
 

 

 

COMPRESSED SENSING DATA ACQUISITION AND RECONSTRUCTION FOR 

FAST PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING 

 

 

 

 

 

 

 

by 

Gökçe Hale Hatay 

 

 

 

 

 

 

Submitted to the Institute of Graduate Studies in  

Science and Engineering in partial fulfillment of  

the requirements for the degree of  

Master of Science  

in  

Electrical and Electronics Engineering 

 

 

 

 

 

 

Yeditepe University  

2014 

 



 

 

 

COMPRESSED SENSING DATA ACQUISITION AND RECONSTRUCTION FOR 

FAST PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING 

 

 

 

 

 

APPROVED BY: 

 

 

Asst. Prof. Dr. Esin Öztürk Işık ……………………………… 

(Supervisor) 

 

 

Prof. Dr. Cem Ünsalan   ……………………………… 

 

 

 

Prof. Dr. Haluk Küçük   ……………………………… 

 

 

 

 

DATE OF APPROVAL: ../../2014   



i 

 

ACKNOWLEDGEMENTS 

 

 

I am grateful to my supervisor, Asst. Prof. Dr. Esin Öztürk Işık for her unceasing 

encouragement, precious guidance and support and providing me with this invaluable 

opportunity. I would like to thank Prof. Dr. Cem Ünsalan and Prof. Dr. Haluk Küçük for 

accepting to evaluate my work with their extensive scientific knowledge. I would like to 

extend my gratitude to Prof. Dr. Bahattin Hakyemez, Dr. Emre Ökeer, and Muhammed 

Yıldırım for their invaluable help and major contribution to my project. 

 

I am also thankful to my teammate Füsun Er, my colleague and best friend Nurten Ceren 

Aşkın, and Çağıl Gümüş for their help and support. Lastly, I am very thankful to my 

friends Ercüment Cenap Turan and Buse Aygen for being there in my times of need, their 

lasting energy and never ending support. 

 

Gökçe Hale HATAY 

 

  



ii 

 

ABSTRACT 

 

 

COMPRESSED SENSING DATA ACQUISITION AND RECONSTRUCTION FOR 

FAST PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING 

 

Brain is the most important organ for the human life, and therefore, brain tumors are 

among the tumors that are vital to diagnose, follow-up and treat. Magnetic Resonance 

Imaging (MRI) is the most commonly used imaging modality for diagnosis of brain 

tumors. Phosphorus MR spectroscopic imaging (
31

P-MRSI) is a non-invasive metabolic 

imaging modality that can provide quantitative information about metabolism, energy and 

oxygen state, membrane synthesis and degradation, and pH of the tissue. 
31

P-MR 

spectroscopic imaging cannot be practically used in clinical applications due to its 

extended acquisition times to enhance low phosphorus MR signal, despite all the important 

information it provides. To accelerate the acquisition process of MR, compressed sensing 

method has recently been used. Due to its denoising effect, compressed sensing does not 

reduce the signal to noise ratio (SNR). 

This study aims to use compressed sensing to reduce the acquisition time of 
31

P-MRSI in 

clinical applications. Initially, required parameters and undersampling patterns were 

analyzed and optimal values were determined for accelerating the 
31

P-MRSI data 

acquisition with compressed sensing, using simulations. Using Philips Paradise 

environment, a 
31

P-MR spectroscopic imaging pulse sequence was implemented for 

accelerating the data acquisition with compressed sensing, and this pulse sequence was 

integrated into a 3T Philips MR scanner. A volunteer and a brain tumor patient, who gave 

their informed consent, were scanned. The signal to noise ratio, peak heights and ratios 

were compared between accelerated and full k-space data using Bland Altman statistical 

test. Using Wilcoxon rank sum test, differences of spectral peak heights and ratio between 

the healthy and tumor tissue were observed for both full and compressed sensing datasets. 

This study showed that compressed sensing reconstruction could be used to accelerate 
31

P-

MR spectroscopic imaging of human brain and brain tumors. 
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ÖZET 

 

 

HIZLI FOSFOR MANYETİK REZONANS SPEKTROSKOPİK GÖRÜNTÜLEME 

İÇİN SIKIŞTIRILMIŞ ALGILAMA İLE VERİ ALIMI VE GERİ ÇATMA 

 

Beyin, insanın hayatını devam ettirebilmesi için gereken en önemli organdır. Beyin 

tümörleri bu yüzden teşhisi, tedavisi ve takibi önemli tümörler arasında yer almaktadır. 

Beyin tümörleri teşhisinde ve konumunun belirlenmesinde manyetik rezonans görüntüleme 

(MRG) en yaygın olarak kullanılan görüntüleme tekniğidir. Fosfor MR spektroskopik 

görüntüleme (
31

P-MRSG) dokunun metabolizması, enerji ve oksijen durumu, membran 

sentezi ve yıkımı, ve pH değeri hakkında kantatif bilgi sağlayan bir non-invaziv metabolik 

görüntüleme tekniğidir. 
31

P-MRS görüntüleme sağladığı önemli bilgilere rağmen düşük 

fosfor MR sinyalini iyileştirmek için uzatılan veri alım süresinden dolayı klinikte yaygın 

olarak kullanılamamaktadır. MR veri alımını hızlandırmak için gürültü azaltım işlevi 

görmesi ve bu sayede sinyal gürültü oranını (SGO) düşürmediğinden dolayı sıkıştırılmış 

algılama yöntemi kullanılmaya başlanmıştır.  

Bu çalışmada sıkıştırılmış algılama kullanılarak klinikte 
31

P-MR spektroskopik 

görüntülemenin hızlandırılması hedeflenmektedir. Öncelikle simülasyon çalışmaları ile 

sıkıştırılmış algılama yöntemiyle 
31

P-MR spektroskopik veri alımının hızlandırılması için 

gerekli parametreler ve altörnekleme düzenleri analiz edildi ve en uygun değerler tespit 

edildi. Philips Paradise sistemi kullanılarak sıkıştırılmış algılama yöntemiyle hızlandırılmış 

31
P-MR spektroskopik görüntüleme darbe sekansı programlandı ve 3T Philips MR 

tarayıcısına kuruldu. Çekim alınmasına izin veren sağlıklı bir gönüllü ve beyin tümörlü bir 

hastadan veriler alındı. Hızlandırılmış ile tam k-uzayı verileri, arasındaki SGO değerleri, 

pik yükseklikleri ve oranları farklılıkları Bland Altman testi kullanılarak istatistiksel olarak 

karşılaştırıldı. Wilcoxon sıra toplam testi kullanılarak ise hastalarda sağlıklı ve tümörlü 

doku arasındaki pik yükseklik ve oran farklılıkları tam ve sıkıştırılmış algılama verileri için 

incelendi. Bu çalışma, sıkıştırılmış algılama yönteminin insan beyninin ve tümörlerin 

fosfor manyetik rezonans spektroskopi ile görüntülenmesini hızlandırmak için 

kullanılabileceğini göstermiştir. 
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1. INTRODUCTION 

 

 

Brain tumors are among tumors that affect the human life negatively, and are important to 

diagnose and follow-up. The most commonly used clinical imaging technique to scan brain 

tumors is magnetic resonance imaging (MRI). MR spectroscopic imaging can provide 

further information about location and characteristics of brain tumors [1]. Due to the 

presence of high proton (
1
H) content in human body, proton MR spectroscopic imaging 

(
1
H-MRSI) is a commonly used MR spectroscopic imaging technique. Another non-

invasive MR spectroscopic imaging technique is phosphorus MR spectroscopic imaging 

(
31

P-MRSI), which detects the phosphorus containing metabolites in the brain. Quantitative 

information about energy metabolism, oxygen state, and pH of the tissue can be obtained 

using 
31

P-MRSI [2]. Phosphocreatine (PCr), phosphorylcholine (PC), 

phosphoethanolamine (PE), inorganic phosphate (Pi), glycerophosphoethanolamine (GPE), 

glycerophosphorylcholine (GPC), β-ATP, α-ATP, and γ-ATP peaks are the main 

metabolite peaks that are detected by 
31

P-MRSI.  

 

The previous studies have shown that normal brain tissue and brain tumors have different 

phosphorus metabolite levels [2, 3]. Increase in phosphomonoesterase (PME) that is 

measured as the combined signal of PE and PC, and phosphodiesterase (PDE) that is 

measured as the combined signal of GPE and GPC are indicators of increase in membrane 

synthesis, and degradation, respectively. A decrease in PCr, and an increase in Pi/PCr, and 

β-ATP/PCr ratio in 
31

P-MRSI [3] and a lactate peak in 
1
H-MRSI [4] were observed when 

the brain tissue got ischemic. Hubesch et al. observed an increase in pH levels [2]. Maintz 

et al. observed an alkaline environment and a decrease in PCr and PDE peaks in 

meningiomas, and a slight alkalization and a reduction in PDE/α-ATP by more than 

twofold in low and high grade gliomas [3]. 

