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ABSTRACT 

 

 

A NEW APPROACH TO SET-BASED DYNAMIC CACHE 

PARTITIONING ON CHIP MULTIPROCESSORS 

 

Modern processors contain multiple cores which enables them to concurrently execute 

multiple applications on a single chip in parallel. As the number of cores on a chip increases, 

the pressure on the memory system to sustain the memory requirements of all the 

concurrently executing threads increases. Worst of all, today’s processor architectures bring 

many cores next to each other and hope that the applications running on these cores are going 

to share the last level cache without any problem. As a result, applications, which have no 

clue that there are other neighbors competing for the same resources, think that each of them 

has a dedicated cache and start a competition of stealing cache lines from each other without 

even knowing it. In such cases, an application with a large memory foot print may spoil the 

cache and, suddenly, this may render the last level cache in a position bringing more harm 

(drop of performance, unnecessary power and energy dissipation) than any good. So, one of 

the keys to obtaining high performance from multicore architectures is to manage the Last 

Level Cache (LLC) efficiently. 

 

This new approach calculates the efficiency of each application with the help of application-

based runtime statistics collected by hardware counters. According to these statistics, we 

classify the threads that are executed concurrently. At the end, we try assigning Last Level 

Cache partitions to running threads considering their instant behavior detected by the 

Classifier circuit. Consequently, the system aims to improve the performance of individual 

applications and total system throughput by giving more cache sets to the applications with 

more throughput potentials when they receive more cache resources. The secondary aim of 

the proposed method is its scalable design for many-core architectures.  
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ÖZET 

 

 

ÇOKLU MİKROİŞLEMCİLERDE SET-BAZLI DİNAMİK 

ÖNBELLEK PAYLAŞIMINA YENİ BİR YAKLAŞIM 

 

Modern işlemciler, tek bir çip üzerinde paralel olarak aynı anda birden fazla uygulama 

çalıştırmasına olanak sağlayan çoklu çekirdek içerir. Bir çip içerisindeki çekirdek sayısı 

arttıkça, aynı anda çalışan tüm uygulamaların bellek gereksinimlerini sürdürmek için bellek 

sistemi üzerindeki baskı artar. Hepsinden kötüsü, günümüz işlemci mimarileri birçok 

çekirdeği yanyana getirip, bu çekirdekler üzerinde çalışan uygulamaların herhangi bir sorun 

olmadan son seviye önbelleği paylaşmasını ummaktadır. Sonuç olarak, bu uygulamaların 

aynı bellek kaynakları için rekabet eden diğer komşuları olduğununa dair hiçbir ipuçları 

olmadığı gibi, bu uygulamaların her biri özel bir önbelleğe sahip olduğunu da düşünmektedir 

ve hatta bilmeden birbirinden önbellek hatları çalmak için rekabet içine girmektedirler. Bu 

gibi durumlarda, bir uygulama geniş bir bellek ayak izi ile önbelleği yağmalayabilir, bu 

durum aniden son seviye önbelleği, faydadan çok daha zararlı (performans düşüşü, gereksiz 

güç ve enerji yayılımı) bir pozisyona getirebilir. Yani, çok çekirdekli mimarilerden yüksek 

performans elde etmek için gerekli anahtarlardan biri, son seviye önbelleği verimli olarak 

yönetmektir. 

  

Bu yeni yaklaşım, donanım sayaçları tarafından toplanan uygulama tabanlı çalışma zamanı 

istatistikleri yardımı ile her bir uygulamanın verimini hesaplar. Bu istatistiklere göre, biz 

aynı anda çalışan uygulamaları sınıflandırmaktayız. Sonunda, uygulamaların sınıflandırıcı 

devresi tarafından tespit edilen anlık davranışlarını dikkate alarak, aynı anda çalışan bu 

uygulamalara Son Seviye Önbellek bölümlerini paylaştırmayı denemekteyiz. Sonuç olarak 

bu çalışma ile, daha fazla önbellek kaynağı aldığında, daha fazla iş çıkarma potansiyeline 

sahip uygulamalara daha fazla önbellek seti vererek, sistemin bireysel uygulamaların toplam 

verimi ve performansını geliştirmesi amaçlamaktadır. Önerilen yöntemin ikincil amacı, çok 

çekirdekli mimariler için ölçeklenebilir bir tasarımdır. 
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1. INTRODUCTION 

 

 

1.1. CHIP MULTIPROCESSORS 

 

As the number of transistors on chip continues to increase there came numerous ways to 

better utilize the silicon on chip. The initial approach was the superscalar architecture 

(shown in Figure 1.1). Superscalar means executing multiple instructions at the same time. 

Superscalar processors were developed to execute multiple instructions from a single, 

conventional instruction stream on each cycle. These function by dynamically examining 

sets of instructions from the instruction stream to find ones capable of parallel execution on 

each cycle, and then executing them, often out-of-order with respect to the original sequence. 

This takes advantage of any parallelism that may exist among the numerous instructions that 

a processor executes, a concept known as instruction-level parallelism (ILP). Both 

pipelining and superscalar instruction issues have flourished because they allow instructions 

to execute more quickly while maintaining the key illusion for programmers that all 

instructions are actually being executed sequentially and in-order, instead of overlapped and 

out-of-order.  

 

 

 

Figure 1.1 Floorplan for the six-issue dynamic superscalar 

Microprocessor [1] 
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Unfortunately, it is becoming increasingly difficult for processor designers to continue using 

these techniques to enhance the speed of modern processors. Typical instruction streams 

have only a limited amount of usable parallelism among instructions, so superscalar 

processors that can issue more than about four instructions per cycle achieve very little 

additional benefit on most applications. Figure 1.2 shows how effective real Intel processors 

have been at extracting instruction parallelism over time. There is a flat region before 

instruction-level parallelism was pursued intensely, then a steep rise as parallelism was 

utilized usefully, and followed by a tapering off in recent years as the available parallelism 

has become fully exploited. [2] 

 

 

 

Figure 1.2. Intel processor normalized performance per cycle over time [2] 

 

Complicating matters further, building superscalar (Figure 1.3.) processor cores that can 

exploit more than a few instructions per cycle becomes very expensive, because the 

complexity of all the additional logic required to find parallel instructions dynamically is 

approximately proportional to the square of the number of instructions that can be issued 

simultaneously. Similarly, pipelining past about 10–20 stages is difficult because each 

pipeline stage becomes too short to perform even a  basic logic operation, such as adding 
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two integers together, and subdividing circuitry beyond this point is very complex. In 

addition, the circuitry overhead from adding additional pipeline registers and bypass path 

multiplexers to the existing logic combines with performance losses from events that cause 

pipeline state to be flushed, primarily branches, to overwhelm any potential performance 

gain from deeper pipelining after about 30 stages or so. Further advances in both superscalar 

issue and pipelining are also limited by the fact that they require ever-larger number of 

transistors to be integrated into the high-speed central logic within each processor core—so 

many, in fact, that few companies can afford to hire enough engineers to design and verify 

these processor cores in reasonable amounts of time. These trends slowed the advance in 

processor performance, but mostly forced smaller vendors to forsake the high-end processor 

business, as they could no longer afford to compete effectively. 

 

 

 

Figure 1.3. Superscalar architecture showing multiple executions 

 

Today, however, progress in processor core development has slowed dramatically because 

of a simple physical limit: power. As processors were pipelined and made increasingly 

superscalar over the course of the past two decades, typical high-end microprocessor power 

went from less than a watt to over 100W. Even though each silicon process generation 

promised a reduction in power, as the ever-smaller transistors required less power to switch, 

this was only true in practice when existing designs were simply “shrunk” to use the new 

process technology. However, processor designers kept using more transistors in their cores 
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to add pipelining and superscalar issue, and switching them at higher and higher frequencies, 

so the overall effect was that exponentially more power was required by each subsequent 

processor generation (as illustrated in Figure 1.4).  

 

 

 

Figure 1.4. Intel processor power over time 

 

Unfortunately, cooling technology does not scale exponentially nearly as easily. As a result, 

processors went from needing no heat sinks in the 1980s, to moderate-sized heat sinks in the 

1990s, to today’s monstrous heat sinks, often with one or more dedicated fans to increase 

airflow over the processor. If these trends were to continue, the next generation of 

microprocessors would require very exotic cooling solutions, such as dedicated water 

cooling, that are economically impractical in all but the most expensive systems. 

 

The combination of finite instruction parallelism suitable for superscalar issue, practical 

limits to pipelining, and a “power ceiling” set by practical cooling limitations limits future 

speed increases within conventional processor cores to the basic Moore’s law improvement 

rate of the underlying transistors. While larger cache memories will continue to improve 

performance somewhat, by speeding access to the single “memory” in the conventional 

model, the simple fact is that without more radical changes in processor design, one can 
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expect that microprocessor performance increases will slow dramatically in the future, 

unless processor designers find new ways to effectively utilize the increasing transistor 

budgets in high-end silicon chips to improve performance in ways that minimize both 

additional power usage and design complexity. 

