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ABSTRACT 

 

 

MODELING, ANALYSIS OF, AND EXPERIMENTATION ON AN ENERGY 

HARVESTER DEVICE FOR TIRE PRESSURE MONITORING SYSTEMS 

 

Tire pressure monitoring system (TPMS) is a system designed to monitor the air pressure 

inside vehicle tires and to provide an early warning system in case of low or high tire 

pressure. This technology is mandatory in many developed countries, as part of a global 

effort for increasing energy usage efficiency. 

 

A standard TPMS device runs on batteries and thus there are issues regarding maintenance 

and disposal of these devices. Replacement of batteries increases the operational costs as 

well as resulting in a significant amount of pollution. A batteryless TPMS eliminates this 

problem. There is significant amount of research efforts on this topic and it is increasing. 

 

In this thesis a novel, patent-pending design is modeled and simulated in a numerical 

software platform. The modeling includes collision modeling, dynamic equations of 

coupled electro-mechanical systems, and investigation of contact problems. For 

verification of the model a prototype is designed and constructed. Numerous experiments 

are conducted on the prototype. 

 

The prototype is tested at low speeds and the numerical model is verified using the data 

gathered from the experiment and the numerical simulations. In both numerical and 

experimental cases, the maximum power output was obtained when the load resistance 

matched the generator internal resistance, a well-known fact. The numerical simulation is 

used to obtain power output of the system for vehicle speeds up to 150 km/h. It is seen that 

even at speeds as low as 20 km/h the harvester generated 2.2 mW of average power which 

is enough to energize a TPMS device.  
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ÖZET 

 

 

PİLSİZ LASTİK BASINÇ İZLEME SİSTEMİ İÇİN TASARLANMIŞ ENERJİ 

ÜRETİM SİSTEMİNİN MODELLENMESİ, ANALİZİ VE DENEYSEL ANALİZİ 

 

Lastik basınç izleme sistemleri (LBİS) tekerleklerdeki basıncı takip etmek ve düşük veya 

yüksek basınç durumlarında erken uyarı vermek için tasarlanmıştır. Bu teknolojinin 

kullanılması pek çok gelişmiş ülkede zorunlu hale gelmiştir. 

 

Standart bir LBİS piller kullanılarak çalışmaktadır. Bu nedenle bu sistemlerin bakımı ve 

değiştirilmesi zor bir aşamadır. Pillerin değişme aşaması kayda değer bir anlamada çevre 

kirliliğine ve bakım maliyetini artmasına neden olmaktadır. Bu nedenle bu sistemleri pilleri 

devre dışı bırakacak bir enerji üretim sistemi tasarlanması gerekmektedir. Bu konu üzerine 

kayda değer miktarda çalışma bulunmaktadır ve bu çalışmaların sayısı gittikçe artmaktadır. 

 

Bu tezde yeni ve patent başvurusu bulunan bir enerji üretim mekanizmasının modellenmesi 

ve bu modelin numerik bir yazılım kullanılarak çalıştırılması bulunmaktadır. Modelleme, 

çarpışma modellemesi, elektro-mekanik sistemlerin dinamik denklemlerinin modellenmesi 

ve temas problemlerinin araştırma ve çözülmesini içermektedir. Bu modellerin 

doğruluğunun onaylanması için enerji üretim sisteminin prototip tasarımı, üretimi yapılmış 

ve bu prototip üzerine deneyler yapılmıştır. 

 

Enerji üretim sistemi düşük hızlarda denenmiştir ve toplanan veriler kullanılarak aynı 

testlerin sayısal benzetim sonuçları doğrulanmıştır. Enerji üretim sisteminin deneysel ve 

sayısal benzetim kullanılarak elde edilen maksimum güç jeneratörün iç direncine eş değer 

dirençte bulunmuştur. Sayısal benzetim 150 km/h ye kadar araç hızı için ortalama üretilen 

gücü hesaplamak için kullanılmıştır. Alınan sonuçlar aracın düşük hızlarda bile (20 km/h) 

2.2 mW ortalama güç ürettiği bulunmuştur. Bu üretilen güç LBİS için yeterlilik 

göstermektedir.  
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1.   INTRODUCTION  

 

 

Tire pressure monitoring system (TPMS) is a system designed to monitor the air pressure 

inside tires of vehicles and provide an early warning system in case of low or high tire 

pressure. This technology is mandatory in many developed countries, as part of the global 

effort for increasing energy usage efficiency. There are two types of TPMS systems these 

are indirect TPMS (iTPMS) and direct TPMS (dTPMS). iTPMS systems do not use 

pressure sensors, they estimate the tire pressure using the angular velocity of the tire. 

dTPMS systems use pressure sensors placed inside the tire and they usually require a 

battery as a power supply. 

 

In this thesis a novel, patent-pending design is proposed to be modeled and implemented in 

a numerical software platform. The modeling includes collision modeling, dynamic 

equations of coupled electro-mechanical systems, and investigation of contact problems. 

For verification of the model a prototype is designed and constructed. Numerous 

experiments are conducted on the prototype. 

