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ABSTRACT 
 

 

NONLINEAR DYNAMICS AND POSSIBLE CHAOTICITY IN CONDENSED 

MATTER SYSTEMS 
 

Possible chaotic behavior in the transient current through a sample of As2S3(Ag) and 

As2Se3(Al) thin films was examined with time series analysis, rescaled range (R/S) 

analysis  and 𝑞𝑞-Gaussian analysis. R/S analysis shows that there are two regimes of fractal 

behavior; one seems like because of short time scale relaxation and the other one seems 

like because of long term chaotic behavior. The mutual information data indicate the 

necessity of noise reduction using a moving average. Extending the moving average 

window gives correspondingly large delay times as expected. The indicated delay time 

starts at 20s and grows up to 250s. The false nearest neighbor results also indicate a value 

around 10. A robust increase in the Lyapunov exponent stretching graphs confirms long 

term chaos; the result is not sensitive to the precise values of the delay time and embedding 

dimension. In the 𝑞𝑞-Gaussian analysis, the fitted long tailed and peaked 𝑞𝑞-Gaussian curves 

are completely different from a normal Gaussian. 𝑞𝑞 values greater than one show that the 

results are consistent with the chaos analysis results. 

 



v 

ÖZET 
 

 

DOĞRUSAL OLMAYAN DEVİMBİLİM VE YOĞUN ÖZDEK DİZGELERİNDE 

OLASI KAOSSALLIK 

 

As2S3(Ag) ile As2Se3(Al) ince film örneklerinden geçen geçici akımlardaki olası kaossal 

davranış zaman serileri çözümlemesi, yeniden-boyutlandırılmış aralık (R/S) çözümlemesi 

ve 𝑞𝑞-Gaussyan (𝑞𝑞-Gaussian) çözümlemesi ile incelenmiştir. R/S çözümlemesi iki fraktal 

düzenin olduğunu göstermiştir; biri kısa erimli gevşemeden, diğeri de uzun erimli kaossal 

davranıştan ileri geliyor gibi görünmektedir. Ortak bilgi verileri, hareketli ortalamayla 

gürültü azaltmaya gereksinimi göstermektedir. Belirtilen gecikme zamanları 20sn’de 

başlayıp 250sn’ye kadar ilerlemektedir. Yanlış en yakın komşu incelemesi de 10 civarını 

göstermektedir. Lyapunov üstellerindeki sert yükseliş uzun erimli kaosu  işaret etmekte 

olup sonuçlar gecikme zamanlarına ve gömülü boyuta hassas değildir. 𝑞𝑞-Gaussyan 

çözümlemesinde uydurulmuş 𝑞𝑞-Gaussyan eğrileri uzun kuyruklarıyla ve sivri tepeleriyle 

olağan Gaussyan eğrisinden oldukça farklı olarak elde edildi. Birden büyük 𝑞𝑞 katsayı 

değerleri bu son sonçların ilk elde edilen sonuçlarla tutarlı olduklarını göstermektedir. 
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1. INTRODUCTION 
 

Karl Popper, in his famous book The Logic of Scientific Discovery, says that he believes 

that there is a main philosophical problem which all thinking people are interested in: “The 

problem of cosmology: the problem of understanding the world –including ourselves, and 

our knowledge, as part of the world” [1]. He believes that all science is cosmology. Indeed, 

we can see the history of all kinds of sciences and philosophy as a part of understanding 

the world, or of cosmology.  

In the very beginning of the history of western cosmology, as Hesiod tells, chaos was 

thought as the origin of the universe in the sense that the infinite crude and unshaped space 

which existed before the universe had converged with the harmony and order [2]. After 

over two thousands of years, we reclaim the word of chaos to be a part of our 

understanding the universe and nature. Chaos describes a disordered state, in general. 

However, in today’s science, chaos implies a deeper meaning that is going to be explained 

in more detail in the next chapters.  

By the developments in nonlinear dynamics, many studies have been done; especially the 

interdisciplinary ones have found the chance to stand, since the nature behaves nonlinearly 

and it lives everywhere from biology, chemistry, physics to social movements, finance and 

atmosphere. Although the chaos theory is in its infancy stage, it seems to stand up and 

begin to walk in the future.  

We aimed in this study to briefly review the theory of chaos and to study the possible 

chaotic behavior in the transient current through thin films made of As2S2(Ag) and 

As2Se2(Al). Such dielectric materials are known to show irregular current characteristics 

under constant electric field or voltage. In the present study, the current through the 

corresponding thin films as a function of time is analyzed for chaoticity. The data were 

taken by a computerized data acquisition system. We analyzed the data using time series 

analysis for chaoticity, and further analysis was done by the method of q-statistics.  

The plan of the thesis is as follows: In chapter two, historical and theoretical background 

on the dynamics and the nonlinear dynamics are given. In chapter three, a brief theoretical 

review is given for the diffusion and the diffusion in condensed matter. In chapter four, 
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theoretical background of nonextensive statistical mechanics and the generalization of the 

classical statistical mechanics are given. In chapter five, theoretical background on the 

analysis methods of the nonlinear time series used in the present study is given. In chapter 

six, the experiment and the chaos analysis are presented. In the seventh chapter, q-

Gaussian analysis of the data is presented. Finally, chapter eight contains the conclusion of 

the study. 
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2. NONLINEAR DYNAMICAL SYSTEMS 
 

2.1. A BRIEF HISTORY OF DYNAMICS 

For our modern understanding of physics, the first main step came by Newton’s 

discoveries on differential equations, laws of motions and universal gravitation in the 

seventeenth century. He solved the two-body problem, specifically, the motion of the earth 

around the sun. After Newton, people put lots of effort on the table to solve the three-body 

problem. Approximately two hundred years passed with no remarkable achievements on 

the subject. Three-body problem seemed to be impossible to solve. In late 1800s, Poincaré 

showed that it cannot be solved. 

In the nineteenth century, Poincaré suggested a new idea about the way of approaching this 

problem. Instead of asking the exact positions of the objects of a system in the space, he 

asked if the system is stable for all times or not. He developed a strong geometric approach 

for those kinds of system behaviors that are hard to handle. Poincaré did not discover 

chaos, but he prepared the ground. 

Although chaos phenomenon was not discovered deeply, physicists’ understanding of 

nonlinear oscillations played a great role for the technology. Many technological 

developments such as radio, radar, lasers etc. were achieved. 

The developments of high-speed computers played a vital role in the studies of dynamics, 

because lots of data and calculations could be analyzed by the computers in a way which 

was not possible before. In the following period, 1920-1960, important scientists such as 

Birkhoff, Kolmogorov, Arnold and Moser made significant contributions in classical 

mechanics. They studied complex behavior in Hamiltonian mechanics. In 1963, Edward 

Lorenz, who was a mathematician in MIT, published his famous paper in a journal about 

atmospheric sciences: Deterministic Nonperiodic Flow [3]. He discovered the chaotic 

motion on a strange attractor. He studied on a simple system representing cellular 

convection and he solved it numerically. He found all the solutions were unstable and 

nonperiodic. He also observed the sensitive dependence on the initial conditions. If an even 

very small difference was made in the simulation, he found that the results became totally 
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different. He argued that the long term prediction is impossible for the chaotic systems 

whether the system is deterministic or not. 

Since Lorenz’s paper was published in a journal for atmospheric science, physicists and 

mathematicians did not realize it and its importance for a few years. In 1970s, some 

significant developments had come. Ruelle and Takens suggested a new theory about 

turbulence in fluids based on abstract considerations about the strange attractors. Robert 

May found examples of chaos in the logistic map of biological population growth. In 1978, 

Feigenbaum discovered the universal laws governing the transition from normal behavior 

to chaotic behavior. He made the connection between chaos and phase transitions. 

Experimental studies of chaos in fluids, electronic circuits, chemical reactions, mechanical 

oscillators etc. were done largely.  

In late 1970s, Mandelbrot came with computer graphics of fractals and showed how they 

could be applied in different subjects. His quote which was the turning point of his thought 

has become famous: “How long is the coast of Britain?” [4]. His ideas about fractal 

geometry structured on this question, and as it can be seen on his fractal images, he came 

up with the point of view that implies the following: The distance of the coast depends on 

the dimension of the ruler. 

1980s passed with widespread studies in chaos, fractals, oscillations and their applications. 

1990s also passed more with engineering applications of chaos and complex systems. 

In 2000s, chaotic studies in network systems (neural, economics, internet etc.) had 

dominant importance. 

2.2. REPRESENTATION OF DYNAMICAL SYSTEMS 

Everything we can think in the real world is a dynamical system; solar system, human 

body, a flying bee, everything. To be able to understand the systems and to be able to 

control them, we first need to translate the language of nature, the language of the natures 

of these systems to a language that we can understand and study on: mathematics.  
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There are two main types of expression for dynamical systems: differential equations for 

continuous time domains and iterated maps for discrete time domains. Through Newton, 

by differential equations we have come a long way in understanding and expressing 

dynamical systems. Differential equations are used in science and engineering studies, but 

by iterated maps, or in other name the difference equations, we developed our success in 

studying nonlinear systems. It was impossible to solve the problems of chaotic behavior by 

differential equations only. 

A dynamical system can be represented simply as follows (1-D case): 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥)      (2.1) 

 

where 𝑥𝑥 represents the space coordinates and 𝑡𝑡 is the time. Although any system in the 

world is actually a three dimensional dynamical system; for instance a simple electrical 

circuit can be approached as a one dimensional dynamical system, a pendulum can be 

approached as a two dimensional one etc. In general, a system can be represented as a set 

of differential equations for each dimension: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)     (2.2) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)     (2.3) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)     (2.4) 

 

The right-hand-sides are arbitrary functions (linear or nonlinear). If all these together with 

sufficient initial or boundary conditions are defined, then we can say that the system is 

completely defined, and the problem is a well posed one. 

A differential equation can be solved in two ways: explicitly or by numerical methods. 

Numerical solving gives an approximate solution. Here, the ways of solving are not going 

to be looked. The differential equation describes the evolution of the system in time. The 

solution may yield such a result as shown in the following figure: 
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Figure 2.1. The evolution of a system in spacetime. 

 

The trajectory begins at a chosen initial condition for all the coordinates. The evolution of 

the system at any point can be understood from the differential equation by placing the 

corresponding condition values as a new initial condition to the right-hand-side of the 

equation; the result shows how much evolution will be seen in each coordinate. 

 

 
 

Figure 2.2. The state space of a system. 

 



7 
 

The differential equation describes an arrow at any point in the state space (Fig. 2.2). Thus, 

it can be known that for each point on the space to which direction the evolution takes 

place. This is determined by the system. In the phase space, there are arrows everywhere 

like a stream. Each point represents the behavior of the system in the phase space. Since it 

seems like a stream, set of differential equations are also called a flow. (There can be also a 

sink as we will look in the next pages.) 

2.2.1. Linearization: A Tool to analyze the behaviors 

Linearization (also known as linear approximation) method has been used as a very useful 

tool for the analysis of differential equations, particularly near an equilibrium point. 

Although it does not say anything about far points from the point that we interested in, for 

the understanding of the behavior of the system about the point, it gives a quick idea to us.  

The technique can be described on an example system as following: 

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥,𝑦𝑦)      (2.5) 

�̇�𝑦 = 𝑔𝑔(𝑥𝑥,𝑦𝑦)      (2.6) 

 

(The dot on the variable means that it is the first derivative with respect to time.) 

If, say, (𝑥𝑥0,𝑦𝑦0) is an equilibrium point of the system, we can approximate and so find a 

closest linear system to our system around the point. To do this, the functions of the system 

can be expanded in series. Neglecting the terms higher than first order yields 

 

𝑓𝑓(𝑥𝑥,𝑦𝑦) ≈ 𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + 𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑥𝑥 − 𝑥𝑥0) + 𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑦𝑦 − 𝑦𝑦0)  (2.7) 

𝑔𝑔(𝑥𝑥,𝑦𝑦) ≈ 𝑔𝑔(𝑥𝑥0,𝑦𝑦0) + 𝜕𝜕𝑞𝑞
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑥𝑥 − 𝑥𝑥0) + 𝜕𝜕𝑞𝑞
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑦𝑦 − 𝑦𝑦0)  (2.8) 

 

Since (𝑥𝑥0,𝑦𝑦0) is the equilibrium point, 𝑓𝑓(𝑥𝑥0,𝑦𝑦0) = 𝑔𝑔(𝑥𝑥0,𝑦𝑦0) = 0. So the system is 

 

�̇�𝑥 = 𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑥𝑥 − 𝑥𝑥0) + 𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑦𝑦 − 𝑦𝑦0)   (2.9) 

�̇�𝑦 = 𝜕𝜕𝑞𝑞
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑥𝑥 − 𝑥𝑥0) + 𝜕𝜕𝑞𝑞
𝜕𝜕𝑑𝑑

(𝑥𝑥0,𝑦𝑦0)(𝑦𝑦 − 𝑦𝑦0)            (2.10) 
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The equations can be organized into a matrix equation and the coefficient matrix of the 

system would be then the Jacobian matrix. The Jacobian matrix is the matrix of all first-

order partial derivatives of a vector-valued function.  

By linearizing, we can investigate the stability of a system and get quantitative measures, 

for instance, the rate of decay etc.  

Linearization is not enough to understand the world that we analyze every time. If, for 

instance, for this example, the terms that we neglect are not negligible, then we need some 

other techniques. Graphical methods are useful for such times.  

2.3. PHASE PLANE AND VECTOR FIELDS 

A phase space for a system is the space that includes all possible states of the system. Each 

possible state is represented by a point in the phase space. In a phase space, a two 

dimensional system is called a phase plane. Since each point can serve as an initial point, 

the phase plane is full of trajectories. Thus the phase plane is also seen as a vector field. It 

is usually impossible to get the trajectories analytically. So, for a more qualitative idea, the 

phase plane method is used.  

Once the phase portrait of a system is found, four important features can be seen easily: the 

fixed points, the closed orbits, the behavior of the system near the fixed points and closed 

orbits, and the stability or instability of the fixed points and closed orbits. 

A linear system can be expressed as 

 

�𝛿𝛿�̇�𝑥𝛿𝛿�̇�𝑦� = �

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑑𝑑

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑑𝑑

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑑𝑑

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑑𝑑

� �𝛿𝛿𝑥𝑥𝛿𝛿𝑦𝑦�    (2.11) 

 

and can be solved analytically. More often,  they are solved with the coefficients of the 

right hand side written in matrix form, known as the Jacobian matrix, using eigenvalues 𝜆𝜆, 

given by the determinant (known as the characteristic equation), 

 
det(𝐽𝐽 − 𝜆𝜆𝐼𝐼) = 0     (2.12) 

 

http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Vector-valued_function
http://en.wikipedia.org/wiki/Eigenvalues
http://en.wikipedia.org/wiki/Determinant
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where the 𝐽𝐽 is the Jacobian matrix; with eigenvectors 
 

𝐽𝐽�⃗�𝑥 = 𝜆𝜆𝑥𝑥.      (2.13) 
 

The general solution is: 
 

𝑥𝑥 = �𝑘𝑘1𝑘𝑘2
� 𝑐𝑐1𝑒𝑒𝜆𝜆1𝑑𝑑 + �𝑘𝑘3𝑘𝑘4

� 𝑐𝑐2𝑒𝑒𝜆𝜆2𝑑𝑑    (2.14) 

 

where 𝜆𝜆1 and 𝜆𝜆2 are the eigenvalues, and (𝑘𝑘1,𝑘𝑘2), (𝑘𝑘3,𝑘𝑘4) are the basic eigenvectors, 𝑐𝑐1 

and 𝑐𝑐2 are arbitrary coefficients. The characteristic equation yields 

 

𝜆𝜆2 − 𝜏𝜏𝜆𝜆 + Δ = 0,     (2.15) 

 

where  

 

𝜏𝜏 = 𝑡𝑡𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒(𝐽𝐽),      (2.16) 

𝛥𝛥 = 𝑑𝑑𝑒𝑒 𝑡𝑡(𝐽𝐽).      (2.17) 

 

Thus, the explicit solutions for the eigenvalues are written as 

 

𝜆𝜆 = 1
2
�𝜏𝜏 ± √𝜏𝜏2 − 4𝛥𝛥�    (2.18) 

 

The eigenvectors and the nodes determine the profile of the trajectories on the vector field. 

