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ABSTRACT

A STUDY OF LINEAR AND NONLINEAR
REFRACTIVE INDEX CHANGES AND OPTICAL ABSORPTIONS

IN QUANTUM DOTS

Important advances in both epitaxial growth and laser technologies have created a growing
interest in the linear and nonlinear optical properties of quantum dots (QDs). In this study,
the nonlinear optical properties, including the linear and nonlinear changes in the refractive
index and optical absorption, have been studied, with the electric field effect. The
electronic structures of the disk-like and spherical QDs are calculated using the effective-
mass and dipole approximation, for the two different confining potentials; an infinitely
deep and a parabolic. The nonlinear optical coefficients are written within the density
matrix formalism. The results show that the total change in the refractive index increases
with increasing QD size but the total absorption coefficients decrease. The peaks are blue-
shifted for decreasing QD size. The nonlinear optical properties increase as the strength of
the applied electric field and the optical intensity increase. Comparison of QI types shows
that the refractive index changes and the absorption coefficients in the disk-like QD are
lower than those in the spherical QD. Also the infinitely deep confining potential results in
higher confinement effects and optical response compared to those observed in the

parabolic potential case.



OZET

KUANTUM NOKTALARINDAKI DOGRUSAL, DOGRUSAL OLMAYAN
KIRILMA ENDEKSI DEGISIMLERI VE OPTIK ABSORPSIYON
CALISMASI

Epitaksiyal biytime ve laser teknolojilerindeki Onemli gelismeler kuantum
noktalarinin dogrusal ve dogrusal olmayan optik 6zellikleri izerinde giderek artan
bir ilgi yaratmigtir. Bu ¢alismada, dogrusal ve dogrusal olmayan kirilma
indisindeki defismeler ve optik sogurmay: kapsayan dogrusal olmayan optik
ozellikler, elektrik alan etkisiyle beraber incelenmistir. Iki boyutlu (disk gibi) ve
kiiresel kuantum noktalarimin elektronik yapilan, iki farkli hapsedilen potansiyel
icin (sonsuz derinlikteki potansiyel ve parabolik potansiyel), etkin kiitle ve dipol
yaklasymu kullanilarak hesaplanmistir. Dogrusal olmayan optik katsayilar,
yogunluk matrisi formalizasyonu kullanilarak yazilmistir. Sonuglar gdstermigtir
ki, kirilma indisindeki toplam degisim kuantum noktas: biiyliditkge artarken,
toplam sogurma katsayisi azalmaktadir. Tepe noktalari, kuantum noktasinin
boyutunun azalmasiyla mavi 1gima bolgesine kayar. DoZrusal olmayan optik
pzellikler, uygulanan elekirik alammn gilici ve optik yogunluk arttikga
artmaktadir. Kuantum noktalarinin tiplerinin kargilastinilmasinda ise, iki boyutlu
(disk gibi) kuantum noktasindaki kirilma indisi degisimi ve sofurma katsayisinn
kiiresel kuantum noktasina gdre daha dislik oldugu gdriilmiistiir. Ayrica, sonsuz
derinlikteki potansiyel, parabolik potansiyel durumunda gozlemlenenlere gore,

daha viiksek hapsetme etkisi ve optik tepkiyle sonuglanmaktadir.
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1. INTRODUCTION

Recent developments in modern technology have given an opportunity to confine the
electrons in semiconductor nanostructures [1-20]. If a thin layer of a narrower-band gap
material is sandwiched between two layers of a wider-band gap material, a double
heterojunction is formed. If narrower-band gap layer is sufficiently thin for quantum
properties to be observed, then such a band alignment is called a single quantum well. The
nanostructures with three-dimensional confinement of electrons and holes are called

Quantum Dots (QDs).

When a thin layer of a semiconductor is grown on top of a substrate, which has a quite
different lattice constant, the thin layer orders, or self-assembles into QDs. As a result, the
energy levels are quantized and for that reason they are often referred as artificial atoms.
The localized states are both for conduction- and valence-band carriers, and discrete
interband transition energies appear between these so-called shells [21]. The description of
the interaction with the light field is different for QDs than that of the atomic systems with

single-electron excitations. [22-28]

QD is a region of space (1-100 nm at low temperatures) in a crystalline semiconductor
matrix, with sizes comparable to the exciton Bohr radius a. QDs in AlGaAs based material
have been obtained with radii typically in the range of 50 nm or larger. For such sizes the
spacing between energy levels can be larger than the thermal energy. When kBT is smaller
than the electron-hole binding energy due to Coulomb attraction, electrons and holes bind
to form excitons, which can decay, generating light with spectra. In this limit, the electron-
hole Coulomb interaction may be neglected and the calculation simplifies [25-27]. On the
other hand, this interaction becomes important in the weak confinement limit. The
importance of the interplay between the confinement and the Coulomb interaction is

usually underlined in the literature.

Modern crystal growth techniques make it possible to grow layers of semiconductor

material which are narrow enough to confine the electron motion in one dimension. In such



quantum-well structures, the electron wave functions are quantized like the standing waves

of a particle in a square well potential.

These low-dimensional systems can be growth as quantum wells, quantum wires, and
quantum dots which are effectively two, one and zero dimensional. In a quantum dot, the
electron is confined in all three-dimensions, thus reducing the degrees of freedom to zero

[13], [18-19].

The growth of semiconductor quantum dots was started by melting a certain amount of
semiconductor material, such as ZnS or ZnSe together with the glass material and it is still
one of the most used techniques. The synthesis of semiconductor crystallites in liquid
solvents is one of the currently used techniques. These dots have been grown in a crystal
matrix, inside ionic materials, in polymer films, etc., by different manufacturing processes;
by melting and annealing processes, by sol-gel techniques. The epitaxially grown self-
assembled QDs has been presently performed on a wide variety of semiconductor alloys
such as Ge/Si, InAs/GaAs, (In,Ga)As/GaAs, (Ga,In)P/InP, CdSe/Zn(S,Se), and
(In,Ga)N/GaN. The spectral region reaches {from the near infrared (~ 1.5 pm) to the blue-
green region (~ 430-500 nm). For self-assembled QDs one usually finds a strong

confinement in growth direction [14], [17], [29].

Semiconductor QDs have very rich physics and their high potential for applications in
photonics and quantum information technology has being attractive for the researchers.
The QD is a model system in which we can study subjects from many different fields and
these artificially made structures show interesting properties which are completely different
from solid-state bulk materials. QDs have found various application areas especially
microelectronic and optoelectronic devices [57]. The electronic structures, energy states,
optical and other physical properties of QDs with one- and two-electrons have been

commonly studied by using various calculation methods [9-11}, [29-31].

The nonlinear optical properties of QD have the potential for device application such as
infrared photo detectors, quantum dot lasers, high-speed electro-optical modulators, light

emitting diodes, far-infrared laser amplifiers, one electron transistors, optical memory

technology and other extensive applications in optics communication.



The communication technology also supports these studies for the need for faster optical

switches and communication lines.

QDs can be used as triggered sources of single photons, where a classical pulse of light or
of electric current is deterministically converted into a light quantum. This can be used in
secure data transmission based on quantum cryptography [32-36], [37]. Excitons in QDs
are used as two-level systems, i.e., quantum bits. Weak and strong-coupling of excitons
and optical modes in these semiconductor micro-cavities allow solid-state-based quantum

electrodynamics (QED) experiments {38].

The nonlinearity of the polarization of the medium is the main interest of scientific
researches. Due to the existence of a quantum confinement effect, the nonlinear effects can
be enhanced more strongly in these low-dimensional quantum systems than in bulk

materials.

