger bandwidth value than their 

parents. In this thesis, a customized crossover operation that focuses on determining the 

critical color groups in the parents is proposed. The method transfers these groups to the 

offspring as a whole.  Other crossover operators are also tested on the benchmark problems 

in this work. While choosing the best crossover operator, the characteristics of graph 

coloring problem is considered. 

 

Several methods are used for the selection of parent chromosomes in the literature. The 

tournament selection method has come to the fore for multi objective problems such as 

BMCP. The tournament selection method is also used in this thesis. 

 

When the tournament selection method applied to single-objective problem, the first two 

individuals are selected randomly from the population, and then the chromosome with a 

higher fitness value is selected as the first parent. One more tournament is carried out to 

determine the second parent. However, in a multi objective problem, one of the selected 

individuals may fail to dominate the other in terms of all objectives. In such a case the 

individuals are considered to be equivalent. 

 

As mentioned before two distinct objective functions are used in the algorithmic 

framework. The first one is the total bandwidth of the colors used and the second one is the 

number of conflicts in the current coloring scheme. These two objectives are utilized in the 

multi-objective tournament selection. In Figure 3.6, let’s assume that the blue and red 

chromosomes are selected as candidates. In this case we can say that blue chromosome is 

better since it is better on all objectives and dominates the red one.  
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Figure 3.6. Comparison of two chromosomes in the population 

 

In the selection process, two random candidates are selected as in the standard tournament 

selection. If one of the candidates has better fitness values in terms of both objectives, then 

it is directly selected like the single objective case. However, if the candidates cannot 

dominate each other in terms of both objectives, a different criterion is used for the 

selection. A set of randomly chosen chromosomes is utilized to make a comparison in this 

case. Each candidate is compared with the elements of this randomly chosen set.  The 

candidate that dominates more elements in the comparison set is selected as a parent for 

the crossover operation. If the tie is not broken by the comparison set, then the parent is 

determined randomly among the candidates. This tournament selection is inspired by 

selection process presented in [34]. 
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Figure 3.7. Multi objective tournament selection example 

 

In Figure 3.7, a multi objective tournament selection example can be seen. The two 

elements that are chosen for the tournament are denoted by the red and blue circles. We 

can’t say which candidate is better because blue has lower conflict number while red has a 

better bandwidth value. Let’s assume that five nodes are selected as the comparison set. 

Each candidate is compared to this set and scored depending on how many of them are 

dominated. For red chromosome only the two chromosomes denoted by the brown color 

are dominated. The other elements in the comparison set are denoted with yellow color. 

For blue chromosome the number of dominated elements is four and they are denoted with 

the grey color. Since blue dominates more, it is selected as the parent. 

 

Another crucial point in GAs is the representation of chromosomes. Group Number 

Encoding has been used as the representation scheme for the chromosomes in this study. 

This approach is similar to chromosome encoding used in [20]. In the conventional group 

number encoding, each vertex is represented by a gene in the chromosome structure. 

Colors in the coloring scheme are denoted by the numerical values in the genes. However, 

in BMCP a vertex can have more than one color based on the weight assigned to the 

vertex. Therefore, a group of genes are reserved for each vertex. The group size is 
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determined by the weight of the vertex. An example chromosome structure can be seen in 

Figure 3.8. Bold lines denote the boundaries of the gene groups used for a single vertex. 

The vertex weights of the graph can be seen in Figure 3.9. The graph structure can be 

easily represented with the group number encoding method. The first vertex v1 has weight 

two in the graph. That is why two genes are reserved for this vertex in the chromosome. 

The values of these two genes five and eight are the indexes of the colors assigned to this 

vertex. The other vertices are colored according to the values of other genes in the 

chromosome. 

 

 

 

Figure 3.8. An example of chromosome representation 

 

 

 

Figure 3.9. Graph representation of the chromosome 

 

3.3.1.  Crossover Operators 

 

Four different crossover operators are tested in this study.  Malaguti and Toth have 

proposed a novel approach for crossover process in [16]. Two different crossover operators 
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are developed in this study based on the operator used in [16]. The new crossover operators 

are called as distance based crossover and vertex based crossover. 

 

In distance based crossover, colors are transferred to the offspring pair by pair. The 

algorithm of the distance based crossover can be seen in Algorithm 3.2. The first process is 

the identification of the gene pairs that do not have conflicting colors with each other. Then 

these colors can be transferred from the parents together. Initially, the first gene is selected, 

and then the first gene that does not have a conflicting color with this gene is determined. 

  
  and   

  represent the set of the color pairs that can be transferred together from the first 

and the second parent respectively. Then the same process is repeated for the following 

unselected genes in the chromosome. Thus, all pairs of genes which do not have 

conflicting colors are determined. Then all the color pairs that can be taken from the first 

parent are transferred to the offspring. After this step, the same process is repeated for the 

second parent. While transferring the color pairs from the second parent, the colors already 

transferred from the first parent should be taken into consideration. The selected color pairs 

will be transferred to the offspring, if the vertices are not already colored with the colors 

from the first parent. If the one of the genes that is supposed to be colored with current 

color pair is already colored, then only one color from the pair is transferred. On the other 

side, if a conflict arises between the colors transferred from the first and the second parent, 

the color from the second parent is changed to the next or previous color in the bandwidth. 

This allows us to pick a color from bandwidth that does not cause any conflict with the 

previously colored location. When this process ends, remaining uncolored locations are 

colored with the first available color from the bandwidth, starting from the first color. If 

there are still uncolored genes after these steps, they are colored with randomly chosen 

colors from the current bandwidth. 

  



 32 

Algorithm 3.2. Distance Based Crossover 

 

B1 represents first parent, 

B2 represents second parent, 

B0 represents offspring; 

for                                     do 
    for j = 0, j < neighbor count of i, j = j + 1 do 

        if !conflict(                               ) then 

              
                     

              
                     

        end 

        if !conflict(                               ) then 

              
                     

              
                  ; 

        end 

    end 

end 

for                                     do 

    for                                         do 

        if                                                   then 

                               
      

                               
      

        end 

    end  

end 

for                                     do 

    for                                         do 

        if                                                   then 

                               
      

                               
      

        end 

        else if                            then 

            if !conflict(                               ) then 

                  
  ← B1→colorData[j]; 

            end 

        else if                            then 

            if !conflict(                               ) then 

                  
                    

            end 

        end         

    end  

end 

for                                     do 

    if                                then 

                                                                  
    end 

end 

 

In the testing stage of the distance based crossover, it has been observed that the color pairs 

are mainly transferred from the first parent. The color pairs from the second parent usually 

fail to color the uncolored genes due to the conflicts that appear. Then these locations are 

colored randomly. In this case, the crossover operator behaves more like a mutation 
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operator. Thus, it was not possible to obtain satisfactory results with this initial crossover 

operation. Therefore, a new crossover operator is developed to enhance the performance. 