 

In vehicles, pneumatic tire pressures are very important since the contact between the 

ground and the vehicle is made using tires. The area of the contact is called the contact 

patch. For the contact patch to form properly, tire specific operating pressures must follow 

the directions provided by the tire manufacturers. If the pressure is different than the 

pressure value provided by the manufacturer the contact patch between the ground and the 

tire changes, Figure 1.1. Fuel efficiency is directly dependent on tire pressures. For every 

3.3 psi (0.23 bar) pressure drop the fuel efficiency is reduced by 1 percent [1].  
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Low Pressure High Pressure Correct Pressure

 

 

Figure 1.1. Contact patch for correct pressure, low pressure and high pressure (correct 

pressure contact patch is shown with dashed lines) 

 

Tire failures are known to be caused by several factors including under inflation and 

overloading. An estimated 414 fatalities and 10275 non-fatal injuries result annually from 

tire related problems (e.g., flat tires, blowouts).  Under inflation is involved in 20% of flat 

tire/blowout cases that result in a crash [2]. For example, in 1990s incidents of 

unexpectedly large number of tire failures involving Firestone, a US based tire 

manufacturer, tires and consequent recalls, led NHTSA (National Highway Traffic Safety 

Administration, US) to undertake an investigation of the causes underlying the failures. 

The technical investigation was undertaken by Ford Company, the main customer of the 

tires, which determined “under-inflation” as one of the main factors. 

 

These incidents also pushed the United States Congress to legislate in 2000 the TREAD 

Act that mandated the use of a suitable Tire Pressure Monitoring System (TPMS) 

technology in all motor vehicles under 4.5 tons in order to help alert drivers of under 

inflation events.  This act was to apply to all such vehicles that were to be manufactured 

after September 1, 2007, [3].  

 

Similarly, in the European Union, all new M1 class (8 or less seats) passenger car models 

are required to be equipped with a TPMS as of November 1, 2012. Since November 1, 

2014, all new passenger cars sold in the European Union must be equipped with TPMS. 
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1.1. TIRE PRESSURE MONITORING SYSTEM 

 

TPMS are electrical or electro-mechanical systems designed to monitor the pressure inside 

pneumatic tires. The aim of TPMS systems is to avoid traffic accidents caused by tire 

failures and to increase the fuel efficiency by decreasing the energy losses due to under or 

over inflated tires. There are two types of TPMS: 

 

i. Indirect TPMS (iTPMS), and 

ii. Direct TPMS (dTPMS). 

 

In what follows, these systems are explained in more detail. 

 

1.1.1. Indirect Tire Pressure Monitoring System 

 

iTPMS do not use physical pressure sensors, instead they estimate air pressure indirectly 

by monitoring individual wheel rotational speeds and other signals available from outside 

of the tire, [4]. 

 

First generation iTPMS are based on the principle that under inflated tires have slightly 

smaller diameters than a correctly inflated one. Therefore, an underinflated tire would 

rotate faster than a normal one for a given vehicle speed. Hence, only measuring the tire 

rotation speed, it is, in principle, possible to estimate the effective tire diameter and, in 

turn, the tire pressure. 

 

Second generation iTPMS detect under inflation using vibration data of the tire assembly. 

It has been shown that some of the frequencies in the spectrum are sensitive to the tire 

pressure. Therefore, a spectrum analysis, done by signal processing software, enables 

monitoring of such signature frequencies. 

 

One of advantages of the iTPMS is that they do not require access into the tire for direct 

measurement of the pressure. Therefore, no change is required in tire assembly. Also, since 

they are powered by the car battery, they do not require additional batteries, which make 

them an environmentally friendly choice. 
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The drawback in iTPMS is that since these devices cannot measure absolute pressure of the 

tire they are relative by nature. They need to be reset by the driver when the pressure in the 

tire is known to be correct. iTPMS devices do not show the specific tire in which the 

pressure is low. Further, if a tire size not recommended by the manufacturer is used, the 

estimation errors may increase. 

 

1.1.2. Direct Tire Pressure Monitoring System 

 

dTPMS, measures the pressures of the tires directly by using external or internal sensors. 

These sensors require an energy source to work. Some sensors use electromagnetic 

induction as wireless power systems, other types usually use batteries. Current research 

focuses on another alternative, namely systems that generate its own power using the 

motion of the tire. 

 

Most dTPMS are mounted on the inside of the rim and use fixed batteries which are not 

replaceable. Typically dTPMS uses around 250 µw [5] A battery replacement means that 

the whole sensor will have to be replaced. The replacement is possible only by 

dismounting the tire. Therefore, the lifetime of the battery becomes a crucial parameter and 

this process has a considerable pollution effect on the environment. Further, since these 

sensors are subjected to very harsh environmental conditions inside the tire, the endurance 

and reliability of particular designs become critical issues for practical applications. 

 

This report contains a literature survey on energy harvester designs for TPMS in Section 2. 

An energy harvester mechanism proposed by Ciblak and Topaloglu is explained in Section 

3. The proposed harvester is modeled in Section 4 and using these models numerical 

simulation algorithms are written, these algorithms are explained in Section 5. A prototype 

is designed and constructed of the proposed mechanism, this is explained in Section 6. 

Voltage output data of the mechanism in open circuit and power output data of the 

mechanism in closed circuit mode are gathered, and presented and discussed in Section 7. 
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2. LITERATURE SURVEY 

 

 

Energy harvesters have been around for centuries for high power applications such as 

windmills and water mills. These types of system generate a significantly large amount of 

power and are large in size. Other than these energy types micro fuel cells [6] and micro 

turbine [7] generators are investigated. These systems are capable of providing large power 

outputs, but both require refueling. However, for low power applications such as a sensor 

power input, smaller energy harvesters are used which use the ambient power sources such 

as light, thermal energy and kinetic energy (mostly in form of vibration). 

 

Solar energy cells can be used to harvest power from light sources. These type of 

applications provide high power density in direct lighting but have very limited output 

under dim lighting conditions. Thus this makes them unsuitable for embedded applications 

where the lighting condition is far from ideal condition for the solar cells. 

 

Thermal energy can be converted to electrical energy using Seebeck effect. The early 

applications of these types of harvesters generated a few nW of power output [8]. 