 

Phosphorus MR spectroscopy provides important information about brain tumor 

biochemistry; however this technique is not practical enough to be commonly used in 

clinical settings, due to the low phosphorus MR signal, and long acquisition times. A 

number of methods were developed to accelerate 
31

P-MRS data acquisition. Echo planar 

spectroscopic imaging (EPSI) for fast 
31

P-MRS data acquisition, needs high-powered 
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gradients, and the necessary pulse sequence is not readily available in clinical settings. 

Additionally, SNR losses might occur as a result of regriding errors [5, 6]. Another 

acceleration technique is generalized autocalibrating partially parallel acquisition 

(GRAPPA) that needs multi-channel phosphorus sensitive RF coils [7]. However, these 

coils are not available in vast majority of clinical MR scanners, and another problem is 

lower SNR, which is directly proportional to the square root of the data acquisition time.  

 

Compressed sensing (CS) is a data acquisition and reconstruction method that has been 

used to accelerate MR data acquisition in recent years. Due to its denoising effect, 

compressed sensing can accelerate MR data acquisition with a lower SNR loss relative to 

the other fast imaging methods. Compressed sensing technique reconstructs randomly 

undersampled k-space data, and it was successfully applied for fast carbon MR 

spectroscopic imaging (
13

C-MRSI) [8-10] and 
31

P-MR spectroscopic imaging [11, 12]. In 

this study, we have assessed the feasibility of compressed sensing data acquisition and 

reconstruction for faster 
31

P-MR spectroscopic imaging of human brain tumors. 
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2. BACKGROUND 

 

 

2.1 BRAIN TUMOR 

 

A brain tumor is localized intracranial lesion which occupies space within the skull and 

tends to cause a rise in intracranial pressure. Symptoms and signs seen in brain tumor 

patients can be common among those who suffer this condition, or can be very specific to 

the individual patients. These may include headaches, seizures, personality changes or 

memory loss, nausea or vomiting and fatigue.  

 

There are two types of tumors, which are benign (noncancerous) and malignant 

(cancerous) tumors. Benign tumors can be removed and seldom grow back. The edge of 

the tumor can be seen clearly in the brain by using various medical imaging methods.  

Also, benign tumors cannot spread to other part of the body and they rarely invade other 

tissue around themselves. On the other hand, malignant brain tumors often threaten the 

person’s life, grow rapidly and invade healthy brain tissue. Also, malignant brain tumors 

can spread to other parts of the brain or to the spinal cord.  

 

In addition to the classification of brain tumors, tumor grade plays an important role for the 

survival of a person. There are four tumor grades, which are grade I, grade II, grade III and 

grade IV. Grade IV tumors tends to grow quickly and on claim the patient’s life. Figure 2.1 

shows magnetic resonance (MR) images of a healthy brain, and grade II and grade IV brain 

tumors.  

 

Computed tomography (CT) and magnetic resonance imaging (MRI) are the most 

commonly used imaging techniques to diagnose brain tumors. CT can be helpful in 

diagnosing some types of brain tumors, especially those near or inside the bone. Also, CT 

can detect swelling, bleeding, and bone and tissue calcification. On the other hand, MRI 

technique is the best type of imaging with its superior soft tissue contrast, to diagnose brain 

tumors.  
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Figure 2.1 MR images of (a) a healthy brain, and (b) Grade II, (c) Grade IV brain tumors. 

 

2.2 MAGNETIC RESONANCE IMAGING 

 

Magnetic resonance imaging is a preferred medical imaging modality that is neither 

invasive nor dependent on harmful X-rays used in certain other imaging methods. 

Magnetic resonance imaging technology takes advantage of the possibility of causing a 

magnetic response from protons, by exposing them to magnetic fields with specific 

frequencies, which causes protons to resonate with that specific frequency. The resonance 

response caused by this application is then, measured by MRI hardware, and interpreted as 

in vivo images. [13]  

 

Magnetic resonance imaging has exceptionally high soft tissue contrast, which makes this 

method vital for many in vivo imaging applications. However, it is not a perfect imaging 

method, primarily due to the comparatively longer acquisition times required to achieve a 

high spatial resolution and signal to noise ratio (SNR). There is a certain correlation 

between these three parameters and in order to shorten the data acquisition time, and make 

this modality more feasible for clinical use, spatial resolution and SNR must be sacrificed 

to a certain degree. [14]   

 

An MRI system consists of four parts, which are magnet system, gradient system, radio 

frequency (RF) system, and computer. The purpose of the magnet system is to create a 
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uniform magnetic field, B0. The direction of acquisition is determined by X, Y, Z 

gradients. Gradients are the coils that can help with determining the positions of protons of 

the tissue that is being imaged. A coil is an electromagnetic component that creates a 

specific magnetic field when powered by electricity. The coils are the primary components 

of an MRI scanner, since the technique itself relies on controlled magnetic fields. Most 

commonly used magnet type in a modern MRI scanner is a superconducting 

electromagnet, which is a niobium alloy material magnet, working at nearly 0 K and 

becomes a superconductor under these conditions. Superconductivity of the magnet allows 

it to reach extremely high magnetic field strengths. Figure 2.2 shows the gradient coils of 

an MR scanner. 

 

 

 

Figure 2.2 Gradient coils of an MR scanner. [15] 

 

Spatial encoding involves three gradient coils, and each performs a specific encoding. First 

step is slice selection. The slice selection gradient is applied perpendicularly to the target 

plane. Since this RF pulse will only excite the protons on that specific slice, only a slice of 

the whole subject will give out a signal. Thickness of this slice is adjustable via the 

bandwidth of the RF pulse and the power of the gradient. Phase encoding gradient is 

applied vertically, and it alters the frequency of the protons it affects. This frequency 

alteration will persist after the RF pulse stops. The altered resonance frequency will result 

in a phase shift in the signal received from that specific group of protons, therefore creating 

another distinctive signal group, creating a second dimension in the image. Frequency 
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encoding gradient is the final step in spatial encoding. It assigns a certain resonance 

frequency to columns perpendicular to the ones created with phase encoding gradient. This 

causes every column to have separate distinguishable resonance frequency. By the end of 

this trio of encoding steps, every voxel will have a specific frequency and phase, that can 

be used to distinguish the source of incoming resonance signals by using a Fourier 

transform. 

 

Magnetized protons have relaxation times, which are the time it takes for them to return to 

equilibrium. T1 is the longitudinal relaxation and T2 is the transverse relaxation time. 

Different tissues have different relaxation parameters and therefore by prioritizing a 

specific relaxation time, specific tissues can be inspected with MRI. The magnetic wave 

that initiates the particle resonance in the tissue is called the RF pulse. This magnetic pulse 

is of the same frequency with the Larmor frequency of the tissue. Because of the slightly 

different magnetic fields, protons in the tissue have slightly different spin characteristics. 

Main magnetic field is intentionally disturbed in a specific way by the gradient coils, and 

this results in free induction decay (FID). The time difference between the signal 

maximum and RF pulse application is called the Echo Time, and is denoted as TE. The 

repetition time of the whole process is denoted as TR. [16] 

 

2.3 MAGNETIC RESONANCE SPECTROSCOPIC IMAGING 

 

Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive imaging technique 

that employs the same technology used in modern MRI systems. MRSI uses induced 

magnetic fields to trigger a magnetic resonance in the atomic particles that have the same 

Larmor frequency as the applied magnetic field. MRSI acquisitions are carried out with the 

MRI acquisition itself, and a spatial image that also has the frequency information of 

important metabolites is constructed using these acquisitions. In addition to the regular 

MRI data that is used to construct a spatial image of the area of interest, MRSI also 

acquires information of several metabolites that exist in the tissue, to determine the 

biochemical activity in specific areas, and allow the diagnosis of a possible tumor to be 

made with greater certainty. 
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Proton (
1
H), phosphorus (

31
P), carbon (

13
C), sodium (

23
Na), potassium (

39
K) and fluorine 

(
19

F)  are the primary nuclei that MRS can detect in tissues [17]. The most commonly used 

MRSI technique is 
1
H-MRSI, due to the vast availability of protons in human body. 

Choline (Cho), creatine (Cr), and N-acetyl aspartate (NAA) are the three major metabolite 

peaks that 
1
H-MRSI can detect in the brain. Cho, Cr, and NAA provide information about 

membrane synthesis and degradation, energetic state, and neuronal activity, respectively. 

Increase in Cho peak and decrease in NAA peak are usually observed in tumor tissues [1]. 

Lipid and lactate peaks are observed at the same frequency in tumor tissue. Lipid can be 

seen in necrosis tissues, and lactate can be observed in case of lack of oxygenation. 
1
H-

MRSI provides vast amount of information, but is a difficult method due to the need of 

water suppression, and lipid signal problems caused by fatty tissue surrounding the brain 

[18]. For NAA amount to be correctly measured, lipid suppression [18, 19] or reduction of 

the lipid with processing methods after data acquisition [20] were previously employed. 

 

Carbon MR spectroscopic imaging (
13

C-MRSI) is another MR spectroscopic imaging 

method that allows the metabolic rate and mechanism to be understood in tumors [21, 22]. 

13
C-pyruvate substrate labeled with hyperpolarized 

13
C compound can be dynamically 

observed as it changes into lactate, alanine and bicarbonate, during the MR data acquisition 

[21-24]. 
13

C-MRSI detects the carbon-labeled compound to understand metabolic rate of 

tumors and it is an expensive method. 