 

These limits have combined to create a situation where ever-larger and faster uniprocessors 

are simply impossible to build. In response, processor manufacturers are now switching to a 

new microprocessor design paradigm: the chip multiprocessor, or CMP. A multi-core 

processor (known as a chip multiprocessor or CMP) is a single computing component with 

two or more independent actual central processing units (called "cores"), which are the units 

that read and execute program instructions. The instructions are ordinary CPU instructions 

such as add, move data, and branch, but the multiple cores can run multiple instructions at 

the same time, increasing overall speed for programs amenable to parallel computing. 

Manufacturers typically integrate the cores onto a single integrated circuit die, or onto 

multiple dies in a single chip package. (as shown by Figure 1.5.) 

 

 

Figure 1.5. CMPs Architecture 
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Processors were originally developed with only one core. Multi-core processors were 

developed in the early 2000s by Intel, AMD and others. Multicore processors may have two 

cores (dual-core CPUs, for example AMD Phenom II X2 and Intel Core Duo), four cores 

(quad-core CPUs, for example AMD Phenom II X4, Intel's i5 and i7 processors), six cores 

(hexa-core CPUs, for example AMD Phenom II X6 and Intel Core i7 Extreme Edition 

980X), eight cores (octo-core CPUs, for example Intel Xeon E7-2820 and AMD FX-8350), 

ten cores (for example, Intel Xeon E7-2850), or more. A multi-core processor implements 

multiprocessing in a single physical package. Designers may couple cores in a multi-core 

device tightly or loosely. For example, cores may or may not share caches, and they may 

implement message passing or shared memory inter-core communication methods. Common 

network topologies to interconnect cores include bus, ring, two-dimensional mesh, and 

crossbar. As you see in the figure 1.6., Homogeneous multi-core systems include only 

identical cores, heterogeneous multi-core systems have cores that are not identical.  

 

Homogeneous 

Multi-Core Processor Configuration 
Heterogeneous 

Multi-Core Processor Configuration 

  

Multiple cores of the same type are 

implemented in one CPU. 

Multiple cores of different types are 

implemented in one CPU. 

 

Figure 1.6. Homogeneous vs. Heterogeneous CMPs  
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CMPs require a more modest engineering effort for each generation of processors, since each 

member of a family of processors just requires stamping down a number of copies of the 

core processor and then making some modifications to relatively slow logic connecting the 

processors to tailor the bandwidth and latency of the interconnect with the demands of the 

processor, but does not necessarily require a complete redesign of the high-speed processor 

pipeline logic. Moreover, unlike with conventional multiprocessors with one processor core 

per chip package, the system board design typically only needs minor tweaks from 

generation to generation, since externally a CMP looks essentially the same from generation 

to generation, even as the number of cores within it increases. The only real difference is 

that the board will need to deal with higher memory and I/O bandwidth requirements as the 

CMPs scale, and slowly change to accommodate new I/O standards as they appear. Over 

several silicon process generations, the savings in engineering costs can be very significant, 

because it is relatively easy to simply stamp down a few more cores each time. Also, the 

same engineering effort can be amortized across a large family of related processors. Simply 

varying the numbers and clock frequencies of processors can allow essentially the same 

hardware to function at many different price and performance points.  

 

Of course, since the separate processors on a CMP are visible to programmers as separate 

entities, we have replaced the old model for programmers with a new parallel programming 

model. With this kind of model, programmers must divide up their applications into semi-

independent parts, or threads,  that can operate simultaneously across the processors within 

a system, or their programs will not be able to take advantage of the processing power 

inherent in the CMP’s design. Once threading has been performed, programs can take 

advantage of thread-level parallelism (TLP) by running the separate threads in parallel, in 

addition to exploiting ILP among individual instructions within each thread. Unfortunately, 

different types of applications written to target “conventional” Von Neumann uniprocessors 

respond to these efforts with varying degrees of success. 

 

1.2.  THE APPLICATION PARALLELISM LANDSCAPE 

 

To better understand the potential of CMPs, we survey the parallelism in applications. Figure 

1.7 shows a graph of the landscape of parallelism that exists in some typical applications. 

The X-axis shows the various conceptual levels of program parallelism, while the Y -axis 
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shows the granularity of parallelism, which is the average size of each parallel block of 

machine instructions between communication and/or synchronization points. The graph 

shows that as the conceptual level of parallelism rises, the granularity of parallelism also 

tends to increase although there is a significant overlap in granularity between the different 

levels.[2] 

 

 Instruction: All applications possess some parallelism among individual instructions in 

the application. This level is not illustrated in the figure, since its granularity is simply 

single instructions. As was discussed previously, superscalar architectures can take 

advantage of this type of parallelism.  

 

 Basic Block: Small groups of instructions terminated by a branch are known as basic 

blocks. Traditional architectures have not been able to exploit these usefully to extract 

any parallelism other than by using ILP extraction among instructions within these small 

blocks. Effective branch prediction has allowed ILP extraction to be applied across a few 

basic blocks at once, however, greatly increasing the potential for superscalar 

architectures to find potentially parallel instructions from several basic blocks 

simultaneously. 

 

 

 

Figure 1.7. A summary of the various “ranges” of parallelism that different processor 

architectures may attempt to exploit [2] 
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 Loop Iterations: Each iteration of a typical loop often works with independent data 

elements, and is therefore an independent chunk of parallel work. (This obviously does 

not apply to loops with highly dependent loop iterations, such as ones doing pointer-

chasing.) On conventional systems, the only way to take advantage of this kind of 

parallelism is to have a superscalar processor with an instruction window large enough 

to find parallelism among the individual instructions in multiple loop iterations 

simultaneously, or a compiler smart enough to interleave instructions from different loop 

iterations together through an optimization known as software pipelining, since hardware 

cannot parallelize loops directly. Using software tools such as OpenMP, programmers 

have only had limited success extracting TLP at this level because the loops must be 

extremely parallel to be divisible into sufficiently large chunks of independent code. 

 

 Tasks: Large, independent functions extracted from a single application are known as 

tasks. For example, word processors today often have background tasks to perform spell 

checking as you type, and web servers typically allocate each page request coming in 

from the network to its own task. Unlike the previous types of parallelism, only large-

scale symmetric multiprocessor (SMP) architectures composed of multiple 

microprocessor chips have really been able to exploit this level of parallelism, by having 

programmers manually divide their code into threads that can explicitly exploit TLP 

using software mechanisms such as POSIX threads (pthreads), since the parallelism is at 

far too large a scale for superscalar processors to exploit at the ILP level. 

 

 Processes: Beyond tasks are completely independent OS processes, all from different 

applications and each with their own separate virtual address space. Exploiting 

parallelism at this level is much like exploiting parallelism among tasks, except that the 

granularity is even larger. 

 

 

The measure of application performance at the basic block and loop level is usually defined 

in terms of the latency of each task, while at the higher task or process levels performance is 

usually measured using the throughput across multiple tasks or applications, since usually 
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programmers are more interested in the number of tasks completed per unit time than the 

amount of time allotted to each task. 

 

The advent of CMPs changes the application parallelism landscape. Unlike conventional 

uniprocessors, multicore chips can use TLP, and can therefore also take advantage of threads 

to utilize parallelism from the traditional large-grain task and process level parallelism 

province of SMPs. In addition, due to the much lower communication latencies between 

processor cores and their ability to incorporate new features that take advantage of these 

short latencies, such as speculative thread mechanisms, CMPs can attack fine-grained 

parallelism of loops, tasks and even basic blocks. 

 

As chip multiprocessors (CMPs) become increasingly mainstream, architects have likewise 

become more interested in how best to share a cache hierarchy among multiple simultaneous 

threads of execution. The complexity of this problem is exacerbated as the number of 

simultaneous threads grows from two or four to the tens or hundreds. However, there is no 

consensus in the architectural community on what “best" means in this context. We try to 

find the best efficient management of shared last level caches in our proposed design and 

focus on it. 

 

 

1.3.  CACHE ORGANIZATION 

 

1.3.1. CACHE TERMINOLOGY 

 

The cache within the processor is used by the central processing unit of a computer to reduce 

the average time to access memory. The cache is smaller than memory and the cache is faster 

than memory. The cache stores copies of the data from the most frequently used main 

memory locations. As long as most memory accesses are cached memory locations, the 

average latency of memory accesses will be closer to the cache latency. 

 

Most modern server CPUs have at least three independent caches:  

1. an instruction cache to speed up executable instruction fetch (I-Cache) 
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2. a data cache to speed up data fetch and store (D-Cache) 

3. a translation look aside buffer (TLB) used to speed up virtual-to-physical address 

translation for both executable instructions and data. 

 

If the particular address is found in the cache, the block of data is sent to the CPU, and the 

CPU goes about its operation until it requires something else from memory. When the CPU 

finds what it needs in the cache, a hit has occurred. (as shown Figure 1.8.) 

 

 

 

Figure 1.8. Cache hit 

 

 

 

When the address requested by the CPU is not in the cache, a miss has occurred and the 

required address along with its block of data is brought into the cache according to how it is 

mapped. (as shown Figure 1.9.) 

 

 

SETS 

WHICH  

SET ? CACHE SET  
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Figure 1.9. Cache miss 

 

1.3.2. CACHE MAPPING TECHNIQUES 

 

Cache mapping is the method by which the contents of main memory are brought into the 

cache and referenced by the CPU.  The mapping method used directly affects  the 

performance of the entire computer system..  

 

Direct Mapping: Main memory locations can only be copied into one location in the cache. 