 

Kinetic energy from vibration is generally harvested by using electromagnetic, 

piezoelectric or electrostatic transducers. The most basic form of harvesting energy using 

piezoelectric material is by using a cantilever beam covered with piezoelectric material [9]. 

Electromagnetic generators are used for vibration energy harvesting by, placing magnets 

on a cantilever beam and by placing a coil in the moving magnetic field [10]. 

 

The topic of batteryless TPMS is an ongoing research. There are numerous journal papers 

and patents related to this subject which are written over the last few years. 

 

There are designs utilizing an inductive element near the tire [11-14]. The aim in this 

method is to place an inductor connected to the battery of the vehicle and to provide power 

input to the TPMS using inductance. 
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Designs involving inductive elements may be viable in the future if the car manufacturers 

integrate an antenna system which is powered from the car batter, which would be placed 

near tires. This method is not feasible as an aftermarket solution today since this antenna 

cannot be mounted to the vehicle by the driver and the system itself is prone to theft since 

it is mounted outside the vehicle. 

 

 

 

Figure 2.1. An example of designs made by placing a inductor near the tire [15] 

 

There are designs that take advantage of the centrifugal force [16-19]. The centrifugal 

force increases as the vehicle velocity increase. Some of these are explained below. 

 

In Figure 2.2. a) Lei Gu and Carol Livermore’s design is shown [18]. They have designed 

two beams, one containing a tip mass and the other beam made out of piezoelectric 

material. Due to gravity the beam with the tip mass impacts on the piezoelectric beam. 

However the power generated using this method is in micro watt level thus it is not suitable 

for use. 

 

In Figure 2.2. b) F. Khameneifar et al.’s design is shown [19]. A beam made out of 

piezoelectric material has a tip mass and due to acceleration the beam bends and thus a 

power output is obtained. 

 

In Figure 2.2. c) Manla et al.’s designs are shown [16, 17]. In this design a ball is put inside 

a box with walls of piezoelectric material. As the tire rotates the ball impacts on the 
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piezoelectric plates and a power output is generated. This mechanism is not suitable for use 

due to its complicated and heavy structure. 

 

a) b)

c)  

 

Figure 2.2. Designs using centrifugal force. a) Lei Gu and Carol Livermore’s design [18]. 

b) F. Khameneifar et al.’s design [19] c) Manla et al.’s design [16, 17] 

 

There are designs made by using pendulum type mechanisms [20-24]. A dynamo cannot be 

used in these applications due to it being in need of a stationary component. In these types 

of designs a pendulum is placed somewhere other than the center of the tire and due to its 

mass does not fully rotate with the tire. This is used as a stationary point for the dynamo. 

This concept is shown in Figure 2.3. 
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Figure 2.3. A general shematic of a design made using a pendulum 

 

 A widely seen problem with these types of designs is that at high speeds the centrifugal 

force becomes more dominant and the pendulum starts to rotate with the tire. As the 

vehicle moves the pendulum can have a chaotic motion and can cause unwanted dynamical 

effects to the vehicle. 

 

There are designs that take advantage of tire deformation and contact patch formation [25-

30]. A point on the tire is subjected to deformation periodically due to contact patch 

forming. A good example for this type of design can be given using Makki’s work [25-27] 

shown in Figure 2.4. The method is to place highly flexible piezo-ceramic bender elements 

to the tire surface. 

 

 

 

Figure 2.4. Piezo-ceramic bender elements in tire surface for generating electricity [25-27] 
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 Although the power output of this system is enough for a TPMS device it is hard to mount 

this inside the tire without any problems and it is not practical to dismount and mount the 

system again when changing tires. 
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3. A NEW ENERGY HARVESTER CONCEPT 

 

 

In this section, the energy harvester mechanism used in this study is presented. This 

mechanism is based on an original concept proposed by Ciblak and Topaloglu (Figure 3.1.) 

in order to suit the power supply need of the TPMS and to address the pollution and 

maintenance problems mentioned in section 1.1.2 [31]. 

 

 

 

Figure 3.1. The energy harvester design concept used in this study. 

 

The main components of this harvester are shown in Figure 3.2. from the side view of the 

design. 
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Figure 3.2. Main components of the designed energy harvester 

 

The conical spring is used in order to minimize the solid height of the spring, which then 

protects the whole mechanism in case of flat tire. One-way bearing is used to transfer 

motion from the shaft of the pulley to the generator only in a one direction, removing the 

load from the generator when the pulley runs in the other direction. In actual design, the 

harvester is to be mounted on the rim inside the tire, as shown in Figure 3.3. 

 

Rim

Tire Surface

Energy
Harvesters

 

 

Figure 3.3. Location of energy harvester inside the wheel 
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3.1. WORKING PRINCIPLE  

 

When the tire deflects the conical spring compresses and the rope gets loose for a moment. 

The torsional spring located next to the pulley then winds up the rope to keep it tight 

constantly. During this interval there is no motion transferred to the generator, due to the 

use of the one way bearing. 

 

When the tire deflection ends, the conical spring moves with the tire and the rope is 

unwound from the pulley. Here the one way bearing engages and the motion is transmitted 

to the generator and electricity is generated. If the generator is connected to a circuit a 

current is obtained. Otherwise if the generator is not attached to a circuit, an open circuit 

electrical potential difference develops between the terminals. 

 

In order for the TPMS to work efficiently, the rope should remain tight, and, the contact 

between the tire and the conical spring should be sustained at all times. These conditions 

require careful design of system components. In subsequent sections, design of these 

components are presented in detail. 