 

The other commonly used MRSI method is phosphorus MR spectroscopic imaging (
31

P-

MRSI) which provides particular information about membrane degradation and synthesis, 

and energy metabolism of the tissue. 
31

P-MRSI has certain advantages over 
1
H-MR 

spectroscopic imaging, such as, 
31

P-MRSI does not require any water suppression, and 

does not have any lipid contamination problems. 
1
H-MR spectroscopy needs spectral 

editing techniques to measure lactate [25], however 
31

P-MR spectroscopy can easily 

provide information about ischemic state of tissue with the measurement of PCr, Pi and β-

ATP peaks. Tumor growth is related to both increased cell membrane synthesis and 

increased cell membrane degradation [26]. Although membrane synthesis and degradation 

is observed by a single Cho peak in 
1
H-MR spectroscopy, these two mechanisms can be 

distinguished by using 
31

P-MR spectroscopy. PME and PDE level changes point out 
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membrane synthesis and degradation. Three spectra samples of proton, carbon and 

phosphorus MR spectroscopic imaging are shown in Figure 2.3. 

 

 

 

Figure 2.3 (a) 
1
H-MRSI [27], (b) 

13
C-MRSI [21], and (c) 

31
P-MRSI spectra samples 

 

2.4 PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING 

 

Phosphorus MR spectroscopic imaging (
31

P-MRSI) is a type of non-invasive MR 

spectroscopic imaging method that detects the phosphorus containing metabolites instead 

of proton in the tissue. 
31

P-MRSI can provide quantitative information about the energetic 

and ischemic state, membrane degradation and synthesis, and pH of the tissue of interest 

[2].  In phosphorus magnetic resonance spectroscopic imaging, phosphorylcholine (PC), 

phosphoethanolamine (PE), phosphocreatine (PCr),  glycerophosphoethanolamine (GPE), 

glycerophosphorylcholine (GPC), inorganic phosphate (Pi), and β-ATP, α-ATP and γ-ATP 

peaks can be observed. PCr is seen as singlet at 0 ppm, and it is considered as a marker of 

phosphorylative energy metabolism and a reference peak of 
31

P spectrum. 

Phosphorylcholine and phosphoethanolamine are phosphomonoesterase (PME) produced 

by phosphorylation of choline and ethanolamine, during membrane synthesis. 

Glycerophosphorylcholine and glycerophosphoethanolamine are formed during membrane 

degradation and the sum of these peaks is the phosphodiesterase peak (PDE). β-ATP peak 

is used to estimate ATP level, since there is no AMP and ADP contamination in it. In 

addition to metabolic information, intracellular pH level can be calculated by using 

frequency difference (d) between Pi and PCr peaks, with the following equation [3], 

  

             
      

      
   (2.1) 
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There is a difference between phosphorus metabolite levels of normal brain tissue and 

brain tumors, as shown by previous studies [2, 3]. When the ischemia forms in the brain 

tissue, ATP production occurs with hydrolysation of PCr by creatine kinase. ATP 

production results in a decrease in PCr, and increases in Pi/PCr and β-ATP/PCr, and an 

increase in pH level [2]. Increases in PME and PDE are signs of increase in membrane 

synthesis and degradation [3]. Maintz et al. evaluated the 
31

P MR spectroscopic data of a 

large population of healthy volunteers, meningioma, and second, third and fourth grade 

brain tumor patients, and observed an alkaline environment (pH=7.16) as well as a 

decrease in PCr and PDE peaks in meningiomas, slight alkalization (pH=7.09) and a 

reduction in PDE/α-ATP by more than twofold in second, third and fourth grade gliomas 

[3]. Figure 2.7 shows 31P-MR spectra of tumor and healthy tissue that was acquired from a 

brain tumor patient diagnosed with non-Hodgkin’s lymphoma (NHL). An increase in GPC 

and a decrease in PCr were observed in tumor region for this patient. 

 

 

 

Figure 2.4 
31

P-MR spectra of a brain tumor patient who was diagnosed with NHL. The 

colored boxes represent selected spectra, left blue box and right spectrum being tumor and 

other two boxes and left spectrum being healthy. 
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2.4.1 IMAGE SELECTED IN VIVO SPECTROSCOPY 

 

Image selected in vivo spectroscopy (ISIS) technique is widely used to acquire phosphorus 

MR spectroscopic signals that quickly decay due to low T2 relaxation values of 

phosphorus containing metabolites. In ISIS technique, free induction decay (FID) signal 

that occurs as a result of an RF pulse is acquired instead of echo signal which requires two 

or more RF pulses and longer TE time [28]. To be able to acquire MR signals originating 

from a specific region with ISIS, two or more signal are acquired, and by addition and 

subtraction of these signals from each, signals from the intended region can be estimated. 

Fundamentally, ISIS is a single voxel MR imaging method, and by using one dimensional 

ISIS a slice, two dimensional ISIS a column, and three dimensional ISIS a voxel can be 

selected.  

 

To be able to select a single slice with one dimensional ISIS, which is the basic scenario, 

two separate measurements are needed as seen in Figure 2.4. In the first measurement, by 

using a 90
o
 RF pulse without any location discrimination, all MR signals from the 

sensitivity region of the MR coil is tipped to the transverse plane and the signal is acquired. 

In the second measurement, before the 90
o
 pulse, a 180

o
 RF pulse along with a gradient in 

one direction is applied. The 90
o
 pulse applied afterwards, tips the signal coming from the 

slice selected with the 180
o
 pulse and the MR signal coming from out of this chosen slice, 

into transverse plane in opposing directions, and then the signal is acquired. By subtracting 

these two separate signal acquisitions and dividing the result by two, we get an 

approximate result of the MR signal coming from the targeted region.  
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Figure 2.5 Selecting a slice with one-dimensional image selected in vivo spectroscopy 

technique.  
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For two dimensional signal localization with ISIS, gradients with two directions and four 

separate measurements, and for three dimensional localization, gradients with three 

directions and eight measurements are needed [29]. In Figure 2.5, gradient combinations of 

the 8 signals required for the selection of a voxel located at the intersection of A, B, C 

slices on the x, y, z planes, respectively, can be seen. 

 

 

 

Figure 2.6 Necessary gradient combinations to acquire a single voxel that is located at the 

intersection of A, B, C slices on the x, y, z planes, respectively, with three-dimensional 

ISIS technique. 
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2.4.2 PULSE AND ACQUIRE 

 

In pulse and acquire (PA) method, which acquires data in k-space and is used for MRS 

imaging, gradients are enabled in three directions, allowing for the selection of a voxel 

after an RF pulse. Data is acquired after the RF pulse and gradients are applied. A 

schematic of the first part of PA technique used in Philips MR scanner can be seen in 

Figure 2.6. In this figure, M, P, and S represent the 3 gradients in different directions. After 

the RF application, the gradients enable a phase difference in three planes, and data is 

collected from a point marked in k-space [29].  

 

 

 

Figure 2.7 A schematic of the first part of a pulse and acquire sequence. 

 

One of the problems with this method is the first order phase error caused by the time 

difference between RF application and data acquisition. When the pulse sequence was 

inspected, this timing difference was determined as 1.4072ms. The frequency of 

phosphorus is 51MHz at 3T (w=γB0=17MHz/Tx3T=51MHz). The exponential equation 

below can be used to represent this first order error phase, 

 

      
                               (2.2) 
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2.5 COMPRESSED SENSING TECHNIQUE 

 

Compressed sensing technique was first discovered by Dr. Emmanuel Candes, with the 

help of Dr. Justin Romberg and Dr. Terence Tao, while he was working on noise reduction 

on a Shepp-Logan phantom by using L1-norm reduction technique, and observed that the 

image was successfully and clearly reconstructed from a few samples [30-32]. This 

technique is based on the principal that randomly sampled sparse signals can be used to 

perfectly reconstruct the signal. Compressed sensing technique requires a) sparsity of 

signal in a transform domain, (in other words, signal should comprise a few non-zero 

components), b) random undersampling and incoherent aliasing in transform domain, and 

c) a non-linear reconstruction method, like conjugate gradient, to find an approximate 

solution for the ill-posed problem [33]. Lustig et al. used compressed sensing method to 

accelerate MR data acquisition, for the first time [33]. In this first application, MR contrast 

angiography images were accelerated with three dimensional MR imaging that are sparse 

in spatial domain, and fast spin echo MR images of the brain were also accelerated using 

compressed sensing method. 

 

MR spectroscopic signals are sparse by their nature and throughout the spectral bandwidth, 

non-zero elements exist only at certain frequencies. Additionally a sparse MR 

spectroscopic signal can be correctly represented with a few large Wavelet components 

[9]. This fulfills the first criteria required to apply compressed sensing method. 

