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ABSTRACT 

 

 

SELF-LOCALIZATION BY USING ARTIFICIAL NEURAL NETWORKS FOR 

HUMANOID ROBOT NAO 

 

 

NAO is a humanoid robot that is widely used in robot soccer games. Position estimation is 

an important process in such robotics applications. It can be defined as finding the position 

of the robot in a known environment. The current solutions proposed in the literature 

usually utilize proximity markers that provide the necessary information to determine the 

position of the robot. However, self-localization without using an external marker is a 

challenging problem. In this study, a novel approach that is based on Artificial Neural 

Network(ANN) learning is proposed for the self-localization problem of robot NAO on a 

soccer field. The method uses images captured by the vision sensors of the robot and a 

supervised learning process is carried out in order to obtain a self localization system. 

Some image processing methods are also utilized in order to extract the features that are 

used in the learning process. Various tests are carried out and it has been observed that the 

NAO robot can estimate its position on the soccer field quite accurately.   
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ÖZET 

 

 

YAPAY SİNİR AĞLARI KULLANARAK İNSANSI ROBOT NAO’DA 

KENDİLİĞİNDEN YER BULMA  

 

NAO robot futbol yarışmalarında yaygın olarak kullanılan bir insansı robottur. Pozisyon 

tahmini bu tür robotik uygulamalarda önemli bir süreçtir. Poziston tahmini, bir robotun 

ortamdaki yerini belirleme olarak tanımlanabilir. Literatürde önerilen güncel çözümler 

robotun konumunu belirlemede gerekli bilgileri sağlamak için yakınlık işaretçileri 

kullanırlar. Ancak, harici işaretçi kullanmadan kendi lokasyonunu bulma zorlayıcı bir 

problemdir. Bu çalışmada, NAO’nun bir futbol sahasında kendi yerini bulma problemi için 

Yapay Sinir Ağları (YSA) ile öğrenmeye dayalı yeni bir yaklaşım önerilmiştir. Yöntemde, 

robotun görme sensörleri tarafından çekilmiş resimleri, kendi yerini bulma sistemi elde 

etmek için oluşturulan denetimli öğrenme sürecinde kullanılmaktadır. Öğrenme sürecinde 

kullanılan özel nitelikler bir takım görüntü işleme yöntemleri kullanılarak elde 

edilmektedir. Yapılan çeşitli testler sonucunda NAO’nun bir futbol sahasında kendi yerini 

oldukça doğru bir şekilde tespit edebildiği görülmüştür.   
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1. INTRODUCTION 

 

Constructing a model of the environment is an important problem for robotics applications.  

Navigation of a robot in a certain environment is an application where such a model is 

needed crucially. Determining the position of the robot in the environment is critical for a 

successful navigation. This study handles the position estimation problem which can be 

described as finding the position of a robot in a known environment. 

 

The existing solutions for position estimation can be divided into two categories. In the 

first category, the common approach is to use proximity markers placed in the environment 

or tools like Global Positioning System (GPS) and digital compasses provide the 

information to position the robot. However, it is a more challenging approach to handle the 

position estimation problem as a self-localization process which is based on only the data 

that can be collected by the robot sensors and without using any special markers placed in 

the environment.  

 

This study proposes a vision based self-localization approach for the humanoid robot 

NAO. The approach uses the images that are collected by the camera that exists on NAO's 

head. An Artificial Neural Network (ANN) learning process is utilized in order to 

constitute the position estimation system for the robot.The supervised learning process is 

carried out on a training data set that consists of a set of images taken in previously known 

positions and in different directions. The raw images are manipulated by a set of image 

processing techniques in order to extract a set of features that represent the image 

signature.   

 

The resulting system is tested on a set of images taken in random positions and with 

random directions. It has been observed that the robot can estimate its position and 

direction quite accurately on these test images, too. The results suggest that ANNs 

provides the required abstraction over the training set which can be used to achieve self-

localization for the robot.  
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There are other studies in the literature that consider position estimation problem as self-

localization process. These existing solutions can be divided into two groups: relative 

localization and absolute localization. Relative localization can be described as 

determining the position by using the movement data of the robot [7,17,18,19]. The data 

related to the environment is not considered in this approach. On the other side, absolute 

localization is carried out based on the data obtained from the environment. 

 

A common absolute localization approach is using matching algorithms on images taken 

by the robot. In this approach, a set of images are taken for reference points and the new 

images are compared with them [4,5,9]. Iterative Closest Point [20] is the most commonly 

used method for the matching process [5]. However, matching algorithms require a high 

computation time and sometimes sufficient overlapping could not be achieved with the 

previous images.In [4], such an approach is utilized and satisfactory results are obtained. 

However, an omnidirectional camera that is capable of taking 360
o
 images of the field, is 

used in the study. This is achieved by a down-facing camera placed above the head of the 

robot. It can be claimed that, it would be difficult to achieve the same success level with 

the standard front facing cameras that exist on humanoid robots.  

 

As noted before, it is very common to use some external markers or some other tools to 

determine the position of a robot. The methodsthat use the data obtained from tools like 

Global Positioning System (GPS) or digital compasses in order to achieve the localization 

of a robot in outdoor environment, can be found in [11,1].  

 

Proximity and vision sensors are usually used for finding the the position of a robot in an 

indoor environment. Proximity based approaches can use sonars and lasers to determine 

the position of the robot [10,15]. On the other hand, vision sensor based approaches use 

cameras for this task. Using vision sensors has the advantage of being low-cost and 

providing huge amount of information. In this approach, position estimation is achieved  

by using colored landmarks. The environment is usually surrounded with predefined 

landmarks. The robot calculates the distance to the detected landmarks. The positions of 

the landmarks are known by the robot. Hence, geometrical calculations, [6,16] and 

matching algorithms [3] could be used to determine the position of the robot whenever 
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landmarks are detected. Although the approach is effective, it may have some 

disadvantages. For instance, other objects in the scene similar to the landmarks  can be 

confusing for the robot. 

