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ABSTRACT 

 

 

HYPER-HEURISTICS FOR PERFORMANCE OPTIMIZATION OF 

SIMULTANEOUS MULTITHREADED PROCESSORS 

 

In Simultaneous Multi-Threaded processor datapaths, there are many resources that are 

concurrently shared by multiple threads. A few number of heuristic approaches, which 

explicitly distribute those resources among threads with the goal of an improved overall 

performance, have been proposed. A selection hyper-heuristic is a high level search 

methodology which mixes a predetermined set of heuristics under an iterative framework 

to exploit their strengths while solving a given problem. In this study, we propose a set of 

learning selection hyper-heuristics for predicting, choosing and running the best 

performing heuristic at periodic time intervals that we name epochs. The empirical results 

show that hyper-heuristics are capable of improving the performance of the studied 

workloads. The peak performance improvement is observed to be around 25 per cent over 

a previously proposed Hill Climbing heuristic and around 11 per cent over Adaptive 

Resource Partitioning Algorithm. Our best hyper-heuristic, HH4, performs better than 

either of the state-of-the art heuristics on almost 72 per cent of the simulated workloads. 

HH4 also beats both of the heuristics on around 30 per cent of the simulated workloads. 
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ÖZET 

 

 

EŞZAMANLI ÇOKLU İŞPARÇACIKLI İŞLEMCİLERİN BAŞARIM 

ENİYİLENMESİ İÇİN ÜST-SEZGİSELLER 

 

Eşzamanlı Çoklu İşparçacıklı işlemcilerin veri yollarında birçok kaynak eş zamanlı olarak 

birden çok iş parçacığı tarafından paylaşılmaktadır. Literatürde, performansı artırmak 

amacıyla bu kaynakları iş parçacıkları arasında doğrudan bölüştüren sezgisel yaklaşımlar 

mevcuttur. Seçici-üst-sezgiseller, önceden belirlenmiş bir sezgisel kümesinden sezgiselleri 

seçerek bir problemin çözümünde bu sezgisellerin avantajlarından faydalanan bir metottur. 

Bu çalışmada, çağ olarak adlandırdığımız periyodik zaman aralıklarında en iyi çalışan 

sezgiseli tahmin etmek ve seçmek için bir grup öğrenme tabanlı üst sezgisel sunuyoruz. 

Deneysel  sonuçlar üst sezgisellerin test edilen iş yüklerinin performansını artırma 

potansiyeline sahip olduğunu göstermektedir. Çalışmamızda gözlemlenen en yüksek 

performans kazançları, literatürde sunulmuş olan Hill Climbing sezgiseli için yaklaşık 

yüzde 25, Adaptive Resource Partitioning Algorithm sezgiseli için ise yaklaşık yüzde 

11’dir. En iyi üst sezgiselimiz olan HH4, literatürdeki en başarılı sezgisellerden en az 

birinde, test edilen iş yüklerinin yaklaşık yüzde 72’sinde daha iyi sonuç vermektedir. En 

iyi üst-sezgiselimiz olan HH4 aynı zamanda test edilen iş yüklerinin yaklaşık yüzde 

30’unda ise her iki sezgiselden de daha yüksek performans göstermektedir.  
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1.  INTRODUCTION 

 

 

Simultaneous Multi-Threaded (SMT) processors aim to improve the system throughput by 

issuing instructions from multiple threads within a single clock cycle [1]. The SMT 

architecture is simply a modified superscalar processor with many shared datapath 

resources, such as Issue Queue, Re-Order Buffer, Load/Store Queue, Physical Register 

Files, Arithmetic Logic Units, and caches. In a typical superscalar processor, the datapath 

resources are also shared by multiple threads but each thread waits it’s time for the total 

control of all datapath resources. At the end of each context switch, the running thread is 

suspended and the next scheduled thread starts executing its instructions. In such a scheme, 

between two context switches only one thread can claim its monopoly on all resources. 

However, in SMT processors, multiple threads must simultaneously share the available 

resources. Fair sharing of those resources among threads while maximizing the processor 

throughput is a major challenge; and today, most of the research effort in the field is 

focused on this issue. 

 

There are various strategies to improve the efficiency of SMT processors. First, there are 

fetch policies that attempt to regulate the stream of instructions introduced to the processor 

pipeline [2, 3]. These fetch-oriented techniques are known as implicit methods for 

improving resource utilization since they implicitly manage the distribution of shared 

resources among working threads. Most famous examples of these techniques are 

Instruction Count, which gives fetch priority to threads with less resource occupancy, 

Branch Count, which favors threads with the fewest unresolved branches, Data Cache 

Miss Count, which gives priority to threads with fewest outstanding D-cache misses, 

STALL, which triggers fetch-lock when a load operation stays to be outstanding beyond 

some threshold number of cycles, and FLUSH, which measures resource clog and recovers 

by flushing the stalled instructions when it happens. 

 

Beside the implicit techniques, there are explicit resource partitioning methods that 

partition the shared resources according to runtime behavior of the running threads. 

Basically, these techniques explicitly decide how a shared resource is to be partitioned and 

distributed. The most well known example of these techniques is the Dynamically 
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Controlled Resource Allocation (DCRA) [4]. In DCRA, each thread and datapath resource 

are dynamically tracked by a number of hardware counters. For example, when a thread 

has a pending cache miss, it is immediately labeled as a slow thread, and when a resource 

is not used by a thread for a number of cycles within a predetermined threshold, the thread 

for that resource becomes inactive. Then, the DCRA mechanism attempts to give more 

resources to the slow threads by stealing some portion of resources from fast or inactive 

threads. The rationale behind this mechanism is as follows: a fast thread is already fast, and 

so there is no harm stealing a few resource entries from then and giving them to the slow 

threads. Similarly, when a thread is labeled as inactive for a resource, then there is no harm 

giving its share on that resource to the threads that actually need it. 

 

SMT resource distribution via hill climbing is another explicit resource partitioning 

mechanism that runs in epochs (periodic intervals) [5]. Hill Climbing heuristic assumes 

that there is a certain maxima in the performance graph and it attempts to reach to that 

peak by dynamically changing resource distributions in a greedy fashion. In the initial trial 

epochs, each thread is given a chance to show its performance with extra resources. At the 

end of these trial epochs, the performance of each thread is compared and the best 

performing (and the most deserving) thread is selected for receiving the additional 

resources. Then, these trial epochs and the consequent resource distributions are 

periodically applied. 

 

Finally, the Adaptive Resource Partitioning Algorithm introduces the efficiency metric for 

distributing the resources [6]. Similar to Hill Climbing, Adaptive Resource Partitioning 

Algorithm tries to give more resources to the most deserving thread by stealing resource 

entries from the others. The efficiency metric, Committed Instructions Per Resource Entry 

(CIPRE), is a thread specific metric which is evaluated at the end of each epoch. When a 

thread does a great job and commits many instructions with limited number of resources, 

its CIPRE value becomes high, and the algorithm gives more resources to that thread. In 

Hill Climbing, a thread can show the best performance and be chosen to receive more 

resources every epoch regardless of it efficiency. As a result, a thread may starve to its 

death, since it cannot perform better than some other thread. Adaptive Resource 

Partitioning Algorithm solves this issue implicitly by its efficiency metric. When a thread 

receives more resources its CIPRE value gets lower and lower if it commits similar amount 
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of instructions every epoch. In such cases, a thread with worse performance may get its 

share, since its efficiency may improve afterwards. 

 

Heuristics are inexact, rule of thumb computational methods, tailored for a specific 

problem in hand. DCRA, Hill Climbing and Adaptive Resource Partitioning Algorithm are 

examples of heuristic approaches. There are many different heuristics for many different 

computationally hard problems in the literature. Considering a single problem domain, it 

has been frequently observed that different heuristics yield different performance results 

across the given instances. For each instance, a different heuristic might perform the best. 

Hyper-heuristics have emerged as general high level methods searching the space 

generated by a set of low level heuristics rather than solutions directly to solve a given 

problem [7]. The main goal is to combine the strengths of multiple heuristics while 

avoiding their weaknesses for solving not only the instances in hand, but also the unseen 

ones. Hyper-heuristics have been applied to many static problems, whereas there are a few 

studies on their applications to problems within dynamic environments [8, 9]. 

 

Our literature survey, preliminary studies and the variety of problem instances and the 

observed dynamic changes show us that hyper-heuristics are very suitable for the 

performance optimization on SMT processors. Although, in the literature, there are only a 

few heuristics proposed for solving this problem, there is no study showing how general 

these heuristics are or providing a thorough performance analysis for the proposed 

heuristics. In this study, we aim to optimize the performance of SMT processors by 

partitioning datapath resources among running threads using hyper-heuristics under a 

multistage framework. Since, the Hill Climbing and Adaptive Resource Partitioning 

Algorithm heuristics have similar periodic nature; we studied combining both under 

several hyper-heuristic approaches throughout this study In order for our model to work, 

the processor should be able to run Hill Climbing and Adaptive Resource Partitioning 

Algorithm at each epoch, interchangeably. To make both heuristics fully compatible, we 

made some minor changes in our implementation of these heuristics. We will refer to our 

implementations of Hill Climbing and Adaptive Resource Partitioning Algorithm as HILL 

and ARPA, for the rest of the study. To evaluate our work correctly, all performance 

results of Hill Climbing and Adaptive Resource Partitioning Algorithm are gathered by 

running our implementations of these heuristics. 
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Figure 1.1 shows the performance graphs for some of the well known benchmark 

workloads1 that we studied [10] in terms of IPC (Instruction Per Cycle). In [art-gcc-mgrid] 

and [art-parser-vortex] workloads ARPA performs better than HILL (12 per cent and eight 

per cent, respectively). However, there are some other workloads in which ARPA performs 

worse than HILL. For instance, in [gcc-mesa-vortex] and [art-mesa-vortex] workloads 

HILL performs more than five per cent better. Note that while ARPA is successfully 

running [art-parser-vortex] workload, when parser benchmark is replaced with mesa 

benchmark everything turns upside down, and HILL starts to become more successful. 

This graph shows us that some heuristics can be successful in some of the workloads and 

some others can be successful in some other workloads. To the best of our knowledge, 

there is no such study that works on hyper-heuristics to dynamically select the proper 

heuristic at run time on SMT processors. 

 

 

 

Figure 1.1. ARPA and HILL performance comparison on a few SMT workloads 

                                                 
1 Throughout the study, we focus on two-, three- and four-threaded workloads. For instance, we use [a-b-c] 

notation to show that we run three applications a, b, and c; on a three-thread SMT processor. The details of 

the processor are given in Chapter 5.1. 
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1.1.  Background 

 

Execution of a single instruction consists of four main stages: fetch, decode, execute, and 

writeback. In the fetch stage, the instruction is retrieved from the main memory. In the 

decode stage, the instruction is resolved into its operation code (opcode) and operands 

(either literal values or register numbers). The execute stage is where the instruction is sent 

to the function units (as known as Arithmetic Logic Units) and actually executed. When 

the execution of the instruction is done, the output is written into the destination register in 

the writeback stage. 

 

Processors use clock signals to synchronize circuitry. A clock cycle is the time elapsed 

between the two consecutive clock signals. In earlier implementations; fetch, decode, 

execute, and writeback stages were handled within a single clock cycle. With the help of 

instruction pipelining in processors, these stages were separated by pipeline latches where 

each stage could be handled within a clock cycle (Figure 1.2). Instruction pipelining 

increased throughput by handling multiple instructions within a single clock cycle; such as 

writing back an instruction while executing the next one, and decoding and fetching the 

instructions back to back at the same time. The reduced time needed to complete individual 

stages allowed processors to decrease the duration of a single clock cycle and increase the 

clock frequency. In some designs, some stages may be further divided into multiple stages, 

allowing further reduction of the clock cycle time. 

 

Instruction pipelining also enabled the output of instructions to travel directly to the decode 

stage while being written into the destination register, if an instruction is waiting for the 

output. This allowed processors to avoid pipeline stalls due to instructions waiting for their 

source operands to be written into the register, only so they can read them. This type of 

forwarding an instruction output is allowed by the bypass circuitry (or forwarding bus). 

Figure 1.3 shows an example diagram of an instruction pipeline. 

 

Superscalar processor are able to fetch, decode, execute, and writeback multiple 

instructions in a single clock cycle. A superscalar processor which can handle n 

instructions in a single cycle is typically described as an n-way processor. The superscalar 

architecture introduces the Issue Queue (IQ), which is a first-in first-out queue for 
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instructions waiting to be executed. The oldest instruction in the IQ may be sent to the 

function units for execution if its source operands are available. The bypass circuitry, 

again, forwards the output of instructions to the waiting instructions in the IQ. The 

additional logic needed to move instructions into IQ slot adds delay to the decode stage, 

putting it on the critical path of the processor. Therefore, an additional dispatch stage is 

introduced between decode and execute stages to handle this task. 

 

 

 

Figure 1.2. An example scalar datapath 

 

 

 

Figure 1.3. An example pipelined datapath 

 



7 

 

The purpose of superscalar architecture is to increase throughput and the utilization of 

function units by executing multiple instructions simultaneously by exploiting instruction 

level parallelism (ILP) hidden in the instruction streams. However, the ability of 

superscalar processors to exploit ILP is limited. Since instructions are executed in-order, 

any instruction in the stream which waits for the result of a prior instruction stalls the 

whole pipeline. Figure 1.4 shows an example diagram of a superscalar pipelined datapath. 

 

Out-of-order superscalar processors are capable of executing instructions out of the 

program order. In out-of-order architectures, independent instructions in a window (IQ 

becomes a Dispatch Buffer) are identified and issued for execution, allowing further 

exploitation of ILP. To conserve the original program state, the retirement of instructions 

are put back in the program order by a circular first-in first-out unit called the Re-order 

Buffer (ROB). The retirement of instructions take place in a new stage called commit. 

Another task to be handled is register renaming, in which false data dependencies such as 

write-after-write and write-after-read are eliminated. The elimination of false dependencies 

prevents the processor from relating instructions inaccurately as dependent and reducing 

the ILP exploitable by the processor. Register renaming is handled in decode and dispatch 

stages. 

 

 

 

Figure 1.4. An example superscalar datapath 
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Most of the designs also introduce a queue structure called Load/Store Queue (LSQ), 

which is dedicated to memory instructions. When a memory instruction is dispatched, 

entries from IQ, LSQ, and ROB are allocated to that instruction. The purpose of LSQ is to 

assure that dependent memory instructions run in program order. LSQ also provides store 

to load forwarding and load bypassing mechanisms to improve the processor throughput. 