 

 

 

Figure 3.10. Explanation of vertex based crossover 

 

This new crossover operator is called as vertex based crossover. In the vertex based 

crossover operator, the vertex pairs that do not have conflicting colors are determined. 

Note that a vertex can have multiple colors in BMCP. Hence, all colors in the 

corresponding genes are checked against each other in order to determine a vertex pair that 

does not have any conflicting colors. Then all colors in these vertex pairs are transferred to 

the offspring instead of the color pairs. The subsets of the vertex pairs are represented as 

  
  and   

  in Algorithm 3.3. First of all, the vertex pairs that are colored without having 

conflicts between them are determined in both parents. Then these vertex pairs are 

transferred to the offspring in random order. The pairs are selected from different parents 

in each step. When the process ends, remaining uncolored genes are colored with the first 

available color from the bandwidth. Finally, if there are still uncolored genes, they are 

colored again with randomly colors within the bandwidth. The pairs that are transferred in 

the crossover are chosen evenly from both parents and better results are obtained compared 

to the distance based crossover.  Performance comparison of the two crossover operators 

can be found in Section 4.2. 

 

An example for the vertex based crossover can be seen in Figure 3.10. The vertex pairs that 

do not have conflicting colors in each parent are represented as bold numbers. These vertex 
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pairs are transferred to the offspring. Then, the remaining uncolored vertices are randomly 

colored. Randomly assigned colors are shown with red numbers. 

 

Algorithm 3.3. Vertex Based Crossover 

 

B1 represents first parent, 

B2 represents second parent, 

B0 represents offspring; 

for                               do 

    for                                         do 
        if !conflict(B1→node[i], B1→node[j]) then 

                  
                

                  
                

        end 

    end 

end 

for                                 do 

    for                                         do 

        if !conflict(                     ) then 

                  
  ← B2→node[i]; 

                  
  ← B2→node[j]; 

        end 

    end 

end 

for                               do 

    for                                         do 

                     ; 

                         

                         
    end 

end 

for                                     do 

    if                                then 

                                                                  
    end 

end 

 

The next crossover operator utilized in this study is called maxGroupCrossover. It is based 

on the method proposed in [7]. This crossover operator aims to transfer the successful 

color groups to the offspring. Certainly, the successful color groups are the ones which do 

not cause any conflict in the current coloring scheme. The algorithm used in this operation 

is presented in Algorithm 3.4. In this crossover, first, the biggest color groups are 

determined from the two parents selected. These parents are expressed as B
1
 and B

2 
in the 

algorithm. The biggest color group is represented by   
  where i is the parent index and j is 

the group number. Then, the biggest color group from the first parent is transferred to the 

offspring. The group can be transferred if the genes that belong to this color group are not 
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already colored by previous operations. Therefore, the colors are removed from both 

parents whenever they are transferred. This process is repeated until all color groups are 

transferred to the offspring. There steps of this process is given in Figure 3.11. Here, the 

largest groups are represented with red, orange and cyan colors. If there are still uncolored 

genes left after the transfer operation, they are colored with random colors within the 

current bandwidth. 

 

Algorithm 3.4. Maximum Group Crossover 

 

B1 represents first parent, 

B2 represents second parent, 

B0 represents offspring; 

       
while      do 
                   

      
 
                         

 
              

 
     

            
     

 
  

             
 
  

             
 
  

            
end 

for                                     do 

    if                                 then 
        pick a random x between 0 and 1; 

        if        then 
                                                 

                                  
        else 

                                                    
                                

        end 

    end 

end 
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Figure 3.11. There steps of the maximum group crossover 

 

Lastly, new crossover operation that is hybridized with ANNs is also proposed in this 

thesis. In the genetic search, the crossover operator is carried out in two different ways. At 

the beginning of the search, the standard uniform crossover is utilized. While the crossover 

operations are carried out a training data is also created for ANNs. The data holds the 

parents used in the crossover operation, the gene positions in each parent that are used for 

coloring the offspring and a label denoting if the operation was successful or not. The 

crossover operation is labeled as successful if the offspring is better for at least one of the 

parents in terms of at least one fitness function. When sufficient amount of crossover data 

is collected an ANN is trained on this data in order to determine the critical color groups 

that have to be transferred to the offspring as a whole. The standard crossover operation is 

utilized in the second part of the genetic search. However, three different coloring patterns 

are created and the trained ANN is utilized to select the pattern that has the highest 

potential to create a successful offspring. Algorithm of the ANN-Crossover can be seen in 

Algorithm 3.5. 

 

While creating the coloring patterns, color values are randomly chosen from the parents. 

The crossover operator reproduces the offspring using these colors. Hence three alternative 

transfer scenarios are obtained for coloring the offspring. Each scenario form a randomly 

produced pattern set denoted as     in Equation 3.1. Then, the trained ANN is used to 

determine the pattern that has the highest potential to create a successful offspring as 

shown in Equation 3.1.Certainly, the offspring is created using the pattern chosen by the 
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ANN. The chosen pattern represented by      in Equation 3.1. The representation of 

ANN-crossover can be seen in Figure 3.12. The pattern in the figure determines the color 

values that are used to reproduce the offspring. On the other side, the whole ANN-

crossover process is explained with a diagram in Figure 3.14. 

 

                                                               (3.1) 

 

 

 

Figure 3.12. Representation of ANN-crossover 

 

Whenever the genetic search starts, after the first 100 generations, the process of collecting 

training data is also started. This process runs for 50 generations. At the end of these 50 

generations, the ANN is trained with the collected data. Then the crossover operation is 

carried out by using the ANN in the following generations. However, the process of 

gathering data and retraining the ANN is repeated after each 10000 generations in order to 

be up to date with new situations that can appear during the search process. 
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In the training phase, the collected training data is fed to the ANN. The ANN tries to map 

the coloring patterns to the respective pattern label which denotes if the crossover 

operation was successful or not. Symmetric sigmoid function is used as activation function 

in the ANN. The symmetric sigmoid is the sigmoid that is stretched so that the y range is 

equal to 2 and then it is shifted down by 1 so that it ranges between -1 and 1. The sigmoid 

function is given in Equation 3.2. The ANN produces an output between -1 and 1 

depending on the pattern’s potential to create a successful offspring.  Results that are closer 

to one are more likely to produce better offspring. Rprop learning method is used during 

the training phase in this study. This algorithm reduces the effects of initialization. Also, 

the learning rate is adaptive in this algorithm.  

 

                                           
 

       
 (3.2) 

 

 
 

Figure 3.13. ANN architecture 

 

A three layered feedforward neural network is utilized. ANN architecture can be seen in 

Figure 3.13. Number of neurons used in the input layer is equal to the number of genes 

used in the chromosome representation. This value changes for each benchmark instance 



 39 

depending on on the number of vertices in the graph. In Equation 3.3 and 3.4, calculation 

of the number of neurons used in the input and the hidden layers are given. I is the number 

of neurons in the input layer and H in the hidden layer.   represents the number of vertices 

in the graph.    represents a single vertex and    
 represents the weight value for vertex   . 