This is accomplished by dividing main memory into pages that correspond in size with the 

cache. Direct mapping is shown in the Figure 1.10. 

SET 

NUMBER 

2CF 

WHICH  

SET ? 
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Figure 1.10. Direct Mapping Method 

 

Fully Associative Mapping:  Fully associative cache mapping is the most complex, but it 

is most flexible with regards to where data can reside. A newly read block of main memory 

can be placed anywhere in a fully associative   cache.  If the cache is full, a replacement 

algorithm is used to determine which block in the cache gets replaced by the new data. 

(Figure 1.11.) 

 

 

 

Figure 1.11. Fully associative cache mapping 
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Set Associative Mapping: Set associative cache mapping combines the best of direct and 

associative cache mapping techniques. As with a direct mapped cache, blocks of main 

memory data will still map into as specific set, but they can now be in any N-cache block 

frames within each set. (See Figure 1.12.) 

 

 

 

Figure 1.12. Set associative cache mapping 

 

 

 

 

1.3.3.  CACHE READ & WRITE, REPLACEMENT  

 

CACHE READ : The  two  primary  methods  used to read data from cache and main memory 

are as follows: 

 

 Look-through read: In look-through read, the cache is checked first. If a miss occurs, the 

reference is sent to main memory to be serviced. This is known as a serial read policy. 

 

 Look-aside  read  A  look-aside  read  presents both  cache  and  main  memory  with  the  

reference simultaneously. Since the cache will respond faster, if a hit occurs, the request 

can be terminated before main memory responds. This is known as a parallel read policy. 
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CACHE REPLACEMENT POLICIES: When new data is read into the cache, a replacement 

policy determines which block of old data  should  be  replaced. The objective of replacement 

policies is to retain data that is likely to be used in the near future and discard data that won’t 

be used immediately. The replacement policies include the following:  

 

 FIFO: The first block that was read into cache is the first one to be discarded. 

 LRU: The block that hasn’t been used in the longest period of time is replaced by the 

new block. 

 Random: Blocks are replaced randomly. 

 

CACHE  WRITE: Since the cache contents are a duplicate  copy  of  information  in  main  

memory,  writing (instructions  to  enter  data)  to  the  cache  must  eventually be made to 

the same data in main memory. This is done in two ways as follows:  

 

 Write-through cache: Writing is made to the corresponding data in both cache and main 

memory. 

 Write-back cache: Main memory is not updated until the cache page is returned to main 

memory. 

 

1.4.  MOTIVATION 

 

Nowadays, one of the biggest problems in affecting performance of multi-core processing is 

memory wall problem or memory bottleneck problem. As is known, each application has its 

own resource requirements. Moreover, each application may show its own characteristic 

behavior. For example, despite some applications want too much resource, their performance 

(IPC) values may be extremely low. Unlike, some applications may show very high 

performance with very little resources. However, it is not clear that we will be successful 

when we try to run many applications in different characteristics on the same processor in 

the last level cache which should be shared by different cores. At this point, we make a 

preliminary study for answering the following question: when a last level cache is shared in 

an uncontrolled manner what is its impact on performance? We use the Macsim [14] 
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simulator, we run some representative SPEC 2006 [25] applications which are compiled on 

a processor at high optimization levels. The details of processor configuration are shown in 

Table 1.1. 

Table 1.1: Multi-core processor configuration 

Parametre Configuration 

L1 I-Cache (instruction) 64 KB,  64-sets, 128B block, 8-Way, LRU Replacement 

L1 D-Cache (data) 64 KB,  128-sets, 64B block, 8- Way, LRU Replacement 

L2Cache (instruction+data) 512 KB, 1024-sets, 64B block, 8- Way, LRU Replacement 

L3 Cache (shared) 4 MB, 1024-sets, 64B block, 16- Way, 4-tile, 8-way, LRU 

Replacement 

 

In Figure 1.12, 1.13 and 1.14, we see that the applications that we run in this preliminary 

study need to access a lot of memory. In the three-dimensional graphs, x-axis represents the 

sets on the shared last level cache, y-axis represents time periods each of which consists of 

655360 (640K) cycles, and z-axis represents number of accesses to the respective sets at 

certain times. As seen in Figure 1.12, the gcc application uses too much of the last level 

cache and it gains a performance benefit from this. The hit rate of this application to the last 

level cache is around 75%. In the application presented in figure 1.13, the lbm shows 

completely different characteristics compared to that of gcc. This application needs the last 

level cache much more than gcc. However, when this application access to an address, it 

does not reach to the same address and, therefore, it cannot benefit from the cache but pollute 

it. In that case, if these two applications work together in an uncontrolled manner, gcc will 

always be a loser. Lbm will not lose any performance in case of a pollution of the cache. 

Because, lbm appears to be using the cache but actually it is not. Gcc application, on the 

other hand, experiences huge miss rates and lower performance results because lbm 

contaminates the entire cache. In Figure 1.14, we see the cache activity when gcc and lbm 

work together. Table 1.2 shows the performance impact of this mutual run on each of these 

benchmarks. 
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Figure 1.13. Cache Statistics for “gcc” 

 

 

 

Figure 1.14. Cache Statistics for “lbm” 



18 

 

 

 

Figure 1.15. Cache Statistics for “lbm” and “gcc” Mixture 

 

Table 1.2. Performance loss for Mixture “gcc” and “lbm” 

Application Performance Loss 

“gcc” 9.8% 

“lbm” %0 

 

When the above scenario is considered, one can think that punishing the harmful lbm 

application, which has 0% hit rate to the last level cache, might be a good idea. Actually, 

this may be an effective solution for such a case, but there are also counter-examples that 

exist. In Figure 1.15, mcf replaces lbm. As it can be seen from this graph, mcf application 

also pollutes the entire cache. The hit rate of the mcf is about 8%. However, when we run 

one gcc application and 3 mcf applications together, none of the applications receive any 
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performance penalty, as the details are shown in Table 1.3. If we prevent the mcf application 

accessing to the last level cache, performance degradation of this application is less than 1%. 

So in that case, unlike lbm, mcf should be classified as a harmless application, and we need 

a mechanism that does not punish such applications. 

 

 

Figure 1.16 Cache Statistics for “mcf” 

 

Table 1.3 Performance loss for Mixture “gcc” and three “mcf”s 

   Application Performance Loss 

“gcc” 0% 

“mcf #1” 0% 

“mcf #2” 0% 

“mcf #3” 0% 
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2. LITERATURE SURVEY 

 

A simple solution, which prevents starvation of threads while sharing of the last level cache, 

is known as the static partitioning. In this approach, a portion of the shared cache is 

dedicated to a core. The size and the location of each partition are fixed and are not changed 

at run time. Unfortunately, assigning fixed partitions to applications and hoping for the best 

is not a good idea; a memory-intensive application always needs more cache space whereas 

a computational-intensive application may not initiate any cache access at all. In such cases 

inefficient resource usage is imminent.  

 

The dynamic partitioning of shared caches is surely more efficient technique than the static 

partitioning. In literature, there are several significant research attention. Multiple cores can 

be allowed to share a cache by allocating each core a portion of the cache space. This 

partitioning can be done either at the coarser granularity of cache ways (this method known 

as Way-Based Cache Partitioning), as done in [6, 9, 10, 14], or at the finer granularity of 

cache sets or blocks (this method known as Set-Based Cache Partitioning), as done in 

Vantage [13].  

 

Way-partitioning is popular because of its simplicity of design. It allows for different 

performance goals like hit maximization [10] and fair sharing [6] to be enforced without 

introducing much additional hardware complexity. However way-partitioning can be 

inefficient as it only allows partition sizes to grow or shrink by a fixed large size (inversely 

proportional to the associativity) while it is possible that the optimal size for a partition falls 

in between. As the number of cores increases and becomes comparable to the number of 

ways, such scenarios are likely to occur more frequently. So, this method has serious 

drawbacks in terms of performance and scalability. Especially, when it is assumed that there 

will be many-core processors, such as Intel MIC, in the near future, the most recently 

proposed studies are moving away from this method and searching more scalable 

mechanisms. Here are the disadvantages of way-based partitioning briefly: 

 

 Limited to coarse-grain allocations 

 Only support few partitions 

 Reduce cache associativity 
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 No scalibility 

 Low performance 

 

There are many advantages of a set-based cache-partitioning mechanism compared to a way-

based partitioning mechanism. We also use this technique in our proposed design. Here, we 

list some of them which motivate our study: 

 

 Finer-grain control on a typical last level cache: There are much more cache sets than 

cache ways. When the caches are partitioned on ways, the minimum resizing amount is 

set in a much coarser-grain. If the application requires only a part of this additional 

resource, oscillations may be observed in the control mechanism when resource 

downsizing and upsizing decisions are taken. 

 

 Cache policy freedom and keeping cache structure as it is: When the cache ways are 

assigned to different applications, the default cache policies and organization can no 

longer be used. On the contrast, when a set-based partitioning is utilized, no 

modifications are needed on an existing cache organization. 

 

 Minimum additional circuitry: In a way-based partitioning scheme, each cache way 

requires multiple counters and wires to collect way-based statistics. That means there is 

a limit for the number of ways each way-based partitioning mechanism can ideally 

support. In a set-based scheme, even a fully-associative cache configuration might be 

feasible, and the number of counters necessary to collect statistics is limited only by the 

number of cores. 

