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ABSTRACT

A NEW APPROACH TO SET-BASED DYNAMIC CACHE
PARTITIONING ON CHIP MULTIPROCESSORS

Modern processors contain multiple cores which enables them to concurrently execute
multiple applications on a single chip in parallel. As the number of cores on a chip increases,
the pressure on the memory system to sustain the memory requirements of all the
concurrently executing threads increases. Worst of all, today’s processor architectures bring
many cores next to each other and hope that the applications running on these cores are going
to share the last level cache without any problem. As a result, applications, which have no
clue that there are other neighbors competing for the same resources, think that each of them
has a dedicated cache and start a competition of stealing cache lines from each other without
even knowing it. In such cases, an application with a large memory foot print may spoil the
cache and, suddenly, this may render the last level cache in a position bringing more harm
(drop of performance, unnecessary power and energy dissipation) than any good. So, one of
the keys to obtaining high performance from multicore architectures is to manage the Last
Level Cache (LLC) efficiently.

This new approach calculates the efficiency of each application with the help of application-
based runtime statistics collected by hardware counters. According to these statistics, we
classify the threads that are executed concurrently. At the end, we try assigning Last Level
Cache partitions to running threads considering their instant behavior detected by the
Classifier circuit. Consequently, the system aims to improve the performance of individual
applications and total system throughput by giving more cache sets to the applications with
more throughput potentials when they receive more cache resources. The secondary aim of

the proposed method is its scalable design for many-core architectures.
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OZET

COKLU MIKROISLEMCILERDE SET-BAZLI DINAMIK
ONBELLEK PAYLASIMINA YENI BiR YAKLASIM

Modern islemciler, tek bir ¢ip iizerinde paralel olarak ayni anda birden fazla uygulama
calistirmasina olanak saglayan ¢oklu cekirdek igerir. Bir ¢ip igerisindeki ¢ekirdek sayisi
arttikca, ayni anda calisan tiim uygulamalarin bellek gereksinimlerini siirdiirmek i¢in bellek
sistemi Uizerindeki baski artar. Hepsinden kétiisti, gliniimiiz islemci mimarileri birgok
cekirdegi yanyana getirip, bu ¢ekirdekler tizerinde ¢alisan uygulamalarin herhangi bir sorun
olmadan son seviye Onbellegi paylasmasini ummaktadir. Sonug olarak, bu uygulamalarin
aym bellek kaynaklar: igin rekabet eden diger komsulari oldugununa dair higbir ipuglar
olmadig gibi, bu uygulamalarin her biri 6zel bir 6nbellege sahip oldugunu da diisiinmektedir
ve hatta bilmeden birbirinden 6nbellek hatlar1 ¢almak igin rekabet igine girmektedirler. Bu
gibi durumlarda, bir uygulama genis bir bellek ayak izi ile 6nbellegi yagmalayabilir, bu
durum aniden son seviye Onbellegi, faydadan ¢ok daha zararl (performans diisiisii, gereksiz
giic ve enerji yayilimi) bir pozisyona getirebilir. Yani, ¢ok ¢ekirdekli mimarilerden yiiksek
performans elde etmek igin gerekli anahtarlardan biri, son seviye 6nbellegi verimli olarak

yonetmektir.

Bu yeni yaklasim, donanim sayaglar1 tarafindan toplanan uygulama tabanli ¢alisma zamani
istatistikleri yardimu ile her bir uygulamanin verimini hesaplar. Bu istatistiklere gore, biz
ayni1 anda ¢alisan uygulamalar1 siniflandirmaktayiz. Sonunda, uygulamalarin siiflandirici
devresi tarafindan tespit edilen anlik davraniglarini dikkate alarak, ayni anda g¢alisan bu
uygulamalara Son Seviye Onbellek boliimlerini paylastirmay1 denemekteyiz. Sonug olarak
bu calisma ile, daha fazla onbellek kaynagi aldiginda, daha fazla is ¢ikarma potansiyeline
sahip uygulamalara daha fazla 6nbellek seti vererek, sistemin bireysel uygulamalarin toplam
verimi ve performansini gelistirmesi amaclamaktadir. Onerilen ydntemin ikincil amac, ¢ok

¢ekirdekli mimariler i¢in 6l¢eklenebilir bir tasarimdir.
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1. INTRODUCTION

1.1. CHIP MULTIPROCESSORS

As the number of transistors on chip continues to increase there came numerous ways to
better utilize the silicon on chip. The initial approach was the superscalar architecture
(shown in Figure 1.1). Superscalar means executing multiple instructions at the same time.
Superscalar processors were developed to execute multiple instructions from a single,
conventional instruction stream on each cycle. These function by dynamically examining
sets of instructions from the instruction stream to find ones capable of parallel execution on
each cycle, and then executing them, often out-of-order with respect to the original sequence.
This takes advantage of any parallelism that may exist among the numerous instructions that
a processor executes, a concept known as instruction-level parallelism (ILP). Both
pipelining and superscalar instruction issues have flourished because they allow instructions
to execute more quickly while maintaining the key illusion for programmers that all
instructions are actually being executed sequentially and in-order, instead of overlapped and
out-of-order.
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Figure 1.1 Floorplan for the six-issue dynamic superscalar
Microprocessor [1]



Unfortunately, it is becoming increasingly difficult for processor designers to continue using
these techniques to enhance the speed of modern processors. Typical instruction streams
have only a limited amount of usable parallelism among instructions, so superscalar
processors that can issue more than about four instructions per cycle achieve very little
additional benefit on most applications. Figure 1.2 shows how effective real Intel processors
have been at extracting instruction parallelism over time. There is a flat region before
instruction-level parallelism was pursued intensely, then a steep rise as parallelism was
utilized usefully, and followed by a tapering off in recent years as the available parallelism

has become fully exploited. [2]
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Figure 1.2. Intel processor normalized performance per cycle over time [2]

Complicating matters further, building superscalar (Figure 1.3.) processor cores that can
exploit more than a few instructions per cycle becomes very expensive, because the
complexity of all the additional logic required to find parallel instructions dynamically is
approximately proportional to the square of the number of instructions that can be issued
simultaneously. Similarly, pipelining past about 10-20 stages is difficult because each

pipeline stage becomes too short to perform even a basic logic operation, such as adding



two integers together, and subdividing circuitry beyond this point is very complex. In
addition, the circuitry overhead from adding additional pipeline registers and bypass path
multiplexers to the existing logic combines with performance losses from events that cause
pipeline state to be flushed, primarily branches, to overwhelm any potential performance
gain from deeper pipelining after about 30 stages or so. Further advances in both superscalar
issue and pipelining are also limited by the fact that they require ever-larger number of
transistors to be integrated into the high-speed central logic within each processor core—so
many, in fact, that few companies can afford to hire enough engineers to design and verify
these processor cores in reasonable amounts of time. These trends slowed the advance in
processor performance, but mostly forced smaller vendors to forsake the high-end processor

business, as they could no longer afford to compete effectively.

IF ID EX MEM | WB
IF ID EX MEM | WB
I¥ ID EX MEM | WB
I¥ ID EX MEM | WB
IF ID EX MEM | WB
IF ID EX MEM | WB
IF ID EX MEM | WB
IF ID EX MEM | WB
IF ID EX MEM | WB
IF ID EX MEM | WB

Figure 1.3. Superscalar architecture showing multiple executions

Today, however, progress in processor core development has slowed dramatically because
of a simple physical limit: power. As processors were pipelined and made increasingly
superscalar over the course of the past two decades, typical high-end microprocessor power
went from less than a watt to over 100W. Even though each silicon process generation
promised a reduction in power, as the ever-smaller transistors required less power to switch,
this was only true in practice when existing designs were simply “shrunk” to use the new

process technology. However, processor designers kept using more transistors in their cores



to add pipelining and superscalar issue, and switching them at higher and higher frequencies,
so the overall effect was that exponentially more power was required by each subsequent

processor generation (as illustrated in Figure 1.4).
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Figure 1.4. Intel processor power over time

Unfortunately, cooling technology does not scale exponentially nearly as easily. As a result,
processors went from needing no heat sinks in the 1980s, to moderate-sized heat sinks in the
1990s, to today’s monstrous heat sinks, often with one or more dedicated fans to increase
airflow over the processor. If these trends were to continue, the next generation of
microprocessors would require very exotic cooling solutions, such as dedicated water

cooling, that are economically impractical in all but the most expensive systems.

The combination of finite instruction parallelism suitable for superscalar issue, practical
limits to pipelining, and a “power ceiling” set by practical cooling limitations limits future
speed increases within conventional processor cores to the basic Moore’s law improvement
rate of the underlying transistors. While larger cache memories will continue to improve
performance somewhat, by speeding access to the single “memory” in the conventional

model, the simple fact is that without more radical changes in processor design, one can



expect that microprocessor performance increases will slow dramatically in the future,
unless processor designers find new ways to effectively utilize the increasing transistor
budgets in high-end silicon chips to improve performance in ways that minimize both

additional power usage and design complexity.

These limits have combined to create a situation where ever-larger and faster uniprocessors
are simply impossible to build. In response, processor manufacturers are now switching to a
new microprocessor design paradigm: the chip multiprocessor, or CMP. A multi-core
processor (known as a chip multiprocessor or CMP) is a single computing component with
two or more independent actual central processing units (called "cores™), which are the units
that read and execute program instructions. The instructions are ordinary CPU instructions
such as add, move data, and branch, but the multiple cores can run multiple instructions at
the same time, increasing overall speed for programs amenable to parallel computing.
Manufacturers typically integrate the cores onto a single integrated circuit die, or onto

multiple dies in a single chip package. (as shown by Figure 1.5.)
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Figure 1.5. CMPs Architecture



Processors were originally developed with only one core. Multi-core processors were
developed in the early 2000s by Intel, AMD and others. Multicore processors may have two
cores (dual-core CPUs, for example AMD Phenom Il X2 and Intel Core Duo), four cores
(quad-core CPUs, for example AMD Phenom Il X4, Intel's i5 and i7 processors), Six cores
(hexa-core CPUs, for example AMD Phenom Il X6 and Intel Core i7 Extreme Edition
980X), eight cores (octo-core CPUs, for example Intel Xeon E7-2820 and AMD FX-8350),
ten cores (for example, Intel Xeon E7-2850), or more. A multi-core processor implements
multiprocessing in a single physical package. Designers may couple cores in a multi-core
device tightly or loosely. For example, cores may or may not share caches, and they may
implement message passing or shared memory inter-core communication methods. Common
network topologies to interconnect cores include bus, ring, two-dimensional mesh, and
crossbar. As you see in the figure 1.6., Homogeneous multi-core systems include only

identical cores, heterogeneous multi-core systems have cores that are not identical.

Homogeneous Heterogeneous

Multi-Core Processor Configuration

Multi-Core Processor Configuration

CORE A CORE A

Multiple cores of the same type are

implemented in one CPU.

Multiple cores of different types are

implemented in one CPU.