 

This thesis is organized as follows: Preliminary information about Image Processing 

techniques and Artificial Neural Networksand the related work are presented at the next 

chapter. The proposed method consists ofthe Feature Extraction and the ANN learning 

processes and the details of them can be foundin Chapter 3. The experimental results are 

given in Chapter4. Last chapter contains the discussions and the conclusions for the study. 
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2. BACKGROUND 

2.1. PROBLEM DEFINITION 

Navigation of a robot in an environment is an important problem in robotic research. In 

order to perform a successful navigation, the robot first needs to know its initial position. 

For a robot, self-localization can be described as an ability to determine its position inside 

an environment. 

 

When a robot tries to locate itself in an outdoor location, the GPS technology is sufficient 

to find the position of the robot with the help of longitude and altitude values. This gives 

the information needed to establish a navigation path in the environment. 

 

On the other hand, when the robot tries to find its location in an indoor location such as a 

building or a room, the longitude and altitude information becomes insufficient, since the 

GPS precision is not high and the different positions inside a room would give almost the 

same information. In order to solve this indoor self-localization problem, a robot needs to 

have some a priori information related to the environment. 

 

The information about indoor locations can be obtained from various sensors such as 

cameras, lasers and sonars. Sonars and lasers are proximity sensors that are efficient in 

establishing a mapping of the environment by using the objects or walls in the 

environment. Then, the data obtained from these objects and their relative positions are 

essential in order to solve the self-localization problem. Cameras are vision sensors and 

they can be used also to obtain information related to the environment.However, the data 

collected by the cameras needs to be processed in order to obtain the mapping of the 

environment. 
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2.2. OVERVIEW OF LOCALIZATION METHODS 

2.2.1. OUTDOOR LOCATION ESTIMATION 

GPS works with satellites and a GPS receiver could be installed on the desired agent such 

as a robot. Initially the receiver gets a distance value from one satellite. This distance 

corresponds to a radius of a sphere where the robot is supposed to be inside. Then two 

other satellites give two additional distances corresponding to the radius of two other 

spheres. The intersection of the three spheres gives the location of the robot. This process 

is called triangulation.In this process the satellite velocities and altitudes are regulated and 

checked constantly in case of an error. If there is an error in the position of a satellite, the 

calculated error is sent to the satellite with a timestamp so that the receivers can update the 

location information of the satellites. 

2.2.2. INDOOR LOCATION ESTIMATION 

As noted before, the indoor location estimation for a robot can be done with two types of 

sensors: Proximity sensors and Vision sensors. Proximity sensor approach measures the 

distances to objects in the scene with the use of sonars and lasers. Vision sensor 

approaches can be divided into subcategories according to the type of camera used and the 

position of the camera on the robot: omnidirectional cameras, single camera placed on 

robot’s head facing downward and single camera facing forward. 

 

The use of proximity sensors is proven to be anefficient way to obtain the presence 

information for an object in an environment [10,15]. These sensors use particular 

techniques to achieve self-localization for robots. One of them, the sonars, became 

essential for robots. Nowadays, most of the humanoid robots have sonar transmitters and 

receivers embedded in theirbodies. Another type of proximity sensor approach is based on 

laser beamswhich are placed on the robot separately; however these sensors are quite 

expensive. 
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In order to reconstruct the environment in a digital form, a robot needs to analyze its 

surroundings. For the detection of objects inside a scene, a strategy has to be chosen in 

order to scan the environment. It is only with this information that a robot can later 

determine its position. 

 

When a robot tries to estimate its position with the use of sonars, it transmits signals that 

travel through the environment. The corresponding receivers on the robot’s body collect 

the signal reflections occurring when the signal makes contact with an object. The 

distances are measured from the elapsed time to receive the reflected signal. With this 

procedure the robot obtains the required data to reconstruct the environment in a digital 

form. Then the reconstructed model is compared with a previously known mapping. The 

information about the surroundings of the robot and the mapping of the environment is 

sufficient enough to estimate the position of the robot. With robots having laser sensors, 

the self-localization process is the same but it is more accurate. 

 

In recent years the use of omnidirectional cameras has increased in non-humanoid robots. 

The reason is that when an omnidirectional camera is placed on top of a robot, important 

information about the surroundings is collected. 

 

In [3],an omnidirectional camera takes images from the whole field in a range of 360 

degrees. An initial calibration is performed for detecting various elements inside the scene 

like lines, obstacles and objects. This calibration is done manually and the result is placed 

into a look-up table. Later the elements of this calibration are being compared with the new 

images in order to obtain information about the actual position.  

 

After the images are calibrated, color transitions must be stored and transformed into 2D 

coordinate data containing pixel locations and corresponding color information. In order to 

do this step, the dimensions of the field must be known. Then, distance and 

gradientmatrices are calculated. These matrices are stored in robot’s memory to be 

compared with the new images that will be taken by the robot for the localization process.  
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Nevertheless, the information collected by the camera is not sufficient to obtain the above 

matrices with a satisfactory precision. For this reason, 2D laser information is also used. 

The data from the laser is used to obtain the distance matrix that can be defined as the 

matrix holding the distance information to the lines, obstacles and objects in the scene. The 

gradient matrix is calculated with the errors of distance calculations, where an error is 

calculated from data collected continuously by the constant moves of thehead. The 

comparisons on the data collected are recorded as the cost of a single position. Then the 

costs are recorded into a matrix that is called gradient matrix. 

 

For the position estimation, several hypotheses generated for the coordinates on a 2D 

plane. Each hypothesis is evaluated by using the matrices obtained by the calibration 

process and the hypothesis with the minimum distance and gradient error is determined. 

