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ABSTRACT

NONLINEAR SECOND ORDER PARABOLIC AND HYPERBOLIC EQUATIONS:

BLOW UP AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In this thesis blow up in a finite time and asymptotic behavior of solutions of initial bound-

ary value problems for second order nonlinear parabolic and hyperbolic equations are stud-

ied. Sufficient conditions for blow up of solutions of initial boundary value problems for

nonlinear non-autonomous parabolic and damped hyperbolic equations under Robin bound-

ary conditions, and solutions with arbitrary positive initial energy of initial boundary value

problems, under the Robin and Dirichlet boundary conditions, for nonlinear parabolic and

damped wave equations are obtained. Besides, sufficient condition for decay of solutions of

initial boundary value problems for non-autonomous parabolic and damped wave equations

with time dependent coefficients are investigated.
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ÖZET

DOĞRUSAL OLMAYAN PARABOLİK VE HİPERBOLİK DENKLEMLER:

ÇÖZÜMÜN PATLAMASI VE ASİMTOTİK DAVRANIŞI

Tezde ikinci mertebeden doğrusal olmayan parabolik ve hiperbolik denklemler icin,

başlangıç sınırdeğer problemlerinin çozümlerinin sonlu zamanda patlaması ve asimptotik

davranışı problemleri incelenmiştir. Ikinci mertbeden otonom olmayan ve doğrusal olmayan

parabolik denklemler için, Robin sınırdeğer koşulu altında ve yeterince büyük başlangıç

enerjisi olan, doğrusal olmayan sönümlü hiperbolik denklemler icin, Robin ve Dirichlet

sınırdeğer koşullari altında, baslagıç sınırdeğer problemlerinin çözümlerinin sonlu zamanda

patlaması ispat edilmistir. Ayrıca, ikinci mertebeden otonom olmayan ve katsayları zamana

bağlı olan parabolik ve sönümlü dalga denklemleri icin başlangıç sınırdeğer problemlerinin

çözümlerinin sıfıra yaklaşması icin yeterli koşullar elde edilmiştir.
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1. INTRODUCTION

The thesis is devoted to the study of initial boundary value problems for second order non-

linear parabolic and hyperbolic equations under various boundary conditions.

The main problems discussed here are:

• The blow up of solutions of initial boundary value problems for nonlinear parabolic

and hyperbolic equations under various boundary conditions.

• The decay and growth of solutions of initial boundary value problems for second order

parabolic and damped hyperbolic equations.

One of the most interesting features that distinguish nonlinear parabolic and hyperbolic equa-

tions from the corresponding linear equations is that solutions of nonlinear equations starting

from smooth initial data may blow up in a finite time, i.e. some norm of a solution of a prob-

lem may tend to infinity as t→ t−0 for some t0 <∞.

The interest to problems of blow up of solutions of initial and initial boundary value prob-

lems for nonlinear partial differential equations is inspired by two main reasons. First is to

describe precise as possible the classes of nonlinear partial differential equations for which

the initial or initial-boundary value problems have unique global in time solution. The sec-

ond is to give a rigorous mathematical justification and analysis of real processes where the

blow up effects are observed.

The theory of blow up of solutions of PDEs is an important area of qualitative theory of

PDEs. It worth mentioning that during last decades several books on blow up of solutions

of nonlinear PDEs are published: The books of Samarskii, Galaktionov, Kurdyumov and

Mikhailov [1] and Hu [2] are devoted to the study of blow up of solutions of nonlinear

parabolic equations and systems , the book of Pokhozhaev and Mitidieri [3] is devoted to

problems of blow up of solutions of nonlinear parabolic and hyperbolic equations and in-

equalities, [4] is devoted to problems of blow up of solutions of various nonlinear evolution

equations of continuum mechanics. We would like to mention also the book of Al’shin, Kor-

pusov and Sveshnikov [5] which is completely devoted to the problem of blow up of solutions

of initial boundary value problems for various nonlinear pseudoparabolic equations.
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1.1. BACKGROUND OF PROBLEM

There are many papers devoted to the problem of blow up of solutions to the Cauchy problem

and initial boundary value problems for nonlinear evolution equations (see e.g. [6], [7], [8],

[9], [10], [11], [12] and references therein).

There are also many publications devoted to the study of asymptotic behavior of solutions of

initial boundary value problems for second order nonlinear parabolic and damped nonlinear

hyperbolic equations (see [13], [14], [15], [16] and references therein ).

1.1.1. Previous Results on Blow up of Solutions

Simple and effective examples of nonlinear parabolic equations whose solutions may blow

up in a finite time are demonstrated in [17]. One can find also examples of nonlinear second

order parabolic equations constructed by Friedman [18] and [19] whose solutions blow up in

a finite time for some classes of initial functions. The following example constructed in [17]:

Suppose that the problem


ut − uxx = u2, x ∈ [0, 1], t ∈ [0, T ],

u(0, t) = g0(t), u(1, t) = g1(t), t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [0, 1]

has a classical solution u(x, t), corresponding to smooth initial and boundary functions

u0, g0, g1, which is bounded by some constant c = c1
c2
, c1 > 0, c2 > 0 in

QT := {0 ≤ x ≤ 1, 0 ≤ t ≤ T}. It is easy to see that the function

z(x, t) =
c1

c2 − tx(1− x)
for t < 4c2

satisfies the inequality zt − zxx ≤ z2 and the condition z = 0 on the parabolic boundary

ΓT of the domain QT for c1 ≥ 1
4

+ 8c2. The function v(x, t) = (z(x, t) − u(x, t))e−λt is
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non-positive on ΓT and satisfies the inequality

vt − vxx + (λ− z − u)v ≤ 0.

It is clear that for λ > 0 large enough the function v(x, t) can not attain a positive maximum

value on Q4c2 \Γ4c2 . Therefore the function v(x, t) is non-positive, i.e. u ≥ z. But z(1
2
, t)→

∞ as t→ 4c2. Hence u(1
2
, t) tends to infinity in a finite time.

The conditions for the blow up of solutions of equations of the form

ut = Lu+ f(u), x ∈ Ω ⊂ Rn, (1.1.1)

utt = Lu+ f(u), x ∈ Ω ⊂ Rn, (1.1.2)

where L is a second order self-adjoint uniformly elliptic operator with smooth coefficients

depending on x ∈ Ω, are obtained by using the comparison theorems which are valid for

second order parabolic equations. In the papers of [20], [21], [22], [23], [24], [25], [26]

, [27], [28], [29] and in [30] the conditions on the data and the nonlinear term f(·) for an

equation of the form (1.1.1) and for the equation (1.1.2) are obtained by employing the fact

that the Green’s function of the main linear part for these equations is positive or positiveness

of the first eigenvalue of the first eigenfunction their linear stationary parts.

In [22] it is proved that for each initial function u0(x) 6= 0 the solutions of the Cauchy

problem for the equation (1.1.1) (Ω = Rn) with

L = ∆ and f(u) = u1+α

blows up in a finite time whenever α ∈ (0, 2
n
).

The positiveness of the Green’s function of the main linear part, is used by many authors to

construct the lower solutions of problems they study. This lower solutions are solutions of

nonlinear ordinary differential equations. Analyzing solutions of these ODE’s the authors

find conditions of blow up of solutions of corresponding nonlinear PDE’s.

The proof of the blow up theorems for equations of type (1.1.1) and (1.1.2) by eigenfunctions

method (employing positivity of the first eigenfunction of the stationary problem) when the
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nonlinear term f(u) is convex and satisfies the condition

∫ ∞
1

dv

f(v)
<∞ (1.1.3)

usually follow the scheme:

• The equations (1.1.1) and (A.0.17) are multiplied in L2(Ω) by a normalized first eigen-

function ψ1(x) of the operator generated by the differential expression −L with the

zero Dirichlet boundary condition: and obtained the equations

d

dt

∫
Ω

uψ1dx+ λ1

∫
Ω

uψ1dx =

∫
Ω

f(u)uψ1dx, (1.1.4)

d2

dt2

∫
Ω

uψ1dx+ λ1

∫
Ω

uψ1dx =

∫
Ω

f(u)uψ1dx. (1.1.5)

• The Jensen inequality

∫
Ω

f(u(x, t))ψ1(x)dx ≥ f

(∫
Ω

u(x, t)ψ1(x)dx

)
, (1.1.6)

is used in (1.1.4) and (1.1.5) and the following ordinary differential inequality for the

function Φ(t) =
∫

Ω
u(x, t)ψ1(x)dx are obtained

d

dt
Φ(t) + λ1Φ(t) ≥ f (Φ(t)) , (1.1.7)

d2

dt2
Φ(t) + λ1Φ(t) ≥ f (Φ(t)) . (1.1.8)

• The conditions of blow up of solutions of the initial boundary value problem for (1.1.1)

and (1.1.2) are obtained by studying the Cauchy problem for the obtained ordinary

differential inequalities (1.1.7) and (1.1.8).
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The method of eigenfunction is used also in the study of equations of the form (1.1.1) when

the operator L is also a nonlinear one.

By using the eigenfunction method the equation in [31]

ut − φ(u)uxx = ψ(u), x ∈ (0, l),

and in [32] the initial boundary value problem for the equation of the form

ut −∆φ(u) = ψ(u), x ∈ Ω ⊂ Rn, (1.1.9)

are studied.

It is shown in [32] that if non-negative functions φ(·) and ψ(·) involved in (A.0.18) satisfy

the conditions

φ′′(s) ≥ 0, ψ′′(s) ≥ 0, ψ′′(s)φ′(s)− ψ′(s)φ′′(s) ≥ 0, ∀s ∈ R,

ψ′(s)φ(s)− ψ(s)φ′(s) ≥ 0, ∀s ∈ R,
∫ ∞

1

dη

ψ(η)
dη <∞,

then for a certain class of initial data there exists t1 <∞ such that

lim sup
t→t1

(
sup
x∈Ω
|u(x, t)|

)
=∞. (1.1.10)

In [33] sufficient conditions on data that guarantee blow up of solutions of a class of equa-

tions of the form

a(u)ut = (K(u)uxi)xi + g(u) (1.1.11)

are found. Blow up of solutions of an equation of the form 1.1.11 with a(·) = const is

established in [34] by employing a method based on criticality of the initial function.

In [20], [35], [36], [37] sufficient conditions of blow up of solutions of initial and initial

boundary value problems for equations of the form (1.1.2) are found by the method of com-

parison of solutions of nonlinear PDE’s with the solutions of nonlinear ODE’s. This method
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is based on the Huygens’s Principle.

In [38], [27], [39], [40], sufficient conditions of blow up of solutions of the Cauchy problem

and initial boundary value problems for nonlinear hyperbolic equations of the form

utt = (a(ux))x , (1.1.12)

where a(·) ∈ C1 is an increasing function, and essentially nonlinear hyperbolic systems of

the form

~ut + A(x, t, ~u)~ux = ~f(x, t, ~u) (1.1.13)

are found.

In [38] blow up of the function ux(x, t) (the gradient catastrophe) , where u(x, t) is a solu-

tions of the equation (1.1.12) is established for

a(s) = c2(1 + εs2), ε > 0

( which is a continuum analog of the famous system of nonlinear ODEs - the so called Fermi-

Pasta-Ulam chain). The gradient catastrophe of solutions to non isentropic flow of an ideal

gas is established in [39]. In [40] it is shown that second derivatives of all solutions of the

equation (1.1.12) with

a(s) = sτ(s)(1 + s2)−1/2, (1.1.14)

where τ(·) is an odd and smooth function, blow up in a finite time if the initial functions are

twice differentiable functions with a small amplitude.

The papers of [41], and [42] are the problem of blow up of solutions of the Cauchy problem

for the nonlinear Schrödinger equation

iψt + ∆ψ + f(|ψ|2)ψ = 0, x ∈ Rn. (1.1.15)



7

is investigated. The effect of blow up in a finite time of solutions of the Cauchy problem for

the cubic nonlinear Schrödinger equation in two dimensional case (i.e. when f(s) = s and

n = 2) was first observed in the paper of Talanov.

In [42] it is proved that for some class of initial functions the gradient of solutions of the

Cauchy problem for (1.1.15) blows up in a finite time provided the following conditions are

satisfied

sf(s)− cnF (s) ≥ 0, cn > 1 +
2

n
, ∀s ∈ R+, (1.1.16)

F (s) =

∫ s

0

f(τ)dτ. (1.1.17)

A result on blow up of solutions of initial boundary value problem for the nonlinear

Schrödinger equation in a bounded domain Ω ⊂ Rn under the conditions (1.1.16) is ob-

tained in [43].

Let us note that the above mentioned papers are devoted to nonlinear second order and first

order equations and systems of equations. The methods employed in these works are not

applicable in the study of higher order equations.

The energy method of finding conditions of blow up of solutions to initial boundary value

problems for equations of the form (1.1.1) and (1.1.2), that can be used in the study of higher

order equations. These methods was first suggested in [10]. and later used in [44], [45].

In [44] it is shown that if f(·) satisfies the condition

sf(s)− µF (s) ≥ c0|u|2+ε, (1.1.18)

F (s) =

∫ s

0

f(τ)dτ, ε > 0, c0 > 0, µ > 2, (1.1.19)

then for a certain class of initial functions the solutions of initial boundary value problems

for the equations (1.1.1) and (1.1.2) blow up in a finite time.

In [25], [46] a powerful method of finding sufficient conditions of blow up of solution to the

Cauchy problem for differential operator equations of the form

Put = −Au+ F (u), (1.1.20)

Putt = −Au+ F (u), (1.1.21)
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in a Hilbert space H is suggested.

Here P and A are linear symmetric operators satisfying the conditions P > 0, A ≥ 0 and

F (·) is a nonlinear gradient operator that satisfies the condition

(F (u), u)H ≥ βG(u),

where β > 2 is a given number, (·, ·)H is the dot product in H and G(u) is a functional

whose gradient is the operator F (u). The results obtained for the equations (1.1.20) and

(1.1.21) allow to get sufficient conditions of blow up of solutions of initial boundary value

problems for a wide class of parabolic, hyperbolic, pseudo-parabolic equations and systems

of equations, including higher order equations.

In [32], [47], [48], [25]- [49], [50] the concavity method and its modifications were used

for finding sufficient conditions of blow up of solutions to the Cauchy problem for non-

linear differential operator equations, differential operator equations with dissipative term,

initial boundary value problems for linear parabolic and hyperbolic equations with nonlinear

boundary conditions and various equations and systems of continuum mechanics.