 

An out-of-order datapath usually consists of three parts: in-order frontend, out-of-order 

core, and in-order backend. In the in-order frontend, instructions are fetched, decoded and 

dispatched in program order. Once an instruction is dispatched, an entry in the ROB is 

allocated for it, allowing the program order to be preserved. In the out-of-order core, 

instructions are issued for execution from the IQ, regardless of their program order. The 

out-of-order issue needs wakeup and selection logic to be implemented. Wakeup logic 

marks instructions as ready when their source operands become available. Then, the 

selection logic selects the instructions among the ready instructions for execution. 

 

In the in-order backend, instructions are committed in program order. This is achieved by 

committing instructions from the head of the ROB structure one by one. Even if the 

execution of an instruction is finished, it cannot commit until all older instructions are 

committed. An example diagram of an out-of-order superscalar datapath is shown in 

Figure 1.5. 

 

Although out-of-order superscalar architectures improve throughput by exploiting ILP; 

there is not enough parallelism inside a single application to fully utilize superscalar 

resources most of the time. SMT allows multiple threads to be run on the same datapath, 

exploiting Thread Level Parallelism (TLP). Instructions from multiple threads can be 

fetched, dispatched, executed, or committed in a single clock cycle. Resources such as 

fetch/dispatch/issue/writeback/commit bandwidths and IQ, LSQ, ROB, register file, and 

function units can be either shared among threads or replicated. The partitioning may be 

dynamic as well as it can be static. An example diagram of an SMT processor is given in 

Figure 1.6. 

 

In an uncontrolled environment where all resources are shared among threads, some 

threads may dominate these shared resources. For example, if instructions are fetched from 
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threads in a round robin fashion, threads which are stalled due to high-latency instructions 

(usually memory instructions experiencing cache-misses) will not commit and release 

resources, but will continue allocating new entries. Thus, in time, most of the shared 

resources will be allocated to a stalled thread, which does not use those extra resources but 

prevents the other threads from making any progress. This problem is well recognized in 

the literature and is referred as resource clogging. 

 

 

 

Figure 1.5. An example out-of-order superscalar datapath 

 

Many solutions have been proposed to overcome the degrading effects of this problem, 

which are mentioned in Chapter 2.1. One of the most popular approaches is ICOUNT, 

which has been widely used in SMT studies. ICOUNT is a fetching mechanism, which 

fetches instructions from the thread with least amount of instructions in the decode and 

rename stages, and IQ. ICOUNT prevents stalled threads from dominating the resources to 

a degree. It also improves throughput by rewarding fast threads by fetching instructions. 

Since it is a fetch mechanism, it can be orthogonally applied to explicit resource 

partitioning algorithms, as well. 
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Figure 1.6. An example SMT datapath 
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2.  RELATED WORK 

 

 

2.1.  Heuristics for SMT Resource Management 

 

One of the major design challenges in SMT processors is on the pipeline frontend. Here, 

the fetch stage has to decide what to fetch next so that the resource utilization is improved 

and either throughput or fairness or maybe both of these metrics are satisfied. In [2], the 

baseline architecture fetches instructions from threads in a round robin fashion. This can be 

done either by fetching as many instructions as possible from a single thread in a cycle; or 

by fetching fewer instructions from multiple threads. An improvement on instruction 

fetching is to fetch as many instructions as possible from one thread, and fill the rest of the 

available slots with instructions from subsequent threads. 

 

The aforementioned study shows that selecting right instructions to be fetched has a great 

effect on performance. Hence, the study proposes different algorithms to select suitable 

threads for fetching instructions. Instructions from mispredicted branches occupy resources 

without improving the performance of a thread. BRCOUNT gives priority to threads with 

fewest unresolved branch instructions, therefore trying to reduce the number of speculative 

instructions fetched from mispredicted branches and allow these resources to be used by 

instructions that can make progress. The study shows that BRCOUNT indeed reduces the 

number of wrong path instructions and improves performance; however, the problem of 

mispredicted branch instructions on SMT processors is not a big deal since the nature of 

SMT already alleviates the impact of such instructions. 

 

Instructions which need to wait a long time before they can be executed hold up IQ slots, 

preventing an issuable instruction from entering the IQ. MISSCOUNT aims to mitigate the 

effects of IQ-clog by reducing the number of instructions in the IQ that are dependent to 

long-latency memory instructions. To do so, MISSOUCNT prioritizes threads with fewest 

outstanding D-cache misses. The results show that although MISSCOUNT improves 

performance, the IQ-clog condition still occurs in a significant percentage of time, 

indicating that long-latency memory instructions are not the sole reason of IQ-clogs. 
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IQPSN acts on the intuition that threads with oldest instructions are more prone to cause 

IQ-clog. The heuristic gives a lower priority to threads which have their instructions 

closest to the head of IQ. ICOUNT is another mechanism proposed in [2], which favors 

more efficient threads. ICOUNT favors threads with the least number of instructions on-

the-fly. This allows ICOUNT to give higher priority to more efficient threads, as well as to 

achieve a more balanced distribution of IQ slots among threads. 

 

The results obtained in [2] shows that all heuristics yield a performance gain over the 

round robin policy. BRCOUNT and MISSCOUNT provide reasonable performance 

improvements only when there are enough threads. The most significant improvements are 

achieved through IQPSN and ICOUNT. Although IQPSN shows similar performance 

results, it never surpasses ICOUNT. The success and simplicity of ICOUNT has led the 

following studies in this area to widely use it as the sole instruction fetching mechanism, or 

the baseline heuristic to be compared against. 

 

Tullsen and Brown discuss the effects of long-latency instructions, with the focus on long-

latency load instructions, on SMT processors in [3]. According to the study, the power of 

SMT architecture comes from its ability to exploit inter-thread parallelism. However, when 

a thread issues an instruction which cannot be executed shortly, it diminishes the ability of 

other threads to find instructions to issue by holding onto resources when thread level 

parallelism is most needed. This is also backed up by the preliminary experiments. 

 

The study proposes two mechanisms to detect long-latency load instructions: trigger on 

miss and trigger on delay. Trigger on miss identifies a long-latency load instruction 

whenever an L2 cache miss occurs whereas trigger on delay identifies one whenever an 

instruction spends more than a predetermined number of cycles in the load queue. 

 

Once a long-latency load instruction is identified, instructions from that thread are evicted 

from the IQ, freeing resources to be used by other threads. The study also considers 

different policies for the starting point of a flush operation. Next flushes all instructions 

beginning from the next instruction after the load. First use flushes instructions beyond the 

first use of the loaded data. After 10 and After 20 flush starting from 10 and 20 instructions 
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after the load instruction. Next branch flushes after the next branch. Trigger on delay and 

first use are selected for further experiments in that study (FLUSH). 

 

Other methods are considered in the same study, as well. Stall fetch (referred as STALL in 

the literature) stalls threads from fetching instructions once a long-latency load is 

identified. Stall and flush mechanism mixes FLUSH with STALL by stalling the thread 

when a long-latency load is detected, but only flushes if a resource is exhausted. Pseudo-

static puts an upper limit on the number of instructions a thread can have in the queue 

stage or earlier. 

 

The results show that STALL improves performance over the baseline scheme, but not as 

much as the other mechanisms. Pseudo-static does not achieve as high performance gains 

as others due to the inherent inefficiencies of placing artificial limits on the queue usage of 

threads. Stall and flush provides an improvement over FLUSH; however, the study argues 

that FLUSH achieves a good balance between implementation complexity and 

performance on a wide variety of workloads. 

 

Cazorla et al. introduces a resource distribution mechanism called Dynamically Controlled 

Resource Allocation (DCRA) in [4]. Unlike the previous work, DCRA is not an implicit 

fetch policy. Instead, it limits the amount of resources usable by each thread. If a thread 

tries to use resources beyond its allowable limit, it is blocked from fetching further 

instructions. 

 

The resource distribution logic of DCRA is based on two simple ideas: 1) the processor 

should not allocate resources to threads which do not need them, and 2) slow threads need 

more resources than fast threads to exploit the ILP hidden inside instruction streams. To 

distribute resources according to these considerations, DCRA categorizes each thread 

every cycle. A thread is identified as slow if it has a pending L2 cache miss, and as fast, 

otherwise. The reason for that is threads with long-latency loads are more likely to need a 

larger instruction window to find independent instructions. Additionally, a thread is labeled 

as inactive for a type of resource if it does not use that resource within a threshold number 

of cycles. 
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Upon the categorization of threads, each type of resource is distributed separately 

according to the number of active/inactive and slow/fast threads. Slow threads get 

significantly more resources than fast ones, whereas inactive threads do not get any 

resources that they would not use at all. 

 

SMT resource distribution via hill climbing (hereafter, we will use the term OHILL, 

Original Hill Climbing for referring to this study) is another resource partitioning 

mechanism that runs in epochs (periodic intervals) [5]. OHILL assumes that there is a 

certain peak in the performance graph and it tries to reach to that peak by dynamically 

changing resource distributions in a greedy fashion. In the initial trial epochs, each thread 

gets its chance to show its performance with extra resources. At the end of these trial 

epochs, the performance of each thread is compared and the best performing (and most 

deserving) thread is selected for receiving additional resources. Then, these trial epochs 

and the consequent resource distribution are done inside an infinite loop as long as the 

processor is running. 

 

The Adaptive Resource Partitioning Algorithm (hereafter OARPA for Original Adaptive 

Resource Partitioning Algorithm) introduces efficiency metric into the picture [6]. Similar 

to OHILL, OARPA tries to give more resources to the most deserving thread by stealing 

resources from the others. The efficiency metric, CIPRE, is a thread specific metric which 

is evaluated at the end of each epoch. When a thread does a great job and commits many 

instructions with limited number of resources, its CIPRE value becomes high, and OARPA 

gives more resources to that thread. On the contrary, in OHILL, a thread can show the best 

performance and be chosen to receive more resources every epoch regardless of its 

efficiency. 

 

Eyerman and Eeckhout point out that previous fetch policies do not take Memory Level 

Parallelism (MLP) into account [11]. As a matter of fact, by stalling fetch or flushing 

instructions, these previous fetch policies serialize the penalty of the long-latency load 

instructions. The study proposes an MLP-aware fetching mechanism which aims to overlap 

the penalties of long-latency loads by executing them simultaneously, if possible. The 

study consists of three parts: identifying long-latency loads, predicting MLP, and the MLP-

Aware fetch policy. 
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Long-latency loads are identified using two different methods: they are either identified 

whenever a Last Level Cache or D-TLB miss occurs, or when a load instruction is 

predicted to be a long-latency one. The study uses the miss pattern predictor proposed in 

[12]. The prediction is done by comparing the number of load hits between the two most 

recent long-latency loads and the number of load hits since the last long-latency load. If 

these numbers are equal, the load instruction is predicted to be a long-latency one. These 

statistics are kept distinctly for each static load instruction in a table indexed by the 

Program Counter (PC). 

 

The second task handled is to predict the MLP. In [11], MLP is referred as the average 

number of outstanding long-latency loads when there is at least one. To be able to 

determine if MLP is available at a given time, and how further should the processor go in 

order to exploit it; the MLP is predicted by an MLP distance predictor. Each thread is 

provided with a dedicated MLP distance predictor, which is a table indexed by the PC. The 

entries of this table store the number of instruction that must be executed in order to 

achieve the maximum MLP. This table is updated by using a vector called Long-Latency 

Shift Register (LLSR). Each LLSR has the size of the ROB dedicated to each thread. 

When an instruction is committed from a ROB, LLSR is shifted once; “one” is inserted 

from the other end if the instruction committed is a long-latency one, and “zero” is 

inserted, otherwise. The MLP distance predictor is updated for the long-latency load which 

reaches the head of LLSR (once a “one” reaches the head), equal to the distance to the 

farthest long-latency instruction in the LLSR. 

 

Once the MLP distance is predicted, fetching mechanism can determine if there is MLP to 

exploit or not. The study proposes two different schemes at this point: stall fetch and flush, 

similar to the ones proposed in [3]. In stall fetch, upon the prediction of a long-latency 

load, m more instructions are fetched, and then the thread is fetch stalled, where m is the 

MLP distance prediction for that load instruction. Flush evicts instructions from the 

pipeline beyond MLP distance prediction once a long-latency load is detected. There is no 

prediction involved in flush. Both policies use ICOUNT when there are no long-latency 

load instructions. 
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Vainderendonck and Seznec propose a framework called Speculative Instruction Window 

Weighting (SIWW) for applying different fetch policies and resource limitations on the 

SMT architecture [13]. In this framework, SIWW fetch policy gives priority to instructions 

from threads with least amount of work left in the pipeline. The work identifies several 

types of instructions and each type is assigned a weight. The amount of work left for each 

thread is calculated by adding the weights of all instructions that belongs to that thread in 

the pipeline. Resource limitations can be applied by defining an upper limit for the 

“amount of work”. A thread which exceeds this limit cannot fetch any more instructions 

until it commits and releases some instructions. 

 

The study categorizes instructions into the following types: simple instructions, branch 

instructions and load instructions. Simple instructions consist of ALU instructions. 

Although the execution time needed by more complex instructions such as floating point 

division are higher than simpler instructions such as integer addition; all ALU instructions 

are categorized into a single type since the execution latencies of medium-latency 

instructions are well hidden by the out-of-order execution. Fetching wrong path 

instructions are costly to the performance; therefore branch instructions constitute another 

category. However, considering that the framework needs to take the contribution of the 

instructions beyond the branch to the amount of work left into account immediately and the 

framework can only predict the outcome of these branches until they are actually executed; 

high-confidence predictions can be assigned lower weights than low-confidence branches 

in order to compensate for the inaccuracy of predictors. The impact of load instructions 

with cache misses on performance another issue to handle. SIWW allows assigning 

different weights to predicted load hits and misses. Additionally, isolated cache misses 

should be treated differently than non-isolated ones. Load instructions which are predicted 

to miss, but are predicted to have MLP can be assigned lower weights than the ones that 

are predicted to have no MLP. SIWW uses the MLP predictor proposed in [11] for that 

purpose. 

 

Assigning different weights to different instruction types allow SIWW to apply different 

fetch policies without making any changes to the hardware. For example, assigning a 

weight of one to all instruction types will result in a fetch policy equivalent to ICOUNT. 
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Additionally, the study proposes several different weight configurations which provide 

state-of-the-art throughput, fairness and harmonic mean performance. 