Half of the number of neurons used in the input layer is used in the hidden layer as seen in 

Equation 3.4. Lastly, a single neuron is used in the output layer. 

 

                                                                     
 
      

 (3.3) 

 

                                                               H = 
    

 
      

 
 (3.4) 

 

 

 

Figure 3.14. Explanation of ANN-crossover 

  

data collection 

continues 

data collection ends 

apply crossover and evaluate offspring  

trainANN(trainingData) 
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Algorithm 3.5. ANN-Crossover 

 

B1 represents first parent, 

B2 represents second parent, 

B0 represents offspring; 

max = 0; 

if trainingPhase is active then 

    for                                     do 
        randAr[i]→ pick a random value in between 0 and 1;  

    end 

    for                                     do 

        if                then     

                                    
        else 

                                    
    end 

    if                                   
 do 

        annPatternData←randArr; 

    end 

end 

trainAnn(annPatternData); 

else 

    for                        do 

        for                                     do 

                                                                
        end 

        output = runAnn(randAr); 

        if output > max then 

            maxPattern←randAr; 

            max = output; 

        end 

    end 

end 

for                                     do 

    if                    then     

                                
    else 

                                
end 

 

The group crossover works properly on GCP. Only a single color is assigned to each vertex 

and all edge weights are set to one in GCP. Hence if you consider two adjacent vertices, it 

is sufficient to have different colors for a successful coloring on them. Therefore, when the 

group crossover moves a color group from a parent to the offspring, it is not possible to 

have some unexpected conflicts with other previously transferred color groups. Therefore, 

the group crossover performs well on GCP by transferring the color groups which are the 

building blocks in the parents. 
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Vertices can be assigned more than one color in BCMP. What is more, the edge weights 

can be more than one. Hence, certain separations should exist in between the colors 

assigned to adjacent vertices.  Due to these characteristics of the problem, the group 

crossover does not perform well on BCMP. Whenever, a color group is transferred to the 

offspring, conflicts may arise due to other color groups already transferred from the second 

parent. It is not possible to consider color groups as building blocks in this problem.  

However, there might be some critical regions the graph which is difficult to color due to 

the edge weights and vertex weights that exist in that region. In BMCP coloring of such 

regions can be considered as the basic building blocks. Determination of such critical 

regions is carried out by the ANN crossover in this study. The ANN training used for each 

benchmark instance can determine the critical graph regions that can easily create conflicts 

and the approach used enables the crossover operation to transfer all of the colors used in 

such a critical region from the same parent.  Therefore, the ANN crossover outperforms the 

maximum group crossover on BMCP. 

 

3.3.2.  Mutation Operators 

 

Three mutation operators are also utilized for the reproduction process. In the first one, a 

random gene is selected and its color is reassigned to a randomly selected new color within 

the current bandwidth. Also, two other operators are designed to merge and divide color 

groups. The algorithm of the merge mutation can be seen in Algorithm 3.6. The merge 

operator tries to reduce the bandwidth size by merging randomly chosen two color groups 

into one. The divide operator is in contrast to the merge operator. The algorithm of the 

division mutation is given in Algorithm 3.7. It tries to increase the bandwidth size by 

dividing one randomly chosen group into two groups. Two different methods are used in 

this process. The first method selects the second color group within the current bandwidth 

range and the second method chooses a color group that is outside the current bandwidth 

by a specific margin. In many tests, this margin is set as 3 in order not to increase the 

bandwidth by a big margin.  The mutation amount applied in each generation is set as 20 

per cent of the population. All the mutation operators have an equal chance to be selected 

when the mutation process starts. 
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Algorithm 3.6. Merge Mutation 

 

Pick a random k0 color from the current bandwidth; 

while(        ) do Pick a random k1 color from the current bandwidth; 

for                                     do 

    if                                then 

                                       
    end 

end 

 

Algorithm 3.7. Division Mutation 

 

pick a random x between 0 and 1; 

pick a random k0 color from the current bandwidth; 

if        then 

    while(        ) do Pick a random k1 color from 
                                              the current bandwidth; 

else 

                                                      
                                              
                                                                 
end 

for                                     do 
    pick a random y between 0 and 1; 

    if                                          then 

                                      
    end 

end 

 

3.4.  LOCAL SEARCH OPERATOR 

 

It is a commonly used method to compensate the stochastic framework presented with 

genetic algorithms by local search operators. In this thesis, a local search operator is used 

to improve the individuals produced by the genetic algorithm operators. This operator tries 

to improve the chromosomes by recoloring the conflicting colors with other colors in the 

current bandwidth. The individuals that will be improved by the local search method are 

chosen randomly from the population. All chromosomes have the same probability of 

being selected. A copy of the selected individual is sent to the local search function. The 

local search function repeatedly changes the colors in the selected chromosome to reveal 

new coloring schemes. If an improvement can be achieved, then the original chromosome 

in the population is replaced by the new chromosome. 

 

The recoloring process on the chromosomes is repeated multiple times as mentioned 

above. The number of steps used for this process is low at the beginning of the search 
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process. However, the number of iterations in the process increases towards the end of the 

search process. The number of iterations can also be set to higher values for the graphs 

which are denser and which has more vertices. 

 

Both the bandwidth size and the number of conflicts in a chromosome are tried to be 

improved by the local search operator. Local search uses a maximum bandwidth size 

which is an input parameter of the local search function. Genes that have conflicting colors 

with other genes or that are outside the input bandwidth size are called as problematic 

genes. A gene is selected among these problematic genes and it is reassigned to a non-

conflicting color within the current bandwidth interval. There are two stopping criteria 

used in local search operator: The first one occurs when the max iteration count is reached 

for the operator. The second one occurs when all problematic vertices are eliminated. The 

resulting chromosome is inserted into the population using the population control 

algorithm described before. A single iteration of local search method can be seen in 

Algorithm 3.8. 

 

 

 

Figure 3.15. Population movement in both directions 
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Population movement can happen in both directions, the number of conflicts and the 

bandwidth. This is shown in Figure 3.15. However if a perfect solution with no conflict is 

found, it is not necessary to search for larger bandwidths anymore. However, if no perfect 

solution exists in the population, the local search method should be able to increase the 

color bandwidth in order to reduce the number of conflicting colors. 

 

Algorithm 3.8. Local Search Operator 

 

                       
                  
              
             
for                                     do 
    for                                         do 
        if conflict(chromosome→colorData[i], chromosome→colorData[j])  then 

                                 
        end 

    end 

    if                                       then 

                                                
                          
    end 

end 

                      
for                                       do 

                                            
    for                                                                  do 
        if conflict(                                                          ) 
then 

                                
        end         

    end 

                                              –                    
    if                then 

                        
                      
    end 

end 

                                               

 

As mentioned in the previous paragraph, local search method uses a maximum bandwidth 

value which is a input given to the function. This input is calculated based on the best 

chromosome in the population. The best chromosome is the chromosome with the smallest 

bandwidth that does not contain any conflicts in its coloring scheme. If the best 

chromosome has no conflicts, then maximum bandwidth for local search operator is set 

randomly one to four levels lower than the bandwidth of this chromosome. If the best 

chromosome still has some conflicts, local search operator uses a bandwidth that is again 

randomly set as one to four levels larger than the current bandwidth.  
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4.  EXPERIMENTAL RESULTS 

 

 

4.1.  BENCHMARK PROBLEM SET 

 

GEOM benchmarks, generated by Michael Trick [12], are used as BMCP test instances in 

this study. In the GEOM benchmarks, the vertices of a graph are represented by points that 

are uniformly distributed in a square by              . Vertices that are closer to each 

other less than a previously determined threshold have an edge connection in between. The 

distance between the points determines the separation distances associated to the edges. 