The nonlinear optical properties, including the optical absorption, linear and nonlinear
changes in the refractive index and the third harmonic generation under an electric field
have been studied in many works [39-41]. To investigate the optical properties of QDs, the
system may be off-resonantly excited by an optical pulse. The noniinear optical response
depends strongly on the shape of the confining potential experienced by the charge carriers
in the medium. Studies on different confining potentials are based on the better control of
the atomic layers of the constituents which makes it possible to design QW and QDs with
variable shapes [42-44]. Confinement can be controlled through the size and shape of the
QDs. The effect of different confining potentials should also be studied from the
perspective of optimizing nonlinear optical properties of these low dimensional systems.
The other possible factors that may be included are the presence of impurties, strain,

temperalure etc..

A very large dipole strength and a narrow bandwith have been observed in the experiments
for GaAs QDs which suggest that the intersubband optical transitions in QDs may have

huge nonlinearities [51].



The nonlinear optical response increases strongly with the asymmetry in confinement

profile and this asymmetry may be obtained by the application of an external electric field.

In the present work, we consider the electron confined in GaAs QDs assumed to be disc
like and spherical shapes, where the degrees of freedom in the electron motion is zero.
Infinitely deep and parabolic confining potentials are studied, including the optical

absorption, linear and nonlinear changes in the refractive index.

The linear (first-order) and nonlinear (third-order) absorption coefficients and refractive
index changes are analytically studied. These properties are examined by varying several

parameters; QD shape and size, confinement potential, optical intensity, external electric
field.

The nonlinear optical coefficients are calculated within the density matrix formalism. The
electronic structure of the QDs is calculated using the effective mass approximation.

Confinement is assumed to be strong and therefore the excitonic effects are neglected.

The calculated wavefunctions, energy eigenvalues, matrix elements, refractive index and
the absorption coefficients all change appreciably with changing confinement, and the
incident photon energies. Our results show that the changes in the refractive index and the
optical absorption coefficient depend sensitively on the shape and size of the QDs and on
the confinement potential. Maximum change in linear and nonlinear refractive index and
maximum absorption coefficient are obtained in the spherical QD case than those obtained

for the disc-like QD.

The results are in qualitative agreement with those in the literature. They present the
possibility of the optimization of the absorption coefficient and refractive index using
several relevant parameters. This conclusion may lead to improvement for industrial

applications.

We also consider the effect of the applied electric field on the linear and nonlinear changes
in the refractive index of the medium, for the infinitely deep confining potential case in

disc-like and spherical QDs. The nonlinear optical properties increase as the strength of the



applied electric field and the optical intensity increase. One can engineer the structure of
materials by means of external electric field and confinement strengths and tailors the

energy spectrum to produce desirable nonlinear optical effects.

We present the theoretical framework in Section 2 with analytic expressions for the
calculated quantities. The calculations are shown detaily in Section 3. The results are

analyzed in Section 4. Finally, the Section 5 includes a brief summary of the findings.



2. THEORETICAL FRAMEWORK

Optical properties of materials may be modified using light photons, a laser light is
sufficiently intense to modify. Nonlinear phenomena, such as second-harmonic, third-
harmonic generations, occur when the response of a material to an applied field depends on

the strength of the field nonlinearly [45].

The electric dipole approximation is used [46]. Using the fact that the wavelength of the
incident radiation field is far longer than the QD dimensions, the incident electromagnetic

field can be written as
E(t) =Y, E(w);)e ™", (2.1)

where the summation goes over all frequencies of the optical radiation applied to the

system.

Polarization P(t) of a material, dipole moment per unit volume, depends on the strength of
the applied field E(¢). In linear case, the polarization and the strength are linearly
proportional but the nonlinear optical response of a material can be described more

generally as;
P(t) = yWE®) + yPE*(£) + xPE3 () + - = T; P(w))e™ S, (2.2)

where ¥, ¥® and ¥@) are the linear, second-order and third-order nonlinear optical

susceptibilities, respectively.

Third-order nonlinear polarization is P& (t) = y®E3(t) and if Equation (2.1) is
substituted, the expression for x® (w, + W, + Wy; Wy, g, W) contains 44 different terms

provided that all the frequencies are distinct [45]. In this thesis, ¥ (w) which can be

achieved by the permutations of the frequency set (w,w,—w) is considered.



¥ (w; w, ~w, ) and ¥3 (w; w, @, —w) are dominant at one-photon resonance and give
significant contribution to the nonlinear refractive index and absorption coefficient [43],

[47].

In this thesis, the linear and third-order nonlinear optical susceptibilities are mainly
considered, since the linear, nonlinear refractive index and optical absorption coefficient
are based on them. While the real part of optical susceptibility is related to the changes in

refractive index, the imaginary part describes the absorption of radiation.

The frequency dependent refractive index is given by

n{w) = Re[y e + dny{w)], (2.3)

Then the change in the refractive index due to the incident field is written as

An(w) = Rely2my(w)/n.], @4

where € is the static dielectric constant of the QD material and n, is the refractive index.
The change in the linear and the third-order nonlinear refractive index (RI) due to the

incident field are given by [32-35, 48],

1
A (w) = mgonTRﬁ[xm(w)], (2.3)
An®(w, 1) = —~2nEOnTRe{)((3)(w)], (2.6)
and the change in the total RI is
An(w, ) = An®(w) + an®(w, ). 2.7

where £,is the permittivity of free space.



The total optical absorption coefficient is given by ,
a(w, D = a®(w) + o« (w, 1), (2.8)
where the linear absorption coefficient is
aW(w) = f’:\/_élm[x(l} ()], (2.9)
and the third-order nonlinear absorption coefficient

o (w, 1) = mwfm\fglm[x(3)(w)]. (2.10)

2.1. DENSITY MATRIX FORMALISM

Nonlinear optical susceptibility can be calculated using the density matrix formulation of
quantum mechanics. It becomes particularly large when one of the frequencies of the
incident field (or sum or differences) becomes equal to a transition frequency of the

system, resonance response.

Density matrix formulation allows us to describe these near resonant situations, relaxation
processes, thus it can tell us how accurately we need to set the incident field frequency to
that of the system resonance and how strongly the system response at the resonance. This

formalism provides more generally valid results [45, 48].

One can describe the physical properties of the atomic system at quantum state s in terms
of the wavefunction (¥, t) which satisfies the time-dependent Schrédinger equation with

the Hamiltonian H

H=H,+ V(). (2.11)

H, is the Hamiltonian for free atom and V (t) is the energy of interaction of the atom with

external electromagnetic field (weak interaction).



P, (¥, t) can be written as
W (7, ) = 2 GLOWR (D), (2.12)
where 7 is the position vector, €3 (t) is the probability amplitude that the atom at state s is
in energy eigenstate n at time t and ¥, (#) is the eigensolution to the time independent
Schrodinger equation
H, W, (F) = E, ¥, (7). (2.13)
where
[ W2 (OW, ()P r = G- (2.14)
The interaction Hamiltonian V' (t) has a general form

V() = —j-E@) (2.15)

where fi = —e? is the electric dipole moment operator and —e is the charge of the

electron.

The polarization can also be written in terms of the expectation value of electric dipole

moment u(t), which can be calculated using the density matrix j;

P(t) = N{u(t)) = Nur(Pi) = N Znm Pambmn, (2.16)

where N is the free electron density and {u(t)) = 2, j(u(cuj))e"i“’ic. Indices n and m run

over all of the energy eigenstates of the system.

The elements of the density matrix of a system is defined by

Pam = Esp(s)cwi*cgn 2.17)



10
with the probability p(s) of a system being in the state s.
By direct time differentiation of Equation (2.17) and using Schrodinger’s equation for the

time evolution of the probability amplitudes [45], the density matrix equation of motion is

obtained including damping terms (nonvanishing value of dp{s)/dt),

dpnm i ~
220 — 2 1H, Bl — To(Prm — Pt ) (2.18)

assuming py,, relaxes to its equilibrium value pfl?,)l at a single relaxation rate [, only.