 

Küçük et al. propose an improvement over SIWW, called HPIWW [14]. Instead of 

implementing a number of power-hungry speculation circuitry, HPIWW predicts the total 

amount of work left in the queue by keeping history of time spent by instructions in a 

circular queue for each thread. History-based predictions are already used in processor 

structures such as caches, branch predictors and load value predictors. Every time an 

instruction is issued into execution, two oldest entries are removed from the queue and its 

weight, which is calculated by subtracting IQ entrance cycle from the current cycle, is 

inserted into the queue. Whenever an instruction enters IQ, the head of the queue moves 

one entry away from the tail. The total amount of work left can be predicted by calculating 

the summation of all elements in the queue. By removing the speculative circuitry, 

HPIWW achieves great decrease in power consumption compared to SIWW, which 

becomes a hotspot in the processor. Also, by providing more accurate predictions, HPIWW 

provides higher throughput than SIWW. 

 

2.2.  Hyper-Heuristics 

 

Hyper-heuristics are high level methodologies that operate on top of the heuristic search 

space for solving computationally difficult problems. The basic idea is to exploit the 

strength of multiple heuristics (move/neighborhood operators) which dates back to early 

60s [15]. There are two main types of hyper-heuristics managing a set of low level 

heuristics: selection and generation hyper-heuristics [16]. Currently, hyper-heuristics are 

designed based on the notion of a domain barrier which separates the problem domain 

from the high level method. The barrier (depicted in Figure 2.1) acts as a filter disallowing 

no problem specific information from the problem domain to the hyper-heuristic level. 

This approach provides basis for an automated, adaptive, modular, easy-to-maintain and 

flexible software design that is enabled for reuse while solving an unseen instance from a 

domain and even other problem domains without necessitating any modification. 

 

A selection hyper-heuristic, which is the focus of this study, is often an iterative search 

method, consisting of two components that are invoked successively at each step: heuristic 
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selection and move acceptance methods [17]. This type of framework mixes and controls a 

predefined fixed set of low level heuristics. Most of the simple selection hyper-heuristic 

components are introduced in [18]. For example, random permutation gradient heuristic 

selection creates a permutation list of low level heuristics and chooses a low level heuristic 

in the given order one by one at each step to apply on the current solution. If a chosen 

heuristic makes an improvement, the same heuristic is utilized. 

 

 

 

Figure 2.1. The significance of domain barrier in hyper-heuristic design (Figure taken from 

Hyper-heuristics: A Survey of the State of the Art by Burke et al.) 

 

There are more elaborate hyper-heuristics making use of machine learning techniques. 

Learning within hyper-heuristics takes place in an online or offline manner. Offline 

learning hyper-heuristics are employed in a train-and-test fashion, where the feedback from 

the search process is obtained during the training stage on some sample problem instances. 

Online learning hyper-heuristics get feedback during the search process for guidance. For 

example, a reinforcement learning based hyper-heuristic assigns a utility score for each 
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heuristic which is increased using a rewarding mechanism after improvement or decreased 

as a punishment mechanism after a worsening move [19, 20]. A heuristic is chosen based 

on this score which then gets updated at each step. Different strategies can be utilized for 

heuristic selection, one of them being selection of the low level heuristic with a maximum 

score. Moreover, a hyper-heuristic can embed a delayed learning mechanism, which, for 

example, scores low level heuristics in a stage and then using those scores for choosing 

heuristics in the following stage. [21] successfully applies a reinforcement based delayed 

learning hyper-heuristic on a timetabling problem as well as bin packing. There is a 

theoretical [22] as well as an empirical evidence [23, 24] that hyper-heuristics are effective 

solution methodologies for solving combinatorial optimization problems. Even if the 

environment changes dynamically for a given problem, it has been shown that the hyper-

heuristics can adapt and result with high quality solutions [8, 9]. 

 

More on hyper-heuristics can be found in [7, 25, 26]. Sharing the SMT processor datapath 

resources among the threads of a given workload is a challenging task which needs to be 

addressed in a dynamically changing environment. Moreover, even a small change in a 

workload, for example, swapping the order of two programs, could lead to a large change 

in the overall characteristics of the instance and so making the problem even more difficult 

to handle. In this study, we use the previous work on selection hyper-heuristics as an 

inspiration to design a set of learning selection hyper-heuristics to mix well-known 

heuristics for improving the SMT resource distribution. 
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3.  PRELIMINARY ANALYSIS 

 

 

3.1.  Motivation 

 

This section lays out our motivation through a preliminary analysis over some experiments 

that we have performed. It is shown in previous studies [4-6] that explicit partitioning of 

pipeline resources gives promising results in SMT processors, and there is no single best 

heuristic which performs better than the others in all workloads. Both previous studies and 

our initial tests confirm that phenomenon. 

 

Our goal in this study is to combine these heuristics via a selection hyper-heuristic in order 

to capture the strength of each heuristic. By doing this, we aim to achieve a performance 

level close to the best performance available through these heuristics, for most of the 

workloads that we use to evaluate our design. 

 

To show that mixing heuristics would indeed enable us to obtain the performance of the 

better performing heuristic, we run a number of workloads that contain SPEC benchmarks 

[10], using the same processor configuration as in the tests that we use to evaluate our 

proposed designs. The tests are run for a time interval where 10 heuristic selections are 

carried out. Since the limit study is run for three-thread workloads, the duration of the limit 

study is 30 epochs (see Section 4.1 for Big Epochs). During this interval all possible 

selection permutations are run, exhaustively. Due to the exponential cost of time needed to 

run these tests, we did not go beyond 10 decision points for this limit study. Although this 

time interval is too short to make definitive deductions, the results provided us with some 

important insights. 

 

3.1.1.  [bzip2-cactusADM-hmmer] 

 

One of the workloads used in our limit study is [bzip2-cactusADM-hmmer]. Cumulative 

IPC values for ARPA, HILL and the best performing permutation (BEST) are shown in 

Figure 3.1. This figure also represents the total number of instructions committed. The best 

performing permutation performs 0.63 per cent better than ARPA and 3.5 per cent better 
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than HILL. An improvement of only 0.63 per cent may seem insignificant; however, it 

must be considered that 1) the duration of limit study is too short to achieve very high 

performance gains, 2) ARPA does not perform better then HILL in all workloads, therefore 

the best performing permutation would outperform a processor with a design choice of 

using HILL by 3.5 per cent, and, most importantly, 3) the results show that combining 

these heuristics may achieve a performance even beyond what can be achieved by running 

them in isolation. Moreover, 96 per cent of the permutations perform better than HILL and 

11 per cent of the permutations perform better than ARPA. 

 

 

 

Figure 3.1. Cumulative IPC values for ARPA, BEST and HILL in [bzip2-cactusADM-

hmmer] 

 

Figure 3.2 shows how heuristics perform in each epoch. It can be seen that in some epochs, 

HILL performs better than both ARPA and BEST. This may be misleading in terms of 

“capturing the strengths of both heuristics”, as in even the best performing permutation, 

BEST, cannot reach the performance level of HILL in some epochs. This would be a 

wrong assessment since all possible permutations are tested and BEST reached the highest 

performance level overall among all these permutations, including HILL and ARPA. 
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Figure 3.2. Individual epoch IPC values of ARPA, BEST and HILL in [bzip-cactusADM-

hmmer] 

 

The reason why HILL outperforms even the best performing permutation in some epochs 

can be explained as follows: when threads run alone, they run faster; therefore, they reach 

to the upcoming program phases with different behaviors faster. When threads run together 

and share resources, they run slower and it takes them longer to reach to these subsequent 

phases. Figure 3.3 shows the performance of cactusADM when it is run standalone and 

when it is run in a workload using HILL. In the standalone mode, cactusADM experiences 

a great drop in performance in epoch four. Since the thread is able to use all resources 

available in the processor, there are no external factors and the performance drop is caused 

by cactusADM entering a phase with lower IPC. Meanwhile, in HILL, cactusADM cannot 

reach that execution phase where it suffers the performance drop in epoch four. This can be 

confirmed by cactusADM in standalone mode performing better than cactusADM in HILL, 

and committing more instructions until epoch four (Figure 3.4). Later on, cactusADM in 

HILL experiences a similar performance drop in epoch seven. In epoch four, cactusADM 

in HILL is still in the relatively fast execution phase, and cactusADM in standalone mode 

has entered a slow execution phase. Thus, in epoch four, HILL can achieve a level of 

performance higher than the standalone mode. 
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Figure 3.3. Individual IPC values of cactusADM when run in standalone mode and in a 

mixture with HILL 

 

In Figure 3.3, it can be observed that the IPC of cactusADM oscillates greatly in time 

intervals of two-three epochs, even in standalone mode where the performance drops are 

not caused by sharing resources with co-running threads. This shows how fast the 

execution phases of threads can change. This also explains the anomaly of HILL 

outperforming BEST in some epochs. 
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Figure 3.4. Total number of instructions committed by cactusADM when run in standalone 

mode and in a mixture with HILL 

 

3.1.2.  [lbm-milc-gobmk] 

 

Second workload that is tested in our limit study is [lbm-milc-gobmk]. The performance 

results of ARPA, HILL and BEST per epoch are given in Figure 3.5. BEST outperforms 

HILL by 3.96 per cent and ARPA by 5.02 per cent. If we bring the performance gains of 

BEST in these two workloads together, it means that if there were a hyper-heuristic which 

could find the best performing permutation, it would outperform HILL by 3.5 per cent and 

3.96 per cent; and ARPA by 0.63 per cent and 5.02 per cent. The importance of performing 

at least at a similar level, if not better, to the better performing heuristic becomes more 

obvious when the performance gains in different workloads are considered together. 

Moreover, in [lbm-milc-gobmk], around six per cent and 26 per cent of the tested 

permutations perform better than HILL and ARPA, respectively. 

 

When the performances of threads in [lbm-milc-gobmk] are examined individually, it can 

be seen that gobmk experiences three phases with different behaviors. First, gobmk starts 

with a slow phase where extra resources do not add much to its performance. Then, gobmk 
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enters a phase where it can increase its performance with extra resources. Finally, it enters 

a phase where it can run extremely fast. 

 

 

 

Figure 3.5. Individual epoch IPC values of ARPA, BEST and HILL in [lbm-milc-gobmk] 

 

In the beginning, ARPA starts giving resources to milc, since it is the most efficient thread 

in terms of CIPRE metric. While resources are being shifted towards milc, it increases its 

performance, greatly. Meanwhile, the other threads experience great performance 

degradations. IPC values for threads in ARPA, HILL and BEST per epoch can be seen in 

Figures 3.6-3.8. In epoch six, it can be seen that the performance of gobmk slightly 

increases in ARPA. Since gobmk does not get any extra resources, this is due to gobmk 

entering its second phase, which is a relatively faster phase compared to the first one. 

However, since milc still has a higher efficiency value, gobmk still does not get any extra 

resources, and cannot improve its performance. In the end, in ARPA, gobmk does not 

commit enough instructions to reach to its third phase within the given amount of time. 

 

What ARPA fails detecting is whether a thread can make good use of extra resources or 

not. ARPA makes decisions only based on a thread performance in the current distribution. 

If a thread is not the most efficient one already, ARPA does not give any extra resources to 
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it, and cannot determine if that thread can make use of these extra resources or not. This 

issue is also discussed in detail in [6]. 

 

 

 

Figure 3.6. Performance result of individual threads in ARPA in [lbm-milc-gobmk] 

 

In general, the efficiency of a thread is expected to increase when the amount of resources 

allocated to it is decreased, since ILP available in threads usually do not allow IPC to 

increase in the same rate with resources. However, when these resources available to a 

thread get low, the efficiency may drop even further. When the number of resource entries 

decrease, the window to search for independent instructions in order to exploit ILP gets 

smaller, converging to an in-order processor performance. In such cases, even only a few 

long latency instructions may stall a thread and degrade its performance. This is the case in 

gobmk in the first few epochs of ARPA. When the amount of resources allocated to gobmk 

decrease, the performance decreases even more. Hence, efficiency of gobmk decreases, 

which prevents it from getting any extra resources. 

 

HILL, on the other hand, runs trial periods where each thread gets its fair chance with extra 

resources, which allows HILL to determine whether threads can increase their performance 

when they are provided with extra resources or not. However, periodically allowing each 
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thread to use extra resources comes with a cost. It can be seen from Figure 3.5 that HILL 

experiences performance drops in epochs divisible to three, which are the epochs where 

gobmk gets extra resources. Since HILL favors gobmk by giving extra resources even 

when gobmk cannot improve its performance significantly, throughput decreases in these 

epochs. This exposes another weakness of HILL: it spends most of its time in non-optimal 

distributions (according to its own evaluation). This may not be an issue when the 

performance improvement in the favored thread can make up for the performance loss in 

other threads (such as when resources are shifted among milc and lbm, in this example), 

but in some cases this may prove to be wasteful. 

 

 

 

Figure 3.7. Performance results of individual threads in HILL in [lbm-milc-gobmk] 
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Figure 3.8. Performance results of individual threads in BEST in [lbm-milc-gobmk] 

 

3.1.3.  [art-mcf-mgrid] 

 

[art-mcf-mgrid] is another workload that is studied. In this workload, BEST scored an IPC 

value 2.4 per cent higher than HILL and 10 per cent higher than ARPA. The performance 

results of ARPA, BEST and HILL per epoch are given in Figure 3.9. 24 per cent and 53 

per cent of permutations outperform HILL and ARPA, respectively. 

 

Another interesting observation that can be done from this limit study is the importance of 

the initial distribution decisions. In [bzip2-cactusADM-hmmer], among 109 permutations 

managed to perform with a higher IPC than ARPA, all 109 permutations started with 

running ARPA as the first heuristic. In [lbm-milc-gobmk], 63 permutations outperformed 

HILL and 61 of them started with running ARPA as the first heuristic. Finally, in [art-mcf-

mgrid], 243 permutations outperformed HILL and all 243 started with running HILL as the 

first heuristic. 

 

Figures 3.10-3.12 show the performance geography of all 1024 permutations in these three 

workloads. The horizontal axis represents the list of heuristics run as the first five 
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consecutive heuristics, depth axis represents the list of heuristics run as the five 

consecutive heuristics and the vertical axis represents the performance. It can be clearly 

seen that there are regular oscillations along the horizontal axis, implying the importance 

of the first heuristic to be run. If cells on the horizontal axis are assumed to be in pairs; 

these pairs would represent the exact same heuristic list, except for the first heuristic to be 

run. The obvious performance difference between such pairs shows that the initial 

distribution decision is of utmost importance, even when the permutations which 

performed below the better performing heuristic are considered. 