Number of colors in a vertex is determined by picking a random number from the interval 

[1,r], where r can get 10 as maximum value and all edge weights are set to 10. The smallest 

test instances have 20 vertices and new test instances are created by increasing the number 

of vertices in tens. The largest instance that exists in the set has 120 vertices. Each instance 

is named as GEOMna and GEOMnb where n is the number of vertices that exist in that 

instance and the instances that have a name that ends with the “b” letter contain denser 

graphs compared to the instance names that end with the “a” letter. 

 

4.2.  CONTRIBUTION OF THE OPERATORS 

 

Different genetic and local search operators are designed and used in the algorithmic 

framework proposed in this thesis. The contribution of each operator is determined 

throughout some experiments conducted in the study. According to the analysis made, the 

solutions obtained at the end of the genetic search are mainly constructed by the mutation 

and local search operators. On the other side, it has been observed that the best solutions 

can be achieved whenever the crossover operator is also included in the search process. It 

can be claimed that the crossover operator does not take a important role for the 

construction of the solution, but the operator still should be used for improving the quality 

of the solutions obtained. 

 

In the experiments, it was observed that a large portion of the improvements on the 

chromosomes are provided by the hill climbing operator. Therefore, the hill climbing is 

applied on all individuals produced by the mutation and crossover operations. 
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In the experiments, the effect of applying mutation operator on the individuals produced by 

the crossover operator is also tested. However, it has been observed that performing 

mutation operator on these offspring results in too much distortion on the individuals and 

does not contribute to get better results. 

 

The impact of using mutation operator on the individuals produced by the crossover 

operation can be seen in Table 4.1. As seen in the table, the percentage of producing 

offspring better than the parents is higher  when only crossover is used before the hill 

climbing process compared to the case  where crossover and mutation operators are used 

together. An individual is better than the other one if it has a smaller bandwidth and 

smaller number of conflicts in the coloring scheme it represents.  If two individuals have 

the same value for one of the fitness functions, then the individual which has lower value 

on the second fitness function is considered as the better individual.  

 

Table 4.1. Affect of the mutation after crossover operation 

 

Utilized Framework 

The Percentage Of 

Producing Offspring 

Better Than The Parents 

(%) 

Crossover + Local Search 29.17 

Crossover + Mutation + Local Search 23.82 

 

Performance comparison of the distance based crossover and the vertex based crossover on 

three selected benchmark instances can be seen at Table 4.2. The vertex based crossover 

obtains better results compared to the distance based crossover. The coverage rate [35] is a 

commonly used performance evaluation metric for MOGAs. This rate determines how two 

different algorithms' pareto fronts dominate each other. If the rate is equal to one, this 

means that all the members of the pareto front created by the first algorithm dominate the 

members of the pareto front created by the second algorithm. The coverage rate obtained 

by the vertex based crossover operator is either equal to one or it is very close to one on the 

benchmark instances used in the experiments.  
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Table 4.2. Comparison between vertex based crossover and distance based crossover 

 

Benchmark Problem 

Set 

Coverage Rate(Vertex Based / Distance Based) 

Average Median 

GEOM50 0.85 0.86 

GEOM50a 0.79 0.83 

GEOM50b 1 1 

 

The performance comparison between vertex based crossover operator and the other 

operators used in this study can be seen in Table 4.3. The distance crossover operator is not 

included in this comparison, since the vertex based crossover operator outperforms it.  

 

Table 4.3. Probability of creating better individuals of the crossover operators 

 

Crossover Operator 

The Probability Of Producing 

Better Offspring In Terms Of 

Only One Fitness Value (%) 

The Probability Of 

Producing Better 

Offspring In Terms Of 

Both Fitness Functions 

(%) 

Vertex based crossover 

v1  
3.27 0.79 

Vertex based crossover 0.1 0.08 

Maximum group 

crossover 
3.59 1.82 

 

In the vertex based crossover, the colors are transferred to the new individuals after 

determining the appropriate pairs of vertices. The approach aims to minimize the conflicts 

in the offspring. The performance of a different version of vertex based crossover is also 

presented in the table. The edge weights are also considered and coloring constraints are 

not violated while transferring the colors in the vertex based crossover operator.  The edge 

weights are not taken into consideration in vertex based crossover-v1. When this method is 

used, the diversity in the population is increased. 
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The names of the crossover operators are given in the first column of the Table 4.3. In the 

second column, the probability of producing better offspring in terms of only one fitness 

value is given for the operators. Lastly, the probability of producing better offspring in 

terms of both fitness functions is given in the third column. The probability producing an 

offspring better than the parents in terms of both fitness functions is low for all operators.. 

However, this is not an unexpected situation, since the crossover operators are quite 

destructive for grouping problems. The maximum group crossover has the highest 

performance compared to the other crossover operators as seen in the table. 

 

Further tests are performed on the ANN-crossover which is designed to increase the 

performance of the crossover operation. The crossover operator is considered as successful 

again if it reproduces an offspring that has a better value for one of the fitness functions 

without resulting a declination of the other fitness function value. Comparison of ANN-

crossover and max group crossover are given in Table 4.4. The ANN-crossover 

outperformed the max group crossover in all the problem instances that exist in the GEOM 

test suite as seen in Table 4.4. 
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Table 4.4. Success rate comparison between max group crossover and ANN crossover 

 

Benchmark 

Problem 

Set 

Success Rate Of The Crossover 

Operator (%) 

Max Group 

Crossover 
ANN Crossover 

GEOM20 1,62 9,45 

GEOM20a 1,05 5,42 

GEOM20b 3,16 6,47 

GEOM30 2,21 8,03 

GEOM30a 0,93 8,61 

GEOM30b 4,97 9,86 

GEOM40 2,00 7,35 

GEOM40a 2,13 6,90 

GEOM40b 3,56 5,61 

GEOM50 0,99 5,29 

GEOM50a 2,28 7,67 

GEOM50b 3,20 5,67 

GEOM60 0,97 9,24 

GEOM60a 2,03 6,22 

GEOM60b 4,73 7,84 

GEOM70 2,60 6,17 

GEOM70a 1,39 8,13 

GEOM70b 2,74 6,11 

GEOM80 3,41 8,29 

GEOM80a 2,05 6,09 

GEOM80b 2,63 6,02 

GEOM90 3,44 8,64 

GEOM90a 2,41 9,49 

GEOM90b 2,42 5,42 

GEOM100 0,91 7,45 

GEOM100a 3,12 6,70 

GEOM100b 4,05 6,64 

GEOM110 1,76 8,61 

GEOM110a 3,07 7,44 

GEOM110b 2,35 8,62 

GEOM 120 3,49 7,31 

GEOM120a 2,77 5,90 

GEOM120b 3,68 8,33 

 