The iterative solution of Equation (2.18), [45], where V(t) is replaced by AV (t) (with A

being perturbation strength between 0 and 1), gives the density matrix steady state solution
(0} ®n @

Py and the higher order corrections Py, Pym @nd so on.
Using
(1(®)) = T o (2.19)
and
PO(a;) = N(u(@7)) = N S bt = X P (@) E (@) (2.20)

the linear susceptibility can be obtained.

The calculations in Equation (2.19) and (2.20) can be carried to higher orders. Using the
third-order correction pfj’% to the density matrix, the expression for the third-order
nonlinear susceptibility can be defined. But these expressions can be simplified using the

two-level atom approximation.
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2.2. TWO LEVEL ATOM APPROXIMATION

In this study, one-electron density matrix formalism is considered for a two-level
approximation of the system of QDs, where the two energy states, 0 for the ground state
and 1 for the first excited state. Only these two states interact appreciably with the incident
optical field [27.45}.

Eﬂ.
Conduction
Band
£,
- mo=1
——t——1 E, e T _______
w
Fo Ey : n =0
/ TN k
Valance
Band
(a) (b)

Figure 2.1. (a) Schematic plot of the energies for electrons in QDs, (b) near-resonant

excitation of the two level system.

When a transition of a material system is resonantly excited, it is usually adequate to deal
only with the two atomic levels that are connected to the incident field and give resonance.
When only two levels are included, the sums over all atomic states that appear in the

density matrix formalism simplifies, n = 0 and m = 1. The density matrix is given by

Poo Pol]_

p= [,010 £11 (221)
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Dipole moment operator f is

N [#00 #01].

= Hio  Hit (2.22)

The diagonal elements of the dipole matrix is zero in symmetry cases, but they are non-

zero if the symmetry is disturbed, e.g. applied external electric field.

Using the density matrix formalism and the two level approximation, the linear

susceptibility is written as
s
1D (w) = — ol (2.23)

Elo—ﬁﬂ)"‘iﬁroj

where E;q = E; — Ey is the energy difference between the two levels.

Third-order nonlinear susceptibility is

(3 = 27N |pty0]* [ 4 g poot? 1
x (w, I) an(E-j_Q"‘"ﬁ&)"iﬁFO) (Em—ﬁw)2+(f1f‘o}2 “.\'.10§2 (E'm--ﬁwmiftf‘o){[:'mwiﬁl“o)] -(2.24)

The intensity I of the incident field1s [ = %EGCE 2 where ¢ is the speed of light in vacuum.

2.3. EXFECTIVE MASS APPROXIMATION

The electronic structure of the QDs is calculated using the effective mass approximation.
Electrons (or holes), that are free to move around the lattice of a semiconductor, experience
the periodic variation of the Coulomb potential of the atoms. Bloch’s theorem [27] offers
the “effective mass” concept for the electron and thus the whole periodic crystal potential
is lumped into this concept. The problem is then reduced to that of an electron in free space

but the electron mass is taken to be the electron effective mass m”*.
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The electron effective mass depends on the wavevector k and envelope wave function ¥,

of the electron is determined by solving the time independent Schrédinger equation

Hi, (7) = Eqip(7), (2.25)

where E,, is the energy of the nth state. The eigenfunctions in Equation (2.13) is written as

W, () = ., (Pexp(ik - ), Figure 2.2.

m* Pt N“*EI)“
°o—> e
/, \\
- ~
s W s
- n e
7% TN TN NN AN
~_ RN ~

Figure 2.2. Effective Mass Approximation and envelope wavefunction

2.4. STARK EFFECT

If a one-electron atom is subjected to a uniform electric field F in a direction x, the

Hamiltonian H splits into two parts as:

H = H, +e|F|x (2.26)

where H, is the unperturbed part of the total Hamiltonian, e is the absolute value of the

electron charge and F*is the external electric field. The second term in Equation (2.26)
describes the interaction of an electromagnetic wave with the two-level electron system in

the dipole approximation.

If the inequality
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e|Flx « |E - EO| .27)

is satisfied (E{EO) and E,fg) are unperturbed ground and first-excited state energies), we
determine the new wavefunctions and the corresponding energy levels using the time-

independent, non-degenerate perturbation theory [32-35, 46}, such that;

= 2 Hnj ’
E, = Eflu) + A, = E,(IO) + elel*”ls!cm,t + + iF| ijn—‘_E(lo)__}L(u) o (2.28)
» )
and
. 0 =2 0y ltnjl
V=0 + P B ] s @.29)
n i

where py, j = (ws)) —ex|1/1§0)) and wéo)is expecied to be a parity eigenstate; hence,

Xpn = 0. The matrix elements, f,,;, are evaluated using the unperturbed wave functions.
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3. CALCULATIONS

In this thesis, two different shapes of QDs are analysed, disc-like and spherical. And two
types of confining potentials, infinitely deep and parabolic, are studied. Also the effect of
external static field is considered. In each case, the linear and nonlinear susceptibilities,
Equation (2.23) and Equation (2.24), are calculated. The electron-hole Coulomb interaction

is neglected.

The numerical values in the present work are calculated for GaAs/Al,GajxAs QD with
x = 0.3. The input parameters are taken as, the electron density N = 5.0 X 10**m™3

r

effective mass of the electron m* == 0.067m,, where m, is the frec electron mass and
. . 1 . . .
h =h/2m. The relaxation rate is taken as [ = =S and the dielectric constant is

e=12.4

The optical radiation of various frequencies is considered, with polarization along the x-
axis of the QDs. The matrix elements of the dipole operator, 15, Hop and pyq, are
calculated using the related wave functions of the electron, p;; = (1/}i|—ex[1/)j) with

(i,j = 0,1), where x indicates the direction of polarization of the incident wave.

The necessary wave functions ¥, and energies E; and E, for the two states of the electron

in QD are determined as follows (the integral calculations are carried via “Wolfram

Mathematica 7.07):
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3.1. DISC-LIKE QD WITH INFINITELY DEEP CONFINING POTENTIAL

It is assumed that the electron is confined in a disc-like QD. We approximate the
difference of the band gaps of the semiconductor dot and of the surronding material as an

infinitely high potential barrier.

GaAs/ALGaAs

Figure 3.1. Diagram for the disc-like QD

The Hamiltonian operator in this system within the effective mass approximation is given

by
_ o
H=-o=V 47, (3.1)

And the confining potential is infinitely deep potential,

V=0 r>aq,

V=0 r<a (3.2)

In cylindrical coordinates, the Hamiltonian is written as

H=—2 2 2(r )+ 12 l(3.3)

2m* Lr ar \' ar rZ agh?
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is invariant with respect to the rotations about the z-axis of the disc with radius a@ > z. The

degrees of freedom 1s zero.

One-electron envelope wave function is calculated by the method of separation of
variables, using:

P(r,¢) = R(r)®(¢). (3.4)

By substituting Equation(3.4) into time indepent Schrodinger Equation
HY(r,§) = EPp(r, ¢), we get

(@2 2(r &)+ IOV g =0, 3.5)

(F12(r3)y 1122) 2= (3.6)

Taking the ¢ dependent terms to the right side of Equation (3.6) and setting the new

equality to an arbitrary constant m2, two independent equations are obtained as follows:

1d%®
-d—)w = —mz, (37)
and
11 d 4Ry 2 e 2
Rr dr(rdr) T K E=m". (38)

The Equation (3.7) is the harmonic oscillator equation [54] and the general solution is

D () = Ce™? (3.9)

where C is an arbitrary constant and m = 0, £1,+2, 13, ...
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The azimuthal angle ¢ changes between 0 and 2 7. The wave function must have a single

value at both ¢ = Oand ¢ = 2 m. If we apply this condition:

O(p+27) = D(P) (3.10)
then
Ceim(@+2m) = Colmé (3.11)
which implies that
etm2m — 1 (3.12)

the quantum number m is either zero or an integer.