 

 

 

Figure 3.9. Individual epoch IPC values of ARPA, BEST and HILL in [art-mcf-mgrid] 

 

Figures 3.10-3.12 provide us with the information of probability of success. In [bzip2-

cactusADM-hmmer], 980 out of 1024 permutations and 109 out of 1024 permutations 

manage to outperform HILL and ARPA, respectively. 63 permutations outperform HILL 

and 265 permutations outperform ARPA in [lbm-milc-gobmk]. [art-mcf-mgrid] yields the 

most promising results: 243 permutations perform better than HILL and 543 permutations 

perform better than ARPA. These numbers show the probability of performing in a higher 

level than the current heuristics without any careful analysis or rational decision making. 
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Figure 3.10. IPC values of all 1024 possible permutations in workload [bzip2-cactusADM-

hmmer] 

 

 

 

Figure 3.11. IPC values of all 1024 possible permutations in workload [lbm-milc-gobmk] 
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Figure 3.12. IPC values of all 1024 possible permutations in workload [art-mcf-mgrid] 

 

3.1.4.  Long Run 

 

In order to gain a better insight on the potential performance improvement available by 

utilizing hyper-heuristics, another test, lasting approximately 13M cycles (100 Big Epochs) 

on the workload [gobmk-lbm-mcf-sjeng], was carried out. However, due to exponential 

time cost, not all possible permutations were tested. Instead, the simulation is divided into 

time periods of 10 Big Epochs. For each period, brute force search is applied for 1024 

possible permutations. Each new period is tested on top of the list of best performing 

permutations found that far. Figure 3.13 shows the cumulative performance values of 

ARPA, HILL and the best performing permutation found (LIMIT) during the simulation. 

In the end, LIMIT outperforms HILL by one per cent and ARPA by 5.4 per cent. 
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Figure 3.13. Cumulative performances of ARPA, HILL and LIMIT in [gobmk-lbm-mcf-

sjeng] 
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4.  PROPOSED DESIGN 

 

 

The initial design starts by creating a habitat that may interchangeably run both OARPA 

and OHILL. ARPA and HILL heuristics are our faithfully implemented versions of these 

heuristics on hardware. Both ARPA and HILL track down runtime statistics collected by a 

number of hardware counters. For instance, both of them require the number of committed 

instructions for each thread in time periodic intervals called epochs. They also need a 

comparator circuitry to decide if the performance of a trial epoch is greater than the 

performance value experienced by the other trial epochs or if the CIPRE value of a thread 

is greater than the others. Therefore, as we emphasize the details in the later sections, the 

resulting circuitry that runs both heuristics is much less complex than what one may 

expect. 

 

As shown in Figure 4.1, our proposed design brings ARPA and HILL together. The job of 

these heuristics is to favor one of the running threads and to award it with more resources. 

The shared hardware counters keep runtime statistics that are required by the evaluation 

functions or heuristics (and the hyper-heuristic). A few example counters are committed 

instructions per cycle per epoch (IPCepochi, for the ith epoch), CIPRE, and fetched 

instructions per cycle per epoch (FIPCepochi). The main responsibility of our proposed 

hyper-heuristic is the careful selection of the heuristic that is to be utilized for the next 

epoch. 

 

In this study, we investigated various heuristic selection methods and hyper-heuristics. A 

simplified variant of a reinforcement learning based hyper-heuristic is also employed. This 

variant uses different success criteria based on two successive stages and also different 

heuristic selection mechanisms to choose a suitable heuristic at each step. The success 

measure is used as the utility score of a heuristic. 
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Figure 4.1. The proposed design 

 

4.1.  Combining the Heuristics 

 

Our proposed hyper-heuristic needs to be able to run both heuristics, interchangeably. 

However, there are substantial differences between HILL and ARPA: HILL needs a 

number of trial epochs to decide whereas ARPA can make permanent decisions at the end 

of a single epoch. If the system allows ARPA to run between two trial epochs of HILL, 

this will have two severe consequences. First, it will increase the chances of a workload 

changing its behavior between the two trial periods, which leads HILL into comparing trial 

performances of two different program phases and renders it to be a totally different 

heuristic. This can be observed better in the timeline given in Figure 4.2. In this example 

lets assume that HILL is run in the first epoch, and HILL runs its first trial round. Then, the 

hyper-heuristic decides that ARPA should be run for the next seven epochs. When HILL 

finishes its trials and makes a decision, it has to compare performance results of epochs 

zero and eight, which are quite far away from each other, causing inaccurate evaluations 

that OHILL does not experience at all. 

 

The second problem that may occur when ARPA is allowed to be run between two trial 

epochs of HILL is that the processor may have to make radical changes in resource 

distribution if ARPA keeps changing the distribution in a particular direction and HILL 

wants to return to its anchor state. This phenomenon would cause the processor to act in a 

way against the nature of both heuristics. 
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Figure 4.2. An example timeline with heuristics running in arbitrary order 

 

Throughout this process, we tried our best to faithfully implement the algorithmic behavior 

of each heuristic to be consistent with its original implementation. To overcome the 

problems described above, we define Big Epochs. Big Epochs consist of T epochs, where 

T is the number of threads running simultaneously in the system. Only a single type of 

heuristic runs within a Big Epoch, as shown in Figure 4.3. Therefore, the hyper-heuristic 

makes decisions only at the beginning of Big Epochs. To provide the hyper-heuristic with 

accurate data on how heuristic performs, all evaluations are done using performance values 

of heuristic in Big Epochs; although, the heuristics still make their decisions in the 

traditional epoch granularity. 

 

 

 

Figure 4.3. An example timeline where the hyper-heuristic decides HILL, ARPA and 

HILL should be run on an SMT processor with three threads  
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4.2.  Implementation Details of Heuristics 

 

4.2.1.  Implementation Details of HILL 

 

OHILL partitions integer IQ, integer rename registers, and ROB. These resources are 

partitioned, proportionately. The authors state that by partitioning these resources, they 

indirectly control how much floating point resources each thread uses. Hence, OHILL does 

not explicitly partition floating point resources. In our implementation, HILL partitions IQ, 

ROB, and Load/Store Queue (LSQ), proportionately. 

 

The original study does not refer to a lower limit of resources a thread can have, which 

may cause resource starvation. We implement a lower limit to the resources, which 

prevents from any thread having less than a certain amount of resources. This lower limit is 

equal to the amount of resources taken away from each thread in trial periods of HILL. 

 

The authors of the original study propose running the algorithm in software level. With a 

pessimistic approach taking context switches also into account, the original study applies a 

200-cycle penalty per epoch when evaluating the work. Our implementation assumes all 

computations are done in hardware level, and, therefore, applies no such penalty. However, 

since out work is compared against our implementation, HILL, both algorithms are 

penalty-free and thus the comparison is to be fair. 

 

The optimization goal of OHILL can be altered by changing the feedback metric. In the 

original study, OHILL is optimized for three different metrics: average IPC, average 

weighted IPC, and harmonic mean of weighted IPC. In order for OHILL to be able to 

compute these values, it must know the IPC of threads when they are run standalone in the 

processor (single_IPC). To gather the single_IPC value at runtime, OHILL runs one thread 

alone every 40 epochs. This sampling cost is taken into account in the results published in 

the original work. Since we are only interested in optimizing throughput at this point, we 

do not do any sampling, and, therefore, do not incur any sampling costs in our results; 

neither when HILL runs alone or as a part of the hyper-heuristic. 
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4.2.2.  Implementation Details of ARPA 

 

OARPA partitions Instruction Fetch Queue (IFQ), IQ, and ROB. The original study states 

that partitioning the ROB enables control over rename registers; therefore the original 

implementation does not explicitly partition the register file. Furthermore, IFQ and ROB 

are not partitioned separately; instead an upper limit to how many entries a thread can use 

from these resources in total is applied. IQ is partitioned, proportionately. For 

compatibility purposes, our implementation partitions LSQ, IQ, and ROB proportionately 

and independently, as HILL does. 

 

The CIPRE value of each thread is calculated by dividing the number of committed 

instructions in the current epoch to the number of resource entries allocated to each thread. 

In the original implementation, in harmony with how IFQ and ROB are distributed 

together, the divisor (number of resources allocated) is taken as the upper bound of IFQ 

and ROB entries a thread can use in total. Since our implementation does not partition IFQ, 

we use the total number of IQ and ROB entries allocated to each thread when computing 

CIPRE values. 

 

OARPA applies a lower bound to the number of resources allocated to each thread, to 

prevent resource starvation. This lower limit is 25 per cent of the initial amount that is 

allocated [6]. For compatibility with HILL; ARPA applies a lower limit equal to the 

amount shifted away from each thread at decision making points. 

The original study also suggests implementing the algorithm in software level as in 

OHILL, and applies the same performance penalties. However, we assume the algorithm is 

implemented in hardware level and apply no penalties, as we do not apply any penalties to 

HILL. Thus, comparisons between HILL, ARPA, and our proposed hyper-heuristic would 

be fair in this manner. 

 

4.2.3.  Parameters 

 

There are two common (and also critical) parameters for both ARPA and HILL: epoch size 

and delta. The epoch size is the length of and epoch in cycles. Both studies agree that the 

epoch size is an important parameter. A very small epoch size may lead to a very dynamic 



38 

 

inter-epoch behavior and cause the heuristic to make faulty and unstable decisions. On the 

other hand, a very large epoch size would make the heuristics unresponsive and prevent 

them from reacting quickly to changing needs of the workloads. 

 

The delta parameter determines how many resource entries is to be taken from or given to 

threads. A very small delta value would cause the heuristics to act slowly, increasing the 

time needed to reach the optimal distribution. A very large delta value, on the other hand, 

may turn heuristics into coarse-grain solutions and cause them to miss some optimal 

distributions. In our design, this value also determines the minimum number of resource 

entries that can be allocated to each thread. 

 

4.3.  Proposed Hyper-Heuristics 

 

In this study, we propose a variety of hyper-heuristics ranging from the simplest random-

gradient-based (HH1) hyper-heuristic to the more complex reinforcement learning-based 

(HH4) one. 

 

4.3.1.  HH1: IPC-based Hyper-Heuristic 

 

Our first hyper-heuristic is based on the committed instructions per cycle per epoch 

(IPCepochi) metric. This success measure is a good indicator for the processor 

performance during an epoch. When this value is decreasing in the current epoch, we can 

immediately conclude that something is not going right in terms of performance. In such 

cases, HH1 punishes the heuristic that was being used in the previous epoch and changes it 

with an alternative heuristic for the incoming epoch. In our study, we only utilize two 

heuristics (ARPA and HILL), and, hence, we choose the alternative heuristic in such cases. 

Algorithm 4.1 shows the pseudocode for this hyper-heuristic. 
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Algorithm 4.1. The pseudocode of HH1 

 

if IPCBigEpochi >= IPCBigEpochi-1 then 

    Use the current heuristic in the next epoch 

else 

    Change the heuristic 

end if  

 

4.3.2.  HH2: Commit-over-fetch-based Hyper-Heuristic 

 

The second hyper-heuristic is based on a different metric which we call commit over fetch, 

as shown in Algorithm 4.2. Generally, the number of instructions that enters the processor 

may not match the number of instructions that exits the processor by a successful 

completion. IPCepochi value can be equal to but generally much less than the fetched 

instructions per cycle per epoch (FIPCEpochi). The main reason for this phenomenon is 

due to the speculative nature of today’s processors. To improve the processor throughput, 

the processors run instructions in out of program order and have hardware branch 

predictors that may fill the processor pipeline from speculative paths. When the branch 

outcome is incorrectly predicted, instructions that are fetched from a mispredicted path are 

all flushed. Here, in this metric, we measure if the number of flushed (or wasteful) 

instructions is increasing. When this happens, HH2 punishes the previously utilized 

heuristic by selecting the alternative one. 

 

Algorithm 4.2. The pseudocode of HH2 

 

CommitOverFetch ← IPCBigEpochi / FIPCBigEpochi 

 

if CommitOverFetchi >= CommitOverFetchi-1 then 

    Use the current heuristic in the next epoch 

else 

    Change the heuristic 

end if  

 

4.3.3.  HH3: IPC-and-Commit-over-fetch-based Hyper-Heuristic 

 

In this third algorithm, we propose a slightly more complex evaluation function. First, we 

check if the IPCepochi improves as we do in HH1 with a minor twist. By adding a 

threshold value to the algorithm, we want to  tolerate the small fluctuations in the 
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performance due to external factors (phase changes in threads, increased cache steals 

among threads, etc.), which are not directly related to the performance of the running 

heuristic. Secondly, in our study, we observed that the overall performance may radically 

drop within a number of epochs. To stabilize our algorithm further, we give one more 

chance to a running heuristic only if it is ARPA, even when the drop in IPCepochi is below 

a threshold value. In our experiments, we found that ARPA is a more successful heuristic 

compared to HILL, and this is to ensure not to punish a well-performing heuristic at its 

first fault. Finally, as in HH2, we check if the efficiency of the last epoch is not worse than 

the efficiency of its predecessor. If this is the case, then we continue using the same 

heuristic; otherwise, we change the heuristic. The pseudocode of the algorithm is given in 

Algorithm 4.3. 

 

Algorithm 4.3. The pseudocode of HH3 

 

if IPCBigEpochi / IPCBigEpochi-1 >= thresholdValue then 

    Keep the current heuristic running for the next epoch 

    oneMoreChance ← 0 

else 

    oneMoreChance ← oneMoreChance + 1 

    if oneMoreChance is 1 and the current heuristic is ARPA then 

        Give one more chance to the current heuristic 

    else 

   CommitOverFetchi ← IPCBigEpochi / FIPCBigEpochi 

   if CommitOverFetchi >= CommitOverFetchi-1 then 

            Keep the current heuristic running for the next epoch 

   else 

       Change the heuristic 

       oneMoreChance ← 0 

    end if 

    end if 

end if  

 

4.3.4.  HH4: Round-based Hyper-Heuristic 

 

This hyper-heuristic tries to learn the success rate of each heuristic by keeping a running 

score for each of them. The score is set according to the performance improvement or 

degradation achieved by the running thread at the end of each Big Epoch. We also 

introduce a round-based scoring, and we reset heuristic scores every Round in HH4. This 

approach guarantees in the hyper-heuristic a degree of stability. Additionally, by altering 

the Round length in the algorithm, a limit to the history of successes of each heuristic can 

be set. For example, a Round length of 20 Big Epochs indicates that HH4 is not to take 
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successes beyond 20 Big Epochs into account. At the beginning of each round, where 

scores are reset, the heuristic which completes the previous round with the highest score is 

selected. The pseudocode of HH4 is given in Algorithm 4.4. 