According to the eigenvalues, the systems manifest themselves as follows: 

i. If any 𝜆𝜆 > 0, the system is unstable (Fig. 2.3.a); 

ii. if all 𝜆𝜆 < 0, the system is stable (Fig. 2.b); 

iii. if 𝜆𝜆1 > 0 and 𝜆𝜆2 < 0, the origin would be a saddle point, that is, the first 

eigensolution grows exponentially while the second one decays (Fig. 2.3.c); 

iv. if eigenvalues are complex, then the fixed point either a center (Fig. 2.3.d) or a 

spiral (Fig. 2.3.e and Fig. 2.3.f). The spirals can either be a source (Fig. 2.3.e) 

or a sink (Fig. 2.3.f). 

 

http://en.wikipedia.org/wiki/Eigenvectors
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Figure 2.3. Vector fields of representative systems. 

 

In the following representative graphs (Figure 2.4.a, b, c), the behaviors of the systems in 

Figures 2.3.d, e, f can be seen in time domains respectively: 

 

 

 

Figure 2.4. Time domain behavior of various two dimensional systems. 
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2.4. LIMIT CYCLES 

How can two spirals be nested? The only possibility of such a situation is that there is a 

limit cycle between them. A limit cycle is an isolated closed path. It is isolated, because 

neighboring paths are not closed. If all the neighboring trajectories approach to the limit 

cycle as time approaches infinity, it is called a stable limit cycle (also called as attracting 

limit cycle) (see Fig. 2.5.a). In the reverse situation the limit cycle is unstable (Fig. 2.5.b). 

If there is a neighboring trajectory which spirals into the limit cycle as time goes infinity 

and another one which spirals into the origin or moves away from the limit cycle as time 

goes infinity, then it is a half-stable limit cycle (Fig. 2.5.c).  

 

 

 
Figure 2.5. Representative limit cycles [5]. 

 

Stable limit cycles are examples of attractors and they are very important in life. For 

instance, if our heart’s behavior would not have a limit cycle, it will not go back to its 

normal rhythm once we run. The difference between the limit cycles and the normal closed 

orbits is that any small perturbation given to the system results with return of the system to 

the standard cycle (limit cycle). In closed orbits, if any perturbation is given to the system, 

the system goes to a new orbit and stays there until any other perturbation will be given. 

The limit cycle phenomenon shows how stable oscillations are created in nature. Although 

sinusoidal periodic oscillations are characteristic of linear systems, stable oscillations with 

multiple periodicities that depend on the amplitude are usually characteristics of nonlinear 

systems.  
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For a better understanding some examples of cycles are given by the representative figures 

below: 

 

 

 
Figure 2.6. Examples of cycles represented in both state spaces and graphs in time 

domain. 

 

In Fig. 2.6.a, a normal closed orbit and its behavior in time domain are given; in Fig. 2.6.b, 

a period-II limit cycle is given. Of course, it is just a projection of a period-II limit cycle, 

since such a cycle can only occur in three-dimension; because, there cannot be two arrows 

in one point, or trajectories cannot overlap (existence and uniqueness theorem). There can 

also be period-“more-than-two” limit cycles. Period infinity orbit is also possible. Period 

infinity means that it never comes to itself, or comes to itself at infinity. Bounded periodic 

infinite orbits imply the chaos as it will be seen in the following chapters.  
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2.5. ATTRACTORS I: LORENZ SYSTEM 

In real physical world, any dynamical system is a dissipative system. The dissipation and 

the driving force tend to cancel out the system into its normal behavior. The subset of 

the phase space of the dynamical system corresponding to the normal behavior is the 

attractor. Actually, a strict mathematical definition of an attractor has not been universally 

agreed upon. However, in other words, it can be said that an attractor is a set of properties 

toward which a system tends to evolve, no matter what the initial conditions of the system 

are. Mathematically speaking, it can be said that this is the invariant subset 𝐴𝐴 of a phase 

space ℝ𝑛𝑛 of the differential equation 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥),      (2.19) 

 

where 𝑥𝑥 ∈ ℝ𝑛𝑛, which is approached as time goes to infinity, is called an attractor. An 

attractor can be a point, a finite set of points, a curve, a manifold or even a complicated set 

with a fractal structure known as a strange attractor. 

2.5.1. Lorenz Equations 

In 1963, the M.I.T. meteorologist Edward Lorenz developed a simplified model of 

convection rolls in the atmosphere. He developed the equations of his system as a model 

for the modal amplitudes in a nonlinear thermal convection problem, as it was said. Lorenz 

discovered that for some values of parameters, the solutions of the equations of the system 

exhibit an unusual form of behavior that is called chaos today.  

The Lorenz equations: 

 

�̇�𝑥 = 𝜎𝜎(𝑦𝑦 − 𝑥𝑥),      (2.20.a) 

�̇�𝑦 = 𝑟𝑟𝑥𝑥 − 𝑦𝑦 − 𝑥𝑥𝑧𝑧,     (2.20.b) 

�̇�𝑥 = 𝑥𝑥𝑦𝑦 − 𝑏𝑏𝑧𝑧,      (2.20.c) 

 

where 𝜎𝜎, 𝑟𝑟 and 𝑏𝑏 are positive parameters.  

 

http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Point_(geometry)
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Manifold
http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Attractor%23Strange_attractor
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The equilibrium points of the system are 

 

𝐴𝐴 = (0,0,0),      (2.21) 

𝐵𝐵 = ��𝑏𝑏(𝑟𝑟 − 1),�𝑏𝑏(𝑟𝑟 − 1), (𝑟𝑟 − 1)�,    (2.22) 

𝐶𝐶 = �−�𝑏𝑏(𝑟𝑟 − 1),−�𝑏𝑏(𝑟𝑟 − 1), (𝑟𝑟 − 1)�.    (2.23) 

 

If 𝑟𝑟 is less than 1, �𝑏𝑏(𝑟𝑟 − 1) is imaginary. The position of the equilibrium point must be 

real, so 1 is a critical value for 𝑟𝑟. That is, when 𝑟𝑟 is less than 1, the equilibrium points 𝐵𝐵 

and 𝐶𝐶 do not exist. Once 𝑟𝑟 reaches the value 1, 𝐵𝐵 and 𝐶𝐶 appear. The point 𝐴𝐴 is always 

there as it can be seen. If one wants to say more about the behavior of the system, stability 

analysis of the equilibrium points is needed. 

Jacobian matrix of the system is given by 

 

𝐽𝐽 = �
−𝜎𝜎 𝜎𝜎 0

−𝑧𝑧 + 𝑟𝑟 −1 −𝑥𝑥
𝑦𝑦 𝑥𝑥 −𝑏𝑏

�     (2.24) 

 

The matrix simplifies to the following one at (0,0,0): (𝐴𝐴); 

 

𝐽𝐽 = �
−𝜎𝜎 𝜎𝜎 0
𝑟𝑟 −1 0
0 0 −𝑏𝑏

�      (2.25) 

 

Lorenz took the parameter values as 𝜎𝜎 = 10 and 𝑏𝑏 = 8
3
. The parameter 𝑟𝑟 can be changed 

and the change in behavior of the system may be observed. If the parameter values of 𝜎𝜎 

and 𝑏𝑏 are substituted and the eigenvalues are calculated, we get the following three 

eigenvalues: 

 

𝜆𝜆 =  −8
3

, −11±√81+40𝑟𝑟
2

     (2.26) 

 

All the eigenvalues are real (note that the parameters were assumed as positive), and this 

means that any motion starting at any point will go to the equilibrium point, even if the 
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system is unstable. For 𝑟𝑟 values less than 1, as it was specified, only the point 𝐴𝐴 exists. 

When 𝑟𝑟 reaches 1, other two equilibrium points come into play and the point 𝐴𝐴 loses its 

stability. 𝐴𝐴 becomes unstable, but in a specific way. In a particular direction it is unstable, 

the direction along the corresponding eigendirections. To understand which directions they 

are, one needs to calculate the new eigenvalues for the new equilibrium points. 

If the Jacobian matrix is calculated (for the same 𝜎𝜎 and 𝑏𝑏) for the point 𝐵𝐵, we get the 

following, say, for 𝑟𝑟 = 1: 

 

𝐽𝐽 = �
−10 10 0

1 −1 −�8/3
�8/3 �8/3 −8/3

�    (2.27) 

 

It yields three eigenvalues; one is real and negative and other two are complex conjugates 

with negative real parts. The other equilibrium point shows a similar result. The complex 

conjugate eigenvalues imply that there is an eigenplane lying in the space. The real and 

imaginary parts of the corresponding eigenvectors individually give solutions. The real part 

is simply a vector in the real space, and the real part of the imaginary part is also a real 

vector. Thus, a unique plane lies in the space which passes on these two vectors. Hence, 

there is an eigenplane coming from the two eigenvalues which are complex conjugates and 

there is an eigendirection coming from the real eigenvalue. It can be shown 

representatively in the following figure: 

 
Figure 2.7. An eigenplane and an eigendirection that together represent the behavior of a 

system. 
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Figure 2.8. Lorenz system for different 𝑟𝑟 values. Initial conditions are chosen arbitrarily to 

be 𝑥𝑥0 = 1, 𝑦𝑦0 = 8, 𝑧𝑧0 = 10, and they are the same for each graph. Parameters 𝑏𝑏 and 𝜎𝜎 are 

also same for each graph and 8/3 and 12.03 respectively; 𝑟𝑟 is 13.04 in (a), 20.5 in (b) and 

30 in (c) [6]. 
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If any motion begins in the eigenplane, it stays on the plane and approaches the 

equilibrium point by a spiral trajectory. Any motion starting at a point out of the plane 

approaches the equilibrium point by a spiral trajectory that goes along the eigendirection. 

That is, the trajectory will be like a helix.  

There are two equilibrium points for 𝑟𝑟 values greater than 1; and so, there are two regions 

similar to each other. That is, two eigenplanes, two attractors exist. What happens to a 

motion that starts at any point in the space between these two attractors? Which one will be 

able to attract the motion? At this point an important concept is needed to be determined: 

basin of attraction. The basin of attraction of an attractor is the set of initial conditions 

leading to long-time behavior that approaches that attractor. So, here, the fate of the motion 

depends on the basin of attraction that the motion initially lies in. As the parameter 𝑟𝑟 

changes, the stable equilibrium points can lose their stability. The spirals that point 

outward can be formed and also the two eigenplanes that approach each other can overlap. 

Transitions can be observed from one plane to other one. Chaos can be formed. Figure 2.8 

represents the Lorenz system for different 𝑟𝑟 values. 

2.6. ATTRACTORS II: STRANGE ATTRACTORS 

The term strange attractor was coined by David Ruelle and Floris Takens [7]. The 

attractor they studied had a fractal structure, that is, a strange structure. “What is a fractal 

set?” is the question that we are planning to clarify in the following chapters. Although 

nonchaotic strange attractors also exist [8], usually a chaotic behavior is observed on a 

strange attractor. In simply saying, a strange attractor is an attractor that shows sensitive 

dependence on initial conditions. There are of course, many strange attractors like Rössler 

attractor, Henon attractor etc. Lorenz attractor is one of the basics. 

2.6.1. Lorenz Attractor 

Lorenz wanted to study on long term predictions on weather. He concluded after his study 

that long term prediction is very difficult. 
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He used numerical integration to observe the behavior in long term. As it was stated in the 

previous chapter, the parameters he chose were 𝜎𝜎 = 10, 𝑏𝑏 = 8
3
  and 𝑟𝑟 = 28. This value of 𝑟𝑟 

is the one that is just beyond the value for a fixed point that loses its stability as a pair of 

complex conjugate eigenvalues of the linearization around the corresponding fixed point. 

Such a phenomenon is called a bifurcation. Bifurcations are going to be reviewed in 

section 2.9, here, instead, the main idea beyond the strange attractor is going to be given. 

As it was given before, after an 𝑟𝑟 exceeds a value, the origin loses its stability and turns 

into a saddle point. Lorenz started his calculations (or iterations) from a point very near to 

this saddle point at the origin. He saw after a suitable time that the motion is an aperiodic 

motion. He discovered that the motion exhibits an interesting view on the phase plane. If 

one looks to the geometry of the system on the phase plane, for instance towards 𝑥𝑥 − 𝑧𝑧 

plane, one sees a “pattern that looks like a butterfly (see Figure 2.9). 

 

 
 

Figure 2.9. Representation of the Lorenz attractor on the phase plane [5]. 
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As it is stated in section 2.5.1., the two attractors overlap and form a new type of an 

attractor. The trajectory starts somewhere, for instance, as in the figure, near the origin, 

goes to the right and dives into the center of the left one, then stays a little bit of time and 

goes again to the right, and so on. The number of turns that the trajectory makes on either 

side is not certain. The behavior seems like a random process. However, it is not. The 

system is actually deterministic.  

2.6.2. Sensitive Dependence on Initial Conditions and Chaos 

When Lorenz ran the computer program to calculate his weather model again, he observed 

that the result were completely different. An even very small difference at the initial 

conditions gave totally different outcomes. Lorenz discovered that a pair of nearby 

trajectories can be found in later times at very different locations on the attractor. The 

effect was coined by him as sensitive dependence on initial conditions. This phenomenon 

is one of the main characteristics of chaos. Also, that phenomenon is the main reason why 

long term predictions about weather cannot be made. Figure 2.10 shows that two 

trajectories varying 1 percent in initial conditions exhibit immensely different behaviors 

after sometime.  

 

 
 

Figure 2.10. Two trajectories varying 1 per cent in initial conditions [9]. 
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To make it clear, a mathematical interpretation would be better. If �⃗�𝑥(𝑡𝑡) is a point on the 

attractor at time 𝑡𝑡 and �⃗�𝑥(𝑡𝑡) + 𝛿𝛿(𝑡𝑡) is a nearby point, where 𝛿𝛿 is a small seperation vector 

of initial length for instance�𝛿𝛿0� = 10−15. Lorenz found in his numerical studies that 𝛿𝛿 

grows exponentially fast with time in the appropriate direction (see Fig. 2.11): 

 

�𝛿𝛿(𝑡𝑡)� ≅ �𝛿𝛿0�𝑒𝑒𝜆𝜆𝑑𝑑,     (2.28) 

 

where 𝜆𝜆 ≅ 0.9 [5]. 

 

 
 

Figure 2.11. Two neighboring trajectories which separate in time [5]. 