Figure 1.6. Homogeneous vs. Heterogeneous CMPs




CMPs require a more modest engineering effort for each generation of processors, since each
member of a family of processors just requires stamping down a number of copies of the
core processor and then making some modifications to relatively slow logic connecting the
processors to tailor the bandwidth and latency of the interconnect with the demands of the
processor, but does not necessarily require a complete redesign of the high-speed processor
pipeline logic. Moreover, unlike with conventional multiprocessors with one processor core
per chip package, the system board design typically only needs minor tweaks from
generation to generation, since externally a CMP looks essentially the same from generation
to generation, even as the number of cores within it increases. The only real difference is
that the board will need to deal with higher memory and I/0 bandwidth requirements as the
CMPs scale, and slowly change to accommodate new 1/O standards as they appear. Over
several silicon process generations, the savings in engineering costs can be very significant,
because it is relatively easy to simply stamp down a few more cores each time. Also, the
same engineering effort can be amortized across a large family of related processors. Simply
varying the numbers and clock frequencies of processors can allow essentially the same
hardware to function at many different price and performance points.

Of course, since the separate processors on a CMP are visible to programmers as separate
entities, we have replaced the old model for programmers with a new parallel programming
model. With this kind of model, programmers must divide up their applications into semi-
independent parts, or threads, that can operate simultaneously across the processors within
a system, or their programs will not be able to take advantage of the processing power
inherent in the CMP’s design. Once threading has been performed, programs can take
advantage of thread-level parallelism (TLP) by running the separate threads in parallel, in
addition to exploiting ILP among individual instructions within each thread. Unfortunately,
different types of applications written to target “conventional” Von Neumann uniprocessors

respond to these efforts with varying degrees of success.

1.2. THE APPLICATION PARALLELISM LANDSCAPE

To better understand the potential of CMPs, we survey the parallelism in applications. Figure
1.7 shows a graph of the landscape of parallelism that exists in some typical applications.

The X-axis shows the various conceptual levels of program parallelism, while the Y -axis



shows the granularity of parallelism, which is the average size of each parallel block of
machine instructions between communication and/or synchronization points. The graph
shows that as the conceptual level of parallelism rises, the granularity of parallelism also
tends to increase although there is a significant overlap in granularity between the different
levels.[2]

e Instruction: All applications possess some parallelism among individual instructions in
the application. This level is not illustrated in the figure, since its granularity is simply
single instructions. As was discussed previously, superscalar architectures can take
advantage of this type of parallelism.

e Basic Block: Small groups of instructions terminated by a branch are known as basic
blocks. Traditional architectures have not been able to exploit these usefully to extract
any parallelism other than by using ILP extraction among instructions within these small
blocks. Effective branch prediction has allowed ILP extraction to be applied across a few
basic blocks at once, however, greatly increasing the potential for superscalar
architectures to find potentially parallel instructions from several basic blocks

simultaneously.
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Figure 1.7. A summary of the various “ranges” of parallelism that different processor
architectures may attempt to exploit [2]



Loop Iterations: Each iteration of a typical loop often works with independent data
elements, and is therefore an independent chunk of parallel work. (This obviously does
not apply to loops with highly dependent loop iterations, such as ones doing pointer-
chasing.) On conventional systems, the only way to take advantage of this kind of
parallelism is to have a superscalar processor with an instruction window large enough
to find parallelism among the individual instructions in multiple loop iterations
simultaneously, or a compiler smart enough to interleave instructions from different loop
iterations together through an optimization known as software pipelining, since hardware
cannot parallelize loops directly. Using software tools such as OpenMP, programmers
have only had limited success extracting TLP at this level because the loops must be

extremely parallel to be divisible into sufficiently large chunks of independent code.

Tasks: Large, independent functions extracted from a single application are known as
tasks. For example, word processors today often have background tasks to perform spell
checking as you type, and web servers typically allocate each page request coming in
from the network to its own task. Unlike the previous types of parallelism, only large-
scale symmetric multiprocessor (SMP) architectures composed of multiple
microprocessor chips have really been able to exploit this level of parallelism, by having
programmers manually divide their code into threads that can explicitly exploit TLP
using software mechanisms such as POSIX threads (pthreads), since the parallelism is at

far too large a scale for superscalar processors to exploit at the ILP level.

Processes: Beyond tasks are completely independent OS processes, all from different
applications and each with their own separate virtual address space. Exploiting
parallelism at this level is much like exploiting parallelism among tasks, except that the

granularity is even larger.

The measure of application performance at the basic block and loop level is usually defined

in terms of the latency of each task, while at the higher task or process levels performance is

usually measured using the throughput across multiple tasks or applications, since usually
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programmers are more interested in the number of tasks completed per unit time than the

amount of time allotted to each task.

The advent of CMPs changes the application parallelism landscape. Unlike conventional
uniprocessors, multicore chips can use TLP, and can therefore also take advantage of threads
to utilize parallelism from the traditional large-grain task and process level parallelism
province of SMPs. In addition, due to the much lower communication latencies between
processor cores and their ability to incorporate new features that take advantage of these
short latencies, such as speculative thread mechanisms, CMPs can attack fine-grained

parallelism of loops, tasks and even basic blocks.

As chip multiprocessors (CMPs) become increasingly mainstream, architects have likewise
become more interested in how best to share a cache hierarchy among multiple simultaneous
threads of execution. The complexity of this problem is exacerbated as the number of
simultaneous threads grows from two or four to the tens or hundreds. However, there is no
consensus in the architectural community on what “best” means in this context. We try to
find the best efficient management of shared last level caches in our proposed design and

focus on it.

1.3. CACHE ORGANIZATION

1.3.1. CACHE TERMINOLOGY

The cache within the processor is used by the central processing unit of a computer to reduce
the average time to access memory. The cache is smaller than memory and the cache is faster
than memory. The cache stores copies of the data from the most frequently used main
memory locations. As long as most memory accesses are cached memory locations, the

average latency of memory accesses will be closer to the cache latency.

Most modern server CPUs have at least three independent caches:

1. aninstruction cache to speed up executable instruction fetch (I-Cache)
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2. adata cache to speed up data fetch and store (D-Cache)
3. a translation look aside buffer (TLB) used to speed up virtual-to-physical address

translation for both executable instructions and data.

If the particular address is found in the cache, the block of data is sent to the CPU, and the
CPU goes about its operation until it requires something else from memory. When the CPU

finds what it needs in the cache, a hit has occurred. (as shown Figure 1.8.)

}

24-B|T ADDRESS

10BITS 1 BITS 3BITS

VALID? TAG DATA
WHicH  (1BIT) (10BITS) (8 BYTES)
SET ? T } CACHE SET
2048
SETS

[ | [ | [ |
Vo
DOES

TAG MATCH?

Figure 1.8. Cache hit

When the address requested by the CPU is not in the cache, a miss has occurred and the
required address along with its block of data is brought into the cache according to how it is

mapped. (as shown Figure 1.9.)
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\

0x345678

0xD1 0x2CF 0x0 3 BITS

10 BITS 11 BITS
VALID?  TAG DATA
WHICH 4 'gIT) (10 BITS) (8 BYTES)
SET ?

0xD1
0x37 LOW 4 BYTE WORD | HIGH 4 BYTE WORD

SET |
NUMBER —

2CF
L/ |

TAG DOESNT MATCH =
CACHE MISS!

Figure 1.9. Cache miss

1.3.2. CACHE MAPPING TECHNIQUES

Cache mapping is the method by which the contents of main memory are brought into the
cache and referenced by the CPU. The mapping method used directly affects the

performance of the entire computer system..

Direct Mapping: Main memory locations can only be copied into one location in the cache.
This is accomplished by dividing main memory into pages that correspond in size with the

cache. Direct mapping is shown in the Figure 1.10.




13

Direct Mapped
Cache Fill
Main
Memory Cache
Index Memo

Index 3

(W Sy Y [ WY PO e

Each bcation in mam memony can be
cached by just one cache bcaton,

Figure 1.10. Direct Mapping Method

Fully Associative Mapping: Fully associative cache mapping is the most complex, but it
is most flexible with regards to where data can reside. A newly read block of main memory
can be placed anywhere in a fully associative cache. If the cache is full, a replacement
algorithm is used to determine which block in the cache gets replaced by the new data.
(Figure 1.11.)
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Figure 1.11. Fully associative cache mapping
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Set Associative Mapping: Set associative cache mapping combines the best of direct and

associative cache mapping techniques. As with a direct mapped cache, blocks of main

memory data will still map into as specific set, but they can now be in any N-cache block

frames within each set. (See Figure 1.12.)
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Figure 1.12. Set associative cache mapping

1.3.3. CACHE READ & WRITE, REPLACEMENT

CACHE READ : The two primary methods used to read data from cache and main memory

are as follows:

Look-through read: In look-through read, the cache is checked first. If a miss occurs, the

reference is sent to main memory to be serviced. This is known as a serial read policy.

Look-aside read A look-aside read presents both cache and main memory with the
reference simultaneously. Since the cache will respond faster, if a hit occurs, the request

can be terminated before main memory responds. This is known as a parallel read policy.
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CACHE REPLACEMENT POLICIES: When new data is read into the cache, a replacement
policy determines which block of old data should be replaced. The objective of replacement
policies is to retain data that is likely to be used in the near future and discard data that won’t
be used immediately. The replacement policies include the following:

e FIFO: The first block that was read into cache is the first one to be discarded.

e LRU: The block that hasn’t been used in the longest period of time is replaced by the
new block.

o Random: Blocks are replaced randomly.

CACHE WRITE: Since the cache contents are a duplicate copy of information in main
memory, writing (instructions to enter data) to the cache must eventually be made to

the same data in main memory. This is done in two ways as follows:

e Write-through cache: Writing is made to the corresponding data in both cache and main
memory.
e Write-back cache: Main memory is not updated until the cache page is returned to main

memory.

1.4. MOTIVATION

Nowadays, one of the biggest problems in affecting performance of multi-core processing is
memory wall problem or memory bottleneck problem. As is known, each application has its
own resource requirements. Moreover, each application may show its own characteristic
behavior. For example, despite some applications want too much resource, their performance
(IPC) values may be extremely low. Unlike, some applications may show very high
performance with very little resources. However, it is not clear that we will be successful
when we try to run many applications in different characteristics on the same processor in
the last level cache which should be shared by different cores. At this point, we make a
preliminary study for answering the following question: when a last level cache is shared in

an uncontrolled manner what is its impact on performance? We use the Macsim [14]
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simulator, we run some representative SPEC 2006 [25] applications which are compiled on
a processor at high optimization levels. The details of processor configuration are shown in
Table 1.1.