 

In literature, Utility-Based Cache Partitioning (UCP) [10] uses way-based cache 

partitioning. This figure shows the framework to support UCP between two applications that 

execute together on a dual-core system. One of the two applications execute on CORE1 and 

the other on CORE2. Each core is assigned a utility monitoring (UMON) circuit that tracks 

the utility information of the application executing on it. The UMON circuit is separated 

from the  
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shared cache, which allows the UMON circuit to obtain utility information about an 

application for all the ways in the cache, independent of the contention from the application 

executing on the other core. The partitioning algorithm uses the information collected by the 

UMON to decide the number of ways to allocate to each core. The replacement engine of 

the shared cache is augmented to support the partitions allocated by the partitioning 

algorithm. (See Figure 2.1.) 

 

 

 

Figure 2.1. Hardware implementation of Utility-Based Cache Partitioning [10] 

 

The partitioning algorithm reads the hit counters from all the UMON circuits of each of the 

competing applications. The partitioning algorithm tries to minimize the total number of 

misses incurred by all the applications. The utility information in the hit counters directly 

correlates with the reduction in misses for a given application when given a fixed number of 

ways. Thus, reducing the most number of misses is equivalent to maximizing the combined 

utility. If A and B are two applications with utility functions UA and UB respectively, then 

for partitioning decisions, the combined utility (Utot) of A and B is computed for all possible 

partitions for the baseline 16-way cache: 

 

𝑈𝑡𝑜𝑡(𝑎) = 𝑈𝐴1
𝑖 + 𝑈𝐵1

16−𝑖… FOR i =1 to (16-1)     (2.1) 

 

The partition that gives the maximum value for Utot is selected. In our studies, we guarantee 

that the partitioning algorithm gives at least one way to each application. We invoke the 

partitioning algorithm once every five million cycles (a design choice based on simulation 

results). After each partitioning interval, the hit counters in all UMONs are halved. This 

allows the UMON to retain past information while giving importance to recent information. 
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The dynamic partitioning of shared caches is first investigated by Suh et al [4]. The proposed 

study is based on a low overhead, online memory monitoring scheme utilizing a set of 

hardware counters. The counters indicate the marginal gain in cache hits as the size of the 

cache is increased. The study suggests a partition module, which uses a greedy algorithm to 

allocate each cache block to a process that obtains maximum marginal gain by having one 

additional block. 

 

Stone et al. [18] developed a model for studying the optimal allocation of cache memory 

among multiple access streams. They experimentally determine a miss rate curve that maps 

cache size to miss rate for a reference stream, and then fit that curve to an exponential 

function. Noting that the total miss rate for a pair of memory access streams is the average 

of the two contributing miss rates, they point out that solving for a minimal miss rate merely 

involves taking the derivative of this equation, setting it to zero, and solving. They also 

showed that LRU typically comes close to achieving optimal performance. They focused on 

partitioning a cache between the instruction and data access streams of a single workload, 

and did not consider partitioning across multiple workloads.  

 

Thiebaut et al [23] build on Stone's work to partition disk caches for maximal hit ratios. They 

utilize shadow tags, which are tags without data, to indicate hits that could have occurred 

had there been a larger allocation. Using this information, they calculate the marginal gain 

of adjusting the cache allocation. They note that a problem with implementing 

a greedy marginal gain algorithm with this methodology is actually  finding the memory 

stream with the largest marginal gain, since the functions are non-monotonic. They resort to 

performing a sort every time they update a partition. Their study assumed fully associative 

disk caches and partitioning on a disk block granularity. This amount of computation is likely 

too hefty for a CMP, while it is acceptable for a long latency entity like a disk cache. 

 

Hsu et al. [5] examine various cache policies such as communist and utilitarian policies. The 

communist policy tends to achieve fairness rather than maximizing the performance for 

running threads. The utilitarian policy tends to do just the opposite. The authors propose the 

usage of instruction per cycle (IPC), misses per access matrices and weighted IPC metric, 

and conclude that using a traditional cache replacement policy such as LRU and performing 
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static cache partitioning is not sufficient to provide near optimal performance. They state 

that a thread-aware cache resource allocation mechanism is required, and the sole use of 

communist or utilitarian policy for partitioning cache in CMP may not work perfectly for 

some type of workloads. 

 

Chiou et al. [19] propose a partitioning scheme that partitions at the granularity of cache 

ways. Partitioning is achieved by limiting the cache ways in which a thread can place its 

data. The exibility in placement is thus limited. 

 

Settle et al. [7] also investigate dynamic cache partitioning mechanism based on cache ways. 

The partition control mechanism gives large percentage of available cache storage to 

applications with high degree of global data reuse to increase chances of process utilization. 

When the thread id of a cache request differs from that of the normal LRU candidate, the 

cache controller checks the reuse of the candidate line to determine its potential for harming 

the system performance. The reuse is simply the cache access frequency counter used in 

least frequently used (LFU) cache replacement policies. If the reuse rank of a line is higher 

than a threshold value, the line is not considered for eviction. This algorithm increases the 

time that data from another thread stays in the cache. Thus, in case where one thread has a 

very high cache access frequency, this technique will make it less likely for the high 

frequency thread to evict important data belonging to another thread that accesses the cache 

much less often. 

 

Kim et al. [6] present a cache partitioning algorithm which focuses on fairness in a small 

scale CMP using SPEC2000 benchmarks. They evaluate several metrics and correlate them 

to execution time to determine what a good online metric to drive their policy decisions 

should be, and develop an algorithm that attempts to keep those metrics as equal as possible 

throughout execution time. 

 

Lin et al. [8] propose partitioning the cache based on an O/S technique called page coloring. 

A page color consists of several common bits between the cache index and the physical page 

number in the physical address. A physically addressed cache is divided into non-

intersecting regions by page color, and pages with the same color are mapped to the same 
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cache region. By assigning different page colors to different processes, the cache space is 

partitioned between cores. 

 

Chandra et al. [24] deal not with partitioning but with predicting inter-thread cache 

contention in a shared cache on a CMP, with the intent to use this information to prevent 

thrashing in a shared cache. They present a mechanism to accurately predict when threads 

will thrash, though they do not present a means to prevent it. 

 

Rafique et al. [9] propose using a hardware quota enforcement mechanism tomanage shared 

caches in CMP while a communication between the hardware and O/S establish to apply a 

variety of policies by tuning the quotas during regularly scheduled O/S interventions. 

Disadvantage of this work is the limitations of the proposed hardware mechanism that only 

supports a coarse granularity of cache allocation. 

 

Qureshi and Patt [10] partition the cache-ways dynamically among competing applications. 

They propose a low overhead utility hardware circuit that monitors the reduction in misses 

for each application for a given amount of cache resource. Later, they collect the information 

by a circuit named utility monitor (UMON) used for deciding the amount of cache resources 

that each application need for periodic intervals. Using the monitored statistics, UMON can 

derive the optimal L2 cache partition that would minimize the total number of misses, as this 

number corresponds to the sum of misses of each thread with the assigned number of ways. 

 

Moreto et al. [20] propose a dynamic cache partitioning mechanism to maximize the total 

throughput of running threads by minimizing the total cost. The algorithm assigns higher 

costs to isolated L2 misses due to their higher impact on performance, and assigns lower 

costs to clustered L2 misses. The cost assigning process is implemented by extra hardware, 

which are auxiliary tag directory (ATD), miss status holding register (MSHR) and hit status 

holding register (HSHR). The job of ADT is to keep track of the L2 accesses for any possible 

cache configuration. MSHR and HSHR are used to compute the memory level parallelism 

(MLP) cost of the access. Moreover, they also keep track of stack distance of each access. 

Based on the gathered information from the MLP cost and stack distance, a performance 

benefit of converting L2 misses into hits when assigning more ways to a thread is estimated. 
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Sanchez and Kozyrakis [13] introduce a cache partitioning scheme named Vantage, which 

maintains high associativity and strong isolation among partitions. Their mechanism 

maintains the size of each partition by matching the average rates at which lines enter and 

leave a partition. The authors claim that Vantage works best with a special cache 

architecture, Zcache [12]. However, they also indicate that the proposed mechanism may 

work with a 16-way set associative cache with less promising results. 

 

Iyer [21] presents a framework for providing differentiated services to various threads via 

the cache hierarchy in a CMP. The framework consists of classifying heterogeneous memory 

streams, assigning priorities, and enforcing them. He presents several means of enforcing a 

partition, including selective allocation and set partitioning.  

 

Fedorova et al. [26] present an operating system scheduling algorithm to deduce which sets 

of threads would coexist the best to schedule at the same time. Their goal is to schedule 

threads which would yield the lowest overall miss rates without starving any threads. This 

technique may not be relevant on large scale CMPs where the number of software threads 

may not outnumber the number of hardware threads by so much as to make scheduling an 

issue. Furthermore, large scale CMPs will likely support multiple virtual machines, making 

system-wide optimization outside the scope of any one OS scheduler. 