First the hypotheses having big errors are discarded. Then similar hypotheses are merged 

and the one having the minimum error gives the approximated location of the robot. 

 

In [2], a single regular camera placed on robot’s head is used to take images from the field. 

The field is constructed in a way that the robot can estimate its position from distance 

measurements based on particular landmarks. These landmarks are placed in the middle of 

the field at each side. In order to estimate its position, the robot first has to detect at least 

one of these landmarks.  

 

After the landmark is detected, the robot needs to locate the upper-left, upper-right, lower-

left and lower-right corners and the middle of the detected landmark. The robot tilts its 

head until it obtains all the information mentioned above. When the information from the 

landmark detection process is collected, the robot calculates the distance to the detected 

landmark. 

 

While calculating this distance,the robot uses the height of the camera and also the angle of 

the camera relative to the floor. The angle and the height values can be disturbed by noise, 

resulting a poor estimation position. In order to improve estimation quality, a neural 

network approach is proposed in the study.  
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The input of the neural network consists of some known distances to the landmark and 

landmark pixel size pairs in the picture taken at this distance. The output is the 

corresponding angle and height information. After the training process, the neural network 

is expected to produce accurate estimations for the height and angle values. 

 

Since the position of a landmark is known, these calculations will be sufficient to obtain 

the position of the robot.It is possible to determine the distance ( )to the landmark by 

multiplyingtangent of the angleand the height (Equation 2.1.)Finally, the position of the 

robot (     ) is calculated as in equation (2.2). 

 

           (2.1) 

 

           
           

(2.2) 

 

2.3. IMAGE PROCESSING BACKGROUND 

A digital image consists of pixels which are the smallest elements of an image. The 

collection of the pixels forms a matrix that can be considered as the digitalization of an 

analog image. The images can generally be represented in three forms: 1-bit monochrome, 

8-bit gray scale and 24-bit color. 

 

1-bit monochrome images are called binary images and the pixels of these images can have 

only two values. The pixels of an object are represented as  ’s and they are called 

foreground pixels while the remaining pixels are represented as ’s and they form the 

background. 

 

A pixel with an 8-bit gray scale image holds only the intensity information. The value of a 

pixel varies between   and     that shows the intensity in shades of grey. In this 

representation the value   corresponds to black and     corresponds to white. 

A 24-bit color (or true color) representation consists of three layers of 8-bit grayscale 

images in which every layer has a different color model. There are different color models. 
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The most widely used model is RGB and it can be also transformed to the HSV color 

model. RGB stands for Red-Green-Blue and these are the colors utilized in the three layers. 

HSV stands for Hue-Saturation-Value. The Hue layer representing the color information, 

the Saturation layer representing the purity of a color and the brightness values represented 

by the Value layer, composes finally the HSV color model. [21] 

2.3.1. RGB TO HSV CONVERSION 

When converting a pixel from RGB to HSV the H, S and V values are calculated as 

functions of R, G and B values. Before the conversion, the RGB values are scaled to fit the 

range        . Then the calculation for H, S and V values are done according to the 

equations in 2.3. [22] 

  

              

 

 

   
                       

                                              
  

 

 

  

 
  
 

  
 

       

            
           

    
       

            
          

      
       

            
          

  

 

(2.3) 

               
 

 

                
 

 
 

 

  

2.3.2. HSV TO RBG CONVERSION 

When calculating RGB values from HSV values, Hue value should be between 0 and 360 

and Saturation Value between 0 and 1.In order to fit the values to these scales Saturation 

and Value are divided by     and Hue is multiplied with  . After the scaling, the 

calculations are done according to the equations in 2.4. [22] 
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2.3.3. RGB TO GRAY CONVERSION 

The conversion to gray scale is achieved by applying the transformation equation to each 

pixel one by one. The transformation equation is as follows: 

 

      
     

 
 (2.1) 

 

2.3.4. MORPHOLOGICAL DILATION 

The morphological dilation is used for enlarging foreground information boundaries [14]. 

In image processing, it is used with binary images for enlarging the pixels with the value 

one in order to clean the noises in the image. In the morphological dilation operation, the 

pixel values of the output image are determined by a rule concerning the corresponding 

pixel in the input image and its neighbours. The neighbouring pixels can be defined with 

different rules. The most common used neighbouring rule is a cross shaped neighbourhood 

and it can be seen in Figure 2.1.a. In a binary image, if any of the neighbouring pixels of 
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the input image is set to the value 1, the corresponding output pixel is also set to 1. (Figure 

2.1.b) 

 

 
 

(a)  

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

  

Figure 2.1. Dilation a) Cross-shaped neighborhood. b) An example dilation. 

2.4. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) provide a robust technique which is used in different 

machine learning applications. The model is inspired from the biological neurons and it 

can be used for classification and approximation problems. ANNs can be simply described 

as a set of nodes and their inter-connections that form a network (Figure 2.2).  Feed 

Forward Neural Network is the simplest model of ANNs where the network is organized as 

a combination of different neuron layers. [23] A neuron in a layer is connected only with 

the neurons of the next layer and no cycles exist in the network. A Standard feed forward 

ANN is composed of three layers: The Input layer, the Hidden layer and the Output layer. 

Input-output pairs are represented with the Input and Output layers. The Hidden layer 

represents the transformation layer which transforms the input into output form. It is 

possible to utilize more than one Hidden layer in order to represent more complicated 

functions. 

The pattern of interconnections differs according to the problem that is being solved by the 

ANN. The nodes in these layers are called neurons and they store a weight value that 

determines the size of the signal they transfer via their connections to other neurons.  The 
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number of neurons in each layer differs according to the data provided during the learning 

process. Every neuron has an activation function that converts the weighted input of the 

neuron to its output activation. The number of neurons in each layer differs according to 

the data provided during the learning process. Every neuron has an activation function that 

converts the weighted input of the neuron to its output activation. 