This approach allowed the authors of above mentioned works to cover not only the problems

considered in preceding papers [21], [20], [22], [24], [19] and other works, but also a wide

class of new nonlinear problems for which the mentioned methods were not applicable.

By using the concavity method Levine and Payne obtained also interesting results on global

nonexistence of solutions to the initial boundary value problems for linear parabolic equa-

tions under nonlinear boundary conditions of the form


ut −∆u = 0, x ∈ Ω, t > 0,

∂u
∂n

= f(u), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1.22)

where Ω is a bounded omain of RN with suffisiently smooth boundary ∂Ω, f(·) : R →

R is a given nonlinear term. The concavity method was used also in the study of initial

boundary value problems for higher order parabolic equations under nonlinear boundary

conditions and in the study of the linear wave equation under nonlinear boundary condition
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of the form:


utt −∆u = 0, x ∈ Ω, t > 0,

∂u
∂n

= f(u), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

The nonlinear term here and in (1.1.22) satisfy the condition

f(s)s ≥ (2 + ε)F (s), ∀s ∈ R. (1.1.23)

However, as it was noted in [47], [25], [46], in the frames of the concavity method the con-

ditions of non-negativity and symmetricity of the linear operator A in (1.1.20) and (1.1.21)

are essential.

The integral method (generalized concavity method) suggested in [51] allowed to get rid of

this restriction.

This method, generalizing the concavity method, is based on a construction of some positive

functional Ψ(t) = ψ(u(t)), which is defined in terms of the local solution of the problem

(the local solvability of the problem is therefore required) and proving that the function Ψ(t)

satisfies the inequality

Ψ′′(t)Ψ(t)− β [Ψ′(t)]
2 ≥ −C1Ψ2(t)− C2Ψ(t)Ψ′(t), t > 0,

where β > 2, C1 ≥ 0 and C2 ≥ 0 are given numbers.

The last inequality, thanks to the Lemma A.0.8 of the Chapter 1 allows to see that for some

class of initial data, a solution of a problem under consideration blows up in a finite time.

The results obtained for differential-operator equations are used in [51] for finding conditions

of blow up of solutions for a wide class of parabolic and hyperbolic equations with non-

symmetric main parts of the form under the homogeneous Dirichlet boundary conditions.

The concavity method and its generalizations were used in the study of many nonlinear

partial differential equations and systems By using the generalized concavity method Qin

and Rivera [11] found sufficient conditions of blow up in a finite time of solutions of the
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Cauchy problem for the system of thermoelasticity of the form

utt = auxx + bθx + dux −mut + f(t, u),

θt = kθxx + g ∗ θxx + buxt + pux + qθx.

In ( [52], [53]) the concavity method is employed to find sufficient conditions of blow of

solutions to Cauchy problem for nonlocal nonlinear equations of elasticity of the form

utt − (β ∗ (u1 + g(u)))xx (1.1.24)

and to the Cauchy problem for the system of equations of one-dimensional elasticity

u1tt − (β1 ∗ (u1 + g1(u1, u2)))xx ,

u2tt − (β2 ∗ (u2 + g2(u1, u2)))xx .

(1.1.25)

An interesting method of finding sufficient conditions of blow up of solutions of the Cauchy

problem for nonlinear hyperbolic equations with nonlinear damping term of the form

utt −∆u+ |ut|mut = |u|pu,

where p, q > 0 are given numbers, was introduced in [54]. It was shown in [54] that if p > m,

then there are initial data for which solution of the Cauchy problem for this equation blows

up in a finite time. The method introduced in [54] based on the construction of a perturbed

functional energy Ψ(t). The result on blow up is obtained by showing that Ψ(t) satisfies an

ordinary differential inequality of the form

Ψ′(t) ≥ β [Ψ(t)]1+ν , β > 0, ν > 0.
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1.1.2. Previous Results on Asymptotic Behavior of Solutions

Initial boundary value problems for many mathematical models described by nonlinear

parabolic and hyperbolic equations have global in time solutions. For this kind of problems

an interesting and important problem is the problem of investigation of asymptotic behavior

of solutions of corresponding initial boundary value problems as t→∞.

We would like to note that most of techniques employed in the the study of problems of

blow up of solutions of initial boundary value problems for nonlinear parabolic and hyper-

bolic equations are based on the idea of transfer the study of initial boundary value problems

for nonlinear PDEs to the study of Cauchy problems for appropriate nonlinear ordinary dif-

ferential inequalities. In this way results on blow up of solutions of nonlinear PDEs are

established by analysis of qualitative properties of solutions of nonlinear ordinary differen-

tial inequalities.

Most of results on asymptotic behavior of solutions of initial boundary value problems for

second order nonlinear parabolic and hyperbolic equations are devoted to equations with

constant coefficients or equations with coefficients depending only on spatial variables.

In [55] the authors got a result on exponential decay of global solutions of the problem


ut = ∆u+ f(u), x ∈ Ω, t > 0,

∂u
∂n

+ αu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain with smooth boundary, u0(x) ≥ 0, ∀x ∈ Ω is a smooth

initial function, and the nonlinear term satisfies the conditions f(0) = 0, f(s) > 0, and

f(s) ≤ p(s), ∀s > 0, for a positive nondecreasing function p(s).

One of the recent results of this type is result obtained in [56]. Here the author studied the

decay rate to 0, as t → ∞ of the solution of the initial boundary value problem for the

equation

ψt −∆ψ − λ1ψ + |ψ|p−1ψ = 0, p > 1,
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under homogeneous Dirichlet boundary conditions in a bounded smooth open connected

domain of Rn. It is shown that either ψ(·, t) converges to 0 faster than any negative power of

t, or ψ(·, t) decreases like t−
1
p−1 .

Less is studied the problem of asymptotic behavior of solutions of nonlinear non-autonomous

parabolic and hyperbolic equations with time dependent coefficients. In [57] the Cauchy

problem for the following first order differential-operator equation in a Hilbert space H is

considered

du

dt
= A(t)u+ F (t, u) + b(t), t ≥ 0; u(0) = u0.

Here A(t) is a linear dissipative operator, i.e.

Re(A(t)u, u) ≤ γ(t)(u, u), γ(t) ≥ 0,

F (t, u) is a nonlinear operator, which satisfies the condition

‖F (t, u)‖ ≤ c0‖u‖p, p > 1, ‖b(t)‖ ≤ β(t),

where β(t) ≥ 0 is a continuous function. It is shown that under appropriate conditions on

γ(t) and β(t)

‖u(t)‖ → 0 as t→∞.

A number of papers devoted to the decay of solutions of the Cauchy problem for nonlinear

wave equations with time dependent damping coefficient appeared last years (see e.g. [58],

[59]). In these papers the decay estimates of solutions to the Cauchy problem for second

order nonlinear wave equations of the form

utt −∆u+ b(t)ut = f(u), x ∈ Rn, t > 0,
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are considered. For special type of damping terms and nonlinearities it is estalished that the

solutions of problems under consideration tend to zero as t→∞.

1.2. STATEMENT OF PROBLEMS

1.2.1. Second Order Nonlinear Parabolic Equations

Chapter 2 of the thesis is devoted to the study of initial boundary value problems for second

order nonlinear parabolic equations under various boundary conditions.

First we considered the problem of blow up of solutions in a finite time


ut −∆u = f(u) + h(x, t), x ∈ Ω, t > 0,

∂u
∂ν

+ γu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.2.1)

Next, by using the energy method, we studied the problem on blow up of solutions of the

problem (4.0.1) when h = h(x) and in addition to the condition (4.0.2) the the following

condition holds

F (u) ≥ D0|u|p −D1 ∀u ∈ R

for some p > 2, D0 > 0, D1 ≥ 0.

Finally the decay of solutions of initial boundary value problems for non-autonomous non-

linear parabolic equations with time dependent coefficients are investigated.

1.2.2. Second Order Nonlinear Hyperbolic Equations

Chapter 3 is devoted to study of initial boundary value problems for second order nonlinear

hyperbolic equations. We obtained here sufficient conditions of blow up of solutions of initial

boundary value problems for nonlinear wave equations in a finite time. For a wide class of

second order nonlinear non-autonomous wave equations with time dependent damping terms
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conditions under natural conditions on nonlinear terms asimptotic behavior of solutions is

studied. It is shown that all solutions of the problem under consideration tend to zero as

t→∞.

The first problem on this chapter is the result on blow up of solutions of the problem


utt + but = ∆u+ f(u) + h(x, t), x ∈ Ω, t > 0,

∂u
∂ν

+ γu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1, x ∈ Ω,

(1.2.2)

where b > 0, γ ∈ R are given number, h is a given source term, u0, u1 are given initial

functions, and f(·) is a nonlinear term.

Next we studied the decay of solutions:


utt + b(t)ut −∆u+ f(u) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

(1.2.3)

where b(t) is a positive differentiable function defined on [0,∞) that satisfies the condi-

tions

0 ≤ b(t) ≤ b0, |b′(t)| ≤ αb(t), 0 < α ≤ 2, ∀t ≥ 0, (1.2.4)

∫ t

0

b(s)ds→∞ as t→∞ (1.2.5)

and the function f(u) satisfies the condition (4.0.7).

The proofs of auxiliary propositions which we have used to get main results are given as an

Appendix.
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1.3. NOTATIONS AND AUXILIARY PROPOSITINS

Throughout the thesis we are using the following notations:

• R := (−∞,∞).

• R+ := (0,∞).

• L2(Ω) is a usual Lebesgue space with the inner product (·, ·) and the norm ‖ · ‖.

• L∞(Ω) is a usual Lebesgue space equipped with the norm

‖u‖L∞(Ω) := sup
x∈Ω
|u(x)|. (1.3.1)

• C(R+) is the class of all functions that belong to C[0, T ] for each T > 0,

• H1(Ω) is a Sobolev space of functions v ∈ L2(Ω) whose weak derivatives also belong

to L2(Ω). This space is a Hilbert space with the inner product

(u, v)H1(Ω) =

∫
Ω

(u(x)v(x) +∇u(x) · ∇v(x)) dx (1.3.2)

and the norm

‖v‖H1(Ω) =
(
‖v‖2 + ‖∇v‖2

)1/2
. (1.3.3)

• H1
0 (Ω) is the Sobolev space obtained by completion of C∞0 (Ω) with respect to the

norm of H1(Ω). The inner product and the norm in this space are defined as follows

(u, v)H1
0 (Ω) =

∫
Ω

∇u(x) · ∇v(x)dx (1.3.4)

and

‖v‖H1
0 (Ω) = ‖∇v‖. (1.3.5)
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• Lp(0, T ;B), p ∈ [1,∞) denotes a Banach space of all vector-functions with values in

a Banach space B equipped with the norm

‖v‖Lp(0,T ;B) :=

(∫ T

0

‖v(t)‖pBdt
)1/p

.

• L∞(0, T ;B) denotes a Banach space of all vector-functions with values in a Banach

space B equipped with the norm

‖v‖L∞(0,T ;B) := sup
t∈(0,T )

‖v(t)‖B.

We will need the following inequalities:

• Cauchy inequality ”with ε”

ab ≤ εa2 +
1

4ε
b2 (1.3.6)

which is valid for each a, b ≥ 0 and ε > 0.

• Holder inequality is the inequality

∫
Ω

|f(x)g(x)| dx ≤ ‖f‖Lp(Ω) · ‖g‖Lp′ (Ω) . (1.3.7)

which holds for each f ∈ Lp(Ω) and g ∈ Lp′(Ω) the inequality

• Jensen inequality for integrals is the inequality

∫
Ω

f(u(x))ψ(x)dx∫
Ω

ψ(x)dx
≥ f


∫
Ω

u(x)ψ(x)dx∫
Ω

ψ(x)dx

 , (1.3.8)

where f is a convex function on R, u ∈ C(Ω), ψ ∈ L1(G) and ψ is positive on the

domain Ω.
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• Poincare-Friedrichs Inequality is the inequality

‖w‖ ≤ λ
1/2
1 ‖∇w‖ (1.3.9)

which holds for each w ∈ H1
0 (Ω). Here Ω ⊂ Rn is a bounded domain, λ1 is the first

eigenvalue of the problem

−∆φ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

If w ∈ H2(Ω) ∩H1
0 (Ω), then (1.3.9) inequality implies that

‖∇w‖ ≤ λ
− 1

2
1 ‖∆w‖. (1.3.10)

• Poincare Inequality is the inequality

‖w‖2 ≤ a0

∫
∂Ω

w2(x)dx+ ‖∇w‖2

 , a0 > 0. (1.3.11)

which holds for each w ∈ H1(Ω). Here Ω ⊂ Rn is a bounded domain with sufficiently

smooth boundary ∂Ω, a0 is a positive number which depends on |Ω|. We will use also

the following version of the Poincaré inequality which is valid for each function u from

the Sobolev space H1(Ω) (see e.g. [60] Ch. I):

∫
∂Ω

v2dσ ≤ ε

∫
Ω

|∇v|2dx+ Cε

∫
Ω

v2dx, (1.3.12)

where ε is a positive parameter, and Cε is a positive parameter which depends on ε.

In the study of asymptotic behavior of solutions to initial boundary value problems for

nonlinear non-autonomous parabolic and hyperbolic equations we will use the following

Lemma:
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Lemma 1.3.1. Suppose that a, q ∈ C[0,∞), a(t) > 0, q(t) ≥ 0, ∀t ≥ 0,

∫ t

0

a(s)ds→∞, q(t)→ 0 as t→∞. (1.3.13)

Then all nonnegative solutions of the differential inequality

z′(t) + p(t)z(t) ≤ q(t) (1.3.14)

tend to zero as t→∞.

The proofs of results on blow up of solutions of problems we considered are based on the

following propositions:

Lemma 1.3.2. (see [24] ) Suppose that a function a(t) is twice continuously differentiable

on some interval [0, T ),

a function H(r) is continuous on [a0,∞) and the condition

H(r) ≥ 0, ∀r ≥ a0 (1.3.15)

holds. Assume also that

a′′(t) ≥ H(a(t)), t ≥ 0, (1.3.16)

a(0) = a0 > 0, a′(0) = a1 > 0. (1.3.17)

Then

(1) a(t) is continuous and a′(t) > 0, ∀t ∈ [0, T )

(2) t ≤ 2

a(t)∫
a0

a2
1 + 2

s∫
a0

H(r)dr

−1/2

ds. (1.3.18)
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Lemma 1.3.3. (see [25]) Let Ψ(t) be a positive, twice differentiable function, which satisfies,

for t > t0 ≥ 0, the inequality

Ψ
′′
(t)Ψ(t)− (1 + α)

[
Ψ
′
(t)
]2

≥ 0 (1.3.19)

with some α > 0.