2.6.2.1. Lyapunov Exponent 

As quantitatively seen above, in mathematics, the Lyapunov exponent (named after 

Aleksandr Lyapunov) of a dynamical system is a quantity that describes the rate of 

separation of infinitesimally close trajectories. That is, for Eq. 2.28, 𝜆𝜆 is the Lyapunov 

exponent. Although it is often called Lyapunov exponent, it is actually the Maximal 

Lyapunov exponent. The rate of separation can vary for different initial separation vectors. 

So, there is a spectrum of Lyapunov exponents and the number of these equal to the 

dimensionality of the phase space. Any 𝛿𝛿0 will typically contain some component in the 

direction associated with the Maximal Lyapunov exponent, and because of the exponential 

growth rate of it, the effect of the other exponents will seem like zero by the time. That is 

why the Maximal Lyapunov exponent is used as an indication for identifying the system if 

it is chaotic or not. If it is positive, the system is chaotic.  

 

http://en.wikipedia.org/wiki/Mathematic
http://en.wikipedia.org/wiki/Aleksandr_Lyapunov
http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Trajectory
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In such a situation, there presents a time horizon that indicates the time border which the 

things will be complicated beyond it. That is, the separation 𝛿𝛿(𝑡𝑡) will be so high that no 

prediction can be done any more after this time. Time horizon is given as 

 

𝑡𝑡ℎ𝑜𝑜𝑟𝑟𝑜𝑜𝑑𝑑𝑜𝑜𝑛𝑛 ≅ 𝑂𝑂(1
𝜆𝜆

ln 𝑎𝑎
�𝛿𝛿��⃗ 0�

).    (2.29) 

 
Since the time logarithmically depends on initial separation �𝛿𝛿0� even if the initial 

measurement errors are very small, after a couple of times of 1/𝜆𝜆, the prediction fails [5]. 

2.6.2.2. Smale’s Horseshoe 

Stephen Smale suggested thinking in a geometric way in order to understand the behavior 

of the strange attractors while he was studying the behavior of the orbits of the van der Pol 

oscillator [10]. Smale asked how the trajectories on the attractor endure in limited or 

bounded region of phase space while they continue to separate from neighboring 

trajectories. He introduced the horseshoe map that tells the mechanism of chaotic maps. 

The action of the map can be summarized in two words: stretching and folding. 

 

 
Figure 2.12. Horseshoe map [5]. 
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For instance, if we take a region R determined by the rectangle abcd (Fig. 2.12) and stretch 

it, we get a thin and long rectangle. If we fold the new rectangle as in Fig 2.12, we get a 

shape like a horseshoe. Here the horseshoe map does the action stitching and folding. If we 

keep going the same procedure, the region R will be preserved in a very long and thin 

shape as S1, S2, and S3 etc. If a horizontal cross section is taken of the resulting set S∞, 

which is the limiting set of the mapping that is done infinitely many times, a Cantor set 

would be obtained.  

As a result, for a horseshoe map, we can say that there are infinitely many periodic orbits 

whose number grows exponentially with the period; sensitive dependence of initial 

condition can be observed; the region is still kept bounded. 

2.6.2.3. Chaos 

As Strogatz says in his book [5], there is no universally accepted definition of chaos yet. 

However, we can say that “chaos is aperiodic long-term behavior in a deterministic system 

that exhibits sensitive dependence on initial conditions”. 

An attractor is a set where all neighboring trajectories converge to. If the behavior is 

sensitively dependent on initial conditions, then we call the attractor as a strange attractor, 

and there is chaos on the attractor.  

2.7. DISCRETE-TIME DYNAMICAL SYSTEM 

In reality, the time is continuous and so the behavior of the real dynamical systems, 

although some of them exhibits a behavior like it is in discrete-time steps. Even the 

dynamical systems are in continuous time, it is easier to handle them on the paper (or 

computer) as taking them in a mathematical formalization that makes it discrete-time 

dynamical system. It is clear that to work with an equation like 

 

𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛)      (2.30) 

 

is easier than to work with an equation like Eq. 2.1. 

A discrete-time dynamical system is actually a dynamical system, as stated above, whose 

state exhibits an evolution over state space in discrete-time steps. This evolution can occur 

 

http://mathinsight.org/dynamical_system_definition
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smoothly over time or in discrete-time steps. When a system is modeled as a discrete 

dynamical system, a snapshot of the system at a sequence of times is imagined. The 

snapshots may exist once a year, once every millisecond etc. The snapshots imply actually 

the variable that defines the state of the system.  

2.7.1. Poincaré Maps 

To find out the stability of an orbit like the one in Figure 2.13.a, we have a useful method 

which was suggested by Poincaré. It is supposed that there is an imaginary plane in the 

state space that intersects with the orbit. Any trajectory near that orbit in the state space can 

pass through the imaginary plane and there occurs, say, dots where the trajectories intersect 

with the plane. The following is clear: If the orbit in Figure 2.13.a is a stable orbit, any 

motion that can start near it, as in Figure 2.13.b, will approach to that closed orbit, and the 

intersection dots of the trajectories will also converge to the point of intersection that 

belongs to the corresponding orbit. The imaginary plane is called as Poincaré section. The 

sequence of points can be considered as a map derived from the orbit. 

 

 

 
Figure 2.13. The Poincaré section method. 
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The Poincaré section method thus takes the continuous time orbit to the level of map, 

discrete-time phenomena. For the sake of mathematical language, Poincaré mapping can 

be defined as follows: 

Let �̇⃗�𝑥 = 𝑓𝑓(�⃗�𝑥) be an 𝑛𝑛-dimensional system and let 𝑆𝑆 be a𝑛𝑛 − 1 dimensional surface of 

section (Poincaré section) that transverse to a flow. The Poincaré map, 𝑃𝑃 is a mapping 

from 𝑆𝑆 to itself, obtained by iterative paths from one intersection with 𝑆𝑆 to the next. If 𝑥𝑥𝑘𝑘 ∈

𝑆𝑆 is the 𝑘𝑘′th intersection, then the Poincaré map is 

 

�⃗�𝑥𝑘𝑘+1 = 𝑃𝑃(�⃗�𝑥𝑘𝑘) .     (2.31) 

 

Note that if there is such a point �⃗�𝑎 that gives the result 𝑃𝑃(�⃗�𝑎) = �⃗�𝑎, then it is a fixed point 

which implies that if a trajectory starts at �⃗�𝑎, it comes back to itself [5]. 

If there is a problem about closed orbits which is hard to handle, it usually becomes easier 

by this method as it turns into a problem about fixed points of mapping. Essentially, this 

method transforms a differential equation to a form of Eq. 2.30, or transforms a flow to a 

map. By this simplifying method, a difficult problem that includes complicated 

nonlinearities can be reduced to another problem. The local linear neighborhood of the 

map (for instance Fig. 2.13.a) and the stability of this fixed point can be analyzed as doing 

it for an equilibrium point.  

2.7.1.1. Stability of Periodic Orbits 

To analyze stability of periodic orbits, there are two widely used methods which are going 

to be given respectively; linear stability analysis and the cobweb construction. 

Linear Stability Analysis: As stated above, the stability of periodic orbits can be analyzed 

by the linear stability approach that is achieved by the mapping method. There are two 

types of systems: Autonomous and non-autonomous. First one implies that there is no time 

dependence and the second one means that there is time dependence. First, stability of 

autonomous systems is going to be given, then the latter. 

If a system �̇⃗�𝑥 = 𝑓𝑓(�⃗�𝑥) with a closed orbit is wanted to be analyzed, the corresponding fixed 

point �⃗�𝑥𝑓𝑓 of the map can be analyzed just as the methods used in chapter 2.3.  
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Suppose 𝑃𝑃��⃗�𝑥𝑓𝑓� = �⃗�𝑥𝑓𝑓 is the Poincaré map of the fixed point. The linearization of the map 

about �⃗�𝑥𝑓𝑓 is 

 

𝜉𝜉𝑘𝑘+1 = 𝐷𝐷𝑃𝑃��⃗�𝑥𝑓𝑓�𝜉𝜉𝑘𝑘.     (2.32) 

 

If all eigenvalues of 𝐷𝐷𝑃𝑃 are less than one, then the fixed point 𝑥𝑥𝑓𝑓 is asymptoticaly stable, 

and so is the corresponding periodic orbit. If so, then the fixed point 𝑥𝑥𝑓𝑓 is an attractor of 

the map, and the periodic orbit is an attractor of the vector field. The other possibilities of 

the analysis go by the rules defined in the end of the section 2.3. In addition, there is one-

to-one correspondence between the actual trajectories in the state space and their 

mappings, their projections on the Poincaré map: For example, if there are two stable 

points, then there is a period-II periodic orbit; if there are three stable points, that means 

there is period-III periodic orbit; and if there are infinitely many stable points, then there is 

a chaotic orbit. 

For non-autonomous case, let’s suppose a vector field 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥, 𝑡𝑡),      (2.33) 

 

where 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥, 𝑡𝑡 + 𝜏𝜏);𝜏𝜏 is some positive real number. Stability properties of a 

periodic orbit with period 𝑇𝑇 = 𝑎𝑎𝜏𝜏/𝑏𝑏, where 𝑎𝑎 and 𝑏𝑏 are integers, can be found by 

considering a map such that it does the following: 

 

𝑥𝑥(𝑡𝑡) ⟶ 𝑥𝑥�𝑡𝑡 + 𝑎𝑎𝑎𝑎
𝑏𝑏
�.     (2.34) 

 

From the eigenvalues of the map, we can determine the stability properties. We know that 

a point on a period-𝑘𝑘 periodic orbit of the map 𝑃𝑃 is a fixed point of the map 𝑃𝑃𝑘𝑘.  Hence, 

this fixed point of 𝑃𝑃𝑘𝑘 and the periodic orbit of the map𝑃𝑃 have the same stability properties.  

The Cobweb Construction: The construction takes its name from a theorem which is an 

economic model named by Nicholas Kaldor [11]. The method enables us to study a system 

graphically. The iteration of the map can be done graphically. By cobwebs, the global 

behavior of the system can be seen easily, and the other important usefulness of it is that in 
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such situations that the linear stability fails, by cobwebs the analysis can be done. An 

example to such a situation can be the following:  

The linear stability fails in such a map as follows: 

 

𝑥𝑥𝑘𝑘+1 = 𝑠𝑠𝑠𝑠𝑛𝑛𝑥𝑥𝑘𝑘      (2.35) 

 

The eigenvalue at fixed point 𝑥𝑥𝑓𝑓 = 0 is 𝜆𝜆 = 𝑓𝑓′(0) = 𝑐𝑐𝑐𝑐𝑠𝑠(0) = 1, where 𝑓𝑓′ is the 

derivative of 𝑓𝑓,the function 𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥). If the eigenvalue is greater than 1, then the fixed point 

is unstable. However, since the equal-to-1-eigenvalue means that the neglected terms in 

linearization determine the local stability, the linearization says nothing for the 𝜆𝜆 = 1 case. 

However, it can be seen by cobweb construction in Figure 2.14.b that 𝑥𝑥𝑓𝑓 = 0 is a locally 

stable fixed point. 

For a better understanding, the construction is given in two figures; one is (Fig. 2.14.a) to 

construct to concept, other one is (Fig. 2.14.b) to conclude the example. Consider 𝑃𝑃 as any 

Poincaré map, and its graph is like in Figure 2.14.a. A fixed point 𝑥𝑥𝑓𝑓 occurs at the point 

that the graph of the map intersects with the 450 line. By the graph, the iteration of the map 

could be done easily: Suppose 𝑥𝑥𝑘𝑘 is an any point; if a vertical line is drawn from it until it 

intersects with the graph of the map, the intersection gives on the other axis the 

corresponding output 𝑥𝑥𝑘𝑘+1. If this last output is thought as a new input and a horizontal 

line at this time is drawn as in the previous situation and then the similar process is 

repeated, the cobweb construction method works.  

 

 
Figure 2.14. Graphical iteration method [5]. 
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Now, the conclusion for the example can be seen as it has been explained if the graphical 

iteration is done in Fig. 2.14.b. 

2.7.2. Lyapunov Exponent for 1-D Maps 

Previously, in part 2.6.2.1, Lyapunov exponent was introduced to analyze the sensitive 

dependence on initial conditions. Here it is going to be revisited and its definition is going 

to be extended to 1-D maps. The advantage of 1-D maps is that they are easily visualized, 

that is, they are easy to draw. 

As it is seen in Equation 2.28, the separation between the initially chosen points becomes 

after a time 𝑡𝑡, a value that depends on the time and the Lyapunov exponent exponentially. 

Now, it is to be thought as not “after a time”, but after a number of iteration; and not 

“depends on time”, but depends on the iteration number. Eq. 2.28 becomes 

 

|𝛿𝛿𝑘𝑘| ≅ |𝛿𝛿0|𝑒𝑒𝑘𝑘𝜆𝜆.     (2.36) 

 

Here also a positive Lyapunov exponent implies chaos. 

For more useful equation for the exponent, the derivation is as follows: 

 

log (|𝛿𝛿𝑘𝑘|) ≅ log (|𝛿𝛿0|𝑒𝑒𝑘𝑘𝜆𝜆)     (2.37) 

⟹ 𝜆𝜆 ≅ 1
𝑘𝑘
𝑙𝑙𝑛𝑛 �𝛿𝛿𝑘𝑘

𝛿𝛿0
�     (2.38) 

= 1
𝑘𝑘
𝑙𝑙𝑛𝑛 �𝑓𝑓

𝑘𝑘(𝑑𝑑0+𝛿𝛿0)−𝑓𝑓𝑘𝑘(𝑑𝑑0)
𝛿𝛿0

�. 

 

Taking the limit 𝛿𝛿0 ⟶ 0 gives 

 

𝜆𝜆 ≅ 1
𝑘𝑘
𝑙𝑙𝑛𝑛|(𝑓𝑓𝑘𝑘)′(𝑥𝑥0)|.     (2.39) 

 

If the term in logarithm is expanded by the chain rule and the necessary arrangements are 

done, we can end up with 
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𝜆𝜆 = lim
𝑘𝑘⟶∞

�1
𝑘𝑘
∑ ln|𝑓𝑓′(𝑥𝑥𝑜𝑜)|𝑘𝑘−1
𝑜𝑜=0 �.   (2.40) 

2.8. THE LOGISTIC MAP 

In 1976, Robert May published a review article in Nature which shows surprisingly that 

even simple and deterministic mathematical models can exhibit very complicated 

dynamical behaviors [12]. He analyzed a simple population growth model that has a 

recurrence relation as  

 

𝑥𝑥𝑛𝑛+1 = 𝑟𝑟𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛),     (2.41) 

 

where 𝑥𝑥𝑛𝑛 is the dimensionless measure of the population in the 𝑛𝑛'th generation and 𝑟𝑟 is the 

growth rate. The graph of the map is as follows: 

 

 
 

Figure 2.15. The Logistic map for different parameter 𝑟𝑟 values. 

 

One can also make the stability analysis by the cobweb diagram method for different 

parameter values as in Figure 2.16. It can be seen that while for some parameter values 

there is a converging behavior to the fixed point, there can be even chaotic behavior for 

some greater parameter values. 

 



29 
 

 
 

Figure 2.16. Graphical iterations and the cobweb constructions of the Logistic map for 

different parameter values [6]. 

 

Before going into the period doubling discussion, a kind of diagram, namely the 

bifurcation diagram can be introduced even though what bifurcation is will be stated in the 

next chapter.  

Suppose a system that has a periodic orbit like in Figure 2.17.a and another system that has 

a period-II orbit as in Figure 2.17.b. If one observes one of the axes in the Poincaré section 

of Figure 2.17.a, sees just one value to which all the observation values are equal to. 