Secondarily, for the proper reconstruction of a signal of length N, and with M non-zero 

elements, at least K>MlogN individual samplings are needed [30]. The problem of 

reconstruction of randomly acquired time data in Fourier domain in all voxels by using 

compressed sensing can be formulated as [33], 

 

 
                

 h                  
(2.3) 

 

In this formula; m represents an approximate solution, ψ(m) represents the Wavelet 

transform of this solution, Fa represents the undersampling operator in the Fourier space, y 

represents the original samples obtained from the signal, and ϵ represents the error margin 
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on the noise level. A low L1-norm of the Wavelet transform means that the signal is sparse 

and can be calculated with the following formula, 

 

                

 

  (2.4) 

 

This difference and sparsity criteria can be transformed into Lagrange form and rewritten 

as an optimization problem as in equation 2.5. According to equation 2.5, the best solution 

must have its undersampled Fourier transform close to the original samples, and the signal 

formed must be sparse enough to be compressed with Wavelet transform.  

 

                           (2.5) 

 

Due to the limited number of samples in Fourier domain, MR reconstruction problem is an 

underdetermined one and multiple solutions exist. This causes the MR reconstruction 

problem to be ill posed [34]. For ill posed problems, an approximate solution is sought 

after by employing a priori information, or regularization techniques need to be used [35]. 

For the solutions of compressed sensing problems, conjugate gradient method which 

approximates a close solution is often employed. 

 

2.5.1 Conjugate Gradient Method 

 

Conjugate gradient method [36] is used to find an x value, that gives the minimum value 

for a second order function in the form of, 

 

    
 

 
            (2.6) 

 

In this equation, A is a real positive definite matrix. x value that gives the minimum value 

for this second order function also is the solution of Ax=b. Minimum point of the function 

ηx is where the gradient value is equal to zero, and the gradient of ηx is a vector that shows 

the direction where the growth of ηx is the greatest for any x [37]. The gradient of the 

function ηx is Ax-b. 
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The point where the gradient of ηx is equal to zero, is also the solution of Ax=b. A point, at 

where the minimum value of the second order function ηx is very close to the actual 

minimum, can be found using steepest descent method [37]. This method starts from a 

randomly selected x0 point and iteratively follows a path in where Axi-b difference 

decreases fastest. Since the gradient of a function shows the direction of its greatest 

growth, ηx gradient is negatively iterated. ηx function’s negative gradient is the difference 

of the original value b and is approximation Ax. Steep descent algorithm starts from a 

random x0, and takes the error difference that occurs when xi is placed in equation, ri, and 

multiplies it with a weighting factor α. 

 

The steepest descent method can iterate steps in the same direction and this can lengthen 

the convergence time. Conjugate gradient method is an advanced form of steepest descent 

method, and in this method the adjacent steps are taken perpendicular to each other, which 

speeds up the convergence. If pi and pi+1 are two adjacent search directions, these must be 

perpendicular in the conjugate gradient method. 

 

A new direction is found using the previous direction and the error difference. A second 

weight factor β is defined in the conjugate gradient and is used to determine the direction 

of the iteration. An iterative solution, xi+1, can be found with conjugate gradient method as, 

               (2.7) 

 

The error difference in the next step, ri+1 is then calculated as, 

 

                (2.8) 

 

In conjugate gradient method, an acceptable solution can be determined by confirming that 

with each iteration, the error difference approaches to a minimum. If the difference begins 

to increase or two adjacent iterations has an error difference of more than 15%-20%, then 

the iterations are ceased, and it is assumed that the closes solution to the Ax=b function has 

been found [37]. 
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3. MATERIALS AND METHODS 

 

 

3.1 SIMULATIONS 

 

3.1.1 Data Preparation 

 

A volunteer was scanned with a 3T MR scanner (Philips Medical Systems, Best, 

Netherlands) using a 
31

P surface coil.  A disc at the center of this coil that contained both 

water and methylphosphonic acid, was used for localization.  Anatomical brain images 

were acquired using a body coil and turbo field echo sequence (TFE) (TR=75ms, TE=5ms, 

flip angle (FA) =30°). Using image selected in vivo spectroscopy (ISIS), a 
31

P MR 

spectrum was acquired (TR=5s, 128 signal averages, 3000Hz, idle period=0.333ms, 1024 

time points, 27cc voxel size, scan time=11min). After this spectrum was processed with a 

10Hz Gaussian filter, phase correction, baseline removal, and measurements were done 

using AMARES under jMRUI [38]. Amplitude (a) and frequency (f) values were 

calculated for each peak using AMARES, and were used to form a healthy spectrum in the 

time domain with the following equation, using MATLAB (The Mathworks Inc., Natick, 

MA), 

 

        
             

 

  (3.1) 

 

and for all peaks a dk=30Hz was used. A tumor spectrum was simulated using the same 

method. Peak ratios of the tumor spectrum and healthy spectrum for the metabolites PCr, 

γ-ATP, α-ATP, β-ATP, GPC, GPE, Pi, PC and PE, were given as 0.49, 1.0, 1.0, 1.0, 2.16, 

1.86, 1.47, 2.06, 2.63, respectively. Noise was added to each spectrum. In Figure 3.1 and 

3.2, simulations for healthy and tumor 
31

P-MR spectra can be seen. Using healthy and 

tumor spectra, two dimensional 8x8, 16x16 and 32x32 
31

P-MRSI datasets were created, 

where the upper left corner contained tumor and the remaining voxels had healthy spectra. 

(Figure 3.3) 
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Figure 3.1 
31

P- MR spectrum simulation of healthy brain tissue. 

 

 
 

Figure 3.2 
31

P- MR spectrum simulation of a brain tumor. 

 

 
 

Figure 3.3 PCr peak intensity across the 2D (a) 8x8 (b) 16x16 (c) 32x32 
31

P-MRSI datasets 

containing tumor (dark), and healthy (light) regions. 
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The compressed sensing method requires the Fourier transform results of the solution to be 

similar with the original data, as well as the signal formed to be sparse enough to be 

compressed with Wavelet transform [33]. Due to the nature of the compressed sensing, the 

data has to be randomly undersampled in the Fourier space. Therefore, k-space data of the 

simulated dataset was randomly undersampled using various undersampling patterns. An 

image in the Fourier space has the low frequency information in the middle portion, where 

the main definition of the image is found. Outer portion of k-space has the high frequency 

data (details of the image), therefore in order to avoid loss of data when undersampling, 

mask had to be designed such that it would take the information at the central portion of 

the k-space. Fully random undersampling mask and random undersampling masks that 

preserved center of the k-space, were created, where acquired data points were set to 1 and 

unacquired ones were 0. Figure 3.4, 3.5, and 3.6 show fully random undersampling and 

center preserved random undersampling masks. 

 

31
P-MRSI datasets which were simulated in 8x8, 16x16, and 32x32 matrices were 

multiplied with these random masks, and after that the data were reconstructed using 

compressed sensing algorithm.  

 

 

 

Figure 3.4 Fully random undersampling patterns for (a) 8x8, (b) 16x16 and (c) 32x32 

arrays. 
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Figure 3.5 Random undersampling patterns with preserved k-space center zone and (a) 

R=1.6 for 8x8, (b) R=1.64 for 16x16 and (c) R=1.67 for 32x32 arrays. 

 

 
 

Figure 3.6 Random undersampling patterns with preserved k-space center zone and (a) 

R=5.33 for 8x8, (b) R=4.26 for 16x16 and (c) R=3.71 for 32x32 arrays. 

 

3.1.2 2D Iterative Frame Based Compressed Sensing Reconstruction 

 

SparseMRI software package that was designed for compressed sensing method was 

modified for reconstruction of 
31

P MR spectroscopic datasets. Resultant randomly 

undersampled k-space data was reconstructed using this software. Undersampled datasets 

were inverse Fourier transformed along ky first, and kx-kf data was reconstructed for each y 

point, using SparseMRI software package [39]. Obtained datasets were inverse Fourier 

transformed along kx and ky-kf data was reconstructed for each x point. L1-norm and total 

variation weights were chosen as 0.001, empirically. 2D Length-4 Daubechies Wavelet 

transform was used as the sparsifying transform. 
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3.1.3 3D Direct Compressed Sensing Reconstruction 

 

3D direct compressed sensing reconstruction is an improved algorithm of Sparse MRI (2D 

iterative frame based) for faster 
31

P-MRSI [40]. In 2D iterative frame based reconstruction, 

undersampled 
31

P-MR spectroscopic data was reconstructed iteratively, due to the main 

and sub-functions of Sparse MRI being 2D. This algorithm was scrutinized, and relevant 

functions were determined. Required changes in the algorithm were implemented to adapt 

the routines for 3D direct reconstruction. A third dimension was added to the 

undersampling masks. The zero padding function of Sparse MRI that takes only central 

part of frequency was converted from 2D to 3D. In this function, 6x6 Hamming window 

was created, and it was placed at the center of the zero matrix which was created as the 

same size with 
31

P MR dataset. In 3D direct compressed sensing, a 3D Hamming window 

was created, and it was placed at the center of 3D zero matrix, to obtain the central 

frequency information of kx-ky-kf data. After the acquisition of central frequency 

information, phase was calculated and verified. A Fourier operator was created and the 

data was scaled. In Sparse MRI software package, the sampling and scaling works were 

done in two dimensional, consequently these functions were modified for 3D data 

reconstruction. The scaled dataset was multiplied with Wavelet operator and reconstructed 

with compressed sensing algorithm. For the Wavelet operator, a length-4 Daubechies was 

used. The dimensions of the operator and the data, should agree for multiplication, 

therefore, multiplication algorithms used to create the Wavelet operator were converted 

from 2D to 3D. Resultant 3D algorithm was designed to work on multi-slice 
31

P-MR 

spectroscopic datasets in each iteration. 