If Ψ(t0) > 0 and Ψ′(t0) > 0, then there exists a time

T0 ∈ (t0, T1), T1 =
Ψ(t0)

αΨ′(t0)
+ t0

such that

Ψ(t)→ +∞ as t→ T−0 . (1.3.20)

Lemma 1.3.4. ( see [51]) Let twice continuously differentiable function Ψ(t) satisfies for

each t ≥ 0 the inequality

Ψ′′(t)Ψ(t)− (1 + α) [Ψ(t)]2 ≥ 2C1Ψ(t)Ψ′(t)− C2Ψ2(t) (1.3.21)

and

Ψ(0) > 0,Ψ′(0) > −γ2α
−1Ψ(0), (1.3.22)

where α > 0, C1, C2 ≥ 0, C1 + C2 > 0 and γ2 = −C1 −
√
C2

1 + αC2. Then there exists

t1 ≤ T1 =

(
2
√
C2

1 + αC2

)−1

ln
γ1Ψ(0) + αΨ(0)

γ2Ψ(0) + αΨ′(0)
,

with γ1 = −C1 +
√
C2

1 + αC2 such that

Ψ(t)→∞ as t→ t−1 .
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If Ψ(0) > 0,Ψ′(0) > 0 and C1 = C2 = 0, then there exists

t2 ≤ T2 =
Ψ(0)

αΨ′(0)

such that

Ψ(t)→∞ as t→ t−2 .

Lemma 1.3.5. (see [61]) Suppose Ψ(t) ∈ C(2)([0, T ]), satisfies inequality

ΨΨ′′ − α(Ψ′)2 + κΨ′Ψ ≥ −βΨ, α > 1, β ≥ 0, κ ≥ 0, (1.3.23)

and

Ψ′(0) >
γ

α− 1
Ψ(0), (1.3.24)[

Ψ′(0)− γ

α− 1
Ψ(0)

]2

>
2β

2α− 1
Ψ(0), (1.3.25)

where Ψ(t) ≥ 0, Ψ(0) > 0. Then there exists

T0 ≤ Ψ1−α(0)(α− 1)−1Ψα(0)

[(
Ψ′(0)− γ

α− 1
Ψ(0)

)2 − 2β

2α− 1
Ψ(0)

]− 1
2

such that

lim sup
t→T−0

Ψ(t) = +∞.

For the convenience we give the proofs of these propositions in the Appendix.
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2. SECOND ORDER NONLINEAR NONAUTONOMOUS

PARABOLIC EQUATIONS

This chapter is devoted to the study of initial boundary value problems for second order

nonlinear parabolic equations. Employing the energy methods, we find the sufficient condi-

tions of blow up in a finite time of solutions to initial boundary value problems for second

order nonlinear non-autonomous parabolic equations under the Robin boundary conditions.

We study also the asymptotic behavior of solutions of nonlinear non-autonomous equations

(whose solutions exist globally) as t→∞: Results on decay and growth of solutions of the

considered problems are obtained.

2.1. BLOW UP OF SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS

In this section we study the initial boundary value problem for the second order nonlinear

non-autonomous equation of the following form:

ut −∆u = f(u) + h(x, t), x ∈ Ω, t > 0, (2.1.1)

∂u

∂ν
+ γu = 0, x ∈ ∂Ω, t > 0, (2.1.2)

u(x, 0) = u0(x), x ∈ Ω, (2.1.3)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, γ is a given scalar, h is a

given source term and f(·) is a given nonlinear term.

We show that if the nonlinear term satisfies the following conditions

f(u)u ≥ 2(1 + α)F (u), F (u) =

∫ u

0

f(s) ds, for all u ∈ R (2.1.4)

with some positive α,

h ∈ L2(R+;L2(Ω)) ∩ L∞(R+;L2(Ω)) (2.1.5)
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then solutions of the problem (2.1.1)-(2.1.3) corresponding to a wide class of initial con-

ditions blow-up in a finite time. Let us note that our study of the problem of blow up of

solutions of the problem (2.1.1)-(2.1.3) is inspired by the work of Payne-Schaefer [62] . In

the this paper, using the energy method, the authors established blow-up of solutions and

obtained a lower bound of blow up time for the solutions of the problem (2.1.1)-(2.1.3) with

h ≡ 0 , essentially using positiveness of the coefficient γ and the initial function u0. Later

on in [63] blow up theorem and estimate of blow up time for nonlinear heat equation with

time dependent coefficient is also obtained.

In this section, by using the concavity method of Levine [25] we will derive sufficient condi-

tions for the finite-time blow-up of solutions of the problem (2.1.1)-(2.1.3) regardless of the

sign of γ and the initial functions u0 under the Robin boundary conditions.

For the blow-up of solutions of nonlinear parabolic partial differential equations there is a

wide literature, we refer to [2], [25], [29], [64], [65] and references therein. The blow-up the-

orem will be established by using the Lemma A.0.7 In Section 2 the sufficient conditions of

the blow up of solutions are obtained. In addition to that some remarks on blow up solutions

are given.

2.2. BLOW UP OF SOLUTIONS

In this section, by using the Lemma A.0.7 we obtain sufficient conditions of blow up in a

finite time of solutions of the initial boundary value problem (2.1.1)-(2.1.3).

Main result of this section is the following theorem:

Theorem 2.2.1. Suppose that u is alocal soluton of the problem (2.1.1)-(2.1.3), the initial

function u0 satisfies the condition

− ‖∇u0‖2 − γ
∫
∂Ω

u2
0(x)dσ + 2

∫
Ω

F (u0(x))dx

≥ (4 +
4

α
)H1 +

H2

4α|γ|Cγ(α + 1)
+

(
α + 2

α + 1
+ |γ|Cγ

)
‖u0‖2, (2.2.1)

where Cγ is a positive t constant of the Poincaré inequality (1.3.12) with ε = 1
γ

, and

H1 :=
∫∞

0
‖h(t)‖2 dt and H2 := sup

t∈R+

‖h(t)‖2 . And suppose that the conditions (2.7.7)

and (2.1.5) are also satisfied. Then the solution of the problem (2.1.1)-(2.1.3) blows up in a
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finite time, i.e. there exists t1 ≤ t2 := 1
2α

such that

lim
t→t−1

∫ t

0

‖u(s)‖2ds =∞.

Suppose that u(x, t) is a local solution of the problem (2.1.1)-(2.1.3). It is clear that the

function v(x, t) = e−mtu(x, t), m > 0 satisfies the equation

mv + vt = ∆v + e−mtf(emtv) + e−mth(x, t), (2.2.2)

the boundary condition

∂v

∂ν
+ γv = 0, x ∈ ∂Ω, t > 0, (2.2.3)

and the initial condition

v(x, 0) = u0(x), x ∈ Ω. (2.2.4)

So our aim now is to find sufficient conditions of blow up in a finite time of solutions of the

problem (3.2.17)-(2.2.4). First we prove the following Lemma:

Lemma 2.2.2. Let v be a local solution og the problem (3.2.17)-(2.2.4). The the function

E(t) = −m
2
‖v‖2 − 1

2
‖∇v‖2 − γ

2

∫
∂Ω

v2dσ + e−2mt

∫
Ω

F (emtv)dx (2.2.5)

satisfies the differential inequality

d

dt
E(t) ≥ 2mαE(t) +mα

[
m‖v‖2 + ‖∇v‖2 + γ

∫
∂Ω

v2dσ

]
+ (1− ε1)‖vt‖2 − 1

4ε1

‖h‖2e−2mt, (2.2.6)

and the following estimate from below with a positive parameter ε1 ∈ (0, 1) for the function
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E(t) holds true

E(t) ≥ e2mαtE(0) + (1− ε1)e2mαt

∫
0

t

‖vs(s)‖2e−2msds

− 1

4ε1

e2mαt

∫
0

t

‖h(s)‖2e−2m(α+1)sds. (2.2.7)

Proof. Multiplying the equation (3.2.17) by vt and integrating over Ω and using (2.2.3) we

obtain

d

dt

[
m

2
‖v‖2 +

1

2
‖∇v‖2 +

γ

2

∫
∂Ω

v2dσ

]
+ ‖vt‖2

= e−mt
∫

Ω

f(emtv)vtdx+ e−mt
∫

Ω

hvtdx. (2.2.8)

It is easy to see that

d

dt
F (emtv) = f(emtv)(emtvt +memtv).

Plugging the expression

e−mtf(emt)vt = e−2mt d

dt
F (emtv)−me−mtf(emtv)v

into (3.2.18)we obtain

d

dt

[
m

2
‖v‖2 +

1

2
‖∇v‖2 +

γ

2

∫
∂Ω

v2dσ

]
+ ‖vt‖2 − e−2mt d

dt

∫
Ω

F (emtv)dx

+me−mt
∫

Ω

f(emtv)vdx = e−mt
∫

Ω

hvtdx. (2.2.9)

Since

e−2mt d

dt

∫
Ω

F (emtv)dx =

d

dt

[
e−2mt

∫
Ω

F (emtv)dx

]
+ 2me−2mt

∫
Ω

F (emtv)dx (2.2.10)
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we have

d

dt

[
m

2
‖v‖2 +

1

2
‖∇v‖2 +

γ

2

∫
∂Ω

v2dσ − e−2mt

∫
Ω

F (emtv)dx

]
+ ‖vt‖2

+me−mt
∫

Ω

f(emtv)vdx− 2me−2mt

∫
Ω

F (emtv)dx = e−mt
∫

Ω

hvtdx. (2.2.11)

By using the condition (2.7.7) we see that

e−mtf(emtv)v = e−2mtf(emtv)emtv ≥ 2(α + 1)e−2mtF (emtv). (2.2.12)

Employing this inequality and the Cauchy inequality with ε we deduce from (2.2.11) the

following inequality

d

dt

[
m

2
‖v‖2 +

1

2
‖∇v‖2 +

γ

2

∫
∂Ω

v2dσ − e−2mt

∫
Ω

F (emtv)dx

]
+ ‖vt‖2

+ 2mαe−2mt

∫
Ω

F (emtv)dx ≤ ε1‖vt‖2 +
1

4ε1

‖h‖2e−2mt.

From this inequality we obtain

d

dt

[
−m

2
‖v‖2 − 1

2
‖∇v‖2 − γ

2

∫
∂Ω

v2dσ + e−2mt

∫
Ω

F (emtv)dx

]
≥

2mα

[
−m

2
‖v‖2 − 1

2
‖∇v‖2 − γ

2

∫
∂Ω

v2dσ + e−2mt

∫
Ω

F (emtv)dx

]
(2.2.13)

+mα

[
m‖v‖2 + ‖∇v‖2 + γ

∫
∂Ω

v2dσ

]
+ (1− ε1)‖vt‖2 − 1

4ε1

‖h‖2e−2mt.

So we get (2.2.6). By using (1.3.12) in (2.2.6) we get

d

dt
E(t) ≥ 2mαE(t) + (1− ε1)‖vt‖2 +mα(m− |γ|Cγ)‖v‖2 − 1

4ε1

‖h‖2e−2mt.

Choosing in the last inequality m = |γ|Cγ , and then solving the obtained differential in-

equality we obtain the estimate (2.2.7).
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Lemma 2.2.3. Let v(x, t) be the solution of the problem (3.2.17)-(2.2.4) and define

Ψ(t) :=

∫ t

0

‖v(s)‖2ds+ c0,

where c0 is some positive parameter to be specified. Then we have:

Ψ′(t) = ‖v(t)‖2 = 2

∫ t

0

(v(s), vs(s))ds+ ‖u0‖2 (2.2.14)

and

Ψ′′(t) ≥ 4(
α

2
+ 1)

[∫ t

0

‖vs(s)‖2 ds+ c0

]
, (2.2.15)

where α is a positive number in (2.7.7).

Proof. Proof of (2.2.14) is trivial, and it is obvious that Ψ′′(t) = 2(v(t), vt(t)). By using the

equation (3.2.17) and the inequality (2.2.12) we obtain the following estimate from below

for the function Ψ′′(t):

Ψ′′(t) = 2

∫
Ω

v
[
−mv + ∆v + e−mtf(emtv) + e−mth(x, t)

]
dx ≥ −2m‖v‖2

− 2‖∇v‖2 − 2γ

∫
∂Ω

v2dσ + 4(α + 1)e−2mt

∫
Ω

F (emtv)dx+ 2e−mt(h, v)

= 4(α + 1)
[
− m

2
‖v‖2 − 1

2
‖∇v‖2 − γ

2

∫
∂Ω

v2dσ + e−2mt

∫
Ω

F (emtv)dx
]
+

2mα ‖v‖2 + 2α ‖∇v‖2 + 2αγ

∫
∂Ω

v2dσ + 2e−mt(h, v). (2.2.16)

Since

2e−mt(h, v) ≥ −2mα‖v‖2 − e−2mt 1

2αm
‖h‖2

we deduce from (2.2.16) that

Ψ′′(t) ≥ 4(α + 1)E(t)− e−2mt 1

2αm
‖h(t)‖2 .
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Thus employing the lower estimate (2.2.7) for E(t) we obtain the estimate

Ψ′′(t) ≥ 4(α + 1) (1− ε1)
[ ∫ t

0

‖vs(s)‖2 ds+ c0

]
+ 4(α + 1)

[
E(0)− 1

ε1

∫ t

0

‖h(s)‖2 ds
]

− 1

2αm
e−2mt ‖h(t)‖2 − 4(α + 1)(1− ε1)c0. (2.2.17)

Now, by assuming

E(0) ≥ (2 +
2

α
)

∫ ∞
0

‖h(t)‖2 +
1

8αm(α + 1)
sup
t∈R+

‖h‖2 +
α + 2

2(α + 1)
c0

and choosing ε1 = α
2(α+1)

we get 4(α + 1)(1− ε1
2

) = 4(α
2

+ 1) we see that (2.2.17) implies

(2.2.15).