 

3.2. CONICAL, HELICAL, AND TORSIONAL SPRINGS 

 

In this section, the springs used in the concept model and the prototype are studied. 

Although the concept calls for a conical spring, the prototype uses a helical one due to its 

simplicity and availability. This is justified since the main reason in using a conical spring 

is to prevent mechanism failure in case of flat tire. 

 

3.2.1. Conical Compression Springs 

 

Conical springs have nonlinear stiffness over its full range. The load displacement graph of 

a general conical spring is shown in Figure 3.4. 
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Figure 3.4. Load displacement graph of a general conical spring 

 

For the linear region, the force-displacement relationship can be expressed using Hooke’s 

law, as given below. 

 

 𝐹 = 𝑘𝑐𝑧 (3.1) 

 

where z is the displacement from load-free condition and F is the corresponding force. For 

the nonlinear region the force displacement relationship is given in [32] as 

 

 𝐹 = 𝑘𝑐𝑧+∈ 𝑧
3 (3.2) 

 

The stiffness of the conical spring for the linear region is [33]. 

 

 
𝑘𝑐 =

𝐺𝑑4

2𝑁𝐷𝑒𝑞
3  (3.3) 

 



14 

 

 

 

Figure 3.5. Geometric dimensions of a conical spring [33]. 

 

where 𝐷𝑒𝑞 is an equivalent mean coil diameter and is given by 

 

 
𝐷𝑒𝑞 = √(𝐷𝑚𝑎𝑥2 + 𝐷𝑚𝑖𝑛

2 )(𝐷𝑚𝑎𝑥 + 𝐷𝑚𝑖𝑛)
3

 (3.4) 

 

The parameters for the above equations are given below. 

 

𝐺  Shear modulus of the spring material 

𝑑  Wire thickness of the spring 

𝑁  Number of active coils 

𝐷𝑚𝑎𝑥  Maximum mean coil diameter 

𝐷𝑚𝑖𝑛  Minimum mean coil diameter 

 

3.2.2. Helical Springs 

 

In helical springs the behavior is linear for most the region of operation and the force 

displacement relationship can be given using Hooke’s law as 

 

 𝐹 = 𝑘𝑧 (3.5) 

 

where the spring constant 𝑘 can be calculated using the formula given below. 
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𝑘 =

𝐺𝑑4

8𝐷3𝑁
 (3.6) 

 

where the parameters for the above equation are given below. 

 

𝑑  Wire thickness of the spring 

𝐺  Shear modulus of the spring material  

𝐷  Mean coil diameter 

𝑁  Number of active coils 

 

3.2.3. Torsional Springs 

 

Helical coil torsional springs force displacement relationship can be stated using Hooke’s 

law 

 

 𝑀 = 𝑘𝑡𝜃. (3.7) 

 

The angular stiffness can be calculated using the equation given below [34]. 

 

 
𝑘𝑡 =

𝑑4𝐸

64𝐷𝑁
 (3.8) 

 

where the parameters for the above equation are given below. 

 

   𝑑  Wire thickness of the spring 

𝐸  Young’s modulus of the spring material  

𝐷  Mean coil diameter 

𝑁   Number of active coils 

 

The number of active coils 𝑁𝑎 is calculated using the formula shown below; 

 

 
𝑁 = 𝑁𝑏 +

𝑙1 + 𝑙2 

3𝜋𝐷
 (3.9) 
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𝑁𝑏 is the number of body turns and 𝑙1 and 𝑙2 are the moment arms lengths. 𝑁𝑏  can be 

stated with the equation below. 

 

 
𝑁𝑏 = 𝑁𝑐 +

𝛽

360
 (3.10) 

 

where 𝑁𝑐 is number of complete coils and 𝛽 is the angle of rotation on incomplete coils. 

 

3.3. RATCHETS AND SIMILAR ELEMENTS 

 

Ratchets are used to transmit torque and rotation only in one direction. A ratchet cross 

section is given in Figure 3.6. in order to show the components of a ratchet. 

 

 

 

Figure 3.6. Sectional view of a ratchet and components [35] 

 

The working principle of a ratchet is as follows. When the teeth turn in one direction the 

pawl permits motion and no torque is transmitted and a small resistive torque is developed. 

However, in the engagement direction the pawl locks together with the ratchet teeth and 

transmits the torque. 

 

A drawback for ratchets is that in order to engage, the pawl must catch the teeth. In 

classical ratchet design, therefore, there is small amount of backlash in the engagement 

direction. Thus, such ratchets are not suitable for instantaneous engagement cases. Instead, 

one-way bearings or one-way clutches are preferred when the backlash is to be minimum. 

An example of a one-way bearing is shown in Figure 3.7. 
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Figure 3.7. An example of a one-way bearing [36] 
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4. MODELING 

 

 

In order to predict the motion of the system, accurate modeling is essential. In this study 

both static and dynamic model equations, including contact and impact dynamics, are 

developed. These models are then implemented in MATLAB in order to simulate the 

system behavior. 

 

4.1. STATICS OF THE ENERGY HARVESTER 

 

The static analysis of the design is done considering the assembly process. The rope is 

attached to the pulley at a reference position 𝜃𝑟𝑒𝑓 which is taken as zero position for the 

pulley. This is shown in Figure 4.1. 

 

 

 

Figure 4.1. Assembly when the rope is connected to the pulley 

 

The rope is rolled around the pulley and the angle the rope is rolled is represented as 𝜃𝑟𝑜𝑝𝑒. 
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There is a geometric condition for the rope to be tight when its end is connected is to the 

conical spring which concerns the rope length 𝐿𝑟. This is given below. 

