
A HYBRID MULTI-OBJECTIVE GENETIC ALGORITHM FOR BANDWIDTH

MULTI-COLORING PROBLEM

by

İsmail Uğur Bayındır

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Engineering

Yeditepe University

2014

iii

ACKNOWLEDGEMENTS

I am especially thankful to my supervisor, Assoc. Prof. Dr. Emin Erkan Korkmaz, whose

support and guidance from the initial to the final level enabled me to accomplish this

research.

I would also like to thank Assoc. Prof. Dr. Nafiz Arıca and Assist. Prof. Dr. Dionysis

Goularas for their valuable advises to make this thesis better.

iv

ABSTRACT

A HYBRID MULTI-OBJECTIVE GENETIC ALGORITHM FOR BANDWIDTH

MULTI-COLORING PROBLEM

Genetic Algorithms (GAs) have been successfully applied on different kinds of problems.

Multi-objective Genetic Algorithms (MOGAs) are capable of improving different

objectives in a parallel manner. Various applications of MOGAs exist for combinatorial

optimization problems. However, the MOGA approach yields a limited success rate

especially on grouping problems. The crossover operation, one of the reproduction

methods in GAs, is the main reason for the low performance. The crossover operation is

quite destructive in grouping problems and it is difficult to produce successful offspring

with this operator in this domain. In this study, a novel method that can increase the

success rate of crossover operation is proposed for grouping problems. The method is a

hybridization of MOGA with Artificial Neural Networks (ANNs), where ANNs guide the

crossover process in the genetic search. The bandwidth multicoloring problem where

standard MOGA yields limited performance has been used as the testbed for the method.

The problem is solved using a multi-objective framework that minimizes bandwidth as

well as conflict number in a parallel fashion. It has been observed that the crossover

operation guided by the trained ANN improves the possibility of producing high fit

offspring and the quality of the overall solution obtained at the end of MOGA runs.

v

ÖZET

ÇİZGEYİ KÜMELİ BOYAMA PROBLEMİ İÇİN KULLANILAN ÇOK HEDEFLİ

HİBRİT GENETİK ALGORİTMA

Genetik Algoritmalar (GAs) çeşitli problemler üzerinde başarıyla uygulanmıştır. Çok

hedefli Genetik Algoritmalar (ÇHGAs) birbirinden farklı hedefleri paralel olarak

iyileştirebilmektedir. Kombinatoryal optimizasyon problemleri için çeşitli ÇHGA uyguları

vardır. Ancak, ÇHGA yaklaşımı özellikle gruplama problemi üzerinde sınırlı seviyede

başarı oranına sahiptir. Bu düşük başarı oranından çoğalma yöntemlerinden biri olan

çaprazlama operatörü sorumludur. Çaprazlama operatörü, gruplama problemi üzerinde

yıkıcıdır ve bu tür problemler üzerinde çaprazlama operatörü kullanarak başarılı yeni

bireyler üretilmesi zordur. Bu çalışmada, çaprazlama operatörünün gruplama problemleri

üzerindeki başarı oranını arttıran yenilikçi bir metot sunulmuştur. Metot ÇHGA’nın Yapay

Sinir Ağları (YSA) ile melezlenmesinden oluşmaktadır; YSA çaprazlama operasyonuna

genetik arama işlemi sırasında yol göstermektedir. Sunulan metot, standart ÇHGA’ların

sınırlı başarı elde ettiği Çizgeyi Kümeli Boyama problemi üzerinde test edilmiştir.

Problem, bant genişliği ve çakışma sayısının aynı anda azaltılmaya çalışıldığı bir çok-

hedefli gerçekleme kullanılarak çözülmüştür. Yapılan testler sonucunda, YGS tarafından

yönlendirilmiş olan çaprazlama operasyonunun başarılı birey üretme olasılığını arttırdığı

ve elde edilen genel çözümlerin kalitesinin de yükseldiği görülmüştür.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES ... x

LIST OF SYMBOLS / ABBREVIATIONS .. xii

1. INTRODUCTION ... 1

2. BACKGROUND ... 5

2.1. MULTI OBJECTIVE GENETIC ALGORITHMS .. 5

2.2. PROBLEM DEFINITION .. 6

2.3. EXAMPLE STUDIES FOR GCP AND BMCP ... 7

2.4. ARTIFICIAL NEURAL NETWORKS (ANNS) AND EVOLUTIONARY

APPROACHES ... 14

3. METHODOLOGY .. 17

3.1. OVERVIEW OF THE FRAMEWORK ... 17

3.2. POPULATION CONTROL ... 21

3.2.1. Pareto Effect ... 24

3.3. GENETIC ALGORITHM OPERATORS .. 27

3.3.1. Crossover Operators ... 30

3.3.2. Mutation Operators ... 41

3.4. LOCAL SEARCH OPERATOR .. 42

4. EXPERIMENTAL RESULTS .. 45

4.1. BENCHMARK PROBLEM SET ... 45

4.2. CONTRIBUTION OF THE OPERATORS ... 45

4.3. COMPARISON BETWEEN THE HYBRID MOGA APPROACH AND OTHER

ALGORITHMS ... 56

5. CONCLUSION & FUTURE WORK .. 62

REFERENCES .. 64

APPENDIX A: DETAILS OF THE STRUCTURES USED IN THE CODE 68

vii

APPENDIX B: BANDWIDTH RESULTS OBTAINED BY USING THE ANN-

CROSSOVER .. 72

viii

LIST OF FIGURES

Figure 2.1. An example of BMCP graph ... 7

Figure 2.2. An example chromosome represented in LLE .. 8

Figure 3.1. The convergence in the search process ... 17

Figure 3.2. Activity diagram of the general framework .. 19

Figure 3.3. An example of adding a chromosome into the population 22

Figure 3.4. The acceptance region ... 23

Figure 3.5. An example population and its pareto front .. 25

Figure 3.6. Comparison of two chromosomes in the population ... 28

Figure 3.7. Multi objective tournament selection example ... 29

Figure 3.8. An example of chromosome representation .. 30

Figure 3.9. Graph representation of the chromosome ... 30

Figure 3.10. Explanation of vertex based crossover .. 33

Figure 3.11. There steps of the maximum group crossover ... 36

ix

Figure 3.12. Representation of ANN-crossover .. 37

Figure 3.13. ANN architecture .. 38

Figure 3.14. Explanation of ANN-crossover ... 39

Figure 3.15. Population movement in both directions ... 43

Figure 4.1. Standard deviation of average bandwidth comparison 56

x

LIST OF TABLES

Table 4.1. Affect of the mutation after crossover operation .. 46

Table 4.2. Comparison between vertex based crossover and distance based crossover 47

Table 4.3. Probability of creating better individuals of the crossover operators 47

Table 4.4. Success rate comparison between max group crossover and ANN crossover ... 49

Table 4.5. Parameters used in the tests .. 50

Table 4.6. The best bandwidths obtained by the ANN-crossover 51

Table 4.7. The average bandwidths obtained by the ANN-crossover 52

Table 4.8. Performance comparison of the mutation operators ... 53

Table 4.9. Local search experiment ... 54

Table 4.10. Effect of the local search operator on the best bandwidths 55

Table 4.11. MOGA and Prestwich Comparison .. 58

Table 4.12. MOGA and Lim Comparison ... 59

Table 4.13. MOGA and Malaguti Comparison ... 60

xi

Table 4.14. MOGA comparison with other approaches .. 61

Table B.1. GEOM20 results .. 72

Table B.2. GEOM30 results .. 73

Table B.3. GEOM40 results .. 74

Table B.4. GEOM50 results .. 75

Table B.5. GEOM60 results .. 76

Table B.6. GEOM70 results .. 77

Table B.7. GEOM80 results .. 78

Table B.8. GEOM90 results .. 79

Table B.9. GEOM100 results .. 80

Table B.10. GEOM110 results .. 81

Table B.11. GEOM120 results .. 82

xii

LIST OF SYMBOLS / ABBREVIATIONS

ANN Artificial Neural Network

ALS Ant Local Search

BCP Bandwidth Coloring Problem

BMCP Bandwidth Multi Coloring Problem

EA Evolutionary Approach

ENZO Evolutiver Netzwerk-Optimierer

FAP Frequency Assignment Problem

GTS Generic Tabu Search

GA Genetic Algorithm

GCP Graph Coloring Problem

HC Hill Climbing

HEA Hybrid Evolutionary Algorithm

IG Iterated Greedy

LLE Linear Linkage Encoding

LS Local Search

MA Memetic Algorithm

M-PEAS Memetic-PAES

MCP Multi Coloring Problem

MOGA Multi Objective Genetic Algorithm

MOOP Multi Objective Optimization Problem

PSA Parallel Simulated Annealing

PAES Pareto Archived Evolution Strategy

SWO Squeaky Wheel Optimization

SA Simulated Annealing

SPEA Strength Pareto Evolutionary Algorithm

TS Tabu Search

 1

1. INTRODUCTION

Genetic algorithms (GA) have been widely used to solve various optimization problems.

GAs keep a population of individuals named as chromosomes. The potential solutions have

to be encoded as chromosome structures in GAs. Each chromosome has a fitness value

denoting how close it is to the global solution. Genetic operators are utilized to generate

the offspring by using the parents chosen from the population using a selection method.

The search is carried out until the optimum solution appears in the population or until a

predefined threshold value is reached for breeding new populations.

Reproduction process consists of crossover and mutation operations. Chromosomes with

high fitness value have more chance to be selected to create the offspring. Crossover and

mutation operators help carrying genetic materials to the next generations. The search

process is mainly carried out with the help of the crossover and mutation operators. The

crossover operation is expected to create more fit offspring compared to the parents and

mutation is utilized in order to avoid converging to local optimum.

Artificial Neural Networks (ANNs) are computational models that have been used for

machine learning and pattern recognition tasks successfully. ANNs have three elements;

network properties, vertex properties and system dynamics. The network properties consist

of network topology, type of connections, order of connections and weight range. The

vertex properties are activation range and activation function. The system dynamics

include weight initialization scheme, activation-calculating formula and the learning rule.

If sufficient number of layers is utilized in an ANN, it is expected to approximate any

arbitrary continuous function [1].

Graph Coloring Problem (GCP) is a well known NP-Hard combinatorial optimization

problem. The aim in GCP is to assign a color to each vertex such that there will no

adjacent vertices with the same color in the coloring schema formed. If two vertices are

connected with an edge, then they are named as adjacent. Certainly, the optimum solution

of the problem is the coloring that would be obtained by using minimum number of colors.

 2

Different real-world problems such as time scheduling and resource assignment can be

reduced to graph coloring problem.

This thesis focuses on Bandwidth Multi-Coloring Problem (BMCP), which is a

generalization of GCP. There is a color separation within the vertices as well as adjacent

vertices and a vertex can have multiple colors. In BMCP, each vertex and edge has a

weight where the weight of a vertex denotes how many colors should be assigned to that

vertex and the edge weight denotes the minimum color separation that should exist

between the vertices sharing this edge. BMCP can be reduced to GCP by setting all vertex

and edge weights to one.

In BMCP, there are multiple objectives to be optimized. The number of colors used in a

coloring scheme is named as the bandwidth in BMCP. The bandwidth size forms the first

objective to be minimized. Certainly, a coloring scheme might have conflicts which are the

colors violating the constraints defined in the previous paragraph. Minimizing the number

of conflicting colors is the second objective of the problem. Due to multi-objective nature

of the problem, it is not possible to determine the superior chromosome, unless one

dominates the other in both of the objectives. A MOGA approach similar to [2, 3] is

utilized in this study. The main advantage of MOGA approach is the fact that it is possible

to obtain an approximation of the entire Pareto front in a single algorithm run. Hence, the

optimal bandwidth size does not need to be determined beforehand unlike other approaches

in the literature.

The frequency assignment problem (FAP) can be modeled as BMCP. In the last decade,

wireless services like digital cellular phone networks have developed rapidly. This

increased the need for the important resource which is the frequencies in the radio

spectrum. Frequencies within a wireless communication network can be reused. However,

this may decrease the quality of communication links. The frequency assignment problem

tries to balance the reuse of frequencies and the loss of quality in the network [4].

MOGAs have been used for solving combinatorial optimization problems in the literature.

Evolutionary approaches have a limited success especially on grouping problems.

Crossover is the main operator that provides convergence in evolutionary methods.

 3

However, the operation is quite destructive in grouping problems and it is difficult to

produce high fit offspring with this operator in this domain. Therefore the genetic

algorithm applications provided for grouping problems are usually hybrid methods that

include hill climbers or search methods like Tabu search [5, 6]. In this study, a new

crossover method is proposed for grouping problems. It is tested with the MOGA

framework on BMCP in this study, but it can be generalized to other evolutionary

approaches and other problems. The method is based on guiding the crossover process by

Artificial Neural Networks. Standard MOGA yields limited performance on BMCP.

Therefore this problem has been selected as the testbed for the method.