Proof. Using (2.2.14) and (2.2.15) we get

Ψ′′(t)Ψ(t)− (α1 + 1)(Ψ′(t))2 ≥

4(
α

2
+ 1)

[∫ t

0

‖vs(s)‖2 ds+ c0

][ ∫ t

0

‖v(s)‖2 ds+ c0

]
−

4(
α

2
+ 1)

[∫ t

0

(v(s), vs(s))ds+
1

2
‖u0‖2

]2

. (2.2.18)

Finally we choose c0 = 1
2
‖u0‖2. Then due to the Cauchy-Schwarz inequality we deduce

from (2.2.18) the desired inequality Ψ′′(t)Ψ(t) − (α
2

+ 1)(Ψ′(t))2 ≥ 0. The proof of the

theorem follows from the Lemma A.0.7.

2.3. SOME REMARKS ON BLOW UP

We proved the following propositions on blow-up under the Robin boundary condi-

tions:

Remark 2.3.1. If h(x, t) ≡ h(x) ∈ L2 and in addition to (2.7.7)

F (u) ≥ D0|u|p −D1, ∀u ∈ R, (2.3.1)
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for some D0 > 0, D1 ≥ 0, then by an easier argument a blow up result can be obtained em-

ploying the energy equalities for solutions of initial boundary value problem (2.1.1)-(2.1.3):

1

2

d

dt
‖u(t)‖2 = −‖∇u‖2 − γ

∫
∂Ω

u2dσ + (f(u), u) + (h, u) (2.3.2)

d

dt
E(t) = ‖ut(t)‖2, (2.3.3)

where

E(t) ≡ −1

2
‖∇u‖2 − γ

2

∫
∂Ω

u2dσ + (F (u), 1) + (h, u).

In fact the following proposition holds.

Proposition 2.3.2. If the nonlinear term f(.) satisfies the conditions (2.7.7), (2.3.1) and the

initial function satisfies the condition

E(0)− αD1 ≥ 0, (2.3.4)

then the solution of the problem (2.1.1)-(2.1.3) blows up in a finite time.

Proof. Utilizing the conditions (2.7.7) and (2.3.1) we obtain from (2.3.2) the inequality

d

dt
‖u(t)‖2 ≥ −2‖∇u(t)‖2 − 2γ

∫
∂Ω

u2dσ + 4(α + 1)(F (u), 1) + 2(h, u)

= 4E(t) + 4α(F (u), 1) ≥ 4E(t) + 4αD0

∫
Ω

|u(x, t)|pdx− 4αD1. (2.3.5)

Due to the inequality E(t) ≥ E(0) which can be obtained by integration of the energy

equality (2.3.3), and the condition (2.3.4) we obtain from (2.3.5) the following first order

ordinary differential inequality for the function Ψ(t) ≡ ‖u(t)‖2:

Ψ′(t) ≥ K0[Ψ(t)]
p
2 , (2.3.6)

where K0 ≡ |Ω|−
p−2
2 (4αD0)−

p
2 .
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Integrating (2.3) we see that

Ψ(t)→∞ as t→ (p− 2)[2K0]−1[Ψ(0)]
2−p
2 .

We would like also to note that a result on blow up of solutions to a class of nonlinear

parabolic equations under the Robin boundary condition can be obtained by using the so

called method of eigenfunctions. In fact the following proposition holds true:

Proposition 2.3.3. Suppose that u0(x) ≥ 0, ∀x ∈ Ω, γ > 0, the source term h(x, t) ≡

h(x) ∈ L2(Ω), depends only on x ∈ Ω, the nonlinear term is a convex, continuous function

that satisfies also the conditions;

f(u)− λ1u− h0 > 0, ∀u ≥ α0 > 0,

with

∫ ∞
α0

dη

f(η)− λ1η − h0

<∞, (2.3.7)

where h0 =
∫

Ω
h(x)ψ1(x)dx, α0 =

∫
Ω
u0(x)ψ1(x), λ1 > 0 is the eigenvalue corresponding

to the normalized principal eigenfunction ψ1(x) of the problem

−∆ψ = λψ, x ∈ Ω;

∂ψ
∂ν

+ γψ = 0, x ∈ ∂Ω.

(2.3.8)

Then the solution of the problem (2.1.1)-(2.1.3) blows up in a finite time.

Proof. In fact multiplying the equation (2.1.1) by the positive function ψ1, then integrating

the obtined relation over Ω and using the boundary condition (2.1.2) we obtain the followong

integral equality

∫
Ω

utψ1dx+ λ1

∫
Ω

uψ1dx =

∫
Ω

f(u)ψ1dx+

∫
Ω

hudx. (2.3.9)
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Due to the Jensen inequality for integrals(1.3.8) we have

∫
Ω

f(u)ψ1dx ≥ f

(∫
Ω

uψ1dx

)
.

Thus from (3.3.5) we get the following differential inequality for the function

E(t) =
∫

Ω
u(x, t)ψ1(x)dx:

E ′(t) ≥ f(E(t))− λ1E(t)− h0.

Integrating this inequality and using the condition (4.0.3) we obtain the desired result.

2.4. BLOW UP WHEN THE ENERGY IS POSITIVE

In this section we will prove that there is a wide class of initial functions for which solutions

of the problem Consider the initial and boundary value problem

ut −∆u = f(u), x ∈ Ω t > 0, (2.4.1)

∂u

∂η
+ γu = 0, x ∈ ∂Ω, (2.4.2)

u(x, 0) = u0(x), x ∈ Ω (2.4.3)

with arbitrary positive initial energy blow up in a finite time. More precisely we prove the

following theorem.

Theorem 2.4.1. Assume that the nonlinear term f(·) : R → R is a contnuous function that

satisfies the following condition

f(s)s− 2(1 + α)F (s) ≥ −D0, ∀s ∈ R, (2.4.4)

where α > 0, γ ≥ 0, and D0 ≥ 0 are given numbers, and F (s) =
∫ s

0
f(τ)dτ . Suppose also

that

ν(α, γ)‖u0‖2 > 2|Ω|D0 + 4(1 + α)E(0), (2.4.5)



31

where

E(t) :=
1

2
‖∇u(t)‖2 +

γ

2

∫
∂Ω

u2(x, t)dσ − (F (u(t)), 1), (2.4.6)

and ν(α, γ) is a positive parameter depending on positive scalars α and γ. Then the corre-

sponding local solution of the problem (2.4.1)- (2.4.3) blows up in a finite time.

Proof. Multiplication of the equation (2.4.1) by the function ut and integration of the ob-

tained relation over the domain Ω gives us the following equality

‖ut‖2 +
d

dt

[
1

2
‖∇u‖2 +

γ

2

∫
∂Ω

u2dσ − (F (u), 1)

]
= 0. (2.4.7)

Integrating (2.4.7) over the interval (0, t) we obtain

E(t) = E(0)−
∫ t

0

‖uτ (τ)‖2dτ (2.4.8)

which implies that

E(t) ≤ E(0), ∀t > 0.

We consider now the function

Ψ(t) :=

∫ t

0

‖u(τ)‖2dτ,

where u is a solution of the initial boundary valuemproblem (2.4.1)- (2.4.3) . By using the

equation (2.4.1), the boundary condition (2.4.2) and the condition (4.0.4) on the nonlinear

term, we obtain the following estimate:

Ψ′′(t) = 2(u, ut) = 2(u,∆u+ f(u))
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≥ −2‖∇u‖2 − 2γ

∫
∂Ω

u2dσ + 4(1 + α)(F (u), 1)− 2|Ω|D0.

By using the energy equality (2.4.8) in the last inequality we obtain the following estimate

from below for the function Ψ′′(t):

Ψ′′(t) ≥ 4(1 + α)

[
−1

2
‖∇u‖2 − γ

2

∫
∂Ω

u2dσ + (F (u), 1)

]
− 2|Ω|D0 + 2α‖∇u‖2 + 2αγ

∫
∂Ω

u2dσ = 2α‖∇u‖2 + 2αγ

∫
∂Ω

u2dσ

− 4(1 + α)E(0) + 4(1 + α)

∫ t

0

‖uτ (τ)‖2dτ − 2|Ω|D0. (2.4.9)

By using (2.4.5) we get

Ψ′′(t) ≥
[
ν(α, γ)‖u(t)‖2 −D1

]
+ 4(1 + α)

∫ t

0

‖uτ (τ)‖2dτ, (2.4.10)

where D1 = 2|Ω|D0 + 4(1 + α)E(0).

Since (2.4.5) holds we deduce from (2.4.10) that

Ψ′′(t) ≥ 4(1 + α)

∫ t

0

‖uτ (τ)‖2dτ. (2.4.11)

By using the equality

Ψ′(t) = ‖u(t)‖2 = 2

∫ t

0

∫
Ω

uutdxdτ + ‖u0‖2,

the estimate (2.4.11) and the Cauchy-Schwarz inequality we obtain then the following in-

equality

Ψ′′(t)Ψ(t)− (1 + α)
(
Ψ′(t)− ‖u0‖2

)2 ≥

4(1 + α)

[∫ t

0

‖u(τ)‖2dτ

∫ t

0

‖u(τ)‖2dτ −
(∫ t

0

(u, uτ )dτ

)2
]
≥ 0 (2.4.12)

Thanks to the Cauchy -Schwarz inequality the expression in square brackets on the right
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hand side of the last inequality is positive. Therefore we have

0 ≤ Ψ′′(t)Ψ(t)− (1 + α) (Ψ′(t))
2

= Ψ′′(t)Ψ(t)− (1 +
α

2
) (Ψ′(t))

2 −M(t), (2.4.13)

where

M(t) :=
α

2
(Ψ′(t))

2 − 2(1 + α)Ψ′(t)‖u0‖2 + (1 + α)‖u0‖4.

It follows from (2.4.10) that

d

dt
(Ψ′(t)−M1) ≥ ν(α, γ) (Ψ′(t)−M1) ,

where M1 = D1

ν(α,γ)
.

From the last inequality we deduce that

Ψ′(t) ≥M1 + eν(α,γ)t (Ψ′(0)−M1) .

Hence

Ψ′(t)→∞ as t→∞,

and therefore there exists some t0 > 0 such that

M(t) ≥ 0, ∀t ≥ t0.

Therefore (2.4.13) implies that

Ψ′′(t)Ψ(t)− (1 +
α

2
) (Ψ′(t))

2
, ∀t ≥ t0. (2.4.14)

Finally thanks to the inequality (2.4.14) we can use the Lemma A.0.7 and get the desired

result.
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2.5. NONLINEAR PARABOLIC EQUATIONS WITH CUBIC NONLINEARITY.

BLOW UP FOR POSITIVE INITIAL ENERGY

In this section we consider the initial boundary value problem for the heat equation with

cubic nonlinearity:

ut −∆u = u3, x ∈ Ω, t > 0, (2.5.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (2.5.2)

u(x, 0) = u0(x), x ∈ Ω. (2.5.3)

Our aim is to show that there are inital data with positive initial energy for which the corre-

sponding solutions of the problem (2.5.1)-(2.5.3) blow up in a finite time.

To prove this result we will show that the the function

Ψ(t) =

∫ t

0

‖u(τ)‖2dτ.

satisfies the conditions of the Lemma A.0.7.

Employing the equation (2.5.1) we can easily get

Ψ′′(t) = 2(u(t), ut(t)) = −2‖∇u(t)‖2 + 2

∫
Ω

u4(x, t)dx. (2.5.4)

Multiplying the equation (2.5.1) by ut and integrating over the domain Ω we obtain the

energy equality

‖ut(t)‖2 +
d

dt

[
1

2
‖∇u(t)‖2 − 1

4

∫
Ω

u4(x, t)

]
= 0.

After integration of the last equality over the interval (0, t) we arrive at the following energy

equality

E(t) :=
1

2
‖∇u(t)‖2 − 1

4

∫
Ω

u4(x, t)dx = E(0)−
∫ t

0

‖u(τ)‖2dτ, (2.5.5)
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where

E(0) =
1

2
‖∇u0‖2 − 1

4

∫
Ω

u0(x)dx.

By using the energy equality (2.5.5) and the inequality

∫
Ω

u4(x, t)dx ≥ |Ω|−1
(
‖u(t)‖2

)2

we obtain from the relation (2.5.4) the following inequality

Ψ′′(t) = 5

[
−1

2
‖∇u(t)‖2 +

1

4

∫
Ω

u4(x, t)

]
+

1

4

∫
Ω

u4(x, t)dx+
1

2
‖∇u(t)‖2+

3

4

∫
Ω

u4(x, t)dx

= −5E(0) + 5

∫ t

0

‖u(τ)‖2dτ +
1

2
‖∇u(t)‖2 +

3

4

∫
Ω

u4dx

≥ 3

4|Ω|

(∫
Ω

u2(x, t)dx

)2

− 5E(0) = m0

[(
‖u(t)‖2

)2 −m2
1

]
, (2.5.6)

where m0 = 3
4|Ω| and m2

1 = 20|Ω|E(0)
3

.

So we have

d

dt
‖u(t)‖2 ≥ m0(‖u(t)‖2 −m1)(‖u(t)‖2 +m1). (2.5.7)

From the last inequality we deduce that the function ‖u(t)‖2−m1 satisfies the following first

order differential inequality

d

dt
(‖u(t)‖2 −m1) ≥ m0m1(‖u(t)‖2 −m1).

Integrating this inequality over the interval (0, t), we obtain the following estimate from

below for the function Ψ′(t)

‖u(t)‖2 ≥ m1 + em0m1tA0,
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where

A0 = ‖u0‖2 −
[

20|Ω|
3

E(0)

] 1
2

> 0

and

E(0) :=
1

2
‖∇u0‖2 − 1

4

∫
Ω

u4
0(x)dx ≥ 0.

Thus

Ψ′(t) = ‖u(t)‖2 →∞ as t→∞, (2.5.8)

On the other side from (2.5.6) we get

Ψ′′(t) ≥ −5E(0) + 5

∫ t

0

‖u(τ)‖2dτ +
1

2
‖∇u(t)‖2 +

3

4

∫
Ω

u4(x, t)dx. (2.5.9)

Thanks to (2.5.8) the functions ‖∇u(t)‖2 and
∫

Ω
u4(x, t)dx tend to infinity as t→∞. There-

fore there exists some t1 > 0 such that

−5E(0) + 5

∫ t

0

‖u(τ)‖2dτ +
1

2
‖∇u(t)‖2 +

3

4

∫
Ω

u4(x, t)dx ≥ 0, ∀t ≥ t1.