Table 1.1: Multi-core processor configuration

Parametre Configuration
L1 I-Cache (instruction) 64 KB, 64-sets, 128B block, 8-Way, LRU Replacement
L1 D-Cache (data) 64 KB, 128-sets, 64B block, 8- Way, LRU Replacement

L2Cache (instruction+data) | 512 KB, 1024-sets, 64B block, 8- Way, LRU Replacement

L3 Cache (shared) 4 MB, 1024-sets, 64B block, 16- Way, 4-tile, 8-way, LRU
Replacement

In Figure 1.12, 1.13 and 1.14, we see that the applications that we run in this preliminary
study need to access a lot of memory. In the three-dimensional graphs, x-axis represents the
sets on the shared last level cache, y-axis represents time periods each of which consists of
655360 (640K) cycles, and z-axis represents number of accesses to the respective sets at
certain times. As seen in Figure 1.12, the gcc application uses too much of the last level
cache and it gains a performance benefit from this. The hit rate of this application to the last
level cache is around 75%. In the application presented in figure 1.13, the Ibm shows
completely different characteristics compared to that of gcc. This application needs the last
level cache much more than gcc. However, when this application access to an address, it
does not reach to the same address and, therefore, it cannot benefit from the cache but pollute
it. In that case, if these two applications work together in an uncontrolled manner, gcc will
always be a loser. Lbm will not lose any performance in case of a pollution of the cache.
Because, Ibm appears to be using the cache but actually it is not. Gee application, on the
other hand, experiences huge miss rates and lower performance results because Ibm
contaminates the entire cache. In Figure 1.14, we see the cache activity when gcc and lbm
work together. Table 1.2 shows the performance impact of this mutual run on each of these

benchmarks.
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Table 1.2. Performance loss for Mixture “gcc” and “lbm”
Application Performance Loss
“gec” 9.8%
6‘lbm’, %0

When the above scenario is considered, one can think that punishing the harmful Ibm
application, which has 0% hit rate to the last level cache, might be a good idea. Actually,
this may be an effective solution for such a case, but there are also counter-examples that
exist. In Figure 1.15, mcf replaces Ibm. As it can be seen from this graph, mcf application
also pollutes the entire cache. The hit rate of the mcf is about 8%. However, when we run

one gcc application and 3 mcf applications together, none of the applications receive any

18
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performance penalty, as the details are shown in Table 1.3. If we prevent the mcf application

accessing to the last level cache, performance degradation of this application is less than 1%.

So in that case, unlike Ibm, mcf should be classified as a harmless application, and we need
a mechanism that does not punish such applications.
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Figure 1.16 Cache Statistics for “mcf”
Table 1.3 Performance loss for Mixture “gcc” and three “mcf”s
Application Performance Loss

“gee” 0%

“mcf #1” 0%

“mcf #2” 0%

“mcf #3”

0%
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2. LITERATURE SURVEY

A simple solution, which prevents starvation of threads while sharing of the last level cache,
iIs known as the static partitioning. In this approach, a portion of the shared cache is
dedicated to a core. The size and the location of each partition are fixed and are not changed
at run time. Unfortunately, assigning fixed partitions to applications and hoping for the best
is not a good idea; a memory-intensive application always needs more cache space whereas
a computational-intensive application may not initiate any cache access at all. In such cases

inefficient resource usage is imminent.

The dynamic partitioning of shared caches is surely more efficient technique than the static
partitioning. In literature, there are several significant research attention. Multiple cores can
be allowed to share a cache by allocating each core a portion of the cache space. This
partitioning can be done either at the coarser granularity of cache ways (this method known
as Way-Based Cache Partitioning), as done in [6, 9, 10, 14], or at the finer granularity of
cache sets or blocks (this method known as Set-Based Cache Partitioning), as done in
Vantage [13].

Way-partitioning is popular because of its simplicity of design. It allows for different
performance goals like hit maximization [10] and fair sharing [6] to be enforced without
introducing much additional hardware complexity. However way-partitioning can be
inefficient as it only allows partition sizes to grow or shrink by a fixed large size (inversely
proportional to the associativity) while it is possible that the optimal size for a partition falls
in between. As the number of cores increases and becomes comparable to the number of
ways, such scenarios are likely to occur more frequently. So, this method has serious
drawbacks in terms of performance and scalability. Especially, when it is assumed that there
will be many-core processors, such as Intel MIC, in the near future, the most recently
proposed studies are moving away from this method and searching more scalable

mechanisms. Here are the disadvantages of way-based partitioning briefly:

® |imited to coarse-grain allocations
= Only support few partitions

®  Reduce cache associativity
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= No scalibility

® | ow performance

There are many advantages of a set-based cache-partitioning mechanism compared to a way-
based partitioning mechanism. We also use this technique in our proposed design. Here, we

list some of them which motivate our study:

e Finer-grain control on a typical last level cache: There are much more cache sets than
cache ways. When the caches are partitioned on ways, the minimum resizing amount is
set in a much coarser-grain. If the application requires only a part of this additional
resource, oscillations may be observed in the control mechanism when resource

downsizing and upsizing decisions are taken.

e Cache policy freedom and keeping cache structure as it is: When the cache ways are
assigned to different applications, the default cache policies and organization can no
longer be used. On the contrast, when a set-based partitioning is utilized, no

modifications are needed on an existing cache organization.

e Minimum additional circuitry: In a way-based partitioning scheme, each cache way
requires multiple counters and wires to collect way-based statistics. That means there is
a limit for the number of ways each way-based partitioning mechanism can ideally
support. In a set-based scheme, even a fully-associative cache configuration might be
feasible, and the number of counters necessary to collect statistics is limited only by the

number of cores.

In literature, Utility-Based Cache Partitioning (UCP) [10] uses way-based cache
partitioning. This figure shows the framework to support UCP between two applications that
execute together on a dual-core system. One of the two applications execute on CORE1 and
the other on CORE2. Each core is assigned a utility monitoring (UMON) circuit that tracks
the utility information of the application executing on it. The UMON circuit is separated

from the
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shared cache, which allows the UMON circuit to obtain utility information about an
application for all the ways in the cache, independent of the contention from the application
executing on the other core. The partitioning algorithm uses the information collected by the
UMON to decide the number of ways to allocate to each core. The replacement engine of
the shared cache is augmented to support the partitions allocated by the partitioning

algorithm. (See Figure 2.1.)

PARTITIONING)
L ALGORITHM
| UMON{ | UMON2
A Y A
ICACHE SHARED ICACHE
DCACHE i DCACHE
MAIN MEMORY

Figure 2.1. Hardware implementation of Utility-Based Cache Partitioning [10]

The partitioning algorithm reads the hit counters from all the UMON circuits of each of the
competing applications. The partitioning algorithm tries to minimize the total number of
misses incurred by all the applications. The utility information in the hit counters directly
correlates with the reduction in misses for a given application when given a fixed number of
ways. Thus, reducing the most number of misses is equivalent to maximizing the combined
utility. If A and B are two applications with utility functions UA and UB respectively, then
for partitioning decisions, the combined utility (Utot) of A and B is computed for all possible

partitions for the baseline 16-way cache:

Upor (@) = UAL + UBI®~t.. FOR i =1 to (16-1) (2.1)

The partition that gives the maximum value for Utot is selected. In our studies, we guarantee
that the partitioning algorithm gives at least one way to each application. We invoke the
partitioning algorithm once every five million cycles (a design choice based on simulation
results). After each partitioning interval, the hit counters in all UMONSs are halved. This
allows the UMON to retain past information while giving importance to recent information.
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The dynamic partitioning of shared caches is first investigated by Suh et al [4]. The proposed
study is based on a low overhead, online memory monitoring scheme utilizing a set of
hardware counters. The counters indicate the marginal gain in cache hits as the size of the
cache is increased. The study suggests a partition module, which uses a greedy algorithm to
allocate each cache block to a process that obtains maximum marginal gain by having one
additional block.

Stone et al. [18] developed a model for studying the optimal allocation of cache memory
among multiple access streams. They experimentally determine a miss rate curve that maps
cache size to miss rate for a reference stream, and then fit that curve to an exponential
function. Noting that the total miss rate for a pair of memory access streams is the average
of the two contributing miss rates, they point out that solving for a minimal miss rate merely
involves taking the derivative of this equation, setting it to zero, and solving. They also
showed that LRU typically comes close to achieving optimal performance. They focused on
partitioning a cache between the instruction and data access streams of a single workload,

and did not consider partitioning across multiple workloads.

Thiebaut et al [23] build on Stone's work to partition disk caches for maximal hit ratios. They
utilize shadow tags, which are tags without data, to indicate hits that could have occurred
had there been a larger allocation. Using this information, they calculate the marginal gain
of adjusting the cache allocation. They note that a problem with implementing

a greedy marginal gain algorithm with this methodology is actually finding the memory
stream with the largest marginal gain, since the functions are non-monotonic. They resort to
performing a sort every time they update a partition. Their study assumed fully associative
disk caches and partitioning on a disk block granularity. This amount of computation is likely

too hefty for a CMP, while it is acceptable for a long latency entity like a disk cache.

Hsu et al. [5] examine various cache policies such as communist and utilitarian policies. The
communist policy tends to achieve fairness rather than maximizing the performance for
running threads. The utilitarian policy tends to do just the opposite. The authors propose the
usage of instruction per cycle (IPC), misses per access matrices and weighted IPC metric,
and conclude that using a traditional cache replacement policy such as LRU and performing
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static cache partitioning is not sufficient to provide near optimal performance. They state
that a thread-aware cache resource allocation mechanism is required, and the sole use of
communist or utilitarian policy for partitioning cache in CMP may not work perfectly for

some type of workloads.

Chiou et al. [19] propose a partitioning scheme that partitions at the granularity of cache
ways. Partitioning is achieved by limiting the cache ways in which a thread can place its
data. The exibility in placement is thus limited.

Settle et al. [7] also investigate dynamic cache partitioning mechanism based on cache ways.
The partition control mechanism gives large percentage of available cache storage to
applications with high degree of global data reuse to increase chances of process utilization.
When the thread id of a cache request differs from that of the normal LRU candidate, the
cache controller checks the reuse of the candidate line to determine its potential for harming
the system performance. The reuse is simply the cache access frequency counter used in
least frequently used (LFU) cache replacement policies. If the reuse rank of a line is higher
than a threshold value, the line is not considered for eviction. This algorithm increases the
time that data from another thread stays in the cache. Thus, in case where one thread has a
very high cache access frequency, this technique will make it less likely for the high
frequency thread to evict important data belonging to another thread that accesses the cache

much less often.

Kim et al. [6] present a cache partitioning algorithm which focuses on fairness in a small
scale CMP using SPEC2000 benchmarks. They evaluate several metrics and correlate them
to execution time to determine what a good online metric to drive their policy decisions
should be, and develop an algorithm that attempts to keep those metrics as equal as possible

throughout execution time.

Lin et al. [8] propose partitioning the cache based on an O/S technique called page coloring.
A page color consists of several common bits between the cache index and the physical page
number in the physical address. A physically addressed cache is divided into non-

intersecting regions by page color, and pages with the same color are mapped to the same
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cache region. By assigning different page colors to different processes, the cache space is

partitioned between cores.

Chandra et al. [24] deal not with partitioning but with predicting inter-thread cache
contention in a shared cache on a CMP, with the intent to use this information to prevent
thrashing in a shared cache. They present a mechanism to accurately predict when threads

will thrash, though they do not present a means to prevent it.

Rafique et al. [9] propose using a hardware quota enforcement mechanism tomanage shared
caches in CMP while a communication between the hardware and O/S establish to apply a
variety of policies by tuning the quotas during regularly scheduled O/S interventions.
Disadvantage of this work is the limitations of the proposed hardware mechanism that only

supports a coarse granularity of cache allocation.

Qureshi and Patt [10] partition the cache-ways dynamically among competing applications.
They propose a low overhead utility hardware circuit that monitors the reduction in misses
for each application for a given amount of cache resource. Later, they collect the information
by a circuit named utility monitor (UMON) used for deciding the amount of cache resources
that each application need for periodic intervals. Using the monitored statistics, UMON can
derive the optimal L2 cache partition that would minimize the total number of misses, as this

number corresponds to the sum of misses of each thread with the assigned number of ways.