 

One of the few studies that focus on set-based scalable partitioning of cache resources is 

Vantage, and it does cache block replacement by utilizing multi-level complex hash 

functions and arranges partition sizes by regulating the number of addresses inserted into the 

cache and number of addresses that are evicted from the cache. Besides, this method can 

work well with a cache known as Zcache [12]. The team also reports that they tried to 

integrate their proposed design with  a standard cache and they cannot come close to the 

results they had with the Zcache. 
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Figure 2.2. Vantage managed-unmanaged region division [12] 

 

Vantage [12] is the only known scheme that proposes a fine grained partitioning framework. 

However it achieves this only for a portion and not all of the cache and does so with 

significant changes to the hardware. Vantage on the other hand logically partitions the cache 

into ‘managed’ and ‘unmanaged’ regions and achieves the desired target occupancy in the 

‘managed’ portion of the cache by borrowing space from the unmanaged region. This is a 

fundamental change to the cache organization. Also vantage requires the replacement 

policies, including commonly used LRU, to be implemented in a Vantage-friendly fashion 

 

Manikantan et al [22] proposes Probabilistic Shared Cache Management (PriSM), a 

framework to manage the cache occupancy of different cores at cache block granularity by 

controlling their eviction probabilities. The proposed framework requires only simple 

hardware changes to implement, can scale to larger core count and is flexible enough to 

support a variety of performance goals. We demonstrate the flexibility of PriSM by 

implementing three allocation policies to achieve Hit-Maximization (PriSM-H), Fairness 

(PriSMF) and QOS (PriSM-Q) in our proposed framework. We demonstrate the scalable 

nature of our solution by studying its performance from low core count (4-cores) to high 

core count (32-cores). 
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Figure 2.3. HitMaximization: Gains provided by PriSM over waypartitioning [22] 

 

 

 

 

 

 

Figure 2.4. Performance of Vantage and PriSM in 4 and 16 core machines [22] 
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3. SET-BASED DYNAMIC CACHE PARTITIONING ON CHIP 

MULTIPROCESSORS 

 

This chapter explains the design and implementation details of our proposed design. In 

briefly, our proposed solution tries to classify applications running on the system according 

to runtime statistiscs like hit rate, miss rate and cache invalidations. Then, based on the 

classification of the applications, Partitioner allocates new resources to each application. We 

have identified 655360 Cycle (640 KCycle) as the threshold value for making three steps 

below: 

On each epoch (640 KCycyle) do the following steps: 

Step 1. Until number of cycles reaches a certain threshold, continue to gather 

statistics about the applications running on the system. 

Step 2. After this threshold is reached, classify the applications according to the data 

collected as “harmless”, “harmful” or “very harmful” or “no operation”.  

Step 3. Based on the result of the classification process, Partitioner decides how to 

distribute the cache among the applications. 

In Figure 3.1, a feedback mechanism that is needed to realize the above mentioned steps is 

shown. As can be seen from the figure, our proposed design is settled in front of the last 

level cache to provide access control with the help of a structure, which we call the Partition 

Map. This circuit can work with all kinds of last level cache organizations. 

 

 

 

Figure 3.1. Our proposed design cache organization 



30 

 

3.1.   CACHE STATISTICS 

 

In order to collect cache statistics, we partition the last level cache as follows: 

 

 

Figure 3.2. Logic cache partitioning of our design 

 

In the figure 3.2, we select the last set of each part for set-dueling on LLC (shown in black). 

We allow all cores to access these sets. At any time, any core can access these duel sets. We 

calculate Steal Rate, Miss Rate and Traffic value using these duel sets.  

 

Traffic: We calculate this value for an each core. This parameter reports the number of 

access per core on duel sets. 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 = # 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑐𝑜𝑟𝑒   (3.1) 

Steal Rate (%) : This parameter indicates how much an application steal cache blocks from 

other applications on duel sets. This value shows us, the ratio of the number of cache sets 
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stolen by the application to total traffic of duel sets for that application. We calculate this 

value using the equation shown in below: 

𝑆𝑡𝑒𝑎𝑙 𝑅𝑎𝑡𝑒 (%) =
# 𝑜𝑓 𝑠𝑡𝑒𝑎𝑙 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑜𝑟𝑒

# 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑐𝑜𝑟𝑒
 = 

# 𝑜𝑓 𝑠𝑡𝑒𝑎𝑙 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑜𝑟𝑒

𝑇𝑟𝑎𝑓𝑓𝑖𝑐
  (3.2) 

Miss Rate (%) : If the data is not in cache, a miss has occurred and then we bring the data 

from memory to cache. This parameter reports the ratio of the number of cache sets missed 

by the application to total traffic of duel sets for that application. 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 (%) =
# 𝑜𝑓 𝑚𝑖𝑠𝑠 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑜𝑟𝑒

# 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑐𝑜𝑟𝑒
=  

# 𝑜𝑓 𝑚𝑖𝑠𝑠 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑜𝑟𝑒

𝑇𝑟𝑎𝑓𝑓𝑖𝑐
             (3.3) 

 

We do not use hit rate, because hit rate is opposite of miss rate. We use only miss rate in 

our proposed design. We can write the hit rate formula like this: 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 = 1 − 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒                          (3.4) 

 

In the figure 3.2, the rest of cache sets (shown in white) were assigned to a certain core at 

any time. At any time, only the owner of these sets can access and use them. If any core 

which is not an owner want to access the cache set, we don’t allow to access or use it. When 

this occurs, we increase the value of Attempted Steal Count. At the end, we calculate 

Attempted Steal Rate parameter: 

𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑 𝑆𝑡𝑒𝑎𝑙 𝑅𝑎𝑡𝑒 (𝐴) =
# 𝑜𝑓 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑 𝑠𝑡𝑒𝑎𝑙 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑜𝑟𝑒

# 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑝𝑒𝑟 𝑐𝑜𝑟𝑒 (𝑛𝑜𝑡 𝑜𝑛𝑙𝑦 𝑑𝑢𝑒𝑙 𝑠𝑒𝑡 𝑡𝑟𝑎𝑓𝑓𝑖𝑐)
 (3.5) 

 

This parameter indicates how much an application attempts to steal cache blocks from other 

applications. In our proposed design, we prevent applications to access partitions that do not 

belong to them. This value, therefore, is not correlated to the previous parameter, steal rate.  

At the end, all of these parameters are sent to our Classifier circuitry as inputs. Cache control 

mechanism is required to view these parameters periodically to come up with accurate 

partitioning decisions. At the end of each period, the Classifier is triggered and the cache is 

allocated by the Partitioner, accordingly.  
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3.2.  CLASSIFIER ALGORITHM 

 

Our classifier algorithm takes as inputs these values: Attempted Steal Rate (%), Steal Rate 

(%), Miss Rate (%) and Traffic value. Consequently, it classifies them according to the 

algorithm shown below: 

 

If the attempted steal rate of an application is higher than 30%, we set the value of parameter 

A to 1. In other cases we set it to 0. Here is the program flow in order to transform of 

Attempted Steal Rate to Attempted Steal (A): 

   A  Attempted Steal  

  

 

 

 

 

 

   

S is the steal rate. If the steal rate of an application is higher than 75%, we set the value of 

parameter S to 2. If the steal rate of an application is between 50% and 75%, we set the value 

of parameter S to 1. In other cases we set it to 0. 

S  Steal 

 

 

 

 

 

 

 

if Attempted Steal Rate (%) > 0.30 then 

 A = 1; 

else 

 A = 0; 

end 

 

if Steal Rate (%) > 0.75 then 

 S = 2; 

else if Steal Rate (%) > 0.50 then 

 S = 1; 

else 

 S = 0; 

end 
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If the miss rate of an application is higher than 75%, we set the value of parameter M to 2. 

If the miss rate of an application is between 50% and 75%, we set the value of parameter M 

to 1. In other cases we set it to 0. Again, these are the thresholds obtained from our 

preliminary empirical study. 

 

M  Miss 

 

 

 

 

 

 

T parameter indicates the degree of traffic in sets duel. If any application access over 100 to 

set duel, we set the value of parameter T to 2. If an application access between 50 and 100 

then we set the value of parameter 1, in other case we set it to 0. Again, these are the 

thresholds obtained from our preliminary empirical study as described in detail in chapter 

1.4. 

 

T  Traffic 

 

 

 

 

 

 

 

if Miss Rate (%) > 0.75 then 

 M = 2; 

else if Miss Rate (%) > 0.50 then 

 M = 1; 

else 

 M = 0; 

end 

if Traffic > 100 then 

 T = 2; 

else if Traffic > 50 then 

 T = 1; 

else 

 T = 0; 

end 
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During working hours, characteristics of the applications may be changed, continuously. 

Likewise, applications which are run by cores may change from time to time. At the end of 

each epoch, Classifier Circuit calculates total weight of each application. When we 

calculate the total weight of an application, we use this equation shown below: 

                                   Weight = M + A + (S * T) + T                                  (3.6)        

This formula is obtained from our preliminary empirical study. In this formula, we thought 

that effect of the Steal (S) value to the core weight should be higher when the value of Traffic 

(T) is too high. So, we multiply the Steal (S) and the Traffic (T) value with each other.  

Then according to this total weight value, we classify the applications into four classes which 

are harmless, harmful, very harmful and no operation.  