Hence (2.5.9) implies that

Ψ′′(t) ≥ 4(1 + α0)

∫ t

0

‖u(τ)‖2dτ

with α0 = 1
4
.

Employing the last inequality and the Cauchy-Schwarz inequality we arrive at the desired

inequality

Ψ′′(t)Ψ(t)− (1 + α0) [Ψ′(t)]
2 ≥ 0, ∀t ≥ t1.
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Thus thanks to the Lemma A.0.7 there exists T1 > t1 such that

Ψ(t)→∞, as t→ T−1 .

So we have proved the following Theorem.

Theorem 2.5.1. Suppose that

‖u0‖ > 0, E0 :=
1

2
‖∇u0‖2 − 1

4

∫
Ω

u4
0(x)dx ≥ 0,

and

‖u0‖2 >

[
20|Ω|

3
E(0)

] 1
2

.

Then the solution of the problem (2.5.1)-(2.5.3) blows up in a finite time.

2.6. ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF IBVP FOR NON-

AUTONOMOUS PARABOLIC EQUATIONS

In this section we consider semilinear second order parabolic equations under the Dirichlet

boundary condition whose energy integrals are sign preserved ( in contrary to problems we

considered in the previous section).

First we study the following problem:

ut −∆u+ c(t)f(u) = h(x, t), x ∈ Ω t > 0, (2.6.1)

u = 0, x ∈ ∂Ω, (2.6.2)

u(x, 0) = u0(x), x ∈ Ω, (2.6.3)

where Ω is a bouded domain with sufficiently smooth boudary ∂Ω, c(t) is a given damping

coefficient, f(·) : R→ R is a given nonlinear term, u0 is a given initial function and h(x, t)

is a given source term. We obtained the following result about behavior of solutions to the

initial boundary value problem (2.6.1)-(2.6.3) as t→ +∞:
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Theorem 2.6.1. Suppose that

c ∈ C1(R+), and c(t) ≥ c′(t) ∀t > 0, (2.6.4)

h ∈ L2(0, T ;L2(Ω)), for each T > 0 and ‖h(t)‖ → 0, as t→∞ (2.6.5)

Suppose also that f(·) : R → R is a continuous function that satisfies the following condi-

tions

f(u)u− F (u) ≥ 0, F (u) :=

∫ u

0

f(s)ds ≥ 0, ∀u ∈ R. (2.6.6)

Then all solutions of the initial boundary value problem (2.6.1)-(2.6.3) tend to zero as

t→∞, i.e.

lim
t→∞

[
1

2
‖u‖2 +

1

2
‖∇u‖2 + c(t)(F (u), 1)

]
= 0.

Proof. Multiplying (2.6.1) by ut and by u, then integrating over Ω we get the following

equalities:

‖ut‖2 +
d

dt

[
1

2
‖∇u‖2 + c(t)(F (u), 1)

]
= c′(t)(F (u), 1) + (h, ut), (2.6.7)

1

2

d

dt
‖u‖2 + ‖∇u‖2 + c(t)(f(u), u) = (h, u). (2.6.8)

Adding (2.6.7) and (2.6.8) we obtain

‖ut‖2 +
d

dt

[
1

2
‖u‖2 +

1

2
‖∇u‖2 + c(t)(F (u), 1)

]
+ ‖∇u‖2 + c(t)(f(u), u) = (h, u) + (h, ut) + c′(t)(F (u), 1). (2.6.9)

Now applying Hölder, Cauchy and Poincaré-Friedrichs inequalities we estimate the first two



39

terms on the right hand side of the equality (2.6.9):

|(h, ut)| ≤
1

4
‖h‖2 + ‖ut‖2

and

|(h, u)| ≤ ‖h‖‖u‖2 ≤ ‖h‖λ
−1
2

1 ‖∇u‖ ≤ λ−1
1 ‖h‖2 +

1

4
‖∇u‖2.

Employing these inequalities, and the condition (2.6.6) on the nonlinear term f(·) we obtain

from the relation (2.6.9) the following inequality

d

dt

[
1

2
‖u‖2 +

1

2
‖∇u‖2 + c(t)(F (u), 1)

]
+

3

4
‖∇u‖2 + 2c(t)(F (u), 1)

≤ (
1

4
+ λ−1

1 )‖h‖2 + c′(t)(F (u), 1).

Using the condition (2.6.4) we deduce from the last inequality that the following inequality

holds true:

d

dt

[
1

2
‖u‖2 +

1

2
‖∇u‖2 + c(t)(F (u), 1)

]
+

3

4
‖∇u‖2 + c(t)(F (u), 1)

≤ (
1

4
+ λ−1

1 )‖h‖2. (2.6.10)

Due to the Poincaré- Friedrich’s inequality (1.3.9) we have

3

4
‖∇u‖2 =

1

2
‖∇u‖2 +

1

4
‖∇u‖2 ≥ 1

2
‖∇u‖2 +

λ1

4
‖u‖2

By using the last inequality in (2.6.10) we get

d

dt

[
1

2
‖u‖2 +

1

2
‖∇u‖2 + c(t)(F (u), 1)

]
+

1

2
‖∇u‖2 + c(t)(F (u), 1) +

λ1

4
‖u‖2 ≤ (

1

4
+ λ−1

1 )‖h‖2.
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Since

1

2
‖∇u‖2 + c(t)(F (u), 1) +

λ1

4
‖u‖2

≥ min

{
1,
λ1

2

}[
1

2
‖u‖2 +

1

2
‖∇u‖2 + c(t)(F (u), 1)

]
,

we have

d

dt
E1(t) + d0E1(t) ≤ (

1

4
+ λ−1

1 )‖h(t)‖2,

where d0 = min{1, λ1
2
}. Finally we use Lemma A.0.5 and deduce that E1(t) → 0 as t → 0

and get the desired result.

2.7. NONLINEAR PARABOLIC EQUATION WITH TIME DEPENDENT COEFFI-

CIENTS: DECAY OF SOLUTIONS

In this section we consider the problem

ut − a(t)∆u+ f(u) = h(x, t), x ∈ Ω, t > 0, (2.7.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (2.7.2)

u(x, 0) = u0(x), x ∈ Ω, (2.7.3)

where Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary ∂Ω and

a(t), h(x, t), f(·) are given functions.

We prove that under some restriction on the functions a(t) and h(x, t) all solutions of the

problem (2.7.1)-(2.7.3) tend to zero as t→∞. More precisely we prove the following theo-

rem:

Theorem 2.7.1. Assume that h ∈ L2(0, T ;L2(Ω)), ∀T > 0, a(t) > 0, ∀t ≥ 0 is a

continuous function on [0,∞), such that

∫ t

0

a(s)ds→∞ as t→∞, (2.7.4)
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and

lim
t→∞

a−1(t)‖h(t)‖2 = 0. (2.7.5)

Suppose also that f(·) : R → R is a continuous function that satisfies the condition (2.6.6).

Then

lim
t→∞
‖u(t)‖ = 0. (2.7.6)

Proof. We multiply the equation (2.7.1) in L2(Ω) by u:

1

2

d

dt
‖u(t)‖2 + a(t)‖∇u(t)‖2 + (f(u), u) = (h, u(t)) ≤ ‖h(t)‖‖u(t)‖.

By using the Cauchy-Schwarz inequality and the Poincare inequality we obtain the inequality

1

2

d

dt
‖u(t)‖2 + λ1a(t)‖u(t)‖2 ≤ λ1a(t)

2
‖u(t)‖2 +

1

2λ1a(t)
‖h(t)‖2

or

d

dt
‖u(t)‖2 + λ1a(t)‖u(t)‖2 ≤ λ−1

1 a−1(t)‖h(t)‖2. (2.7.7)

We can apply the Lemma A.0.5 with

z(t) = ‖u(t)‖2, p(t) = λ1a(t), q(t) = λ−1
1 a−1(t)‖h(t)‖2

and deduce that (2.7.6) holds true, i.e. ‖u(t)‖2 → 0 as t→∞.

Theorem 2.7.2. If the function a(t) satisfies the conditions of the Theorem 2.7.1 and f(·) is

a differentiable nondecreasing function, then

‖∇u(t)‖ → 0 as t→∞. (2.7.8)
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Proof. Multiplication of the equation (2.7.1) by −∆u now gives us the following equality

1

2

d

dt
‖∇u(t)‖2 + a(t)‖∆u(t)‖2 + (f ′(u), |∇u(t)|2) = −(h(t),∆u(t)). (2.7.9)

Since the function a(t) is a positive function we can estimate the right hand side of (3.3.2)

as follows

|(h(t),∆u(t))| ≤ 1

2
a(t)‖∆u(t)‖2 +

1

2
‖h(t)‖2a−1(t).

Since f(·) is nondecreasing the expression (f ′(u), |∇u(t)|2) is non-negative. Therefore us-

ing the last inequality we obtain from (3.3.2) the following inequality

d

dt
‖∇u(t)‖2 + a(t)‖∆u(t)‖2 ≤ ‖h(t)‖2a−1(t).

Finally by using the inequality (1.3.10) we obtain

d

dt
‖∇u(t)‖2 + a(t)λ1‖∇u(t)‖2 ≤ ‖h(t)‖2a−1(t).

From the last inequality thanks to the Lemma A.0.5 we deduce the desired result.

Remark 2.7.3. It follows from Theorem 2.7.1 that solutions of the problem (2.7.1)-(2.7.3)

tend to zero even when heat conductivity coefficient may tend zero as t → ∞, and ‖h(t)‖

may tend to +∞ as t→∞. For instance solutions of (2.7.1)-(2.7.3) tend to zero as t→∞

when a(t) = 1
1+t

, h(x, t) = h(x)
√
t, where h ∈ L2(Ω) is a given function.
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3. SECOND ORDER NONLINEAR WAVE EQUATIONS

In this chapter we study the problems of blow up and decay of solutions of initial boundary

value problems for second order nonlinear wave equations under various boundary condi-

tions.

3.1. BLOW UP OF SOLUTIONS TO DAMPED NONLINEAR WAVE EQUA-

TIONS

Here we study the problem of blow up of solutions to the following initial boundary value

problem.

utt + but = ∆u+ f(u) + h(x, t), x ∈ Ω, t > 0, (3.1.1)

∂u

∂ν
+ γu = 0, x ∈ ∂Ω, t > 0, (3.1.2)

u(x, 0) = u0(x), ut(x, 0) = u1, x ∈ Ω, (3.1.3)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, b > 0 is a given damping

coefficient, γ ∈ R is a given number, h is a given source term, u0, u1 are given initial func-

tions, and f(·) is a nonlinear term.

Our aim is to find sufficient conditions of finite time blow up of local solutions to non-

autonomous semilinear damped wave equations with damping term and source term under

the Robin boundary conditions.

There are many papers devoted to the blow up of solutions to initial boundary value prob-

lems for nonlinear wave equations (see, e.g., [25], [46], [61]). In majority of these papers

initial boundary value problems for various nonlinear wave equations under the homoge-

neous Dirichlet or Neumann boundary conditions are considered. The main novelty com-

pared to preceding results is studying the blow up of solutions of nonlinear wave equations

under the Robin boundary conditions, and we obtained results on blow up of solutions for

more wide class of non-autonomous equations with arbitrary large initial energy. The main

tool we used in the proof of our results is Levine’ s concavity method and its modifications
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(see [25], [46], [61]).

3.2. BLOW UP OF SOLUTIONS TO DAMPED SEMILINEAR WAVE EQUATION

UNDER THE ROBIN BOUNDARY EQUATION

In this section we will find sufficient conditions for blow up of solutions to the problem

(2.1.1)-(2.1.3) under some restrictions on initial functions and the source term, when the

nonlinear term satisfies the condition

f(s)s− 2(2α + 1)F (s) ≥ 0, ∀s ∈ R, (3.2.1)

with some α > 0. Here F (s) =
∫ s

0
f(τ)dτ.

First we consider the case when the number γ is nonnegative. Multiplication of (3.1.1) in

L2(Ω) by ut gives us the energy equality:

d

dt

[
1

2
‖ut‖2 +

1

2
‖∇u‖2 − (F (u), 1) +

γ

2

∫
∂Ω

u2dσ

]
+ b‖ut‖2 = (ut, h), (3.2.2)

d

dt
Eγ(t) + b‖ut(t)‖2 = (ut(t), h(t)), (3.2.3)

where

Eγ(t) =
1

2
‖ut(t)‖2 +

1

2
‖∇u(t)‖2 − (F (u(t)), 1) +

γ

2

∫
∂Ω

u2(t)dσ.

Following [46] we introduce the function

Ψ(t) = ‖u(t)‖2 + b

∫ t

0

‖u(s)‖2ds+ c0, (3.2.4)

with a positive parameter c0 to be chosen below.

By using the equation (3.1.1) the boundary condition (3.1.2) and the condition (3.2.1) on the
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nonlinear term, we get:

d2

dt2
Ψ(t) = 2(u, utt) + 2‖ut‖2 + 2b(u, ut)

= 2(u, utt + but) + 2‖ut‖2 = 2(u,∆u+ f(u) + h) + 2‖ut‖2

= −2‖∇u‖2 + 2(u, f(u) + 2(u, h) + 2‖ut‖2 − 2γ

∫
∂Ω

u2dσ

≥ −2‖∇u‖2 + 4(2α + 1)(F (u), 1) + 2‖ut‖2 + 2(u, h)− 2γ

∫
∂Ω

u2dσ

= −4(2α + 1)Eγ(t) + 4α‖∇u‖2 + 4(α + 1)‖ut‖2 + 4αγ

∫
∂Ω

u2dσ + 2(u, h). (3.2.5)

It follows from (3.2.3) that

Eγ(t) = Eγ(0)− b
∫ t

0

‖us(s)‖2ds+

∫ t

0

(us(s), h(s))ds.