 

 

Figure 2.2. An example Artificial Neural Network.  

 

In order to train an ANN, an update algorithm is used to update the weights associated with 

the edges connecting the neurons. An update algorithm updates the weights based on the 

error measured on the output layer for the elements of the training data. In supervised 

learning a set of input-output pairs are given to the ANN and a function is induced by the 

network which can correctly map the input to the desired output. The ANN could be used 

for the classification of new data after the error measured at the output of the ANN is 

minimized by the iterative weight update algorithm. [24] 
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3. METHODOLOGY 
 

The proposed method utilizes a two phase algorithm for the solution of self-localization 

problem. In the training phase, a learning process is carried out on the robot's environment. 

Then the robot can use the abstraction obtained in the learning phase to estimate its 

position in new circumstances. 

 

In the training phase, a set of pictures taken by the robot's camera are utilized. These 

pictures are taken at predetermined positions that cover different regions of the soccer 

field. Also the same set of directions is used at each position. Each image is labeled with 

the corresponding position and direction information in order to create the training data.  

Each image is also processed by using a set of image processing techniques in order to 

extract the features to be used in the training process. As noted in chapter 1, Artificial 

Neural Networks (ANNs) are used in the learning process. The features that generate the 

image signature and the position-direction information related to the image form the final 

training data set for the training process. (Figure 3.1) 

 

The training phase is divided into two processes which are direction learning and position 

learning. In the first phase, the position information in the training data is ignored and an 

ANN is trained by using only the direction information as the class label of the images. 

Hence this initial network can determine the direction of the robot given an image 

signature. Then the training data is divided into three subsets according to the three 

directions used when the images are taken. The images were taken when the robot is facing 

the opponent's goal net straight ahead and with an angle of     to the left or to the right. 

Then a separate ANN is trained for each subset. Certainly, the position information is 

utilized as the class label in this phase. Hence, each ANN is expected to estimate the 

position of the robot when an image that has the same direction with the training data is 

given to the network. 
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Figure 3.1. Flow chart of proposed method. 

 

In the estimation phase, when a new image is received, the same feature extraction process 

is applied to generate the signature for that image. Then this signature is firstly sent to the 

ANN which is trained for estimating the direction of the robot. Depending on the result, 

one of the ANNs trained for position estimation is chosen and the same signature is sent to 
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the selected ANN this time. The output of this network provides the final position 

estimation for the robot. 

3.1. FEATURE EXTRACTION 

The feature extraction method is explained in detail in this section. It is not possible to use 

the whole images directly in the learning process. Consequently, each image has to be 

represented with a set of features named as image signature. The signature generation 

process is composed of the following steps: Field Extraction, Field Line Detection and 

Feature Generation. 

3.1.1. FIELD EXTRACTION 

In order to extract some features from an image, firstly the image has to be simplified. 

(Figure 3.2) The simplification process is done by converting the image from a Red-Green-

Blue (RGB) color space representation into a binary form where the green field will be 

represented as white and the rest of the image as black. 

 

 

Figure 3.2. An example image taken from NAO. 

 

Color detection in RGB color space is a difficult process. The detection of darker or lighter 

tones of a color is problematic in this representation. Different tones can occur because of 

the changes caused by the different light conditions such as casting a shadow on the scene. 
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Hence the image needs to be converted to Hue-Saturation-Value (HSV) color space in 

order to eliminate shadow changes and tone differences. In HSV color space such issues 

can be handled by ignoring the V(Value or Luminance) value. 

 

After the image is converted into HSV color space, the green field needs to be extracted 

from the image. For this purpose three threshold functions are utilized on the HSV layers 

of the image. The threshold function returns   if the value of the given pixel is in a 

specified range and   if it is not. After several trials, the best range of green values is 

measured to be between               and                  The threshold values are 

applied to the image after separating the HSV layers. When the equation 3.1 is applied for 

the Hue layer, the threshold function returns   for the Hue values that are in the range 

          Equation 3.2 is applied to the Saturation layer and  is returned for 

Saturationvalues that are between    and    . Finally, equation 3.3 is applied to the 

Luminance layer and   is returned for the values between    and     this time. 

 

     
                       

                       
  (3.1) 

 

     
                       

                       
  (3.2) 

 

     
                       

                       
  (3.3) 

  

 

As mentioned above, the threshold functions are applied on the HSV image and the 

calculated layers results a new binary image (Figure 3.3) As seen in the figure, the white 

pixels represent the green field and the black pixels are the rest of the colors in the image. 
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Figure 3.3. The thresholded binary image. 

A certain amount of noise is encountered in the images. This can occur both outside and 

inside the green field. In order to eliminate the noise in an image, the small white and black 

regions in the image are detected by the blob detection algorithm (Figure 3.4). In the 

algorithm, every white pixel is compared with the neighborhood pixels. The white 

neighbor pixels are called to be connected to the reference pixel. All connected pixels are 

labeled with a color of choice to represent different connectivities. The algorithm for 

labeling these connected components is named as flood fill algorithm [8]. 

 

 

Figure 3.4. Noise regions detected in the image. 

 

In the flood fill algorithm, a target color and a replacement color are determined and a 

reference point is given to the algorithm. If the reference point has the target color, then the 

neighbors that have the same value will be connected to the reference point. For this 
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purpose, the color of reference point is set as the replacement color. In a four direction 

neighborhood system, the neighbors that have the target color are also set with the 

replacement color. Then the same process is repeated by setting the neighbors as reference 

points one by one until there are no neighbors with the target color. When this process is 

finished, the points that have the replacement color will be named as a blob. Then the 

process continues to find blobs with new replacement colors and new reference points.  