The constant C can be determined via the normalization C? f(}zﬁ &* b dp =1 and

calculated as € = / % . Then the exact solution of Equation (3.7) is written as

O (P) = f%eim‘ﬁ where m = 0,+1,+2,%3, .. (3.13)

Setting A = /,?wg,,. E in Equation (3.8), this  dependent portion of the seperated equation is

rearranged as:

2 d*R
dr?

P2 r S (P2 - mHR = 0 (3.14)

This is of the same form as “Bessel’s differential equation” which is a second order
differential equation. So, there must be linearly independent solutions given in general

form [49], [50].

R, (r) = AJ,, (Ar) + BN,,(Ar) (3.15)
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where [, (Ar) is the Bessel function of the first kind “ cylindrical harmonics” and

N, (Ar) is the Neumann function, of order m.

Since, the solution must be finite at Ar = 0, but N,,,(0) — oo, the coefficient B must be

taken as zevo. Then ;

Ry (r) = Ay, (4r). (3.16)

Using the boundary condition $(r,¢) = O atr = a,

Rp(a) = Ay (Aa) =0, (3.17)

the condition [, (Aa) = 0 requires the argument of [, to be a zero of the Bessel’s

function. The zeroes, or roots, are the values of x = Ar, where J,,(x) goes to zero. Bessel

function of the first kind has an infinite number of roots, Figure 3.2.

() O

03
0.6
G4

02

02}

04 }

Figure 3.2. Bessel’s function of the first kind.

With x, , being the nth zero of the mth order Bessel’s function, Equation (3.17) gives

A= xymfa (3.18)




The wave function R (r) is rewritten as

Ry (r) = Amm (xn‘m T)

20

(3.19)

@

For the disc-like QD system, the two-level approximation is used, m = 0 represents the

ground state of the system and m = 1 is the first excited state.

The normalization integral A% J-:n] m (x_nﬂ

Ajform=0and m = 1:

T)]m (xn,m ?‘) = 1 gives the constants A, and

2

For m = I{excifed state)

Y (r, @) = Ry(r) &.(d)

@ (@)= [

For m = 0 {ground state}

Yolr, ) = Ro(r) @o(¢h)

Py (¢)=E

Ry() = AL J (%ir)

x,, = 3.83171

a

@ (383171 3.83171
J Ag ]1( - T)fl( T)dr:1
9

A,%(0.0811074a) = 1

351131
=

a

Ro(r) = Aqg Jo (fz"gr)

X1y = 240483

fa 4 (2.40483 ) (2.40483 41
; o Jo a rilo 2 7’) r=
A%(0.13475a) = 1

272411

8=

a

Using Equation (3.13) and Equation (3.19), the complete wavefunctions, Equation (3.4),

are calculated as:

1!}0 (Tr (p) =

and

2,72411 ] (2.40483T)
J2mna; 70 !

(3.20)

P
ndg
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—_— (3.21)
where is the effective Bohr radius and is the Bohr radius.
In Figure (3.2), the squared wavefunctions, and are plotted for two different
sizes of the disc-like QD, for and . The radius of the disc-like QD is
controlled by the parameter where the radius . The smaller the value of | the

smaller the disc-like QD, then the wavefunction has an increased peak and sharpens as in

Figure (3.3).

Figure 3.3. Diagram for the probability densities and of the electron confined in

disc-like QD, infinitely deep potential

The related energy states,  for the ground state and  for the first excited state, can be

found using the definition ——  together with Equation (3.18).
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X3 mh2

E. e
L am (nag)?

(3.22)

The transition energy Eyq = Eyq — E19 = E; — Eg for the disc-like QD with infinetely

deep confining potential is then calculated as

1
n? 2m*{ay)?

Eyp = (%, — x%o) = 5 (81DeV = (129 x 107%¢)) (3.23)

where x;, = 3.83171 and x;o = 2.40483 and - = 0.91eV.

“( 22

Energy E,, increases as the QD size decreases.

Taking x = rcos¢ as the direction of polarization of the incident wave, the necessary

dipole matrix elements are determined.

The diagonal elements of the dipole matrix are calculated as zero:

oo = (Pol—ercosplipy) = 0, (3.24)

iy = (Pil—ercosdplp) =0, (3.25)

and

o = (Wy]—exiipy)

1

(W (r, )| —ercosdlpy(r, $))-

Then, the dipole matrix element pyq is:

P U [351131 I (3 8‘-31‘71 ) i¢] [2,7241:} Ts (2.404;83 r)] rcosgrdrdd.  (3.26)

Jzmnag nag J2mnal ey
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Using Equation (3.26), the element of the dipole matrix i, is calculated as
Hig = ““"”n( 2.49 x 10——29(:. m.), (327)

for the disc-like QD with infinetely deep confining potential.

3.1.1. Stark Effect On The Dise-Like QD With Infinitely Deep Confining Potential

The uniform electric field F in x = rcos¢ direction is studied and the field strengths

chosen in this study satisfy the condition given in Equation (2.27).

The applied field values such as 5.0 kV /cm satisfies
e|Flreosg « B - E| = |ED)| (3.28)
where El(g) = n—lz (1.29 x 10718]).

Using Equation (2.28) with Equations (3.22), (3.23) and (3.27), perturbed ground state

energy FE, is written as

[ J—

0 =

1 A2 212 l#10)*
;fonﬂl- IFI " 10 (329)

B2 2 2 ]
7 z(x1,o‘x1.1)
T am*{a})

and perturbed first-excited state energy Ey is

1 I 2 2212 |p10l?

e 2 . 3.30
n? 2man)? bt ! I e w2 S{xfi—xky) ( )
Tomt(as)s v

Tl =
Ef =

The energy difference between the two states of the electron is now Eyj, = E{ — Ej.
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The perturbed energies are found to be very close to their unperturbed values, such as for
n=10 and F =10kV/cm, perturbed ground state energy was found to be
/o = 0.08122 eV where as the unperturbed ground state energy was Eyq = 0.08108 eV.

And using Equation (2.29) with Equations (3.20), (3.21) and (3.27), the perturbed wave

functions are written as,

Wi = \2[233% Jo (240483 )+ [ p— {10 (3'5113f' I, (3.83};71r) ei¢) (3.31)

g e (xE ) WETTaG na;
1 2m*(ap)

’ 3.51131 (% 83171 ) id = l£tz 0l 2,72411 (240483 )
- et +{F -1} |. 3.32
V== L ”,,g et Jo(Foet (3.32)
zm*(aj ! !

The perturbed dipole matrix elements are calculated using Equations (3.31) and (3.32);

too = (Pol—ercosdlipg), : (3.33)
i1 = {Pil—ercosdliy), (3.34)
tiyo = {Pil—ercosplipg). (3.35)

In this case, jih, and uj, are non-zero, since the potential is no longer symmetrical. Then
the second term in the third-order susceptibility, in Equation (2.24), is also non-zero, it
gives a positive contribution fo the refractive index change and the absorption coefficient

as the strength of the field increases.

3.2 DISC-LIKE QD WITH PARABOLIC CONFINING POTENTIAL

An electron is considered in a disc-like QD (with radius a = na,) with a parabolic

confining potential and without the external electric field.
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The Hamiltonian operator in this system within the effective mass approximation 1s given
by

R [18/( 8 1 8%
H=— [a(ra)+ Jm Vo), (3.36)
where the parabolic potential V is
V() = m'wir?, (3.37)

where 7 is the position vector of the electron and w, is the frequency of the parabolic

confining potential.