 

 𝐿𝑟 < 𝐻 + 𝜃𝑟𝑜𝑝𝑒𝑟𝑝 (4.1) 

 

In this equation 𝐻 is the distance between the center of the pulley and the tip of the conical 

spring, which can be given as 

 

 𝐻 = ℎ𝑝 + ℎ𝑏 + 𝐿𝑓 (4.2) 

 

When the connection of the rope to the tip of the conical spring is made the pulley rotates 

an angle 𝜃𝑝𝑠 to its static equilibrium position and the spring compresses an amount of ∆𝑠 to 

obtain its static equilibrium position. The position of the conical spring is measured from 

the free length of the conical spring. These are shown in Figure 4.2. 

 

 

 

Figure 4.2. The pulley and conical spring static equilibrium positions after the rope is 

connected to the conical spring 

 

To find the static equilibrium positions for the pulley and the tip of the conical spring, free 

body diagrams are drawn (Figure 4.3.). 
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Figure 4.3. Free body diagrams of pulley and conical spring 

 

Two static equilibrium equations are obtained from these diagrams as shown below. 

 

 𝑘𝑡𝜃𝑝𝑠 − 𝑇𝑟𝑝 = 0 (4.3) 

   

 𝑇 − 𝑘𝑐∆𝑠 = 0 (4.4) 

 

There are three unknowns in the above equations, which are the static positions and the 

tensile force in the rope (𝜃𝑝𝑠, ∆𝑠, 𝑇). Thus, to solve this problem another equation is 

required. This third equation comes from the geometry of the system due to the rope length 

being a constant and it is shown below where the total length of the rope is denoted as 𝐿𝑟. 

 

 𝐿𝑓 − ∆𝑠 + 𝐻 − 𝐿𝑓 + 𝑟𝑝𝜃𝑟𝑜𝑝𝑒 − 𝑟𝑝𝜃𝑝𝑠 = 𝐿𝑟 (4.5) 

 

Equation 4.5 reduces to the form shown below. 

 

 𝐻 + 𝑟𝑝𝜃𝑟𝑜𝑝𝑒 − 𝐿𝑟 = ∆𝑠 + 𝑟𝑝𝜃𝑝𝑠 (4.6) 

 

Solving equations 4.3, 4.4, 4.6for ∆𝑠 and 𝜃𝑠 and 𝑇,  we obtain 
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 𝜃𝑝𝑠 =
𝑟𝑝

𝑘𝑡 + 𝑟𝑝2𝑘𝑐
(𝐻 + 𝑟𝑝𝜃𝑟𝑜𝑝𝑒 − 𝐿𝑟) (4.7) 

   

 
∆𝑠 =

𝑘𝑡
𝑘𝑡 + 𝑟𝑝2𝑘𝑐

(𝐻 + 𝑟𝑝𝜃𝑟𝑜𝑝𝑒 − 𝐿𝑟) (4.8) 

   

 
𝑇 =

𝑘𝑐𝑘𝑡
𝑘𝑡 + 𝑟𝑝2𝑘𝑐

(𝐻 + 𝑟𝑝𝜃𝑟𝑜𝑝𝑒 − 𝐿𝑟) (4.9) 

 

The next step in the assembly process is assembling the system into the tire with radius 𝑅. 

The geometry for this case is shown in Figure 4.4. 

 

 

 

Figure 4.4. Assembly with tire base 
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The static position of the tip of the conical spring with respect to the undeflected tire base 

can be obtained as shown below. 

 

 𝑝𝑐𝑠 = 𝑅 − 𝑃𝑝𝑜𝑠 − 𝐻 + ∆𝑠 (4.10) 

 

A condition exists for the tip of the conical spring to have contact initially with the initial 

tire deflection position at 𝐷 (see Section 4.2 for tire deflection model). 

 

If 𝑝𝑐𝑠 > 𝐷, there is no contact between tire and tip of the conical spring thus the static 

positions of the system are found in Equations 4.7, 4.8,  and 4.9. 

 

 𝑝𝑐𝑠𝑓 = 𝑝𝑐𝑠 (4.11) 

   

 𝜃𝑝𝑠𝑓 = 𝜃𝑝𝑠 (4.12) 

 

If 𝑝𝑐𝑠 < 𝐷, then it is concluded that the tip of the conical spring will be in contact with the 

tire since it cannot penetrate the tire. Thus, the following calculations are made to find the 

new static equilibrium positions of the system. 

 

 𝑝𝑐𝑠𝑓 = 𝐷 (4.13) 

   

 𝜃𝑝𝑠𝑓 = 𝜃𝑝𝑠 − (𝐷 − 𝑝𝑐𝑠)𝑟𝑝 (4.14) 

 

Here another condition occurs for rope tightness. This is due to the change in the static 

position of the pulley as the conical spring is compressed to match the position of the tire. 

This condition for the rope to be tight is given as 

 

 𝜃𝑝𝑠𝑓 > 0 (4.15) 

 

If this condition is not satisfied then 𝜃𝑝𝑠𝑓 = 0, since the rope cannot exert a negative 

moment on the pulley and thus cannot rotate it in the negative direction. 
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These values are referred to as static values with notation 𝑝𝑐𝑠𝑓 = 𝑝𝑐𝑠 and 𝜃𝑝𝑠𝑓 = 𝜃𝑝𝑠 in 

further sections of the thesis for convenience. 

 

4.2. TIRE DEFLECTION MODELING 

 

To simplify the tire deflection model an assumption is made that the only elastic 

deformation occurs in the contact patch and the rest of the tire is not affected from this 

deformation and stays the same. The geometry of contact patch with this assumption is 

shown in Figure 4.5. 