Moreto et al. [20] propose a dynamic cache partitioning mechanism to maximize the total
throughput of running threads by minimizing the total cost. The algorithm assigns higher
costs to isolated L2 misses due to their higher impact on performance, and assigns lower
costs to clustered L2 misses. The cost assigning process is implemented by extra hardware,
which are auxiliary tag directory (ATD), miss status holding register (MSHR) and hit status
holding register (HSHR). The job of ADT is to keep track of the L2 accesses for any possible
cache configuration. MSHR and HSHR are used to compute the memory level parallelism
(MLP) cost of the access. Moreover, they also keep track of stack distance of each access.
Based on the gathered information from the MLP cost and stack distance, a performance

benefit of converting L2 misses into hits when assigning more ways to a thread is estimated.
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Sanchez and Kozyrakis [13] introduce a cache partitioning scheme named Vantage, which
maintains high associativity and strong isolation among partitions. Their mechanism
maintains the size of each partition by matching the average rates at which lines enter and
leave a partition. The authors claim that Vantage works best with a special cache
architecture, Zcache [12]. However, they also indicate that the proposed mechanism may

work with a 16-way set associative cache with less promising results.

lyer [21] presents a framework for providing differentiated services to various threads via
the cache hierarchy ina CMP. The framework consists of classifying heterogeneous memory
streams, assigning priorities, and enforcing them. He presents several means of enforcing a

partition, including selective allocation and set partitioning.

Fedorova et al. [26] present an operating system scheduling algorithm to deduce which sets
of threads would coexist the best to schedule at the same time. Their goal is to schedule
threads which would yield the lowest overall miss rates without starving any threads. This
technique may not be relevant on large scale CMPs where the number of software threads
may not outnumber the number of hardware threads by so much as to make scheduling an
issue. Furthermore, large scale CMPs will likely support multiple virtual machines, making

system-wide optimization outside the scope of any one OS scheduler.

One of the few studies that focus on set-based scalable partitioning of cache resources is
Vantage, and it does cache block replacement by utilizing multi-level complex hash
functions and arranges partition sizes by regulating the number of addresses inserted into the
cache and number of addresses that are evicted from the cache. Besides, this method can
work well with a cache known as Zcache [12]. The team also reports that they tried to
integrate their proposed design with a standard cache and they cannot come close to the
results they had with the Zcache.
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Figure 2.2. Vantage managed-unmanaged region division [12]

Vantage [12] is the only known scheme that proposes a fine grained partitioning framework.
However it achieves this only for a portion and not all of the cache and does so with
significant changes to the hardware. Vantage on the other hand logically partitions the cache
into ‘managed’ and ‘unmanaged’ regions and achieves the desired target occupancy in the
‘managed’ portion of the cache by borrowing space from the unmanaged region. This is a
fundamental change to the cache organization. Also vantage requires the replacement

policies, including commonly used LRU, to be implemented in a VVantage-friendly fashion

Manikantan et al [22] proposes Probabilistic Shared Cache Management (PriSM), a
framework to manage the cache occupancy of different cores at cache block granularity by
controlling their eviction probabilities. The proposed framework requires only simple
hardware changes to implement, can scale to larger core count and is flexible enough to
support a variety of performance goals. We demonstrate the flexibility of PriSM by
implementing three allocation policies to achieve Hit-Maximization (PriSM-H), Fairness
(PriSMF) and QOS (PriSM-Q) in our proposed framework. We demonstrate the scalable
nature of our solution by studying its performance from low core count (4-cores) to high

core count (32-cores).
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3. SET-BASED DYNAMIC CACHE PARTITIONING ON CHIP
MULTIPROCESSORS

This chapter explains the design and implementation details of our proposed design. In
briefly, our proposed solution tries to classify applications running on the system according
to runtime statistiscs like hit rate, miss rate and cache invalidations. Then, based on the
classification of the applications, Partitioner allocates new resources to each application. We
have identified 655360 Cycle (640 KCycle) as the threshold value for making three steps

below:
On each epoch (640 KCycyle) do the following steps:

Step 1. Until number of cycles reaches a certain threshold, continue to gather

statistics about the applications running on the system.

Step 2. After this threshold is reached, classify the applications according to the data

collected as “harmless”, “harmful” or “very harmful” or “no operation”.

Step 3. Based on the result of the classification process, Partitioner decides how to
distribute the cache among the applications.

In Figure 3.1, a feedback mechanism that is needed to realize the above mentioned steps is
shown. As can be seen from the figure, our proposed design is settled in front of the last
level cache to provide access control with the help of a structure, which we call the Partition

Map. This circuit can work with all kinds of last level cache organizations.

Cache

Statistics
'y

Core Classes

Partitioner

Access
Physical Address Mask

and
Guard

¥

> Last Level
Cache

Figure 3.1. Our proposed design cache organization



3.1. CACHE STATISTICS

In order to collect cache statistics, we partition the last level cache as follows:
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Figure 3.2. Logic cache partitioning of our design
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In the figure 3.2, we select the last set of each part for set-dueling on LLC (shown in black).

We allow all cores to access these sets. At any time, any core can access these duel sets. We

calculate Steal Rate, Miss Rate and Traffic value using these duel sets.

Traffic: We calculate this value for an each core. This parameter reports the number of

access per core on duel sets.

Traffic = # of access for that core

3.1)

Steal Rate (%) : This parameter indicates how much an application steal cache blocks from

other applications on duel sets. This value shows us, the ratio of the number of cache sets
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stolen by the application to total traffic of duel sets for that application. We calculate this

value using the equation shown in below:

Steal Rate (%) — # of steal froma core — # of steal froma core (32)

# of access for that core Traffic

Miss Rate (%) : If the data is not in cache, a miss has occurred and then we bring the data
from memory to cache. This parameter reports the ratio of the number of cache sets missed

by the application to total traffic of duel sets for that application.

Miss Rate (%) _ # of miss froma core _ # of miss from a core (3.3)

#of access for that core Traffic

We do not use hit rate, because hit rate is opposite of miss rate. We use only miss rate in
our proposed design. We can write the hit rate formula like this:

Hit Rate = 1 — Miss Rate (3.4)

In the figure 3.2, the rest of cache sets (shown in white) were assigned to a certain core at
any time. At any time, only the owner of these sets can access and use them. If any core
which is not an owner want to access the cache set, we don’t allow to access or use it. When
this occurs, we increase the value of Attempted Steal Count. At the end, we calculate

Attempted Steal Rate parameter:

Attempted Steal Rate (A) — # of attempted steal from a core (35)

#of access for per core (not only duel set traf fic)

This parameter indicates how much an application attempts to steal cache blocks from other
applications. In our proposed design, we prevent applications to access partitions that do not

belong to them. This value, therefore, is not correlated to the previous parameter, steal rate.

At the end, all of these parameters are sent to our Classifier circuitry as inputs. Cache control
mechanism is required to view these parameters periodically to come up with accurate
partitioning decisions. At the end of each period, the Classifier is triggered and the cache is

allocated by the Partitioner, accordingly.
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3.2. CLASSIFIER ALGORITHM

Our classifier algorithm takes as inputs these values: Attempted Steal Rate (%), Steal Rate
(%), Miss Rate (%) and Traffic value. Consequently, it classifies them according to the

algorithm shown below:

If the attempted steal rate of an application is higher than 30%, we set the value of parameter
A to 1. In other cases we set it to 0. Here is the program flow in order to transform of
Attempted Steal Rate to Attempted Steal (A):

A > Attempted Steal

if Attempted Steal Rate (%) > 0.30 then
A=
else
‘ A=0;
end

S is the steal rate. If the steal rate of an application is higher than 75%, we set the value of
parameter S to 2. If the steal rate of an application is between 50% and 75%, we set the value

of parameter S to 1. In other cases we set it to 0.

S = Steal

if Steal Rate (%) > 0.75 then

S=2;

else if Steal Rate (%) > 0.50 then
S=1;

else
S=0;

end
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If the miss rate of an application is higher than 75%, we set the value of parameter M to 2.
If the miss rate of an application is between 50% and 75%, we set the value of parameter M
to 1. In other cases we set it to 0. Again, these are the thresholds obtained from our

preliminary empirical study.

M > Miss
if Miss Rate (%) > 0.75 then
‘ M =2;
else if Miss Rate (%) > 0.50 then
‘ M= 1;
else
‘ M =0;
end

T parameter indicates the degree of traffic in sets duel. If any application access over 100 to
set duel, we set the value of parameter T to 2. If an application access between 50 and 100
then we set the value of parameter 1, in other case we set it to 0. Again, these are the
thresholds obtained from our preliminary empirical study as described in detail in chapter
1.4.

T - Traffic

if Traffic > 100 then

‘ T=2,

else if Traffic > 50 then
| T=y

else

‘ T=0;
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During working hours, characteristics of the applications may be changed, continuously.
Likewise, applications which are run by cores may change from time to time. At the end of
each epoch, Classifier Circuit calculates total weight of each application. When we

calculate the total weight of an application, we use this equation shown below:
Weight =M+ A+ (S*T)+T (3.6)

This formula is obtained from our preliminary empirical study. In this formula, we thought
that effect of the Steal (S) value to the core weight should be higher when the value of Traffic
(T) is too high. So, we multiply the Steal (S) and the Traffic (T) value with each other.

Then according to this total weight value, we classify the applications into four classes which

are harmless, harmful, very harmful and no operation.

This total weight value enables us to classify each application. This value can be between 0
and 9. We decided that if the weight of an application is lower than 2, we called it as no
operation. If the weight of an application is between 2 and 3, we called it harmless. If the
weight of an application is between 4 and 6, we called it harmful. Otherwise, if the weight

of an application is higher than 6 then we called it very harmful.

In the future, in order to be able to doing homogeneous distribution of total weight, dynamic
distribution will be used. In this approach, if the total weight interval is between 2 and 5, the

distribution of above can be different. We can define the value of 5 as very harmful.

Our cache partitioning principle is like that: When an application is classified as “no
operation”, we don’t give any cache sets to this application and we punish it. If an application
is “harmful”, we give it more cache resources than very harmful one. If an application is

“harmless”, we give it more cache resources than harmful one.

3.2.1. CLASSIFIER IMPLEMENTATION

First of all, we defined global variables at the beginning of “memory.cc” file in macsim

simulator, as you see in the Figure 3.3.

Then, we write a new method which is called “classify” in “memory.cc” in order to
implement Classifier. As explained above, firstly, we have to calculate weight of

applications before to classify.
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lLlnsi.gned long total_instructions[8] = {®, 0, 0, ®, @, 0, 0, 0}

2 unsigned long instructions[8] = {08, o, 0, 9, @, 0, 0, 0}; // L3 access instructions
3 unsigned long misses[8] ={e, &, 8, 8, @, 8, 8, 0}; // duel set misses

4

5 unsigned long hits[8] ={e, @, 8, 8, @, 0, 0, 0}; // duel set hits

6 unsigned long insertions[8] = {0, o, 0, 0, 0, 0, ®, 0}; f/ not used

7 unsigned long stolen[8] = {0, o, 6, 0, 0, 0, 0, 0}; [/ steals

8 unsigned long attempted_steal[8] = {0, o, 0, 0, @, 0, 0, 0};

9 unsigned long duel_ instructions[8] = {e@, @, @, @, @, @, @, 0}; // duel set access

10 unsigned long epoch_id = 1;

11

12 unsigned long remaining[8] = {8, o, 0, 0, 0, 0, ®, 0}; // // For Partition Algorithm

13

14 #define PART_SIZE 16 // partition size (how many sets per part.)