Group crossover is widely used for grouping problems [7]. GCP and its generalizations are

also grouping problems. GCP can be considered as partitioning the vertices of a graph into

groups such that the vertices in the same group can be colored with the same color. In

group crossover operation, after the parents are chosen, the groups that exist in the parents

are determined. Then these groups are transferred to the offspring using a strategy. For

instance in [7] the largest groups are transferred one by one to the offspring by switching

from one parent to another. However, this operation has a low performance on BMCP due

to the characteristic of the problem. In this study, uniform crossover operation is utilized

on BMCP. However, the strategy used to select the genes in parents is guided by a trained

ANN. In the initial phase of the MOGA search, the standard uniform crossover is utilized

where the colors that will be transferred to the offspring are selected randomly. However,

the crossover operations carried out and the resulting offspring created are collected to

form a training data. After a certain amount of generations, this data is used to train an

ANN. Then whenever the crossover operation is to be performed, different transfer

scenarios are formed and the trained ANN is used to select the best alternative. Then the

crossover operation is performed accordingly.

It has been observed that the crossover operation guided by the trained ANN improves the

possibility of producing high fit offspring. Certainly, the quality of the overall solution

obtained at the end of a MOGA run also increases when better offspring are obtained as the

result of the crossover operation.

 4

Layout of the thesis is as follows: the formal problem definitions are presented and an

overview of the solution methodologies for GCP and BMCP are given in the next chapter.

The hybrid use of ANNs and evolutionary approaches is also presented in the next chapter.

Overview of the proposed framework is given in Chapter 3. The detailed explanations of

utilized methods and operators are also given in the Chapter 3.

The benchmark problem set utilized in this study is explained in the Chapter 4.

Experimental results and comparison with the other state-of-the-art algorithms are also

provided in this chapter. In the last chapter, the conclusion and future works are presented.

 5

2. BACKGROUND

2.1. MULTI OBJECTIVE GENETIC ALGORITHMS

Most of the optimization problems involve more than one objective to be optimized in real

world application. The objectives in the most of real life problems are often conflicting.

One solid solution would not satisfy both objective functions and the optimal solution of

one objective will not necessary be the best solution for the problem’s other objective.

Therefore, a set of solutions is required to represent the optimal solutions for all objectives

in multi objective optimization problems.

The characteristic of evolutionary methods which use a population based solutions is well

suited for multi objective optimization problems (MOOPs). The approaches that are used

to solve MOOP aims to find a set of non-dominated solutions. These approaches can

generate approximation of a pareto front, which is a set of non-dominated solution, in each

generation. This aspect makes these approaches suitable for the MOOP. Requirement of

little prior knowledge from the problem, less vulnerability to shape and continuity of

pareto-front, easy implementation, robustness and the ability to be carried out in parallel

are some of the advantages of evolutionary algorithms.

GAs which being a population based approach are well suited for solving MOOPs. GAs

are inspired by the evolutionist theory explaining the origin of species. In nature, the strong

individuals have greater opportunity to pass their genes to future generation via

reproduction than week and low-fit individuals. A generic single objective GA can be

modified to find a set of multiple non-dominated solutions in a single run. GAs are able to

simultaneously search different regions of a solution space. This allows GAs to find a

diverse set of solutions which is required for difficult MOOPs. The crossover operator of

GA may exploit critical points of good solutions with respect to different objectives to

create new non-dominated individuals in unexplored regions of the pareto front. These

features make GA the most popular heuristic approach to MOOPs.

 6

2.2. PROBLEM DEFINITION

The definition of the classical GCP is as follows. Given an undirected graph that consists

of a set of vertices V and a set of edges E, the aim is to find a minimum color number k and

a mapping R of these k colors to each V in the graph such that two vertices that share an

edge cannot have the same color. Hence, each vertex in the graph is assigned a single color

and the adjacent vertices have different colors.

In bandwidth coloring problem (BCP), again an undirected graph consisting of set of

vertices V and a set of edges E is colored. However the edges are assigned edge weights

d(i,j), where i and j are two vertices. The aim is again to find a minimum color number k

and a mapping R between the colors and vertices in a such that two vertices i, j that share

an edge should have a color difference greater than or equal to the edge weight d(i,j)

assigned to this edge. Hence, the colors have to be indexed in BCP and vertices that share

an edge should be assigned to two colors that have a index difference that satisfy the edge

weight constraint.

The Multi Coloring Problem (MCP) is another generalization of the GCP. In this problem,

each vertex can be assigned multiple colors. Color count is determined by the vertex

weight. For example, if a vertex has weight four, then four distinct colors have to be

assigned to this vertex. Adjacent vertices still cannot share the same color.

BMCP is a combination of BCP and MCP. It is the most complex version of the GCP

generalizations. The graph can contain self loops. Formally, given that a graph G(V,E)

which has vertex weights k(i) for all individual , and edge weights d(i,j) for

 , intent is to determine a minimum k and subsets for each , in a

way that for each and also and where, for each

 and , for each . As an example consider

the graph in Figure 2.1. In this figure, and . Hence, four colors should

be assigned to vertex one and the difference between the colors assigned should be at least

three.

 7

Figure 2.1. An example of BMCP graph

2.3. EXAMPLE STUDIES FOR GCP AND BMCP

GAs have been utilized for grouping problems by researchers. However, the performance

of GAs fall behind compared to the other methods used to solve grouping problems. The

genetic operators might be destructive on the individuals when GAs are applied. This is

usually the main reason for the low performance of GAs compared to the other methods.

Representation is a critical issue in order to prevent the damage of genetic operators in the

GA search.

Linear Linkage Encoding (LLE) is proposed for GAs as an encoding scheme for grouping

problems and it has been used with a multi-objective GA in [8]. When LLE is used with

standard reproduction operator such as one-point crossover, the convergence is not

acceptable due to the bias produced in the search process. In [8], a new crossover operator

is proposed for LLE. The operator is introduced to remove the bias caused by one-point

crossover. All potential offspring have equal probability to be produced by the new

crossover operator.

 8

The elements of a single group can be spread along the chromosome in a grouping

problem. Therefore one-point crossover is destructive when the building blocks are

separated from each other. The ordering in the linear structure of LLE prevents one-point

crossover to exploit all regions of the search space. Some partitions cannot be produced by

using one-point crossover. Uniform crossover does not cause the same bias, because the

genetic material to be passed to the offspring is chosen randomly from the parents.

However, in some cases this process can introduce random perturbations on the individuals

which are not an acceptable case. The crossover proposed in [9] is named as group-

crossover. This operator aims to remove the disadvantages of one-point and uniform

crossover operations.

In Figure 2.2, an example chromosome represented in LLE is given. In this representation

each cluster is represented as a linked list of objects. A different gene is reserved for each

object. The value of a gene denotes the id of the next object in the same group. Two

objects are in the same group, if either one can be reached from the other one using the

links.

Figure 2.2. An example chromosome represented in LLE

Each group in LLE has a vertex in the chromosome that is linked to itself. These vertices

are named as ending vertices. There ending vertices are focused in the group-crossover

 9

operator. The crossover operator ignores the ordering of the elements in a group. Genetic

materials are passed to the offspring from the parents based on these ending vertices.

If both P1[i] and P2[i], i is the vertex number, are ending vertices; then O[i] is set as an

ending vertex. If only one of the parents is ending vertex, O[i] is set as an ending vertex

with probability 0,5. If O[i] is not set as an ending vertex by the previous item, then the

ending vertex of the groups that the i
th

 element belongs to both parents are determined. If

one of these ending vertex is transferred previously to the offspring, then O[i] is linked to

this ending vertex. If both of them are transferred, then O[i] is randomly linked to one of

them. If none of the ending vertices are transferred, then O[i] is linked to the element that

i
th

 element is linked in one of the parents randomly.

Apart from the representation issue, researchers have focused on different methods to solve

graph coloring problem and its generalizations. For instance, Tabu Search (TS) is utilized

to solve graph coloring, T-coloring and set T-coloring problems in the literature. In [9], a

generic TS is presented for three-coloring problem. Proposed algorithm integrates

important features such as greed initialization, solution re-generation, dynamic tabu tenure,

incremental evaluation of solutions and constraint handling techniques. A Generic Tabu

Search (GTS) is presented in the study. The proposed GTS algorithm is consisting of three

parts: Greedy construction of initial coloring, configuration re-generation and searching for

proper coloring are the three algorithms used in the method. A Dsatur-based greedy

algorithm [10] is used in the greedy construction of initial coloring. This greedy approach

is fast and provides a good initial configuration. Getting fast and good initial configuration

plays crucial role for the convergence. In the configuration re-generation part, the aim is to

produce a coloring, k being the maximum color value, with a minimum conflict

number. This is obtained by coloring the vertices that are assigned color k with a new color

in the range . While coloring the vertices with a new color, conflict number is

tried to be kept as low as possible. When searching for proper coloring, the tabu algorithm

takes an improper coloring, (a coloring that has conflicts) and tries to remove all the

conflicts by using the given k
th

 color. If the algorithm finds a proper coloring by using the

k
th

 color, it proceeds to re-generation part to produce a new improper coloring with

colors again.

 10

Simulated Annealing (SA) is another method that has used to solve GCP. SA is a generic

probabilistic metaheuristic for the global optimization problem. The technique of

controlled cooling of a material to increase the size of its crystals and reduce its defects,

annealing in metallurgy, is the inspiration of the SA method in optimization. At each step,

the SA heuristic considers some neighboring state s' of the current state s. Then, it

probabilistically decides moving the system to state s' or staying in state s.

An application of Parallel Simulated Annealing (PSA) is described in [11] to solve GCP.

Proposed PSA algorithm utilizes multiple processors that are working at the same time on

individual chains to find a solution at a fixed time. Then the routine minimizes the cost

function by storing the best solution. The master-slave model has been used to provide

coordination in the algorithm. Collection of states, choosing the next state and distributing

it among the slave units is done by master processing unit.

There are also some hybrid methods that have been used to solve GCP and its

generalizations in the literature. Iterated Greedy (IG) algorithm and Squeaky Wheel

Optimization (SWO) have been adapted to develop a hybrid method in [14]. Given a

permutation of vertices, the Greedy algorithm selects a vertex sequentially and assigns the

next color that has not been used in any of its neighboring vertices. The IG algorithm is an

extension of the greedy method. The IG algorithm uses a new permutation in each

iteration. The new permutation is formed by ordering the vertices that have the same color

in the previous coloring scheme [13]. Hence, the new coloring scheme will not have more

colors compared to the previous coloring scheme. The three main components of SWO are

Constructor, the Analyzer and the Prioritizer [14]. SWO also uses a permutation sorted in

decreasing order of the vertex degrees; it is similar to IG method. The Constructor’s job is

to greedily construct a coloring scheme. Then the Analyzer assigns a blame to each vertex,

if the vertex has a color beyond the target range. The target range is set as one less than

number of colors in the current best solution. After the blames are set, the Prioritizer

updates the previous permutation based on how much blame the vertices have. In the

proposed method the Constructor component of SWO is replaced by a Hill-Climbing (HC)

procedure. The HC method tries to improve the greedily generated solution by downhill

moves. The HC method orders the vertices based on the color index they have. Again the

approach is similar to the IG method.

 11

TS heuristic is utilized in a SWO framework in [15]. In the proposed framework, solutions

are modeled as sequences of vertices. A greedy algorithm is used to assign colors at the

beginning. Then meta-heuristics are applied to find better solutions by adjusting these

sequences. A vertex that has vertex weight k is split into k vertices to reduce the

complexity in the representation model. The framework has two parts. The SWO method is

used to adjust sequences in the first part. Then the best solution found by SWO is passed to

TS for further improvement. TS strengthen the search procedure and avoid local optima in

the search space. The greedy algorithm is used to determine the number of colors required

to color the graph. Also a new method is used to calculate the blame values in the SWO

module. Vertices that have a color index greater than the multiplication of blame rate and

the maximum color index k are assigned a constant blame value. TS operates based on

neighborhood moves. The exchange of two vertices in the solution sequence is considered

as a neighborhood move. TS uses a tabu memory to prevent some unwanted reverse moves

to happen.

Using hybrid evolutionary algorithms (HEA) on the GCP is also common in the literature.

An algorithm that combines a highly specialized crossover operator and a well known tabu

search algorithm is proposed in [7]. The algorithm performs a series of iterations called

generations after the initial population is formed. In each generation, two parents are

selected to apply crossover operation on them. The offspring produced by the crossover

operation is improved by using a Local Search (LS) operator. Finally, the improved

offspring is inserted back to the population. This process continues until a stopping

criterion is met. This hybrid algorithm differs from a standard genetic algorithm, because

the mutation operator in GA is replaced with a LS operator. Also a new crossover operator

is proposed in this study. In crossover operation, firstly the group with maximum number

of vertices is chosen from the selected parent and passed to the offspring. Then this group

is removed from both parents. This process is repeated k times, k being number of groups

that exist in both parents. After k steps, remaining unassigned vertices assigned to a

random class in the offspring. The purpose of the LS operator is to improve the offspring

produced by the crossover operator. Tabu search is utilized as the LS method. The

algorithm chooses a vertex that is conflicting with another vertex and the conflicting vertex

is moved to a different group to explore the neighbors of the current coloring scheme.

Certainly, previously visited neighbors are prevented using a Tabu list.