Similarly, for the system in Figure 2.17.b, one sees that all the observation values can have 

only two values; half of them take the one value and the other half take the other. If one 

draws a graph of a coordinate versus the parameter such that the transient points are 

eliminated and the system is allowed to gain its asymptotically stable behavior, and then 

only these discrete points are taken for the particular parameter values, the graph would be 

a bifurcation diagram. By changing the parameter, one can study the behavior of the 

system easily on the bifurcation diagram.  

In the bifurcation diagram of the Logistic map (see Figure 2.18), the stable behavior of the 

system for particular parameter values can be seen. From starting point of the axis to the 𝑟𝑟 
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Figure 2.17. A period-I (a) and a period-II (b) orbits with Poincaré sections. 

 

 
 

Figure 2.18. Bifurcation diagram of the Logistic map. 
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value approximately 3, the system behaves in a period-I mood; the plot splits into two and 

goes until somewhere between 𝑟𝑟 = 3.4 and 𝑟𝑟 = 3.5; and so forth. The plots split into two 

at some points, for example at 𝑟𝑟 = 3. This phenomenon is known as period doubling.  

2.9. BIFURCATIONS 

A system and its behavior can be changed qualitatively under some circumstances 

depending on the parameters. Such changes in dynamics are called bifurcations, a term that 

was coined by Poincaré in 1885. A quantitative change in a system keeps the topological 

equivalence, but the qualitative change implies a break in the topological equivalency. 

Particularly saying, the stabilities of the fixed points or equilibria can be changed, or they 

can be formed and also can be destroyed. These kinds of changes alter the behavior of the 

system topologically.  

There are several types of bifurcations like saddle-node, transcritical, pitchfork etc. 

2.9.1. Period Doubling and Saddle-Node Bifurcations 

The saddle-node bifurcation (also known as tangent bifurcation) is the basic mechanism 

for the fixed points to be created or be destroyed. As a parameter is changed, two fixed 

points can come closer to each other, collide, and can both be destroyed. The reverse can 

also happen.  

Let’s consider, for instance, the system  

 

�̇�𝑥 = 𝑟𝑟 + 𝑥𝑥2,      (2.42) 

 

where 𝑟𝑟 is a parameter. As can be seen in Figure 2.19, if 𝑟𝑟 is less than zero, there are two 

fixed points. One of them is stable and the other one is unstable. As 𝑟𝑟 goes to zero, two 

points move towards each other and they collide at the origin. The result is a half-stable 

fixed point. However, right after 𝑟𝑟 passes zero, the fixed point annihilates. Thus, we say 

that a bifurcation occured at 𝑟𝑟 = 0, because the behavior of the system differs 
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topologically between the states when 𝑟𝑟 is less than zero and greater than zero. The vector 

fields also changes as seen in the figure.  

 

 

 

Figure 2.19. Two fixed points in (a), a half-stable fixed point in (b); and in (c), annihilation 

of the fixed point in (b) [5]. 

 

A special case of bifurcations is period doubling (also known as flip bifurcation). It is a 

kind of bifurcation that a pair of stable points comes into existence while the previously 

existing fixed point is destroyed. The destruction is only about the stability, not about the 

existence. It can be seen in Figure 2.18 easily. At around 𝑟𝑟 = 3, a period doubling 

phenomenon occurs and the asymptotically stable behavior changes its behavior to a pair 

of, again, asymptotically stable new behaviors. Period doubling also occurs for each of the 

paths while 𝑟𝑟 values are increased. To see the period doubling mathematically and clearly, 

let’s begin with the Logistic equation. We first need to understand the creation and 

destruction mechanism of the fixed points. 

 

𝑥𝑥𝑛𝑛+1 = 𝑟𝑟𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛),     (2.43) 

𝑥𝑥𝑛𝑛𝑓𝑓 = 𝑟𝑟𝑥𝑥𝑛𝑛𝑓𝑓�1 − 𝑥𝑥𝑛𝑛𝑓𝑓�,    (2.44) 

 

where 𝑥𝑥𝑛𝑛𝑓𝑓 is the fixed point of the 𝑛𝑛′th generation. The fixed points can be found 

analytically from the equation, but there is an easy way to see them. In Figure 2.15, the 
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path for 𝑟𝑟 > 1 have two intersection points with the 450 line: one is the origin and the other 

is 𝑥𝑥𝑓𝑓 as it can be seen. One consideration is an important tool in such an analysis: If the 

slope of the tangent line at the intersection point is less than unity, the point is stable; if 

greater than unity, the point is not stable. That is why in Figure 2.15, for the corresponding 

line, the only fixed point is 𝑥𝑥𝑓𝑓 and the origin is not. However, some conditions can be 

achived while 𝑟𝑟 is changing that there can occur two fixed points existing at the same time. 

For this, the slopes, that is, the derivatives can be investigated: 

 
𝑑𝑑𝑑𝑑𝑛𝑛+1
𝑑𝑑𝑑𝑑𝑛𝑛

= 𝑟𝑟 − 2𝑟𝑟𝑥𝑥𝑛𝑛     (2.45) 

 

For the two solutions of Eq. 2.44, Eq. 2.45 becomes 

 
𝑑𝑑𝑑𝑑𝑛𝑛+1
𝑑𝑑𝑑𝑑𝑛𝑛

= 𝑟𝑟      (2.46) 

 

and  

 
𝑑𝑑𝑑𝑑𝑛𝑛+1
𝑑𝑑𝑑𝑑𝑛𝑛

= 2 − 𝑟𝑟.      (2.47) 

 

For the values of 𝑟𝑟 up to 1, the first one will be the stable point, and then up to 3, the 

second one will be the only stable point. After 3, that point also loses its stability, but not 

its existence. In this case, since the period-I orbit loses its stability, one can expect one of 

the two possibilities: The orbit can diverge to infinity or another orbit can become stable. 

To see this, one needs to do a check. To see if the period-II is stable, the Logistic equation 

for the second iteration is needed: 

 

𝑥𝑥𝑛𝑛+2 = 𝑟𝑟𝑥𝑥𝑛𝑛+1(1− 𝑥𝑥𝑛𝑛+1)    (2.48.a) 

= 𝑟𝑟2𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛)(1 − 𝑟𝑟𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛))   (2.48.b) 

 

The fixed points are the fixed points of the first iteration that are no longer stable and two 

further points: 
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𝑥𝑥𝑓𝑓 = 1+𝑟𝑟±√𝑟𝑟2−2𝑟𝑟−3
2𝑟𝑟

     (2.49) 

 

The derivative: 

 
𝑑𝑑𝑑𝑑𝑛𝑛+2
𝑑𝑑𝑑𝑑𝑛𝑛

= 𝑑𝑑𝑑𝑑𝑛𝑛+2
𝑑𝑑𝑑𝑑𝑛𝑛+1

𝑑𝑑𝑑𝑑𝑛𝑛+1
𝑑𝑑𝑑𝑑𝑛𝑛

     (2.50) 

 

By the chain rule, things get easier. One can see that the total slope is less than unity; so, 

both points are stable. It can be seen also by the cobweb diagram: 

 

 

 

Figure 2.20. The cobweb diagram of a period-II orbit [5]. 

 

Any starting value will asymptotically converge to the shown cycle, the period-II cycle. 

Hence, by changing the parameter 𝑟𝑟, the stability of the period-I cycle is destroyed and a 

new cycle of period-II is created. The previous one actually does not lose its existence as 

we said before, but it loses its stability. It can be shown that the logistic map takes one of 

the fixed points to the other so that the period II attractor is created. The stability passes to 

the period-II cycle. This phenomenon is the period doubling. After some values of 𝑟𝑟, the 

period-II cycle also loses its stability and period-IV is created, and so forth as can be seen 

in the Figure 2.18. Robert May figured out that at approximately the value of 𝑟𝑟 near 3.5, 
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things get very complicated and chaos occurs. That is, period-infinity orbit is created. In 

addition, while the period doubling can form chaos, period halving works for the order.  

In a linear system, if the system becomes unstable, it collapses. Alternatively saying, the 

state goes to infinity. In a nonlinear system, system does not collapse, but it can go to 

another stable state. In a nonlinear system, instability frequently results in a bifurcation. 

Actually, there are different mechanisms that a system can lose its stability; two of them 

are period doubling bifurcation and saddle-node bifurcation. 

2.9.2. Transcritical Bifurcation 

Transcritical bifurcation is a special type of local bifurcation. It implies a mechanism for a 

bifurcation phenomenon which does not destroy the fixed point, but interchanges its 

stability. Thus, a fixed point keeps its existence for all values of the parameter. For 

instance, in the logistic equation, a fixed point exists at zero population and it is 

independent of growth rate. Nevertheless, the stability of the corresponding fixed point 

may change as the parameter varies.  

The normal form of a transcritical bifurcation is 

 

�̇�𝑥 = 𝑟𝑟𝑥𝑥 − 𝑥𝑥2.      (2.51) 

 

The vector field for different parameter values can be seen in Figure 2.21. A fixed point 

sits at the origin and stays there as the parameter 𝑟𝑟 changes. In Figure 2.21.a, there is an 

unstable fixed point at some value of 𝑥𝑥 and a fixed point at 𝑥𝑥 = 0 for 𝑟𝑟 < 0. In Fig. 2.21.b, 

there is a half-stable fixed point which can stand only when  𝑟𝑟 = 0. Finally, in Fig 2.21.c, 

when 𝑟𝑟 becomes greater than zero, the fixed points changes and the origin becomes 

unstable while the other point gains stability. 

 

 



36 
 

 
 

Figure 2.21. Two fixed points in (a) and (c), a half-stable fixed point in (b) [5]. 

2.9.3. Pitchfork Bifurcation 

Pitchfork bifurcation is a special type of local bifurcation that is seen in systems having 

symmetry. It takes its name from its fork-like shape. It can be seen clearer in Figure 2.22. 

Since it is not possible to have such a bifurcation in normal logistic map, let’s introduce 

another one: 

 

𝑥𝑥𝑛𝑛+1 = (1 + 𝑟𝑟)𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛3    (2.52) 

𝑥𝑥𝑓𝑓 = (1 + 𝑟𝑟)𝑥𝑥𝑓𝑓 − 𝑥𝑥𝑓𝑓3    (2.53) 

𝑥𝑥𝑓𝑓0 = 0, 𝑥𝑥𝑓𝑓1 = √𝑟𝑟, 𝑥𝑥𝑓𝑓2 = −√𝑟𝑟 

 
𝑑𝑑𝑑𝑑𝑛𝑛+1
𝑑𝑑𝑑𝑑𝑛𝑛

= (1 + 𝑟𝑟) − 3𝑥𝑥𝑛𝑛2    (2.54) 

 

As can be seen, at 𝑟𝑟 = 0, 𝑑𝑑𝑑𝑑𝑛𝑛+1
𝑑𝑑𝑑𝑑𝑛𝑛

|𝑑𝑑𝑓𝑓0 = 1. If it were -1, then period doubling would occur at 

that point, but here a pitchfork bifurcation phenomenon occurs which means that there 

becomes two independent period-I orbits both of which are stable.  
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Figure 2.22. A bifurcation diagram with period doubling [5]. 

 

In period doubling bifurcation, a period-I orbit splits into a period-II orbit which implies 

that it is a flipping orbit. However, here in Figure 2.22 for example, if an initial point is 

given on the trajectory for 𝑟𝑟 > 0, it stays on the same curve. If there was period doubling, 

it flips to the other curve and again flips to the previous, and keeps going flipping. 

Additionally, if an initial point near the trajectories is given, it is attracted by the stable 

trajectories. The trajectories are stable also for 𝑟𝑟 > 0. It means that even the trajectory 

splits into two by period-doubling, the new trajectories are also stable. 

2.10. FRACTALS 

A fractal is, roughly speaking, the picture of chaos, the image of a dynamical system and 

the object of interest of the fractal geometry which is a discipline of mathematics first 

developed by Weierstrass in connection with continuous but not differentiable functions, 

but becoming important in last few decades. It attracted attention because of its 

possibilities of usefulness in applications of different disciplines of science and 

engineering.  
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As it is clear in its name, fractal geometry, it is geometry, and geometry deals with objects 

and the world or spaces they live in. For example, a point –which is a zero dimensional 

object- can live on a line -which is a one dimensional space in this case- or on a plane –

which is a two dimensional space in this case; a plane –which is a two dimensional object- 

can live on a plane –which is a two dimensional space in this case- or in a three 

dimensional space. In the history of geometry or mathematics, people had been dealing 

with idealized objects like spheres, squares etc. These kinds of objects are ones that we 

cannot find in real life. However, for the sake of purpose, people idealized the objects that 

they wanted to make mathematical calculations on. This was so since Pythagoras and 

Euclid. In the last century, many developments in the theory of geometry were done. 

People began to think with not only Euclidean space but also curved space. Riemann and 

Minkowsky studied curved space; Einstein found an application of the thought of curved 

space in his theory about gravitation. However, the objects that we deal with remained as 

idealized.  

While classical geometry deals with the idealized objects, a new type of geometry which 

deals with the real objects in life was born. One of the most famous examples to this kind 

of objects is the island on which Great Britain lives. The example was introduced by the 

father of fractals, Benoit Mandelbrot in a famous paper of his [13]. He explained his 

thoughts by using the question how long the cost of Britain is. He summarizes the answer 

by two sentences in the abstract: “Geographical curves are so involved in their detail that 

their lengths are often infinite or, rather, indefinable. However, many are statistically "self-

similar," meaning that each portion can be considered a reduced-scale image of the whole”. 

Hereafter, he came up with the idea of fractional dimension.  

His works on self-similarity and fractional dimension, actually, is the consolidation of all 

thoughts developed in the many years passed until his time. Maybe we can say that the first 

break in mathematical thought in the way to fractals was introduced by Leibniz in the idea 

of recursive self-similarity [14]. The content of the idea was of course crude, but the 

importance of the idea could not be ignored. Many developments in mathematical views 

had been made, but the last shot came with Mandelbrot that made him the father of fractal 

geometry.  
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The main difference coming up by fractal geometry is about differentiability of the objects 

in real world and the objects that are idealized. The objects in nature are continuous but not 

differentiable. However, people had been idealizing them to make calculations, and as a 

result, the objects become continuous and differentiable. Fractal geometry deals with the 

real objects that are continuous but not differentiable.  

2.10.1. Dimension 

To be able to analyze and understand the natural objects, we need a different formalism 

and somewhat different techniques other than the ones we use for idealized objects. In this 

manner, here comes the question of dimension.  

Dimension of an object and dimension of embedding space are different things. While 

dimension of embedding space is about degrees of freedom, dimension of an object is 

about how it fills the space. For instance, let’s we take a square that is lying on a two 

dimensional space or a plane. As in Figure 2.23, if we divide the space by smaller squares 

and count the number of small squares which fills the area of our square, we get the 

following relation between the number of boxes and the side length of the box: 

 

𝑁𝑁(𝑑𝑑) = (1
𝑑𝑑

)2,      (2.55) 

 

where 𝑁𝑁 is the number of small square boxes and 𝑑𝑑 is the side length of the whole square. 