15 #define SET_COUNT 1024 J// L3 set count

16 #define DUEL_CONS 1000  // used for duel sets

17 #define NUM_OF_CORES 8

18 #define PART_COUNT (SET_COUNT / PART_SIZE) // partition count

19

20

21 unsigned int allocTable[2][SET_COUNT]; // allocation table

22 unsigned long partitionAccess[NUM_OF_CORES][PART_COUNT]; // partition access counts
23

24 long ConflictResolutionVector[NUM_OF_CORES][PART_COUNT]; // For Partition Algorithm
25 [/esen

26 long AssignedPartition[PART_COUNT]; /f/ For Partition Algorithm

27 long SortedPartitionMatrix[NUM_OF_CORES][PART_COUNT]; // For Partition Algorithm

28 bool firstVisit = 0;

29

30 enum CoreClass {VERY_HARMFUL, HARMFUL, HARMLESS, NO_OPERATION}; [/ enum for classifications
31 CoreClass classes[NUM_OF_CORES]; // holds class of each core

32

33 int set_dueling = 1; // 1-> enabled, ©-> disabled (THIS IS NOT USED)
34 int allocated[8] = { ©, ©, ®, 0, 0, ©, 08, 0}; // holds how many partitions allocated to each core

Figure 3.3. Defining Global Variables
Therefore, firstly we have to calculate miss rate, attempted steal rate, steal rate and traffic.

As seen in Figure 3.4, we use “If” statements to calculate them. If the miss rate of an
application is higher than 0.75, we set the value of miss rate to 2. If the miss rate of an
application is higher than 0.50, we set the value of miss rate to 1. In other cases we set it to
0.

If the steal rate of an applications is higher than 0.75, we set the value of miss rate to 2. If
the steal rate of an application is higher than 0.50, we set the value of steal rate to 1. In other

cases we set it to 0.

If the attempted steal rate of an application is higher than 0.30, we set the value of attempted
steal rate to 1. In other cases we set it to 0.

If the traffic of an application is higher than 100, we set the value of traffic 2. If the traffic
of an application is higher than 50, we set the value of attempted steal rate 1. In other cases

we set it to O.
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1 voild classify()

2{

3 for{int i=8; i<NUM_OF CORES; i++)

4 {

5 float value;

6 int m, s, a, t;

7

8 double misskRate = (double)misses[i]/ duel_instructions[i];

9 if( missRate = 8.75 )

18 m= 2;

11 else if ( missRate > 8.50 )

12 mn=1;

13 else

14 m= @;

15 cout == "thread:” =< 1 << " MISS:" <= misses[1l] =< M:" <= m =< endl;
16

17 double stealRate = (double)stolen[i] / duel_instructions[i];

18 Af( stealRate > 08.75)

19 § = 2;
28 else if({ stealRate > 8.50 )
21 s = 1;

22 else

23 5 = B;

24 cout << "thread: <« 1 << " STOLEN:" << steolen[i] =< " 5:" << 5 == endl;
25

26 double attemptedRate = (double)attempted_steal[i] f instructions[i];
27 if( attemptedRate = 0.30 )

28 a = 1;

29 else

18 a = b;

31 cout << "thread:" << 1 << " ATTSTEAL:" << attempted_steal[l] <= A:" << a =< endl;
3z

33 int traffic = duel_instructions[i];

34 if( traffic » 186 )

35 t = 2;

36 else if( traffic = 58)

37 t=1;

38 else

39 t = 0;

48 cout <= "thread:" << 1 =< " TRAFFIC:" << duel_instructions[i] << " T:" =< t =< endl;
41

Figure 3.4. Classify() method - 1

As seen in Figure 3.5, firstly we calculate the “value”. Then, again we use “If” statements in

order to determine classes of applications.

If the value of application is greater than 6, application can be assigned as “VERY

HARMFUL”. If the value of application is greater than 3, application can be assigned as

“HARMFUL”. If the value of application is greater than 1, application can be assigned as

“HARMLESS”. Other status, application can be assigned as “NO OPERATION”.
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42 value = a +m+ s * t + t;

43

44 cout << "Thread:" << 1 << " value:" << value =< " " ;
45 if( value >= 7 )

46

47 classes[1] = VERY_HARMFUL;

48 cout << "VERY HARMFUL" << endl;
49

50 else if( value == 4)

51 {

52 classes[1] = HARMFUL;

53 cout << "HARMFUL" << endl;

54

55 else if( value >= 2)

56 {

57 classes[1] = HARMLESS;

58 cout << "HARMLESS" << endl;

59 }

60 else

61 {

62 classes[1] = NO_OPERATION;

63 cout << "NO OPERATION" << endl;
64 1

65 1

66 }

67

Figure 3.5. Classify() method - 2

3.3. PARTITIONER ALGORITHM

The task of the Partitioner is to logically allocate set-based cache partitions among cores by
the help of the information coming from the Classifier circuit. As a result, this circuit decides
which core is allowed to access which cache partition. At this point, Partitioner must be
prepared for all kinds of combinations of core classes and must make the best scheduling
effort.

For example, if Classifier reports that four cores are running very harmful applications in a
quad-core processor then Partitioner should partition the cache equally among all such
applications. If Classifier reports that one core is running a very harmful application and
other cores are running harmless applications, then, Partitioner should offer solutions to

reduce the damage which may be created by the harmful application.

We created a table for allocating partitions to each application for all combinations of
application classes. Table 3.1 provides a sample Partitioner table for a quad-core processor
with 64 LLC partitions. In this table, the column named as A0 means that how many LLC

partitions we allocate to Core 0. Likewise, Al, A2 and A3 are the same meaning.
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Table 3.1. Example of Partitioner Table

Core0 Corel Core2 Core3 AO Al A2 A3
0 0 0 0 16 16 16 16
0 0 0 1 18 17 17 12
0 0 0 2 19 19 18 8
0 0 1 1 20 20 12 12
0 0 1 2 20 20 16 8
0 0 2 2 24 24 8 8
0 1 1 1 28 12 12 12
0 1 1 2 24 16 16 8
0 1 2 2 32 16 8 8
0 2 2 2 40 8 8 8
1 1 1 1 16 16 16 16
1 1 1 2 19 19 18 8
1 1 2 2 24 24 8 8
1 2 2 2 40 8 8 8
2 2 2 2 16 16 16 16

In Table 3.1, “0” indicates that an application is harmless, “1” indicates that an application
1s harmful, “2” indicates that an application is very harmful and “3” indicates that an
application is no operation. As can be seen from the Table, initially we are planning to give
minimum number of cache partitions to very harmful applications. Applications that are
classified as harmful receive more partitions than the applications that are very harmful but
fewer partitions than the applications that are harmless.

For example, we plan to give 8 cache partitions to three very harmful applications for a
combination of 0,2,2,2 classes and give 40 cache partitions to the harmless application.

An important point not shown in the Table 3.1 also need to say, the value of “4” indicates
that an application is classified as “No Operation”. In this case, we do not give any partitions

to this application.

After classifying the applications, we assigned partitions to each application. So, we use the
Partitioner algorithm for realizing this step. We use 4 methods in order to implement
Partitioner:

1) ConflictResolution, 2) AssignPartitions, 3)SearchConflictResolutionVector

4) ShiftConflictEntries.
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Figure 3.6. Steps of partitioning algorithm

As seen in Figure 3.6, we have a matrix which is called Access Count, this matrix keeps the
number of access of cores. In Conflict Resolution Vector, we sort the number of access of

each core. To do this, we use the Resolve Conflicts method, as you see in the figure 3.7.
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else Af (current > mas_sccensd)|
man_sccessd ldowmas sccennd \dx;
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man_sccessd dan):
MAE_aCCessSecurrent )

olee AT [current » nas_accessd)|
man_accensd Wdae);
mAx_sccessdstyurcent;

)
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Figure 3.7. Conflict Resolution Algorithm
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We defined some variables, then we set the value of partitionAccess[j][i] to current. After
that, we compare the number of access of cores and current. According to this comparison,
we sort the cores in Conflict Resolution array. For example, when we want to know which
core has the most accesses to partition 18, we need to look
“ConflictResolutionVector[0][18]”. For the second largest number of access for part 18, we
need to look “ConflictResolutionVector[1][18]” and so on. At the end, Conflict Resolution

vector says us, which core is the most access to the each part of LLC.

1 void Assign_Partitions()

24

3 for(int i1=0;1<MUM_OF CORES;i++)

4

5 for(int j=0; j<PART_COUNT;j++)

6 {

7 SortedPartitionMatrix[i1][j]=-1;
8 }

9 1

10

11 for(int n=0;n<PART_COUNT;n++)

12 {

13 AssignedPartition[n]=-1;

14 }

15

16 int core®_currentindex=0;

17 int corel_currentindex=0;

18 int core2_currentindex=0;

19 int core3_currentindex=0;

20 for(int x=0;x<PART_COUNT;x++)

21 {

22 if(ConflictResolutionVector[0][x] == @)
23 {

24 SortedPartitionMatrix[@][core®_currentindex] = x;
25 core®_currentindex++;

26 }

27

28 if(ConflictResolutionVector[0][x] == 1)
29 {

30 SortedPartitionMatrix[1][corel_currentindex] = x;
31 corel_currentindex++;

32 }

33

34 if(ConflictResolutionVector[0][x] == 2)
35 {

36 SortedPartitionMatrix[2][core2_currentindex] = x;
37 core2_currentindex++;

38 1

Figure 3.8. AssignPartition Algorithm - 1

After creating Conflict Resolution Vector, now we defined the AssignPartition method

which is used to sort cores with the helping of ConflictResolutionMatrix.(Figure 3.8.)
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In this algorithm, first we used the matrix which is called SortedPartitionMatrix. This matrix
sorts from largest to smallest according to the number of access of cores. At the end, Sorted
Partition Matrix says us, where core 0 has the most access. This matrix gives the answer to
which part is the most accessed by core 0. Likewise for core 1, core 2 and core 3. When we
want to know which LLC part is the most accessed by core 0, we need to look
SortedPartitionMatrix[0][0] and the second largest access by core 0 is hold
SortedPartitionMatrix[0][1].