 

 

 

Figure 4.5. Simplified tire deflection model. The maximum deflection of the tire is 𝑟 

 

The radial position of the tire surface can be written as a function of angular position 𝜃. 

The total angle corresponding to the contact patch is denoted as 𝛽. These angles are shown 

in Figure 4.6. 

 

 

 

Figure 4.6. Contact patch angle and reference angle theta 
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The contact patch angle 𝛽 in Figure 4.6. can be found as. 

 

 
𝛽 = cos−1 (

𝑅 − 𝑟

𝑅
)  (4.16) 

 

Therefore, from geometry, radial distance of a point on the tire to the tire center is 

 

 

𝑝 = {

𝑅 − 𝑟

cos(𝛽 − 𝜃)
, 0 < 𝜃 < 𝛽

          𝑅,                   𝛽 < 𝜃 < 2𝜋
  (4.17) 

 

The radial deflection of the tire point shown in Figure 4.6. can be found by subtracting 

Equation 4.17 from the radius of the tire which yields the equation below  

 

 

𝐷 = {
𝑅 −

𝑅 − 𝑟

cos(𝛽 − 𝜃)
, 0 < 𝜃 < 𝛽

                  0,                     𝛽 < 𝜃 < 2𝜋
  (4.18) 

 

The model given with Equation 4.18 is used to plot the radial deflection for a tire with 

radius of 22 cm and assumed maximum deflection of 2 cm. The angle 𝛽 is calculated using 

Equation 4.16 as 0.451 radians. The graph of the radial deflection vs. the angular position 

is shown in the Figure 4.7. 

 

 

 

Figure 4.7. Radial deflection of tire vs. Angular position 
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The radial deflection model is dependent on the angular position but it is needed to be 

related to the vehicle velocity 𝑉. Therefore, a relationship between the vehicle velocity and 

angular position is needed. This is found by converting the vehicle velocity to angular 

velocity 𝜔 of the tire. The angular position is found by integrating 𝜔. These relationships 

are given below. 

 

 
𝜔 =

𝑉

𝑅
  (4.19) 

   

 𝜃 = 𝜔𝑡 (4.20) 

 

Thus, the radial deflection model which is a function of angular position becomes 

 

 

𝐷 =

{
 

 𝑅 −
𝑅 − 𝑟

cos(𝛽 − 𝜔𝑡)
, 0 < 𝑡 <

𝛽

𝜔

                  0,                      
𝛽

𝜔
< 𝑡 <

2𝜋

𝜔

  (4.21) 

 

Using this equation the radial deflection velocity and acceleration can be calculated by 

taking derivatives with respect to time. 

 

The radial deflection velocity of the tire is given below. 

 

 
𝑑𝐷

𝑑𝑡
= 𝐷𝑣 = {

𝜔(𝑅 − 𝑟) tan(𝛽 − 𝜔𝑡) sec (𝛽 − 𝜔𝑡), 0 ≤ 𝑡 <
𝛽

𝜔

                                 0,                                         
𝛽

𝜔
< 𝑡 <

2𝜋

𝜔

  (4.22) 

 

The radial deflection acceleration of the tire is given below. 

 

 𝑑2𝐷

𝑑𝑡2
=
𝑑𝐷𝑣
𝑑𝑡

= 𝐷𝑎 (4.23) 

   

𝐷𝑎 = {
−(𝑅 − 𝑟)𝜔2sec (𝛽 − 𝜔𝑡)(1 + tan2(𝛽 − 𝜔𝑡)),    0 < 𝑡 <

𝛽

𝜔

                                                                    0,                    
𝛽

𝜔
< 𝑡 <

2𝜋

𝜔

  (4.24) 
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By using the same values as used previously for tire radius and maximum radial deflection, 

velocity and acceleration are found for given vehicle velocities. These are plotted in Figure 

4.8. for 10 km/h vehicle speed. Other speed values yield similar plots. 

 

 

 

Figure 4.8. The radial deflection, velocity and acceleration at 10 km/h. 

 

The radial deflection velocity and acceleration changes as a function of vehicle velocity. 

This behavior is shown in Figure 4.9. 

 

 

 

Figure 4.9. Maximum radial deflection velocity and acceleration vs. vehicle velocity 
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From Equation 4.22, the maximum radial deflection velocity is linearly related to the 

vehicle velocity. Figure 4.8. shows that this equation is maximum when 𝑡 = 0 with a value 

of 

 

 𝐷𝑣,𝑚𝑎𝑥 = 𝜔(𝑅 − 𝑟) tan(𝛽) sec (𝛽) (4.25) 

 

where tan(𝛽) and sec (𝛽) can be found using the geometry shown in Figure 4.6. 

 

 
tan(𝛽) =

√𝑅2 − (𝑅 − 𝑟)2

𝑅 − 𝑟
 

(4.26) 

   

 
sec(𝛽) =

𝑅

𝑅 − 𝑟
 

(4.27) 

 

Plugging 𝜔 =
𝑉

𝑅
, and, Equations 4.26 and 4.27 into Equation 4.25, one gets 

 

 
𝐷𝑣,𝑚𝑎𝑥 =

𝑉

𝑅
(𝑅 − 𝑟)

√𝑅2 − (𝑅 − 𝑟)2

𝑅 − 𝑟

𝑅

𝑅 − 𝑟
 

(4.28) 

 

After the equation is simplified the relationship between the maximum radial deflection 

velocity and vehicle velocity is obtained  

 

 

𝐷𝑣,𝑚𝑎𝑥 =
√𝑅2 − (𝑅 − 𝑟)2

𝑅 − 𝑟
𝑉 = (√(

𝑅

𝑅 − 𝑟
)
2

− 1)𝑉 = tan(𝛽)𝑉 (4.29) 

 

Since all the parameters are constant it is proven that the relationship between the vehicle 

velocity and maximum radial deflection velocity is linear. For example, for a vehicle speed 

of 50 km/h, the max radial deflection velocity is 6.36 m/s . 