 

 
 

Figure 2.23. 𝑁𝑁 small square boxes in one square. 
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We take the square of right-hand side of Eq. 2.55, because the dimension of the object was 

two. The equation for dimension can also be found by using Eq. 2.55. Since we know the 

dimension already, we will try to get 2. If we take the logarithm of both sides to get 2, the 

equation becomes 

 

𝑙𝑙𝑛𝑛𝑁𝑁 = 2 ln �1
𝑑𝑑
�     (2.56) 

⟹   𝐷𝐷𝑠𝑠𝐷𝐷𝑒𝑒𝑛𝑛𝑠𝑠𝑠𝑠𝑐𝑐𝑛𝑛 = 𝑙𝑙𝑛𝑛 𝑁𝑁(𝑑𝑑)

ln�1𝑑𝑑�
.     (2.57) 

 

Since in a square like in Fig. 2.23 can be filled exactly by finite number of smaller squares, 

the last equation holds for even for the example in Fig. 2.23. However, for other objects as 

a disk, we should take the limit of the right-hand side of Eq. 2.57, and again the result will 

be 2. Thus, the idea of dimension was expressed. For any object, the dimension is just the 

number that Eq. 2.57 converges to. For idealized objects, it becomes an integer, but it is 

not the case always, for instance, as we said, for the natural objects. So, for any natural 

object, we find the dimension that is not an integer. Objects that have fractional dimensions 

are fractals.  

2.10.2. Cantor Set 

Can we generate fractals? Yes, we can generate fractals by some iterative processes. A 

much known discovery about generating fractals is the cantor set. It was discovered by H. 

J. Steven Smith in 1874 [15], and introduced by Georg Cantor in 1883 [16]. Cantor set is a 

fractal with an embedding space of one dimension, that is, a line. 

Let’s assume that we cut and delete the middle third of the closed interval 𝑆𝑆0 = [0,1] as in 

Fig. 2.24. If we resume by doing the same thing to the new intervals separately, we obtain 

the Cantor set at the limit as going to infinity. The resulting set includes infinite many 

pieces that have different gaps between each other.  
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Figure 2.24. The Cantor Set and the iterative evolution to it [5]. 

 

If we want to look at the set if it is a fractal or not, we can calculate the dimension: For 𝑆𝑆1, 

𝑁𝑁 = 2 and 𝑑𝑑 = 1
3
, and so the dimension for the first step is 

 

𝐷𝐷 = lim
𝑑𝑑→0

�𝑙𝑙𝑛𝑛 𝑁𝑁(𝑑𝑑)

ln�1𝑑𝑑�
� = 𝑙𝑙𝑛𝑛2

𝑙𝑙𝑛𝑛3
.    (2.58) 

 

Similarly, if we do the same procedure for other steps, we conclude with the fact that the 

dimension 𝐷𝐷 is the same for all steps. Thus, the dimension of the set 𝐶𝐶 is the same with 

previous steps which is a fractional number.  

Another important feature of the set is that it has a self-similarity. That is, it includes 

copies of itself at any scale. Cantor Set is a famous example of fractals.  

2.10.3. Chaos Game 

We mentioned that a chaotic behavior is actually a deterministic one. To see this in context 

of fractals, chaos game –was coined by Michael Barnsley- is a good example [17]. 

Actually, by the method, we can generate an attractor of an iterated function system (IFS). 

We can create a sequence of points, which will be a fractal, by an iterative process. The 
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remarkable point is that we use randomness in the process, but we get deterministic fractals 

at the end. To see it more clearly, we can look at a known example: Sierpinsky gasket. 

Suppose three points 𝑃𝑃1 = (𝑎𝑎1,𝑏𝑏1), 𝑃𝑃2 = (𝑎𝑎2,𝑏𝑏2) and 𝑃𝑃3 = (𝑎𝑎3,𝑏𝑏3) on a coordinate 

system with 𝑥𝑥 − and 𝑦𝑦 − axes as located in Fig. 2.25, and a current game point𝑧𝑧𝑘𝑘 =

(𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘) somewhere arbitrary on the plane. We randomly get one of the three points which 

are at the corners of the triangle, say 𝑃𝑃2. We generate the next game point 𝑧𝑧𝑘𝑘+1 which will 

locate at the midpoint between 𝑧𝑧𝑘𝑘 and 𝑃𝑃2: 𝑧𝑧𝑘𝑘+1 = 𝑓𝑓𝑛𝑛(𝑧𝑧𝑘𝑘) = (𝑥𝑥𝑘𝑘+1,𝑦𝑦𝑘𝑘+1), where 𝑓𝑓 is our 

affine map, 𝑛𝑛 is the random event, 𝑥𝑥𝑘𝑘+1 = 1
2
𝑥𝑥𝑘𝑘 + 1

2
𝑎𝑎𝑛𝑛 and 𝑦𝑦𝑘𝑘+1 = 1

2
𝑦𝑦𝑘𝑘 + 1

2
𝑏𝑏𝑛𝑛. Note that 

the probabilities of the random events are equal.  

 

 
 

Figure 2.25. The Chaos game board and the first three steps that are connected by line 

segments. 

 

This is the first step of the game, and the other steps will come similarly. If we keep 

iterating, the resulting shape of the generating dots, the game points, will begin to form a 

specific fractal, namely Sierpinsky gasket as shown in Fig. 2.26. Here we conclude with an 

interesting thing: By a random process we can create a deterministic shape. That is, 

although we cannot predict where the next point will come up in the game, the resulting 

shape that the collection of all these points form is predictable. 
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Figure 2.26. The chaos game after 100 steps (a), 500 steps (b), 1000 steps (c) and 10,000 

steps (d) [16]. 
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3. DIFFUSION IN CONDENSED MATTER 
 

Diffusion in condensed matter systems is an important topic in physics. The subject has an 

important role in the kinetics of microscopic changes which happens in processes of 

metals, semiconductors, ceramics, thin glasses etc.  

From a phenomenological point of view, diffusion is the net movement of a substance 

from a region with higher concentration to one with lower concentration. The substance 

can be atoms, ions, molecules, electrons, people, money or even ideas and any item that 

can diffuse.  

3.1. FICK’S LAWS OF DIFFUSION 

Fick’s equations are known as the equations that describe diffusion. The diffusion of 

particles through condensed matter can also be described by Fick’s equations. He stated his 

first law in 1855 [18] before Maxwell and Boltzmann had introduced their kinetic theory of 

gases, and hence before the random walk picture of the diffusion process was established 

[19]. Thus, we can say that Fick set his theory from a phenomenological point of view. His 

theory goes with an analogy with Fourier’s theory of heat flow (1822). The heat current 

density is proportional to the gradient of temperature (for 1-D): 

 

𝑗𝑗𝐻𝐻 = −𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

,      (3.1) 

 

where 𝑗𝑗𝐻𝐻 is the heat current density, 𝑇𝑇 is the temparature, 𝑥𝑥 is the position and 𝜆𝜆 is the 

conductivity of the material. In addition, a similar relation can be given as Ohm’s law for 

electrical current (1827): 

 

𝑗𝑗𝑒𝑒 = −𝜎𝜎 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

,      (3.2) 

 

where 𝑗𝑗𝑒𝑒 is the electric current density, 𝜑𝜑 is the electrostatic potential and 𝜎𝜎 is the 

conductivity of the material. As in these equations (Eqs. 3.1, 3.2), the relation between the 

diffusive flux 𝑗𝑗 to the concentration 𝜙𝜙(𝑥𝑥)  can be given as 
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𝑗𝑗 = −𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

,      (3.3) 

 

where 𝐷𝐷 is the diffusion coefficient or the diffusivity. Eq. 3.3 is known as Fick’s first law. 

Fick’s second law describes the change in concentration with time in diffusion phenomena. 

Combining Fick’s first law with the continuity equation gives Fick’s second law.  

The continuity equation is given as 

 
𝜕𝜕𝜕𝜕(𝑑𝑑,𝑑𝑑)
𝜕𝜕𝑑𝑑

= −𝜕𝜕𝜕𝜕(𝑑𝑑)
𝜕𝜕𝑑𝑑

,     (3.4) 

 

and combining this with Eq. 3.3 gives 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝐷𝐷 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

.      (3.5) 

 

This is known as Fick’s second law. The solution subject to an initial condition of a point 

source is given by [19] 

 

𝜙𝜙(𝑥𝑥, 𝑡𝑡) = 1
√4𝜋𝜋𝜋𝜋𝑑𝑑

𝑒𝑒−
𝑥𝑥2

4𝐷𝐷𝐷𝐷.    (3.6) 

 

3.2. COLLISION MODEL AND BROWNIAN DIFFUSION 

Another way of introducing the diffusion phenomenon is the collision model of particles. 

Diffusion can be considered as a consequence of the random walk of the diffusing 

particles. Random walk of small particles, small pollen grains, which are suspended in a 

fluid (water) was observed by the Scottish botanist Brown in 1827 [20]. Although Brown 

could not understand the nature beyond the motion of the grains, we know that it is caused 

by the collisions of the quick particles in the fluid. Some attempts for explanation of 

Brownian motion and developments of these explanations were done, and finally in 1905, 

Einstein gave a definitive explanation of the Brownian motion by unifying the continuum 

formulation given by Fick and the stochastic theory based on the collision model [21]. 
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Einstein’s explanations were based on two assumptions: the extremely frequent collisions 

of the particles in the fluid and the atoms or molecules of the fluid; and the motion can 

only be described by probabilistic models, because the motion is very complicated.  

He assumed that the number of particles is conserved and expanded the variation of the 

particle concentration change in a Taylor series: 

 

𝜙𝜙(𝑥𝑥, 𝑡𝑡 + 𝜏𝜏) = 𝜙𝜙(𝑥𝑥, 𝑡𝑡) + 𝜏𝜏 𝜕𝜕𝜕𝜕(𝑑𝑑)
𝜕𝜕𝑑𝑑

,    (3.7) 

= � 𝜙𝜙(𝑥𝑥 + 𝜒𝜒, 𝑡𝑡 + 𝜏𝜏)
∞

−∞

𝑝𝑝(𝜒𝜒)𝑑𝑑𝜒𝜒 

= 𝜙𝜙(𝑥𝑥, 𝑡𝑡)∫ 𝑝𝑝(𝜒𝜒)𝑑𝑑𝜒𝜒∞
−∞ + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑 ∫ 𝜒𝜒𝑝𝑝(𝜒𝜒)𝑑𝑑𝜒𝜒∞
−∞ + 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑑𝑑2 ∫
𝜒𝜒2

2
𝑝𝑝(𝜒𝜒)𝑑𝑑𝜒𝜒 + ⋯∞

−∞ , 

 

where the first integral is 1 from the definition of probability, and second one with other 

even terms is 0 from the symmetry; 𝑝𝑝 is some probability density function.Thus, 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2 ∫

𝜒𝜒2

2𝑎𝑎
𝑝𝑝(𝜒𝜒)𝑑𝑑𝜒𝜒 + ⋯∞

−∞ ,         (3.8) 

 

where the integral term is interpreted as mass diffusivity, 𝐷𝐷. The density of particles 𝜙𝜙 that 

manifest Brownian motion at point 𝑥𝑥 and at time 𝑡𝑡 satisfies Eq. 3.5; and the solution is 

given by Eq. 3.6. By this expression (Eq. 3.6), we can find the moments directly. However, 

the first one is zero, since the particle tends to move right and left equally. The next 

moment does not vanish and can be found by the mean squared displacement as a linear 

function of the time: 

 

〈𝑥𝑥2〉 = ∫ 𝑥𝑥2𝜙𝜙(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥∞
−∞ = 2𝐷𝐷𝑡𝑡    (3.9) 

3.3. ANOMALOUS DIFFUSION 

It can be seen that Eq. 3.6, the solution to Fick’s second law, is a Gaussian probability 

density function. By the Gaussian diffusion equation, we can describe many diffusion 

processes [21]. However, there are also other diffusion processes that we cannot describe 
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by the Gaussian diffusion equation. Such processes are called as anomalous diffusions and 

they are nonlinearly related to time. In the case of anomalous diffusion, we can think of a 

diffusion process goes on under different rules of walking, instead of typical random 

walking. It can be described by a different probability density function other than Eq. 3.6, 

which will depend in this case nonlinearly to time as follows: 

 

𝑝𝑝(𝑥𝑥, 𝑡𝑡) = 1
𝑑𝑑𝛿𝛿
𝐹𝐹( 𝑑𝑑

𝑑𝑑𝛿𝛿
),     (3.10) 

 

where 𝛿𝛿 is the scaling constant and 𝐹𝐹 is usually some exponential function. While the 

mean squared displacement of a particle is a linear function of time for normal diffusion, as 

in Eq. 3.9, it is a nonlinear function of time for anomalous diffusion: 

 

〈𝑥𝑥2〉 = ∫ 𝑥𝑥2𝑝𝑝(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥∞
−∞ ~𝐷𝐷𝑡𝑡𝛼𝛼 ,    (3.11) 

 

where 𝛼𝛼 is a constant and it is given as some times 𝛿𝛿 according to the conditions of the 

process.  

 

 
Figure 3.1. Mean squared displacement vs. time graph for different types of anomalous 

diffusion. 

 

If 𝛼𝛼 = 1, the process is typical diffusion; if 𝛼𝛼 > 1, the process is called super diffusion; if 

𝛼𝛼 < 1, the process is called sub diffusion. These three types of diffusion can be seen in 

Figure 3.1. 
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4. NONEXTENSIVE STATISTICAL MECHANICS 
 

Statistics and dynamics are two separate and basic elements of the physics near 

thermodynamic equilibrium. Under the condition of thermodynamic equilibrium, 

Boltzmann-Gibbs (BG) statistical mechanics gives useful results as the nature manifests 

itself as a Gaussian. Actually, a master equation such as the Boltzmann transport equation 

can be written and under suitable approximations, the laws of thermodynamics near 

equilibrium can be derived, however this is not necessary. However, under the conditions 

far from the equilibrium, for example for most of the so-called complex systems, this does 

not work and hence statistics and dynamics need to be unified. Constantino Tsallis was the 

one who first achieved this [22].  

His main attempt can be summarized in one sentence: He wanted to connect in theory our 

understanding in the sense of statistics of the macroscopic world and the microscopic 

world. Near equilibrium where BG statistics works, we do not need to know the 

microscopic states of the subsystems of a system and able to calculate the entropy of the 

composed system macroscopically. However, for complex systems which have common 

characteristics as long-range correlations, multifractality and non-Gaussian distributions, 

and composability of the BG entropy disappears and hence becomes unuseful. What 

Tsallis has done is to enlarge the applicability domain of the frame of Boltzmann and 

Gibbs’s theory by extending the mathematical form of its entropy [23]. Generalizing the 

mathematical form of the entropy has connected the microscopic world with its 

macroscopic appearance. Nonextensive statistical mechanics has found many applications 

in different disciplines including physics, chemistry, biology, mathematics, economics, 

geography, linguistics etc. [24, 25]. 