Thus we obtain from (3.2.5):

Ψ′′(t) ≥ −4(2α + 1)Eγ(0) + 4(2α + 1)b

∫ t

0

‖us‖2ds− 4(2α + 1)

∫ t

0

(us, h)ds

+ 4α‖∇u‖2 + 4(α + 1)‖ut‖2 + 4αγ

∫
∂Ω

u2dσ + 2(u, h). (3.2.6)

Applying the Cauchy-Schwarz inequality and the Cauchy inequality with ε (1.3.6) we ob-

tain

∣∣∣4(2α + 1)

∫ t

0

(us(s), h(s))ds
∣∣∣ ≤ 4(2α + 1)

∫ t

0

‖us(s)‖‖h(s)‖ds

≤ δ

∫ t

0

‖us(s)‖2ds+
4(2α + 1)2

δ

∫ t

0

‖h(s)‖2ds (3.2.7)

2|(u, h)| ≤ δ‖u‖2 +
1

δ
‖h‖2. (3.2.8)

By using the inequality (3.2.7) with δ = 4αb, and the inequality (3.2.8) with

δ = ν0 := 4αa0 min{1, γ}, where a0 is a constant in the Poincare inequality (1.3.11), we get
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from (3.2.6) the estimate:

Ψ′′(t) ≥ −4(2α + 1)Eγ(0) + 4(α + 1)

[
‖ut(t)‖2 + b

∫ t

0

‖us(s)‖2ds

]
− (2α + 1)2

αb

∫ ∞
0

‖h(t)‖2dt− 1

ν0

‖h(t)‖2
∞ (3.2.9)

or by choosing c0 = b
2
‖u0‖2 we get

Ψ′′(t) ≥ 4(α + 1)

[
‖ut‖2 + b

∫ t

0

‖us‖2ds+
b

2
‖u0‖2

]
− d0, (3.2.10)

where

d0 := 4(2α + 1)Eγ(0) +
(2α + 1)2

αb

∫ ∞
0

‖h(t)‖2dt+ 2(α + 1)b‖u0‖2

+
1

ν0

‖h(t)‖2
∞. (3.2.11)

Hence thanks to Cauchy-Schwarz inequality we obtain:

Ψ′′(t)Ψ(t)− (α + 1) [Ψ′(t)]
2 ≥ −d0Ψ(t).

Therefore due to the Lemma 1.3.5 we have following result:

Theorem 3.2.1. Suppose that

i) γ ≥ 0, (u0, u1) > 0, h ∈ L∞(R+;L2(Ω)),

and

ii) [2(u0, u1) + b‖u0‖2]
2
> 2d0(b+2)

2α+1
‖u0‖2, where d0 is defined in (3.2.11).

Then there exist t0 <∞ such that

lim
t→t−0
‖u(t)‖ =∞,

i.e. solution of the problem (3.1.1)-(3.1.3) blows up in a finite time.

Now we consider the case when γ < 0. First we obtain sufficient conditions of blow up

of solutions of the problem (3.1.1)-(3.1.3) by using Lemma [51]. To get the desired result
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we again use the function Ψ(t) defined in (3.2.4). Arguing as in the proof of the previous

theorem we arrive at the inequality (3.2.6). Employing the inequality (3.2.7) in (3.2.6) we

get

Ψ′′(t) ≥ −4(2α + 1)Eγ(0) + 4(α + 1)b

∫ t

0

‖us‖2ds− 4(2α + 1)2

αb

∫ t

0

‖h(t)‖2ds

+ 4α‖∇u‖2 + 4(α + 1)‖ut‖2 + 4αγ

∫
∂Ω

u2dσ + 2(u, h). (3.2.12)

Utilizing Cauchy Schwarz inequality and the inequality (1.3.12) with ε = 1
|γ| we obtain

∣∣∣∣4αγ ∫
∂Ω

u2dσ

∣∣∣∣ ≤ 4α‖∇u‖2 + 4αC 1
|γ|
‖u‖2, |2(u, h)| ≤ ‖u‖2 + ‖h‖2.

Employing last two inequalities we obtain from (3.2.12) the following inequality:

Ψ′′(t) ≥ −4(2α + 1)Eγ(0) + 4(α + 1)

[
‖ut‖2 + b

∫ t

0

‖us‖2ds

]
− ‖h‖2 − 4(2α + 1)2

αb

∫ t

0

‖h(s)‖2ds−
(

1 + 4αC 1
|γ|

)
‖u‖2. (3.2.13)

Suppose that

−4(2α + 1)Eγ(0)− ‖h‖2
∞ −

4(2α + 1)2

αb

∫ ∞
0

‖h(t)‖2dt ≥ 0. (3.2.14)

Then we obtain from (3.2.13) the estimate

Ψ′′(t) ≥ 4(α+1)

[
‖ut‖2 + b

∫ t

0

‖us‖2ds+
b

2
‖u0‖2

]
−d1‖u‖2−4(α+1)

b

2
‖u0‖2, (3.2.15)

where d1 =
(

1 + 4αC 1
|γ|

)
. Thus employing Cauchy-Schwarz inequality we arrive at the

inequality

Ψ′′(t)Ψ(t)− (1 + α) [Ψ′(t)]
2 ≥ −C0Ψ2(t), C0 = d1 + 2(α + 1)b.

Therefore it follows from Lemma [51] that the following theorem holds.
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Theorem 3.2.2. Suppose that Eγ(0) < 0 and the condition (3.2.14) is satisfied. Suppose

also that

2(u, u0) >

[√
αC0(1 +

b

2
)− b

]
‖u0‖2.

Then the solution of the problem (3.1.1)-(3.1.3) blows up in a finite time.

Finally we will prove blow up of solutions to the problem by employing Lemma A.0.7. It is

convenient to make the following change :

u(x, t) = emtv(x, t), (3.2.16)

where m is some positive number. It is easy to see that

(mb+m2)emtv + (b+ 2m)emtvt + emtvtt = emt∆v + f(emtv) + h(x, t).

Thus the function v(x, t) defined by (3.2.16) is a solution of the problem

(mb+m2)v + (b+ 2m)vt + vtt = ∆v + e−mtf(emtv) + e−mth(x, t), (3.2.17)

∂v

∂ν
+ γv = 0, x ∈ ∂Ω, t > 0, (3.2.18)

v(x, 0) = u0(x), vt(x, 0) = u1(x) +mu0(x). (3.2.19)

By using the Levine’s Lemma first we prove the following:

Theorem 3.2.3. Suppose that the condition (3.2.1) holds, and

4(α + 1)E1(0)− 1

2mα

∫ ∞
0

‖h(s)‖2ds

− 1

2(mb+m2)α
‖h‖2

L∞(R+) − 4(α + 1)c0 ≥ 0, (3.2.20)

where E1(0) is defined in (3.2.25), and m is a positive solution of the equation

m2 +mb− |γ|C(|γ|−1) = 0, c0 = (b+ 2m)‖v0‖2. (3.2.21)
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Then the corresponding solution of the problem (3.2.17)-(3.2.19) blows up in a finite time.

Proof. Multiplying (3.2.17) by vt and integrating over Ω we obtain

(mb+m2)

∫
Ω

vvtdx+ (b+ 2m)

∫
Ω

vt
2dx+

∫
Ω

vttvt

=

∫
Ω

∆vvtdx+

∫
Ω

e−mtf(emtv)vtdx+

∫
Ω

e−mth(x, t)vtdx.

1

2
(mb+m2)

d

dt
‖v‖2 + (b+ 2m)‖vt‖2dx+

1

2

d

dt
‖vt‖2

= −1

2

d

dt
‖∇v‖2 − γ

2

d

dt

∫
∂Ω

v2dσ +
d

dt

[
e−2mt

∫
Ω

F (emtv)dx

]
+ 2me−2mt

∫
Ω

F (emtv)dx

−me−mt
∫

Ω

f(emtv)vdx+

∫
Ω

e−mth(x, t)vtdx.

From the last inequality we get

d

dt

[
mb+m2

2
‖v‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2 +

γ

2

∫
∂Ω

v2dσ − e−2mt

∫
Ω

F (emtv)dx

]
+ (b+ 2m)‖vt‖2 − 2me−2mt

∫
Ω

F (emtv)dx+me−mt
∫

Ω

f(e−mtv)vdx

≤ ε1‖vt‖2 +
1

4ε1

‖h‖2e−2mt (3.2.22)

Thanks to (3.2.1) we have:

e−mtf(emtv)v = e−2mtf(emtv)e−mtv ≥ 2(2α + 1)e−2mtF (emtv).

By using the last inequality on the left hand side of the onequality (3.2.22) we obtain the

following estimate

d

dt

[
mb+m2

2
‖v‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2 +

γ

2

∫
∂Ω

v2dσ − e−2mt

∫
Ω

F (emtv)dx

]
+

(b+ 2m)‖vt‖2 + 4αme−2mt

∫
Ω

F (emtv)dx ≤ ε1‖vt‖2 +
1

4ε1

‖h‖2e−2mt.
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We can rewrite the last inequality in the following form

d

dt

[
−mb+m2

2
‖v‖2 − 1

2
‖vt‖2 − 1

2
‖∇v‖2 − γ

2

∫
∂Ω

v2dσ + e−2mt

∫
Ω

F (emtv)dx

]
≥

4mα

[
−mb+m2

2
‖v‖2 − 1

2
‖vt‖2 − 1

2
‖∇v‖2 − γ

2

∫
∂Ω

v2dσ + e−2mt

∫
Ω

F (emtv)dx

]
+ 2mα

[
(mb+m2)‖v‖2 + ‖∇v‖2 + γ

∫
∂Ω

v2dσ

]
+

(−ε1 + (b+ 2m) + 2mα)‖vt‖2 − 1

4ε1

‖h‖2e−2mt. (3.2.23)

So we have

d

dt
E1(t) ≥ 4mαE1(t) + 2mα

[
(mb+m2)‖v‖2 + ‖∇v‖2 + γ

∫
∂Ω

v2dσ

]
+

(2mα + b+ 2m− ε1)‖vt‖2 − 1

4ε1

‖h‖2e−2mt, (3.2.24)

where

E1(t) := −mb+m2

2
‖v‖2 − 1

2
‖vt‖2 − 1

2
‖∇v‖2 − γ

2

∫
∂Ω

v2dσ

+ e−2mt

∫
Ω

F (emtv)dx. (3.2.25)

Employing the inequality (1.3.12) with ε = |γ−1| we get from (3.2.24) the estimate

d

dt
E1(t) ≥ 4mαE1(t)+

(2mα + b+ 2m− ε1)‖vt‖2 +mα
[
(mb+m2)− |γ|C(|γ|−1)

]
‖v‖2 − 1

4ε1

‖h‖2e−2mt.

Taking in the last inequality ε1 = 2mα, and integrating it we obtain the following estimate

from below for E1(t)

E1(t) ≥ e4mαtE1(0) + (b+ 2m)e4mαt

∫ t

0

‖vs(s)‖2e−4msds

− 1

4ε1

e4mαt

∫ t

0

‖h(s)‖2e−m(4α+2)sds. (3.2.26)



51

Let us consider the following function

Ψ(t) = ‖v(t)‖2 + (b+ 2m)

∫ t

0

‖v(τ)‖2dτ + c0,

where v is the solution of the problem and c0 is a positive parameter to be chosen later.

It is easy to see that

Ψ′(t) = 2(v(t), vt(t)) + (b+ 2m)‖v(t)‖2

= 2(v(t), vt(t)) + 2(b+ 2m)

∫ t

0

(v(τ), vτ (τ))dτ + (b+ 2m)‖v0‖2. (3.2.27)

and

Ψ′′(t) = 2‖vt(t)‖2 + 2(v(t), vtt(t)) + 2(b+ 2m)(v(t), vt(t))

= 2‖vt(t)‖2 + 2(vtt(t) + (b+ 2m)vt(t), v(t)).

Employing here the equation (3.2.17) and the condition (3.2.1) we obtain

Ψ′′(t) = 2‖vt(t)‖2 + 2(∆v(t) + e−mtf(emtv(t)) + e−mth− (mb+m2)v(t), v(t))

≥ −2(mb+m2)‖v‖2 − 2‖∇v‖2

− 2γ

∫
∂Ω

v2dσ + 4(2α + 1)e−2mt

∫
Ω

F (emtv)dx+ 2e−mt(h, v) + 2‖vt‖2

= 4(2α + 1)

[
−(mb+m2)

2
‖v‖2 − 1

2
‖vt‖2 − 1

2
‖∇v‖2 − γ

2
v2dσ + e−2mt

∫
Ω

F (emtv)dx

]
+ 4(mb+m2)α‖v‖2 + 4α‖∇v‖2 − 4αγ

∫
∂Ω

v2dσ

+ 2e−mt(h, v) + 4(α + 1)‖vt‖2. (3.2.28)

Thanks to the Cauchy- Schwarz inequality we have:

2e−mt(h, v) ≥ −2(mb+m2)α‖v‖2 − e−2mt 1

2(mb+m2)α
‖h‖2.

Employing the last inequality and the notation (3.2.25) we obtain from the equality (3.2.28)
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the following estimate

Ψ′′(t) ≥ 4(2α + 1)E1(t)− e−2mt 1

2(mb+m2)α
‖h‖2 + 4(α + 1)‖vt‖2.

From the last inequality due to (3.2.26) we have

Ψ′′(t) ≥ 4(α + 1)

[
(b+ 2m)

∫ t

0

‖vs‖2ds+ ‖vt‖2 + c0

]
− 4(α + 1)c0

+ 4(α + 1)e4mαt

[
E1(0)− 1

2mα

∫ t

0

e−m(4α+2)s‖h‖2ds

]
− e−2mt 1

2(mb+m2)α
‖h‖2

By using the condition (3.2.20) we infer from the last inequality that

Ψ′′(t) ≥ 4(α + 1)

[
(b+ 2m)

∫ t

0

‖vs‖2ds+ ‖vt‖2 + c0

]
.

Thus employing the Schwarz inequality we get

Ψ′′(t)Ψ(t)− (α + 1) [Ψ′(t)]
2 ≥ 0.

So the statement of the theorem follows from the Lemma A.0.7.

3.3. BLOW UP OF SOLUTIONS OF NONLINEAR WAVE EQUATION. METHOD

OF EIGENFUNCTION.

In this section we consider the initial boundary value problem for second order nonlinear

wave equation of the form

utt −∆u = f(u) + h(x), x ∈ Ω, t > 0, (3.3.1)

∂u

∂ν
+ γu = 0, x ∈ ∂Ω, t > 0, (3.3.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω. (3.3.3)
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where Ω is a bounded domain in Rn with smooth boundary ∂Ω, γ is a given positive number,

h is a given source term that depends on space variables, u0, u1 are given initial functions,

and f(·) is a given nonlinear term. Our aim is to use the so called method of eigenfunctions

to find sufficient conditions of blow up of solutions to the problem (3.3.1)-(3.3.3).