The effect of the ANN-crossover on the proposed framework is also analyzed in terms of 

best solutions that can be obtained on the benchmark instances. The best solution generated 

at the end of the search is the individual that colors the graph successfully with minimum 

bandwidth value. Certainly, a successful coloring of the instance does not contain any 
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conflicts.  The ANN-crossover achieved improvements on the minimum bandwidth values 

for the successful colorings, too.  The best and average bandwidth values that are obtained 

for a group of runs on the test instances can be seen in Table 4.6. and Table 4.7. As seen in 

the table, the crossover operator improved the best bandwidth value in 19 problem 

instances. Worse results are obtained only in five problem instances by the ANN-crossover 

compared to the standard group crossover. Lastly, the same results are obtained in the 

remaining nine problem instances. The average bandwidth values are calculated using the 

results of 10 different runs on each instance. The ANN-crossover operator improved the 

average bandwidth value in 30 problem instances. The same result is obtained in only one 

of the problem sets. Lastly, ANN-crossover has a worse average in only two problem 

instances. Detailed test results are given in Appendix B section. 

 

Parameters that are used in the tests are given in Table 4.5. The population size is set to 

120 in these tests. The tests are run for 30000 generations. 40 LS operations and 30 

crossover operations are applied on the population in each generation. Mutation operation 

count is set to 20 per cent of the population size. In LS operations, maximum iteration 

count starts from 20 and linearly increases up to 40 throughout the run. 

 

Table 4.5. Parameters used in the tests 

 

Population 

Size 

Max 

Generation 

Count 

LS 

Operation 

Count 

Crossover 

Operation 

Count 

Mutation 

Operation 

Count 

Min LS 

Iteration 

Count 

Max LS 

Iteration 

count 

120 30000 40 30 

20 per 

cent of the 

population 

size 

20 40 
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Table 4.6. The best bandwidths obtained by the ANN-crossover 

 

Benchmark 

Problem 

Set 

Best 

Max Group 

Crossover 

ANN 

crossover 

Bandwidth Bandwidth 

GEOM20 150 150 

GEOM20a 170 170 

GEOM20b 44 44 

GEOM30 160 160 

GEOM30a 213 212 

GEOM30b 77 77 

GEOM40 167 167 

GEOM40a 216 214 

GEOM40b 75 75 

GEOM50 225 225 

GEOM50a 326 326 

GEOM50b 88 87 

GEOM60 258 259 

GEOM60a 372 367 

GEOM60b 118 119 

GEOM70 275 274 

GEOM70a 480 479 

GEOM70b 125 123 

GEOM80 393 389 

GEOM80a 382 376 

GEOM80b 141 143 

GEOM90 339 338 

GEOM90a 388 387 

GEOM90b 157 155 

GEOM100 425 412 

GEOM100a 464 460 

GEOM100b 168 172 

GEOM110 392 394 

GEOM110a 511 504 

GEOM110b 215 213 

GEOM 120 414 411 

GEOM120a 569 564 

GEOM120b 208 203 
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Table 4.7. The average bandwidths obtained by the ANN-crossover 

 

Benchmark 

Problem 

Set 

Average 

Max Group 

Crossover 
ANN crossover 

Bandwidth Time Bandwidth Time 

GEOM20 151,9 3201 151 3561 

GEOM20a 171,4 4095 170,3 4978 

GEOM20b 44 646 44 765 

GEOM30 161,1 4239 160,4 6000 

GEOM30a 216,5 9319 214,3 11742 

GEOM30b 77,7 1418 77,5 1794 

GEOM40 169,6 6427 168,4 8461 

GEOM40a 221,8 14119 218,2 15900 

GEOM40b 76,9 2336 76,4 2933 

GEOM50 227,1 9299 226,8 12196 

GEOM50a 338,2 30482 334,5 35254 

GEOM50b 91,2 4340 88,4 4594 

GEOM60 263,5 11280 261,4 15743 

GEOM60a 376 29236 371,3 36655 

GEOM60b 122,6 5960 122 7425 

GEOM70 280,2 19987 277,2 23898 

GEOM70a 485,9 35394 483,8 43586 

GEOM70b 127,7 7288 127,4 8912 

GEOM80 397,5 28219 393,2 32747 

GEOM80a 386 37266 382,4 47315 

GEOM80b 144,6 9055 144,7 11883 

GEOM90 343,7 34378 341,5 38021 

GEOM90a 394,8 42423 394,1 49780 

GEOM90b 161 12017 159 15982 

GEOM100 429,2 30663 422,4 42483 

GEOM100a 471,3 73922 464,5 81071 

GEOM100b 174,8 14804 176,5 18471 

GEOM110 401,3 44176 398,5 60623 

GEOM110a 519,4 76800 510,1 100616 

GEOM110b 218,4 17247 215,7 21874 

GEOM 120 421,9 48918 418,3 61746 

GEOM120a 584 92671 573,3 116158 

GEOM120b 210,7 18362 207,8 23177 
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Various experiments are carried out to observe the effect of mutation operators used in the 

study. The results obtained while all mutation operators are simultaneously active can be 

seen in Table 4.8. All of the operators in the table are equally likely to have the chance to 

be operated.  

 

Conflict number that exists in the offspring produced by using the standard mutation 

operator does not get worse with a rate of 6.5 per cent. This rate is much higher compared 

to the merge and the division mutation operators. The effect of each operator to the 

individuals is quite different, as shown in Table 4.8. The bandwidth value is expected to 

increase and shrink by dividing and merging the color groups. This process increases the 

diversity of the population. The standard mutation operator also helps to avoid being stuck 

at local minima by changing color of a randomly picked up vertex in the graph.  Different 

tests are also performed to analyze the effect of using different combinations of the 

mutation operators. It is observed that the best performance is obtained when all operators 

are used simultaneously. It is not possible to obtain satisfactory results when only a subset 

of the mutation operators is utilized.  

 

Table 4.8. Performance comparison of the mutation operators 

 

Mutation Operator 
Total Call 

Count 

Case of 

Increased 

Conflict is 

Obtained 

Case of Same or 

Decreased 

Conflict is 

Obtained 

Percentage of 

Not Having a 

Worse 

Chromosome 

(%) 

Standard Mutation 103315 96584 6731 6.51 

Merge Mutation 102733 60593 42140 41.01 

Division Mutation 103287 4489 98798 95.65 

 

The first column in Table 4.8 shows the name of the mutation operator used in the tests. 