 

In the next section the conical spring is modeled as a spring with an equivalent tip mass 

and the governing equation of the conical spring is determined. 
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4.3. CONICAL SPRING WITH EQUIVALENT MASS MODELING  

 

In order to simplify the equation of motion for the deflection of the tip of a conical spring, 

the spring is modeled as a massless conical spring with an equivalent point mass at the tip. 

This is shown in the Figure 4.10. 

 

 

 

Figure 4.10. Conical spring with equivalent tip mass 

 

The equation of motion of the tip can be written simply as shown below for positive z axis 

of motion pointing upwards; 

 

 𝑚𝑒𝑞𝑧̈ + 𝑏𝑧̇ + 𝑘𝑧 = 𝐹 (4.30) 

 

The parameters in the above equation are given as; 

 

𝑚𝑒𝑞  Equivalent mass of the conical spring 

𝑏  Equivalent viscous damping coefficient 

𝑘  Stiffness of the conical spring 

𝐹  Force applied to the tip 

 

The total mass of the conical spring can be found by integrating the infinitesimal mass over 

the whole spring; 
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𝑚 = ∫𝑑𝑚 = 𝜌𝐴∫𝑑𝑠 (4.31) 

 

where 

 

𝜌  Density of the material of the conical spring 

𝐴  The cross sectional area of the spring 

𝑑𝑠  Infinitesimal length of the spring 

 

In order to find the equivalent mass of the conical spring kinetic energy equivalence 

method is used. This is done considering the experimental setup in which the system does 

not rotate (Section 6). Therefore, the calculation can be based on an inertial coordinate 

system in which the spring moves. For kinetic energy equivalence, first the kinetic energy 

of the spring is calculated. Then the kinetic energy of an equivalent mass at tip, moving at 

tip velocity is calculated. By equating these two the equivalent mass is solved. 

 

 𝑇𝑚𝑒𝑞 = 𝑇𝑡𝑜𝑡 (4.32) 

 

where the total kinetic energy is given as  

 

 
𝑇𝑡𝑜𝑡 = ∫

1

2
(𝑉(𝑠))2𝑑𝑚 =

1

2
𝜌𝐴∫(𝑉(𝑠))2𝑑𝑠 (4.33) 

 

In this case the position of the equivalent point mass is chosen as the tip of the conical 

spring and it is known that the velocity is maximum at this point. Thus the Equation 4.32 

becomes 

 

 1

2
𝑚𝑒𝑞𝑉𝑚𝑎𝑥

2 =
1

2
𝜌𝐴∫(𝑉(𝑠))2𝑑𝑠 (4.34) 

 

Now 

 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (4.35) 
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The values for 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 are obtained using the geometry of the conical spring which 

is shown in Figure 4.11. 

 

 

 

 

Figure 4.11. Dimensions of a conical spring 

 

𝑥, 𝑦 and 𝑧 coordinates for determining the infinitesimal elements in the conical spring are 

found as shown below; 

 

 𝑥 = (𝑅 − 𝛼𝑧)𝑐𝑜𝑠(𝜃) (4.36) 

   

 𝑦 = (𝑅 − 𝛼𝑧)𝑠𝑖𝑛(𝜃) (4.37) 

   

 𝑧 = 𝜇𝜃 (4.38) 

 

The mathematical representations for 𝛼 and 𝜇 are 

 

 
𝛼 = tan(𝛾) =

𝑅 − 𝑟

𝐻
 (4.39) 

   

 𝜇 = 𝑅tan (𝜓) (4.40) 

 

Figure 4.12. shows the helix angle, the cone angle, and the pitch. 
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Figure 4.12. Cone angle, pitch and inclination angle 

 

The helix angle 𝜓 can be calculated using the pitch 𝑃 of the conical spring as shown below 

 

 
𝜓 = tan−1

𝑃

2𝜋𝑅
 (4.41) 

 

Equation 4.38 is plugged into the equations 4.36 and 4.37, and the derivatives with respect 

to 𝜃 are used to obtain the resulting equations for 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧. 

 

 𝑑𝑥 = [−𝛼𝜇𝑐𝑜𝑠(𝜃) + (𝑅 − 𝛼𝜇𝜃)𝑠𝑖𝑛(𝜃)]𝑑𝜃 (4.42) 

   

 𝑑𝑦 = [−𝛼𝜇𝑠𝑖𝑛(𝜃) − (𝑅 − 𝛼𝜇𝜃)𝑐𝑜𝑠(𝜃)]𝑑𝜃 (4.43) 

   

 𝑑𝑧 = 𝑘𝑑𝜃 (4.44) 

 

Plugging in 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 in to Equation 4.35 𝑑𝑠 is found. 

 

 𝑑𝑠 = √(𝑅 − 𝜇𝜃𝛼)2 + 𝜇2(𝛼2 + 1)𝑑𝜃 (4.45) 

 

The total length of the spring is found by integrating 𝑑𝑠 over the whole spring. 