 

The maximum sized blob represents the green field pixels. The components smaller than 

the maximum sized blob need to be deleted. This deletion is done by making all the pixels 

in the smaller components black. As a result, the regions outside the field are cleaned 

completely (Figure 3.5). 

 

 

Figure 3.5. The image with outside the green cleaned. 

 

In order to remove the noise inside the field, the image is inverted such that the white 

pixels become black and black pixels become white (Figure 3.6.a). The blob detection 

algorithm is executed on the negative image this time. Now the total region outside the 

field will be the maximum blob that is detected by the algorithm. The smaller components 

which are the noises inside the field now can be deleted as described before (Figure 3.6.b). 

Finally the image is inverted again to obtain the final noise free field image (Figure 3.6.c). 
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              (a) 

 
 (b) 

 
(c) 

 

Figure 3.6. Field Extraction images (a) Inverted image. (b) Removal of small white 

components.(c) Resulted image. 

3.1.2. FIELD LINE DETECTION 

For the signature generation process, the lines that exist in the field are also utilized. 

Hence, these lines need to be detected in the image in order to increase the accuracy of the 

signature. White detection process can be best done by taking the white values in a 

grayscale image. For this task, gray scale images are used. Since the white lines reside only 

inside the field, the process is carried out by using the field pixels and the rest of the image 

is discarded. 
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The binary image generated after the field detection process can be used as a mask to 

determine the field region in the original HSV color space image.The coordinates of the 

black pixels are obtained from the binary image. In the original HSV image the 

Luminance(V) values of the pixels in these coordinates become  . Then the HSV image 

becomes ready to be converted to gray scale. However, the HSV image is firstly converted 

back to RGB and then the Gray Scale conversion is applied on this RGB image (Figure 

3.7). 

 

 

Figure 3.7. The image in Gray Scale. 

 

 

The white detection threshold function returns   if the pixel value is between     and     

and   if not (Equation 3.4). Certainly, it is not possible to fully extract the lines and some 

pixels inside the lines can be still black as seen in Figure 3.8.a. Such errors can be 

corrected by dilating the image, such that the white pixels in the binary image will be 

enhanced to their neighborhood pixels. After the image is dilated, regions with poor line 

definition can be corrected as white pixels and the lines in the field can be obtained more 

accurately as seen in Figure 3.8.b. 

 

 

        
                                   

                        
  (3.4) 
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              (a) 

 
                      (b) 

 

Figure 3.8. Field Line Detection images (a) Thethresholded image. (b) The resulting 

dilated image. 

3.1.3. FEATURE EXTRACTION 

The images obtained by the field extraction and field line detection processes need to be 

combined into a single image and this would be the final image that will be used to 

generate the image signature. Note that the field and the lines detected by the two 

processes are represented with white pixels. In order to have a common representation in 

one image only, in the final image the lines will be represented as black in a white field. 

 

After this step, the final image is divided into     identical regions to form the features of 

the image. The regions are obtained by dividing the image into   x   pixel blocks.  

 

However, it is not possible to use the pixels in a region directly as features. Hence, each 

region should be reduced to a utility value that represents the characteristics of the line 

pieces in this region. For this purpose, the ratio of white pixels in each region is used. Note 

that the field lines are represented by the white pixels in the final image obtained. This 

ratio can change according to the distance of the robot to a line on the field and also the 

direction of the robot when the image was taken. When we consider the white pixel ratios 

of all regions in the image, we can claim that this data form a discriminative feature set for 

the position and the direction of the robot on the field. In order to calculate a ratio of white 
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pixels in a region, the pixel values in the region are simply summed (since black pixels 

have value  ) and then divided by the number of pixels in the region. By selecting     

regions in the image we finally have     feature values which compose the signature of 

the image. For a given region  , the corresponding feature value    is calculated with the 

equation 3.5 where   and   are the number of pixels in the rows and columns in the region 

and        is the pixel value at coordinate      . 

 

 

3.2. ARTIFICIAL NEURAL NETWORK LEARNING 

The method proposed in this study uses a supervised ANNs learning where a training data 

is utilized in order to induce a function that represents the input output relationship in the 

training data. Then the trained ANN is used to determine the direction and position of the 

robot on a set of test data. In this study, the Resilient Backpropagation (Rprop) algorithm 

is used [12]. The method is advantageous for feedforward ANNs in terms of the efficiency 

it provides for the weight update process. 

 

In Rprop learning, partial derivative of the error calculated at the output layer is used to 

update the weight values. The partial derivative of the erroris put into consideration in the 

weight update process. The equation 3.6 is used to determine the update amount (   ) 

where     is the weight from neuron   to neuron  ,    is the increasing factor which is set 

as    ,    is the decreasing factor which is set as     and t is the time. Then the updated 

weight is calculated with equation 3.7. [13] 
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As mentioned before, this study proposes an ANN learning approach for the estimation of 

the direction and the position of a robot based on the visual information gathered directly 

by the robot vision sensors. Direction estimation and position estimation are tackled as two 

different problemsin this study. The features of the image taken by the robot can change 

considerably based  on the direction of the robot. In other words, the robot might be 

located in the same position, but the field lines that will be observed by the robot would 

change dramatically when the robot is facing different directions. It can be claimed that 

position can be correctly estimated only if the direction of the robot is known. Hence 

direction of the robot should be determined first and then the position estimation can be 

carried out afterwards. 

 

The soccer field used in this study is symmetric. It is not possible for the  robot to 

determine its exact direction without using an external marker. There are two goal nets in 

the field. A visual marker can be placed on these nets to distinguish the opponent's and 

robot's own net. Detection of the goal keepers is another alternative to solve the symmetry 

problem. In this study the symmetry problem is not handled and it is assumed that the 

robot is facing always to a specific goal net. What is more, in some situations the robot can  

be facing to a direction where the goal net cannot be observed. In such a case, it is assumed 

that the robot can start turning around itself until the goal net can be observed.  