The second column shows total number of calls for each mutation operator. The number of 

calls where the conflict number is increased by the operator can be seen in the third 

column. With the mutation operators, it mainly is aimed to increase the diversity by 

changing the bandwidth values of the individuals. When the mutation operator is applied 
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without increasing the conflict number, it is considered as successful. The number of 

successful mutation operator calls are shown in the forth column. The rate of these 

successful calls is given in the last column. 

 

The effect of the local search operator is also observed, as well as crossover and mutation 

operators. The performance of local search operator on four selected problem instances can 

be seen in Table 4.9. The individuals which are produced by using local search operator 

are likely to be better than the original individuals in terms of both conflict number and 

bandwidth value, as seen in the table. It can be claimed that, the local search operator is 

especially effective on the conflict number and it can reduce the conflicts in the individuals 

with a high percentage of success. 

 

Table 4.9. Local search experiment 

 

Benchmark 

Problem Set 

Total Call 

Count 

Cases of 

Same Conflict 

is Obtained 

Case of 

Decreased 

Conflict is 

Obtained 

Improvement 

Rate 

(%) 

GEOM50 600000 420311 179497 29.91 

GEOM50a 600000 471649 128167 21.36 

GEOM50b 600000 382219 217309 36.21 

GEOM60 600000 443587 156088 26.01 

 

The first column in the Table 4.9 shows the total number of local search calls carried out in 

a single run. The number of the calls where the conflict number does not change is given in 

the second column. The number of the calls where the conflict number is decreased by the 

operator is given in the third column, and improvement rates can be seen in the last 

column. If the conflict number of an individual is decreased by the local search operator, it 

is considered as an improvement on the individual. Each row in the table presents the 

results obtained on a different problem instance. 

 

The hybridization of GAs with local search improves the performance of the methodology. 

To demonstrate the contribution of local search, coverage rate calculation is also utilized 
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for the local search operator. It has been seen that all the coverage rates are equal to one in 

favor of the search accompanied by local search. Also the best bandwidth values obtained 

by pure MOGA and MOGA accompanied by local search can be seen in Table 4.10 on 

some selected instances. 

 

Table 4.10. Effect of the local search operator on the best bandwidths 

 

Benchmark Problem Set 

The Best Bandwidths 

Local Search is Utilized 
Local Search is not 

Utilized 

GEOM50 224 274 

GEOM50a 320 392 

GEOM50b 88 104 

GEOM70 274 365 

GEOM70a 472 492 

GEOM70b 121 158 

  

The average best bandwidth and standard deviation obtained throughout different runs on 

the some instances can be seen in Figure 4.1. The results are obtained by using 20 different 

runs for each problem instance. As seen in the figure, again the local search operator has an 

important contribution for establishing better solutions. 
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Figure 4.1. Standard deviation of average bandwidth comparison 

 

4.3.  COMPARISON BETWEEN THE HYBRID MOGA APPROACH AND OTHER 

ALGORITHMS  

 

Comparison between the hybrid MOGA approach used in this thesis and other three state 

of the art algorithms can be found in Table 4.11, Table 4.12 and Table 4.13. These three 

algorithms are proposed in [19] (combination of LS and Constraint Propagation), [15] 

(combination of TS and SWO) and [16] (combination of GA and TS). All tests are done 

under Ubuntu machines with 2.66GHz Intel Core Duo CPUs and 2MB RAM. The tests are 

repeated 10 times and the best results are included in the tables. Names of the benchmarks 

are given in the first column. The second column shows the results obtained by the MOGA 

approach. The next columns show the results obtained by the other frameworks and the 

improvements obtained by the MOGA approach compared to other frameworks. It is 

difficult to provide a performance comparison between MOGA and other methods in terms 

of computational time. MOGA performs a parallel search in the pareto front including 
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solutions with different bandwidths. The other algorithms, utilize only a single bandwidth 

value. However, in general it can be stated that MOGA is slower compared to [15, 16, 19]. 

 

The improvements obtained by the MOGA approach are given in the “improvement” 

column. The values in these columns are the differences between two frameworks. The 

positive values in the column show that the MOGA approach has found a better result 

compared to the other framework. The negative values in the column indicate the cases 

where the MOGA approach falls behind, when compared to the other frameworks. If the 

columns hold value of zero, it means that a tie happened between the two approaches. 

 

In these tests population size is set as 120. Max generation count is 30000 and in each 

generation 40 LS operations and 30 crossover operations are performed. In LS operations, 

maximum iteration count starts from 20 and linearly increases up to 40 throughout the run.  
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Table 4.11. MOGA and Prestwich Comparison 

 

Benchmark 

Problem 

Set 

MOGA 
PRESTWICH 

[19] 
Improvement 

GEOM20 150 149 -1 

GEOM20a 170 170 0 

GEOM20b 44 44 0 

GEOM30 160 160 0 

GEOM30a 212 214 2 

GEOM30b 77 77 0 

GEOM40 167 167 0 

GEOM40a 214 217 3 

GEOM40b 75 74 -1 

GEOM50 225 224 -1 

GEOM50a 326 323 -3 

GEOM50b 87 86 -1 

GEOM60 259 258 -1 

GEOM60a 367 373 6 

GEOM60b 119 116 -3 

GEOM70 274 277 3 

GEOM70a 479 482 3 

GEOM70b 123 119 -4 

GEOM80 389 398 9 

GEOM80a 376 380 4 

GEOM80b 143 141 -2 

GEOM90 338 339 1 

GEOM90a 387 382 -5 

GEOM90b 155 147 -8 

GEOM100 412 424 12 

GEOM100a 460 461 1 

GEOM100b 172 159 -13 

GEOM110 394 392 -2 

GEOM110a 504 500 -4 

GEOM110b 213 208 -5 

GEOM120 411 417 6 

GEOM120a 564 565 1 

GEOM120b 203 196 -7 
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Table 4.12. MOGA and Lim Comparison 

 

Benchmark 

Problem 

Set 

MOGA 
LIM 

[15] 
Improvement 

GEOM20 150 149 -1 

GEOM20a 170 169 -1 

GEOM20b 44 44 0 

GEOM30 160 160 0 

GEOM30a 212 211 -1 

GEOM30b 77 77 0 

GEOM40 167 167 0 

GEOM40a 214 214 0 

GEOM40b 75 76 1 

GEOM50 225 224 -1 

GEOM50a 326 326 0 

GEOM50b 87 87 0 

GEOM60 259 258 -1 

GEOM60a 367 368 1 

GEOM60b 119 119 0 

GEOM70 274 279 5 

GEOM70a 479 478 -1 

GEOM70b 123 124 1 

GEOM80 389 394 5 

GEOM80a 376 379 3 

GEOM80b 143 145 2 

GEOM90 338 335 -3 

GEOM90a 387 382 -5 

GEOM90b 155 157 2 

GEOM100 412 413 1 

GEOM100a 460 462 2 

GEOM100b 172 172 0 

GEOM110 394 389 -5 

GEOM110a 504 501 -3 

GEOM110b 213 210 -3 

GEOM120 411 409 -2 

GEOM120a 564 564 0 

GEOM120b 203 201 -2 
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Table 4.13. MOGA and Malaguti Comparison 