4.1. BOLTZMANN-GIBBS STATISTICAL MECHANICS 

Boltzmann first proposed his entropic formula in 1870s [26, 27, 28] and Gibbs then 

developed it for more general systems [29]. If the appropriate variables are continuous, the 

BG entropy is given in the form 

 

𝑆𝑆𝐵𝐵𝐵𝐵 = −𝑘𝑘 ∫𝑑𝑑𝑥𝑥𝑝𝑝(𝑥𝑥)𝑙𝑙𝑛𝑛(𝜎𝜎𝑝𝑝(𝑥𝑥))    (4.1) 
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with 

 

∫𝑑𝑑𝑥𝑥𝑝𝑝(𝑥𝑥) = 1,     (4.2) 

 

where 𝑘𝑘 is some conventional positive constant and 𝑑𝑑
𝜎𝜎
∈ ℝ𝜋𝜋 ,𝐷𝐷 ≥ 1 being the dimension of 

Gibbs Γ phase-space for classical Hamiltonian systems; 𝑑𝑑
𝜎𝜎
 is a dimensionless quantity, since 

they carry the same physical units. For discrete states, the BG entropy takes the form 

 

𝑆𝑆𝐵𝐵𝐵𝐵 = −𝑘𝑘∑ 𝑝𝑝𝑜𝑜ln (𝑝𝑝𝑜𝑜)𝑊𝑊
𝑜𝑜=1      (4.3) 

with 

 

∑ 𝑝𝑝𝑜𝑜𝑊𝑊
𝑜𝑜=1 = 1,      (4.4) 

 

where 𝑊𝑊 is the number of discrete states. For equal probabilities, that is, 𝑝𝑝𝑜𝑜 = 1
𝑊𝑊

 for every 

𝑠𝑠, Eq. 4.3 becomes 

 

𝑆𝑆𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑙𝑙𝑛𝑛(𝑊𝑊).     (4.5) 

 

There are various important properties of the BG entropy such as non-negativity, 

expansibility, additivity, concavity, Lesche-stability or experimental robustness, 

composability etc. [23]. It will be useful to give here the property of additivity, because 

this is one of the properties that has the basic importance in relation with the concept of 

extensivity and nonextensivity.  

If 𝐴𝐴 and 𝐵𝐵 are two probabilistically independent subsystems with large number of states 

𝑊𝑊𝐴𝐴 and 𝑊𝑊𝐵𝐵 respectively, and the joint probabilities factorize as 𝑝𝑝𝑜𝑜𝜕𝜕𝐴𝐴+𝐵𝐵 = 𝑝𝑝𝑜𝑜𝐴𝐴𝑝𝑝𝜕𝜕𝐵𝐵 for every 

(𝑠𝑠, 𝑗𝑗), 𝑆𝑆𝐵𝐵𝐵𝐵 is said to be additive [30]. That is, 

 

𝑆𝑆𝐵𝐵𝐵𝐵(𝐴𝐴 + 𝐵𝐵) = 𝑆𝑆𝐵𝐵𝐵𝐵(𝐴𝐴) + 𝑆𝑆𝐵𝐵𝐵𝐵(𝐵𝐵),    (4.6) 

 

where 
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𝑆𝑆𝐵𝐵𝐵𝐵(𝐴𝐴 + 𝐵𝐵) = −𝑘𝑘∑ ∑ 𝑝𝑝𝑜𝑜𝜕𝜕𝐴𝐴+𝐵𝐵ln (𝑝𝑝𝑜𝑜𝜕𝜕𝐴𝐴+𝐵𝐵)𝑊𝑊𝐵𝐵
𝜕𝜕=1

𝑊𝑊𝐴𝐴
𝑜𝑜=1    (4.7) 

 

with 𝑊𝑊 = 𝑊𝑊𝐴𝐴𝑊𝑊𝐵𝐵; 

 

𝑆𝑆𝐵𝐵𝐵𝐵(𝐴𝐴) = −𝑘𝑘∑ 𝑝𝑝𝑜𝑜𝐴𝐴ln (𝑝𝑝𝑜𝑜𝐴𝐴)𝑊𝑊𝐴𝐴
𝑜𝑜=1     (4.8) 

and  

 

𝑆𝑆𝐵𝐵𝐵𝐵(𝐵𝐵) = −𝑘𝑘∑ 𝑝𝑝𝜕𝜕𝐵𝐵ln (𝑝𝑝𝜕𝜕𝐵𝐵)𝑊𝑊𝐵𝐵
𝜕𝜕=1 .    (4.9) 

4.2. GENERALIZATION OF THE BOLTZMANN-GIBBS STATISTICAL 

MECHANICS 

Since we cannot generalize any physical theory in a logical-deductive way, one of the 

possible figurative expressions for the generalization of the BG entropy can be given as 

Tsallis did [23]: 

Let’s take the following simple three differential equations, their solutions and the inverse 

functions of the solutions, respectively: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0   (𝑦𝑦(0) = 1),𝑦𝑦 = 1, 𝑥𝑥 = 1;    (4.10) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1   (𝑦𝑦(0) = 1),𝑦𝑦 = 1 + 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 1;   (4.11) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑦𝑦   (𝑦𝑦(0) = 1),𝑦𝑦 = 𝑒𝑒𝑑𝑑,𝑦𝑦 = ln(𝑥𝑥).   (4.12) 

 

To unify these three equations, we can consider 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎 + 𝑏𝑏𝑦𝑦   (𝑦𝑦(0) = 1),     (4.13) 

 

where 𝑎𝑎 and 𝑏𝑏 are some parameters. Changing the parameters gives us the oppurtunity of 

reobtain the corresponding equations. On the other hand, we can also unify the 

corresponding equations with one parameter. In this case, we lose the linearity. To see this, 

let’s consider 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑦𝑦𝑞𝑞(𝑦𝑦(0) = 1; 𝑞𝑞 ∈ ℝ),     (4.14) 

 

whose solution is 

 

𝑦𝑦 = [1 + (1 − 𝑞𝑞)𝑥𝑥]1/(1−𝑞𝑞) ≡ 𝑒𝑒𝑞𝑞𝑑𝑑        (𝑒𝑒1𝑑𝑑 = 𝑒𝑒𝑑𝑑)   (4.15) 

 

and the inverse function of the last equation is 

 

𝑦𝑦 = 𝑑𝑑 1−𝑞𝑞−1
1−𝑞𝑞

≡ 𝑙𝑙𝑛𝑛𝑞𝑞(𝑥𝑥)(𝑥𝑥 > 0; 𝑙𝑙𝑛𝑛1(𝑥𝑥) = ln(𝑥𝑥)).   (4.16) 

 

𝑙𝑙𝑛𝑛𝑞𝑞(𝑥𝑥) satisfies the following property: 

 

𝑙𝑙𝑛𝑛𝑞𝑞(𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵) = 𝑙𝑙𝑛𝑛𝑞𝑞(𝑥𝑥𝐴𝐴) + 𝑙𝑙𝑛𝑛𝑞𝑞(𝑥𝑥𝐵𝐵) + (1 − 𝑞𝑞) �𝑙𝑙𝑛𝑛𝑞𝑞(𝑥𝑥𝐴𝐴)� �𝑙𝑙𝑛𝑛𝑞𝑞(𝑥𝑥𝐵𝐵)�  (4.17) 

 

The 𝑞𝑞-deformed special presentations of Eqs. 4.15 and 4.16 are called as the 𝑞𝑞-exponential 

and the 𝑞𝑞-logarithm as Tsallis first introduced in 1994 [31]. It can be easily seen that Eq. 

4.14 recovers Eqs. 4.10, 4.11 and 4.12 respectively for the 𝑞𝑞 → −∞, 𝑞𝑞 = 0 and 𝑞𝑞 = 1 

cases.  

Through the above metaphor, we can conclude with the generalization of the BG entropy 

(Eq. 4.5): 

 

𝑆𝑆𝑞𝑞 = 𝑘𝑘𝑙𝑙𝑛𝑛𝑞𝑞(𝑊𝑊).     (4.18) 

 

Note that 𝑆𝑆𝑞𝑞 becomes 𝑆𝑆𝐵𝐵𝐵𝐵 for 𝑞𝑞 = 1. Since Eq. 4.3 can be rewritten as 

 

𝑆𝑆𝐵𝐵𝐵𝐵 = 𝑘𝑘〈𝑙𝑙𝑛𝑛(1/𝑝𝑝𝑜𝑜)〉,     (4.19) 

 

we can also rewrite Eq. 4.18 as 

𝑆𝑆𝑞𝑞 = 𝑘𝑘〈𝑙𝑙𝑛𝑛𝑞𝑞(1/𝑝𝑝𝑜𝑜)〉,      (4.20) 
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and using Eq. 4.16 yields finally the possible basis for generalization of BG statistical 

mechanics: 

 

𝑆𝑆𝑞𝑞 = 𝑘𝑘 1−∑ 𝑝𝑝𝑖𝑖𝑞𝑞𝑊𝑊
𝑖𝑖=1
𝑞𝑞−1

.     (4.21) 

 

𝑆𝑆𝑞𝑞 preserves the various properties of the BG entropy such asnon-negativity, expansibility, 

concavity, Lesche-stability or experimental robustness, composability etc. [23]. However, 

additivity is the key point that also pushed Tsallis to search a new or better entropic form. 

In this case, nonadditivity is the main property of 𝑆𝑆𝑞𝑞.  

4.3. GENERALIZED DISTRIBUTIONS AND THE 𝒒𝒒-GAUSSIAN 

Generalized distributions or Tsallis distributions or 𝑞𝑞-distributions are the probability 

distributions derived by maximizing the Tsallis entropy under appropriate constraints. The 

generalized distributions can be obtained by following a number of different procedures. A 

very simple one is just replacing the exponential function of the original distribution by a 

𝑞𝑞-exponential function. For instance, when the corresponding method is applied in 

standard exponential, Gaussian and Weibull distributions, the 𝑞𝑞-ones of the distributions 

are obtained; namely 𝑞𝑞-exponential, 𝑞𝑞-Gaussian and 𝑞𝑞-Weibull respectively [32]. 

Similarly, other 𝑞𝑞-distributions are also obtained. 

𝑞𝑞-Gaussian distribution is one of the special cases arises from the maximization of 𝑆𝑆𝑞𝑞 

byusing the appropriate constraints. The 𝑞𝑞-Gaussian distribution is defined by the PDF 

 

𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥) = 𝑝𝑝0 �1 − (1 − 𝑞𝑞)( 𝑑𝑑
𝑑𝑑0

)2�
1/(1−𝑞𝑞)

,   (4.22) 

for  

 

�1 − (1 − 𝑞𝑞)( 𝑑𝑑
𝑑𝑑0

)2� ≥ 0    (4.23) 

 

and otherwise 𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥) = 0. The PDF is normalized when  
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𝑝𝑝0 = � 2
𝑑𝑑0
�
�𝑞𝑞−1

𝜋𝜋 Γ� 1
𝑞𝑞−1�

Γ� 3−𝑞𝑞
2(𝑞𝑞−1)�

.     (4.24) 

 

 

 
 

Figure 4.1. 𝑞𝑞-Gaussian distribution. (a) Plot of 𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥) vs. 𝑥𝑥, with 𝑝𝑝0 = 𝑥𝑥0 = 1, for 

different values of 𝑞𝑞. (b) The same curves of (a) for mono-log scale. (c) 𝑙𝑙𝑛𝑛𝑞𝑞 �𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥)� vs. 

𝑥𝑥2 for 𝑝𝑝0 = 1 and different values of 𝑥𝑥0. [33]. 

 

 

For the limit case where 𝑞𝑞 → 1, Eq. 4.24 becomes the standard Gaussian distribution. So, 

𝑞𝑞 ≠ 1 implies the regime where Gaussian statistics does not work. If 𝑞𝑞 > 1, 𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥) 

becomes 
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𝑝𝑝𝑞𝑞𝑞𝑞(|𝑥𝑥|)~|𝑥𝑥|2/(1−𝑞𝑞)     (4.25) 

 

as shown in Figures 4.1.a and 4.1.b.  

 

𝑞𝑞-logarithm of 𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥) is 

 

𝑙𝑙𝑛𝑛𝑞𝑞 �𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥)� = 𝑙𝑙𝑛𝑛𝑞𝑞(𝑝𝑝0) − �1 + (1 − 𝑞𝑞)𝑙𝑙𝑛𝑛𝑞𝑞(𝑝𝑝0)�( 𝑑𝑑
𝑑𝑑0

)2  (4.26) 

 

and Figure 4.1.c shows 𝑙𝑙𝑛𝑛𝑞𝑞 �𝑝𝑝𝑞𝑞𝑞𝑞(𝑥𝑥)� vs. 𝑥𝑥2 for different values of 𝑥𝑥0. 

𝑞𝑞-Gaussian distributions find various application areas such as finance [34,35], genetics 

[36], mathematics [37], meteorology [38], earthquakes [39] etc. 
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5. ANALYSIS OF CHAOTIC SYSTEM BEHAVIORS 
 

Many scientists from various fields have been influenced by the thought of deterministic 

chaos or chaos theory. Chaos theory gives powerful explanations to the behaviors of 

inherent systems which do not seem to be naturally stochastic. By nonlinear time series 

analysis we can make contact between the real world and chaos theory.  

We can interpret the regular structure of a data set by linear methods and we ascribe the 

irregular behavior of the system as random external inputs. However, in many cases, that 

is, in real cases that we take data describing the behavior of a natural system, this is not the 

case. Random input is not the only source of irregularity. Nonlinear systems can yield 

deterministic but irregular data which require an approach other than that of linear 

methods. Nonlinear time series analysis is the way for quantification and analysis of the 

chaotic system behaviors. 

A time series is a sequence of collected data obtained by repeated measurements over time. 

Irregularly collected data is not a time series. We use time series analysis to extract 

meaningful statistics or some characteristics of the corresponding data. For instance, as in 

our study, we can use time series analysis to understand the behavior of a thin-film for 

making predictions about its behavior under certain conditions.  

We can find three components in an observed time series. The trend: it implies long term 

direction; the seasonal: it implies systematic and/or calendar related flow; the irregular: it 

implies unsystematic, short term surges. The last one, irregular fluctuations, may not be 

always unsystematic. If there is a chaotic system behavior, although the measurement of an 

observation seem like it has an irregularity, there is not. The behavior of the system will be 

completely deterministic. When an orbit 𝑥𝑥(𝑡𝑡) evaluates in a nonlinear sense and under the 

rules of differential equations 

 
𝑑𝑑𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑

= 𝑓𝑓�𝑥𝑥(𝑡𝑡)�     (5.1) 

 

or discrete time maps 

𝑥𝑥(𝑡𝑡 + 1) = 𝑓𝑓�𝑥𝑥(𝑡𝑡)�,     (5.2) 
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chaos phenomenon can occur [40, 41, 42]. While in systems as described by Eq. 5.1 

degrees of freedom is determined by the number of first order autonomous ordinary 

differential equations required, in discrete time systems as described by Eq. 5.2 it is the 

same as the number of components of 𝑥𝑥(𝑡𝑡) [43]. As discussed above, some aspects of 

chaos will show up themselves by traces of complex time with continuous Fourier spectra, 

nonperiodic trajectories in the state space, and great sensitivity to little changes in the orbit. 

With linear methods like Fourier transform, chaotic behaviors cannot be analyzed. 

Actually, chaos appears like noise in the data. To get meaningful information from scalar 

time series, we need some nonlinear methods. 

5.1. PHASE SPACE RECONSTRUCTION 

Since in study of deterministic systems phase space has a significant importance, it brings 

together the question that the thing we observe is not a phase space object, but a time series 

only. Thus, we need to convert the observation, which is just a sequence of scalar 

measurements, into state vectors. Phase space reconstruction is the solution to this 

problem. It can be handled by delay methods. 