 12

E. Malaguti and p. Toth also proposed an evolutionary approach for BMCP in [16].

DSATUR [10] uses an ordering that maximizes a given score on the vertices. Then the

algorithm chooses the first vertex from the ordered list and colors it. This ordered list is

kept to color the vertices that are harder to color, at the beginning of the process. The

number of distinctly colored adjacent vertices as well as the distance of color indexes

within the vertex and its adjacent vertices determines the score of a vertex. Certainly, the

vertices with a higher score are harder to color. A constructive heuristic is also used in this

study. The population based TS utilized in the study uses partial solutions and tries to find

perfect solution by coloring and uncoloring selected vertices. Distance Crossover is

proposed in this research. Parents are selected randomly from the population pool. The

important structures are transferred from the parents to the offspring based on color index

distance between the vertices. First, the “tight distance” pairs from first parent are copied

to the offspring. Then the “tight distance” pairs that do not cause conflict with the already

colored vertices are copied to the offspring from the second parent. If a vertex cannot be

colored without causing conflicts, it is uncolored. The vertices left uncolored are assigned

colors by using a TS operator at the end of the process.

The researchers have been inspired by the natural events and processes. GAs form an

example to this fact. Ants and their nature have inspired the researchers as well. An

algorithm called Ant Local Search (ALS) is proposed for GCP in [17]. In the ant algorithm

proposed in [17], each ant builds a solution step by step. At each step, an element is added

to the current partial solution by an ant. The greedy force and the trails are the two

ingredients of the ant algorithms. The greedy force can be defined as the short term profit

for the considered ant. The information obtained from other ants is defined as the trails. In

the ALS, each ant is considered as a local search to get competitive results. Each ant

evolves the solution by performing random modification on it.

The IMPASSE class local search algorithms have given competitive results on many

coloring benchmark problems. S. Prestwich has proposed an IMPASSE style LS algorithm

in [19]. The IMPASSE class algorithms work on the coloration neighborhoods. The

coloration neighborhood consists of the vertices that are colored and no adjacent vertices

share the same color. Remaining uncolored vertices are called the impasse set. The LS

algorithm tries to remove all vertices from the impasse set by coloring and uncoloring

 13

some selected vertices. Vertices with large domain and small forward degree are selected

for uncoloring. A vertex has large domain if it has many colors in the coloring scheme. The

forward degree of a vertex is the number of uncolored adjacent vertices. While selecting a

color index to color a vertex, remembering the colors used in the previous iterations

increases the performance. The coloring rule flips between two modes; picking up a new

color and picking up a color that is successfully used in the previous iterations. When a

color id successfully assigned to a vertex, rule flips to the other method. This rule is used

to minimize disruption in the coloration.

The frequency assignment problem (FAP) can be modeled as BMCP. Constraint handling

methods have been used in evolutionary search. R. Dorne and J. Hao have developed

constraint handling techniques for FAP in [20]. They aimed to minimize the

electromagnetic interference due to frequency reuse and minimize the number of

frequencies used in FAP in cellular radio networks. In this study EAs utilized without a

crossover operator. Crossover operation is very destructive for the FAP. Selecting parents

and the evaluation of offspring have been used as EA features. Mutation operator has been

used as the single reproduction operator in the study.

A Memetic Algorithm (MA) has been proposed for multi objective optimization problems

in [21]. The method employs the LS method used in the Pareto Archived Evolution

Strategy (PAES) and it utilizes the LS together with a population based approach that

includes reproduction operators. The memetic-PAES algorithm (M-PAES) is based on the

local search multi objective algorithm used in [22]. It adds a population based approach

and reproduction methods to local optima found by using the PAES approach. A finite

sized archive consists of non-dominated solutions that are maintained by PEAS approach.

The elements of this archive are the best solutions of the search process. The final solution

is obtained from this archive and also the archive uses as a comparison set to determine the

dominance rank of the new solutions. M-PEAS approach uses two different archives to

manage these tasks; a global archive that maintains a finite set of the best solutions found

so far and a local archive H that is used for the comparison procedure. These archives help

the search process to converge quickly and steadily.

 14

The Strength Pareto Evolutionary Algorithm (SPEA) [23] is a technique for finding or

approximating Pareto-optimal set for multi objective optimization problems. Pareto

approach guides the solutions in the search space for better convergence rate. SPEA2, an

improved version of SPEA, is proposed by E. Zitzler et al. in [24]. A fine-grained fitness

assignment strategy, a density estimation technique and an enhanced archive truncation

method are used in SPEA2. These techniques are the main differences of SPEA2 compared

to SPEA. Each individual is assigned to a fitness value based on how many individuals it

dominates and it is dominated by. Each solution has a density estimation determined by the

distance of k-th nearest neighbor of the solution in the close proximity. This neighbor

density estimation technique allows a more precise guidance of the search process. A new

archive truncation method is used to provide diversity in the pareto set. The method

removes the solutions that are close to each other in the archive. The proposed framework

is applied successfully to three instances of the knapsack problem and SPH-m which is a

multi objective generalization of the Sphere Model.

2.4. ARTIFICIAL NEURAL NETWORKS (ANNS) AND EVOLUTIONARY

APPROACHES

In computer science and related fields, Artificial Neural Networks (ANNs) are

computational models inspired from the central nervous system. The method is applicable

to machine learning as well as pattern recognition problems. These computational models

are capable of learning from samples and making decisions [25].

The structure of the network determines whether one neuron may influence another. The

extent of possible influence is specified by the weight assigned to each connection. It is a

straightforward idea to use the Evolutionary Approach (EA) to assist neural network

design and training. A global and very broad search process supplied by EAs can increase

performance of the previous methods used in neural network design and training.

Setting the weights of a network can be seen as an optimization problem. The aim is to find

a set of weights that minimizes the network’s error on the training phase. The search space

is highly complex and usually contains many local minima. The most commonly used

algorithm for the problem is the backpropagation method [26]. The algorithm often yields

 15

poor result without problem specific parameter settings. EAs usually avoid local minima

by running the search process on several regions of the search space simultaneously. This

makes EAs suitable for optimization problems with many local minima. EAs only need a

fitness evaluation function to carry out the search process and they are not restricted by the

network topology. Due to these characteristics of the EAs, they have been used in neural

network training in various studies in literature [27, 28, 29].

If number of neurons and number of connection between those neurons are small, the

network might not be able to learn the desired input-output mapping. On the other hand, if

large amount of neurons are used with highly connected network topology, inputs might be

mapped to undesired outputs. The topology also influences speed and accuracy of the

learning process in the network. EAs are also used to determine the structure of a neural

network in [30]. As seen in the literature EAs are used to determine the structure of a

neural network as well as to train the network separately. There are also some studies that

EAs have been used to determine weights and structure of a neural network at the same

time. [31, 32] are the examples to these cases.

The method proposed in [28] is one of the studies that use a genetic algorithm to train a

feedforward neural network. The weights in the neural network are encoded as a list of real

numbers. Evaluation function is a critical feature in GAs. First, the weights in

chromosomes are initialized. Then, the network is run over the training set and the sum of

the squared errors is set as the fitness value of the chromosome. While the population is

initialized, the weights are uniformly distributed between -1.0 and 1.0. After the population

initialization phase, the standard GA operators are applied on the chromosomes to get a

new set of weights and the genetic search is carried out until the best set of the weights are

determined.

The architecture of an ANN is also important for getting satisfactory results when the

method is applied to practical problem domains. Different architectures can be chosen and

trained in order to determine the architecture with best performance for the problem. But

still there might be more suitable topologies not taken into consideration for the problem.

A GA driven network generator that evolves ANN architecture is presented in [31]. The

 16

framework is called as Evolutiver Netzwerk-Optimierer (ENZO). ENZO optimizes both

the network topology and the connection weights simultaneously.

Network architecture is encoded into the chromosome structure. Every gene in a

chromosome represents one connection in the network. The number of possible

connections is fixed and GA is used to find the optimal topology. ENZO generates an

initial population where each chromosome represents a different network. Each network

has about of the total number of connections, P1 being the connection density

between zero and one. Each of the potential connections is established with the given

probability P1. These networks are trained, evaluated and sorted due to their fitness values.

Then ENZO starts to create offspring using crossover and/or mutation. In the crossover

procedure, if a connection is present in both parents, it is transferred to the offspring. If the

connection is present in only one of the parents, it is transferred to the offspring by using a

certain probability. Mutation operator changes the state of each potential connection by

using again a given probability. After the reproduction procedures, the offspring is

evaluated and inserted into the population according to its fitness value. Then the

chromosome with the lowest fitness value is removed from the population. The framework

is able to search the optimal topology in the search space that has high diversity. The

quality of the learning process is increased due to GA’s ability to find the optimum

solution in the search space.

GAs are used to design and train ANNs, in all of the studies presented above. There is only

one study where ANNs are used to enhance the search process in Gas. In [33], ANNs are

used to determine parent pairs for the crossover operation. In this study, the convenient

parent pairs that have the potential to produce high fit offspring are determined by a trained

neural network. The structural properties of the chromosomes that are likely to produce

high fit offspring are analyzed by an ANN. The ANN is expected to combine the parents in

such a way that the fitness of the offspring would be high. Coherent building blocks of the

chosen chromosomes are considered by the ANN while combining the parents. The

training data is formed by the parents that are used in the crossover operator and the fitness

value of the corresponding offspring. In the proposed framework, the first parent is chosen

by using tournament selection. Then, the ANN is used to determine an appropriate mate for

the first parent.

 17

3. METHODOLOGY

3.1. OVERVIEW OF THE FRAMEWORK

In this thesis a Genetic Algorithm (GA) that is hybridized with a Local Search (LS)

algorithm is proposed to solve the Bandwidth Multi Coloring Problem (BMCP).

Bandwidth size and number of conflicts in the coloring scheme are both reduced in a

parallel manner by the algorithm. The population is expected to converge as shown in

Figure 3.1 in terms of both objective functions. MOGAs have not been utilized for BMCP

before. The framework proposed is enhanced by a novel crossover operator where the

process is guided by a trained ANN.

Figure 3.1. The convergence in the search process

 18

Genetic operators are used to provide high variety chromosomes in the population. The

chromosomes that are produced by the genetic operators are improved by using local

search. Local search improves the convergence in the search process, since it covers the

lack of fine tuning in GAs. Basic structure of the main algorithm utilized in this thesis can

be seen in Algorithm 3.1.

Algorithm 3.1. Main structure of the algorithm

Main Program:

Initialize Population;

while MaxGeneration is not reached do

 while GAperGeneration is not reached do

 select two different parent from population pool;

 create an offspring by using the parents;

 offspringopt ← LocalSearch(offspring);

 insertToPopulation(offspringopt);

 end while

 while LSperGeneration is not reached do

 select a random chromosome from population pool;

 chromosomeopt ← LocalSearch(chromosome);

 insertToPopulation(offspringopt);

 end while

 while MutationperGeneration is not reached do

 select a random chromosome from population pool;

 chromosomemut ← MutationOp(chromosome);

 chromosomeopt ← LocalSearch(chromosomemut);

 InsertToPopulation(chromosomeopt);

 end while

end while

Population initialization is a crucial component of a GA. Main algorithm is initiated by

randomly generating initial population. Then, the reproduction operators, crossover and

mutation, are applied on the initial population. LS operations are also applied on the

population to further improve the chromosomes in the population. GA and LS operations

are individually utilized on the population over and over until the MaxGeneration is

reached. MaxGeneration represents the number of generations that a program runs. The

main loop in Algorithm 3.1 presents the steps that are carried out in each generation. Also

the activity diagram of this framework can be seen in Figure 3.2.

 19

Figure 3.2. Activity diagram of the general framework

The number of times the genetic operators are applied and local search iteration count are

determined by the user as input parameters. GAperGeneration, LSperGeneration and

MutationperGeneration are parameters denoting the number of genetic and local search

operations carried out on the population at each generation. GAperGeneration parameter

denotes the number crossover operations that take place at each generation.

LSperGeneration is the number of local search operators and lastly,

MutationperGeneration parameter represents the number of mutation operations to be

carried out again at each generation. Larger values are needed to be used for these

parameters for some benchmark problems that are harder to solve. The benchmark

problems that are denser than the others and that contain more vertices form the hard

instances in the set. Such instances require more computation time, since more genetic and

local search operators are applied on them. However, increasing the number of mutation

operations utilized may affect the search process in a destructive way. On the other hand,

keeping the number of mutations low may result a local minima. Therefore, several

experiments need to be carried out in order to fine tune the mutation amount needed during

the genetic search.

 20

In Genetic operators are used to provide high variety chromosomes in the population. The

chromosomes that are produced by the genetic operators are improved by using local

search. Local search improves the convergence in the search process, since it covers the

lack of fine tuning in GAs. Basic structure of the main algorithm utilized in this thesis can

be seen in Algorithm 3.1.

Algorithm 3.1, it can be seen that the crossover operator is applied on the population at the

beginning of each generation. First, two candidate chromosomes are selected from the

current population. Tournament selection is used as the selection method. Details of

tournament selection are explained in Section 3.3. The candidate chromosomes that are

selected for crossover operation are called parent chromosomes.

After the selection process, the parent chromosomes are sent to the crossover function to

produce the new chromosomes. Several crossover methods has been implemented and

tested in this study in order to determine the most suitable method for the problem at hand.

The new chromosome that is produced by the crossover operation is sent to local search

function. The fine tuning of the produced chromosome is achieved by the local search

process. Hence, the chromosome is further improved by the local search operator. Then,

the chromosome is sent to insertToPopulation function. The function determines whether

the chromosome will be a member of the population or not. The chromosomes are checked

by this method and the ones that met the criteria to be in the population are added to the

population, while the others are discarded.