 

Benchmark 

Problem 

Set 

MOGA 
MALAGUTI 

[16]  
Improvement 

GEOM20 150 149 -1 

GEOM20a 170 169 -1 

GEOM20b 44 44 0 

GEOM30 160 160 0 

GEOM30a 212 210 -2 

GEOM30b 77 77 0 

GEOM40 167 167 0 

GEOM40a 214 214 0 

GEOM40b 75 74 -1 

GEOM50 225 224 -1 

GEOM50a 326 316 -10 

GEOM50b 87 83 -4 

GEOM60 259 258 -1 

GEOM60a 367 357 -10 

GEOM60b 119 115 -4 

GEOM70 274 272 -2 

GEOM70a 479 473 -6 

GEOM70b 123 117 -6 

GEOM80 389 388 -1 

GEOM80a 376 363 -13 

GEOM80b 143 141 -2 

GEOM90 338 332 -6 

GEOM90a 387 382 -5 

GEOM90b 155 144 -11 

GEOM100 412 410 -2 

GEOM100a 460 444 -16 

GEOM100b 172 156 -16 

GEOM110 394 383 -11 

GEOM110a 504 490 -14 

GEOM110b 213 206 -7 

GEOM120 411 396 -15 

GEOM120a 564 559 -5 

GEOM120b 203 191 -12 
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As seen in Table 4.11, Table 4.12 and Table 4.13, some improvements are achieved 

compared to Prestwich [19] and Lim [15]. Among the 33 instances of GEOM benchmarks, 

the hybrid MOGA finds better solutions in 10 instances compared to [15]. In 10 of the 

instances, the same solution is found with [15]. In the remaining 13 instances, the hybrid 

MOGA performs worse compared to the result in [15]. The hybrid MOGA also improves 

12 instances and achieves the same result on five instances compared to Prestwich [19]. 

However, the hybrid MOGA performance is low compared to Malaguti[16]. The hybrid 

MOGA achieves the same result on only five instances compared to [16]. Summary of 

performance comparison of these three algorithms are presented in Table 4.14. 

 

Table 4.14. MOGA comparison with other approaches 

 

Our 

Framework 
Quality 

PRESTWICH 

[19] 

LIM 

[15] 

MALAGUTI 

[16] 

MOGA 

Better 12 10 0 

Same 5 10 5 

Worse 16 13 28 

  



 62 

5.  CONCLUSION & FUTURE WORK 

 

 

In this study, a hybrid framework is proposed to solve multi objective optimization 

problems. A well known multi objective optimization problem; BMCP is selected as the 

testbed for the proposed algorithm. Also a novel crossover operator that is hybridized with 

ANN is also designed in order to increase the success rate of reproduction process in this 

study. 

 

Satisfactory results are obtained on the Benchmark instances utilized. Multi objective 

genetic algorithms (MOGAs) have not been applied to BMCP  before in the literature. The 

multi-objective framework eliminates the need for determining the optimal bandwidth 

value for the problem instance. Optimization of the bandwidth value is one of the objective 

functions in the problem. MOGA framework makes it possible to run a parallel search on 

the solutions with different bandwidth values. 

 

The hybrid search framework proposed for solving BMCP has been investigated in detail. 

Various tests are performed in order to determine the contribution of different operators 

used in the framework. This approach could be easily applied to other similar partitioning 

problems with minor updates. 

 

The ANN-crossover proposed in this study is a novel operator which can increase the 

performance of the general framework. The operation makes it possible to breed better 

offspring compared to standard crossover operators. It has been observed that the 

performance increase is significant on the problem instances used. GAs have been used to 

improve the performance of ANNs in the literature, however it is a new approach to use 

ANNs to improve the performance of GA operators. 

 

Location information of the color groups is the only input provided to the ANN in the 

current framework. ANNs are able to use this information to guide the crossover operation 

for better offspring.  As the future work, color assignments for the vertices can also be used 

in the training phase of ANNs.  Further enhancement could be obtained when extra 

information is used in the training process. 
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As mentioned in the Introduction, BMCP is a difficult problem that can be a model for 

various industrial applications. The proposed framework is also intended to be tested on 

real-world problem instances in the next phase of the study. The proposed framework can 

be considered as an infrastructure that can be used for solving different real world 

problems. 
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APPENDIX A: DETAILS OF THE STRUCTURES USED IN THE 

CODE 

 

 

The framework used in this thesis is coded using c programming language.  Various 

structures are used to model the chromosomes and the search process. Details of the C 

structures that are used in this thesis are given in this section. 

 

Algorithm A.1. Vertex structure 

 

typedef struct VertexStruct{ 

  int ID; 

  int weight; 

  ColorDiff *selfCost; 

  int colorPos; 

  int edgeNum; 

  struct VertexStruct **neighbors; 

  ColorDiff **edgeWeights; 

} Vertex; 

 

Vertex structure is given in Algorithm A.1. Each vertex in the graph structure has an ID 

which is represented by an integer variable ID. In BCMP, more than a single color can be 

assigned to each vertex. The color amount that should be assigned to each vertex is 

represented with an integer variable weight. The variable selfCost determines the color 

difference between the colors of the same vertex. The integer variable colorPos holds the 

starting index of each vertex’s color data in the color array. The neighbor pointer 

corresponds to neighbors of the each vertex. The number of the neighbors is kept in the 

integer variable edgeNum. The color difference between the each vertex and its neighbors 

is represented by edgeWeights pointer.  
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Algorithm A.2. Edge structure 

 

typedef struct Edge{ 

  int c1; 

  int c2; 

  ColourDiff diff; 

  int n1; 

  int n2; 

} Edge; 

 

A single edge exists between two adjacent vertices in a graph. However, a single vertex 

can have more than one color in BMCP. And all colors of adjacent vertices have to satisfy 

some weight constraints. Therefore, each color in a vertex is considered as a node and a 

separate edge connection is assumed to exist between such node pairs of adjacent vertices. 

Such edges are represented by the edge structure in Algorithm A.2. The integer variables 

c1 and c2 are used to represent the color index in the color array. The variables n1 and n2 

correspond to the vertices that these colors belong to. The color difference between c1 and 

c2 of n1 and n2 vertices is represented by the variable diff. 

 

Algorithm A.3. Problem structure 

 

struct Problem{ 

  int vertexNum; 

  int edgeNum; 

  Node *nodeList; 

  int totalColor; 

  Edge *edgeList; 

  int totalEdge; 

}p; 

 

The problem structure is shown in Algorithm A.3. It is used to keep track of general 

properties of the graph. Vertex number and edge number of the graph is kept in the 

vertexNum and edgeNum variables. Information of every vertex is kept in the nodeList 
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pointer. Total number of locations that is needed to be colored in the graph is kept in the 

integer variable totalColor. Information of the edges in between every color in the graph is 

kept with edgeList pointer and the total number of these edges is kept in totalEdge 

variable. 