A chaotic time series which is a scalar observation is usually embedded into a delay 

reconstructed phase space by the embedding theorem of Takens [44, 45]. The theorem 

states the following: Given a dynamical system as in Eq. 5.1 in a phase space Γ ∈ ℝ𝑑𝑑, a 

measurement function ℎ:ℝ𝑑𝑑 ⟶ ℝ, and a sampling interval ∆𝑡𝑡. Assume that the system  𝑓𝑓 

has a strange attractor with box-counting dimension 𝑑𝑑𝑓𝑓. Denote the scalar measurements 

obtained through the sampling by 𝑠𝑠𝑛𝑛 = ℎ(𝑥𝑥(𝑡𝑡 = 𝑛𝑛)). Consider the delay embedding space 

spanned by delay vectors 𝑠𝑠𝑛𝑛���⃗ = (𝑠𝑠𝑛𝑛, 𝑠𝑠𝑛𝑛−𝑎𝑎, … , 𝑠𝑠𝑛𝑛−(𝑚𝑚−1)𝑎𝑎). The attractor can be embedded in 

𝑑𝑑𝑒𝑒-dimensional space if 𝑑𝑑𝑒𝑒 > 2𝑑𝑑𝑓𝑓. When 𝑑𝑑𝑒𝑒 is chosen to be greater than 2𝑑𝑑𝑓𝑓, which can be 

fractional, overlaps can be removed and the orbit would be unambiguous.  

In conclusion, we can say that the phase space reconstruction method supplies us the 

opportunity by which, beginning with a set of scalar data 𝑠𝑠(𝑡𝑡0 + 𝑛𝑛𝜏𝜏𝑠𝑠) = 𝑠𝑠(𝑛𝑛) and using 

𝑠𝑠(𝑛𝑛) and its time delays, we can get vectors  

 

�⃗�𝑦(𝑛𝑛) = [𝑠𝑠(𝑛𝑛), 𝑠𝑠(𝑛𝑛 + 𝜏𝜏), 𝑠𝑠(𝑛𝑛 + 2𝜏𝜏), … , 𝑠𝑠(𝑛𝑛 + (𝑑𝑑𝑒𝑒 − 1)𝜏𝜏)]   (5.3) 
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in 𝑑𝑑𝑒𝑒-dimensional space which do not falsely cross the orbits �⃗�𝑦(𝑛𝑛). They do not false 

cross, because they are projected from a higher dimensional space. In addition, we 

underlined a special criterion 𝑑𝑑𝑒𝑒 > 2𝑑𝑑𝑓𝑓 for the number of elements in �⃗�𝑦(𝑛𝑛). 

Phase space reconstruction method conserves the information of the invariants of the 

original system, so we can investigate the invariants as they are in the original space. To 

make the things more manageable, we need to determine an optimal dimension and a 

suitable time lag.  

5.2. CHOOSING TIME DELAYS 

To reconstruct a phase space, choosing suitable time lags is an important issue as we 

mentioned above. For instance, if we choose a time delay larger than what is needed, 𝑠𝑠(𝑛𝑛) 

and 𝑠𝑠(𝑛𝑛 + 𝜏𝜏) could be completely independent in a statistical sense. On the other hand, if 

we choose the delay too short, they could not be independent enough, and this causes a loss 

of some of information that we need about the original system.  

The typical choice of threat to the problem is based on the generation of information. That 

is, the choice of time delay is made basing on the generation of information. Since stable 

linear systems do not produce information [43], we need to focus on a property which is 

not shared both with linear and nonlinear systems, but is shared with only nonlinear ones. 

5.2.1. Auto-correlation Function 

Auto-correlation is, simply, the cross-correlation of a signal with itself. It gives the 

similarities between the observed data in terms of time delay. By auto-correlation function, 

we can measure the correlation of a signal with itself shifted by a time lag; the auto-

correlation function is defined as follows: 

 

𝐴𝐴(𝑡𝑡) =
1
𝑁𝑁
∑ (𝑆𝑆(𝑚𝑚+𝑑𝑑)−�̅�𝑆)(𝑆𝑆(𝑚𝑚)−�̅�𝑆)𝑁𝑁
𝑚𝑚=1

1
𝑁𝑁
∑ (𝑆𝑆(𝑚𝑚)−�̅�𝑆)2𝑁𝑁
𝑚𝑚=1

,    (5.4) 

where 𝑆𝑆̅ is defined as 
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𝑆𝑆̅ = 1
𝑁𝑁
∑ 𝑆𝑆(𝐷𝐷)𝑁𝑁
𝑚𝑚=1 .     (5.5) 

 

We can find the periodicity in a signal by the function and identify the effect of noise on 

the signal.  

If there is no noise, the auto-correlation function oscillates with constant amplitude and the 

periods of the function and the signal would fit each other. If there is noise, the envelope of 

the auto-correlation function decreases; and by looking at how fast it decreases, we can 

quantify the effect of noise. 

5.2.2. Mutual Information 

Mutual information of two variables implies the mutual dependence of them; that is, it tells 

about how much we can get information about one of the variables by looking the other. 

While the linear dependence can be measured by the auto-correlation, a more general 

dependence can be received by the mutual information. Hence, the mutual information is a 

preferable measure of the transition from small 𝑡𝑡 to large 𝑡𝑡 with nonlinear systems.  

The mutual information of two discrete random variables is defined as follows: 

 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = −∑ ∑ 𝑝𝑝(𝑥𝑥,𝑦𝑦) log � 𝑝𝑝(𝑑𝑑,𝑑𝑑)
𝑝𝑝(𝑑𝑑)𝑝𝑝(𝑑𝑑)

�𝑑𝑑∈𝑌𝑌𝑑𝑑∈𝑋𝑋 ,   (5.6) 

 

where 𝑋𝑋 and 𝑌𝑌 are the random variables, 𝑝𝑝(𝑥𝑥,𝑦𝑦) is the joint probability distribution 

function of 𝑋𝑋 and 𝑌𝑌, and 𝑝𝑝(𝑥𝑥) and 𝑝𝑝(𝑦𝑦) are the marginal probability distribution functions 

of 𝑋𝑋 and 𝑌𝑌 respectively. The numerical scale of the measure of the information, 𝐼𝐼(𝑋𝑋;𝑌𝑌), is 

determined by the base of the logarithm in Eq. 5.6: If the base of logarithm is 2, then we 

call the scale of the number we get by 𝐼𝐼(𝑋𝑋;𝑌𝑌) as “bit” (binary digit); if the base is 𝑒𝑒, the 

scale would be “nat” (natural unit) [46].  
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5.3. CHOOSING THE DIMENSION 

While the observed orbits of the attractor are projected to a lower dimensional space, there 

occurs some overlaps and hence a loss of information. To avoid this, we need to find an 

integer dimension by which we can get the necessary number of coordinates. In that sense, 

we need to look at the system to figure out the condition that causes these overlaps. That is, 

thinking the dimension as a parameter, for what dimension value we get rid of the 

overlaps. We better try to find the minimum value to minimize the algebraic effort. This 

minimum dimension which is an integer is called the embedding dimension, 𝑑𝑑𝑒𝑒. It is worth 

to emphasize one thing: It is not necessary to be the same that the embedding dimensions 

obtained from different observations of two quantities of the same system.  

As we mentioned above, the sufficient –not necessary- condition to avoid the overlaps is 

𝑑𝑑𝑒𝑒 > 2𝑑𝑑𝑓𝑓, where 𝑑𝑑𝑓𝑓 is the dimension of the attractor defined by the orbits. Since 𝑑𝑑𝑒𝑒 

represents not the necessary but only the sufficient condition, this means that we can select 

one of the many possible dimensions. 

5.3.1. False Nearest Neighborhood Method 

We want to find a criterion for the embedding dimension which can cause to unfold the 

attractor. We prefer the dimension to be the minimum, since it is easier to handle. The false 

nearest neighbors method is one of the well-known methods for the job.  

The method recommends beginning with thinking on the data vectors of the reconstructed 

space and the nearest neighbor in phase space of these vectors: 

 

�⃗�𝑦(𝑛𝑛) = [𝑠𝑠(𝑛𝑛), 𝑠𝑠(𝑛𝑛 + 𝜏𝜏), … , 𝑠𝑠(𝑛𝑛 + (𝑑𝑑𝑒𝑒 − 1)𝜏𝜏)]   (5.7) 

�⃗�𝑦𝑁𝑁𝑁𝑁(𝑛𝑛) = [𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛), 𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛 + 𝜏𝜏), … , 𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛 + (𝑑𝑑𝑒𝑒 − 1)𝜏𝜏)]   (5.8) 

 

Eq. 5.7 gives the data vectors, while Eq. 5.8 represents the nearest neighbor. If �⃗�𝑦𝑁𝑁𝑁𝑁(𝑛𝑛) is 

not a false neighbor �⃗�𝑦(𝑛𝑛), is truly a near neighbor of it, then this means that �⃗�𝑦𝑁𝑁𝑁𝑁(𝑛𝑛) is 

realy neighbor to �⃗�𝑦(𝑛𝑛) in physical meaning. The real attractors in nature are tightly packed 

in phase space and because of that, there can be many neighbors around the points in phase 
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space. By weeding out all of the false neighbors, we can identify the dimension 𝑑𝑑𝑒𝑒 where 

the attractor becomes unfolded.  

We can use a geometrical construction to do this [47]: If we have the false neighbor vector 

�⃗�𝑦𝑁𝑁𝑁𝑁(𝑛𝑛) coming from the projection from a higher dimension to the corresponding 

dimension 𝑑𝑑, we can lose the false neighbor to go out of the neighborhood of of �⃗�𝑦(𝑛𝑛) by 

going to a higher dimension 𝑑𝑑 + 1.  

While we go from dimension 𝑑𝑑 to 𝑑𝑑 + 1, we add additional components to both �⃗�𝑦(𝑛𝑛) and 

�⃗�𝑦𝑁𝑁𝑁𝑁(𝑛𝑛); respectively, 𝑠𝑠(𝑛𝑛 + 𝑑𝑑𝜏𝜏) and 𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛 + 𝑑𝑑𝜏𝜏). We can figure out which one of the 

neighbors is true and false by comparing the distances between the vectors �⃗�𝑦(𝑛𝑛) and 

�⃗�𝑦𝑁𝑁𝑁𝑁(𝑛𝑛) in both dimension 𝑑𝑑 and 𝑑𝑑 + 1. If the corresponding distances are similar, then it 

means that the neighbor is true; if the distance we get for dimesion 𝑑𝑑 is smaller than the 

other, it means that the neighbor is false. Let’s see the method analytically: 

 

[𝑅𝑅𝑑𝑑(𝑛𝑛)]2 = ∑ [𝑠𝑠(𝑛𝑛 + (𝐷𝐷− 1)𝜏𝜏) − 𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛 + (𝐷𝐷− 1)𝜏𝜏)]2𝑑𝑑
𝑚𝑚=1 ,  (5.9) 

 

where 𝑅𝑅𝑑𝑑 is the Euclidian distance between the nearest neighbor points in dimension 𝑑𝑑. 

For the next dimension it becomes as follows: 

 

[𝑅𝑅𝑑𝑑+1(𝑛𝑛)]2 = ∑ [𝑠𝑠(𝑛𝑛 + (𝐷𝐷− 1)𝜏𝜏) − 𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛 + (𝐷𝐷− 1)𝜏𝜏)]2𝑑𝑑+1
𝑚𝑚=1   (5.10.a) 

= [𝑅𝑅𝑑𝑑(𝑛𝑛)]2 + |𝑠𝑠(𝑛𝑛 + 𝑑𝑑𝜏𝜏) − 𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛 + 𝑑𝑑𝜏𝜏)|2   (5.10.b) 

 

Subtracting Eq. 5.9 from Eq. 5.10 and dividing by 𝑅𝑅𝑑𝑑 gives the ratio of the distance 

between the neighbor points: 

 

�[𝑅𝑅𝑑𝑑+1(𝑛𝑛)]2−[𝑅𝑅𝑑𝑑(𝑛𝑛)]2

[𝑅𝑅𝑑𝑑(𝑛𝑛)]2
= |𝑠𝑠(𝑛𝑛+𝑑𝑑𝑎𝑎)−𝑠𝑠𝑁𝑁𝑁𝑁(𝑛𝑛+𝑑𝑑𝑎𝑎)|2

𝑅𝑅𝑑𝑑(𝑛𝑛)
    (5.11) 

 

The ratio in Eq. 5.11 can be used as a criterion. If the ratio is larger than some threshold, 

the neighbor is false.  

 



61 
 

5.4. FINDING THE LYAPUNOV EXPONENT 

A way to see whether or not a system is chaotic is to look at the Lyapunov exponent. The 

Lyapunov exponent of a system is simply the averaged exponent of the divergence of 

exponentially diverging nearby trajectories of the system. A positive maximal Lyapunov 

exponent indicates that the system is chaotic.  

If we want to find the maximal Lyapunov exponent of a time series, we can choose a point 

𝑠𝑠𝑛𝑛0 whose neighbors are in the locality of 𝜀𝜀. Then, we find the average of the distances of 

all neighbors to the reference part of the trajectory as a function of relative time. The 

logarithm of the average distance at time Δ𝑛𝑛 gives an expansion rate over the time span Δ𝑛𝑛 

which includes all the fluctuations due to the projection and dynamics. Hence, we need to 

compute Eq. 5.12 to find the maximal Lyapunov exponent: 

 

𝑆𝑆(Δ𝑛𝑛) = 1
𝑁𝑁
∑ 𝑙𝑙𝑛𝑛𝑁𝑁
𝑛𝑛0=1 � 1

�𝑈𝑈(𝑠𝑠𝑛𝑛0)�
∑ �𝑠𝑠𝑛𝑛0+Δ𝑛𝑛 − 𝑠𝑠𝑛𝑛+Δ𝑛𝑛�𝑁𝑁
𝑠𝑠𝑛𝑛∈𝑈𝑈(𝑠𝑠𝑛𝑛0) �   (5.12) 

 

𝑠𝑠𝑛𝑛0 represents the embedding vectors, 𝑈𝑈 is the neighborhood of 𝑠𝑠𝑛𝑛0 with diameter 𝜀𝜀. We 

need to choose𝜀𝜀 carefully to avoid missing information. It should be large enough to 

contain a sufficient number of neighbors to characterize a system and it should not be so 

large that missing of a small periodic component occurs. If there is a strict linear increase 

for some range on the graph of 𝑆𝑆(Δ𝑛𝑛) – Δ𝑛𝑛, the slope gives an estimation for the maximal 

Lyapunov exponent per time step. 