 

Algorithm 4.4. The pseudocode of HH4 

 

if it is the beginning of a Round then 

    if ARPA_score >= HILL_score then 

   last_winner ← ARPA 

    else 

   last_winner ← HILL 

    end if 

    ARPA_score ← 0 

    HILL_score ← 0 

    Use last_winner as the next heuristic 

else 

    if current heuristic is ARPA then 

        ARPA_score ← ARPA_score + (IPCBigEpochi – IPCBigEpochi-1) 

    else 

   HILL_score ← HILL_score + (IPCBigEpochi – IPCBigEpochi-1) 

    end if 

    if ARPA_score >= HILL_score then 

        Use ARPA 

    else 

   Use HILL 

    end if 

end if   

 

4.4.  Hardware Complexity 

 

In order to implement a hyper-heuristic utilizing predefined heuristics, the circuitry needed 

for running the heuristics and the hyper-heuristic must be integrated into the hardware. 

Since both the heuristics and the hyper-heuristics do similar computations to a degree, 

some elements can be implemented once and can be dynamically dedicated to the 

algorithm which really needs them. 

 

Both ARPA and HILL need per-thread counters for counting the number of committed 

instructions within an epoch, which are already utilized in most of the contemporary 

processors. These counters do not need to be duplicated since the input gathered by these 

counters can be directed to HILL, to ARPA and to the hyper-heuristic at the same time. 

Some of our proposed hyper-heuristics need to know the number of instructions fetched 

each epoch per-thread. Similar counters can be implemented for feeding this information to 

the hyper-heuristic. 
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Both heuristics need comparators. ARPA needs them for comparing the efficiency 

(CIPRE) of the threads whereas HILL needs them to compare the actual performance 

values (number of committed instructions in our case since we optimize HILL only for 

throughput). Since ARPA and HILL are not planned to be run simultaneously, not only 

these comparators can be shared among ARPA and HILL but also they can be used for 

comparing the current epoch’s performance to the previous one by the hyper-heuristic. 

There is no need for replicating these resources. 

 

In explicit partitioning of resources, control logic must be implemented to prevent threads 

from using more resources than they are allowed to. This can be handled by allocating two 

registers per thread, per resource; one to keep the maximum number of entries the thread is 

allowed to use, and one to keep the number of entries the thread is currently using. If the 

number of currently used resource entries for a thread exceeds its limit, fetching or 

dispatching is blocked until either the thread frees some resources, or its limit is increased. 

In addition, a mechanism to prevent threads from losing resources beyond a lower bound 

must be implemented. This control logic is needed for any kind of explicit resource 

partitioning mechanism, and our design do not cause any additional complexity over a rival 

approach for that reason. 

 

HILL needs approximately 1600 transistors, except for the resource control logic if 

implemented according to our experimental setup (See Sections 5.1 and 5.3). HILL needs 

four commit counters for keeping track of each thread’s progress in a four-threaded 

processor. The processor is eight-way, which means a thread can commit a maximum of 

eight instructions per cycle. Considering that the epoch size is 32768 cycles, the maximum 

number of instructions that can be committed by a single thread can be kept in an 18-bit 

counter. HILL also needs comparators to find out in which epoch the processor performed 

best. Assuming that all comparisons are done in parallel, HILL needs three comparators, 

each being 18-bit wide. The summary of hardware complexity of HILL in terms of 

transistor number can be seen in Table 4.1. 
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Table 4.1. Transistor cost of HILL 

 

Unit type Number needed Bits per unit Number of transistors 

Commit counters 4 18-bits 432 

Comparators 3 18-bits 1134 

   1566 

 

ARPA, in addition to HILL, needs four division units for the computation of CIPRE value. 

CIPRE is computed by dividing the number of committed instructions to the total number 

of IQ and ROB entries allocated to the thread. Since the number of committed instructions 

is almost always much greater than total number of entries allocated, division units must be 

aligned with respect to the number of committed instructions; which means division units 

must be 18-bits wide. ARPA needs roughly 5500 transistors for implementation except for 

the resource control logic. Details of this transistor cost can be seen in Table 4.2. 

 

Table 4.2. Transistor cost of ARPA 

 

Unit type Number needed Bits per unit Number of transistors 

Commit Counters 4 18-bits 432 

Comparators 3 18-bits 1134 

Division Units 4 18-bits 3888 

   5454 

 

Our proposed hyper-heuristic design requires hardware support for both its own decision 

mechanism, and for the control mechanism for running heuristics based on those decisions. 

Hyper-heuristics keep track of thread performances in terms of Big Epochs; therefore, the 

size of counters needed for hyper-heuristics are greater. In an eight-way processor where 

the epoch size is 32768 cycles; each thread can commit a maximum of 218 instructions. The 

duration of Big Epochs is equal to the number of threads running in parallel. In the case of 

four threads running simultaneously, the size of commit counters should be 20-bits. Also, 

20-bit adders are needed to add the commit values of threads in sequential epochs, in order 
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to compute IPCBigEpochs. Same amount of logic units are also needed for keeping track 

of total number of fetched units and FIPCBigEpochs. 

 

The hardware cost caused by the decision mechanism varies to the type of hyper-heuristic 

utilized. In the following approximation; the most costly hyper-heuristic for each type of 

logic unit is considered. In terms of comparators, HH3 is the most costly hyper-heuristic: it 

needs two comparators; one for comparing the rate of IPCBigEpochs to the threshold 

value, and one for comparing CommitOverFetch values. 20-bits are sufficient for each 

comparator since both comparisons are done between 20-bit values. HH3 also has the most 

complex logic in terms of division. Two division units are needed for HH3: one for 

dividing IPCBigEpochs and one for computing CommitOverFetch value. Both division 

units should be 20-bits. HH4 needs two score registers; for HILL and ARPA. It also needs 

two subtractors for computing the IPPCBigEpoch difference between last two Big Epochs, 

and two adders for adding this difference to the appropriate score register. The maximum 

amount of instructions that can be committed in a single BigEpoch is 220. Since our design 

uses five rounds as Round Duration in HH4 (see Section 6.1.); the size of these score 

registers and adders should be 23-bits, whereas 20-bits are sufficient for subtractors. The 

summary of hardware cost in terms of transistors is given in Table 4.3. 

 

The calculation in Table 4.3 is a rough approximation. Considering the extra latches, 

selection logic, and other overlooked costs; we triple the hardware cost and round it up to 

40,000 transistors. One of the most up-to-date processors, 15-Core Xeon Ivy Bridge-Ex 

(which will be released in 2014) contains 4.31 billion transistors, which means there are 

approximately 287 million transistors per core. Our hyper-heuristic design amount to 0.01 

per cent of a single Xeon Ivy Bridge-Ex core, which can be easily ignored. 

 

Figure 4.4 shows a more detailed design scheme. Green units are required for both HILL 

and ARPA. Yellow units are required only by ARPA. These units are also utilized in 

hyper-heuristic design since hyper-heuristics need to be able to run both HILL and ARPA. 

Red units in the figure are only required by hyper-heuristics. The center of control is the 

Hyper-heuristic Control Logic; which includes hardware for control signals, selection, 

score registers, and additional arithmetic operations. 
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Table 4.3. Transistor cost of hyper-heuristic design 

 

Unit type Number needed Bits per unit Number of transistors 

Commit Counters 4 20-bits 480 

Commit Adders 4 20-bits 2240 

Fetch Counters 4 20-bits 480 

Fetch Adders 4 20-bits 2240 

Comparators (HH3) 2 20-bits 840 

Division Units (HH3) 2 20-bits 2160 

Registers (HH4) 2 23-bits 1656 

Subtractors (HH4) 2 20-bits 1120 

Adders (HH4) 2 23-bits 1288 

   12504 

 

 

 

 

Figure 4.4. Detailed design of hyper-heuristic controlled resource allocation 
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5.  EXPERIMENTAL METHODOLOGY 

 

 

5.1.  Processor Specifications 

 

We use M-Sim to evaluate our design [27]. M-Sim supports SMT along with the cycle-

accurate simulation of the instruction pipeline and the memory hierarchy. The datapath 

resources are kept as scarce as possible in our simulated processor since having a very 

large datapath is not realistic due to high power consumption and complexity overhead. A 

larger IQ would increase wakeup and selection logic complexity, thus increasing access 

latency. Since IQ is on the critical path of an instruction pipeline, higher access latency 

may easily degrade processor performance. Table 5.1 gives the details of the simulated 

processor. 

 

Table 5.1. Processor Specifications 

 

Decode / Issue / Commit bandwidth 8 instructions / cycle 

Register file 256 int, 256 floating point 

Reorder buffer (ROB) size 64 entries 

Issue Queue (IQ) size 40 entries 

Load / Store queue (LSQ) size 32 entries 

Number of integer ALUs 6 

Number of integer multiplier / dividers 3 

Number of floating point ALUs 3 

Number of floating point multiplier / dividers 3 

L1 instruction cache 32 KB, 2-way, LRU 

L1 data cache 32 KB, 4-way, LRU 

L2 unified cache 512 KB, 4-way, LRU 

L1 cache hit time 1 cycle 

L2 cache hit time 20 cycles 

Main memory access time 300 cycles 
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5.2.  Benchmarks 

 

We select seven benchmarks from the SPEC2006 benchmark suite according to their 

behaviors provided in [10], with the concern creating a variety of unique workload 

behaviors. The selected benchmarks are hmmer, lbm, mcf, milc, namd, sjeng, and zeusmp. 

 

Workloads with two, three, and four threads are tested in our study and almost all possible 

combinations are tested (21 workloads for two-thread mixtures, 35 workloads for three-

thread mixtures and 35 workloads for four-thread mixtures). All benchmarks are fast-

forwarded for 100 M instructions, and then cycle-accurate simulations are run for 200 M 

cycles. 

 

5.3.  Heuristic Parameters 

 

Two important parameters for both ARPA and HILL are epoch size and the amount of 

resources shifted among threads, delta. 

 

Both heuristics perform best with a moderate epoch size. OHILL sets this parameter to 64 

K cycles whereas OARPA sets it to 32 K cycles. In our tests, both heuristics performed 

best with 32 K cycles of epoch size. 

 

The effect of delta values varies with the size of datapath resources. Therefore, comparing 

the delta values would be misleading. The delta values that we used in our test are 

empirically chosen, and they are the best performing ones in our setup. Design parameters 

are given in Table 5.2. 

 

Table 5.2. Heuristic Parameters 

 

Epoch size 32768 cycles 

Delta (ROB) 4 

Delta (IQ) 2 

Delta (LSQ) 2 
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5.4.  Metrics 

 

We use three metrics for evaluating the proposed hyper-heuristics: IPC, Average Weighted 

IPC, and Harmonic Mean of Weighted IPC. IPC quantifies the throughput of the processor. 

However, IPC alone does not tell if a heuristic fairly treats each running thread. An 

improvement in IPC can be achieved by increasing the performance of fast threads and 

decreasing the performance of slow threads. The formula for calculating IPC of T threads 

is given in Equation 5.1. 

 

                    𝐼𝑃𝐶 =  ∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑟𝑒𝑎𝑑𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

𝑇
𝑖=1                   (5.1) 

 

Average Weighted IPC shows how much of the performance is achieved by threads 

compared to their standalone performance. The formula for calculating Average Weighted 

IPC for T threads is given in Equation 5.2. In an ideal run, Average Weighted IPC is 

expected to be one, indicating that no performance degradation took place due to resource 

sharing nature of SMT. However, this metric may be greatly affected by even minor 

performance changes in slow threads. Average Weighted IPC represents the Quality of 

Service (QoS) information. For example, an Average Weighted IPC of 0.8 or above means 

that the system can guarantee an average performance level that is only less than 20 per 

cent of the standalone performance. Therefore, Average Weighted IPC will be referred as 

QoS for the rest of the thesis. 

 

                            𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑃𝐶 =  
∑

𝐼𝑃𝐶𝑖
𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒𝐼𝑃𝐶𝑖

𝑇
𝑖=1

𝑇
                          (5.2) 

 

The third metric that we use in our study is the Harmonic Mean of Weighted IPC. It simply 

takes the harmonic mean of normalized IPCs as shown in Equation 5.3. This metric 

provides throughput-fairness balance since it is affected by both how fast threads run, and 

how much of the standalone performance is achieved by each thread. Harmonic Mean of 

Weighted IPC will be referred as Hmean or fairness for the rest of the thesis. 
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                 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑃𝐶 =  
𝑇

∑
𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒𝐼𝑃𝐶𝑖

𝐼𝑃𝐶𝑖

𝑇
𝑖=1

               (5.3) 
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6.  TESTS AND RESULTS 

 

 

Throughout this section, we show the effectiveness of our proposed method in terms of 

various metrics that are described in the previous section. We first start with the sensitivity 

analysis of our parametric hyper-heuristics, HH3 and HH4. 

 

6.1.  Sensitivity Analysis 

 

Hyper-heuristics HH3 and HH4 contain variable parameters such as threshold value and 

round length. It is quite a challenging task to develop a complete model and foresee the 

impact of these parameters in SMT processors. Therefore, a sensitivity analysis is carried 

out by a series of simulations. The effect of threshold values of 0.95, 0.98, 1.00, and 1.02; 

and round lengths of five, 10, 15, 20, 25, and 30 Big Epochs are tested on HH3 and HH4, 

respectively. Full set of tests are run for both hyper-heuristics for every variation of the 

parameters tested. HH1 and HH2 are not included in the sensitivity analysis due to their 

non-parametric nature. The results are compared with a static resource partitioning 

algorithm (STATIC), which partitions the resources equally among running threads, and 

are presented for HH3 and HH3 in Table 6.1 and Table 6.3, respectively. The equation 

used in calculating gains of heuristics and hyper-heuristics against static partitioning is 

given in Equation 6.1. 

 

                    𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐺𝑎𝑖𝑛 = (
𝐼𝑃𝐶ℎ𝑦𝑝𝑒𝑟−ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝐼𝑃𝐶𝑆𝑇𝐴𝑇𝐼𝐶
−  1) ∗ 100               (6.1) 

 

Table 6.1 shows that HH3 operates best with the threshold value of 1.00 in two-threaded 

and three-threaded benchmarks. In four-threaded benchmarks, the threshold value of 1.02 

performs best in terms of IPC, threshold value of 1.00 being the second. However, the 

threshold value of 1.00 also provides the best results in QoS and Hmean in four-threaded 

benchmarks. Therefore, we decided to report the results of HH3 with the threshold value of 

1.00 through the rest of the thesis. 
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The threshold value used in HH3 affects the heuristic selection process by altering the 

threshold IPC, which determines whether the heuristic is considered to be successful or not 

during the previous Big Epoch. Therefore, decreasing the threshold IPC results in such a 

case that a single heuristic proclaims its dominance. Considering that ARPA is favored by 

being given a second chance when it is unsuccessful; it is inevitable that HH3 converges to 

running only ARPA if threshold value is set too low. Obviously, this conflicts with our 

purpose of harvesting the advantages of multiple heuristics by using them in a mixture. 