This total weight value enables us to classify each application. This value can be between 0 

and 9. We decided that if the weight of an application is lower than 2, we called it as no 

operation. If the weight of an application is between 2 and 3, we called it harmless. If the 

weight of an application is between 4 and 6, we called it harmful. Otherwise, if the weight 

of an application is higher than 6 then we called it very harmful.  

In the future, in order to be able to doing homogeneous distribution of total weight, dynamic 

distribution will be used. In this approach, if the total weight interval is between 2 and 5, the 

distribution of above can be different. We can define the value of 5 as very harmful. 

Our cache partitioning principle is like that: When an application is classified as “no 

operation”, we don’t give any cache sets to this application and we punish it. If an application 

is “harmful”, we give it more cache resources than very harmful one. If an application is 

“harmless”, we give it more cache resources than harmful one.  

 

3.2.1. CLASSIFIER IMPLEMENTATION 

First of all, we defined global variables at the beginning of “memory.cc” file in macsim 

simulator, as you see in the Figure 3.3. 

Then, we write a new method which is called “classify” in “memory.cc” in order to 

implement Classifier. As explained above, firstly, we have to calculate weight of 

applications before to classify.  



35 

 

 

 

Figure 3.3. Defining Global Variables  

Therefore, firstly we have to calculate miss rate, attempted steal rate, steal rate and traffic.  

As seen in Figure 3.4, we use “If” statements to calculate them.  If the miss rate of an 

application is higher than 0.75, we set the value of miss rate to 2. If the miss rate of an 

application is higher than 0.50, we set the value of miss rate to 1. In other cases we set it to 

0. 

If the steal rate of an applications is higher than 0.75, we set the value of miss rate to 2. If 

the steal rate of an application is higher than 0.50, we set the value of steal rate to 1. In other 

cases we set it to 0. 

If the attempted steal rate of an application is higher than 0.30, we set the value of attempted 

steal rate to 1. In other cases we set it to 0. 

If the traffic of an application is higher than 100, we set the value of traffic 2. If the traffic 

of an application is higher than 50, we set the value of attempted steal rate 1. In other cases 

we set it to 0. 
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Figure 3.4. Classify() method - 1 

As seen in Figure 3.5, firstly we calculate the “value”. Then, again we use “If” statements in 

order to determine classes of applications. 

If the value of application is greater than 6, application can be assigned as “VERY 

HARMFUL”. If the value of application is greater than 3, application can be assigned as 

“HARMFUL”. If the value of application is greater than 1, application can be assigned as 

“HARMLESS”. Other status, application can be assigned as “NO OPERATION”. 
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Figure 3.5. Classify() method - 2 

 

3.3.  PARTITIONER ALGORITHM  

 

The task of the Partitioner is to logically allocate set-based cache partitions among cores by 

the help of the information coming from the Classifier circuit. As a result, this circuit decides 

which core is allowed to access which cache partition. At this point, Partitioner must be 

prepared for all kinds of combinations of core classes and must make the best scheduling 

effort. 

For example, if Classifier reports that four cores are running very harmful applications in a 

quad-core processor then Partitioner should partition the cache equally among all such 

applications. If Classifier reports that one core is running a very harmful application and 

other cores are running harmless applications, then, Partitioner should offer solutions to 

reduce the damage which may be created by the harmful application.  

We created a table for allocating partitions to each application for all combinations of 

application classes. Table 3.1 provides a sample Partitioner table for a quad-core processor 

with 64 LLC partitions. In this table, the column named as A0 means that how many LLC 

partitions we allocate to Core 0. Likewise, A1, A2 and A3 are the same meaning. 
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Table 3.1. Example of Partitioner Table 

Core0 Core1 Core2 Core3 A0 A1 A2 A3 

0 0 0 0 16 16 16 16 

0 0 0 1 18 17 17 12 

0 0 0 2 19 19 18 8 

0 0 1 1 20 20 12 12 

0 0 1 2 20 20 16 8 

0 0 2 2 24 24 8 8 

0 1 1 1 28 12 12 12 

0 1 1 2 24 16 16 8 

0 1 2 2 32 16 8 8 

0 2 2 2 40 8 8 8 

1 1 1 1 16 16 16 16 

1 1 1 2 19 19 18 8 

1 1 2 2 24 24 8 8 

1 2 2 2 40 8 8 8 

2 2 2 2 16 16 16 16 

        

     

In Table 3.1, “0” indicates that an application is harmless, “1” indicates that an application 

is harmful, “2” indicates that an application is very harmful and “3” indicates that an 

application is no operation. As can be seen from the Table, initially we are planning to give 

minimum number of cache partitions to very harmful applications. Applications that are 

classified as harmful receive more partitions than the applications that are very harmful but 

fewer partitions than the applications that are harmless. 

For example, we plan to give 8 cache partitions to three very harmful applications for a 

combination of 0,2,2,2 classes and give 40 cache partitions to the harmless application. 

An important point not shown in the Table 3.1 also need to say, the value of “4” indicates 

that an application is classified as “No Operation”. In this case, we do not give any partitions 

to this application. 

After classifying the applications, we assigned partitions to each application. So, we use the 

Partitioner algorithm for realizing this step. We use 4 methods in order to implement 

Partitioner:   

1) ConflictResolution, 2) AssignPartitions, 3)SearchConflictResolutionVector 

4) ShiftConflictEntries. 
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Figure 3.6. Steps of partitioning algorithm 

As seen in Figure 3.6, we have a matrix which is called Access Count, this matrix keeps the 

number of access of cores. In Conflict Resolution Vector, we sort the number of access of 

each core. To do this, we use the Resolve Conflicts method, as you see in the figure 3.7.  
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Figure 3.7. Conflict Resolution Algorithm 
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We defined some variables, then we set the value of partitionAccess[j][i] to current. After 

that, we compare the number of access of cores and current. According to this comparison, 

we sort the cores in Conflict Resolution array. For example, when we want to know which 

core has the most accesses to partition 18, we need to look 

“ConflictResolutionVector[0][18]”. For the second largest number of access for part 18, we 

need to look “ConflictResolutionVector[1][18]” and so on. At the end, Conflict Resolution 

vector says us, which core is the most access to the each part of LLC. 

 

 

Figure 3.8. AssignPartition Algorithm - 1 

 

After creating Conflict Resolution Vector, now we defined the AssignPartition method  

which is used to sort cores with the helping of ConflictResolutionMatrix.(Figure 3.8.) 
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In this algorithm, first we used the matrix which is called SortedPartitionMatrix. This matrix 

sorts from largest to smallest according to the number of access of cores. At the end, Sorted 

Partition Matrix says us, where core 0 has the most access. This matrix gives the answer to 

which part is the most accessed by core 0. Likewise for core 1, core 2 and core 3. When we 

want to know which LLC part is the most accessed by core 0, we need to look 

SortedPartitionMatrix[0][0] and the second largest access by core 0 is hold 

SortedPartitionMatrix[0][1]. 

In this algorithm, as seen in Figure 3.8, we firstly set the SortedPartitionMatrix to -1. Then, 

we transferred the elements of ConflictResolutionMatrix to SortedPartitionMatrix with “for” 

and “If” statements. (as you see Figure 3.8, 3.9, 3.10 and 3.11) 

 

 

Figure 3.9. AssignPartition Algorithm – 2 

 

After transferring, as seen in Figure 3.9 and 3.10, we sort the numbers from larger to smaller 

for each core. In Figure 3.9 and 3.10, we can see easily sorted array. 
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Figure 3.10. AssignPartition Algorithm – 3 

 

Then, we place the core in the Assign Partition array. This array is, as you see in the figure 

3.6, two dimentional array. In this design, instead of giving a whole partition to a single 

application, we plan to allocate it to two applications. We share a partition among two cores. 

To do this, we write a code in Figure 3.11. To be fair, we decided to start lowest partition to 

place in the array.  Firstly, we look the allocated array which keeps the number of partition 

of cores, then we choose the lowest one then search the number of core which is the number 

of core in the SortedPartitionMatrix in the AssignedPartition array. After, we placed it in the 

array then we set -2 to the number of core in the ConflictResolutionVector matrix. 



44 
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Figure 3.11. AssignPartition Algorithm – 4 

 

After to set -2 the number of cores in ConflictResolutionVector matrix, we called the method 

which is called shiftConflictEntries. Then, we keep a remaining array which is used for 

remaining partition.  

For example, if we assign 6 partitions to SortedPartitionMatrix but we have to assign 8 

partition. Then, we use the remaining array for 2 partitions. We scan 

ConflictResolutionMatrix, if we see -1, then we assigns it to the SortedPartitionMatrix. 

 

 

Figure 3.12. SearchConflictResolution Algorithm  
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In SearchConflictResolution algorithm (Figure 3.12), we research the non-found visited 

partition for helping the AssignPartition algorithm. 

 

 

Figure 3.13. shiftConflictEntries Algorithm  

In shiftConflictEntries Algorithm (Figure 3.13), after we assign the number of core which is 

in the ConflictResolutionMatrix, we shift the left array. 

 

3.4. HARDWARE IMPLEMENTATION AND COMPLEXITY OVERHEAD 

 

In our implementation, we proposed two additional hardware circuit. In order to estimate the 

complexity overhead, we calculate the approximated number of transistors for each 

hardware circuit that is used in our implementation.  