Time-independent Schrédinger Equation is written as,

(L L(r2)+ %%)_?g(vmmw:o. (3.38)

r

The method of separation of variables is applied and setting

P(r, @) = R(r)P(). (3.39)

into Equation (3.38), the ¢ dependent normalized wave function is found as

q)m(d)) - %elmd) ? m = (}J iia izl ig,p wrbe

* *2 2
Setting 4 = I%E and k = mh?_w" in the r dependent portion of the seperated equation:

2
TZ%"{”T%-E_ (AZT?. — k2r4 — mZ)R = . (340)

Taking & = Vkr and making



R(E) = e/ 2y(D),

transformation, Equation (3.40) takes the form:

oG g

If ¥(&) = &™v(€) and b = &2, then Equation (3.42) can be written as
d*v dv .
bﬁ'*— (m+1 —b)ag+nv = {.

12
where n = (ﬁm 1~ m)/Z_
This is associated “Laguerre differential equation” [49], and the solution is

L) = 17 (2er?).

The normalized wave functions can be writlen as,

. m
: nt TR0 Imayg m (“m*-——wﬂ 2) imag
= e 2zh T e
lle,m(T.(b). VI A (am)! ‘ .y Ln h ’

with s = 0,1, m = 0,1 and n = 0,1/2 for the two-level system of disc-like QD.

Energies of the ground state and the first excited states [40] are found using

E, = (s + 1)hw,.
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(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

Effective “dot size” is characterized by the frequency of oscillating electron in the QD, and

it is defined as L = a = nay, = Ai/m*w,
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Figure 3.4. Diagram for the probability densities and of the electron confined in

dise-like QD, parabolic potential.

The stronger the oscillation of the electron (large ), the smaller the value of , thus the
smaller the disc-like QD, then the wavefunction has an increased peak and sharpens as in

Figure (3.4).

3.3 SPHERICAL QD WITH INFINITELY DEEP CONFINING POTENTIAL

The electron is confined in a QI) assumed spherical in shape with radius . We

approximate the difference of the band gaps of the semiconductor dot and of the surronding

material as an infinitely high potential barrier.
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YV = oo GaAs/ALGa 4 As

o

Figure 3.5. Diagram for the spherical QD.

and the confining potential is infinitely deep potential,

V=10 rsoa,

V=c 1r>a (3.47)

In spherical coordinates, the Hamiltonian is written as

He 202 2(r22) 4 2o 2 (sing 2) + — o (3.48)

am Lrz ar \' ar) " rising 4@ r2sin8 32’

One-clectron envelope wave function is calculated by the method of separation of

variables, using:

W(r,8,¢) = R(NY (6, ¢). (3.49)

By substituting Equation(3.49) into time indepent Schrodinger Equation
H(r,0,¢) = EY(r,0,), we get

d dR 2m*
2 (rZ) 4 Zr2E =10+ D), (3.50)
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, 3 ) 4 a3ty .
sing gg(smﬂ 55) + PPl —I{l + 1)Ysin?6, (3.51)
and setting
Y(6,9) = 8(6)P(¢), (3.52)

6 and ¢ dependent terms can be seperated, here are the seperated equations,

1 d*® e o
g = M and (3.53)
L od ., de .
—é—sm@ - (sm@ EE) + (I + Dsin*g = m?. (3.54)

The solution of Equation (3.53) was given in Equation (3.9). And the condition given in

Equation (3.10) requires that m is zero or an integer.

The solutions of Equation (3.51) and (3.54), [48-50], are:
R(r) = AJ,(Ar), (3.55)

and

B(8) = BP™(cost). (3.56)

where J,(Ar) is the “Spherical Bessel’s Function” of order ! and A= ’zh—TE and

P™(cos8) is the associated Legendre Function.

With  x,; being the nth zero of the [th order spherical Bessel’s function,

R (a) = A J(Aa) = 0 gives

A=xp,/a. (3.57)
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The wave function R (7) is rewritten as

Ry (r) =A (%T) (3.58)

The constants 4, B and € can be determined using normalization integrals and the resultant

wave function of the electron is written as:

2 {czzm'a [mi)! J1G)
Ynam (7, 6,¢) = \/;_;0—1)*“ "’LTUIFI—T“ e P (cost) ST (3.59)

wheren=12..,1=012..(n—1)andm = —1,..,0, ..+ i

For the ground state wavefunction of the electron confined in the spherical QD (infinitely
deep potential), taking n =1, [ =0 and m =0 in Equation (3.59), the expression is

written as

Sin(—;—n T
1 neg

J2nnag, T

Yi00 = > (3.60)

and taking n = 1, [ = 1 and m = 0 in Equation (3.59), the first excited state wave function

is determined as,

o = 255 0227) [sim (227 - (E2r) cos (420|225 1)

where Aa = 4.49 is the first zero of the Spherical Bessel’s function J; (A7).
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Figure 3.6. Diagram for the probability densities and of the electron confined in

spherical QD, infinitely deep potential.

The related energy states,  for the ground state and  for the first excited state, can be

found using the definition ~  together with Equation (3.18).
(3.62)
The transition energy for the spherical QD with infinetely
deep confining potential is then calculated as
i — — (3.63)

This energy difference is higher than that calculated for the disc-like QD in
Equation (3.23).

Taking as the direction of polarization of the incident wave, the elements of the

dipole matrix are calculated as:

(3.64)
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piy = {(11,0]—ercosd|Ps0) =0, (3.65)

and

pao = (Py1,0|—eTcosd| ). (3.66)

Using Equation (3.66), the element of the dipole matrix py is calculated as
.U'IO = _T] (5-4‘6 X 1O~29C. m.), (367)

for the spherical QD with infinetely deep confining potential. The value of p,, for the
spherical QD is higher than that calculated for the disc-like QD in Equation (3.27).

3.3.1. Stark Effect On The Spherical QD With Infinitely Deep Confining Potential

The uniform electric field F in z = rcos@ is applied to the spherical QD, satisfying the

condition given in Equation (3.27).

Using Equation (2.28) with Equations (3.62), (3.63) and (3.67), perturbed ground state

energy Ey is written as

1 B2 =212 lit10l®
Eg = S——mXio+ |F| z > (3.68)
n? 2m*{ay)? m(xio"xil)

and perturbed first-excited state energy Ey is

1 W 212 [#t10]?

o LB s i | 3.69

1 n? 2m*(ay)? = Lt I I M":-—z(xix”xie} ( :
N am*(ag)
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where the first zeros of the spherical Bessel's functions J, and J; are xy5 =7 and

xy1 = 4.49, respectively.

And using Equation (2.29) with Equations (3.62), (3.63) and (3.67), the perturbed wave

functions are written as,

sin(»ffmr
1 N

llJi,o,e =1y = onnay ,

Pl ([ 022 [sin(22) - (42)cos (S21)]22) 70

2 2
b3 2(’51,0"‘1',1)
M 2m*(ap)

+4-

449 cost
~ Gar)l 5+
e o Ny r

7 {#10 1 sin(;%r)
IFI L 5(x%1-%10) (\/—Mﬁ T ) 3.71)

"% am*(ay)

Yiip =i = 3—1153 (0.227) [sin (4'49 'r) — (::? r) cos

The perturbed dipole matrix elements are calculated using Equations (3.70) and (3.71);

oo = (Pol—ercostiyy), (3.72)

pig = {Pyl—ercos@lyy), (3.73)

i = (Pil—ercosBiy). (3.74)
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4. NUMERICAL RESULTS AND DISCUSSION

We present the numerical results for the parameters appropriate to a GaAs/ALGa;As QD
with x == 0.3 [40] and take

N =50x102m>,T, = H%ps“*,n, =3.2,m =0.067m,,

where N is the three dimensiona) electron density, I';is the decay rate and m, is the bare

electron mass, the dielectric constant is taken as € = 12.4. The electron concentrations
depend on the position of the Fermi level. The correct handling of this dependence on the

external probes is properly done in earlier investigations [34,38,39].