In this algorithm, as seen in Figure 3.8, we firstly set the SortedPartitionMatrix to -1. Then,

b

we transferred the elements of ConflictResolutionMatrix to SortedPartitionMatrix with “for’

and “If” statements. (as you see Figure 3.8, 3.9, 3.10 and 3.11)

39
40 if(ConflictResolutionVector[0][x] == 3)

42 SortedPartitionMatrix[3][core3_currentindex] = x;

43 core3_currentindex++;

a4 }

45 }

46

a7

48 int temp;

49 for (int 1=1; 1<PART_COUNT; i++)

50 {

51 for (int j=0; j<PART_COUNT-i1; j++)

52

53 if(SortedPartitionMatrix[0][j] == -1 || SortedPartitionMatrix[0][j+1] == -1)
54 break;

55

56 if(partitionAccess[0][SortedPartitionMatrix[0][j]] < partitionAccess[0][SortedPartitionMatrix[@][j+1]1])
57 {

58 temp = SortedPartitionMatrix[0][]j]:

59 SortedPartitionMatrix[0][j] = SortedPartitionMatrix[0][j+1];

60 SortedPartitionMatrix[@][j+1] = temp;

61 }

62 3

63 3

64

65

66 temp =0;

67 for (int 1=1; 1<PART_COUNT; i++)

68 {

69 for (int j=0; Jj<PART_COUNT-1; j++)

70 {

71 if(SortedPartitionMatrix[1][j] == -1 || SortedPartitionMatrix[1][j+1] == -1)
72 break;

73

74 if(partitionAccess[1][SortedPartitionMatrix[1][j]] < partitionAccess[1][SortedPartitionMatrix[1][j+1]1])
75 {

76 temp = SortedPartitionMatrixl11M41:

Figure 3.9. AssignPartition Algorithm — 2

After transferring, as seen in Figure 3.9 and 3.10, we sort the numbers from larger to smaller

for each core. In Figure 3.9 and 3.10, we can see easily sorted array.
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77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96

98

99
100
101
102 |
103
104
105
106
107
108
109
110
111
112
113
114

}
}

temp =0;

SortedPartitionMatrix[1][]j] = SortedPartitionMatrix[1][j+1];
SortedPartitionMatrix[1][j+1] = temp;
1

for (int i=1; i<PART_COUNT; i++)

for (int j=0; j<PART_COUNT-1; j++)

if(sortedPartitionMatrix[2][j] == -1 || SortedPartitionMatrix[2][j+1] == -1)
break;

if(partitionAccess[2][SortedPartitionMatrix[2][j]] < partitionAccess[2][SortedPartitionMatrix[2][j+1]])
{

temp = SortedPartitionMatrix[2][]j];

SortedPartitionMatrix[2][j] = SortedPartitionMatrix[2][j+1];

SortedPartitionMatrix[2][j+1] = temp;

temp =0;

for (int i=1; 1<PART_COUNT; i++)

{

for (int j=0; j<PART_COUNT-1; j++)

{

if(SortedPartitionMatrix[3][j] == -1 || SortedPartitionMatrix[3][j+1] == -1)
break;

if(partitionAccess[3][SortedPartitionMatrix[3][j]] < partitionAccess[3][SortedPartitionMatrix[3][j+1]1])
{

temp = SortedPartitionMatrix[3][]j];

SortedPartitionMatrix[3][j] = SeortedPartitionMatrix[3][j+1];

SortedPartitionMatrixl31r4+11 = temn:

Figure 3.10. AssignPartition Algorithm — 3

Then, we place the core in the Assign Partition array. This array is, as you see in the figure

3.6, two dimentional array. In this design, instead of giving a whole partition to a single

application, we plan to allocate it to two applications. We share a partition among two cores.

To do this, we write a code in Figure 3.11. To be fair, we decided to start lowest partition to

place in the array. Firstly, we look the allocated array which keeps the number of partition

of cores, then we choose the lowest one then search the number of core which is the number

of core in the SortedPartitionMatrix in the AssignedPartition array. After, we placed it in the

array then we set -2 to the number of core in the ConflictResolutionVector matrix.
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115
116
117
118

152

1

int j, i;
int k, m;
int unclaimed;

bool coreisallocated[4]={0,0,0,0};

int lowest;
int lowestindex;

for(int 1i=0; ii < 4;ii++)

lowest=-1;

lowestindex=-1;

for(int j=0;j<4;j++)

{

if(coreisallocated[j]==1)

continue;

if(allocated[j]>=lowest)

{

}

int j = lowestindex;

lowest=allocated[j];
lowestindex=j;

for (i=0; i<allocated[j]; i++)

{

cout <<
if (sortedPartitionMatrix[j][i] != -1 && AssignedPartition[SortedPartitionMatrix[j][i]] == -1)

{

"Core " << j << " --3" << 1 << " is allocated?";

int zindex=SortedPartitionMatrix[j][1]*PART_SIZE;
for(int z=zindex:z<zindex+PART SIZE:z++)

153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

175
176
177

179
180
181
182
183
184
185
186
187
188

else

allocTable[0][z] = j;

if(ConflictResolutionVector[1][SortedPartitionMatrix[j][1]]
ConflictResolutionvector[1][SortedPartitionMatrix[j][1]] != -2)

-1 &&

allocTable[1][z] = ConflictResolutionVector[1][SortedPartitionMatrix[jI[1]];

}

"

cout << ok" << endl;
AssignedPartition[SortedPartitionMatrix[jI[1]] = j;

ConflictResolutionVector[0][SortedPartitionMatrix[j][i]]= -2

unclaimed=SearchcConflictResolutionVector():
if(unclaimed 1= -1)
{

int zindex=unclaimed*PART_SIZE;
for(int z=zindex;z<zindex+PART_SIZE;z++)

allocTable[0][z] = j;

if(ConflictResolutionvector[1][SoertedPartitionMatrix[j][1]]
ConflictResolutionVector[1][SortedPartitionMatrix[j][i]] != -2)

-1 &&

allocTable[1][z] = ConflictResolutionvector[1][SortedPartitionMatrix[jI[1]];

}

AssignedPartition[unclaimed] = j;
cout << " ok" << endl;
ConflictResolutionvector[@][unclaimed]=-2;

else [/ cannot find any non visited partition in conflict resolution matrix

remaining[j]=allocated[j]-1:
break;
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189

190 shiftConflictEntries(j);

191 coreisallocated[lowestindex]=1;

192 1

193

194 // remaining assigned partition among different class

195 for(k=0; k < NUM_OF_CORES ; k++)

196 {

197 if(remaining[k] > @)

198

199 for(m=0; m< PART_COUNT ; m++)

200 {

201

202 if(AssignedPartition[m] == -1)

203 {

204 int zindex=m*PART_SIZE;

205 for(int z=zindex;z<zindex+PART_SIZE;z++)
206

207 allocTable[®][z] = k;

208 if(ConflictResolutionVector[1][m] != -1 && ConflictResolutionvector[1][m] != -2)
209 allocTable[1][z] = ConflictResolutionVector[1][m];
210 }

211 AssignedPartition[m]=k;

212 cout << "Core " << k << " --> " << m << " is allocated?” << "remaining ok" << endl;
213 remaining[k]--;

214 if(remaining[k] <= @)

215 break;

216 }

217 }

218 1

219 T

220 }

Figure 3.11. AssignPartition Algorithm — 4

After to set -2 the number of cores in ConflictResolutionVector matrix, we called the method
which is called shiftConflictEntries. Then, we keep a remaining array which is used for

remaining partition.

For example, if we assign 6 partitions to SortedPartitionMatrix but we have to assign 8
partition. Then, we wuse the remaining array for 2 partitions. We scan

ConflictResolutionMatrix, if we see -1, then we assigns it to the SortedPartitionMatrix.

1 int SearchConflictResolutionVector()
2{

3 int k;

- for(k=0; k<PART_COUNT ; k++ )
5

6 if(ConflictResolutionvector[0][k] == —1)}[/ found non visited partition
7 {

8 return k;

5 }

10

11 }

12

13 return -1;

14 }

15

Figure 3.12. SearchConflictResolution Algorithm
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In SearchConflictResolution algorithm (Figure 3.12), we research the non-found visited

partition for helping the AssignPartition algorithm.

1 void shiftConflictEntries(int c)

2{

3 int k, j;

4 for(k=0; k<PART_COUNT ; k++ )

5

6 if(ConflictResolutionvVector[0][k] == c)/f/ found the core to be removed
7 {

8

9 for(j=0; j<NUM_OF_CORES - 1; j++)

10

11 ConflictResolutionVector[j][k] = ConflictResolutionVector[j+1][k];
12 A

13

14 ConflictResolutionVector[3][k]= -1;

15 1

16 3

17 }

Figure 3.13. shiftConflictEntries Algorithm

In shiftConflictEntries Algorithm (Figure 3.13), after we assign the number of core which is

in the ConflictResolutionMatrix, we shift the left array.

3.4. HARDWARE IMPLEMENTATION AND COMPLEXITY OVERHEAD

In our implementation, we proposed two additional hardware circuit. In order to estimate the
complexity overhead, we calculate the approximated number of transistors for each

hardware circuit that is used in our implementation.

One of the issues which we give priority in the project (as we mentioned earlier), we will
encounter many more examples in the near future core processor that can run on a scalable
system is put forward. At this point, in Figure 3.15 and Figure 3.16 provides details of our
knowledge-Cache circuit complexity calculated as a function of the number of cores. As can
be seen in the graph in Figure 3.14, for 64-core processor, our designed cache system
memory space requirement is only 3% of the area corresponds to the requirements for 4 MB
L3 cache. Much bigger than 4MB for 64-core processor, the last level cache sizes to be used
shall be at the rate negligible level. The only reason for non-linear increase in this graph,

with the number of cores of partitioner table is exponentially increasing space requirements.
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64 and older with a processor core instead of in the partitioner table at run-time partitioning

determines the number envisage the use of a control circuit.

3,5%

3.0%

2,5%

1,5%

1,0%

0,5%

1 4 7 10131619 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Figure 3.14. According to the L3 cache, the space requirements of the proposed design

variation with the number of cores

The hardware implementation of classifier circuit is shown by the figure 3.15. The outputs
of this circuit are classes. On the other hand, Figure 3.16 shows us the hardware

implementation of partitioner.

Transistor numbers of each hardware circuit in our method implementation with the number

of transistors of used cache space are shown in table 3.2.
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Figure 3.15. Hardware implementation of classifier
Table 3.2. Classifier cost
Classifier elements Bit Transistor numbers in
numbers in each element
each
element
Five counters for L3 Traffic, 64 (5*64*6) =1920
Attempted Steal, Miss, Steal and DSet
Three division units 64 10368 = (3*64*54)
Four multiplication unit 20 4320 = (4*20*54)
One adder unit 7 196 = (7*28)
Nine comparator unit 7 1323 = (9*7*21)
Total cost: 18127 transistors
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Figure 3.16. Hardware implementation of partitioner
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4. TEST ENVIRONMENT

4.1. MACSIM SIMULATOR

Macsim is a heterogeneous architecture simulator [15]. x86 and NVDIA PTX instructions
can be simulated by Macsim. It models micro-architectural behavior, including pipeline
stages, multi-threading execution and memory systems. It can simulate a variety of
architectures which are Intel’s Sandy Bridge and NVDIA’s Fermi. Additionally,

homogeneous ISA multicore simulations can be simulated by Macsim.

Our reason to use Macsim is that it can determine the behaviors of various applications and
different approaches and algorithms can be compared easily by the help of Macsim. We can
change the underlying processor and memory configurations since it provides a fully

customizable interface.

4.1.1. MEMORY SYSTEM IN MACSIM

Caches: Every cache structure has storage and multiple queues. In Figure 4.1, the overall

structure of a single cache is depicted in Macsim. There are two flows:

e Cache Access Flow: Data flow from processor to upper level cache. In case of a cache
miss, cache is accessed through this flow.

e Cache Fill Flow: In case of a cache miss, data is supplied from the lower level cache
or DRAM.
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Figure 4.1. Cache Structure of MACSIM
Queues:
o Input Queue: Requests are forwarded to the cache triggered by upper-level cache

misses are inserted into this queue.

o Output Queue: Requests that miss in this cache are inserted into the output queue
to be forwarded to a lower-level cache. If no lower-level cache is available, then requests are
forward to the main memory.

o Write-back Queue: Write-back cache is one of the models of Macsim. When a dirty
cache line is evicted, the line must be written back into the next level cache.

o Fill Queue: Data returned from the next level cache or main memory is inserted into

the fill queue.