The elite portion of the population is called pareto front. The Pareto front is composed of

chromosomes that are not dominated by any other chromosome in the population. Pareto

front is formed and managed by the insertToPopulation function. The chromosomes that

are eligible to enter the population are tested also in terms of the pareto front list. Members

of the pareto front list are treated specially and they are guaranteed to exist in the

population until a chromosome that dominates them is created by the search operators.

After the crossover phase is finished, local search phase is started on the population. In this

phase, a random chromosome is selected from the population and the chromosome is

 21

improved in terms of both bandwidth size and conflict number at the same time. When the

predefined iteration count is reached in the local search method, the improved chromosome

is sent to the insertToPopulation function again. The chromosome might be placed in the

pareto front or into the standard population, or it may be completely discarded based on the

fitness values.

Lastly, mutation operators are applied on the population before a single generation is

completed. Again, a random chromosome is picked from the population and it is sent to the

mutation function. The mutation operator that is going to be applied is chosen randomly

among a set of different mutation operators. Then, the chosen operator is applied on the

chromosome. The mutation operator can destroy some of the successfully formed color

groups. Therefore, local search method is also utilized on the mutated chromosomes to

avoid the negative effects of this operation. Again, insertToPopulation function determines

whether the mutated chromosome will be added to the population or not.

The procedures that are explained above take place in a single generation. The same cycle

is repeated until the maximum generation count is reached. The methods that are briefly

described in this section are taken into consideration one by one and they are explained in

detail in the following sections.

3.2. POPULATION CONTROL

The proposed framework starts with the creation of the initial population as mentioned in

the previous section. Various tests have been run to determine how the initial population

should be created. Two different creation methods has been utilized and tested in this

study. The first one is a greedy method and the other one is a random approach.

In the greedy method utilized to create the chromosomes, the procedure starts with

selecting a random vertex in given graph. Then, the available colors that do not cause a

conflict with the adjacent vertices are determined and the one with the smallest index is

assigned to the vertex. The selected color must be in range of the currently used

bandwidth. This procedure is repeated for all vertices until the graph is fully colored. This

approach assigns colors as close as possible to the neighbor vertices in the graph. However,

 22

it has been observed that using this greedy approach decreases the diversity of the

population and the local search method cannot be effective during the search process.

Therefore, it has been decided to use a random approach while creating the initial

population of chromosomes. In this approach, randomly chosen vertices are colored with

randomly chosen colors in a predefined bandwidth size. The color bandwidth size is an

input parameter given by the user. This bandwidth is expected to be larger than the optimal

bandwidth size and hence a diversity of coloring schemes is obtained in the initial

population.

After the initial population is created, the genetic and local search operators are utilized to

reproduce new chromosomes. Steady state approach has been utilized in the proposed

algorithm. The genetic and the local search operators are applied on a portion of the

population. When a new chromosome is reproduced, it is added to the population if it

meets some predefined criteria.

Figure 3.3. An example of adding a chromosome into the population

An example of adding a chromosome into population can be seen in Figure 3.3. As

mentioned before, LS and GA work separately and creates new candidate solutions that

can be added to the population. These candidates are tested to see if they are adequate or

 23

not. When a candidate is added to the population, it replaces an existing chromosome. In

Figure 3.3, the candidate chromosome is denoted with the red circle. When a candidate can

dominate some elements in the current population, it has the right to enter the population.

In the figure, the blue circles denote the chromosomes that are dominated by the new

element. In this case, one of these dominated elements is removed from the population

randomly. If the candidate cannot dominate any element, there is still a chance for it to

replace a randomly chosen element in the population.

It is important to use some restrictions in order to determine which chromosomes will be

added to the population. The population control method utilized is explained in Figure 3.4.

A region in the search space is defined by using the current population. Area of the region

is calculated by using two input parameters. These are bandwidthMaxError and

conflictMaxError. The bandwidthMaxError determines the minimum bandwidth that is

allowed in the population. The minimum bandwidth is calculated by subtracting the

bandwidthMaxError from the current best bandwidth. The conflictMaxError determines

the maximum conflict number that is allowed in the population. The maximum conflict

number is calculated by adding the conflictMaxError to the conflict number of the best

chromosome in the population. The coordinates of the region depend on the best

chromosome in the current population. The best chromosome is the one that has the

minimum conflict number. The bottom right hand side corner of the area corresponds to

the best chromosome in the population.

Figure 3.4. The acceptance region

In Figure 3.4, white circles represent the chromosomes that are in the current population.

The dotted lines show the boundaries of the region defined for the population. If a newly

 24

created chromosome is in this region in terms of bandwidth size and conflict number, then

it is added to the current population. If a chromosome with a lower bandwidth size and

lower conflict number compared to the best chromosome is found, then the restricted

region is reformed corresponding to this new best chromosome. This situation is

demonstrated in Figure 3.4-2. When the region is reformed, there might be some

chromosomes that get out of the newly defined region. The chromosomes that are not

eligible to enter the population are represented with blue circles in the figure. These

chromosomes are not immediately discarded from the population. However, newly created

chromosomes replace them in latter generations.

The method provides the use of a concentrated search space. Discarding the chromosomes

with too low bandwidth values or too high conflict number increases the speed of the

search process.

3.2.1. Pareto Effect

Multi objective nature of the BMCP requires special treatment for pareto front which is the

elite part of the population. The chromosomes that cannot be dominated by other

chromosomes have higher chance to produce better offspring. Different approaches are

used in multi objective applications to protect such chromosomes. In this thesis, an

approach inspired from the methods in [21, 24], is used for this purpose.

Superior chromosomes that cannot be dominated by other chromosomes should be retained

in the population throughout the generations. The building blocks that make these

chromosomes superior are expected to help the population to converge the global

optimum. Hence, the superior chromosomes should be preserved in the population. This

task is handled by a pareto efficiency algorithm. As mentioned above, the method utilized

is similar to the approaches in [21, 24]. In [21], more than one pareto front list are utilized

during the GA run. In our framework, one global pareto front list is used to handle the

elitism in the population like in [24].

Pareto efficiency algorithm is used to create the pareto front list which consists of the non-

dominated chromosomes of the population. Pareto front elements are considered as elites.

 25

The pareto front elements should be secured while inserting new chromosomes to the

population.

When a new chromosome deserves to be inserted to the population, first it is tested to

determine if the chromosome belongs to pareto front or not. In this procedure, the newly

created chromosome is compared to all members of the pareto front. If the members of the

pareto front cannot dominate the new chromosome in terms of bandwidth and conflict

number, the new chromosome is added to the pareto front. After this step, chromosomes

that are the dominated by the new chromosome are determined in the pareto front list. Such

dominated chromosomes are removed from the list.

Figure 3.5. An example population and its pareto front

An example population and its pareto front can be seen in Figure 3.5. Red circles represent

chromosomes in the pareto list. As seen in the first figure, when the chromosomes in the

pareto front are connected together, they form a line in front of the population. The rest of

the population is represented by the white circles. There is a new chromosome that is

recently added to the population in the second figure. It is represented by a blue circle. This

chromosome cannot be dominated by the members of the pareto front list. Thus it is

 26

eligible to enter to the pareto front. It can be seen that there is a chromosome in the pareto

front that is dominated by the new chromosome in the third figure. Since this chromosome

is dominated, it can no longer be a member of the pareto front list. Hence it should be

removed from the list.

Pareto front list consists of the best individuals in the population. These best individuals

are better than the rest of the population in terms of bandwidth size and conflict number.

Preserving these elements in the pareto front helps convergence of the search process and it

becomes possible to find better coloring schemes during the genetic search.

When a newly created chromosome fails to enter the pareto front, it still has the chance to

be a member of the standard population. If this chromosome dominates an element in

population, it is added to the population by replacing the dominated element. If the newly

created chromosome cannot dominate any other elements in the population, it might be still

added to the population with a small probability by replacing a randomly chosen

chromosome. The probability of entering the population differs according to the operator

used to create the new chromosome. The probability value is kept high for the

chromosomes that are reproduced by the mutation operators. Mutation operators are rather

destructive and using a high probability for this operation adds an extra level of diversity to

the population. The probability used for the other genetic and local search operators is low

compared to the mutation operator.

Size of the pareto front list should be limited. The size of pareto front is a parameter and it

is set to one-third of the population size. If the size of the list is not limited, it rapidly

grows and covers the whole population during the search process. It is aimed to have a

balanced dispersion among the chromosomes with different bandwidth values. The method

used allows us to keep the size of the pareto front limited, while having some degree of

diversity in the pareto front list in terms of bandwidth size. The chromosomes in the pareto

front are grouped according to the bandwidth value they have. When the size of the pareto

front exceeds its limit, a random chromosome is chosen from the most populated group

and it is removed from the pareto front. Hence, it is guaranteed to have chromosomes that

have different bandwidth values in the pareto front. It is also tested to remove the worst

chromosome in the most populated group. However, this removal has created a bias and

 27

disturbed the diversity of the pareto front. Therefore, the element to be removed from the

pareto front is chosen randomly from the most populated group.

3.3. GENETIC ALGORITHM OPERATORS

Standard genetic operations are very destructive on GCP. The coloring scheme in the

chromosomes can be easily destroyed during the recombination process. Hence, standard

crossover operations (such as the uniform, one-point or two-point crossover) usually

produce chromosomes that have more conflict number or larger bandwidth value than their

parents. In this thesis, a customized crossover operation that focuses on determining the

critical color groups in the parents is proposed. The method transfers these groups to the

offspring as a whole. Other crossover operators are also tested on the benchmark problems

in this work. While choosing the best crossover operator, the characteristics of graph

coloring problem is considered.

Several methods are used for the selection of parent chromosomes in the literature. The

tournament selection method has come to the fore for multi objective problems such as

BMCP. The tournament selection method is also used in this thesis.

When the tournament selection method applied to single-objective problem, the first two

individuals are selected randomly from the population, and then the chromosome with a

higher fitness value is selected as the first parent. One more tournament is carried out to

determine the second parent. However, in a multi objective problem, one of the selected

individuals may fail to dominate the other in terms of all objectives. In such a case the

individuals are considered to be equivalent.

As mentioned before two distinct objective functions are used in the algorithmic

framework. The first one is the total bandwidth of the colors used and the second one is the

number of conflicts in the current coloring scheme. These two objectives are utilized in the

multi-objective tournament selection. In Figure 3.6, let’s assume that the blue and red

chromosomes are selected as candidates. In this case we can say that blue chromosome is

better since it is better on all objectives and dominates the red one.

 28

Figure 3.6. Comparison of two chromosomes in the population

In the selection process, two random candidates are selected as in the standard tournament

selection. If one of the candidates has better fitness values in terms of both objectives, then

it is directly selected like the single objective case. However, if the candidates cannot

dominate each other in terms of both objectives, a different criterion is used for the

selection. A set of randomly chosen chromosomes is utilized to make a comparison in this

case. Each candidate is compared with the elements of this randomly chosen set. The

candidate that dominates more elements in the comparison set is selected as a parent for

the crossover operation. If the tie is not broken by the comparison set, then the parent is

determined randomly among the candidates. This tournament selection is inspired by

selection process presented in [34].

 29

Figure 3.7. Multi objective tournament selection example

In Figure 3.7, a multi objective tournament selection example can be seen. The two

elements that are chosen for the tournament are denoted by the red and blue circles. We

can’t say which candidate is better because blue has lower conflict number while red has a

better bandwidth value. Let’s assume that five nodes are selected as the comparison set.

Each candidate is compared to this set and scored depending on how many of them are

dominated. For red chromosome only the two chromosomes denoted by the brown color

are dominated. The other elements in the comparison set are denoted with yellow color.

For blue chromosome the number of dominated elements is four and they are denoted with

the grey color. Since blue dominates more, it is selected as the parent.

Another crucial point in GAs is the representation of chromosomes. Group Number

Encoding has been used as the representation scheme for the chromosomes in this study.

This approach is similar to chromosome encoding used in [20]. In the conventional group

number encoding, each vertex is represented by a gene in the chromosome structure.

Colors in the coloring scheme are denoted by the numerical values in the genes. However,

in BMCP a vertex can have more than one color based on the weight assigned to the

vertex. Therefore, a group of genes are reserved for each vertex. The group size is

 30

determined by the weight of the vertex. An example chromosome structure can be seen in

Figure 3.8. Bold lines denote the boundaries of the gene groups used for a single vertex.

The vertex weights of the graph can be seen in Figure 3.9. The graph structure can be

easily represented with the group number encoding method. The first vertex v1 has weight

two in the graph. That is why two genes are reserved for this vertex in the chromosome.

The values of these two genes five and eight are the indexes of the colors assigned to this

vertex. The other vertices are colored according to the values of other genes in the

chromosome.

Figure 3.8. An example of chromosome representation

Figure 3.9. Graph representation of the chromosome

3.3.1. Crossover Operators

Four different crossover operators are tested in this study. Malaguti and Toth have

proposed a novel approach for crossover process in [16]. Two different crossover operators

 31

are developed in this study based on the operator used in [16]. The new crossover operators

are called as distance based crossover and vertex based crossover.