 

3.2 PARADISE 

 

Paradise is a software that can simulate a Philips MR scanner with all of its aspects, and 

has all the system software codes of the corresponding MR scanner built in. Every MR 

system vendor has their own software, and usually their software written in complex C 

codes. Philips MR system software is written in GOAL-C, which is a programming 

language that resembles C. This software consists of numerous header files and source 

codes. Spectroscopic data acquisition system codes were inspected, relevant functions and 

required modifications were determined in these header files, and source codes. 

Compressed sensing options and effects of undersampling mask were added to where MR 
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spectroscopic data acquisition was done. Several parameters were added to be shown at the 

user interface of MR scanner. 8x8 and 16x16 undersampling masks which were chosen 

according to the simulation results, were transferred in an appropriate format into the 

software to be used within Philips MR scanner. Data acquisition direction and format of 

Philips MR scanner were identified, and an appropriate code was written for the masks to 

be applied properly for the data acquisition. The software normally automatically fills 

unacquired k-space points with zeros and Fourier transforms data before exporting it. The 

part of the pulse sequence that disables the reconstruction was determined, and 

‘EX_SPY_kspace_data’ parameter was added to be able to interfere from user interface of 

MR scanner. k-space points are required for compressed sensing reconstruction algorithm 

to be used and with this modification raw data was obtained from the system. The user 

interface after the activation of additional code modifications can be seen in Figure 3.7.  

 

 

 

Figure 3.7 The screenshot of the modified user interface of MR scanner (compressed 

sensing disabled in this shot). 

 

3.3 DATA ACQUISITION 

 

A 3T MR scanner (Philips Medical Systems, Best, Netherlands), and a dual channel 
31

P/
1
H 

volume cranial coil was used to acquire 
31

P-MR spectra with pulse and acquire (PA) 

technique (TR=4.8s, NA=4, 3000Hz, 1024 points, field of view (FOV)=160x160mm, 

20x20x40mm voxel size, scan time=16 min). Datasets were obtained from a healthy 

volunteer and a brain tumor patient.  
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3.4 DATA PROCESSING 

 

31
P MR spectroscopic full datasets were processed using jMRUI software. In order to filter 

out the noise, two consecutive 10Hz Lorentzian filters were used to apodize the signal. 

jMRUI was used to overlay the DICOM images with the spectrum of each voxel, and this 

was used to determine the healthy and tumorous regions. In order to read the dataset in a 

format that complies with the Philips 
31

P MR spectroscopic imaging standards, existing 

reader scripts for MATLAB (The Mathworks Inc., Natick, MA), were used and modified 

accordingly. Data read by MATLAB, was analyzed using ppm ranges of the metabolites, 

PCr, γ-ATP, α-ATP, β-ATP, GPC, GPE, Pi, PE, PC. Peak heights and ratios taken from 

healthy and tumorous regions were analyzed. 

 

31
P MR spectroscopic undersampled datasets were read in MATLAB, and domain of 

datasets were changed into k-space for 3D direct reconstruction. The datasets of a 

volunteer and a brain tumor patient were reconstructed using 3D direct compressed sensing 

algorithm. The reconstructed datasets were written in a format that complies with Philips 

31
P MR spectroscopic imaging standards using MATLAB, to compare the full and 

reconstructed 
31

P MR spectra. The reconstructed datasets were apodized with two 

consecutive 10 Hz Lorentzian filters to reduce the noise, and filtered datasets were read by 

MATLAB to analyze the difference between original and reconstructed 
31

P MR spectra. 

 

3.5 DATA ANALYSIS 

 

3.5.1 Bland Altman Method  

 

A Bland Altman statistical test was used to detect a significant difference between mean 

metabolite peak ratios of the original, 2D iterative frame based and 3D direct compressed 

sensing datasets within the tumor and healthy regions. Bland-Altman method compares the 

results of two different applications under same or similar parameters, over a range of 

different parameter pairs, and each method having an error margin of their own. For n 

samples, 2n total assessments are done by using the two methods to be evaluated. Sample 

pairs are actually derived from the same sample in the original dataset, but evaluated with 

two different methods. A Cartesian coordinate system is formed as a result of Bland-
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Altman method. One point in the Cartesian space is assigned for each sample, where x-axis 

value is the mean of the relevant pair, and y-axis value is the difference between the 

relevant pair. 

 

3.5.2 Wilcoxon Rank Sum Test  

 

A rank sum test was utilized to see if the SNR of PCr, Pi, and β-ATP, and Pi/PCr, PCr/β-

ATP, and PCr/PE metabolite ratios in the original, 2D iterative frame based, and 3D direct 

compressed sensing reconstructed datasets were significantly different between the tumor 

and healthy regions. Wilcoxon rank sum test is a more powerful nonparametric alternative 

to the commonly used unpaired t-test. It tests whether two different populations have 

significantly different characteristics for a given parameter. 

 

3.5.3 Bonferroni Correction 

 

Bonferroni correction was applied, and p<0.005 was considered to be significant. It is used 

with multiple comparison tests. The familywise error rate is calculated and therefore the 

tests overall precision is improved. 

 

3.5.4 Root Mean Square Error 

 

Root mean square error (RMSE) was calculated for quantification of the error of 

reconstruction techniques. RMSE can be formulated as, 

 

                   
  

   

 
 

(3.2) 

 

where Xo is the observed value, XE is the expected value, and n is the total number of 

points in dataset. In this study, original dataset was used as observed, and 2D and 3D 

reconstructed compressed sensing datasets were used as expected values.  
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4. RESULTS 

 

4.1 2D Iterative Frame Based Compressed Sensing Reconstruction 

 

The amount of distortion in the 2D image at a certain frequency and more importantly loss 

of data in simulated 
31

P-MR spectra were assessed when fully random undersampling 

patterns were used. In Figure 4.1, 2D image outputs of fully random undersampled 

reconstruction for 8x8, 16x16, and 32x32 voxels are shown. Tumor region in left upper 

portion could not be distinguished. Similarly, intense distortion, signal loss and phase 

errors were observed in reconstructed 
31

P-MR spectra of all sizes (Figure 4.2, 4.3, 4.4). In 

simulations, substantial distortion is expected in the reconstructed images and spectra when 

the center of the k-space is not sampled, and our observations have confirmed this. 

 

 

 

Figure 4.1 2D PCr image outputs of (a) 8x8, (b) 16x16, and (c) 32x32 arrays for 2D 

iterative frame based reconstruction which was undersampled with a fully random mask. 

 

 

 

Figure 4.2 A column of 2D iteratively reconstructed 8x8 
31

P-MR spectra which was 

undersampled with fully random mask. 
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Figure 4.3 A column of 2D iteratively reconstructed 16x16 
31

P-MR spectra which was 

undersampled with fully random mask. 

 

 

 

Figure 4.4 A column of 2D iteratively reconstructed 32x32 
31

P-MR spectra which was 

undersampled with fully random mask. 

 

31
P-MR spectroscopic datasets were undersampled with a mask that preserved k-space 

center zone and their reduction factors were 1.6, 1.64, and 1.67 for 8x8, 16x16 and 32x32 

respectively. The resultant PCr frequency images of random undersampled with preserved 

k-space center zone reconstruction for all sizes can be seen in Figure 4.5. In these images, 

tumor region can be differentiated more clearly. Likewise, tumor and healthy regions were 

separable in 
31

P-MR spectral data for all sizes (Figure 4.6, 4.7, 4.8). Both 2D images and 

spectra of reconstructed 
31

P-MR spectroscopic data that was undersampled with center 

preserved mask, were observed to be better due to the fact that main information of data 

exist on the central portion of the Fourier domain. 
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Figure 4.5 2D PCr image outputs of (a) 8x8, (b) 16x16, and (c) 32x32 arrays for 2D 

iterative frame based reconstruction which was undersampled with a center preserved 

random mask. 

 

 

 

Figure 4.6 A column of 2D iteratively reconstructed 8x8 
31

P-MR spectra which was 

undersampled with a center preserved random mask. 

 

 

 

Figure 4.7 A column of 2D iteratively reconstructed (a) 16x16 and (b) its central 8x8 
31

P-

MR spectra which was undersampled with a center preserved random mask. 
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Figure 4.8 A column of 2D iteratively reconstructed (a) 32x32 and (b) its central 8x8 
31

P-

MR spectra which was undersampled with center preserved random mask. 

 

In Figure 4.9, the 
31

P-MR spectra of 8 voxels acquired from healthy and tumor regions 

using original and compressed sensing data are shown. Upper 4 voxels are tumor and 

lower 4 voxels are healthy spectra. In both of the datasets, tumor and healthy spectral 

regions are distinguished with ease.  

 

 
 

Figure 4.9 Eight voxels showing the transition between the healthy and tumor voxels for 

the original and 2D iteratively reconstructed compressed sensing datasets. 