 

One of the issues which we give priority in the project (as we mentioned earlier), we will 

encounter many more examples in the near future core processor that can run on a scalable 

system is put forward. At this point, in Figure 3.15 and Figure 3.16 provides details of our 

knowledge-Cache circuit complexity calculated as a function of the number of cores. As can 

be seen in the graph in Figure 3.14, for 64-core processor, our designed cache system 

memory space requirement is only 3% of the area corresponds to the requirements for 4 MB 

L3 cache. Much bigger than 4MB for 64-core processor, the last level cache sizes to be used 

shall be at the rate negligible level. The only reason for non-linear increase in this graph, 

with the number of cores of partitioner table is exponentially increasing space requirements. 
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64 and older with a processor core instead of in the partitioner table at run-time partitioning 

determines the number envisage the use of a control circuit. 

 

 

 

Figure 3.14. According to the L3 cache, the space requirements of the proposed design 

variation with the number of cores 

 

The hardware implementation of classifier circuit is shown by the figure 3.15. The outputs 

of this circuit are classes. On the other hand, Figure 3.16 shows us the hardware 

implementation of partitioner.  

 

Transistor numbers of each hardware circuit in our method implementation with the number 

of transistors of used cache space are shown in table 3.2. 
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Figure 3.15. Hardware implementation of classifier 

 

Table 3.2. Classifier cost  

 

Classifier elements Bit 

numbers in 

each 

element 

Transistor numbers in 

each element 

Five counters for L3 Traffic, 

Attempted Steal, Miss, Steal and DSet  

64 (5*64*6) =1920 

Three division units 64 10368 = (3*64*54) 

Four multiplication unit 20 4320 = (4*20*54) 

One adder unit 7 196 = (7*28) 

Nine comparator unit 7 1323 = (9*7*21) 

Total cost: 18127 transistors 
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Figure 3.16. Hardware implementation of partitioner 
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4. TEST ENVIRONMENT 

 

4.1.  MACSIM SIMULATOR 

 

Macsim is a heterogeneous architecture simulator [15]. x86 and NVDIA PTX instructions 

can be simulated by Macsim. It models micro-architectural behavior, including pipeline 

stages, multi-threading execution and memory systems. It can simulate a variety of 

architectures which are Intel’s Sandy Bridge and NVDIA’s Fermi. Additionally, 

homogeneous ISA multicore simulations can be simulated by Macsim.  

Our reason to use Macsim is that it can determine the behaviors of various applications and 

different approaches and algorithms can be compared easily by the help of Macsim. We can 

change the underlying processor and memory configurations since it provides a fully 

customizable interface. 

 

4.1.1. MEMORY SYSTEM IN MACSIM 

 

Caches: Every cache structure has storage and multiple queues. In Figure 4.1, the overall 

structure of a single cache is depicted  in Macsim. There are two flows: 

 Cache Access Flow: Data flow from processor to upper level cache. In case of a cache 

miss, cache is accessed through this flow. 

 Cache Fill Flow: In case of a cache miss, data is supplied from the lower level cache 

or DRAM.  
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Figure 4.1. Cache Structure of MACSIM 

 

Queues: 

 Input Queue: Requests are forwarded to the cache triggered by upper-level cache 

misses are inserted into this queue. 

 Output Queue: Requests that miss in this cache are inserted into the output queue 

to be forwarded to a lower-level cache. If no lower-level cache is available, then requests are 

forward to the main memory. 

 Write-back Queue: Write-back cache is one of the models of Macsim. When a dirty 

cache line is evicted, the line must be written back into the next level cache. 

 Fill Queue: Data returned from the next level cache or main memory is inserted into 

the fill queue. 

 

4.1.2. HIERARCHY 

 

Macsim is a flexible simulator so it can work with different memory hierarchies. Each level 

can be configured independently of other levels in the cache hierarchy. In the following 
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figure, we can see the base memory hierarchy of Macsim without DRAM memory. (Figure 

4.2) 

 

 

 

Figure 4.2. Memory System of MacSim 

 

 Cache has 3 levels which are L1, L2 and L3. 

 If required, the caches can be connected to each other. 

 Each core has unique L1 and L2 caches. 

 When required, the local router is enabled within a cache structure. 

 All cores share the L3 cache. But, address regions are statically partitioned and also 

each tile is responsible for sub-regions.  
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4.2. BENCHMARKS 

 

The SPEC CPU 2006 [25] benchmark is SPEC's next-generation, industry-standardized, 

CPU-intensive benchmark suite, stressing a system's processor, memory subsystem and 

compiler. 

This benchmark suite includes the SPECint benchmarks and the SPECfp benchmarks. The 

SPECint 2006 benchmark contains 12 different benchmark tests and the SPECfp 2006 

benchmark contains 19 different benchmark tests. We use some of these benchmarks mixed, 

here are the descriptions of the applications that are used in our work, shown below: 

 

 401.bzip2: Performs no file I/O other than reading the input. All compression and 

decompression happens entirely in memory.  

 

 403.gcc: Based on gcc 3.2, it generates code for an AMD Opteron processor. The 

benchmark runs as a compiler with many of its optimization flags enabled. It has its 

inlining heuristics altered slightly, so as to inline more code than would be typical on a 

Unix system in 2002. It is expected that this effect will be more typical of compiler usage 

in 2006. This is to make 403.gcc spend more time analyzing its source code inputs and 

use more memory. 

 

 429.mcf: It is derived from MCF, a program used for single-depot vehicle scheduling in 

public mass transportation. The program is designed for the solution of single-depot 

scheduling problems planning transportation. It considers one single depot and a 

homogenous vehicle fleet.It is the task to schedule all timetabled trips to so-called blocks. 

The network simplex algorithm is a specialized version of the well-known simplex 

algorithm for network flow problems. The main work of our network simplex 

implementation is pointer and integer arithmetic.  
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 445.gobmk: This program plays Go1 and executes a set of commands to analyze Go 

positions. 

 

 462.libquantum: This is a library for the simulation of a quantum computer. Quantum 

computers are based on the principles of quantum mechanics and can solve certain 

computationally hard tasks in polynomial time. 

 

 464.h264ref: This is a reference implementation of H264/AVC (Advanced Video 

Coding), the latest video compression standard. It replaces the current MPEG-2 standard, 

for applications such as next-generation DVDs and video broadcasting. 

 

 473.astar: This is derived from a portable 2D path-finding library that is used in a game’s 

AI. It implements three different path-finding algorithms. 

 

 444.namd: This is derived from the data layout and inner loop of NAMD, a parallel 

program for the simulation of large bio molecular systems.  

 

 470.lbm: This program implements the so-called “Lattice Boltzmann Method” to 

simulate incompressible fluids. It is the computationally important part of a larger code-

use in material science to simulate fluids with free surfaces, in particular the formation 

and movement of gas bubbles in metal foams. [18] 

These benchmarks are provided as source code and require the user to be comfortable using 

compiler commands as well as other commands via a command interpreter using a console 

or command prompt window in order to generate executable binaries.  

 

4.3. TRACE GENERATION 

 

For simulations using MacSim, x86 traces are generated using Pin and PTX traces are 

generated using GPUOcelot. (Figure 4.2.) Internally, MacSim converts both x86 and PTX 

trace instructions into RISC style micro-ops (uop) which are simulated. In the figure below 

shows a high-level picture of the operation of the simulator. 

                                                            
1 Go is a board game for two players. The object is to surround and capture opponent’s counters. More info 
can be found at http://www.britgo.org/about/index.html . 

http://www.britgo.org/about/index.html
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Figure 4.3.The Overview of MACSIM Simulator 

 

In order to generate executable binaries, we use Pin tool 2.12. Pin is a tool for the 

instrumentation of programs. It supports Linux and Windows executables for IA-32, Intel 

64, and IA-64 architectures.  

 

Pin allows a tool to insert arbitrary code (written in C or C++) in arbitrary places in the 

executable. The code is added dynamically while the executable is running. This also makes 

it possible to attach Pin to an already running process. 

 

MacSim includes a CPU (x86) trace generator which is based on Pin [10], a binary 

instrumentation tool. After installing Pin 1 , the x86 trace generator module has to be built. 

The command for doing so is: 

 

cd toos/x86_trace_generator 

make 

 

This will generate trace_generator.so in the tools/x86_trace_generator/obj-intel64 directory. 

x86 traces for MacSim can then be generated by running Pin with the generated module. We 

use generally this script for generate trace: 
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Figure 4.4. Trace Generation Script 

 

In the script above, we skip 100.000.000 instructions and limit to 20.000.000 maximum. The 

trace generator generates two files (in case of a single threaded application) “Trace.txt” and 

“trace_0.raw”, in the current directory.  

 Trace.txt (info trace): Contains information about the generated trace files (#threads, 

trace type, ...). 

 Trace_xx.raw (raw trace): Contains instruction trace for a thread and is generated for 

each thread.  

 

 

 

Figure 4.5. Trace.txt format 

 

Figure 4.5 shows the format of Trace.txt and its CPU and GPU examples. As shown in Figure 

4.5-(a), the first line in Trace.txt has different fields from the rest of the lines. 

 

 #Threads: indicates the number of threads for which traces have been generated, and 

this value is equal to the number of lines in the file excluding the first line. 