In distance based crossover, colors are transferred to the offspring pair by pair. The

algorithm of the distance based crossover can be seen in Algorithm 3.2. The first process is

the identification of the gene pairs that do not have conflicting colors with each other. Then

these colors can be transferred from the parents together. Initially, the first gene is selected,

and then the first gene that does not have a conflicting color with this gene is determined.

 and

 represent the set of the color pairs that can be transferred together from the first

and the second parent respectively. Then the same process is repeated for the following

unselected genes in the chromosome. Thus, all pairs of genes which do not have

conflicting colors are determined. Then all the color pairs that can be taken from the first

parent are transferred to the offspring. After this step, the same process is repeated for the

second parent. While transferring the color pairs from the second parent, the colors already

transferred from the first parent should be taken into consideration. The selected color pairs

will be transferred to the offspring, if the vertices are not already colored with the colors

from the first parent. If the one of the genes that is supposed to be colored with current

color pair is already colored, then only one color from the pair is transferred. On the other

side, if a conflict arises between the colors transferred from the first and the second parent,

the color from the second parent is changed to the next or previous color in the bandwidth.

This allows us to pick a color from bandwidth that does not cause any conflict with the

previously colored location. When this process ends, remaining uncolored locations are

colored with the first available color from the bandwidth, starting from the first color. If

there are still uncolored genes after these steps, they are colored with randomly chosen

colors from the current bandwidth.

 32

Algorithm 3.2. Distance Based Crossover

B1 represents first parent,

B2 represents second parent,

B0 represents offspring;

for do
 for j = 0, j < neighbor count of i, j = j + 1 do

 if !conflict() then

 end

 if !conflict() then

 ;

 end

 end

end

for do

 for do

 if then

 end

 end

end

for do

 for do

 if then

 end

 else if then

 if !conflict() then

 ← B1→colorData[j];

 end

 else if then

 if !conflict() then

 end

 end

 end

end

for do

 if then

 end

end

In the testing stage of the distance based crossover, it has been observed that the color pairs

are mainly transferred from the first parent. The color pairs from the second parent usually

fail to color the uncolored genes due to the conflicts that appear. Then these locations are

colored randomly. In this case, the crossover operator behaves more like a mutation

 33

operator. Thus, it was not possible to obtain satisfactory results with this initial crossover

operation. Therefore, a new crossover operator is developed to enhance the performance.

Figure 3.10. Explanation of vertex based crossover

This new crossover operator is called as vertex based crossover. In the vertex based

crossover operator, the vertex pairs that do not have conflicting colors are determined.

Note that a vertex can have multiple colors in BMCP. Hence, all colors in the

corresponding genes are checked against each other in order to determine a vertex pair that

does not have any conflicting colors. Then all colors in these vertex pairs are transferred to

the offspring instead of the color pairs. The subsets of the vertex pairs are represented as

 and

 in Algorithm 3.3. First of all, the vertex pairs that are colored without having

conflicts between them are determined in both parents. Then these vertex pairs are

transferred to the offspring in random order. The pairs are selected from different parents

in each step. When the process ends, remaining uncolored genes are colored with the first

available color from the bandwidth. Finally, if there are still uncolored genes, they are

colored again with randomly colors within the bandwidth. The pairs that are transferred in

the crossover are chosen evenly from both parents and better results are obtained compared

to the distance based crossover. Performance comparison of the two crossover operators

can be found in Section 4.2.

An example for the vertex based crossover can be seen in Figure 3.10. The vertex pairs that

do not have conflicting colors in each parent are represented as bold numbers. These vertex

 34

pairs are transferred to the offspring. Then, the remaining uncolored vertices are randomly

colored. Randomly assigned colors are shown with red numbers.

Algorithm 3.3. Vertex Based Crossover

B1 represents first parent,

B2 represents second parent,

B0 represents offspring;

for do

 for do
 if !conflict(B1→node[i], B1→node[j]) then

 end

 end

end

for do

 for do

 if !conflict() then

 ← B2→node[i];

 ← B2→node[j];

 end

 end

end

for do

 for do

 ;

 end

end

for do

 if then

 end

end

The next crossover operator utilized in this study is called maxGroupCrossover. It is based

on the method proposed in [7]. This crossover operator aims to transfer the successful

color groups to the offspring. Certainly, the successful color groups are the ones which do

not cause any conflict in the current coloring scheme. The algorithm used in this operation

is presented in Algorithm 3.4. In this crossover, first, the biggest color groups are

determined from the two parents selected. These parents are expressed as B
1
 and B

2
in the

algorithm. The biggest color group is represented by
 where i is the parent index and j is

the group number. Then, the biggest color group from the first parent is transferred to the

offspring. The group can be transferred if the genes that belong to this color group are not

 35

already colored by previous operations. Therefore, the colors are removed from both

parents whenever they are transferred. This process is repeated until all color groups are

transferred to the offspring. There steps of this process is given in Figure 3.11. Here, the

largest groups are represented with red, orange and cyan colors. If there are still uncolored

genes left after the transfer operation, they are colored with random colors within the

current bandwidth.

Algorithm 3.4. Maximum Group Crossover

B1 represents first parent,

B2 represents second parent,

B0 represents offspring;

while do

end

for do

 if then
 pick a random x between 0 and 1;

 if then

 else

 end

 end

end

 36

Figure 3.11. There steps of the maximum group crossover

Lastly, new crossover operation that is hybridized with ANNs is also proposed in this

thesis. In the genetic search, the crossover operator is carried out in two different ways. At

the beginning of the search, the standard uniform crossover is utilized. While the crossover

operations are carried out a training data is also created for ANNs. The data holds the

parents used in the crossover operation, the gene positions in each parent that are used for

coloring the offspring and a label denoting if the operation was successful or not. The

crossover operation is labeled as successful if the offspring is better for at least one of the

parents in terms of at least one fitness function. When sufficient amount of crossover data

is collected an ANN is trained on this data in order to determine the critical color groups

that have to be transferred to the offspring as a whole. The standard crossover operation is

utilized in the second part of the genetic search. However, three different coloring patterns

are created and the trained ANN is utilized to select the pattern that has the highest

potential to create a successful offspring. Algorithm of the ANN-Crossover can be seen in

Algorithm 3.5.

While creating the coloring patterns, color values are randomly chosen from the parents.

The crossover operator reproduces the offspring using these colors. Hence three alternative

transfer scenarios are obtained for coloring the offspring. Each scenario form a randomly

produced pattern set denoted as in Equation 3.1. Then, the trained ANN is used to

determine the pattern that has the highest potential to create a successful offspring as

shown in Equation 3.1.Certainly, the offspring is created using the pattern chosen by the

 37

ANN. The chosen pattern represented by in Equation 3.1. The representation of

ANN-crossover can be seen in Figure 3.12. The pattern in the figure determines the color

values that are used to reproduce the offspring. On the other side, the whole ANN-

crossover process is explained with a diagram in Figure 3.14.

 (3.1)

Figure 3.12. Representation of ANN-crossover

Whenever the genetic search starts, after the first 100 generations, the process of collecting

training data is also started. This process runs for 50 generations. At the end of these 50

generations, the ANN is trained with the collected data. Then the crossover operation is

carried out by using the ANN in the following generations. However, the process of

gathering data and retraining the ANN is repeated after each 10000 generations in order to

be up to date with new situations that can appear during the search process.

 38

In the training phase, the collected training data is fed to the ANN. The ANN tries to map

the coloring patterns to the respective pattern label which denotes if the crossover

operation was successful or not. Symmetric sigmoid function is used as activation function

in the ANN. The symmetric sigmoid is the sigmoid that is stretched so that the y range is

equal to 2 and then it is shifted down by 1 so that it ranges between -1 and 1. The sigmoid

function is given in Equation 3.2. The ANN produces an output between -1 and 1

depending on the pattern’s potential to create a successful offspring. Results that are closer

to one are more likely to produce better offspring. Rprop learning method is used during

the training phase in this study. This algorithm reduces the effects of initialization. Also,

the learning rate is adaptive in this algorithm.

 (3.2)

Figure 3.13. ANN architecture

A three layered feedforward neural network is utilized. ANN architecture can be seen in

Figure 3.13. Number of neurons used in the input layer is equal to the number of genes

used in the chromosome representation. This value changes for each benchmark instance

 39

depending on on the number of vertices in the graph. In Equation 3.3 and 3.4, calculation

of the number of neurons used in the input and the hidden layers are given. I is the number

of neurons in the input layer and H in the hidden layer. represents the number of vertices

in the graph. represents a single vertex and
 represents the weight value for vertex .

Half of the number of neurons used in the input layer is used in the hidden layer as seen in

Equation 3.4. Lastly, a single neuron is used in the output layer.

 (3.3)

 H =

 (3.4)

Figure 3.14. Explanation of ANN-crossover

data collection

continues

data collection ends

apply crossover and evaluate offspring

trainANN(trainingData)

 40

Algorithm 3.5. ANN-Crossover

B1 represents first parent,

B2 represents second parent,

B0 represents offspring;

max = 0;

if trainingPhase is active then

 for do
 randAr[i]→ pick a random value in between 0 and 1;

 end

 for do

 if then

 else

 end

 if
 do

 annPatternData←randArr;

 end

end

trainAnn(annPatternData);

else

 for do

 for do

 end

 output = runAnn(randAr);

 if output > max then

 maxPattern←randAr;

 max = output;

 end

 end

end

for do

 if then

 else

end

The group crossover works properly on GCP. Only a single color is assigned to each vertex

and all edge weights are set to one in GCP. Hence if you consider two adjacent vertices, it

is sufficient to have different colors for a successful coloring on them. Therefore, when the

group crossover moves a color group from a parent to the offspring, it is not possible to

have some unexpected conflicts with other previously transferred color groups. Therefore,

the group crossover performs well on GCP by transferring the color groups which are the

building blocks in the parents.

 41

Vertices can be assigned more than one color in BCMP. What is more, the edge weights

can be more than one. Hence, certain separations should exist in between the colors

assigned to adjacent vertices. Due to these characteristics of the problem, the group

crossover does not perform well on BCMP. Whenever, a color group is transferred to the

offspring, conflicts may arise due to other color groups already transferred from the second

parent. It is not possible to consider color groups as building blocks in this problem.

However, there might be some critical regions the graph which is difficult to color due to

the edge weights and vertex weights that exist in that region. In BMCP coloring of such

regions can be considered as the basic building blocks. Determination of such critical

regions is carried out by the ANN crossover in this study. The ANN training used for each

benchmark instance can determine the critical graph regions that can easily create conflicts

and the approach used enables the crossover operation to transfer all of the colors used in

such a critical region from the same parent. Therefore, the ANN crossover outperforms the

maximum group crossover on BMCP.

3.3.2. Mutation Operators

Three mutation operators are also utilized for the reproduction process. In the first one, a

random gene is selected and its color is reassigned to a randomly selected new color within

the current bandwidth. Also, two other operators are designed to merge and divide color

groups. The algorithm of the merge mutation can be seen in Algorithm 3.6. The merge

operator tries to reduce the bandwidth size by merging randomly chosen two color groups

into one. The divide operator is in contrast to the merge operator. The algorithm of the

division mutation is given in Algorithm 3.7. It tries to increase the bandwidth size by

dividing one randomly chosen group into two groups. Two different methods are used in

this process. The first method selects the second color group within the current bandwidth

range and the second method chooses a color group that is outside the current bandwidth

by a specific margin. In many tests, this margin is set as 3 in order not to increase the

bandwidth by a big margin. The mutation amount applied in each generation is set as 20

per cent of the population. All the mutation operators have an equal chance to be selected

when the mutation process starts.

 42

Algorithm 3.6. Merge Mutation

Pick a random k0 color from the current bandwidth;

while() do Pick a random k1 color from the current bandwidth;

for do

 if then

 end

end

Algorithm 3.7. Division Mutation

pick a random x between 0 and 1;

pick a random k0 color from the current bandwidth;

if then

 while() do Pick a random k1 color from
 the current bandwidth;

else

end

for do
 pick a random y between 0 and 1;

 if then

 end

end

3.4. LOCAL SEARCH OPERATOR

It is a commonly used method to compensate the stochastic framework presented with

genetic algorithms by local search operators. In this thesis, a local search operator is used

to improve the individuals produced by the genetic algorithm operators. This operator tries

to improve the chromosomes by recoloring the conflicting colors with other colors in the

current bandwidth. The individuals that will be improved by the local search method are

chosen randomly from the population. All chromosomes have the same probability of

being selected. A copy of the selected individual is sent to the local search function. The

local search function repeatedly changes the colors in the selected chromosome to reveal

new coloring schemes. If an improvement can be achieved, then the original chromosome

in the population is replaced by the new chromosome.

The recoloring process on the chromosomes is repeated multiple times as mentioned

above. The number of steps used for this process is low at the beginning of the search

 43

process. However, the number of iterations in the process increases towards the end of the

search process. The number of iterations can also be set to higher values for the graphs

which are denser and which has more vertices.