 

4.2 3D Direct Compressed Sensing Reconstruction 

 
31

P-MR spectroscopic datasets were undersampled with a mask that preserved the 25% of 

k-space along x and y directions, and 7.5% of central part. 7.5% central portion was chosen 

empirically to obtain approximate solution with higher reduction factor. For even shorter 

acquisition times, the reduction factors used for 3D direct reconstruction were higher than 

2D iterative frame based reconstruction. 2D PCr image outputs of 3D direct reconstruction 
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for all sizes can be seen in Figure 4.10. Although datasets were undersampled with higher 

reduction factor, tumor and healthy regions were separated clearly in 3D directly 

reconstructed images. Likewise, 3D directly reconstructed and original 
31

P-MR spectra 

were very similar. In figures 4.11, 4.12, and 4.13, 3D directly reconstructed 
31

P-MR 

spectroscopic datasets are shown for all sizes.  

 

 
 

Figure 4.10 2D PCr image outputs of (a) 8x8, (b) 16x16, and (c) 32x32 arrays for 3D 

direct reconstruction. 

 

 
 

Figure 4.11 A column of 3D directly reconstructed 8x8 
31

P-MR spectra. 
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Figure 4.12 A column of 3D directly reconstructed (a) 16x16 and (b) its central 8x8 
31

P-

MR spectra. 

 
 

Figure 4.13 A column of 3D directly reconstructed (a) 32x32 and (b) its central 8x8 
31

P-

MR spectra. 

 

The 
31

P-MR spectra of 8 voxels acquired from healthy and tumor regions using original 

and 3D directly compressed sensing data were shown in Figure 4.14. In original and 3D 

directly compressed sensing datasets, tumor and healthy spectral regions can be easily 

separated from each other.  

 

 
 

Figure 4.14 Eight voxels showing the transition between the healthy and tumor voxels for 

the original and 3D directly reconstructed compressed sensing datasets. 
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4.3 Comparison of 2D Iterative Frame Based and 3D Direct Compressed Sensing 

Reconstruction 

 

The random undersampling patterns preserved the 7.5% of central part while reducing the 

k-space data by a reduction factor of 4.26 for 16x16, and 3.71 for 32x32 arrays. For 8x8 

datasets, the undersampling pattern which contained the 40% of whole data and preserves 

the 10% of center was used, so that it would be possible to compare 2D iterative frame 

based and 3D direct CS reconstruction algorithms (Figure 4.15). The acquisition times of 

original and undersampled (U) datasets are given in Table 4.1. Even though the acquisition 

time of 
31

P-MR spectroscopic imaging would decrease substantially, time required for 

32x32 acquisition would still not feasible for clinical applications. 

 

 
 

Figure 4.15 Random undersampling patterns with preserved k-space center zone and (a) 

R=2.37 for 8x8, (b) R=4.26 for 16x16 and (c) R=3.71 for 32x32 arrays 

 

Table 4.1 Comparison of acquisition times. 

 
Size O U 

8x8 5.3 min 2.25 min 

16x16 21 min 5 min 

32x32 85.3 min 23 min 

 

PCr images of 2D iteratively reconstructed datasets can be seen in Figure 4.16. Tumor 

region could not be distinguished from the healthy region. Tumor region was easily 

distinguished from the healthy region in 2D images of 3D directly reconstructed datasets, 

unlike 2D iteratively datasets (Figure 4.17). 
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Figure 4.16 2D PCr image outputs of (a) 8x8, (b) 16x16, and (c) 32x32 arrays for 2D 

iterative frame based reconstruction which was undersampled with 2.37, 4.26, and 3.71 

reduction factors, respectively. 

 

 
 

Figure 4.17 2D PCr image outputs of (a) 8x8, (b) 16x16, and (c) 32x32 arrays for 3D 

direct reconstruction which was undersampled with 2.37, 4.26, and 3.71 reduction factors, 

respectively. 

 

A 16x16 voxel reconstructed PCr images, and their middle 4x4 spectra are shown in 

figures 4.18, and 4.19. When 2D iterative frame based CS reconstruction was used, tumor 

and healthy regions were not separable, while 3D direct CS reconstruction resulted in an 

image and spectra where tumor and healthy regions were clearly separable. 
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Figure 4.18 A 2D iteratively reconstructed 16x16 image and spectra of central 4x4. 

 

 
 

Figure 4.19 A 3D directly reconstructed 16x16 image and spectra of central 4x4. 

 

The middle 8 voxels of 
31

P-MR spectra of 32x32 original, 2D iterative frame based, and 

3D direct CS reconstruction datasets are shown in Figure 4.20. Top four voxels were 

tumor, and the rest were healthy spectra. In original and 3D directly reconstructed datasets, 

tumor and healthy regions were differentiable, when several voxel distortions, and signal 

losses were observed in spectra of 2D iteratively reconstructed datasets. 
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Figure 4.20 Eight voxels showing the transition between the healthy (bottom four) and 

tumor (top four) voxels for the original and 2D and 3D reconstructed CS datasets. 

 

Metabolite ratios in tumor and healthy regions of original, 2D iteratively, and 3D directly 

reconstructed CS datasets are given in Table 4.2. Rank sum test results indicated that  ratio 

differences between tumor and healthy peaks were statistically significant for 3D direct CS 

reconstruction and original datasets, while 2D iterative frame based CS reconstruction 

datasets peak ratio differences were not significant (p<0.005). 

 

Table 4.2 Pi/PCr, PCr/β-ATP, and PCr/PE metabolite ratios in tumor and healthy regions 

of the original, 2D iteratively, and 3D directly reconstructed compressed sensing datasets 

for all sizes. 

 

Size 
 

Tumor Healthy 

Pi/PCr PCr/β-ATP PCr/PE Pi/PCr PCr/β-ATP PCr/PE 

Original 0.9±0.0 1.6±0.0 0.7±0.0 0.3±0.0 3.04±0.0 2.7±0.0 

8x8 
2D CS 0.46±0.28 4.56±3.87 2.05±1.74 3.78±12.92 5.54±12.1 1.52±1.2 

3D CS 0.88±0.04 1.98±0.1 0.7±0.03 0.4±0.01 3.04±0.1 2.3±0.1 

16x16 
2D CS 29.3±113 13.6±54 33.8±120 52.8±154.8 4.7±6.2 43.6±167 

3D CS 0.72±0.04 1.9±0.1 0.9±0.1 0.36±0.03 2.97±0.15 2.7±0.5 

32x32 
2D CS 0.45±0.54 26.9±85.9 58.3±205 0.59±0.98 25.4±78.2 53±148.5 

3D CS 0.86±0.09 1.7±0.2 0.7±0.1 0.34±0.0 2.7±0.05 2.4±0.1 

 

In Table 4.3, tumor over healthy ratios of mean metabolite peaks for original, 2D iterative 

frame based, and 3D direct CS reconstruction datasets are given. Although the mean 

metabolite peak values were similar between original and 3D direct CS reconstruction 

datasets, they were not similar for 2D CS reconstruction datasets. 
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Table 4.3 Tumor over healthy ratios of mean PCr, Pi, and β-ATP peak heights of original, 

2D iteratively and 3D directly reconstructed compressed sensing (CS) datasets for all sizes. 

 
Tumor/Healthy Ratio of Mean 

Metabolite Peak 
PCr Pi β-ATP 

Original 0.56 1.44 1.02 

8x8 
2D CS 1.1 0.88 0.9 

3D CS 0.6 1.48 0.97 

16x16 
2D CS 1.01 0.88 0.86 

3D CS 0.67 1.33 1.06 

32x32 
2D CS 1.23 1.06 1.12 

3D CS 0.58 1.43 0.89 

 

Bland Altman test results of original and 2D iterative frame based CS, and original and 3D 

direct CS reconstruction can be seen in Table 4.4. Pi/PCr, PCr/β-ATP, and PCr/PE ratios 

of 3D direct reconstruction and original were found to have very close values, resulting in 

a small standard deviation that resulted in few outliers. Bias and standard deviation of all 

ratios for 2D reconstructed CS dataset were found to be high. 

 

Table 4.4 Bland Altman test results for the number of outliers, bias and std(bias) for the 

similarity of the peak ratios the original and 2D and 3D reconstructed compressed sensing 

datasets. 

 

Bland Altman 

Test Results 

(16x16) 

2D Iterative Frame Based 

Reconstruction 
3D Direct Reconstruction 

Pi/PCr PCr/β-ATP PCr/PE Pi/PCr PCr/β-ATP PCr/PE 

T 
#outliers 4 2 3 0 1 2 

mean(diff) 29.3 12.6 33.4 0.1 0.3 0.2 
std(diff) 112.7 54.1 120.3 0.04 0.1 0.09 

H 
#outliers 4 3 3 0 4 4 

mean(diff) 52.6 3.7 43.6 0.02 0.1 0.4 
std(diff) 154.7 5.3 166.7 0.02

 
0.1 0.3 

 

Effect of the noise level on 2D and 3D CS reconstructions were, found by calculating 

RMSE, which can be seen in Table 4.5. While the effect of the increase in noise level on 

RMSE value of recon datasets is apparent, RMSE values were still lower for 3D CS 

datasets. RMSE values of 3D CS datasets that were undersampled with various different 

patterns that have different central k-space percentages and total k-space points can be seen 

in Table 4.6. Since it is necessary to preserve k-space center for better reconstruction, 

lower sampling in this central portion was directly related to the quality of the signal, and 
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increased the RMSE value. By evaluating the number of points, it was seen that the RMSE 

increase in 8x8 was greater than the increase in 16x16. 