 

Algorithm A.4. Chromosome structure 

 

typedef struct{ 

  int *colorData; 

  int maxColor; 

  int minColor; 

  int conflictsNo; 

  int bandwidth; 

  unsigned int hash; 

  int pf; 

}Chromosome; 

 

Chromosomes in the population are represented by the chromosome structure which is 

given in Algorithm A.4. The colorData pointer used to hold the color array. maxColor and 

minColor are used to keep track of maximum and minimum colors used in the 

chromosomes. They are also used to determine the bandwidth which is represented by the 

integer variable bandwidth. Subtracting minColor from maxColor roughly gives us the 

bandwidth value of the chromosome. Unsigned integer variable hash is used to distinguish 

each chromosome from each other. We do not want to have the same chromosomes in the 

population. The variable pf shows whether a chromosome is in pareto front or not. It is set 

to one if the chromosome is in the pareto front, otherwise it is set to zero. 
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Algorithm A.5. Generation structure 

 

typedef struct{ 

  Chromosome *s; 

  int bestChromosomeBandwidth; 

  int bestChromosomeConflicts; 

  int bestIndex; 

  int pfSize; 

  int restSize; 

  Chromosome **paretoFront; 

  Chromosome **rest; 

}Generation; 

 

General information related to the chromosomes is kept by using the generation structure. 

The generation structure is given in Algorithm A.5. The pointer s represents chromosomes. 

bestChromosomeBandwidth variable and bestChromosomeConflictsare are used to keep 

track of the best bandwidth and the best conflict number obtained so far in the population. 

The best chromosome’s index in the current population is kept in the bestIndex variable. 

Number of elements in the pareto front and in the rest of the population are kept in pfSize 

and restSize. Every chromosome in the pareto front is kept in the paretoFront pointer. The 

chromosomes that are not in the pareto front is kept in the rest pointer. 

  



 72 

APPENDIX B: BANDWIDTH RESULTS OBTAINED BY USING THE 

ANN-CROSSOVER 

 

 

Table B.1. GEOM20 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

20 

151 151 

150 150 

153 150 

152 151 

153 150 

153 152 

152 152 

152 151 

152 151 

151 152 

20a 

170 170 

170 170 

170 171 

171 171 

173 170 

170 170 

171 171 

173 170 

173 170 

173 170 

20b 

44 44 

44 44 

44 44 

44 44 

44 44 

44 44 

44 44 

44 44 

44 44 

44 44 
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Table B.2. GEOM30 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

30 

160 160 

163 160 

160 160 

161 161 

162 160 

161 160 

161 160 

161 160 

160 160 

162 163 

30a 

217 214 

213 218 

218 212 

218 215 

215 212 

219 213 

217 214 

217 213 

217 216 

214 216 

30b 

77 77 

78 78 

78 78 

77 77 

78 77 

78 78 

77 78 

78 77 

78 77 

78 78 
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Table B.3. GEOM40 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

40 

172 168 

169 168 

171 168 

168 167 

170 168 

167 169 

169 168 

170 168 

172 169 

168 171 

40a 

221 218 

228 214 

224 217 

222 221 

222 223 

220 217 

218 214 

221 217 

226 217 

216 224 

40b 

75 76 

78 76 

79 77 

76 78 

76 75 

77 75 

78 78 

76 76 

79 78 

75 75 
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Table B.4. GEOM50 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

50 

225 229 

229 228 

227 225 

228 226 

227 225 

225 227 

228 227 

227 227 

227 229 

228 225 

50a 

342 336 

339 340 

342 337 

340 337 

344 328 

334 339 

337 336 

336 336 

342 330 

326 326 

50b 

91 88 

90 88 

92 90 

94 90 

93 88 

88 88 

93 89 

91 87 

90 88 

90 88 
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Table B.5. GEOM60 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

60 

264 261 

269 263 

263 263 

267 262 

265 259 

258 259 

264 261 

265 261 

261 265 

259 260 

60a 

374 368 

378 374 

375 375 

374 369 

372 367 

378 371 

379 370 

378 376 

373 372 

379 371 

60b 

123 122 

123 119 

118 121 

124 122 

123 124 

123 124 

121 120 

125 123 

124 124 

122 121 
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Table B.6. GEOM70 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

70 

275 276 

281 274 

280 277 

285 276 

280 285 

283 274 

278 277 

280 277 

278 278 

282 278 

70a 

493 483 

484 483 

487 484 

481 483 

480 485 

493 485 

484 484 

481 485 

485 479 

491 487 

70b 

129 126 

127 128 

130 131 

127 123 

125 127 

127 126 

132 131 

126 128 

127 124 

127 130 
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Table B.7. GEOM80 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

80 

400 399 

399 391 

396 395 

400 391 

394 397 

393 389 

401 391 

397 393 

395 392 

400 394 

80a 

387 378 

383 378 

389 386 

383 391 

382 380 

388 384 

386 383 

385 381 

394 387 

383 376 

80b 

146 147 

145 144 

145 146 

144 144 

145 145 

149 143 

144 146 

144 143 

141 144 

143 145 
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Table B.8. GEOM90 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

90 

348 344 

344 343 

345 340 

341 340 

345 338 

341 345 

344 343 

339 341 

344 340 

346 341 

90a 

397 398 

404 400 

392 391 

397 398 

395 396 

397 388 

393 387 

395 398 

388 395 

390 390 

90b 

162 163 

159 158 

162 157 

157 155 

163 158 

163 158 

165 158 

160 160 

161 165 

158 158 
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Table B.9. GEOM100 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

100 

425 427 

426 423 

432 415 

429 421 

429 432 

432 429 

430 420 

436 412 

425 422 

428 423 

100a 

469 460 

464 463 

470 468 

477 469 

471 463 

476 463 

466 463 

475 461 

475 467 

470 468 

100b 

176 179 

168 180 

180 175 

179 172 

179 180 

172 172 

178 175 

168 175 

173 174 

175 183 
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Table B.10. GEOM110 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

110 

392 396 

394 397 

403 394 

406 396 

403 406 

406 396 

392 403 

402 399 

406 395 

409 403 

110a 

517 512 

523 513 

516 506 

525 512 

526 504 

531 512 

513 506 

518 507 

511 511 

514 518 

110b 

217 215 

218 214 

215 217 

225 218 

215 216 

218 218 

222 215 

219 214 

216 217 

219 213 
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Table B.11. GEOM120 results 

 

Benchmark 

Problem Set 
Max Group Crossover ANN Crossover 

120 

418 415 

425 423 

422 411 

424 420 

414 423 

429 416 

416 422 

421 419 

423 418 

427 416 

120a 

576 576 

590 577 

586 566 

581 580 

593 573 

590 575 

569 576 

576 564 

585 576 

594 570 

120b 

213 214 

209 208 

213 208 

210 211 

209 209 

216 206 

208 209 

210 204 

210 203 

209 206 

 