Table 6.2 shows the percentages of ARPA run in HH3. As expected, the utilization 

percentage of ARPA increases as the threshold value drops. The ARPA-o column in the 

table shows the percentage of workloads that only run ARPA. It can also be seen that a 

significant number of workloads start running only ARPA when the threshold value gets 

lower. Similarly, when the threshold value increases too much, the threshold IPC value 

simply becomes too high for any heuristic to satisfy, causing the hyper-heuristic to go into 

an unstable phase. As the threshold value increases, the percentage of ARPA selections 

converges to 66.6 per cent (since ARPA is given two chances per failure, whereas HILL is 

given only one). The fact that the performance of HH3 drops when the threshold value is 

increased beyond its optimal value suggests that using heuristics regularly in turns of 

making clever decisions may not be sufficient to reach optimal performance values. 

 

Table 6.1. Performance gains of various threshold values (th.v.s) in HH3 against STATIC 

 

 Two-thread benchmarks Three-thread benchmarks Four-thread benchmarks 

th.v. IPC QoS Hmean IPC QoS Hmean IPC QoS Hmean 

0.95 2.2% -1.9% -6.3% 5.4% -3.7% -12.4% 5.9% -7.7% -22.5% 

0.98 2.1% -2.0% -6.4% 5.4% -3.9% -11.4% 5.9% -7.6% -22.4% 

1.00 2.7% -1.1% -3.2% 5.6% -2.9% -8.7% 5.9% -5.8% -16.3% 

1.02 2.5% -1.9% -4.8% 5.5% -3.3% -9.5% 5.9% -6.4% -17.4% 

 

All hyper-heuristics proposed in this study except HH4 are binary hyper-heuristics, in the 

sense that these hyper-heuristics identify heuristics merely as either successful or not 

successful. Simply, they do not take the degree of success into account. HH4, on the other 

hand, is a score based hyper-heuristic, in which the past performance results of heuristics 

affect future decisions of the hyper-heuristic. However, without an intervention to the 
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score-based approach, a single heuristic may dominate the processor due to its past 

successes, disregarding the current performance of the processor and the recent needs of 

the workloads. To overcome this problem, HH4 resets the scores periodically at the start of 

each round. This prevents HH4 from considering rather old heuristic performances, 

making it a more responsive hyper-heuristic to adapt to the recent changes of the workload 

behavior. Setting the round length to a very large amount causes HH4 to perform as a 

simple score-based hyper-heuristic, whereas setting the round length to zero causes HH4 to 

mimic HH1 by comparing only the last two Big Epoch’s performances. The performance 

of HH4 in various round lengths is given in Table 6.3. HH4 with a round length of five 

performs best among all tested round lengths in terms of IPC; therefore, we decided to 

report the results for this configuration through the rest of the thesis. 

 

Table 6.2. Percentages of ARPA run in various threshold values (th.v.s) in HH3 

 

 Two-thread benchmarks Three-thread benchmarks Four-thread benchmarks 

th.v. ARPA ARPA-o ARPA ARPA-o ARPA ARPA-o 

0.95 86.1% 4.8% 91.9% 20.0% 97.1% 40.0% 

0.98 85.8% 4.8% 91.9% 11.4% 93.0% 14.3% 

1.00 70.7% 0.0% 75.5% 0.0% 76.6% 0.0% 

1.02 63.4% 0.0% 66.0% 0.0% 66.7% 0.0% 

 

Table 6.3. Performance gains of HH4 in various round lengths (r.l.s) against STATIC 

 

 Two-threaded benchmarks Three-threaded benchmarks Four-threaded benchmarks 

r.l. IPC QoS Hmean IPC QoS Hmean IPC QoS Hmean 

5 3.0% -0.4% -2.0% 5.6% -2.4% -6.9% 5.9% -4.5% -12.8% 

10 2.7% -1.4% -3.6% 5.5% -2.1% -6.5% 5.7% -4.4% -12.2% 

15 2.7% -1.2% -3.2% 5.6% -2.1% -6.4% 5.6% -4.4% -12.2% 

20 2.7% -1.1% -3.1% 5.5% -2.1% -6.3% 5.5% -4.5% -12.3% 

25 2.7% -1.2% -3.2% 5.5% -2.2% -6.6% 5.4% -4.4% -12.3% 

30 2.9% -0.4% -2.2% 5.5% -2.1% -6.4% 5.5% -4.6% -12.6% 
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6.2.  Results and Discussion 

 

In this section, the performance results of HILL, ARPA, HH1, HH2, HH3, and HH4 in 

various workloads are discussed. Static Partitioning (STATIC) is chosen as a baseline 

algorithm to provide a basis for comparison. Table 6.4 reports the performance results of 

the algorithms in terms of IPC, QoS, and Hmean metrics. Peak gains of hyper-heuristics 

over HILL and ARPA are also shown on Table 6.5. 

 

The results show that none of the heuristics can outperform static partitioning in QoS or 

Hmean (except for HILL in QoS, in two-threaded benchmarks). This is an expected result, 

since we are using IPC as a performance goal for HILL and ARPA, which tends to 

monopolize resources to one thread in most of the cases. In ARPA, a thread that loses a 

portion of its resources improves its efficiency whereas the thread which receives extra 

resources loses its efficiency. ARPA is built upon the assumption that such resource 

exchanges among threads are carried out until a point is reached where the efficiencies of 

the threads are close to each other or no more resources can be exchanged anymore. This is 

the actual case in some workloads; however, in some workloads, the thread which gives 

resources away also loses efficiency due to the reduction of its out-of-order execution 

window size. The latter case is much more common, and ARPA can outperform static 

partitioning in Hmean, in seven out of 21 workloads in two-threaded benchmarks; 11 out 

of 35 workloads in three-threaded benchmarks and five out of 35 workloads in four-

threaded benchmarks. Additionally, the Hmean loss in workloads that ARPA experiences 

is far more pronounced than the Hmean gain in workloads that ARPA performs better than 

static partitioning. On the most extreme cases in four-threaded benchmarks, ARPA 

performs 4.5 per cent better and 53.8 per cent worse than static partitioning in terms of 

Hmean. Additionally, it can be seen that the fairness metric suffers more greatly in 

benchmarks that run more simultaneous threads. This is an expected result especially when 

the resources are monopolized by a few threads. The reason HILL performs better than 

ARPA in terms of the fairness metric, despite the fact that it is optimized for performance, 

is that HILL spends most of its time comparing the performance of threads in consecutive 

trial epochs. Therefore, HILL inevitably gives some extra resources to each thread 

compared to ARPA, regardless of resource monopolization. It could also be argued that the 

implementation difference between ARPA and OARPA in terms of decreased lower limit 
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of resources per thread causes the fairness degradation in ARPA (the lower limit is 25 per 

cent of initial share in OARPA, and is equal to step size delta in ARPA). However, in out 

experimental setup, the lower limits would be identical for four-thread benchmarks in 

OARPA and ARPA. For example, 25 per cent of the initial share in a processor with 64-

entry ROB which runs four threads simultaneously would be four entries per thread, which 

is equal to the delta value used in our tests. The same argument is valid of IQ and LSQ, as 

well. 

 

Table 6.4. Performance gains of heuristic against STATIC 

 

 Two-thread benchmarks Three-thread benchmarks Four-thread benchmarks 

Heur. IPC QoS Hmean IPC QoS Hmean IPC QoS Hmean 

HILL 2.9% 0.1% -1.0% 5.0% -1.6% -4.6% 3.5% -3.8% -10.9% 

ARPA 1.8% -2.9% -7.8% 5.0% -4.3% -13.7% 5.9% -7.8% -22.8% 

HH1 3.0% -0.6% -2.3% 5.6% -2.7% -8.0% 6.1% -6.0% -15.5% 

HH2 2.6% -1.7% -4.3% 5.5% -3.2% -9.0% 5.9% -6.0% -16.4% 

HH3 2.7% -1.1% -3.2% 5.6% -2.9% -8.7% 5.9% -5.8% -16.3% 

HH4 3.0% -0.4% -2.0% 5.6% -2.4% -6.9% 5.9% -4.5% -12.8% 

 

Table 6.5. Peak gains of proposed hyper-heuristics over HILL and ARPA 

 

 Peak Gains 

 Two-thread benchmarks Three-thread benchmarks Four-thread benchmarks 

Heur. HILL ARPA HILL ARPA HILL ARPA 

HH1 3.0% 6.1% 4.5% 5.1% 19.2% 4.0% 

HH2 3.2% 6.1% 4.4% 5.1% 25.0% 10.4% 

HH3 3.0% 5.3% 4.5% 4.7% 19.5% 5.4% 

HH4 2.5% 6.6% 3.9% 4.2% 19.1% 4.2% 

 

The performance results of hyper-heuristics proposed in this study show that HH4 is the 

clear winner. In two-threaded benchmarks, HH1 and HH4 perform best, with performance 

levels of IPC almost identical. However, HH4 is better overall in two-threaded 

benchmarks, due to slight performance gains in QoS and Hmean in two-threaded 

benchmarks. This is also the case in three-threaded benchmarks. In four-threaded 
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benchmarks, HH1 performs best in terms of IPC, but HH4 offers 1.5 per cent and 2.7 per 

cent less QoS and Hmean loss, respectively, against static partitioning, compared to HH1. 

Actually, HH3 always performs better than HH1 when the QoS and fairness metrics are 

considered. 

 

Figure 6.1 shows the percentage of workloads where the hyper-heuristics manage to 

outperform HILL and ARPA in terms of IPC. HH4 outperforms either of the heuristics on 

72 per cent of the overall workloads, and is the clear winner. HH1 is the second best with 

70 per cent and HH3 is the third best with 68 per cent. HH2 performs worst by achieving 

66 percent in these tests. Besides, HH4 outperforms both of the heuristics on around 27 per 

cent of the simulated workloads. Although, HH4 is the most successful hyper-heuristics in 

terms of almost all metrics, HH1 shows a quite noticeable performance and demonstrates 

that even a very simple hyper-heuristic may give promising results. 

 

HH4 drops almost never below the worst performer among HILL and ARPA in all metrics. 

Figures 6.2-6.10 present the normalized performance, QoS and Hmean results of HILL, 

ARPA, and HH4 in all tested workloads. The results in these figures are normalized to the 

best performer for each workload. It can clearly be seen that HH4 is between HILL and 

ARPA most of the time, outperforming both heuristics time to time and rarely dropping 

below both. In this sense, HH4 achieves our purpose of this study: harnessing the strengths 

of both heuristics, performing on a level close to the better performing heuristic on most of 

the tested workloads. In fact, HH4 manages to outperform both heuristics in some 

workloads. These results also indicate that HH4 provides a more stable performance 

among workloads compared to HILL and ARPA. 
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Figure 6.1. Percentage of workloads for which hyper-heuristics perform better or 

equivalent to HILL and ARPA in terms of IPC 

 

 

 

Figure 6.2. Normalized performance results of two-thread workloads utilizing HILL, 

ARPA, and HH4 
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Figure 6.3. Normalized QoS results of two-thread workloads utilizing HILL, ARPA, and 

HH4 

 

 

 

Figure 6.4. Normalized fairness results of two-threaded workloads utilizing HILL, ARPA, 

and HH4 
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Figure 6.5. Normalized performance results of three-thread workloads utilizing HILL, 

ARPA, and HH4 

 

 

 

Figure 6.6. Normalized QoS results of three-thread workloads utilizing HILL, ARPA, and 

HH4 
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Figure 6.7. Normalized fairness results of three-thread workloads utilizing HILL, ARPA, 

and HH4 

 

 

 

Figure 6.8. Normalized performance results of four-thread workloads utilizing HILL, 

ARPA, and HH4 

 



60 

 

 

 

Figure 6.9. Normalized QoS results of four-thread workloads utilizing HILL, ARPA, and 

HH4 

 

 

 

Figure 6.10. Normalized fairness results of four-thread workloads utilizing HILL, ARPA, 

and HH4 
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7.  CONCLUSIONS AND FUTURE WORK 

 

 

Resource distribution in SMT processors is a key issue for obtaining a high level of 

performance. In a processor where the resources are uncontrollably shared among threads, 

threads with long latency instructions may monopolize resources without making any 

progress. Meanwhile, in a processor where resources are statically partitioned among 

threads, the resources may not be fully utilized. There are various studies on optimizing 

SMT performance by controlling the resource distribution via different heuristics. 

However, each proposed heuristic has its cons and pros, and, in this study, we propose the 

utilization of the right heuristic at the right time with the help of a hyper-heuristic. 

 

Hyper-heuristics have been applied to different real world problems. However, to the best 

of our knowledge, this is the first time it is applied to the processor domain. As a matter of 

fact, creating an environment where different heuristics may coexist on the same hardware 

is a difficult task by itself, if not impossible. For the heuristics that can coexist together, 

compromises must be made at each side of adaptation. Moreover, each heuristic that is 

implemented increases both the hyper-heuristic logic cost and its hardware complexity. 

With all these limitations in mind, we utilized Hill Climbing and Adaptive Resource 

Partitioning algorithms as our base heuristics. By using various approaches inspired from 

the existing hyper-heuristics, we managed to develop new hyper-heuristics mixing two 

heuristics, which perform better than each individual heuristic run on their own in terms of 

processor throughput. Moreover, all proposed hyper-heuristics perform better than the 

Adaptive Resource Partitioning Algorithm in terms of both Average Weighted IPC and the 

fairness metrics. 