The first and third-order susceptibility Equations (2.23) and (2.24), strongly depends on the
energy difference Ey, and the dipole matrix elements oo, f11 and fige. They change with
the shape and size of the QD, with the confining potential and also with the effect of
external uniform electric field, hence the nonlinear optical response of these low

dimensional systems depends strongly on these effects.

In Figure 4.1, the energies of the ground state Eq and that of the first excited state E; are
plotted as a function of the size of the disc-like and in Figure 4.2 for the spherical QD, with
infinitely deep confining potential. The parameter 1 conirols the size of QDs, as 7
increases so does the dot size. The energy values are higher in the spherical QD case,
compared to those in the disc-like QD. The difference between the energies of these states

E,, decreases with increasing QD size.
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Figure 4.1. The energies of ground and excited states as a function of dot size parameter 7

for the disc-like, infinitely deep confining potential, no external field.

0,8 -

0,6

(eV)

0,4 -

0,2 -

Figure 4.2. The energies of ground and excited states as a function of dot size parameter 7

for the spherical QD, infinitely deep confining potential, no external field.
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The energy difference Eq, is larger in the spherical QD than that in the disc-like case, as

seen in Figure 4.3,

1 -
........ Disc-like QD
0,8 i
- Spherical QD
0,6 -
=
3,
HELE
0,2 -
4] t ¥ ! ’ E 1
o 2 4 0 6 8 10 12

Figure 4.3. Effect of the QD shape on Ej, infinitely deep confining potential, no external
field.

Figure 4.4 shows the energies Ey, E; and Eyq as a function of 7 and of frequency wy, the
parabolic confining potential in the disc-like QD. The dot size decreases with increasing
frequency wy, with the equation a = nay = \/ A/m*w,. As the oscillation of the confined

electron increases with wyg, the energy difference Ej, also increases.
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0’8 -

0,4

(a) (b)
Figure 4.4. Ey and E, as a function of (a) n and (b) wy, disc-like QD, parabolic potential,

no external field.

For the disc-like QD, the energy difference Ej is larger in the infinitely deep potential
case than that obtained for the parabolic potential. The confinement potentials are effective

on the value of E,,, this is clearly seen in Figure 4.5.

.6 N parabolic P.

infinitely Deep P.

Fig (EV}

Figure 4.5. Effect of the confining potential on Ey,, disc-like QD, no external field.
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The difference between the unperturbed energy difference Eyqy and the perturbed one Ejy,
calculated in the “Stark effect” cases, Section 3.1.1. and 3.3.1, could not be illustrated
clearly on graphs but the values for different dot sizes and for different applied electric
fields are listed in Table 4.1 and in Table 4.2, respectively. External field slightly increases

the difference in energy of the states.

Table 4.1. Stark effect, perturbed and unperturbed energy differences E;o and Ejq for

various dot size, infinitely deep potential, disc-like and spherical QD.

QD Disc-like QD Spherical QD
size parameter F=10kV/cm F=10kV /cm
n
Eio Efo E1o Efo
(eV) (eV) (eV) (eV)
8 0.126696582 | 0.126721105 | 0.146858175 | 0.146910031
10 0.081085813 | 0.081145565 | 0.093989232 | 0.094113221
12 0.056309592 | 0.056340568 | 0.065270331 | 0.065527553

Table 4.2. Stark effect, perturbed and unperturbed energy differences Eyq and Ef, for

various applied electric fields, infinitely deep potential, disc-like and spherical QD.

Applied Uniform Disc-like QD Spherical QD
Electric Field n=2=8 n=8
F (kV /cm)

Eo 10 Eso Eio
(eV) (eV) (eV) (eV)

5 0.12669658 | 0.12670270 | 0.14685817 | 0.14687087

10 0.12669658 | 0.12672106 | 0.14685817 | 0.14691002

20 0.12669658 | 0.12679448 | 0.14685817 | 0.14706131

Table 4.3 presents the dipole matrix elements in the Stark effect case. As the field strrength
increases, the diagonal elements increases. As a result, the nonlinear contribution of the

second term in Equation (2.24) increases with the increasing field strength. On the other
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hand, with increasing field strength, the off-diagonal perturbed dipole element g,

decreases.
Applied Uniform Disc-hike QD
Electric Field n=2=8
F (kV/cm)
H1o Hoo Hi1

(C.m.) (C.m) (C.m)
x10728 x10748 x10728

5 1.98916 -0.156636 2.63251

10 1.97992 -0.313272 2.64256

20 1.94298 -0.626543 2.68276

Table 4.3. Stark effect, perturbed dipole matrix elements f1gq, H1; and
i, for various applied electric fields, infinitely deep potential, disc-like QD.

The value of squared dipole matrix element |u;o!* plays important role in the optical

susceptibilities, Equations (2.23) and (2.24). It is plotted as a function of QD size in

Figure 4.6 for both the disc-like and spherical QDs. The confinement potential is infinitely

deep potential.

The magnitude of the linear and the third-order nonlinear changes in the refractive index,

An® and An®, and of the linear and the third-order absorption coefficients, al*) and

a®, depends on 1ﬂw|2~ This squared value of the dipole element increases considerably

with increasing QD size.
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Figure 4.6. Effect of the QD shape on | 10l? , infinitely deep potential, no external field.

The difference in |ptyo]? for the two different confinement potentials, infinitely deep and
parabolic, in the disc-like QD can also be seen clearly in Figure 4.7. The dipole matrix
elements between the ground and excited state is an increasing function of 7, hence a

decreasing function of w,.

Infinitely Deep P.
2 4+ Parabolic P.

(Uag)? (x10756 (C.m)?)

6 8 10
n

Figure 4.7. Effect of the confinement potential on the dipole matrix element W, ? disc-

like QD, no external field.



41

The effect of the external uniform electric field, “Stark effect”, Section 2.1.1. and 2.3.1, is
also analyzed graphically. It is found that, for the spherical QD with infinitely deep
potential, application of the external field does not change the symmetry of the potential,
hence the refractive index changes and absorption coefficients stay almost same. The
diagonal dipole matrix elements pg, and g, are found to be exactly equal, therefore the

second term in the third-order nonlinear susceptibility, Equation (2.24), and the change in

uioz with the electric field is negligible.

But in the disc-like QD with infinitely deep confining potential, the changes in the dipole
matrix elements and in the second term of the third-order nonlinear RIC are observed
clearly. As the electric field strength F increases, |p],|? decreases, Figure 4.8, pgq is
negative and its absolute value increases with increasing F and g3, is positive and
increases with the field, Figure 4.9. In Figure 4.8, it is clearly seen that perturbed dipole
matrix element |4}ol? approaches to its unperturbed value |pt;6|? when the field strength

approaches to zero.

3,95 A

3,9 -

3,85 -

Iyo? (10758 (C.m}?)

38 -

3,75 T T )

F {kV/cm)

Figure 4.8. Effect of the external electric field F on the dipole element |p,0[?, disc-like
QD, infinitely deep potential, n = 8.
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Figure 4.9. Variation of the diagonal matrix elements pgq and gy, with the size of disc-

like QD, infinitely deep potential, F = 10 kV /cm.

For different disc-like quantum dot sizes, the effect of electric field on the dipole element

{1101 is shown in Figure 4.10. As the radius of the QD increases, the effect of uniform

electric field increases.