5.5. HURST’S RESCALED RANGE ANALYSIS 

In 1965, the British hydrologist Hurst introduced a method to obtain a measure of the 

variability of a time series in his work on the water storage of the Nile River [48]. The 

method provides an estimation of how variability of a time series changes with the length 

of the considered time period. The rescaled range (R/S) can be calculated simply by 

dividing the range of the values in a part of the considered time series by the standard 

deviation of the corresponding values. For instance, in Hurst’s study, the calculation of the 

R/S proceeds as follows:  
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Hurst’s problem was to find the capacity of a reservoir that is needed for it to release a 

volume of water as much as the mean inlet. It was wanted to build a reservoir which never 

overflows or becomes empty. First, the mean is calculated for the time series: 

 

〈𝑋𝑋〉𝑛𝑛 = 1
𝑛𝑛
∑ 𝑋𝑋𝑜𝑜𝑛𝑛
𝑜𝑜=1 ,     (5.13) 

 

where 𝑋𝑋𝑜𝑜 is the time series, or the amount of water flowing from a lake to the reservoir for 

a year; 𝑛𝑛 is the number of the years. Secondly, the cumulative deviate series is calculated 

with a mean adjusted series: 

 

𝑌𝑌(𝑡𝑡,𝑛𝑛) = ∑ (𝑋𝑋𝑜𝑜 − 〈𝑋𝑋〉𝑛𝑛)𝑛𝑛
𝑜𝑜=1      (5.14) 

 

The range series is 

 

𝑅𝑅(𝑛𝑛) = 𝐷𝐷𝑎𝑎𝑥𝑥�𝑌𝑌(𝑡𝑡,𝑛𝑛)� − 𝐷𝐷𝑠𝑠𝑛𝑛(𝑌𝑌(𝑡𝑡,𝑛𝑛))      (1 ≤ 𝑡𝑡 ≤ 𝑛𝑛),  (5.15) 

 

which gives the difference between the maximum and the minimum amount of water in the 

reservoir.  If the capacity of the reservoir is greater than 𝑅𝑅(𝑛𝑛), it does not overflows or 

becomes empty for 𝑛𝑛 years. On the other hand, the standard deviation series is given as 

 

𝑆𝑆(𝑛𝑛) = �1
𝑛𝑛
∑ (𝑋𝑋𝑜𝑜 − 〈𝑋𝑋〉𝑛𝑛)2𝑛𝑛
𝑜𝑜=1 .    (5.16) 

 

Finally, R/S is simply the ratio of 𝑅𝑅(𝑛𝑛) to 𝑆𝑆(𝑛𝑛). The Hurst exponent*, 𝐻𝐻, which is a 

measure of long-term memory of time series, is given as the asymptotic behavior of the 

R/S as a function of time span 𝑛𝑛: 

 

〈𝑅𝑅(𝑛𝑛)
𝑆𝑆(𝑛𝑛)

〉 = 𝑐𝑐𝑛𝑛𝐻𝐻        (𝑛𝑛 → ∞),    (5.17) 

 

* The exponent was first called 𝐾𝐾 by Hurst, but then was called 𝐻𝐻 in the honnor of Hurst by Mandelbrot 
(1983), and after him the exponent became famous for scaling analysis method [21]. 

 

                                                 



63 
 

where 𝑐𝑐 is a constant. According to Hurst, lots of phenomena can be described successfully 

by this scaling relation [21].  

In conclusion, itis a numerical approach to the predictability of a time series. If the Hurst 

exponent (𝐻𝐻) is close to 0.5, the process is a random walk (Brownian motion). A Hurst 

exponent (𝐻𝐻) in the range 0 <𝐻𝐻<0.5 implies non-random behavior in the time series and 

the process is called as sub diffusion, and in the range 0.5 <𝐻𝐻< 1 implies a time series with 

long range continuous evolution and the process is called as super diffusion. Sub diffusion 

regimes can be seen in various areas and it is also observed in condensed matter systems 

commonly as in this present study or as in Refs. [49, 50]. 
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6. CHAOS IN CONDENSED MATTER SYSTEMS: CURRENT 
THROUGH THIN FILMS 

 

As stated before, real systems behave nonlinearly and we can often observe chaos in 

nature. Dielectrics are known as the structures that exhibit chaotic behavior. We 

investigated the behavior of the transient current through some sample thin films. The 

transient current through a sample of As2S3(Ag) and As2Se3(Al) glass substrate analyzed in 

a similar way as the work on polymers [51, 52].  

6.1. EXPERIMENTAL SETUP AND THE MEASUREMENT 

The specimens under investigation were prepared as sandwiched metal-glass-metal 

structures with the glass as the isolating layer. 300 nm thick aluminum electrodes were 

thermally evaporated at 10-6 mbar on microscope glass slides cleaned in a detergent 

solution. Subsequently, aluminum top contacts were evaporated. The I-V measurement 

was performed via a programmable picoammeter/voltage source (Keithley, model 487) and 

a temperature controller (Lake Shore, model 300). The picoammeter and the temperature 

controller were interfaced to a computer through an interface card that automated data 

taking, schematically presented in Figure 6.1. The picoammeter model 478 used is capable 

of reading currents in the range 10 fA to 2 mA. It also serves as a DC voltage supply in the 

range up to 500V.  

 

 
Figure 6.1. Schematic of the experimental setup. 
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The data of transient current against time for As2S3(Ag) and As2Se3(Al) are presented in 

Figures 6.2 and 6.3 respectively. Horizontal unit represents 30 ms. Examining the graphs, 

we find that there is an overall relaxation in As2Se3(Al), but not in As2S3(Ag). However, for 

both materials the data look more like the behavior of the transient current data for 

polymer thin films such as PMMA [52] or PEG-Si [51]. 

 

 
Figure 6.2. The data of As2S3(Ag) 

 

 
 

Figure 6.3. The data of As2Se3(Al) 
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6.2. THE ANALYSIS 

We used TISEAN [54, 55] software package for time series analysis. We observe one 

dimensional signal in uniform time intervals, 𝑥𝑥(0), 𝑥𝑥(𝑇𝑇), ..., 𝑥𝑥(𝑛𝑛𝑇𝑇). In fact, the signal 

𝑥𝑥(𝑇𝑇) depends on an unknown number of parameters. To determine the number of 

parameters (dimensionality of the system), we find the meaningful time delay 𝜏𝜏 and the 

meaningful embedding dimension to construct time delay vectors. We find the embedding 

dimension by using the False Nearest Neighbors (FNN) method. We find the delay time by 

using Mutual Information (MUT) or correlation function (CORR). We calculate the auto 

correlation function which is the Fourier transform of the power spectrum and we present 

the results in Figure 6.4. 

 

 

 

Figure 6.4. Correlation coefficient. 

 

Another method for obtaining the delay time is to find the first minimum of the mutual 

information as presented in Figure 6.5. We wish to represent a random variable with actual 

probability distribution 𝑝𝑝(𝑥𝑥) with a code whose average length is 𝐻𝐻(𝑝𝑝). In practice, 

because of missing information or sampling, we may not know the actual distribution 

𝑝𝑝(𝑥𝑥), so that we have to take the distribution to be 𝑞𝑞(𝑥𝑥). In such a situation, we may need 

a longer code to represent the random variable. This difference in length, 𝐷𝐷(𝑝𝑝(𝑥𝑥)||𝑞𝑞(𝑥𝑥)) is 

known as the relative entropy. The knowledge that one random variable includes about 
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another random variable is known as mutual information. We can only examine the 

information that we send to one channel in terms of information output from there. Let 𝑥𝑥 

and 𝑦𝑦 be random variables with mutual distribution 𝑝𝑝(𝑥𝑥,𝑦𝑦). If variables 𝑥𝑥 and 𝑦𝑦 have 

distributions 𝑝𝑝(𝑥𝑥) and 𝑝𝑝(𝑦𝑦), the mutual information is the entropy between the mutual 

distribution and product distribution. If it is chosen to be too small, 𝑥𝑥(𝑡𝑡) and 𝑥𝑥(𝑡𝑡 + 𝜏𝜏) will 

be very close to each other and it will be difficult to distinguish them. If it is chosen too 

large, 𝑥𝑥(𝑡𝑡) and 𝑥𝑥(𝑡𝑡 + 𝜏𝜏) coordinates will be too far apart, will behave independently and 

cause loss of information. 

 

 

 

Figure 6.5. Mutual information. 

 

False nearest neighbors graph (FNN) presented in Figure 6.6 is useful for determining the 

minimal embedding dimension. The purpose is to find points near each other in the 

embedded space. If the embedding dimension is too small, points that are close in 

embedded space will appear as false neighbors. If the embedding dimension is too large, 

we lose statistics and information. By expressing the distance in (𝑑𝑑 + 1) dimensions in 

terms of the distance in 𝑑𝑑 dimensions, we can calculate the number of neighbors in 𝑑𝑑 and 

(𝑑𝑑 + 1) dimensions, 𝑅𝑅𝑑𝑑+1/𝑅𝑅𝑑𝑑. If this ratio is above a critical value, we have false nearest 

neighbors. 
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Figure 6.6. False nearest neighbors. 

 

The largest Lyapunov exponent presented in Figure 6.7 is usually used as an indicator of 

chaos. This is obtained by calculating the quantity in Eq. 5.12. 

In Eq. 5.12, 𝑠𝑠𝑛𝑛0 is our reference point, 𝑈𝑈 is a hypersphere of distance 𝜀𝜀 to this point. If 𝜀𝜀 is 

too small, we cannot find a sufficient number of points, if it is too large, a periodic 

component may be missed. For a few 𝜀𝜀 values, calculating the number of points in the 

hypersphere 𝑆𝑆(Δ𝑛𝑛), plotting it against Δ𝑛𝑛 gives the largest Lyapunov Exponent. A positive 

slope implies a positive Lyapunov Exponent. 

 

 
Figure 6.7. Largest Lyapunov Exponents with every line for As2S3(Ag). 
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Figure 6.8. Largest Lyapunov exponent with average line for As2S3(Ag). 

 

 
 

Figure 6.9. Largest Lyapunov Exponents with every line for As2Se3(Al). 
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Figure 6.10. Largest Lyapunov exponent with average line for As2Se3(Al). 

 

Table 6.1. Lyapunov Exponents extracted from the data of As2S3(Ag) and As2Se3(Al). 

 

 

Thin Films 

 

Lyapunov Exponent (slope) 

 

As2S3(Ag) 

 

0.317 

 

As2Se3(Al) 

 

0.456 

 

We also find the Hurst exponent by using the standard approach as described in section 

5.5, and as presented in Figure 6.11. 
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Figure 6.11. Hurst Analysis. 
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7. 𝒒𝒒-GAUSSIAN ANALYSIS OF THE ELECTRONIC BEHAVIOR IN 
AS2S3(AG) AND AS2SE3(AL) THIN FILMS 

 

In the context of 𝑞𝑞-statistics, 𝑞𝑞-Gaussian analysis can be used to interpret systems which 

show weak chaotic behavior, that is, the systems which have Lyapunov exponents near 

zero [56]. Our data of the transient current through a sample of As2S3(Ag) and As2Se3(Al) 

glass substrates were examined with 𝑞𝑞-Gaussian analysis in a similar way as the work on 

polymers [57]. We aimed to see the applicability of 𝑞𝑞-statistics to transient current in thin 

films and to observe if the results of the 𝑞𝑞-Gaussian analysisshow consistency with the 

results summarized in chapter 6. Since 𝑞𝑞-statistics is an analytical tool which is 

independent from those of chaos theory; the previous results (Chp. 6) can support or deny 

the present results of 𝑞𝑞-Gaussian analysis. 

7.1. THE ANALYSIS 

It is not possible to analyze data which show weak chaoticity with classical statistical 

mechanical tools. However, nonextensive statistical mechanics [58] is found to be useful 

for such analysis. As2S3(Ag) and As2Se3(Al) data can be fitted by a 𝑞𝑞-Gaussian curve, much 

better than it would be for a normal Gaussian. Rewriting Eq. 4.22 gives 

 

𝑝𝑝(𝑥𝑥) = 𝐴𝐴[1 − (1 − 𝑞𝑞)𝑥𝑥2/𝐵𝐵]1/(1−𝑞𝑞),    (7.1) 

 

where 𝐴𝐴 and 𝐵𝐵 are constants. We calculated the difference of each succesive current value 

𝐼𝐼(𝑡𝑡) over the whole measurement span: 

 

𝐼𝐼(𝑡𝑡) = 𝑠𝑠(𝑡𝑡 + 1) − 𝑠𝑠(𝑡𝑡)    (7.2) 

 

Then, 𝐼𝐼(𝑡𝑡) was normalized by subtracting its mean value over time and dividing the result 

by the standard deviation: 

 
𝐼𝐼(𝑑𝑑)−<𝐼𝐼(𝑑𝑑)>
𝜎𝜎(𝐼𝐼(𝑑𝑑))

      (7.3) 
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The histograms of the data were computed and the distributions were plotted against the 

normalized 𝐼𝐼(𝑡𝑡). The resulting distributions were fitted to a 𝑞𝑞-Gaussian curve by picking 

suitable 𝐴𝐴 and 𝐵𝐵 parameters and also finding a suitable value for 𝑞𝑞. The probability density 

functions (PDF) against normalized 𝐼𝐼(𝑡𝑡) can be seen in figures 7.1 and 7.2. 

In figures 7.1 and 7.2, the PDFs of the current magnitude differences (Eq. 7.2) for the 

transient current through thin As2S3(Ag) and As2Se3(Al) films. The curves fitted to a typical 

𝑞𝑞-Gaussian with exponents 𝑞𝑞 = 2.0 and 𝑞𝑞 = 2.4 respectively. The values we obtained 

from the fits can be seen in Table 7.1. 

 

 

 
 

Figure 7.1. PDF of the current magnitude differences for the transient current through thin 

As2S3(Ag). The curve has been fitted with a 𝑞𝑞-Gaussian (green line) with an exponent 𝑞𝑞 =

2.0.  
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Figure 7.2. PDF of the current magnitude differences for the transient current through thin 

As2Se3(Al). The curve has been fitted with a 𝑞𝑞-Gaussian (green line) with an exponent 𝑞𝑞 =

2.4. 

 

Table 7.1. 𝐴𝐴, 𝐵𝐵 and 𝑞𝑞parameter values of the fitted 𝑞𝑞-Gaussian function. 

 

 𝑨𝑨 𝟏𝟏/𝑩𝑩 𝒒𝒒 
As2S3(Ag) 796.9 19.5 2.0 
As2Se3(Al) 167.8 5.2 2.4 
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8. CONCLUSION 
 

The complex structure of chalcogenites suggests many degrees of freedom and a multi-

fractal structure. The transient current through the samples of As2S3(Ag) and As2Se3(Al) 

glass substrates has been analyzed in order to study possible chaotic behavior similar to 

that in the work on polymers [51, 52] and [57].  

The conductivity mechanism measured by the time dependent behavior of transient current 

was analyzed by nonlinear considerations such as time series analysis, maximal Lyapunov 

exponent, Hurst (R/S) analysis. Intermediate dimensional chaos with positive maximal 

Lyapunov exponents was observed. The behaviors of the system with possibly two 

different regions, one with short range and another with long range correlation were seen 

by comparing the correlation coefficient and mutual information. 

Since the maximal Lyapunov exponents are small, the thin films we used seemed like 

exhibiting weak chaos. Nonextensive statistics or 𝑞𝑞-statistics are suitable for analysis of 

data exhibiting weak chaos. To get more information about the behavior of transient 

current through the corresponding samples, we has analyzed our data by using 𝑞𝑞-statistics. 

We observed a behavior different from a Gaussian one. The curves are peaked and they 

have long tails. Thus, we obtained non-Gaussian probability density functions. 𝑞𝑞 exponents 

are greater than 1 as we expected, where at 𝑞𝑞 = 1 the 𝑞𝑞-Gaussian recovers the normal 

Gaussian. All results imply that there is a chaotic behavior. The complex structure of the 

sample thin films may support a number of conduction mechanisms that are acting 

simultaneously and affecting each other so that the current fluctuations bring forth a 𝑞𝑞-

Gaussian shape of the PDFs. In conclusion for the latter part, we saw the applicability of 𝑞𝑞-

statistics to transient current in thin films in our study and we observed how the results of 

𝑞𝑞-Gaussian analysis show consistency with the first results. Moreover, by the two analysis 

we saw that the transient current behavior of As2S3(Ag) and As2Se3(Al) films manifest 

chaotic behavior which is not strong. As suggested by studies of other amorphous materials 

with irregular behavior, the use of nonlinear methods for analyzing the conductivity 

mechanisms in such materials seems crucial in modeling and show that the behaviors are 

comparable. 
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