 

The performance of hyper-heuristics can be further improved by introducing new 

heuristics into the mix, which can increase the throughput of the processor where the 

present two heuristics fail to make accurate assessments and degrade throughput. Finally, 

another possible improvement over this study may be to use other processor statistics that 

are already available. Exploiting additional statistics may provide a better insight to hyper-

heuristics ob the decision making process. 
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APPENDIX A:  RESULTS OF TWO-THREADED BENCHMARKS 

 

Table A.1. IPC results of two-threaded benchmarks 

 

 
STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm 1.98 1.95 1.97 1.97 1.97 1.97 1.97 

hmmer-mcf 3.96 4.25 4.23 4.25 4.24 4.23 4.25 

hmmer-milc 2.45 2.46 2.46 2.46 2.46 2.46 2.46 

hmmer-namd 3.71 3.78 3.77 3.77 3.77 3.77 3.77 

hmmer-sjeng 2.85 2.85 2.85 2.85 2.85 2.85 2.86 

hmmer-zeusmp 3.61 3.69 3.71 3.71 3.71 3.71 3.71 

lbm-mcf 4.17 4.39 4.34 4.40 4.40 4.40 4.40 

lbm-milc 2.06 2.08 2.03 2.05 2.04 2.05 2.05 

lbm-namd 3.58 3.91 4.00 4.00 3.99 3.98 3.97 

lbm-sjeng 2.56 2.58 2.61 2.61 2.61 2.61 2.61 

lbm-zeusmp 3.13 3.45 3.46 3.46 3.45 3.46 3.46 

mcf-milc 4.30 4.48 4.31 4.54 4.23 4.43 4.54 

mcf-namd 4.76 4.76 4.52 4.77 4.76 4.77 4.77 

mcf-sjeng 4.15 4.31 4.31 4.35 4.34 4.33 4.35 

mcf-zeusmp 4.91 4.89 4.53 4.81 4.80 4.77 4.82 

milc-namd 4.03 4.22 4.22 4.24 4.24 4.24 4.23 

milc-sjeng 2.95 2.97 2.97 2.98 2.97 2.97 2.98 

milc-zeusmp 3.59 3.84 3.71 3.79 3.78 3.78 3.80 

namd-sjeng 4.00 4.03 4.06 4.05 4.05 4.05 4.05 

namd-zeusmp 4.90 4.85 4.81 4.82 4.83 4.83 4.83 

sjeng-zeusmp 4.03 4.13 4.03 4.10 4.10 4.09 4.11 
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Table A.2. Average Weighted IPC results of two-threaded benchmarks 

 

 STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm 0.85 0.84 0.83 0.83 0.83 0.83 0.83 

hmmer-mcf 0.57 0.60 0.58 0.59 0.58 0.58 0.59 

hmmer-milc 0.83 0.84 0.84 0.84 0.84 0.84 0.84 

hmmer-namd 0.73 0.70 0.68 0.68 0.68 0.68 0.68 

hmmer-sjeng 0.76 0.76 0.76 0.76 0.76 0.76 0.76 

hmmer-zeusmp 0.79 0.77 0.77 0.77 0.77 0.77 0.77 

lbm-mcf 0.85 0.87 0.78 0.84 0.84 0.78 0.84 

lbm-milc 0.90 0.91 0.88 0.89 0.89 0.88 0.89 

lbm-namd 0.82 0.83 0.84 0.84 0.84 0.84 0.84 

lbm-sjeng 0.86 0.86 0.85 0.85 0.85 0.85 0.85 

lbm-zeusmp 0.83 0.85 0.85 0.85 0.85 0.85 0.85 

mcf-milc 0.81 0.76 0.67 0.80 0.63 0.81 0.80 

mcf-namd 0.61 0.60 0.56 0.61 0.61 0.56 0.61 

mcf-sjeng 0.62 0.61 0.61 0.61 0.61 0.61 0.61 

mcf-zeusmp 0.68 0.68 0.58 0.65 0.65 0.58 0.66 

milc-namd 0.82 0.83 0.82 0.83 0.83 0.83 0.83 

milc-sjeng 0.84 0.85 0.84 0.84 0.84 0.85 0.85 

milc-zeusmp 0.82 0.85 0.83 0.85 0.84 0.85 0.85 

namd-sjeng 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

namd-zeusmp 0.72 0.72 0.70 0.71 0.71 0.71 0.71 

sjeng-zeusmp 0.78 0.79 0.78 0.79 0.79 0.78 0.79 
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Table A.3. Harmonic Mean of Weighted IPC results of two-threaded benchmarks 

 

hmmer-lbm STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-mcf 0.85 0.83 0.83 0.83 0.83 0.83 0.83 

hmmer-milc 0.43 0.42 0.33 0.36 0.34 0.33 0.37 

hmmer-namd 0.82 0.83 0.83 0.83 0.83 0.83 0.83 

hmmer-sjeng 0.72 0.69 0.66 0.67 0.67 0.66 0.67 

hmmer-zeusmp 0.75 0.75 0.74 0.74 0.74 0.74 0.74 

lbm-mcf 0.79 0.75 0.75 0.75 0.75 0.75 0.75 

lbm-milc 0.85 0.86 0.75 0.83 0.83 0.75 0.84 

lbm-namd 0.90 0.91 0.87 0.88 0.88 0.87 0.89 

lbm-sjeng 0.82 0.83 0.84 0.84 0.84 0.84 0.84 

lbm-zeusmp 0.86 0.86 0.85 0.85 0.85 0.85 0.85 

mcf-milc 0.83 0.85 0.85 0.85 0.85 0.85 0.85 

mcf-namd 0.81 0.75 0.60 0.80 0.51 0.81 0.80 

mcf-sjeng 0.61 0.59 0.42 0.60 0.60 0.42 0.60 

mcf-zeusmp 0.58 0.50 0.50 0.49 0.49 0.50 0.49 

milc-namd 0.68 0.68 0.40 0.63 0.63 0.40 0.65 

milc-sjeng 0.81 0.83 0.82 0.83 0.83 0.83 0.83 

milc-zeusmp 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

namd-sjeng 0.82 0.85 0.83 0.85 0.84 0.85 0.85 

namd-zeusmp 0.69 0.69 0.70 0.70 0.70 0.70 0.70 

sjeng-zeusmp 0.72 0.71 0.70 0.71 0.71 0.71 0.71 

hmmer-lbm 0.78 0.79 0.78 0.79 0.79 0.78 0.79 
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APPENDIX B:  RESULTS OF THREE-THREADED BENCHMARKS 
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Table B.1. IPC results of three-threaded benchmarks 

 

 
STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm-mcf 3.73 4.49 4.46 4.51 4.51 4.51 4.50 

hmmer-lbm-milc 2.80 2.86 2.88 2.88 2.88 2.88 2.88 

hmmer-lbm-namd 3.70 3.80 3.89 3.87 3.86 3.88 3.87 

hmmer-lbm-sjeng 3.05 3.12 3.16 3.15 3.15 3.16 3.15 

hmmer-lbm-zeusmp 3.65 3.89 3.96 3.94 3.93 3.95 3.94 

hmmer-mcf-milc 3.79 4.54 4.49 4.55 4.56 4.55 4.55 

hmmer-mcf-namd 4.34 4.58 4.63 4.62 4.61 4.63 4.61 

hmmer-mcf-sjeng 3.44 3.95 3.89 4.01 4.01 4.00 4.00 

hmmer-mcf-zeusmp 4.46 4.85 4.82 4.83 4.83 4.83 4.84 

hmmer-milc-namd 3.99 4.03 4.09 4.07 4.07 4.08 4.08 

hmmer-milc-sjeng 3.30 3.37 3.34 3.36 3.35 3.36 3.36 

hmmer-milc-zeusmp 4.01 4.16 4.20 4.18 4.16 4.18 4.18 

hmmer-namd-sjeng 3.88 3.87 3.80 3.87 3.86 3.84 3.87 

hmmer-namd-

zeusmp 
4.72 4.80 4.82 4.81 4.81 4.82 4.81 

hmmer-sjeng-

zeusmp 
4.19 4.29 4.33 4.31 4.30 4.32 4.31 

lbm-mcf-milc 4.02 4.62 4.70 4.69 4.67 4.65 4.69 

lbm-mcf-namd 4.68 4.77 4.82 4.81 4.81 4.81 4.80 

lbm-mcf-sjeng 3.55 4.07 4.17 4.25 4.25 4.25 4.23 

lbm-mcf-zeusmp 4.57 4.94 4.95 4.95 4.94 4.95 4.95 

lbm-milc-namd 4.11 4.32 4.40 4.40 4.40 4.40 4.38 

lbm-milc-sjeng 3.27 3.26 3.35 3.34 3.33 3.35 3.34 

lbm-milc-zeusmp 3.88 4.12 4.14 4.14 4.13 4.14 4.15 

lbm-namd-sjeng 3.85 3.78 3.88 3.91 3.90 3.92 3.92 

lbm-namd-zeusmp 4.70 4.85 4.95 4.92 4.91 4.93 4.92 

lbm-sjeng-zeusmp 4.09 4.25 4.32 4.30 4.29 4.31 4.30 

mcf-milc-namd 4.73 4.76 4.66 4.71 4.72 4.68 4.72 

mcf-milc-sjeng 4.10 4.48 4.43 4.45 4.44 4.45 4.46 

mcf-milc-zeusmp 4.74 4.93 4.76 4.84 4.79 4.80 4.89 

mcf-namd-sjeng 4.45 4.58 4.41 4.58 4.58 4.54 4.58 

mcf-namd-zeusmp 5.13 5.08 4.87 4.99 5.00 4.99 5.01 

mcf-sjeng-zeusmp 4.58 4.85 4.74 4.79 4.76 4.78 4.81 

milc-namd-sjeng 4.16 4.14 4.04 4.09 4.08 4.08 4.10 

milc-namd-zeusmp 4.87 4.93 4.89 4.92 4.92 4.92 4.92 

milc-sjeng-zeusmp 4.32 4.36 4.45 4.44 4.41 4.44 4.37 

namd-sjeng-zeusmp 4.88 4.94 4.83 4.91 4.92 4.92 4.92 
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Table B.2. Average Weighted IPC results of three-threaded benchmarks 

 

 
STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm-mcf 0.57 0.61 0.56 0.60 0.60 0.56 0.60 

hmmer-lbm-milc 0.76 0.77 0.77 0.77 0.77 0.77 0.77 

hmmer-lbm-namd 0.67 0.65 0.65 0.64 0.65 0.65 0.65 

hmmer-lbm-sjeng 0.69 0.70 0.70 0.70 0.70 0.70 0.70 

hmmer-lbm-zeusmp 0.70 0.70 0.71 0.71 0.71 0.71 0.71 

hmmer-mcf-milc 0.55 0.55 0.52 0.58 0.55 0.58 0.58 

hmmer-mcf-namd 0.44 0.42 0.42 0.42 0.42 0.42 0.42 

hmmer-mcf-sjeng 0.43 0.42 0.41 0.42 0.41 0.42 0.42 

hmmer-mcf-zeusmp 0.49 0.48 0.46 0.47 0.47 0.46 0.47 

hmmer-milc-namd 0.64 0.62 0.62 0.62 0.62 0.62 0.62 

hmmer-milc-sjeng 0.65 0.67 0.66 0.66 0.66 0.66 0.66 

hmmer-milc-zeusmp 0.68 0.67 0.68 0.68 0.68 0.68 0.68 

hmmer-namd-sjeng 0.54 0.53 0.53 0.53 0.53 0.53 0.53 

hmmer-namd-

zeusmp 
0.58 0.56 0.55 0.55 0.55 0.55 0.55 

hmmer-sjeng-

zeusmp 
0.61 0.60 0.60 0.60 0.60 0.60 0.60 

lbm-mcf-milc 0.74 0.73 0.69 0.72 0.69 0.69 0.72 

lbm-mcf-namd 0.62 0.61 0.61 0.61 0.61 0.61 0.61 

lbm-mcf-sjeng 0.59 0.61 0.61 0.61 0.61 0.61 0.61 

lbm-mcf-zeusmp 0.64 0.66 0.65 0.65 0.65 0.65 0.65 

lbm-milc-namd 0.76 0.76 0.74 0.75 0.75 0.74 0.75 

lbm-milc-sjeng 0.77 0.76 0.77 0.77 0.77 0.77 0.77 

lbm-milc-zeusmp 0.78 0.78 0.79 0.79 0.79 0.79 0.79 

lbm-namd-sjeng 0.65 0.63 0.65 0.65 0.65 0.65 0.65 

lbm-namd-zeusmp 0.67 0.68 0.68 0.68 0.68 0.68 0.68 

lbm-sjeng-zeusmp 0.71 0.72 0.73 0.72 0.72 0.73 0.72 

mcf-milc-namd 0.58 0.53 0.44 0.46 0.47 0.44 0.47 

mcf-milc-sjeng 0.59 0.54 0.47 0.49 0.49 0.50 0.50 

mcf-milc-zeusmp 0.61 0.56 0.47 0.51 0.50 0.47 0.54 

mcf-namd-sjeng 0.45 0.45 0.42 0.44 0.44 0.42 0.44 

mcf-namd-zeusmp 0.48 0.48 0.47 0.47 0.47 0.47 0.47 

mcf-sjeng-zeusmp 0.49 0.51 0.45 0.48 0.46 0.45 0.50 

milc-namd-sjeng 0.63 0.59 0.62 0.60 0.60 0.61 0.59 

milc-namd-zeusmp 0.64 0.58 0.54 0.56 0.57 0.54 0.57 

milc-sjeng-zeusmp 0.68 0.63 0.68 0.67 0.66 0.68 0.64 

namd-sjeng-zeusmp 0.56 0.55 0.49 0.53 0.54 0.49 0.54 
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Table B.3. Harmonic Mean of Weighted IPC results of three-threaded benchmarks 

 