Proposition 3.3.1. Suppose that u0(x), u1(x), h(x) are given smooth functions on the do-

main Ω, γ > 0, the nonlinear term f(·) is a convex function that satisfies also the conditions;

f(u)− λ1u− h0 > 0, ∀u ≥ α0 > 0,

with

∫ ∞
α0

[
a2

1 + 2

∫ s

a0

(f(η)− λ1η − h0) dη

]−1/2

ds <∞, (3.3.4)

where λ1 > 0 is the eigenvalue corresponding to the normalized principal eigenfunction

ψ1(x) of the problem (2.3.8), h0 =
∫

Ω
h(x)ψ1(x)dx, and

α0 =

∫
Ω

u0(x)ψ1(x) > 0, α1 =

∫
Ω

u1(x)ψ1(x) > 0.

Then the solution of the initial boundary value problem (3.3.1)-(3.3.3) blows up in a finite

time.

Proof. Multiplying the equation (3.3.1) by ψ1, and then integrating the obtained relation over

Ω and using the boundary condition (2.1.2) we get

∫
Ω

uttψ1dx+ λ1

∫
Ω

uψ1dx =

∫
Ω

f(u)ψ1dx+

∫
Ω

hudx. (3.3.5)

By using the the Jensen inequality for integrals(1.3.8) we obtain

∫
Ω

f(u)ψ1dx ≥ f

(∫
Ω

uψ1dx

)
.

Thus from (3.3.5) we get the following second order differential inequality for the function
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V (t) =
∫

Ω
u(x, t)ψ1(x)dx:

V ′′(t) ≥ f(V (t))− λ1V (t)− h0. (3.3.6)

Since V (0) = α0 > 0, V ′(0) = α1 > 0 and the condition (3.3.4) holds, we can use the

Lemma 1.3.2 with

H(V ) = f(V )− λ1V − h0

and deduce that solution of the problem (3.3.1)-(3.3.3) blows up in a finite time.

3.4. DECAY OF SOLUTIONS TO DAMPED NONAUTONOMOUS NONLINEAR

WAVE EQUATION

In this section we study the initial boundary value problem for nonlinear wave equation with

time dependent damping coefficient:

utt + b(t)ut −∆u+ f(u) = 0, x ∈ Ω, t > 0, (3.4.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (3.4.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω, (3.4.3)

where Ω is a bounded domain in Rn with smooth boundary, b is time dependent damping

coefficient, γ ∈ R is a given number, h is a given source term, u0, u1 are given initial

functions, and f(·) is a nonlinear term.

Theorem 3.4.1. Suppose that b(t) is a positive differentiable function defined on [0,∞) that

satisfies the conditions

0 ≤ b(t) ≤ b0, |b′(t)| ≤ αb(t), 0 < α ≤ 2, ∀t ≥ 0, (3.4.4)∫ t

0

b(s)ds→∞ as t→∞ (3.4.5)
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and the function f(u) satisfies the condition (2.6.6). Then all solutions of the problem (3.4.1)-

(3.4.3) tend to zero as t→∞.

Proof. Multiplying (3.4.1) by ut + εb(t)u, where ε is a positive number to be determined

below:

d

dt

[
1

2
‖ut‖2 +

1

2
‖∇u‖2 +

1

2
b(t)εb(t)‖u(t)‖2 + (F (u), 1) + εb(t)(u, ut)

]
+ [b(t)− εb(t)] ‖ut(t)‖2 − εb′(t)(u, ut) + εb(t)‖∇u‖2 + εb(t)(f(u), u)

− 1

2
ε(b2(t))′‖u(t)‖2 = (h(t), ut + εb(t)u(t)). (3.4.6)

By using the notation

E(t) :=
1

2
‖ut‖2 +

1

2
‖∇u‖2 + εb(t)(u, ut) + (F (u), 1) +

1

2
b(t)ε(t)‖u(t)‖2 (3.4.7)

we can rewrite the equality (3.4.6) in the following form:

d

dt
E(t) + δb(t)E(t) + b(t)(1− ε)‖ut‖2 + εb(t)‖∇u‖2 − εb′(t)(u, ut) + εb(t)(f(u), u)

− δ

2
‖ut‖2 − δ

2
‖∇u‖2 − δ(F (u), 1)− δεb(t)(ut, u)− δ

2
εb2(t)‖u‖2 = 0.

Here δ is a positive parameter to be chosen below.

d

dt
E(t) + δb(t)E(t) + b(t)(1− ε− δ

2
)‖ut‖2 + b(t)(ε− δ

2
εb3

0)‖u‖2

+ b(t)(ε− δ)[−(F (u), 1) + (f(u), u)]− εb′(t)(ut, u)− δεb2(t)(ut, u) ≤ 0. (3.4.8)

Due to the Cauchy-Schwarz inequality we have:

δεb2(t)|(ut, u)| ≤ δεb2
0

2
− δεb2

0

2
‖ut‖2 +

δεb2
0

2
− δεb2

0

2
‖u‖2,

εb′(t)|(ut, u)| ≤ εαb(t)

2
‖u(t)‖2 +

εαb(t)

2
‖u(t)‖2‖ut‖2

By using the last two inequalities we obtain from the inequality (3.4.8) the following differ-



56

ential inequality:

d

dt
E(t) + δb(t)E(t) + b(t)

[
1− ε− δ

2
− εα

2
− δεb2

0

2

]
‖ut(t)‖2

+ b(t)

[
ε− δεb2

0

2
− δεb2

0

2
− εα

2

]
‖u(t)‖2 ≤ 0.

The last inequality implies that

d

dt
E(t) + δb(t)E(t) ≤ 0 (3.4.9)

if ε = 1
3

and δ is small enough. Integrating (3.4.9) we get

E(t) ≤ E(0)e−δ
∫ t
0 b(τ)dτ . (3.4.10)

Due to the condition (3.4.5) it follows from (3.4.10) that E(t) tends to zero as t → ∞. On

the other hand we have

E(t) ≥ 1

6
‖ut(t)‖2 +

1

2
‖∇u(t)‖2 + (F (u(t)), 1) +

b2(t)

16
‖u(t)‖2.

Thus

‖ut(t)‖2 + ‖∇u(t)‖2 → 0 as t→∞.

Arguing as in the proof of Theorem 3.4.1 and using the Lemma we can show that solutions of

the initial boundary value problem for second order nonlinear non-autonomous wave equa-

tion with time dependent damping term under the Dirichlet boundary condition tends to zero

as t→∞ under some restrictions on the damping coefficient and the source term.

In fact the following Proposition holds true:

Proposition 3.4.2. Suppose that all conditions of the Theorem 3.4.1 are satisfied, h ∈

L2(R+;L2(Ω) and suppose that the damping term and the source term satisfy the follow-
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ing conditions

b(t) > 0, ∀t ≥ 0, ‖h(t)‖ (b(t))−1 → 0, as t→∞.

Then all solutions of the problem

utt + b(t)ut −∆u+ f(u) = h(x, t), x ∈ Ω, t > 0, (3.4.11)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (3.4.12)

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω, (3.4.13)

all solutions of the problem (3.4.11)-(3.4.13) tend to zero as t→∞, i.e.

‖ut(t)‖2 + ‖∇u(t)‖2 → 0 as t→∞.
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4. CONCLUSION

This thesis is devoted to the study of initial boundary value problems for second order non-

linear parabolic and hyperbolic equations.

The main results of the thesis are given in Chapter 2 and Chapter 3.

The second chapter of the thesis is devoted to the study of initial boundary value problems

for second order nonlinear parabolic equations under various boundary conditions.

First we considered the initial boundary value problem under the Robin boundary conditions

for second order nonlinear parabolic equation:


ut −∆u = f(u) + h(x, t), x ∈ Ω, t > 0,

∂u
∂ν

+ γu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(4.0.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, γ is a given number, h is a

given source term and f(·) is a given nonlinear term.

We proved that if the nonlinear term satisfies the conditions

f(u)u ≥ 2(1 + α)F (u), F (u) =

∫ u

0

f(s)ds, for all u ∈ R (4.0.2)

with some positive α, h ∈ L2(R+;L2(Ω))∩L∞(R+;L2(Ω)), then solutions of the problem

(4.0.1) corresponding to a wide class of initial data blow-up in a finite time. This result

can be considered as development of the result obtained in [62], where the authors, using

the energy method, established blow-up of solutions of the problem (4.0.1) with h ≡ 0 ,

essentially using positiveness of the coefficient γ in the boundary condition and the initial

function u0. We found sufficient conditions for the finite-time blow-up of solutions of the

problem (4.0.1) regardless of the sign of γ and the sign of the initial function u0.

Next, by using the energy method, we obtained result on blow up of solutions of the initial

boundary value problem (4.0.1) when the source term depends only on the space variables,

i.e. h = h(x) and in addition to the condition (4.0.2) we assume that the following condition
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on the nonlinear term holds true

F (u) ≥ D0|u|p −D1 ∀u ∈ R

for some p > 2, D0 > 0, D1 ≥ 0.

Employing Kaplan’s eigenfunction method we proved also the following proposition.

Proposition 4.0.3. Suppose that u0(x) ≥ 0, ∀x ∈ Ω, γ > 0, the source term h = h(x), the

nonlinear term f(·) is a convex function that satisfies also the conditions;

f(u)− λ1u− h0 > 0, ∀u ≥ α0 > 0,

with

∫ ∞
α0

dη

f(η)− λ1η − h0

<∞, (4.0.3)

where h0 =
∫

Ω
h(x)ψ1(x)dx, α0 =

∫
Ω
u0(x)ψ1(x), λ1 > 0 is the eigenvalue corresponding

to the normalized principal eigenfunction ψ1(x) of the Laplace operator−∆ under the Robin

boundary condition Then the solution of the problem (4.0.1) follows up in a finite time.

We obtained in this chapter also result on blow up of solutions with positive initial energy

of initial boundary value problems for nonlinear parabolic equations under Robin boundary

conditions.

We proved that if h ≡ 0 and the nonlinear term satisfies the condition

f(s)s− 2(1 + α)F (s) ≥ −D0, ∀s ∈ R, (4.0.4)

where α > 0, γ ≥ 0, and D0 ≥ 0 are given numbers, then there exist a wide class of initial

data with arbitrary positive initial energy for which solutions of the problem (4.0.1) blow up

in a finite time.

As far as we know it is the first result on blow up of solutions with arbitrary positive initial en-

ergy of nonlinear parabolic equations under the Robin condition. Blow up of solutions with

arbitrary positive initial energy of the initial boundary value problem for parabolic equation
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with cubic nonlinearity of the form

ut −∆u = u3,

is also obtained.

Finally in Chapter 2, two results on decay of solutions of initial boundary value problems

for non-autonomous nonlinear parabolic equations with time dependent coefficients are ob-

tained. It is shown that if

c ∈ C1(R+), and c(t) ≥ c′(t) ∀t > 0, (4.0.5)

h ∈ L2(0, T ;L2(Ω)), for each T > 0 and ‖h(t)‖ → 0, as t→∞ (4.0.6)

and f(·) : R→ R is a continuous function that satisfies the condition

f(u)u− F (u) ≥ 0, F (u) :=

∫ u

0

f(s)ds ≥ 0, ∀u ∈ R, (4.0.7)

then all solutions of the initial boundary value problem for the equation

ut −∆u+ c(t)f(u) = h(x, t), x ∈ Ω t > 0, (4.0.8)

under the homogeneous Dirichlet boundary condition tend to zero as t→∞. We considered

here also the problem


ut − a(t)∆u+ f(u) = h(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(4.0.9)

We proved that if the nonlinear term f(·) : R→ R is a continuous function that satisfies the

condition (4.0.7) , h ∈ L2(0, T ;L2(Ω)), for each T > 0, a(t) > 0, ∀t ≥ 0 is a continuous

function on [0,∞), such that
∫ t

0
a(s)ds → ∞ as t → ∞, and also the following con-

dition holds true limt→∞ a
−1(t)‖h(t)‖2 = 0, then the solution of the initial boundary value
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problem

lim
t→∞
‖u(t)‖ = 0.

Under an additional assumption that f(·) is a differentiable nondecreasing function, we

proved that

lim
t→∞
‖∇u(t)‖ = 0.

Chapter 3 is devoted to study of initial boundary value problems for second order nonlinear

hyperbolic equations.

The first result in this chapter is the result on blow up of solutions of the problem


utt + but = ∆u+ f(u) + h(x, t), x ∈ Ω, t > 0,

∂u
∂ν

+ γu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1, x ∈ Ω,

(4.0.10)

where b > 0, γ ∈ R are given number, h is a given source term, u0, u1 are given initial

functions, and f(·) is a nonlinear term.

Employing the Lemma 1.3.5 we proved that if

f(s)s− 2(2α + 1)F (s) ≥ 0, ∀s ∈ R, (4.0.11)

with some α > 0,

γ ≥ 0, (u0, u1) > 0, h ∈ L∞(R+;L2(Ω)) (4.0.12)

and

[
2(u0, u1) + b‖u0‖2

]2
>

2d0(b+ 2)

2α + 1
‖u0‖2, (4.0.13)
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then the solution of the problem (4.0.10) blows up in a finite time.

Let us note that from this result it follows that there are solutions of the problem (4.0.10)

with arbitrary positive energy that blow up in a finite time.

Under a different restrictions on data a result on blow up of solutions for the case when

nonlinear term satisfies the condition (4.0.11) and γ < 0 is obtained by using the Levine’s

Lemma.

Finally in Chapter 3 we considered the problem:


utt + b(t)ut −∆u+ f(u) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

(4.0.14)

where b(t) is a positive differentiable function defined on [0,∞) that satisfies the condi-

tions

0 ≤ b(t) ≤ b0, |b′(t)| ≤ αb(t), 0 < α ≤ 2, ∀t ≥ 0, (4.0.15)

∫ t

0

b(s)ds→∞ as t→∞ (4.0.16)

and the function f(u) satisfies the condition (4.0.7).

We proved that under these restrictions all solutions of the problem (4.0.14) tend to zero as

t→∞.

In the last Chapter 4 (Appendix) we gave the proofs of auxiliary propositions which we have

used to get main results.

Finally we would like to note that throughout the thesis we deal with strong solutions of prob-

lems considered, i.e. solutions for which all terms involved in the corresponding equations

belong to L2(0, T );L2(Ω)). For local solution T < ∞, and for global solutions T = ∞.