Both the bandwidth size and the number of conflicts in a chromosome are tried to be

improved by the local search operator. Local search uses a maximum bandwidth size

which is an input parameter of the local search function. Genes that have conflicting colors

with other genes or that are outside the input bandwidth size are called as problematic

genes. A gene is selected among these problematic genes and it is reassigned to a non-

conflicting color within the current bandwidth interval. There are two stopping criteria

used in local search operator: The first one occurs when the max iteration count is reached

for the operator. The second one occurs when all problematic vertices are eliminated. The

resulting chromosome is inserted into the population using the population control

algorithm described before. A single iteration of local search method can be seen in

Algorithm 3.8.

Figure 3.15. Population movement in both directions

 44

Population movement can happen in both directions, the number of conflicts and the

bandwidth. This is shown in Figure 3.15. However if a perfect solution with no conflict is

found, it is not necessary to search for larger bandwidths anymore. However, if no perfect

solution exists in the population, the local search method should be able to increase the

color bandwidth in order to reduce the number of conflicting colors.

Algorithm 3.8. Local Search Operator

for do
 for do
 if conflict(chromosome→colorData[i], chromosome→colorData[j]) then

 end

 end

 if then

 end

end

for do

 for do
 if conflict()
then

 end

 end

 –
 if then

 end

end

As mentioned in the previous paragraph, local search method uses a maximum bandwidth

value which is a input given to the function. This input is calculated based on the best

chromosome in the population. The best chromosome is the chromosome with the smallest

bandwidth that does not contain any conflicts in its coloring scheme. If the best

chromosome has no conflicts, then maximum bandwidth for local search operator is set

randomly one to four levels lower than the bandwidth of this chromosome. If the best

chromosome still has some conflicts, local search operator uses a bandwidth that is again

randomly set as one to four levels larger than the current bandwidth.

 45

4. EXPERIMENTAL RESULTS

4.1. BENCHMARK PROBLEM SET

GEOM benchmarks, generated by Michael Trick [12], are used as BMCP test instances in

this study. In the GEOM benchmarks, the vertices of a graph are represented by points that

are uniformly distributed in a square by . Vertices that are closer to each

other less than a previously determined threshold have an edge connection in between. The

distance between the points determines the separation distances associated to the edges.

Number of colors in a vertex is determined by picking a random number from the interval

[1,r], where r can get 10 as maximum value and all edge weights are set to 10. The smallest

test instances have 20 vertices and new test instances are created by increasing the number

of vertices in tens. The largest instance that exists in the set has 120 vertices. Each instance

is named as GEOMna and GEOMnb where n is the number of vertices that exist in that

instance and the instances that have a name that ends with the “b” letter contain denser

graphs compared to the instance names that end with the “a” letter.

4.2. CONTRIBUTION OF THE OPERATORS

Different genetic and local search operators are designed and used in the algorithmic

framework proposed in this thesis. The contribution of each operator is determined

throughout some experiments conducted in the study. According to the analysis made, the

solutions obtained at the end of the genetic search are mainly constructed by the mutation

and local search operators. On the other side, it has been observed that the best solutions

can be achieved whenever the crossover operator is also included in the search process. It

can be claimed that the crossover operator does not take a important role for the

construction of the solution, but the operator still should be used for improving the quality

of the solutions obtained.

In the experiments, it was observed that a large portion of the improvements on the

chromosomes are provided by the hill climbing operator. Therefore, the hill climbing is

applied on all individuals produced by the mutation and crossover operations.

 46

In the experiments, the effect of applying mutation operator on the individuals produced by

the crossover operator is also tested. However, it has been observed that performing

mutation operator on these offspring results in too much distortion on the individuals and

does not contribute to get better results.

The impact of using mutation operator on the individuals produced by the crossover

operation can be seen in Table 4.1. As seen in the table, the percentage of producing

offspring better than the parents is higher when only crossover is used before the hill

climbing process compared to the case where crossover and mutation operators are used

together. An individual is better than the other one if it has a smaller bandwidth and

smaller number of conflicts in the coloring scheme it represents. If two individuals have

the same value for one of the fitness functions, then the individual which has lower value

on the second fitness function is considered as the better individual.

Table 4.1. Affect of the mutation after crossover operation

Utilized Framework

The Percentage Of

Producing Offspring

Better Than The Parents

(%)

Crossover + Local Search 29.17

Crossover + Mutation + Local Search 23.82

Performance comparison of the distance based crossover and the vertex based crossover on

three selected benchmark instances can be seen at Table 4.2. The vertex based crossover

obtains better results compared to the distance based crossover. The coverage rate [35] is a

commonly used performance evaluation metric for MOGAs. This rate determines how two

different algorithms' pareto fronts dominate each other. If the rate is equal to one, this

means that all the members of the pareto front created by the first algorithm dominate the

members of the pareto front created by the second algorithm. The coverage rate obtained

by the vertex based crossover operator is either equal to one or it is very close to one on the

benchmark instances used in the experiments.

 47

Table 4.2. Comparison between vertex based crossover and distance based crossover

Benchmark Problem

Set

Coverage Rate(Vertex Based / Distance Based)

Average Median

GEOM50 0.85 0.86

GEOM50a 0.79 0.83

GEOM50b 1 1

The performance comparison between vertex based crossover operator and the other

operators used in this study can be seen in Table 4.3. The distance crossover operator is not

included in this comparison, since the vertex based crossover operator outperforms it.

Table 4.3. Probability of creating better individuals of the crossover operators

Crossover Operator

The Probability Of Producing

Better Offspring In Terms Of

Only One Fitness Value (%)

The Probability Of

Producing Better

Offspring In Terms Of

Both Fitness Functions

(%)

Vertex based crossover

v1
3.27 0.79

Vertex based crossover 0.1 0.08

Maximum group

crossover
3.59 1.82

In the vertex based crossover, the colors are transferred to the new individuals after

determining the appropriate pairs of vertices. The approach aims to minimize the conflicts

in the offspring. The performance of a different version of vertex based crossover is also

presented in the table. The edge weights are also considered and coloring constraints are

not violated while transferring the colors in the vertex based crossover operator. The edge

weights are not taken into consideration in vertex based crossover-v1. When this method is

used, the diversity in the population is increased.

 48

The names of the crossover operators are given in the first column of the Table 4.3. In the

second column, the probability of producing better offspring in terms of only one fitness

value is given for the operators. Lastly, the probability of producing better offspring in

terms of both fitness functions is given in the third column. The probability producing an

offspring better than the parents in terms of both fitness functions is low for all operators..

However, this is not an unexpected situation, since the crossover operators are quite

destructive for grouping problems. The maximum group crossover has the highest

performance compared to the other crossover operators as seen in the table.

Further tests are performed on the ANN-crossover which is designed to increase the

performance of the crossover operation. The crossover operator is considered as successful

again if it reproduces an offspring that has a better value for one of the fitness functions

without resulting a declination of the other fitness function value. Comparison of ANN-

crossover and max group crossover are given in Table 4.4. The ANN-crossover

outperformed the max group crossover in all the problem instances that exist in the GEOM

test suite as seen in Table 4.4.

 49

Table 4.4. Success rate comparison between max group crossover and ANN crossover

Benchmark

Problem

Set

Success Rate Of The Crossover

Operator (%)

Max Group

Crossover
ANN Crossover

GEOM20 1,62 9,45

GEOM20a 1,05 5,42

GEOM20b 3,16 6,47

GEOM30 2,21 8,03

GEOM30a 0,93 8,61

GEOM30b 4,97 9,86

GEOM40 2,00 7,35

GEOM40a 2,13 6,90

GEOM40b 3,56 5,61

GEOM50 0,99 5,29

GEOM50a 2,28 7,67

GEOM50b 3,20 5,67

GEOM60 0,97 9,24

GEOM60a 2,03 6,22

GEOM60b 4,73 7,84

GEOM70 2,60 6,17

GEOM70a 1,39 8,13

GEOM70b 2,74 6,11

GEOM80 3,41 8,29

GEOM80a 2,05 6,09

GEOM80b 2,63 6,02

GEOM90 3,44 8,64

GEOM90a 2,41 9,49

GEOM90b 2,42 5,42

GEOM100 0,91 7,45

GEOM100a 3,12 6,70

GEOM100b 4,05 6,64

GEOM110 1,76 8,61

GEOM110a 3,07 7,44

GEOM110b 2,35 8,62

GEOM 120 3,49 7,31

GEOM120a 2,77 5,90

GEOM120b 3,68 8,33

The effect of the ANN-crossover on the proposed framework is also analyzed in terms of

best solutions that can be obtained on the benchmark instances. The best solution generated

at the end of the search is the individual that colors the graph successfully with minimum

bandwidth value. Certainly, a successful coloring of the instance does not contain any

 50

conflicts. The ANN-crossover achieved improvements on the minimum bandwidth values

for the successful colorings, too. The best and average bandwidth values that are obtained

for a group of runs on the test instances can be seen in Table 4.6. and Table 4.7. As seen in

the table, the crossover operator improved the best bandwidth value in 19 problem

instances. Worse results are obtained only in five problem instances by the ANN-crossover

compared to the standard group crossover. Lastly, the same results are obtained in the

remaining nine problem instances. The average bandwidth values are calculated using the

results of 10 different runs on each instance. The ANN-crossover operator improved the

average bandwidth value in 30 problem instances. The same result is obtained in only one

of the problem sets. Lastly, ANN-crossover has a worse average in only two problem

instances. Detailed test results are given in Appendix B section.

Parameters that are used in the tests are given in Table 4.5. The population size is set to

120 in these tests. The tests are run for 30000 generations. 40 LS operations and 30

crossover operations are applied on the population in each generation. Mutation operation

count is set to 20 per cent of the population size. In LS operations, maximum iteration

count starts from 20 and linearly increases up to 40 throughout the run.

Table 4.5. Parameters used in the tests

Population

Size

Max

Generation

Count

LS

Operation

Count

Crossover

Operation

Count

Mutation

Operation

Count

Min LS

Iteration

Count

Max LS

Iteration

count

120 30000 40 30

20 per

cent of the

population

size

20 40

 51

Table 4.6. The best bandwidths obtained by the ANN-crossover

Benchmark

Problem

Set

Best

Max Group

Crossover

ANN

crossover

Bandwidth Bandwidth

GEOM20 150 150

GEOM20a 170 170

GEOM20b 44 44

GEOM30 160 160

GEOM30a 213 212

GEOM30b 77 77

GEOM40 167 167

GEOM40a 216 214

GEOM40b 75 75

GEOM50 225 225

GEOM50a 326 326

GEOM50b 88 87

GEOM60 258 259

GEOM60a 372 367

GEOM60b 118 119

GEOM70 275 274

GEOM70a 480 479

GEOM70b 125 123

GEOM80 393 389

GEOM80a 382 376

GEOM80b 141 143

GEOM90 339 338

GEOM90a 388 387

GEOM90b 157 155

GEOM100 425 412

GEOM100a 464 460

GEOM100b 168 172

GEOM110 392 394

GEOM110a 511 504

GEOM110b 215 213

GEOM 120 414 411

GEOM120a 569 564

GEOM120b 208 203

 52

Table 4.7. The average bandwidths obtained by the ANN-crossover

Benchmark

Problem

Set

Average

Max Group

Crossover
ANN crossover

Bandwidth Time Bandwidth Time

GEOM20 151,9 3201 151 3561

GEOM20a 171,4 4095 170,3 4978

GEOM20b 44 646 44 765

GEOM30 161,1 4239 160,4 6000

GEOM30a 216,5 9319 214,3 11742

GEOM30b 77,7 1418 77,5 1794

GEOM40 169,6 6427 168,4 8461

GEOM40a 221,8 14119 218,2 15900

GEOM40b 76,9 2336 76,4 2933

GEOM50 227,1 9299 226,8 12196

GEOM50a 338,2 30482 334,5 35254

GEOM50b 91,2 4340 88,4 4594

GEOM60 263,5 11280 261,4 15743

GEOM60a 376 29236 371,3 36655

GEOM60b 122,6 5960 122 7425

GEOM70 280,2 19987 277,2 23898

GEOM70a 485,9 35394 483,8 43586

GEOM70b 127,7 7288 127,4 8912

GEOM80 397,5 28219 393,2 32747

GEOM80a 386 37266 382,4 47315

GEOM80b 144,6 9055 144,7 11883

GEOM90 343,7 34378 341,5 38021

GEOM90a 394,8 42423 394,1 49780

GEOM90b 161 12017 159 15982

GEOM100 429,2 30663 422,4 42483

GEOM100a 471,3 73922 464,5 81071

GEOM100b 174,8 14804 176,5 18471

GEOM110 401,3 44176 398,5 60623

GEOM110a 519,4 76800 510,1 100616

GEOM110b 218,4 17247 215,7 21874

GEOM 120 421,9 48918 418,3 61746

GEOM120a 584 92671 573,3 116158

GEOM120b 210,7 18362 207,8 23177

 53

Various experiments are carried out to observe the effect of mutation operators used in the

study. The results obtained while all mutation operators are simultaneously active can be

seen in Table 4.8. All of the operators in the table are equally likely to have the chance to

be operated.

Conflict number that exists in the offspring produced by using the standard mutation

operator does not get worse with a rate of 6.5 per cent. This rate is much higher compared

to the merge and the division mutation operators. The effect of each operator to the

individuals is quite different, as shown in Table 4.8. The bandwidth value is expected to

increase and shrink by dividing and merging the color groups. This process increases the

diversity of the population. The standard mutation operator also helps to avoid being stuck

at local minima by changing color of a randomly picked up vertex in the graph. Different

tests are also performed to analyze the effect of using different combinations of the

mutation operators. It is observed that the best performance is obtained when all operators

are used simultaneously. It is not possible to obtain satisfactory results when only a subset

of the mutation operators is utilized.