 

The training data set is created according to the above assumptions. Only one goal net is 

used and three different directions are determined to take the images by using the robot 

camera. The first group of images is taken at different positions when the robot is directly 

facing the goal net. The other two groups are when the robot's direction is    ‘s to the left 

or to the right of the goal net. These three groups of images are going to be named as    , 

    and      images considering the mid-field line as the reference line (Figure3.9). 
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Figure 3.9. Angle assignment according to orientation. 

 

As noted in the previous section, the class labels in the training data are set to these three 

different directions initially. Then, an ANN is trained on the data. Hence this initial ANN 

would be specialized to determine the direction of the robot. The empirical results show 

that a single hidden layer ANN is sufficient to classify the training data in terms of 

direction labels. Note that a single output neuron is sufficient where the output denotes one 

of the three directions for the robot. 

3.2.1. POSITION ESTIMATION 

For the position estimation process,    ,     and      images are placed into separate sets 

and an ANN is trained on each set. Certainly the x,y coordinates of the robot are placed 

into the datasets as the class labels this time. In order to simplify the learning process, the 

field is divided into    equal size regions. The x,y coordinates used in the data set denote 

the region that the robot is in, rather than specifying the exact position of the robot. The 

regions are obtained by dividing the field into   columns and    rows. At the end of the 

training process, three ANNs are obtained where each one can provide position estimation 

for the robot when the robot is facing a certain direction.Hence, an ANN is obtained which 

can approximate the position when therobot is directly facing the goal net and the other 

two ANNs determine theposition when the robot is facing the net with    ‘s to the left orto 

the right.The number of output neurons utilized this time is   where the outputof the first 
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neuron would denote the x coordinate of the robot and the second one the y coordinate.The 

empirical results show that a single hidden layer is sufficient for this second classification 

task, too. 

 

For the test process, new images are taken totally in random positions and random 

directions. Note that in the training phase, the picturesare taken when the robot is exactly 

in the middle of each region andthree specific directions are used. Certainly, the same 

feature extraction process is carried out on the images used in the test phase.Each image is 

first input to the ANN that is trained for direction estimation and based on the output of 

this ANN, the correspondingANN is utilized for position estimation this time. 
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4. IMPLEMENTATION 
 

The proposed method is implemented with C++ and OpenCV libraries, since the official 

language for NAO is C++ and the recommended image processing library is OpenCV 

2.4.5. A Graphical User Interface (GUI) is designed to simulate the tests in a computer 

environment and this GUI is implemented using QT 5.0.2. In the GUI the simulated field is 

displayed to the user in the right part of the screen and the results of the tests are shown on 

this image (Figure 4.1). 

 

 

Figure 4.1. The Graphical User Interface. 

 

The proposed methods are implemented with an object oriented approach and the  system 

is composed  to a number of classes and a class hierarchy. The classes and their relations 

are shown in the Figure 4.2. The user interaction with the GUI is handled by a class named  

‘MainWindow’, responsible for generating the displays, executing the user actions and 
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displaying the results of those actions. When the system starts, the neural network trainings 

and display generations are started by a class hierarchy defined into the ‘MainWindow’ 

class.The processes that take place can be seen in Figure 4.3. 

 

Figure 4.2. The Class Diagram. 

 

The ‘MainWindow’ class starts the process by initializing an object derived from the class 

‘Stadium’, that handles all the images and the neural network. In this process, the 

‘Stadium’ class initiates several classes. The class ‘ImageNames’ which handles the 

conversion of image file names to column, row and angle information and holds the 

converted values.On the other side, the class ‘StadiumImageFeatures’ is the container for 

the signature values extracted by the ‘Stadium’ object from the training images. Lastly, the 

class ‘Regions’is the container for the structure that holds the column,  the row and the 

center point coordinates of a region which is defined by the class‘Region’.   

 

First the ‘Stadium’ class generates the ‘Region’ class objects which are predefined as the 

   regions of the field. These ‘Region’ objects are then put inside a ‘Regions’ object to be 

contained as a whole. The signatures of the images that are in the ‘ImageNames’ object are 

generated by the ‘Stadium’ class and these values are stored into the container 

‘StadiumImageFeatures’ object. By using these values, the ‘Stadium’ class creates an 
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orientation estimation and three position estimations with the ‘NeuralNetwork’ class 

(derived from the Neural Network library Fast Artificial Neural Network - FANN) which is 

responsible for creating and training a neural network and estimating the direction or the 

position of a robot. Finally we have   neural networks, one for angle estimation and three 

for position estimation. With  these ANNs (Artificial Neural Networks) at hand, the 

‘Stadium’ class creates a container with the ‘NeuralNetworks’ class holding the four neural 

netoworks. Then the regions are sent to the ‘MainWindow’ class to be displayed to the 

user. 

 

When the user initiates test sequence, the image names are converted to column, row and 

angle values by the ‘ImageNames’ object and the signatures for these images are calculated 

and stored in the ‘StadiumImageFeatures’ object. Then each image first is tested through 

the Articial Neural Network (ANN) trained for detecting the direction and depending on 

the answer, the appropriate ANN corresponding to the resulted orientation is activated. The 

real position and the estimated position is stored in the ‘Positions’ class object which is 

responsible for storing these values and calculating the error between them. The errors of 

the images are stored in the ‘Errors’ class which holds these values in a ‘posError’ 

structure which holds column, row, angle and error of the image.Then the ‘Stadium’ class 

object sends the Errors object to the ‘MainWindow’ objet to be displayed to the user on the 

simulated field image. 

 

When a user choose the ‘ErrorMap’ dialog menu to be displayed for a better understanding 

the ‘MainWindow’ class object accesses the values in the ‘Errors’ object and calculates the 

color codes for the errors and displays them in the simulated field.  