For results on existence and uniqueness of strong and classical solutions of initial bound-

ary value problems for nonlinear parabolic and hyperbolic equations under the Dirichlet and

Robin boundary conditions and even more general nonlinear boundary conditions, we refer
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to [17], Pao [29], [66] , [67] and references therein.
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APPENDIX A: AUXILARY INEQUALITIES

In this chapter we give proofs of auxiliary propositions we used in the proofs of main results

in Chapter 2 and Chapter 3.

Lemma A.0.4. If w ∈ H2(Ω) ∩H1
0 (Ω), then

‖∇w‖ ≤ λ
−1/2
1 ‖∆w‖. (A.0.1)

Proof. Since C∞0 (Ω) is dense in H2(Ω) ∩H1
0 (Ω), it suffices to prove the inequality (A.0.1)

for w ∈ C∞0 (Ω). In fact integrating the equality :

∇ · (w(x)∇w(x)) = |∇w(x)|2 + w(x)∆w(x),

over the domain Ω we get

‖∇w‖2 = −(w,∆w).

Thanks to the Cauchy-Schwarz inequality and the Poincare - Friedrich inequality (1.3.9) we

deduce form the last equality that

‖∇w‖2 = ‖w‖‖∆w‖ ≤ λ
−1/2
1 ‖∇w‖‖∆w‖.

Hence (A.0.1) follows.

Lemma A.0.5. Suppose that p, q ∈ C[0,∞), p(t) > 0, q(t) ≥ 0, ∀t ≥ 0, and

∫ t

0

p(s)ds→∞, q(t) (p(t))−1 → 0 as t→∞. (A.0.2)

Then all nonnegative solutions of the differential inequality

z′(t) + p(t)z(t) ≤ q(t) (A.0.3)
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tend to zero as t→∞.

Proof. Multiplication of the inequality (A.0.3) by e
∫ t
0 p(s)ds gives

d

dt

(
e
∫ t
0 p(s)dsz(t)

)
≤ q(t)e

∫ t
0 p(s)ds.

Integrating this inequality over the interval (0, t):

e
∫ t
0 p(s)dsz(t) ≤ z(0) +

∫ t

0

q(s)e
∫ s
0 p(τ)dτds.

This inequality implies

z(t) ≤ z(0)e−
∫ t
0 p(s)ds + e−

∫ t
0 p(s)ds

∫ t

0

q(s)e
∫ s
0 p(τ)dτds. (A.0.4)

Thanks to the condition (A.0.2) the first term on the right hand side of (A.0.4) tends to zero

as t→∞. Employing L’Hospital‘s rule and the condition (A.0.2) we obtain:

lim
t→∞

∫ t

0

q(s)e
∫ s
0 p(τ)dτds

(
e
∫ t
0 p(s)ds

)−1

= lim
t→∞

q(t)e
∫ s
0 p(s)ds

(
p(t)e

∫ t
0 p(s)ds

)−1

= lim
t→∞

q(t) (p(t))−1 = 0.

Hence the second term on the right hand side of (A.0.4) also tends to zero as t→∞.

Lemma A.0.6. (see [24] ) Suppose that a function a(t) is twice continuously differentiable

on some interval [0, T ),

a function H(r) is continuous on [a0,∞) and the condition

H(r) ≥ 0, ∀r ≥ a0 (A.0.5)
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holds. Assume also that

a′′(t) ≥ H(a(t)), t ≥ 0, (A.0.6)

a(0) = a0 > 0, a′(0) = a1 > 0. (A.0.7)

Then

(1) a(t) is continuous and a′(t) > 0, ∀t ∈ [0, T )

(2) t ≤
a(t)∫
a0

a2
1 + 2

s∫
a0

H(r)dr

−1/2

ds. (A.0.8)

Proof. Let us prove (1). Assume that this property is not satisfied. Then there exists a t1 > 0

such that a′(t) > 0, t ∈ [0, t1) and a′(t1) = 0.

Integrating the inequality (A.0.6) over the interval (0, t1):

0 = a′(t1) = a0 +

∫ t1

0

H(a(t))dt. (A.0.9)

Since a(t) > a0 and a is increasing on the interval [0, t1), a(t) > a0, ∀t ∈ [0, t1. Since H

satisfies the condition (A.0.5) the right hand side of (A.0.9) is not lesser than a1 > 0.

To prove (A.0.8) multiply both sides of (A.0.6) by a′(t) :

a′′(t)a′(t)− h(a(t)a′(t) ≥ 0.

This inequality, rewrite in the form:

d

dt

1

2
[a′(t)]2 −

a(t)∫
a0

H(r)dr

 ≥ 1.
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Integrating the last inequality

1

2
[a′(t)]2 ≥ a2

1 + 2

a(t)∫
a0

H(r)dr.

From the last inequality:

a′(t) ≥

a2
1 + 2

a(t)∫
a0

H(r)dr

1/2

. (A.0.10)

Writing (A.0.10) in the form

d

dt

a(t)∫
a0

a2
1 + 2

s∫
a0

H(r)dr

−1/2

ds ≥ 1.

Finally integrating the last inequality and see that the inequality (A.0.8) holds true.

Lemma A.0.7. (see [25]) Let Ψ(t) be a positive, twice differentiable function,which satisfies,

for t > t0 ≥ 0, the inequality

Ψ
′′
(t)Ψ(t)− (1 + α)

[
Ψ
′
(t)
]2

≥ 0 (A.0.11)

with some α > 0.

If Ψ(t0) > 0 and Ψ′(t0) > 0, then there exists a time

T0 ∈ (t0, T1), T1 =
Ψ(t0)

αΨ′(t0)
+ t0

such that

Ψ(t)→ +∞ as t→ T−0 . (A.0.12)
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Proof. Consider the function

Φ(t) := Ψ−α(t).

It is clear that

Φ′(t) = −αΨ(−α−1)(t)Ψ′(t) (A.0.13)

and

Φ′′(t) = α(α + 1)Ψ(−α−2)(t)(Ψ′(t))2 − αΨ(−α−1)Ψ′′(t)

= −αΦ(−α−2)(t) [Φ′′(t)Φ(t)− (1 + α)(Φ′(t))] . (A.0.14)

Thus thanks to the condition (A.0.11)

Φ
′′
(t) = −α

[
Ψ
′′
(t)Ψ(t)− (1 + α)

[
Ψ
′
(t)
]2
]
≤ 0.

Therefore the function Φ(t) is a concave function.

Figure A.1.
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Since

Φ(t0) = Ψ−α(t0) > 0 (A.0.15)

and

Φ′(t0) = −αΨ(−α−1)(t0)Ψ′(t0) < 0

the function Φ(t) must tend to zero as t→ T−0 for some T0 > t0 (see Fig. 1).

Hence Ψ(t) must tend to∞ as t→ T−0 .

Lemma A.0.8. (see e.g. [51])Let twice continuously differentiable function Ψ(t) satisfies for

each t ≥ 0 the inequality

Ψ′′(t)Ψ(t)− (1 + α) [Ψ(t)]2 ≥ 2C1Ψ(t)Ψ′(t)− C2Ψ2(t) (A.0.16)

and

Ψ(0) > 0,Ψ′(0) > −γ2α
−1Ψ(0), (A.0.17)

where α > 0, C1, C2 ≥ 0, C1 + C2 > 0 and γ2 = −C1 −
√
C2

1 + αC2. Then there exists

t1 ≤ T1 =

(
2
√
C2

1 + αC2

)−1

ln
γ1Ψ(0) + αΨ(0)

γ2Ψ(0) + αΨ′(0)
,

with γ1 = −C1 +
√
C2

1 + αC2 such that

Ψ(t)→∞ as t→ t−1 .

If Ψ(0) > 0,Ψ′(0) > 0 and C1 = C2 = 0, then there exists

t2 ≤ T2 =
Ψ(0)

αΨ′(0)
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such that

Ψ(t)→∞ as t→ t−2 .

Proof. Make the notation

Φ(t) = Ψ−α(t).

Then

Φ′(t) = − αΨ′(t)

Ψ1+α(t)
, Φ′′(t) = −αΨ′′(t)Ψ(t)− (1 + α) [Ψ′(t)]2

Ψ2+α(t)
.

Thus it follows from (A.0.16) that the function Φ(t) satisfies the differential inequality

Φ′′(t) + 2C1Φ′(t)− αC2Φ(t) ≡ f(t) ≤ 0. (A.0.18)

Integrating this equation for C1 + C2 > 0:

Φ(t) = β1e
γ1t + β2e

γ2t + (γ1 − γ2)−1

∫ t

0

[
eγ1(t−τ) − eγ2(t−τ)

]
dτ ≤ β1e

γ1t + β2e
γ2t.

The numbers β1 and β2 are solutions of the system

β1 + β2 = Φ(0),

β1γ1 + β2γ2 = Φ′(0),

i.e.

β1 = (γ1 − γ2)−1 [Φ′(0)− γ2Φ(0)] = −(γ1 − γ2)−1 [αΦ′(0) + γ2Ψ(0)] Ψ−1−α(0) > 0,

β2 = (γ1 − γ2)−1 [αΦ′(0)− γ1Φ(0)] Ψ−1−α(0) > 0.

Thus from the assumptions of the Lemma A.0.8 it follows that Φ(t) tends to zero as t tends
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to some t1 ≤ t2 = (γ1 − γ2)−1 ln(−β2/β1). Hence

Ψ(t)→∞ as t→ t1.

Lemma A.0.9. (see e.g. [5]) Suppose that a non-negative function Ψ(t) ∈ C2[0, T ] satisfies

the inequality,

Ψ′′(t)Ψ(t)− (1 +α)(Ψ′(t))2 + γΨ′(t)Ψ(t) +βΨ(t) ≥ 0, α > 0, β ≥ 0, γ ≥ 0, (A.0.19)

and Ψ(0) > 0. Suppose also that the conditions

Ψ′(0) >
γ

α− 1
Ψ(0), (A.0.20)

A0 :=
(

Ψ′(0)− γ

α
Ψ(0)

)2

− 2β

2α
Ψ(0) (A.0.21)

are satisfied. Then the time T > 0 cannot be arbitrarily large:

The inequality T ≤ T∞ ≤ Ψ−α(0)A−1 holds, where A is given by the equality

A2 = (α)2Ψ−2(1+α)(0)A0 > 0.

Moreover in this case,

lim sup
t→T−

Ψ(t) = +∞.

Proof. Dividing both sides of the inequality (A.0.19) by Ψ2+α and using the equality

Ψ′′(t)Ψ(t)− (1 + α)(Ψ′(t))2

Ψ2+α(t)
=

(
Ψ′(t)

Ψ1+α(t)

)′
,

we obtain

(
Ψ′(t)

Ψ1+α(t)

)′
+ γ

Ψ′(t)

Ψ1+α(t)
+ β

1

Ψ1+α(t)
≥ 0.
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The last inequality is equivalent to the inequality:

− 1

α
(Ψ−α(t))′′ − γ

α
(Ψ−α)′ + βΨ−1−α(t) ≥ 0. (A.0.22)

It follows from (A.0.22) that the function Z(t) = Ψ−α(t) satisfies the inequality

Z ′′(t) + γZ ′(t)− β(α)Zα1(t) ≤ 0, (A.0.23)

where α1 = 1+α
α
. Introducing now a new function Y (t) = eγtZ(t), and by using (A.0.23) we

can write

Y ′′(t)− γY ′(t)− βαe−δtY α1(t) ≤ 0, δ =
γ

α
. (A.0.24)

We now note that

Y ′(t) =
(
Ψ−α(t)eγt

)′
= αΨ−1−α(t)eγt

(
−Ψ′(t) +

γ

α
Ψ(t)

)
. (A.0.25)

Thanks to the condition (A.0.20), Ψ′(0) > γ
α

Ψ(0) there exits t0 > 0 such that the inequality

Ψ′(t) >
γ

α
Ψ(t)

is satisfied for all t ∈ [0, t0). Hence, taking relations (A.0.25) into account, Y ′(t) < 0 for

t ∈ [0, t0). Because −γY ′(t) ≥ 0 for t ∈ [0, t0), the inequality

Y ′′(t)− βαe−δtY α1(t) ≤ 0, δ =
γ

α
(A.0.26)

follows from inequality (A.0.24) for t ∈ [0, t0). Multiply both sides of (A.0.26) by Y ′(t) and

obtain the inequality

Y ′(t)Y ′′(t)− βαe−δtY α1(t)Y ′(t) ≥ 0 (A.0.27)



82

for t ∈ [0, t0). Note that

e−δtY α1(t)Y ′(t) =
d

dt
(e−δtY 1+α1(t)) + δe−δtY 1+α1(t)− α1e

−δtY α1(t)Y ′(t).

The last equality writing in the form:

e−δtY α1(t)Y ′(t) =
1

1 + α1

d

dt

(
e−δtY 1+α1(t)

)
+

1

1 + α1

δe−δtY 1+α1(t).

Utilizing this relation in (A.0.27) and obtain the inequality

Y ′(t)Y ′(t)− βα

1 + α1

d

dt
(e−δtY 1+α1(t))− β(α− 1)

1 + α1

δe−δtY 1+α1(t) ≥ 0

for t ∈ [0, t0). The last inequality implies:

1

2

d

dt
(Y ′(t))

2 − βα

1 + α1

d

dt

(
e−δtY 1+α1(t)

)
≥ 0, ∀t ∈ (0, t0).

Integrating this inequality:

(Y ′(t))2 ≥ A2 +
2βα2

2α
e−δtY 1+α1(t) ≥ A2, (A.0.28)

where

A2 = (Y ′(0))
2 − 2βα2

2α
e−δtY 1+α1(0) = α2Ψ−2−2α(0)A0 > 0. (A.0.29)

Using inequalities (A.0.28) and (A.0.29), concludes that Y ′(t) ≤ −A < 0, ∀t ∈ [0, t0).

Hence Y ′(t0) < 0. Clearly Y ′(t) < 0,∀t ∈ [0, T ]. Consequently,

Ψ−α(t) ≤ e−γt(Ψ−α(0)− At), ∀t ∈ [0, T ].

Therefore Ψ(t) ≥ e
γt
α

(Ψ−α(0)−At)−
1
α
. So the function Ψ(t) must tend to +∞ as t → t0 ≤

Ψ−α(0)A−1.