Table 4.8. Performance comparison of the mutation operators

Mutation Operator
Total Call

Count

Case of

Increased

Conflict is

Obtained

Case of Same or

Decreased

Conflict is

Obtained

Percentage of

Not Having a

Worse

Chromosome

(%)

Standard Mutation 103315 96584 6731 6.51

Merge Mutation 102733 60593 42140 41.01

Division Mutation 103287 4489 98798 95.65

The first column in Table 4.8 shows the name of the mutation operator used in the tests.

The second column shows total number of calls for each mutation operator. The number of

calls where the conflict number is increased by the operator can be seen in the third

column. With the mutation operators, it mainly is aimed to increase the diversity by

changing the bandwidth values of the individuals. When the mutation operator is applied

 54

without increasing the conflict number, it is considered as successful. The number of

successful mutation operator calls are shown in the forth column. The rate of these

successful calls is given in the last column.

The effect of the local search operator is also observed, as well as crossover and mutation

operators. The performance of local search operator on four selected problem instances can

be seen in Table 4.9. The individuals which are produced by using local search operator

are likely to be better than the original individuals in terms of both conflict number and

bandwidth value, as seen in the table. It can be claimed that, the local search operator is

especially effective on the conflict number and it can reduce the conflicts in the individuals

with a high percentage of success.

Table 4.9. Local search experiment

Benchmark

Problem Set

Total Call

Count

Cases of

Same Conflict

is Obtained

Case of

Decreased

Conflict is

Obtained

Improvement

Rate

(%)

GEOM50 600000 420311 179497 29.91

GEOM50a 600000 471649 128167 21.36

GEOM50b 600000 382219 217309 36.21

GEOM60 600000 443587 156088 26.01

The first column in the Table 4.9 shows the total number of local search calls carried out in

a single run. The number of the calls where the conflict number does not change is given in

the second column. The number of the calls where the conflict number is decreased by the

operator is given in the third column, and improvement rates can be seen in the last

column. If the conflict number of an individual is decreased by the local search operator, it

is considered as an improvement on the individual. Each row in the table presents the

results obtained on a different problem instance.

The hybridization of GAs with local search improves the performance of the methodology.

To demonstrate the contribution of local search, coverage rate calculation is also utilized

 55

for the local search operator. It has been seen that all the coverage rates are equal to one in

favor of the search accompanied by local search. Also the best bandwidth values obtained

by pure MOGA and MOGA accompanied by local search can be seen in Table 4.10 on

some selected instances.

Table 4.10. Effect of the local search operator on the best bandwidths

Benchmark Problem Set

The Best Bandwidths

Local Search is Utilized
Local Search is not

Utilized

GEOM50 224 274

GEOM50a 320 392

GEOM50b 88 104

GEOM70 274 365

GEOM70a 472 492

GEOM70b 121 158

The average best bandwidth and standard deviation obtained throughout different runs on

the some instances can be seen in Figure 4.1. The results are obtained by using 20 different

runs for each problem instance. As seen in the figure, again the local search operator has an

important contribution for establishing better solutions.

 56

Figure 4.1. Standard deviation of average bandwidth comparison

4.3. COMPARISON BETWEEN THE HYBRID MOGA APPROACH AND OTHER

ALGORITHMS

Comparison between the hybrid MOGA approach used in this thesis and other three state

of the art algorithms can be found in Table 4.11, Table 4.12 and Table 4.13. These three

algorithms are proposed in [19] (combination of LS and Constraint Propagation), [15]

(combination of TS and SWO) and [16] (combination of GA and TS). All tests are done

under Ubuntu machines with 2.66GHz Intel Core Duo CPUs and 2MB RAM. The tests are

repeated 10 times and the best results are included in the tables. Names of the benchmarks

are given in the first column. The second column shows the results obtained by the MOGA

approach. The next columns show the results obtained by the other frameworks and the

improvements obtained by the MOGA approach compared to other frameworks. It is

difficult to provide a performance comparison between MOGA and other methods in terms

of computational time. MOGA performs a parallel search in the pareto front including

 57

solutions with different bandwidths. The other algorithms, utilize only a single bandwidth

value. However, in general it can be stated that MOGA is slower compared to [15, 16, 19].

The improvements obtained by the MOGA approach are given in the “improvement”

column. The values in these columns are the differences between two frameworks. The

positive values in the column show that the MOGA approach has found a better result

compared to the other framework. The negative values in the column indicate the cases

where the MOGA approach falls behind, when compared to the other frameworks. If the

columns hold value of zero, it means that a tie happened between the two approaches.

In these tests population size is set as 120. Max generation count is 30000 and in each

generation 40 LS operations and 30 crossover operations are performed. In LS operations,

maximum iteration count starts from 20 and linearly increases up to 40 throughout the run.

 58

Table 4.11. MOGA and Prestwich Comparison

Benchmark

Problem

Set

MOGA
PRESTWICH

[19]
Improvement

GEOM20 150 149 -1

GEOM20a 170 170 0

GEOM20b 44 44 0

GEOM30 160 160 0

GEOM30a 212 214 2

GEOM30b 77 77 0

GEOM40 167 167 0

GEOM40a 214 217 3

GEOM40b 75 74 -1

GEOM50 225 224 -1

GEOM50a 326 323 -3

GEOM50b 87 86 -1

GEOM60 259 258 -1

GEOM60a 367 373 6

GEOM60b 119 116 -3

GEOM70 274 277 3

GEOM70a 479 482 3

GEOM70b 123 119 -4

GEOM80 389 398 9

GEOM80a 376 380 4

GEOM80b 143 141 -2

GEOM90 338 339 1

GEOM90a 387 382 -5

GEOM90b 155 147 -8

GEOM100 412 424 12

GEOM100a 460 461 1

GEOM100b 172 159 -13

GEOM110 394 392 -2

GEOM110a 504 500 -4

GEOM110b 213 208 -5

GEOM120 411 417 6

GEOM120a 564 565 1

GEOM120b 203 196 -7

 59

Table 4.12. MOGA and Lim Comparison

Benchmark

Problem

Set

MOGA
LIM

[15]
Improvement

GEOM20 150 149 -1

GEOM20a 170 169 -1

GEOM20b 44 44 0

GEOM30 160 160 0

GEOM30a 212 211 -1

GEOM30b 77 77 0

GEOM40 167 167 0

GEOM40a 214 214 0

GEOM40b 75 76 1

GEOM50 225 224 -1

GEOM50a 326 326 0

GEOM50b 87 87 0

GEOM60 259 258 -1

GEOM60a 367 368 1

GEOM60b 119 119 0

GEOM70 274 279 5

GEOM70a 479 478 -1

GEOM70b 123 124 1

GEOM80 389 394 5

GEOM80a 376 379 3

GEOM80b 143 145 2

GEOM90 338 335 -3

GEOM90a 387 382 -5

GEOM90b 155 157 2

GEOM100 412 413 1

GEOM100a 460 462 2

GEOM100b 172 172 0

GEOM110 394 389 -5

GEOM110a 504 501 -3

GEOM110b 213 210 -3

GEOM120 411 409 -2

GEOM120a 564 564 0

GEOM120b 203 201 -2

 60

Table 4.13. MOGA and Malaguti Comparison

Benchmark

Problem

Set

MOGA
MALAGUTI

[16]
Improvement

GEOM20 150 149 -1

GEOM20a 170 169 -1

GEOM20b 44 44 0

GEOM30 160 160 0

GEOM30a 212 210 -2

GEOM30b 77 77 0

GEOM40 167 167 0

GEOM40a 214 214 0

GEOM40b 75 74 -1

GEOM50 225 224 -1

GEOM50a 326 316 -10

GEOM50b 87 83 -4

GEOM60 259 258 -1

GEOM60a 367 357 -10

GEOM60b 119 115 -4

GEOM70 274 272 -2

GEOM70a 479 473 -6

GEOM70b 123 117 -6

GEOM80 389 388 -1

GEOM80a 376 363 -13

GEOM80b 143 141 -2

GEOM90 338 332 -6

GEOM90a 387 382 -5

GEOM90b 155 144 -11

GEOM100 412 410 -2

GEOM100a 460 444 -16

GEOM100b 172 156 -16

GEOM110 394 383 -11

GEOM110a 504 490 -14

GEOM110b 213 206 -7

GEOM120 411 396 -15

GEOM120a 564 559 -5

GEOM120b 203 191 -12

 61

As seen in Table 4.11, Table 4.12 and Table 4.13, some improvements are achieved

compared to Prestwich [19] and Lim [15]. Among the 33 instances of GEOM benchmarks,

the hybrid MOGA finds better solutions in 10 instances compared to [15]. In 10 of the

instances, the same solution is found with [15]. In the remaining 13 instances, the hybrid

MOGA performs worse compared to the result in [15]. The hybrid MOGA also improves

12 instances and achieves the same result on five instances compared to Prestwich [19].

However, the hybrid MOGA performance is low compared to Malaguti[16]. The hybrid

MOGA achieves the same result on only five instances compared to [16]. Summary of

performance comparison of these three algorithms are presented in Table 4.14.

Table 4.14. MOGA comparison with other approaches

Our

Framework
Quality

PRESTWICH

[19]

LIM

[15]

MALAGUTI

[16]

MOGA

Better 12 10 0

Same 5 10 5

Worse 16 13 28

 62

5. CONCLUSION & FUTURE WORK

In this study, a hybrid framework is proposed to solve multi objective optimization

problems. A well known multi objective optimization problem; BMCP is selected as the

testbed for the proposed algorithm. Also a novel crossover operator that is hybridized with

ANN is also designed in order to increase the success rate of reproduction process in this

study.

Satisfactory results are obtained on the Benchmark instances utilized. Multi objective

genetic algorithms (MOGAs) have not been applied to BMCP before in the literature. The

multi-objective framework eliminates the need for determining the optimal bandwidth

value for the problem instance. Optimization of the bandwidth value is one of the objective

functions in the problem. MOGA framework makes it possible to run a parallel search on

the solutions with different bandwidth values.

The hybrid search framework proposed for solving BMCP has been investigated in detail.

Various tests are performed in order to determine the contribution of different operators

used in the framework. This approach could be easily applied to other similar partitioning

problems with minor updates.

The ANN-crossover proposed in this study is a novel operator which can increase the

performance of the general framework. The operation makes it possible to breed better

offspring compared to standard crossover operators. It has been observed that the

performance increase is significant on the problem instances used. GAs have been used to

improve the performance of ANNs in the literature, however it is a new approach to use

ANNs to improve the performance of GA operators.

Location information of the color groups is the only input provided to the ANN in the

current framework. ANNs are able to use this information to guide the crossover operation

for better offspring. As the future work, color assignments for the vertices can also be used

in the training phase of ANNs. Further enhancement could be obtained when extra

information is used in the training process.

 63

As mentioned in the Introduction, BMCP is a difficult problem that can be a model for

various industrial applications. The proposed framework is also intended to be tested on

real-world problem instances in the next phase of the study. The proposed framework can

be considered as an infrastructure that can be used for solving different real world

problems.

 64

REFERENCES

1. Hertz, J., “Introduction to the theory of neural computation”, Basic Books, vol. 1, 1991.

2. Korkmaz, E., “Multi-objective genetic algorithms for grouping problems”, Applied

Intelligence, vol. 33, no. 2, pp. 179–192, 2010.

3. Ülker, Ö., Özcan, E. and Korkmaz, E., “Linear linkage encoding in grouping problems:

applications on graph coloring and timetabling”, Practice and Theory of Automated

Timetabling VI.,Lecture Notes in Computer Science, vol. 3867/2007, pp. 347–363,

2007.

4. Koster A. M. C. A., Frequency Assignment - Models and Algorithms, Ph.D. Thesis,

Maastricht University, 1999.

5. Dorne, R. and Hao, J., “Tabu search for graph coloring, tcolorings and set t-colorings” ,

Meta-heuristics: Advances and trends in local search paradigms for optimization, pp.

77–92, 1998.

6. Lim, A., Zhang, X. and Zhu, Y., “A hybrid methods for the graph coloring and its

related problems”, in Proceedings of MIC2003: The Fifth Metaheuristic International

Conference, Kyoto, Japan, 2003.

7. Galinier, P. and Hao, J., “Hybrid evolutionary algorithms for graph coloring” , Journal

of combinatorial optimization, vol. 3, no. 4, pp. 379–397, 1999.

8. Deb, K., “Multi-objective optimization using evolutionary algorithms”, John Wiley &

Sons, vol. 16, 2001.

9. Dorne, R. And Hao, J.K., “Tabu search for graph coloring, T-colorings and set T-

colorings”, in Meta-heuristics, pp. 77-92, Springer, 1999.

 65

10. Brélaz, D., "New methods to color the vertices of a graph", Communications of the

ACM, vol. 22, no. 4, pp. 251-256, 1979.

11. Łukasik, S., Kokosiński, Z. and Świętoń, G., "Parallel simulated annealing algorithm

for graph coloring problem", Parallel Processing and Applied Mathematics. Springer

Berlin Heidelberg, pp. 229-238, 2008.