 

Table 4.5 Root mean square error (RMSE) values of 2D iteratively and 3D directly 

reconstructed CS datasets with different noise levels. 

 

RMSE 

2D CS 3D CS 

8x8 16x16 32x32 8x8 16x16 32x32 

Noise 

level
*
 

8% 7.9x10
-3 

9.8x10
-3 

1.1x10
-2 

9.1x10
-4

 1.4x10
-3

 1.3x10
-3

 

30% 1.1x10
-2 

1.6x10
-2 

1.5x10
-2 

1.1x10
-3

 1.7x10
-3

 1.4x10
-3

 

40% 1.4x10
-2 

1.8x10
-2 

1.9x10
-2 

1.2x10
-3

 2.1x10
-3

 1.4x10
-3

 

50% 1.4x10
-2 

1.8x10
-2 

2.4x10
-2

 1.6x10
-3

 2.2x10
-3

 2.1x10
-3

 

*The standard deviation of the additional noise was set as the percentage of the maximum peak intensity 

within the spectrum. 

 

Table 4.6 RMSE values of 3D directly reconstructed CS datasets with using different 

undersampling patterns. 

 

RMSE 

Percentage of the central k-

space points sampled (16x16) 

Percentage of the central k-

space points sampled (8x8) 

7.5% 6.5% 5.5% 7.5% 6.5% 5.5% 

Percentage of 

the total k-

space points 

sampled 

10% 2.2x10
-3

 2.6x10
-3

 1.8x10
-2

 1.3x10
-2

 1.5x10
-2

 1.6x10
-2

 

20% 1.9x10
-3

 1.9x10
-3

 4.5x10
-3

 3.7x10
-3

 1.5x10
-2

 1.6x10
-2

 

25% 9.1x10
-4

 1.3x10
-3

 3.9x10
-3

 3.2x10
-3

 3.6x10
-3

 1.5x10
-2
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4.4 Compressed Sensing Reconstruction for Accelerated 
31

P-MR Spectroscopic 

Imaging of Human Brain 

 

User interface of Philips MR scanner is shown in Figure 4.21, when PA pulse sequence 

was used, compressed sensing (Compressed Sensing=no) option was disabled, and 

reconstruction (EX_SPY_kspace_data=yes) option was enabled. The scan time was 20:38 

min for 8x8 full data acquisition. When compressed sensing (Compressed Sensing=yes) 

option and raw data acquisition were enabled (EX_SPY_kspace_data=no), the scan time 

was reduced to 4 min (Figure 4.22), and 12 k-space points that belonged to the desired 

undersampling pattern, was acquired with a reduction factor of 5.33 (Figure 4.23). 

 

 
 

Figure 4.21 The screenshot of Philips MR scanner user interface. The scan time was 20:38 

min when compressed sensing option was disabled, and the reconstruction option 

(EX_SPY_kspace_data) was enabled. 

 

 
 

Figure 4.22 The screenshot of Philips MR scanner user interface. The scan time was 

reduced to 4 min when compressed sensing option was enabled, and the reconstruction 

option was disabled. 



38 

 

 
 

Figure 4.23 The screenshot of Philips MR scanner user interface. 12 k-space points that 

belonged to the undersampling pattern, was acquired with a reduction factor of 5.33 when 

compressed sensing option was enabled, and the reconstruction option was disabled. 

 

In Figure 4.24, 
31

P-MR spectroscopic FID data of a volunteer which was acquired with 

compressed sensing, is shown. Data acquisition was done in k-space at where 

undersampling mask had non-zero elements. This data was processed with compressed 

sensing reconstruction algorithm to obtain spectral data. 

 

 

 

Figure 4.24 An 8x8 
31

P-MR spectroscopic free induction decay (FID) data of a volunteer 

which was acquired with compressed sensing. 

 

31
P-MR spectroscopic dataset of a volunteer which was either fully acquired or accelerated 

using compressed sensing are shown in Figure 4.25. The result of accelerated 
31

P-MR 
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spectroscopic dataset using compressed sensing was observed to be similar with original 

dataset, when the metabolite peak distributions were examined. 

 

 

 

Figure 4.25 Fully acquired and the compressed sensing reconstructed 
31

P-MR 

spectroscopic data of a volunteer. 

 

Table 4.7 shows the Pi/PCr, PCr/PE and PCr/β-ATP ratios of original (O) and compressed 

sensing (CS) datasets of a volunteer. Pi/PCr and PCr/PE ratios of original and CS datasets 

were similar. Due to the lower β-ATP peak height, estimation of this peak is difficult, and 

therefore, PCr/β-ATP ratios of original and compressed sensing datasets have shown 

difference. 

 

Table 4.7 Metabolite peak ratios of original (O) and compressed sensing (CS) datasets of a 

volunteer.   

 

 Pi/PCr PCr/PE PCr/β-ATP 

O 0.3±0.1 4.1±1.2 2.5±0.7 

CS 0.2±0.03 3.6±0.6 3.6±1.7 
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Bland Altman test results of a volunteer are shown in Table 4.8. As a result of this analysis, 

Pi/PCr ratio of compressed sensing dataset of a volunteer was observed to have only one 

outlier with a small mean difference and standard deviation, while PCr/PE and PCr/β-ATP 

ratios have few outliers with large mean difference and standard deviation. 

 

Table 4.8 Bland Altman test result for the similarity of the original and the compressed 

sensing datasets of a volunteer. 

 

Bland Altman test result Pi/PCr PCr/PE PCr/β-ATP 

#outliers 1 1 2 

mean (difference) 0.17 1.07 1.39 

std (difference) 0.10 0.83 1.61 

 

Figure 4.25 shows 
31

P-MR spectroscopic dataset of a brain tumor patient which was fully 

acquired and accelerated using compressed sensing. The result of accelerated 
31

P-MR 

spectroscopic dataset using compressed sensing was observed to be quite similar with 

original dataset. A few signal distortions were occurred in compressed sensing dataset, due 

to the high reduction factor.  

 

 

 

Figure 4.26 Fully acquired and compressed sensing reconstructed 
31

P-MR spectroscopic 

data of a patient. 
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Tumor over healthy ratio of mean metabolite peak values for original and compressed 

sensing datasets can be seen in Table 4.9. Compressed sensing and original datasets had 

similar values in Pi and β-ATP peaks, while PCr peak difference between tumor and 

healthy was not similar with original dataset, due to the lower PCr peak in tumor region. 

Table 4.10 shows metabolite ratios of tumor and healthy for original and compressed 

sensing datasets of a patient. PCr/β-ATP ratios of tumor and healthy regions were similar 

in compressed sensing dataset. PCr peak height decreases in tumor region and as a result 

Pi/PCr ratio increases and PCr/PE ratio decreases in tumor. Both original and compressed 

sensing datasets showed the same trend. 

 

Table 4.9 Tumor over healthy ratios of mean metabolite peaks of original and compressed 

sensing (CS) datasets of a patient. 

 
Tumor/Healthy Ratio of Mean Metabolite Peak PCr Pi β-ATP 

Original 0.62 1.11 1.28 

CS 1.01 1.20 0.96 

 

Table 4.10 Metabolite ratios in tumor and healthy regions of the original and compressed 

sensing datasets of a patient. 

 
 Tumor Healthy 

 Pi/PCr PCr/-ATP PCr/PE Pi/PCr PCr/-ATP PCr/PE 

O (mean±std) 0.47±0.16 1.51±0.52 2.05±0.63 0.28±0.15 2.99±0.39 2.82±0.97 

CS (mean±std) 0.23±0.07 2.87±1.04 1.99±0.53 0.19±0.05 2.67±0.53 2.57±0.37 

 

SNR values of PCr, Pi and β-ATP peaks can be seen in Table 4.11. The denoising effect of 

compressed sensing inherently filters low magnitude peaks which include Pi and β-ATP 

peaks. This results in an unintentional loss of Pi and β-ATP peak heights, and therefore a 

lower SNR, contrary to what is expected. Table 4.12 shows the Bland Altman result of a 

patient. No outliers were observed in Pi/PCr ratios, and mean difference and standard 

deviation were small between original and CS datasets. PCr/β-ATP and PCr/PE ratios in 

tumor, and PCr/PE ratios in healthy regions were observed to have large mean differences 

and standard deviations. 
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Table 4.11 The SNR values of metabolite peaks in tumor and healthy regions of the 

original and compressed sensing datasets of a patient. 