41.2. HIERARCHY

Macsim is a flexible simulator so it can work with different memory hierarchies. Each level

can be configured independently of other levels in the cache hierarchy. In the following
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figure, we can see the base memory hierarchy of Macsim without DRAM memory. (Figure

4.2)
Core 1 Core 2 Core N
I Queuss OTTTTTT  Quenes 1111 Queues
Cache | Cache | ' Cache
¥ ¥ ¥

[IITITT]  Queves
. Cache

Router

OIIIT  Queues

—

Router ]

IITTT  Queues

Cache

OTTTTT0  Queues
Cache

OTITTT0  Queues
Cache

Router

dTITTT)  pueues
Cache

Router ]

Figure 4.2. Memory System of MacSim

. Cache has 3 levels which are L1, L2 and L3.

o If required, the caches can be connected to each other.

o Each core has unique L1 and L2 caches.

o When required, the local router is enabled within a cache structure.

o All cores share the L3 cache. But, address regions are statically partitioned and also

each tile is responsible for sub-regions.
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4.2. BENCHMARKS

The SPEC CPU 2006 [25] benchmark is SPEC's next-generation, industry-standardized,

CPU-intensive benchmark suite, stressing a system's processor, memory subsystem and

compiler.

This benchmark suite includes the SPECint benchmarks and the SPECfp benchmarks. The
SPECint 2006 benchmark contains 12 different benchmark tests and the SPECfp 2006

benchmark contains 19 different benchmark tests. We use some of these benchmarks mixed,

here are the descriptions of the applications that are used in our work, shown below:

401.bzip2: Performs no file 1/0 other than reading the input. All compression and

decompression happens entirely in memory.

403.gcc: Based on gcc 3.2, it generates code for an AMD Opteron processor. The
benchmark runs as a compiler with many of its optimization flags enabled. It has its
inlining heuristics altered slightly, so as to inline more code than would be typical on a
Unix system in 2002. It is expected that this effect will be more typical of compiler usage
in 2006. This is to make 403.gcc spend more time analyzing its source code inputs and

use more memory.

429.mcf: It is derived from MCF, a program used for single-depot vehicle scheduling in
public mass transportation. The program is designed for the solution of single-depot
scheduling problems planning transportation. It considers one single depot and a
homogenous vehicle fleet.It is the task to schedule all timetabled trips to so-called blocks.
The network simplex algorithm is a specialized version of the well-known simplex
algorithm for network flow problems. The main work of our network simplex

implementation is pointer and integer arithmetic.
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= 445.gobmk: This program plays Go! and executes a set of commands to analyze Go

positions.

= 462.libquantum: This is a library for the simulation of a quantum computer. Quantum
computers are based on the principles of quantum mechanics and can solve certain

computationally hard tasks in polynomial time.

= 464.h264ref: This is a reference implementation of H264/AVC (Advanced Video
Coding), the latest video compression standard. It replaces the current MPEG-2 standard,

for applications such as next-generation DVDs and video broadcasting.

» 473.astar: Thisis derived from a portable 2D path-finding library that is used in a game’s
Al. It implements three different path-finding algorithms.

» 444.namd: This is derived from the data layout and inner loop of NAMD, a parallel

program for the simulation of large bio molecular systems.

= 470.lbm: This program implements the so-called “Lattice Boltzmann Method” to
simulate incompressible fluids. It is the computationally important part of a larger code-
use in material science to simulate fluids with free surfaces, in particular the formation

and movement of gas bubbles in metal foams. [18]

These benchmarks are provided as source code and require the user to be comfortable using
compiler commands as well as other commands via a command interpreter using a console

or command prompt window in order to generate executable binaries.

4.3. TRACE GENERATION

For simulations using MacSim, x86 traces are generated using Pin and PTX traces are
generated using GPUOcelot. (Figure 4.2.) Internally, MacSim converts both x86 and PTX
trace instructions into RISC style micro-ops (uop) which are simulated. In the figure below
shows a high-level picture of the operation of the simulator.

1 Go is a board game for two players. The object is to surround and capture opponent’s counters. More info
can be found at http://www.britgo.org/about/index.html .
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Figure 4.3.The Overview of MACSIM Simulator

In order to generate executable binaries, we use Pin tool 2.12. Pin is a tool for the
instrumentation of programs. It supports Linux and Windows executables for 1A-32, Intel
64, and 1A-64 architectures.

Pin allows a tool to insert arbitrary code (written in C or C++) in arbitrary places in the
executable. The code is added dynamically while the executable is running. This also makes

it possible to attach Pin to an already running process.

MacSim includes a CPU (x86) trace generator which is based on Pin [10], a binary
instrumentation tool. After installing Pin 1, the x86 trace generator module has to be built.

The command for doing so is:

cd toos/x86_trace generator

make

This will generate trace_generator.so in the tools/x86_trace generator/obj-intel64 directory.
x86 traces for MacSim can then be generated by running Pin with the generated module. We

use generally this script for generate trace:

3 [home/esenvarol/pin-2.12-56759-gcc.4.4.7-1inux/pin -t [home/esenvarol/macsim/tools/x86_trace generatorfobj-inteléd/
trace_generator.so -skip 100060000 -max 20008000 -- [homefesenvarol/spec2006/401.bzip2/481 bzip2 [homefesenvarolf
spec2006/401.bzip2/dryer.ipg

4echo "x86" » trace.txt

Secho "1" > trace.txt

6echo "0 0" > trace.txt\




Figure 4.4. Trace Generation Script

56

In the script above, we skip 100.000.000 instructions and limit to 20.000.000 maximum. The

trace generator generates two files (in case of a single threaded application) “Trace.txt” and

“trace_0.raw”, in the current directory.

Trace.txt (info trace): Contains information about the generated trace files (#threads,

trace type, ...).

Trace_xx.raw (raw trace): Contains instruction trace for a thread and is generated for

each thread.

CPU

AJ A
#Threads | Trace
1st thread ID |
2nd thread ID |
3rd thread ID |
Nth thread ID |

T

Y
Type | :

Start Instruction
Start Instruction
Start Instruction

Start Instruction

No.
Mo .
No.

Mo .

WP O R
00000 X

(a) Trace. txt Format

Thread
Block &

GPU ‘

2048 newptx

(b} Trace.xt Examples

Figure 4.5. Trace.txt format

Figure 4.5 shows the format of Trace.txt and its CPU and GPU examples. As shown in Figure

4.5-(a), the first line in Trace.txt has different fields from the rest of the lines.

#Threads: indicates the number of threads for which traces have been generated, and

this value is equal to the number of lines in the file excluding the first line.

Trace Type: indicates whether the generated traces are for an x86 application or a PTX

kernel.

Optional Field(s): currently used for PTX traces only and indicates the number of

thread blocks that can be assigned to a streaming multiprocessor(SM) core

(occupancy).
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From the second line onwards, there are two fields in each line: thread id and start instruction
number. For each thread, there is a Trace_<thread_id>.raw file which contains the dynamic
instruction trace for the thread. Finally, start instruction number indicates when each thread
should be started in terms of the number of instructions simulated for the main thread of the
application. In a PTX kernel since all warps are ready for execution at the launch of the
kernel, the start instruction number for all threads is zero. On the other hand, for a x86
application, the start instruction is non-zero for all threads except thread 0, which is the main
(or parent) thread in the application. This is because in most multi-threaded CPU

applications, main thread (thread id 0) spawns children threads.

In Figure 2-(b), the CPU trace has four threads and its type is set to x86. The ids of the
threads are 0-3 with the corresponding trace files being Trace 0.raw—Trace 3.raw. Thread
0 is ready at the start of simulation, while Threads 1, 2 and 3 become ready when Thread 0

has fetched X, y and z instructions respectively.

In the GPU example, the number of traces files is 2048 since #Threads (representing #Warps
in case of GPUs) is 2048. The optional field indicates that eight thread blocks can be assigned

to a SM core.

For GPU traces, the id in the file encodes thread block information as well. The warp id and
thread block id can be decoded from this id as follows:

warp_id = id % (1 << 16)

block_id =id /(1 << 16)

Trace_xx.raw is generated for each thread/warp and contains the dynamic instruction trace
for the thread/warp in the binary format. The structure/format for encoding instructions is

the same in both x86 and PTX traces and looks as Figure 4.6 (in order):
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Type Size (Bytes)  Field Description

uintd t 1 m_num _read regs number of source registers

uintd 1 m_num_dest regs number of destination registers

uint8 t 9 m_ sre|MAX SRC NUM|  source register [Ds

uint8 t B m_dst|MAX DST NUM| destinationregister IDs

uintd t 1 m_cf type branch type

bool 1 m_has immediate indicates whether this instruction has immediate field
uintd 1 m_ opcode opcode

bool 1 m_has st indicates whether this instruction has store operation
bool 1 m_is_fp indicates whether this instruction is a FP operation
bool 1 m_write flg write flag

uintd t 1 m num_ld number of load operations

uintd t 1 m_size instruction size

uint32 t 4 m_Id wvaddrl load address 1

uint32 t 4 m_Id wvaddr2 load address 2

uint32 t 4 m_ st vaddr store address

uint32 t 4 m_instruction addr PC address

uint32 t 4 m_branch target branch target address

uintd t 1 m_ mem read size memory read size

uintd 1 m_mem_ write size memory write size

bool 1 m_rep dir repetition direction

bool 1 m_actually taken indicates whether branch is actually taken

Figure 4.6. The Structure/Format for Encoding Instructions

Note that the raw trace is compressed with zlib to reduce the sizes of the generated trace

files, and the size of each field is the size before the compression.
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5. EXPERIMENTAL RESULTS

In order to evaluate our proposed design we used Macsim, a heterogeneous architecture
simulator, which is trace-driven and cycle-level. In our study, we simulated four or eight
cores with identical specifications. We only change the cache parameters throughout our

experimental study in “params.in” file. Here is the experimental setup, show in Table 5.1.

Table 5.1. Experimental Setup Table

Parametre Configuration

L1 I-Cache (instruction) 64 KB, 64-sets, 128B block, 8-Way, LRU Replacement

L1 D-Cache (data) 64 KB, 128-sets, 64B block, 8- Way, LRU Replacement
L2Cache (instruction+data) 512 KB, 1024-sets, 64B block, 8- Way, LRU Replacement

L3 Cache (shared) 1 MB, 1024-sets, 64B block, 16- Way, 1-tile, LRU Replacement

In the figures given below, we compare the results of our proposed cache architecture with
the results of baseline (uncontrolled shared cache). First, we executed four applications
concurrently and evaluated throughput value of each applications. Here are the results of

these study shown below:

Total Throughput

mbzip?2 mmic mpovray mgcc

baseline 0494196 0,455703

permon e o _ an-gEm n'q-?zm
0 0,5 1 15

Figure 5.1. results of bzip2, milc, povray and gcc
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In the figure 5.1, we executed bzip2, milc, povray and gcc traces concurrently. Bzip2 and
povray are considered to be harmful application by our classifier algorithm. On the other
hand, milc and gcc are considered to be very harmful. According to the classification, our
partition algorithm gave more cache resources to harmful applications than very harmful
application. At the end, when we compared to baseline, the total throughput increase is

approximately %2.