12. Trick, M., “Computational symposium: Graph coloring and its generalizations”, 2002.

http://mat.gsia.cmu.edu/COLOR02/

13. Culberson, J.C. and Luo, F., "Exploring the k-colorable landscape with iterated

greedy", Cliques, coloring, and satisfiability: second DIMACS implementation

challenge, vol. 26, pp. 245-284, 1996.

14. Joslin, D., and Clements, D.P., "Squeaky wheel optimization", J. Artif. Intell.

Res.(JAIR), vol. 10, pp. 353-373, 1999.

15. Lim, A., Zhu, Y., Louand, Q. and Rodrıgues, B. “Heuristic methods for graph coloring

problems”, in Proceedings of the 2005 ACM Symposium on Applied Computing, pp.

933-939, ACM, 2005.

16. Malaguti, E., Toth, P., “An evolutionary approach for bandwidth multicoloring

problems”, European Journal of Operational Research, vol. 189, no. 3, pp. 638-651,

2008.

17. Plumettaz, M., Schindl, D. and Zufferey, N., “Ant local search and its efficient

adaptation to graph colouring”, Journal of the Operational Research Society, vol. 61,

no. 5, pp. 819–826, 2009.

18. Dorigo, M., and Stuetzle, T. “Handbook of metaheuristics”, In F. Glover and G.

Kochenberger (Eds). Chap. The Ant Colony Optimization Metaheuristic: Algorithms,

Applications, and Advances, pp. 251–285, 2002.

http://mat.gsia.cmu.edu/COLOR02/

 66

19. Prestwich, S., “Generalised graph colouring by a hybrid of local search and constraint

programming”, DiscreteAppliedMathematics, vol. 156, no. 2, pp. 148-158, 2008.

20. Raphaël, D. and Hao, J.K., "Constraint handling in evolutionary search: A case study

of the frequency assignment", Parallel Problem Solving from Nature—PPSN IV.

Springer Berlin Heidelberg, pp. 801-810, 1996.

21. Knowles, J. and Corne, D., “M-paes: A memetic algorithm for multiobjective

optimization”, in Evolutionary Computation. Proceedings of the 2000 Congress on,

vol. 1. IEEE, pp. 325–332, 2000.

22. Knowles, J. and Corne, D., "The pareto archived evolution strategy: A new baseline

algorithm for pareto multiobjective optimisation", Evolutionary Computation, CEC 99.

Proceedings of the 1999 Congress on, vol. 1. IEEE, 1999.

23. Zitzler, E. and L. Thiele, “Multiobjective evolutionary algorithms: A comparative case

study and the strength pareto approach”, IEEE Transactions on Evolutionary

Computation 3, vol. 4, pp. 257–271, 1999.

24. Zitzler, E., Laumanns, M. and Thiele, L., "SPEA2: Improving the strength Pareto

evolutionary algorithm", 2001.

25. Fausett, L.V., “Fundamentals of neural networks”, Prentice-Hall, 1994.

26. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., "Learning representations by back-

propagating errors", Cognitive modeling, vol. 323, pp. 533-536, 1988.

27. Janson, D J. and Frenzel, J.F., "Training product unit neural networks with genetic

algorithms", IEEE Expert, vol. 8, no. 5, pp. 26-33, 1993.

28. Montana, D.J. and Davis, L., "Training Feedforward Neural Networks Using Genetic

Algorithms", IJCAI, vol. 89, 1989.

http://scholar.google.com.tr/citations?user=l_K78hIAAAAJ&hl=tr&oi=sra

 67

29. Yoon, B., Holmes, D. J., Langholz, G., and Kandel, A., “Efficient genetic algorithms

for training layered feedforward neural networks”, Information Sciences, vol. 76, no. 1,

pp. 67-85, 1994.

30. Mandischer, M., "Representation and evolution of neural networks", Artificial Neural

Nets and Genetic Algorithms. Springer Vienna, pp. 643-649, 1993.

31. Braun, H., and Weisbrod, J., “Evolving neural feedforward networks”, In Artificial

Neural Nets and Genetic Algorithms, Springer Vienna, pp. 25-32, 1993.

32. Braun, H., and Zagorski, P., “ENZO-II-A powerful design tool to evolve multilayer

feed forward networks”, In Evolutionary Computation, 1994. IEEE World Congress on

Computational Intelligence., Proceedings of the First IEEE Conference, pp. 278-283,

1994.

33. Yalkın, C. and Korkmaz, E., "Neural Network World: A Neural Network Based

Selection Method For Genetıc Algorithms", Neural Network World, vol. 6, no. 12, pp.

495-510, 2012.

34. Horn, J., Nafpliotis, N. and Goldberg, D., “A niched pareto genetic algorithm for

multiobjective optimization”, in Evolutionary Computation, IEEE World Congress on

Computational Intelligence., Proceedings of the First IEEE Conference on. Ieee, pp.

82–87, 1994.

35. Zitzler, E., “Evolutionary algorithms for multiobjective optimization: Methods and

applications”, Shaker, 1999.

 68

APPENDIX A: DETAILS OF THE STRUCTURES USED IN THE

CODE

The framework used in this thesis is coded using c programming language. Various

structures are used to model the chromosomes and the search process. Details of the C

structures that are used in this thesis are given in this section.

Algorithm A.1. Vertex structure

typedef struct VertexStruct{

 int ID;

 int weight;

 ColorDiff *selfCost;

 int colorPos;

 int edgeNum;

 struct VertexStruct **neighbors;

 ColorDiff **edgeWeights;

} Vertex;

Vertex structure is given in Algorithm A.1. Each vertex in the graph structure has an ID

which is represented by an integer variable ID. In BCMP, more than a single color can be

assigned to each vertex. The color amount that should be assigned to each vertex is

represented with an integer variable weight. The variable selfCost determines the color

difference between the colors of the same vertex. The integer variable colorPos holds the

starting index of each vertex’s color data in the color array. The neighbor pointer

corresponds to neighbors of the each vertex. The number of the neighbors is kept in the

integer variable edgeNum. The color difference between the each vertex and its neighbors

is represented by edgeWeights pointer.

 69

Algorithm A.2. Edge structure

typedef struct Edge{

 int c1;

 int c2;

 ColourDiff diff;

 int n1;

 int n2;

} Edge;

A single edge exists between two adjacent vertices in a graph. However, a single vertex

can have more than one color in BMCP. And all colors of adjacent vertices have to satisfy

some weight constraints. Therefore, each color in a vertex is considered as a node and a

separate edge connection is assumed to exist between such node pairs of adjacent vertices.

Such edges are represented by the edge structure in Algorithm A.2. The integer variables

c1 and c2 are used to represent the color index in the color array. The variables n1 and n2

correspond to the vertices that these colors belong to. The color difference between c1 and

c2 of n1 and n2 vertices is represented by the variable diff.

Algorithm A.3. Problem structure

struct Problem{

 int vertexNum;

 int edgeNum;

 Node *nodeList;

 int totalColor;

 Edge *edgeList;

 int totalEdge;

}p;

The problem structure is shown in Algorithm A.3. It is used to keep track of general

properties of the graph. Vertex number and edge number of the graph is kept in the

vertexNum and edgeNum variables. Information of every vertex is kept in the nodeList

 70

pointer. Total number of locations that is needed to be colored in the graph is kept in the

integer variable totalColor. Information of the edges in between every color in the graph is

kept with edgeList pointer and the total number of these edges is kept in totalEdge

variable.

Algorithm A.4. Chromosome structure

typedef struct{

 int *colorData;

 int maxColor;

 int minColor;

 int conflictsNo;

 int bandwidth;

 unsigned int hash;

 int pf;

}Chromosome;

Chromosomes in the population are represented by the chromosome structure which is

given in Algorithm A.4. The colorData pointer used to hold the color array. maxColor and

minColor are used to keep track of maximum and minimum colors used in the

chromosomes. They are also used to determine the bandwidth which is represented by the

integer variable bandwidth. Subtracting minColor from maxColor roughly gives us the

bandwidth value of the chromosome. Unsigned integer variable hash is used to distinguish

each chromosome from each other. We do not want to have the same chromosomes in the

population. The variable pf shows whether a chromosome is in pareto front or not. It is set

to one if the chromosome is in the pareto front, otherwise it is set to zero.

 71

Algorithm A.5. Generation structure

typedef struct{

 Chromosome *s;

 int bestChromosomeBandwidth;

 int bestChromosomeConflicts;

 int bestIndex;

 int pfSize;

 int restSize;

 Chromosome **paretoFront;

 Chromosome **rest;

}Generation;

General information related to the chromosomes is kept by using the generation structure.

The generation structure is given in Algorithm A.5. The pointer s represents chromosomes.

bestChromosomeBandwidth variable and bestChromosomeConflictsare are used to keep

track of the best bandwidth and the best conflict number obtained so far in the population.

The best chromosome’s index in the current population is kept in the bestIndex variable.

Number of elements in the pareto front and in the rest of the population are kept in pfSize

and restSize. Every chromosome in the pareto front is kept in the paretoFront pointer. The

chromosomes that are not in the pareto front is kept in the rest pointer.

 72

APPENDIX B: BANDWIDTH RESULTS OBTAINED BY USING THE

ANN-CROSSOVER

Table B.1. GEOM20 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

20

151 151

150 150

153 150

152 151

153 150

153 152

152 152

152 151

152 151

151 152

20a

170 170

170 170

170 171

171 171

173 170

170 170

171 171

173 170

173 170

173 170

20b

44 44

44 44

44 44

44 44

44 44

44 44

44 44

44 44

44 44

44 44

 73

Table B.2. GEOM30 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

30

160 160

163 160

160 160

161 161

162 160

161 160

161 160

161 160

160 160

162 163

30a

217 214

213 218

218 212

218 215

215 212

219 213

217 214

217 213

217 216

214 216

30b

77 77

78 78

78 78

77 77

78 77

78 78

77 78

78 77

78 77

78 78

 74

Table B.3. GEOM40 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

40

172 168

169 168

171 168

168 167

170 168

167 169

169 168

170 168

172 169

168 171

40a

221 218

228 214

224 217

222 221

222 223

220 217

218 214

221 217

226 217

216 224

40b

75 76

78 76

79 77

76 78

76 75

77 75

78 78

76 76

79 78

75 75

 75

Table B.4. GEOM50 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

50

225 229

229 228

227 225

228 226

227 225

225 227

228 227

227 227

227 229

228 225

50a

342 336

339 340

342 337

340 337

344 328

334 339

337 336

336 336

342 330

326 326

50b

91 88

90 88

92 90

94 90

93 88

88 88

93 89

91 87

90 88

90 88

 76

Table B.5. GEOM60 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

60

264 261

269 263

263 263

267 262

265 259

258 259

264 261

265 261

261 265

259 260

60a

374 368

378 374

375 375

374 369

372 367

378 371

379 370

378 376

373 372

379 371

60b

123 122

123 119

118 121

124 122

123 124

123 124

121 120

125 123

124 124

122 121

 77

Table B.6. GEOM70 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

70

275 276

281 274

280 277

285 276

280 285

283 274

278 277

280 277

278 278

282 278

70a

493 483

484 483

487 484

481 483

480 485

493 485

484 484

481 485

485 479

491 487

70b

129 126

127 128

130 131

127 123

125 127

127 126

132 131

126 128

127 124

127 130

 78

Table B.7. GEOM80 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

80

400 399

399 391

396 395

400 391

394 397

393 389

401 391

397 393

395 392

400 394

80a

387 378

383 378

389 386

383 391

382 380

388 384

386 383

385 381

394 387

383 376

80b

146 147

145 144

145 146

144 144

145 145

149 143

144 146

144 143

141 144

143 145

 79

Table B.8. GEOM90 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

90

348 344

344 343

345 340

341 340

345 338

341 345

344 343

339 341

344 340

346 341

90a

397 398

404 400

392 391

397 398

395 396

397 388

393 387

395 398

388 395

390 390

90b

162 163

159 158

162 157

157 155

163 158

163 158

165 158

160 160

161 165

158 158

 80

Table B.9. GEOM100 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

100

425 427

426 423

432 415

429 421

429 432

432 429

430 420

436 412

425 422

428 423

100a

469 460

464 463

470 468

477 469

471 463

476 463

466 463

475 461

475 467

470 468

100b

176 179

168 180

180 175

179 172

179 180

172 172

178 175

168 175

173 174

175 183

 81

Table B.10. GEOM110 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

110

392 396

394 397

403 394

406 396

403 406

406 396

392 403

402 399

406 395

409 403

110a

517 512

523 513

516 506

525 512

526 504

531 512

513 506

518 507

511 511

514 518

110b

217 215

218 214

215 217

225 218

215 216

218 218

222 215

219 214

216 217

219 213

 82

Table B.11. GEOM120 results

Benchmark

Problem Set
Max Group Crossover ANN Crossover

120

418 415

425 423

422 411

424 420

414 423

429 416

416 422

421 419

423 418

427 416

120a

576 576

590 577

586 566

581 580

593 573

590 575

569 576

576 564

585 576

594 570

120b

213 214

209 208

213 208

210 211

209 209

216 206

208 209

210 204

210 203

209 206