 

In the implementation process several configurations for the proposed method has been 

tested for minimum error in the neural network training. The neural network training has 

been tried for hidden layers, regions and outputs with both less and more numbers. The 

proposed number of hidden layers, regions and outputs were the most successful ones with 

less neural network errors. 
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Figure 4.3. TheUse Case Diagram. 
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5. TEST AND EVALUATION 
 

NAO is a humanoid robot manufactured by Aldebaran Robotics. It has been chosen as the 

official robot for RoboCup Standard Platform League in 2007. Its specifications are 

presented in Table5.1. 

Table 5.1. NAO Specifics 

NAO V4 

Height 58 centimeters (23in) 

Wight 4.3 kilograms (9.5 lb.) 

Autonomy 60 minutes (active use), 90 minutes (normal use) 

CPU Intel Atom @ 1.6 GHz 

Built-in OS Linux 

Compatible OS Windows, Mac OS, Linux 

Programming Languages C++, Python, Java, MATLAB, Urbi, C, .Net 

Connectivity Ethernet, Wi-Fi 

 

The test environment that has been constructed is a scaled version of the regulated football 

field used for the RoboCup. Consequently, the football field utilized in this study has a 

length of      meters and a width of      meters. The white lines have a length of      

meters and a width of      meters. (Figure 5.1) 

 

Figure 5.1. The football field. 

The field is divided into   columns and    rows. Hence,    equal size regions are obtained 

on the filed. The images are taken in the middle of these    different regions in order to 
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providecoverage of the field for the learning process. In each region, the images are taken 

in using  different directions (   ,    ,     degrees to the middle line). (Figure 5.2) 

 

Figure 5.2. The regions and the middle points. 

Aset of test images are utilized to evaluate the system. Note that the images for the training 

set are taken in the middle of each region. The test set is formed by taking images at 

random positions in the regions. The robot is facing the goal post in test images, 
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too.However, the direction of the robot has a random angle relative to the goal post in the 

test set. Note that three specific angles were utilized for the direction of the robot in the 

training set. Fourdifferent test scenarioshave been prepared to evaluate the system. For 

each case, a set of images are chosen randomly from the set of test images. However, it is 

guaranteed that each case consists of at least one image for each region in the field. 

 

The first test case includes images where the robot is facing directly the goal post. The next 

two sets consist of images where the robot is facing to the left and to the right of the goal 

post. Hence, these three sets are used to measure the performance of the three ANNs 

trained to estimate the position of the robot given the correct direction for the robot. Then 

these three sets are  combined into a single set to measure the overall performance of the 

system. In this fourth test scenario, certainly the image is first input to the ANN trained for 

direction estimation and then the output of this initial ANN determines the ANN that will 

be used for position estimation. For a better understanding of the results, the field is 

divided into three layers: Top, Middle and Bottom. Top Layer consists of the first four 

rows in the field, Middle Layer refers to the middle five rows and Bottom Layer is the last 

four rows in the field (Figure 5.3). 

 

Note that the ANN output is the xy-coordinates of a region.  It is assumed that the ANN 

estimation for the robot position is the middle point of the region. The coordinates of this 

middle point in centimeters are used in error calculation. The error of estimation is defined 

as the Euclidean distance between the middle point coordinates of the estimated region and 

the real position of the robot. In equation 5.1,     are the actual coordinates of the robot 

and       are the middle point coordinates of the estimated region. The average error 

obtained for each region is represented on the field by different colors. The color of the 

error is determined  by the ranges presented in Table 5.2.   

 

 

                       
 

(5.1) 
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Figure 5.3. The layer labels of regions. 

 

Table 5.2. Error Color Codes 

             GREEN 

                YELLOW 

           RED 

 

In the beginning of the testing process     images are used to train the proposed neural 

networks. A Feature extraction process is applied on these images for the training. The 

signatures of these images are obtained in       seconds deducing that the signature 

generation for a single image takes       seconds. The orientation estimation neural 

network is trained in    seconds by using these     signatures. The average time for the 

training of the neural networks dealing with position estimation is       seconds. In total, 

the training process takes        seconds. 
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In order to have a robust system, the training process is carryout for once. Then, the 

signatures of the training images and the trained neural networks are written to specific 

files. When the system is restarted,      seconds is needed for reading all the signatures 

from the existing files. Loading of the neural network models take      seconds for each 

and the total process takes      seconds. 

 

In the testing phase, an image is processed in       seconds. This is the time to generate 

the signature for a single image and it is a fixed measure because of the fixed image size of 

the robots camera. Finding the position from the signature with the help of the neural 

networks takes less than 1 millisecond. As a result, it can be said that the system could be 

used in real time because robots approximate time to take a step in an environment is      

seconds. 

 

In Figure 5.4, the results of the first test are presented. Note that, the images taken when 

the robot is directly facing the goal post are utilized with the corresponding ANN in this 

test.In the figure the average error in centimeters is presented for each region. The  

resultsdenote that when the robot is facing the goal post, it can estimate its position almost 

perfectly. In the Top Layer,the estimation gives the correct region coordinates for     of 

the images.This percentage goes up to     and      in Middle Layer and  Bottom Layer. 

When the correct region cannot be determined, the estimation is one of the neighborhood 

regions in     ,     and    of the cases in the three layers. Hence, the correct region 

or a neighborhood region is the result of the estimation process for    of the images 

when the robot is directly facing the goal post.We can support that since the robot is facing 

the goal post there are no disturbances in the images because of the fact the robot sees the 

field clearly. In that case, the estimations give very accurate results. 