=y
@
3

Iy01? (x10°%8 {C.n)?)
O = NOW R W

Figure 4.10. Effect of the external electric field F on the dipole element |p;0]%, with

different disc-like QD sizes, infinitely deep potential, F = 10 kV /cm.
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The coefficient of the second term, |ty — Moo)/tiol® in the third-order nonlinear
susceptibility, Equation (2.24), is plotted in Figure 4.11. Increase of this term with
increasing field strength F is clear. This indicates that the nonlinear coniribution of the

second term in Equation (2.24) increases as the strength of the external field increases.

[ (') 101
N

0 1 ¥ i
5 10 15 20

F (kV/cm)

Figure 4.11 Variation of |(u1, — o)/ t1el® with the external electric field F,
infinitely deep potential, disc-like QD, = 8.

The diagonal dipole matrix elements pgo and pyy are zero when there is no external
uniform electric field, but these elements are nonzero in “Stark effect” cases discussed in
Section 4.1.1. and 4.3.1. The applied field disturbs the symmetry in the disc-like QD and

the two states do not have a definite parity anymore.
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Figure 4.12. Variation of parabolic and Coulomb potential energies with QD size,

disc-like QD, no external field.

In Figure 4.12, the parabolic potential energy (Equation (4.37)) and Coulomb potential
V{(r) = —ke? /€ r are plotted for the disc-like QD. In this thesis, Coulomb interactions are

neglected.

In Figure 4.13 the linear An‘D, third-order nonlinear An® and total An®*?*4D) refractive
index changes (RIC) are plotted as a function of the incident photon energy hv for the disc-
like QD with radius @ = 8a,. The intensity of the incident light is 7 = 1.0 MW /cm? and
the confinement potential is infinitely deep potential. There are two peaks at Ey¢ £ 1A[}, in
each curve. One-photon resonance occurs when hv = fiw = Eqq, it is hv =~ 0.127 eV for

the disc-like QD with radius a = 8ag.

The index of refraction n, rises gradually with increasing frequency w. However, in the
vicinity of resonance, the index of refraction drops sharply, “anomalous dispersion”.
Between these two peaks, the absorption of the material reaches to maximum, the material
may be opaque in this range [64]. An™) is the largest contribution to the total refractive

index change An{total)
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The nonlinear RIC and the linear one generated by the ¥@ term are opposite sign.

Therefore, the total RIC will be obviously reduced if the nonlinear effect is considered.

Thus, the nonlinear effects play an important role, and the calculation of RIC without the

nonlinear term is not accurate enough.

0,02 -

0,015

0,01 -

0,005 +

— Ant

0,015 -

-0,02 -

0,14

hv(eV)

0,15

T 1

0,16 0,17

Figure 4.13. The linear, third-order nonlinear and total RIC as a function of photon energy,

n =8, [ = 1.0 MW /ecm?, disc-like QD, infinitely deep potential, no external field.

Linear, non-linear and total RIC as a function of the photon energy are also displayed for

the disc-like QD in Figure 4.14, for various values of » which characterizes the QD size.

The intensity of the incident light is I = 1.0 MW /cm? and the confinement potential is

infinitely deep potential. The peaks are blue-shifted for decreasing 7. This is a result of

increasing intersubband energy difference when the QD size becomes smaller, increasing

the confinement effect. Since the linear change in the refraction index is related to the

dipole matrix element [,umlz which increases with the QD size (a = nay), the peaks in

Figure 4.14 increase with 7.
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Figure 4.14. The linear, third-order nonlinear and total RIC as a function of photon energy,
for various disc-like QD sizes, I = 1.0 MW /cm?, infinitely deep potential, no external

field.

The changes in the third-order nonlinear refractive index An® and in the total refractive
index An(t°t®) 55 a function of photon energy for various intensities I, for the same value
of n = 8, are given in Figure 4.15 and in Figure 4.16, respectively. The intensities are set
to be I =0, 1.0,1.5,2.0 MW /cm?. Infinitely deep potential is used. The total change in
the index of refraction is reduced as the optical intensity is increased. This is a natural
result of increasing negative contribution of nonlinear term which is directly proportional
to the intensity. This nonlinear term has a large variation, and even may exceed the peak
value of the linear refractive index change for high optical intensites. The sensitive
dependence of Ant*9fel) to the shape and size of QDs, to the photon energy hv, to the
optical intensity I and to the external fields makes this system ideal for nonlinear optical

material applications One can control effectively the nonlinear response of the system

[35,36].
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Figure 4.15. Third-order nonlinear RIC as a function of photon energy, for various

intensities, 7 = 8, disc-like QD, infinitely deep potential, no external field.
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Figure 4.16. Total RIC as a function of photon energy, for various intensities, 1) = 8, disc-

like QD, infinitely deep potential, no external field.
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Linear, non-linear and total RIC as a function of the photon energy are plotted for the
spherical QD in Figure 4.17, for various values of n. The intensity of the incident light is
I = 1.0 MW /cm? and the confinement potential is infinitely deep potential. As in the disc-
like QD, the peaks are blue-shifted for decreasing n. The peaks are higher in the spherical
QD case than those in the disc-like QD case. This is a result of increasing dipole matrix
element |, ,1? which increases when the shape of the QD is spherical and with the QD size

(a = na,). The peaks in Figure 4.17 increase with 7.

One-photon resonance occurs when hv = 0.146 eV for the spherical QD of radius
a = 8a’. Since E,q is higher in the spherical dot, the resonance occurs at higher photon

energies compared to the disc-like QD.

0,1

n=12

6,08

0,06

0,04

0,02

An
fon]

-0,04

-0,06

0,08 hv {eV)

Figure 4.17. The linear, third-order nonlinear and total RIC as a function of photon energy,
for various spherical QD sizes, I = 1.0 MW/ cm?,

infinitely deep potential, no external field.
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An® and An(eted are shown as a function of photon energy for various intensities I, for
the same value of 7 = 8, in Figure 4.18 and in Figure 4.19, respectively. The intensities

are set to be I = 0.5,1.0, 2.0 MW /cm?. Infinitely deep potential is taken.

Negative contribution of nonlinear term is bigger in the spherical case than that in the disc-
like case, since |pq0l? is bigger in the disc-like QD. This term gets stronger with the
increasing intensity, Figure 4.18. The effect of the intensity of the incident light on the RIC

is more clear in the spherical case than that in the disc-like case.

0,02 - e 3 ) N OV
-------------- 1.0 MW/cm?®
-------- 0.5 MW/cm?

0,01 -

+0,01

-0,02 -

Figure 4.18. Third-order nonlinear RIC as a function of photon energy for various

intensities, 1 = 8, spherical QD, infinitely deep potential, no external field.
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The total RIC peaks decrease as the intensity increases as seen in Figure 4.19.

0,08 -

0,06 -

— 2.0 MW/cm?

-0,06 -~

-0,08 -

Figure 4.19. Total RIC as a function of photon energy for various intensities, n = 8,

spherical QD, infinitely deep potential, no external field.

Figure 4.20 clearly presents the effect of the shape of QD on total RIC. For the same
intensity and confining potential, the comparison shows that the optical response of the

spherical QD is much stronger than that of the disc-like case.
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Figure 4.20. Comparison of total RIC of the spherical QD with that of the disc-like dot,
infinitely deep potential, no external field, I = 1.0 MW/ cm? andny = 8.

The Stark effect on the disc-like QD is also analysed in Figure 4.21 and 4.22. Figure 4.21
and Figure 4.22 display the contribution of the second term in the Equation (2.24) to the
change in the refractive index as a function of photon energy, for various disc-like QD size

and external electric field strengths, respectively.