 
SNR 

(mean±std) 
CS O 

 PCr Pi β-ATP PCr Pi β-ATP 

Tumor 15.44±4.9 3.3±0.7 5.5±0.5 9.6±2 4.7±2.2 6.8±2.2 

Healthy 15.4±3.7 2.8±0.7 5.7±0.7 14.4±2.7 3.9±1.7 5±1.2 

Tumor/Healthy 1.0 1.17 0.95 0.66 1.21 1.39 

 

Table 4.12 Bland Altman test results for the number of outliers, bias and std(bias) for the 

similarity of the peak ratios the original and compressed sensing datasets of a patient. 

 

Bland Altman Test Result  Pi/PCr PCr/-ATP PCr/PE 

Tumor 

# outliers 0 0 0 

mean(difference) 0.24 1.74 0.56 

std(difference) 0.15 0.66 0.75 

Healthy 

# outliers 0 0 1 

mean(difference) 0.13 0.59 0.74 

std(difference) 0.08 0.42 0.72 
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5. DISCUSSION 

 

 

The aim of this study was to investigate the feasibility of compressed sensing 

reconstruction for accelerated 
31

P-MR spectroscopic imaging of human brain tumors. 

SparseMRI software package was modified and improved for accelerating 
31

P-MRSI using 

MATLAB. Some main and sub-functions of compressed sensing reconstruction algorithm 

were modified to work with 3 dimensions instead of 2 dimensions. With these 

modifications, even higher reduction factor resulted in closer results to the original 
31

P-

MRSI data. According to the results of Bland Altman and rank sum statistical tests, the 

optimal undersampling patterns were chosen for all sizes. Required changes were 

implemented into the Philips Paradise environment to be able to undersample the data. The 

appropriate undersampling patterns were used to acquire 
31

P-MRSI data with pulse and 

acquire sequence in 3T Philips MR scanner. A volunteer and a patient with brain tumor 

were scanned to compare the fully acquired and compressed sensing accelerated 
31

P-MRSI 

datasets.  

In previous studies, compressed sensing technique was used to accelerate MR and MRS 

imaging for various purposes. Akcakaya et. al., Rapacchi et. al., and Makhijani et. al. 

studied on accelerated MR imaging [41-43]. Brain and prostate cancer were examined 

using accelerated 
1
H-MRS imaging with compressed sensing [44-46]. The most detailed 

compressed sensing studies were implemented for 
13

C-MRSI [8-10]. And finally, 

Parasoglou et. al. have studied on fast 
31

P-MR spectroscopic imaging of human lower leg 

muscles [12]. However compressed sensing technique was mostly applied in kz-kt plane. 

Hu et. al. have performed compressed sensing technique in 3 dimensions [8].  

Statistical test results of volunteer, and brain tumor patient datasets showed that 

compressed sensing reconstruction reduce the scan time while preserving the SNR due to 

its denoising effect. Compressed sensing reconstruction worked successfully in our study. 

However, some problems arose when tumor patient was scanned that resulted with signal 

loss in one side of the brain. Due to the high reduction factor, some artifacts and shift 

problems occurred. In future studies, optimization of compressed sensing undersampling 

patterns and reconstruction parameters will be done, and randomly generated 
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undersampling patterns will be performed. Additionally, compressed sensing technique 

will be implemented for other MR spectroscopic methods. 
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APPENDIX A 

 

Algorithm A.1. MATLAB Simulated P31 MRSI Signal 

 

function data = create_simulated_signal(N) 

tn=0.000333*[0:1023]; 

%Simulated 50 ms 500 ms 3200ms 4000 ms 

% PCr gATP aATP bATP GPC GPE Pi PCh PE 

%N=16; 

fk=[0 -124 -387 -826 152 179 248 321 349]; 

dk=[30 30 30 30 30 30 30 30 30]; 

ak=[1.990 1.263 1.237 0.581 0.8609 1.166 0.6315 0.9384 0.6136]; 

ph=[0 0 0 0]; 

yn=0; 

  

%Simulated 50 ms 500 ms 3200ms 4000 ms 

fk_t=[0 -124 -387 -826 152 179 248 321 349]; 

dk_t=[30 30 30 30 30 30 30 30 30]; 

ak_t=[0.990 1.263 1.237 0.581 1.8609 2.166 0.9315 1.9384 1.6136]; 

ph_t=[0 0 0 0]; 

yn_t=0; 

  

for n=1:size(ak,1) 

    for m=1:size(ak,2) 

        yn=yn+(ak(n,m)*exp(i*ph(n)*180/pi)*exp((-dk(n,m)+i*2*pi*fk(n,m))*tn)); 

         

    end 

end 

for n=1:size(ak_t,1) 

    for m=1:size(ak_t,2) 

        yn_t=yn_t+(ak_t(n,m)*exp(i*ph_t(n)*180/pi)*exp((-

dk_t(n,m)+i*2*pi*fk_t(n,m))*tn)); 

    end 

end 

  

yn_f=fftshift(fft(yn)); 

yn_tf=fftshift(fft(yn_t)); 

  

noise_1 = rand([1,1024])*max(abs(yn_f(:)))*0.3; 

yn_f = yn_f+noise_1; 

noise_2 = rand([1,1024])*max(abs(yn_tf(:)))*0.3; 

yn_tf = yn_tf+noise_2; 

  

  

data=zeros(N,N,1024); 

for m=1:N 

    for n=1:N 

        if (m<=(N/2) & n<=(N/2)) 

            data(m,n,:)=yn_tf; 

        elseif m>(N/2) 

            data(m,n,:)=yn_f; 

        elseif m<=(N/2) & n>(N/2) 

            data(m,n,:)=yn_f; 

        end 

    end 

end 
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Algorithm A.2. MATLAB P31 MRSI 3D Direct Compressed Sensing Reconstruction 

Simulation 

 

clear all; 

close all; 

addpath(strcat(pwd,'/utils')); 

addpath(strcat(pwd,'/Wavelab850')); 

  

WavePath; 

size_xy=8; 

p31= create_simulated_signal(size_xy); 

p31_f = fftshift(fftn(p31)); 

figure; imshow(squeeze(abs(p31_f(:,:,513))), [0 max(abs(p31_f(:)))]); 

figure; plot(squeeze(abs(p31_f(4,4,:)))); 

p31_rec= ifftn(ifftshift(p31_f)); 

  

%Select lines for zeros and create arrays wıth some random 

%undersampling 

p31_fu=p31_f; 

  

load mask_2D_8_for2D_zero0.75_mid0.075_2.mat 

%mask_2D=random_samp_2D(size_xy,size_xy,0.75); 

R_factor = (size_xy*size_xy)/length(find(mask_2D>0)); 

for t=1:1024 

   mask_all(:,:,t)=mask_2D;  

end 

figure; imagesc(mask_2D), axis image, colormap gray, 

p31_fu=p31_f.*mask_all; 

  

p31_fu_rec= ifftn(ifftshift(p31_fu)); 

  

im_z = p31_fu; 

mask = mask_all; 

data = im_z; 

pdf = mask; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% L1 Recon Parameters  

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

N = size(data);     % image Size 

DN = size(data);    % data Size 

TVWeight = 0.001;   % Weight for TV penalty 

xfmWeight = 0.001;  % Weight for Transform L1 penalty 

Itnlim = 15;        % Number of iterations 

  

ham=hamming(6)*hamming(6)'; 

     

    for h=1:size(ham) 

        ham1(:,:,h)=ham;  

    end 

  

    phmask = zpad3(ham1,N(1),N(2),N(3)); %mask to grab center frequency 

    phmask = phmask/max(phmask(:));          %for low-order phase estimation and 

correction 

    ph = exp(i*angle((ifft3c(data.*phmask)))); % estimate phase for phase correction 

     

%generate Fourier sampling operator 

FT = p2DFT(mask, N, ph, 2); 

  

% scale data 

im_dc = FT'*(data);%.*mask);%./pdf); 

data = data/max(abs(im_dc(:))); 

im_dc = im_dc/max(abs(im_dc(:))); 

  

%generate transform operator     

XFM = Wavelet('Daubechies',4,4);    % Wavelet 

  

% initialize Parameters for reconstruction 

  

param = init; 

param.FT = FT; 
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param.XFM = XFM; 

param.TV = TVOP; 

param.data = data; 

param.TVWeight =TVWeight;     % TV penalty  

param.xfmWeight = xfmWeight;  % L1 Wavelet penalty 

param.Itnlim = Itnlim; 

  

  

res = XFM*im_dc; 

  

% do iterations 

tic 

for n=1:5 

    res = fnlCg(res,param); 

    im_res = XFM'*res; 

     

end 

toc 

  

p31_res=fftshift(im_res); 

  

  

figure; imshow(squeeze(abs(p31_res(:,:,513))), [0 max(abs(p31_res(:)))]); 

figure; plot(squeeze(real(p31_res(size_xy/4,size_xy/4,:)))); 

  

m=4;n=4; 

  

figure; subplot(3,1,1);plot(squeeze(real(p31(m,n,:)))) 

hold on; subplot(3,1,2);plot(squeeze(real(p31_fu_rec(m,n,:)))) 

hold on; subplot(3,1,3);plot(squeeze(real(p31_res(m,n,:)))) 

  

figure, plot(squeeze(real(p31_res(4,4,:))),'k','LineWidth',2), axis([0 1024 0 1]); 

box off 

 