 Trace Type: indicates whether the generated traces are for an x86 application or a PTX 

kernel. 

 Optional Field(s): currently used for PTX traces only and indicates the number of 

thread blocks that can be assigned to a streaming multiprocessor(SM) core 

(occupancy). 
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From the second line onwards, there are two fields in each line: thread id and start instruction 

number. For each thread, there is a Trace_<thread_id>.raw file which contains the dynamic 

instruction trace for the thread. Finally, start instruction number indicates when each thread 

should be started in terms of the number of instructions simulated for the main thread of the 

application. In a PTX kernel since all warps are ready for execution at the launch of the 

kernel, the start instruction number for all threads is zero. On the other hand, for a x86 

application, the start instruction is non-zero for all threads except thread 0, which is the main 

(or parent) thread in the application. This is because in most multi-threaded CPU 

applications, main thread (thread id 0) spawns children threads. 

 

In Figure 2-(b), the CPU trace has four threads and its type is set to x86. The ids of the 

threads are 0-3 with the corresponding trace files being Trace_0.raw−Trace_3.raw. Thread 

0 is ready at the start of simulation, while Threads 1, 2 and 3 become ready when Thread 0 

has fetched x, y and z instructions respectively.  

 

In the GPU example, the number of traces files is 2048 since #Threads (representing #Warps 

in case of GPUs) is 2048. The optional field indicates that eight thread blocks can be assigned 

to a SM core. 

 

For GPU traces, the id in the file encodes thread block information as well. The warp id and 

thread block id can be decoded from this id as follows: 

warp_id = id % (1 << 16) 

block_id = id / (1 << 16) 

 

Trace_xx.raw is generated for each thread/warp and contains the dynamic instruction trace 

for the thread/warp in the binary format. The structure/format for encoding instructions is 

the same in both x86 and PTX traces and looks as Figure 4.6 (in order): 
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Figure 4.6. The Structure/Format for Encoding Instructions 

 

Note that the raw trace is compressed with zlib to reduce the sizes of the generated trace 

files, and the size of each field is the size before the compression. 
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5. EXPERIMENTAL RESULTS 

 

In order to evaluate our proposed design we used Macsim, a heterogeneous architecture 

simulator, which is trace-driven and cycle-level. In our study, we simulated four or eight 

cores with identical specifications. We only change the cache parameters throughout our 

experimental study in “params.in” file.  Here is the experimental setup, show in Table 5.1. 

 

Table 5.1. Experimental Setup Table 

 

Parametre Configuration 

L1 I-Cache (instruction) 64 KB,  64-sets, 128B block, 8-Way, LRU Replacement 

L1 D-Cache (data) 64 KB,  128-sets, 64B block, 8- Way, LRU Replacement 

L2Cache (instruction+data) 512 KB, 1024-sets, 64B block, 8- Way, LRU Replacement 

L3 Cache (shared) 1 MB, 1024-sets, 64B block, 16- Way, 1-tile, LRU Replacement 

 

In the figures given below, we compare the results of our proposed cache architecture with 

the results of baseline (uncontrolled shared cache). First, we executed four applications 

concurrently and evaluated throughput value of each applications. Here are the results of 

these study shown below: 

 

 

Figure 5.1. results of bzip2, milc, povray and gcc  
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In the figure 5.1, we executed bzip2, milc, povray and gcc traces concurrently. Bzip2 and 

povray are considered to be harmful application by our classifier algorithm. On the other 

hand, milc and gcc are considered to be very harmful. According to the classification, our 

partition algorithm gave more cache resources to harmful applications than very harmful 

application. At the end, when we compared to baseline, the total throughput increase is 

approximately %2. 

 

 

 

Figure 5.2. results of bzip2, milc, omnetpp and gcc  

 

 

In the figure 5.2, we executed bzip2, milc, omnetpp and gcc traces concurrently. Omnetpp 

and gcc are considered to be harmful application by our classifier algorithm. On the other 

hand, bzip2 and milc are considered to be very harmful. According to the classification, our 

partition algorithm gave more cache resources to harmful applications than very harmful 

application. At the end, when we compared to baseline, the total throughput increase is 

approximately %2. 
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Figure 5.3. results of bzip2, namd, povray and gcc  

 

In the figure 5.3, we executed bzip2, namd, povray and gcc traces concurrently. Bzip2, namd 

and povray are considered to be harmful application by our classifier algorithm. On the other 

hand, gcc is considered to be very harmful. According to the classification, our partition 

algorithm gave more cache resources to harmful applications than very harmful application. 

At the end, when we compared to baseline, the total throughput increase is approximately 

%2. 

 

 

 

Figure 5.4. results of bzip2, sjeng, lbm and astar  
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In the figure 5.4, we executed bzip2, sjeng, lbm and astar traces concurrently. Bzip2 is 

considered to be harmful application by our classifier algorithm. Astar is considered to be 

harmless application by our classifier algorithm. On the other hand, sjeng and lbm are 

considered to be very harmful. According to the classification, our partition algorithm gave 

more cache resources to harmless application than harmful application. Similarly, our 

partition algorithm also gave more cache resources to harmful application than very harmful 

application. At the end, when we compared to baseline, the total throughput increase is 

approximately %5. 

 

 

 

Figure 5.5. results of libquantum, mcf, href264 and astar  

 

In the figure 5.5, we executed libquantum, mcf, href264 and astar traces concurrently. 

Libquantum and href264 are considered to be harmful application by our classifier 

algorithm. Astar is considered to be harmless application by our classifier algorithm. On the 

other hand, Mcf are considered to be very harmful. According to the classification, our 

partition algorithm gave more cache resources to harmless application than harmful 

application. Similarly, our partition algorithm also gave more cache resources to harmful 

application than very harmful application. At the end, when we compared to baseline, the 

total throughput increase is approximately %3. 
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Figure 5.6. results of libquantum, milc, href264 and gcc  

 

In the figure 5.6, we executed libquantum, milc, href264 and gcc traces concurrently. Milc 

and href264 are considered to be very harmful application by our classifier algorithm. 

Libquantum is considered to be harmless application by our classifier algorithm. On the 

other hand, gcc are considered to be harmful. According to the classification, our partition 

algorithm gave more cache resources to harmless application than harmful application. 

Similarly, our partition algorithm also gave more cache resources to harmful application than 

very harmful application. At the end, when we compared to baseline, the total throughput 

increase is approximately %1. 

 

 

Figure 5.7. results of lbm, gcc, povray and bzip2  
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In the figure 5.7, we executed lbm, gcc, povray and bzip2 traces concurrently. Lbm, gcc and 

povray are considered to be very harmful application by our classifier algorithm. Bzip2 is 

considered to be harmless application by our classifier algorithm. According to the 

classification, our partition algorithm gave more cache resources to harmless application 

than very harmful application. At the end, when we compared to baseline, the total 

throughput increase is approximately %4. 

 

After these quad tests, we try to evaluate fairness for eight core and eight application on the 

same configuration. Here are the results: 

 

In the figure 5.8, we executed bzip2, milc, povray, gcc, omnetpp, namd, sjeng and href264 

traces concurrently. Bzip2, milc, povray, gcc and namd are considered to be harmful 

application by our classifier algorithm. The rest of applications are considered to be very 

harmful. Our partition algorithm also gave more cache resources to harmful application than 

very harmful application. At the end, when we compared to baseline, the total throughput 

increase is approximately %1. 

 

 

 

Figure 5.8. results of bzip2, milc, povray, gcc, omnetpp, namd, sjeng, href264 
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Figure 5.9. Whole Test Results 

 

The figure 5.9. shows the whole quad tests that we done. As you see, generally the 

throughput value of our partitioning algorithm is bigger than baseline. 
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6. CONCLUSIONS AND FUTURE WORK 

 

In this project, we tried a new cache partitioning algorithm that partitions the LLC for better 

performance. We designed and implemented a mechanism that classifies applications 

periodically at run time. Our initial method tries to give more partitions to applications that 

are classified as harmless.  We accept these findings and the work successful enough since 

it provides a framework to carry on further studies in the same research area. We have four 

directions in our future work: 

1. The classifier circuitry that we use in this study might be changed in a future study. Here, 

we classify an application as very harmful if it steals cache sets from other applications 

and does not get any benefit from accessing the LLC. However, in our tests, we find that 

even the applications that we classify as very harmful we observe performance 

degradations which we do not expect. That may mean that our classifier may need to 

have additional tweaking and tuning. 

 

2. The second thing, our classification algorithm is not relative. If the range of core weights 

between 0 and 6, according to our proposed distribution, we obtain only 

“No_Operation”,  “Harmless”, “Harmful”. But we don’t obtain very harmful class.  In 

reality, the core weight value of 5 and 6, is more harmful than 3 and 4. When our 

classification algorithm is relative, these distribution can be like this: 

 

Table 6.3. New distribution approach for future works 

 

Value of core weight classification 

0 No_OPERATION 

1,2 Harmless 

3,4 Harmfull 

5,6 Very Harmful 
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3. The third thing we can work on is the number of partitions that we assigned to different 

class of applications. In this study, we just tried an allocation strategy that was making 

the most possible sense: Very harmful applications are harmful to other applications, 

and, therefore, they should receive the minimum amount of cache partitions. However, 

other strategies need to be further investigated in a future work. 
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