The asymmetry of the QD becomes stronger as the strength of the applied electric field
increases. In this study, the maximum contribution of the second term in Equation (2.24) is
determined at the incident photon energy 0.056eV in disc-like QD, with the electric field
F = 10 kV/em and n = 12. It is clear that the resulting nonlinearity is quite small. This is
the reason why we find a rather small contribution to the change in the refractive index.
The contribution is shown as a function of photon energy for various QD sizes in Figure
4.21 for the disc-like QD. With increasing dot size, the nonlinear contribution increases.

The effect is found to be bigger for stronger electric fields.
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The peak values are mostly negative and shift to higher energies for smaller QDs. This

nonlinear term is not dominating the ¥ () values because of its small magnitude.
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Figure 4.21. Contribution of the second term in Equation (2.24) to the change in the
refractive index as a function of photon energy, for various disc-like QD size, infinitely

deep potential, F = 10 kV fcm, ] = 1.0 MW Jem?.
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Figure 4.22. Contribution of the second term in Equation (2.24) to the change in the
refractive index as a function of photon energy, for various external field strengths, disc-

like QD, infinitely deep potential, n = 8, I = 1.0 MW /cm?,
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Tn Figure 4.23, linear, non-linear and total RIC as a function of the photon energy are
plotted for the parabolic potential case in the disc-like QD. There is no applied field F. As
in the disc-like QD case with infinitely deep potential, the peaks are blue-shifted for
decreasing 77. The peaks are lower in the parabolic confinement than those obtained for the
infinitely deep potential case. This is a result of decreased value of |pql® as shown
Figure (4.7). One-photon resonance occurs when hv = 0.146 eV for the disc-like QD of
radius @ = 8a. Since Eyg is lower (Figure 4.5) in the parabolic confinement, the resonance

occurs at lower photon energies compared to the infinitely deep confining potential.

n=10 ’
0,02~ Ant®
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Figure 4.23. The linear, third-order nonlinear and total RIC as a function of photon energy,

for various disc-like QD sizes, I = 1.0 MW fcm?, parabolic potential, no external field.

The effect of the confining potential on the total RIC is also illusirated in Figure 4.24 for
the disc-like QD. The total RIC is plotted for the infinitely deep and parabolic

confinements, for the same dot size and the intensity.
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Figure 4.24. Effect of the confining potential on the total RIC in the disc-like QD,

I = 1.0 MW /cm? and 1y = 8, no external field.
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Figure 4.25. Total RIC as a function of photon energy for various intensities, y = 8, disc-

like QD, parabolic confinement, no external field.
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The intensity effect in the parabolic potential case is quite similar to that observed for the
infinitely deep potential case in the disc-like QD. The nonlinear response increases as the

intensity of the incident light increases. This is presented in Figure 4.25.

In Figure 4.26, the linear o). third-order nonlinear a®and the total absorption
coefficients a0t are illustrated as a function of incident photon energy, for the disc-like
QD with infinitely deep confining potential. The intensity is taken as | = 1.0 MW/ cm?.
There is no external electric field. It is clear that the linear absorption coefficient a® is
large and positive while the nonlinear absorption coefficient a®) is smaller and negative.

The plots indicate that the peaks are blue shifted with decreasing 7.

The linear absorption coefficient a™® remains more or less constant but a®® decreases in
negative height, i.e. , becomes more positive. This results in a slight increase in the total
absorption coefficient. The total absorption coefficient increases with decreasing 77. These
results are obviously different from those of the RIC analysis of QDs. The nonlinear

response of absorption increases strongly as the dot size decreases.

One-photon resonance occurs when hv = hw = Eqq, é.g‘ itis hv = 0.127 eV for the disc-
Jike QD with radius a = Bag. At the resonance energies, the absorption peaks occur as
seen in Figure 4.26 and the material may be opaque in that range of absorption graph,

between the two positive and negative peaks of the refractive index change.
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Figure 4.26. The linear, third-order nonlinear and total absorption coefficients as a function
of photon energy, for various disc-like QD sizes, I = 1.0 MW/ cm?, infinitely deep

confining potential, no external field.

The absorption coefficients are also presented in Figure 4.27 for the spherical QD with
infinitely deep confining potential. There is an absorption saturation at around n = 12 and
[ =1.0 x 10*°W /m?, therefore it is not included. The absorption peaks have increased
compared to those in the disc-like QD with the same potential. And they occur at higher
photon energies. The increased peaks in spherical QD is due to the increased dipole matrix
element |11;0]%, hence the absorption coefficient is also directly related to the dipole matrix

element |t14]%. This results can also be followed in Figure 4.28.



57

120 -

100

80

0,254 / 0,3

hv(eV)

Figure 4.27. The linear, third-order nonlinear and total absorption coefficients as a function
of photon energy, for various spherical QD sizes, I = 1.0 MW/ cm?,

infinitely deep confining potential, no external field.
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Figure 4.28. Effect of the QD shape on the total absorption coefficient atotad p =g,
I = 1.0 MW /cm?, infinitely deep confining potential, no external field.
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The Figure 4.29 shows how the total absorption coefficient decreases with the parabolic
confinement. The resonance peak also shifts to lower energies. The effect of the confining
potential is also quite clear. The coefficients become larger with the infinitely deep

potential compared to those with the parabolic confinement.

The blue shift of the peaks in the infinitely deep potential case is observed since this
potential results in more localization. Its overall effect is equivalent to the effect of stronger

confinement. So the presence of the infinitely deep confinement increases the absorption.
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Figure 4.29. Effect of the confining potential on the total absorption coefficient q(t"tal),

n =8, I = 1.0 MW /cm?, infinitely deep confining potential, no external field.
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Figure 4.30. Effect of the intensity of the incoming photons on the total absorption
coefficient a0y = 8 disc-like QD, parabolic potential, I = 1.0 MW /cm?, no

external field.

The effect of the intensity of the incoming photons is shown in Figure 4.30. The most
important feature is that the total absorption coefficient becomes smaller as the intensity
increases. At larger intensities the peak may develop into two peaks. It is for this reason we

do not consider very large intensities.

The total absorption coefficient peak values for the disc-like QD are increasing with the
parabolic confinement frequency @,. Thus the peaks are increasing with decreasing QD
size. This is clearly shown in Figure 4.31, which presents a™®*) as a function of w,. The
increase of frequency leads to an increase of intersubband energy difference and of the

confinement effect, hence the absorption coefficient increases.
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Figure 4.31. Variation of the maximum absorption coefficient ame) with the frequency
w, of the parabolic potential, disc-like QD, parabolic potential, / = 1.0 MW /cm?, no

external field.



61

5. CONCLUSION

In the present work, we have studied the changes in linear and third-order nonlinear
refractive index and absorption coefficients for GaAs/AlGaAs QDs. Our results show that
the changes in the refractive index and the optical absorption coefficients depend

sensitively on the shape and size of the QDs and on the confinement potential.

Maximum changes in linear and nonlinear refractive index and maximum absorption
coefficients are obtained in the spherical QD case compared to those obtained for the disc-
like QD. The RIC peaks are blue-shified for decreasing QD size. The total RIC will be
obviously reduced if the nonlinear effect is considered. Thus, the nonlinear effects play an
important role and the calculation of RIC and absorption coefficient without the nonlinear
term is not accurate enough. The total absorption coefficient increases with decreasing QD

size. This result is obviously different from that of the RIC analysis in QDs.

The RIC and absorption coefficients are larger with the infinitely deep confining potential,
compared to those obtained with the parabolic potential. Infinitely deep confinement

effects are stronger, hence the resultant optical response.
The nonlinear optical properties increase as the strength of the applied electric field and the
optical intensity increase. One can engineer the structure of materials by means of external

eleciric field and confinement strengths.

The results are in qualitative agreement with those in the literature.
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