Total Throughput

mbzip2 mmic momnetpp mgcc

partitioning algorithm

0,47101

ba SE" " _
0 05 1 15 2

2,5 3

Figure 5.2. results of bzip2, milc, omnetpp and gcc

In the figure 5.2, we executed bzip2, milc, omnetpp and gcc traces concurrently. Omnetpp
and gcc are considered to be harmful application by our classifier algorithm. On the other
hand, bzip2 and milc are considered to be very harmful. According to the classification, our
partition algorithm gave more cache resources to harmful applications than very harmful
application. At the end, when we compared to baseline, the total throughput increase is

approximately %2.
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Total Throughput

mbzipZz mnamd mpovay mgcc

partitioning akgorithm 471434

0 0,5 1 15 2 25 3

3.5 4

Figure 5.3. results of bzip2, namd, povray and gcc

In the figure 5.3, we executed bzip2, namd, povray and gcc traces concurrently. Bzip2, namd
and povray are considered to be harmful application by our classifier algorithm. On the other
hand, gcc is considered to be very harmful. According to the classification, our partition
algorithm gave more cache resources to harmful applications than very harmful application.
At the end, when we compared to baseline, the total throughput increase is approximately
%2.

Total Throughput

mbzip? msjeng mlibm astar

1,07910

baseline

0 0,5 1 15 2

25 3 3,5 4

Figure 5.4. results of bzip2, sjeng, Ibm and astar
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In the figure 5.4, we executed bzip2, sjeng, Ibm and astar traces concurrently. Bzip2 is
considered to be harmful application by our classifier algorithm. Astar is considered to be
harmless application by our classifier algorithm. On the other hand, sjeng and Ibm are
considered to be very harmful. According to the classification, our partition algorithm gave
more cache resources to harmless application than harmful application. Similarly, our
partition algorithm also gave more cache resources to harmful application than very harmful
application. At the end, when we compared to baseline, the total throughput increase is

approximately %5.

Total Throughput

m libquantum mcf href264 astar

partitioning akgorithm -15}655
baseline -BE.?-'IB 1,62578 1,145%43

1,62659 1,22648

Figure 5.5. results of libquantum, mcf, href264 and astar

In the figure 5.5, we executed libquantum, mcf, href264 and astar traces concurrently.
Libquantum and href264 are considered to be harmful application by our classifier
algorithm. Astar is considered to be harmless application by our classifier algorithm. On the
other hand, Mcf are considered to be very harmful. According to the classification, our
partition algorithm gave more cache resources to harmless application than harmful
application. Similarly, our partition algorithm also gave more cache resources to harmful
application than very harmful application. At the end, when we compared to baseline, the

total throughput increase is approximately %3.
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Total Throughput

mlibquantum mmilc mhref264 gcc

partitioning akgorithm 0,47969

e _0'4?341
0 0,5 1 15 2 25 3

35 4

Figure 5.6. results of libquantum, milc, href264 and gcc

In the figure 5.6, we executed libquantum, milc, href264 and gcc traces concurrently. Milc
and href264 are considered to be very harmful application by our classifier algorithm.
Libguantum is considered to be harmless application by our classifier algorithm. On the
other hand, gcc are considered to be harmful. According to the classification, our partition
algorithm gave more cache resources to harmless application than harmful application.
Similarly, our partition algorithm also gave more cache resources to harmful application than
very harmful application. At the end, when we compared to baseline, the total throughput

increase is approximately %1.

Total Throughput

mlbm mecc mpovray mbeip2

panitiming agmnhm _ nJma2

Figure 5.7. results of Ibm, gcc, povray and bzip2
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In the figure 5.7, we executed Ibm, gcc, povray and bzip2 traces concurrently. Lbm, gcc and
povray are considered to be very harmful application by our classifier algorithm. Bzip2 is
considered to be harmless application by our classifier algorithm. According to the
classification, our partition algorithm gave more cache resources to harmless application
than very harmful application. At the end, when we compared to baseline, the total

throughput increase is approximately %4.

After these quad tests, we try to evaluate fairness for eight core and eight application on the

same configuration. Here are the results:

In the figure 5.8, we executed bzip2, milc, povray, gcc, omnetpp, namd, sjeng and href264
traces concurrently. Bzip2, milc, povray, gcc and namd are considered to be harmful
application by our classifier algorithm. The rest of applications are considered to be very
harmful. Our partition algorithm also gave more cache resources to harmful application than
very harmful application. At the end, when we compared to baseline, the total throughput

increase is approximately %1.

Total Throughput

B bzip2 Emic MW poviay gcc Momnetpp Mnamd Bsjeng B href2ed

Baseline Partitioning Algorithm

Figure 5.8. results of bzip2, milc, povray, gcc, omnetpp, namd, sjeng, href264
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Figure 5.9. Whole Test Results

The figure 5.9. shows the whole quad tests that we done. As you see, generally the

throughput value of our partitioning algorithm is bigger than baseline.



6. CONCLUSIONS AND FUTURE WORK

In this project, we tried a new cache partitioning algorithm that partitions the LLC for better
performance. We designed and implemented a mechanism that classifies applications
periodically at run time. Our initial method tries to give more partitions to applications that
are classified as harmless.

it provides a framework to carry on further studies in the same research area. We have four

directions in our future work:

1. The classifier circuitry that we use in this study might be changed in a future study. Here,
we classify an application as very harmful if it steals cache sets from other applications
and does not get any benefit from accessing the LLC. However, in our tests, we find that
even the applications that we classify as very harmful we observe performance
degradations which we do not expect. That may mean that our classifier may need to

have additional tweaking and tuning.

2. The second thing, our classification algorithm is not relative. If the range of core weights
between 0 and 6, according to our proposed distribution, we obtain only
“No_Operation”, “Harmless”, “Harmful”. But we don’t obtain very harmful class. In
reality, the core weight value of 5 and 6, is more harmful than 3 and 4. When our

classification algorithm is relative, these distribution can be like this:

Table 6.3. New distribution approach for future works

Value of core weight

We accept these findings and the work successful enough since

classification

0 No_OPERATION
1,2 Harmless

3,4 Harmfull

5,6 Very Harmful
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3. The third thing we can work on is the number of partitions that we assigned to different
class of applications. In this study, we just tried an allocation strategy that was making
the most possible sense: Very harmful applications are harmful to other applications,
and, therefore, they should receive the minimum amount of cache partitions. However,

other strategies need to be further investigated in a future work.



68

REFERENCES

1. Kunle Olukotun, Basem A. Nayfeh et al, “The Case for a Single-Chip

Multiprocessor”, IEEE Transactions on Computers, 2000.

2. M. Chaudhuri et al, “Pseudo-LIFO: the foundation of a new family of replacement
policies for last-level caches”, In MICRO 42, pages 401-412, New York, NY, USA,
2009. ACM.

3. Kunle Olukotun et al, “ChipMultiprocessor Architecture: Techniques to Improve
Throughput and Latency”, Synthesis Lectures on Computer Architecture Book,
2007.

4. Suh, G. Edwards et al, “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning”, in International Symposium on High-Performance
Computer Architecture-8, 2002.

5. L. R. Hsu, S. K. Reinhardt, R. lyer, and S. Makineni, “Communist, utilitarian, and
capitalist cache policies on CMPs: caches as a shared resource”, In PACT ’06, pages
13-22, New York, NY, USA, 2006. ACM

6. S. Kim, D. Chandra, and Y. Solihin et al, “Fair caching in a chip multiprocessor
architecture”, In Proc. 13th Ann. Intl Conf. on Parallel Architectures and

Compilation Techniques, pages 111-122, Sept. 2004.

7. Settle, A. et al, “Dynamically reconfigurable cache for multithreaded processors”,
Journal of Embedded Computing 1(3-4), 2005.

8. J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining insights
into multicore cache partitioning: Bridging the gap between simulation and real


http://www.morganclaypool.com/toc/cac/2/1

10.

11.

12.

13.

14.

15.

69

systems”, In International Symposium on High-Performance Computer Architecture,
pages 367-378, 2008.

N. Rafique, W.-T. Lim, and M. Thottethodi et al, “Architectural support for operating
system-driven CMP cache management”, In PACT ’06, pages 2-12, New York, NY,
USA, 2006.

Qureshi, M. K. and Y. N. Patt, “Utility based cache partitioning: A low-overhead,
high performance, runtime mechanism to partition shared caches”, IEEE/ACM
International Symposium on Microarchitecture (MICRO-39) 0-7695-2732-9/06,
2006.

Moreto, Cazorla, F. Ramirez and Valero et al, “Explaining dynamic cache
partitioning speed ups”, IEEE Computer Architecture Letters 6, 1, 1-4. M. 2007.

D. Sanchez and C. Kozyrakis et al, “The ZCache: Decoupling Ways and
Associativity”, In MICRO ’43, pages 187-198, Washington, DC, USA, 2010. IEEE

Computer Society.

D. Sanchez and C. Kozyrakis et al, “Vantage: scalable and efficient fine-grain
cache partitioning”, In ISCA 11, pages 57-68, New York, NY, USA, 2011. ACM.

S. Srikantaiah, M. Kandemir, and Q.Wang et al, “SHARP control: controlled
shared cache management in chip multiprocessors”, In MICRO 42, pages 517-528,
New York, NY, USA, 2009. ACM.

K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. lyer et al, “Molecular
Caches: A caching structure for dynamic creation of applicationspecific
heterogeneous cache regions”, In MICRO 39, pages 433-442,Washington, DC,
USA, 2006. IEEE Computer Society.



16

17.

18.

19.

20.

21.

22.

23.

24.

25.

70

. Y. Xieand G. H. Loh et al, “PIPP: promotion/insertion pseudopartitioning of multi-
core shared caches”, In ISCA 09, pages 174-183, New York, NY, USA, 2009.
ACM.

Suh, G. Edwards et al, “Dynamic partitioning of shared cache memory”, Journal of

Supercomputing, 28(1), 2004.

H. S. Stone et al, “Optimal partitioning of cache memory”, IEEE Transactions on
Computers, 41(9), 1992.

D. Chiou et al, “Extending the reach of microprocessors: column and curious
caching”, PhD thesis, Massachusetts Institute of Technology

Moreto, Cazorla, Ramirez, Valero et al, “Dynamic cache partitioning based on the
MLP of cache misses. Transactions on High-performance Embedded Architectures
and Compilers 111, 3-23. 2011.

R. Iyer et al, “CQoS: a framework for enabling QoS in shared caches of CMP
platforms”, In ICS-18, 2004.

R Manikantan et al, “Probabilistic Shared Cache Management (PriSM)”, 1EEE,
2012,

D. Thiebaut, H. S. Stone, and J. L. Wolf et al, “Improving disk cache hit-ratios
through cache partitioning”, 41(6):665-676, 1992.

D. Chandra, F. Guo, S. Kim, and Y. Solihin et al, “Predicting inter-thread cache
contention on a chip multi-processor architecture”, In Proc. 11th Int'l Symp. on High-
Performance Computer Architecture (HPCA),pages 340{351, Feb. 2005.

Standard Performance Evaluation Corporation, SPEC,
http://www.spec.org/benchmarks.html, 1995-2011.



http://www.spec.org/benchmarks.html

71

26. A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum et al, “Performance of
multithreaded chip multiprocessors and implications for operating system design.”
In Proc. 2005 USENIX Technical Conference, pages 395-398, 2005.