 
STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm-mcf 0.41 0.39 0.33 0.35 0.35 0.33 0.36 

hmmer-lbm-milc 0.72 0.74 0.75 0.75 0.75 0.75 0.75 

hmmer-lbm-namd 0.65 0.64 0.62 0.62 0.62 0.62 0.62 

hmmer-lbm-sjeng 0.66 0.67 0.67 0.67 0.67 0.67 0.67 

hmmer-lbm-zeusmp 0.69 0.68 0.68 0.68 0.68 0.68 0.68 

hmmer-mcf-milc 0.44 0.33 0.30 0.30 0.28 0.32 0.31 

hmmer-mcf-namd 0.43 0.28 0.25 0.26 0.27 0.25 0.26 

hmmer-mcf-sjeng 0.41 0.31 0.25 0.27 0.26 0.27 0.27 

hmmer-mcf-zeusmp 0.47 0.31 0.28 0.28 0.28 0.28 0.28 

hmmer-milc-namd 0.61 0.58 0.56 0.57 0.57 0.56 0.57 

hmmer-milc-sjeng 0.61 0.63 0.61 0.62 0.62 0.62 0.62 

hmmer-milc-zeusmp 0.66 0.63 0.64 0.63 0.63 0.64 0.63 

hmmer-namd-sjeng 0.52 0.52 0.49 0.50 0.51 0.50 0.51 

hmmer-namd-

zeusmp 
0.57 0.54 0.52 0.52 0.52 0.52 0.53 

hmmer-sjeng-

zeusmp 
0.61 0.56 0.55 0.55 0.56 0.55 0.56 

lbm-mcf-milc 0.69 0.73 0.67 0.71 0.65 0.67 0.72 

lbm-mcf-namd 0.58 0.58 0.59 0.59 0.59 0.59 0.59 

lbm-mcf-sjeng 0.54 0.56 0.57 0.56 0.55 0.55 0.56 

lbm-mcf-zeusmp 0.61 0.65 0.63 0.64 0.63 0.63 0.64 

lbm-milc-namd 0.74 0.75 0.74 0.75 0.75 0.74 0.75 

lbm-milc-sjeng 0.76 0.76 0.77 0.77 0.77 0.77 0.77 

lbm-milc-zeusmp 0.76 0.78 0.79 0.79 0.79 0.79 0.79 

lbm-namd-sjeng 0.62 0.61 0.61 0.62 0.62 0.61 0.62 

lbm-namd-zeusmp 0.65 0.66 0.67 0.67 0.67 0.67 0.67 

lbm-sjeng-zeusmp 0.70 0.71 0.72 0.72 0.72 0.72 0.72 

mcf-milc-namd 0.53 0.52 0.33 0.41 0.43 0.33 0.43 

mcf-milc-sjeng 0.54 0.50 0.37 0.42 0.41 0.45 0.45 

mcf-milc-zeusmp 0.57 0.55 0.37 0.48 0.44 0.37 0.53 

mcf-namd-sjeng 0.45 0.44 0.28 0.42 0.42 0.29 0.42 

mcf-namd-zeusmp 0.47 0.46 0.26 0.41 0.41 0.34 0.43 

mcf-sjeng-zeusmp 0.49 0.49 0.29 0.44 0.36 0.29 0.48 

milc-namd-sjeng 0.59 0.58 0.57 0.58 0.58 0.57 0.58 

milc-namd-zeusmp 0.61 0.56 0.50 0.54 0.55 0.50 0.54 

milc-sjeng-zeusmp 0.66 0.62 0.68 0.67 0.66 0.68 0.63 

namd-sjeng-zeusmp 0.55 0.54 0.36 0.52 0.53 0.36 0.53 
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APPENDIX C:  RESULTS OF FOUR-THREADED BENCHMARKS 
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Table C.1. IPC results of four-threaded benchmarks 

 

 STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm-mcf-milc 3.98 4.63 4.69 4.68 4.64 4.68 4.66 

hmmer-lbm-mcf-namd 4.22 4.59 4.66 4.63 4.61 4.65 4.62 

hmmer-lbm-mcf-sjeng 3.67 4.17 4.62 4.44 4.38 4.37 4.37 

hmmer-lbm-mcf-zeusmp 4.34 4.84 4.91 4.89 4.89 4.91 4.88 

hmmer-lbm-milc-namd 4.03 3.99 4.14 4.10 4.09 4.11 4.09 

hmmer-lbm-milc-sjeng 3.55 3.58 3.71 3.68 3.67 3.70 3.67 

hmmer-lbm-milc-zeusmp 4.11 4.15 4.32 4.27 4.25 4.30 4.27 

hmmer-lbm-namd-sjeng 3.90 3.84 3.99 3.94 3.93 3.96 3.93 

hmmer-lbm-namd-zeusmp 4.45 4.60 4.70 4.68 4.67 4.69 4.67 

hmmer-lbm-sjeng-zeusmp 4.12 4.25 4.34 4.30 4.29 4.33 4.31 

hmmer-mcf-milc-namd 4.31 4.56 4.41 4.54 4.50 4.52 4.55 

hmmer-mcf-milc-sjeng 3.84 4.05 4.45 4.47 4.46 4.46 4.52 

hmmer-mcf-milc-zeusmp 4.56 4.84 4.67 4.83 4.78 4.78 4.81 

hmmer-mcf-namd-sjeng 3.88 4.00 4.56 4.56 4.55 4.56 4.56 

hmmer-mcf-namd-zeusmp 4.63 4.83 4.85 4.83 4.82 4.84 4.83 

hmmer-mcf-sjeng-zeusmp 4.22 4.47 4.65 4.77 4.75 4.76 4.78 

hmmer-milc-namd-sjeng 3.92 3.89 3.99 3.98 3.96 3.97 3.97 

hmmer-milc-namd-zeusmp 4.56 4.67 4.67 4.66 4.66 4.66 4.66 

hmmer-milc-sjeng-zeusmp 4.20 4.33 4.36 4.35 4.33 4.35 4.33 

hmmer-namd-sjeng-zeusmp 4.37 4.56 4.53 4.53 4.52 4.52 4.53 

lbm-mcf-milc-namd 4.69 4.69 4.67 4.73 4.72 4.71 4.72 

lbm-mcf-milc-sjeng 4.01 4.19 4.60 4.62 4.62 4.61 4.65 

lbm-mcf-milc-zeusmp 4.74 4.95 4.80 4.91 4.93 4.87 4.94 

lbm-mcf-namd-sjeng 4.14 4.18 4.78 4.54 4.75 4.52 4.48 

lbm-mcf-namd-zeusmp 4.98 5.00 5.05 5.02 5.01 5.04 5.02 

lbm-mcf-sjeng-zeusmp 4.31 4.63 4.78 4.87 4.87 4.82 4.76 

lbm-milc-namd-sjeng 4.02 3.81 4.06 4.04 4.01 4.03 4.02 

lbm-milc-namd-zeusmp 4.73 4.66 4.78 4.75 4.75 4.76 4.75 

lbm-milc-sjeng-zeusmp 4.18 4.30 4.32 4.31 4.30 4.32 4.31 

lbm-namd-sjeng-zeusmp 4.38 4.54 4.61 4.59 4.57 4.60 4.58 

mcf-milc-namd-sjeng 4.54 4.59 4.49 4.61 4.58 4.55 4.57 

mcf-milc-namd-zeusmp 5.03 5.06 4.83 5.02 5.02 4.95 5.03 

mcf-milc-sjeng-zeusmp 4.70 4.87 4.73 4.83 4.78 4.81 4.83 

mcf-namd-sjeng-zeusmp 4.91 4.97 4.89 4.99 5.00 4.96 4.98 

milc-namd-sjeng-zeusmp 4.67 4.81 4.70 4.75 4.74 4.74 4.75 
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Table C.2. Average Weighted IPC results of four-threaded benchmarks 

 

 STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm-mcf-milc 0.58 0.55 0.52 0.52 0.51 0.52 0.53 

hmmer-lbm-mcf-namd 0.48 0.46 0.46 0.46 0.46 0.46 0.46 

hmmer-lbm-mcf-sjeng 0.48 0.48 0.47 0.48 0.48 0.47 0.48 

hmmer-lbm-mcf-zeusmp 0.51 0.50 0.50 0.50 0.50 0.50 0.50 

hmmer-lbm-milc-namd 0.62 0.60 0.60 0.60 0.60 0.60 0.60 

hmmer-lbm-milc-sjeng 0.63 0.63 0.65 0.64 0.64 0.65 0.64 

hmmer-lbm-milc-zeusmp 0.65 0.60 0.64 0.63 0.62 0.64 0.63 

hmmer-lbm-namd-sjeng 0.54 0.53 0.53 0.53 0.53 0.53 0.53 

hmmer-lbm-namd-zeusmp 0.55 0.54 0.54 0.54 0.54 0.54 0.54 

hmmer-lbm-sjeng-zeusmp 0.58 0.57 0.58 0.58 0.57 0.58 0.58 

hmmer-mcf-milc-namd 0.43 0.41 0.33 0.35 0.34 0.33 0.36 

hmmer-mcf-milc-sjeng 0.44 0.40 0.35 0.37 0.36 0.35 0.40 

hmmer-mcf-milc-zeusmp 0.47 0.43 0.36 0.41 0.38 0.36 0.40 

hmmer-mcf-namd-sjeng 0.34 0.32 0.32 0.33 0.33 0.32 0.34 

hmmer-mcf-namd-zeusmp 0.37 0.36 0.35 0.35 0.35 0.35 0.35 

hmmer-mcf-sjeng-zeusmp 0.38 0.37 0.34 0.36 0.36 0.34 0.38 

hmmer-milc-namd-sjeng 0.48 0.48 0.48 0.48 0.48 0.49 0.48 

hmmer-milc-namd-zeusmp 0.51 0.46 0.47 0.47 0.47 0.47 0.47 

hmmer-milc-sjeng-zeusmp 0.53 0.50 0.52 0.51 0.51 0.52 0.51 

hmmer-namd-sjeng-zeusmp 0.43 0.43 0.42 0.42 0.42 0.42 0.42 

lbm-mcf-milc-namd 0.57 0.54 0.48 0.50 0.50 0.48 0.51 

lbm-mcf-milc-sjeng 0.56 0.53 0.48 0.50 0.50 0.49 0.52 

lbm-mcf-milc-zeusmp 0.60 0.56 0.50 0.53 0.54 0.50 0.54 

lbm-mcf-namd-sjeng 0.47 0.46 0.47 0.48 0.48 0.47 0.48 

lbm-mcf-namd-zeusmp 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

lbm-mcf-sjeng-zeusmp 0.50 0.51 0.48 0.50 0.50 0.48 0.51 

lbm-milc-namd-sjeng 0.58 0.55 0.56 0.57 0.57 0.56 0.57 

lbm-milc-namd-zeusmp 0.60 0.57 0.56 0.56 0.56 0.56 0.56 

lbm-milc-sjeng-zeusmp 0.62 0.59 0.61 0.60 0.60 0.61 0.60 

lbm-namd-sjeng-zeusmp 0.52 0.53 0.53 0.53 0.53 0.53 0.53 

mcf-milc-namd-sjeng 0.45 0.42 0.33 0.35 0.35 0.33 0.39 

mcf-milc-namd-zeusmp 0.45 0.42 0.36 0.40 0.40 0.36 0.40 

mcf-milc-sjeng-zeusmp 0.48 0.45 0.36 0.41 0.39 0.36 0.42 

mcf-namd-sjeng-zeusmp 0.38 0.39 0.34 0.38 0.38 0.34 0.38 

milc-namd-sjeng-zeusmp 0.49 0.46 0.46 0.46 0.46 0.46 0.46 
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Table C.3. Harmonic Mean of Weighted IPC results of four-threaded benchmarks 

 

 STATIC HILL ARPA HH1 HH2 HH3 HH4 

hmmer-lbm-mcf-milc 0.47 0.34 0.29 0.30 0.29 0.29 0.31 

hmmer-lbm-mcf-namd 0.43 0.27 0.28 0.28 0.28 0.28 0.28 

hmmer-lbm-mcf-sjeng 0.42 0.32 0.25 0.29 0.29 0.25 0.29 

hmmer-lbm-mcf-zeusmp 0.46 0.33 0.30 0.31 0.31 0.30 0.31 

hmmer-lbm-milc-namd 0.56 0.53 0.52 0.52 0.52 0.52 0.52 

hmmer-lbm-milc-sjeng 0.58 0.57 0.58 0.58 0.58 0.58 0.58 

hmmer-lbm-milc-zeusmp 0.61 0.56 0.58 0.58 0.58 0.58 0.58 

hmmer-lbm-namd-sjeng 0.50 0.48 0.48 0.48 0.48 0.48 0.48 

hmmer-lbm-namd-zeusmp 0.52 0.48 0.48 0.48 0.48 0.48 0.48 

hmmer-lbm-sjeng-zeusmp 0.56 0.51 0.52 0.52 0.52 0.52 0.52 

hmmer-mcf-milc-namd 0.38 0.26 0.18 0.21 0.20 0.18 0.22 

hmmer-mcf-milc-sjeng 0.38 0.31 0.21 0.24 0.22 0.21 0.26 

hmmer-mcf-milc-zeusmp 0.42 0.30 0.22 0.27 0.25 0.22 0.27 

hmmer-mcf-namd-sjeng 0.33 0.26 0.19 0.22 0.22 0.19 0.23 

hmmer-mcf-namd-zeusmp 0.37 0.25 0.25 0.26 0.26 0.25 0.26 

hmmer-mcf-sjeng-zeusmp 0.37 0.29 0.20 0.24 0.25 0.20 0.26 

hmmer-milc-namd-sjeng 0.44 0.43 0.42 0.42 0.42 0.42 0.42 

hmmer-milc-namd-zeusmp 0.48 0.43 0.45 0.45 0.44 0.45 0.44 

hmmer-milc-sjeng-zeusmp 0.51 0.47 0.49 0.48 0.48 0.49 0.48 

hmmer-namd-sjeng-zeusmp 0.42 0.39 0.40 0.40 0.40 0.40 0.40 

lbm-mcf-milc-namd 0.51 0.46 0.29 0.41 0.40 0.30 0.44 

lbm-mcf-milc-sjeng 0.51 0.49 0.28 0.34 0.32 0.32 0.39 

lbm-mcf-milc-zeusmp 0.54 0.54 0.37 0.47 0.49 0.37 0.51 

lbm-mcf-namd-sjeng 0.41 0.40 0.35 0.43 0.39 0.35 0.43 

lbm-mcf-namd-zeusmp 0.45 0.44 0.46 0.45 0.45 0.46 0.45 

lbm-mcf-sjeng-zeusmp 0.45 0.47 0.30 0.39 0.43 0.30 0.47 

lbm-milc-namd-sjeng 0.53 0.50 0.53 0.53 0.53 0.53 0.53 

lbm-milc-namd-zeusmp 0.56 0.53 0.54 0.54 0.53 0.54 0.54 

lbm-milc-sjeng-zeusmp 0.59 0.57 0.59 0.59 0.59 0.59 0.59 

lbm-namd-sjeng-zeusmp 0.47 0.48 0.50 0.49 0.49 0.50 0.49 

mcf-milc-namd-sjeng 0.41 0.41 0.19 0.27 0.24 0.19 0.36 

mcf-milc-namd-zeusmp 0.42 0.40 0.25 0.39 0.40 0.25 0.40 

mcf-milc-sjeng-zeusmp 0.45 0.43 0.25 0.36 0.32 0.25 0.41 

mcf-namd-sjeng-zeusmp 0.38 0.36 0.27 0.37 0.37 0.27 0.37 

milc-namd-sjeng-zeusmp 0.46 0.44 0.46 0.46 0.45 0.46 0.45 
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