 

In the following two tests where the robot is facing the goal post with a certain angle, the 

success rate decreases. This is because in some images only a small portion of the field 

exists due to the angle utilized when the image is taken. What is more, the orientation of 

the robot changes the line configuration that exists in the image considerably. 
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Figure 5.4. Test results of robot facing the goal post. 

In Figure 5.5, the results of these two tests are presented. In the test where the robot is 

facing to left of the goal post, the correct region estimation percentages of Top, Middle and 

Bottom Layers are    ,     and     respectively. These results are    ,     and 

    for the test in which the robot is facing to right of the goalpost. When we sum the 

correct andneighborhood region estimation percentages, it is     ,     and     for the 

left facing test and     ,     and     for right facing test.(Figure5.5)In the test where 
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the robot is facing right of the goal post, the errors increase because of the disturbances in 

the images caused by the shadows and the lighting conditions of the environment. These 

disturbances are the results of the shadows cast on the field by the location of the windows 

in the room where the field is located. This is not the issue for the other test since the 

lighting is not affecting the result when the robot is facing the left of the goal post and the 

windows in the room does not cast a shadow on the left of the field. 

 

 
              (a) 

 
                      (b) 

  

Figure 5.5. Test results of robot facing left and right  a) Left b) Right 

In the final test scenario, all of the images used in the first three test cases are combines 

into a single test set. In this case, first the ANN trained for direction estimation is used to 

determine the direction of the robot. Based on the result of this first ANN, the 

corresponding ANN is utilized to estimate the position of the robot on the field. The 

percentage of estimations for the correct and neighborhood regions is     percent in this 

test. The average error rate for each region can be seen in Figure 5.6. 
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For the four test scenarios presented,  the mean error is also calculated for each test case. 

The error is calculated according to the equation 5.2 and the results are displayed in Table 

4.3.  

 

In Table 5.3, it can be seen that the robot can estimate its position with an average error of 

42cm in general. The total standard deviation is 27cm and it shows that the calculated error 

is capable of representing the distribution of the errors in the whole fieldWhen the robot is 

facing the goal post the mean error decreases to 28cm. In the training data set, note that the 

images are taken only using three specific directions.  However, the directions are random 

in the test set. It is thought that the success rate could be increased if more directions are 

utilized in the training set, too. However, it can be claimed that the error that occurs with 

the current position estimation process is still in an acceptable range. 

  

Table 5.3. Mean Errors 

 

 

The results of the related works described before and the results of the proposed method, 

the field dimensions and the method’s significance is displayed in the Table 5.4. The first 

approach [3] is using an omnidirectional camera which can see the whole field in any 

position the robot is in. The second approach [2] only considers the half of the field and 

there are landmarks in the scene that the positions of them are known by the robot.  

 

     
      

         
 

(5.2) 

 

 Left Goal Right All 

Bottom 54.35cm 32,97cm 62.47cm 41.57cm 

Middle 43.22cm 2.81cm 57.66cm 41.47cm 

Top 31.31cm 55.99cm 41.88cm 42.77cm 

All 42.98cm 28.45cm 54.28cm 41.9cm 
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Figure 5.6. Test results for all obtained images. 

When the results of these approaches are compared, the proposed approach does not seem 

to be superior because the other approaches tackle a simplified version of the problem. 

They eithermust see the whole field from above or the need to detect landmarks  in order to 

calculate the position of the robot. The proposed approach considers the whole field, uses a 

single camera located in front of its head, does not use a known landmark and it utilizes a 

learning based process for self-localization. 
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Table 5.4. Comparison of Approaches. 

 

Another test has been conducted when another robot is present in the scene and the robot 

can see at least some parts of this robot in its view. At  least one image for every region. 

However less number of regions are used in this test. The outermost regions in Figure 5.6 

are excluded from this test since the other robot would not be in the scene in most of the 

cases. The images obtained for this test goes through the same process and the signatures 

are generated for each image. When the image is processed, the other robot is also deleted 

from the image by the techniques used. The results show that even with a flawed image the 

system gives acceptable results with a      cm error and a      cm standard  deviation. 

(Figure 5.7) 

 Error Field Dimensions Region Size Significance 

Pinto et al. [3]     cm     m2
 2m Omnidrectional 

Camera 

Chang et al. [2]    cm         m2
 

(Only half of the field) 

0.3m Known Landmarks 

Proposed 

Method 
   cm           m2

 0.25m Human-like Process 



40 

 

 

 

Figure 5.7. Test results when another robot is present in the scene. 
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6. CONCLUSION 

 

In this study, a vision sensor based solution is proposed for the self-localization problem of  

humanoid robot NAO on a soccer field. A learning process with Artificial Neural 

Networks (ANNs) is applied on images taken from the camera of the robot. A training set 

is formed by taking images in specific positions on the field. The images are represented 

with a set of features which are extracted by using a set of image processing techniques. 

This extraction process determines the ratio of white lines in different regions of the image 

and these features are utilized by a supervised learning algorithm. 

 

The  data set formed is used for training several ANNs. The first  ANN is responsible for 

determining the direction of the robot and the other three ANNs are used to determine the 

position of the robot on the field. A second set of images are used for the evaluation 

process. The images in this set are taken at random positions on the field by using random 

directions. The average error of position estimation is      cm in the empty field and 

      cm in the field with another robot present. It can be concluded the estimation 

process produces satisfactory results for the self-localization of the robot. The robot can 

have quite accurate estimations for the position and direction of itself in most of the cases. 

A scaled version of regulated football field of RoboCup is used in the tests. However, the 

method is applicable to the actual RoboCup field, too. 

 

In this study, the features are extracted manually by using image processing techniques. 

However, auto encoders can be used to extract the features as the feature work. 

Autoencoders provide a method where the  signatures for the images can be generated 

automatically without the need of a preprocessing for the images. It would be interesting to 

compare the current results with the output that would be obtained with the features 

extracted with autoencoders. 
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