 

 
𝑠 = ∫ 𝑑𝑠

𝜃𝑚𝑎𝑥

0

 (4.46) 

   



32 

 

 
𝑠 =

1

2

𝑅

𝛼𝑡𝑎𝑛𝜓
(𝐾2 ln (

√𝐾2 + 𝑢2 + 𝑢

√𝐾2 + 𝑅2 − 𝑅
) + 𝑢√𝐾2 + 𝑢2 +√𝐾2 + 1) (4.47) 

 

The terms 𝐾 and 𝑢 are constants used to simplify the expression. These constants are given 

below. 

 

 𝐾 = 𝑡𝑎𝑛𝜓√𝛼2 + 1 (4.48) 

   

 𝑢 = 𝛼𝜃𝑚𝑎𝑥𝑡𝑎𝑛𝜓 − 1 (4.49) 

 

Using Equation 4.31 and Equation 4.47 total mass of the conical spring is found as 

 

 
𝑚 =

1

2

𝜌𝐴𝑅

𝛼𝑡𝑎𝑛𝜓
(𝐾2 ln (

√𝐾2 + 𝑢2 + 𝑢

√𝐾2 + 1 − 1
) + 𝑢√𝐾2 + 𝑢2 +√𝐾2 + 1) (4.50) 

 

In order to calculate the solution to the integral for 𝑇𝑡𝑜𝑡 in Equation 4.33 the velocity 

profile must be included to the calculations. The velocity profile assumed is linear and it is 

shown in Figure 4.13. 

 

 

 

Figure 4.13. Velocity profile of the conical spring 

 

The equation for the velocity profile is given as below; 
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𝑉 =

𝑧

𝐻
𝑉𝑚𝑎𝑥 =

𝜇𝜃

𝐻
𝑉𝑚𝑎𝑥 (4.51) 

 

Plugging in this velocity profile and 𝑑𝑠 in to Equation 4.33. 𝑇𝑡𝑜𝑡 is obtained by carrying 

out the integration 

 

 
𝑇𝑡𝑜𝑡 =

1

2
𝜌𝐴 (

𝜇𝑉𝑚𝑎𝑥
𝐻

)
2

∫ 𝜃2√(𝑅 − 𝜇𝜃𝛼)2 + 𝜇2(𝛼2 + 1)𝑑𝜃
𝜃𝑚𝑎𝑥

0

 (4.52) 

 

Which yields the total kinetic energy as 

 

 
𝑇𝑡𝑜𝑡 =

1

2
𝜌𝐴 (

𝑉𝑚𝑎𝑥
𝐻

)
2 𝑅3

𝑡𝑎𝑛𝜓𝛼3
[
1

8
(𝐾2

− 4) (𝐾2 ln (
√𝐾2 + 1 − 1

√𝐾2 + 𝑢2 + 𝑢
) − 𝑢√𝐾2 + 𝑢2 −√𝐾2 + 1)

+
1

12
(8 + 3𝑢)(𝐾2 + 𝑢2)

3
2 −

5

12
(𝐾2 + 1)

3
2] 

(4.53) 

 

Using 𝑇𝑡𝑜𝑡 in Equation 4.34, 𝑚𝑒𝑞 is found as 

 

 
𝑚𝑒𝑞 =

𝜌𝐴𝑅3

𝐻2𝛼3𝑡𝑎𝑛𝜓
[
1

8
(𝐾2

− 4) (𝐾2 ln (
√𝐾2 + 1 − 1

√𝐾2 + 𝑢2 + 𝑢
) − 𝑢√𝐾2 + 𝑢2 −√𝐾2 + 1)

+
1

12
(8 + 3𝑢)(𝐾2 + 𝑢2)

3
2 −

5

12
(𝐾2 + 1)

3
2] 

(4.54) 

 

The ratio between the equivalent mass and the total mass which is of significance can be 

found by dividing Equation 4.54 by Equation 4.50. The resulting formula for this ratio is 
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 𝑚𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑒𝑞

𝑚

= (
𝑅

𝑅 − 𝑟
)
2 𝑓

𝐾2 𝑙𝑛 (
√𝐾2 + 𝑢2 + 𝑢

√𝐾2 + 1 − 1
) + 𝑢√𝐾2 + 𝑢2 + √𝐾2 + 1

 
(4.55) 

 

where 𝑓 is 

 

 
𝑓 =

1

8
(𝐾2 − 4) (𝐾2 ln (

√𝐾2 + 1 − 1

√𝐾2 + 𝑢2 + 𝑢
) − 𝑢√𝐾2 + 𝑢2 −√𝐾2 + 1)

+
1

12
(8 + 3𝑢)(𝐾2 + 𝑢2)

3
2 −

5

12
(𝐾2 + 1)

3
2 

(4.56) 

 

To observe the effect of cone angle, 𝑚𝑟𝑎𝑡𝑖𝑜 is solved for a range from zero degrees to 

ninety degrees of cone angle. This was obtained by changing the small radius 𝑟 in the 

range of zero to the large radius 𝑅. The numerical values for the parameters used for the 

solution are given as large radius 𝑅 = 0.1 𝑚, pitch of the spring 𝑃 = 0.01 𝑚 and height of 

the spring as 𝐻 = 0.1 𝑚. Note that the mass ratio is independent of wire size and density. 

The resulting graph is shown in Figure 4.14. 

 

 

 

Figure 4.14. Mass Ratio vs. Cone Angle graph by variation in small radius 
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It is known that in helical springs the mass ratio is equal to 1/3 [37]. This can be seen by 

looking at the case where the cone angle is zero where the mass ratio is observed to be 

0.333. It is also seen that the mass ratio decreases as the cone angle increase.  

In order to observe the deflection behavior of a conical spring under static loading 

conditions and in order to find the relation between the applied force and the deflection of 

the conical spring a solid model is created using SolidWoks software. The model of the 

conical spring is are shown in Figure 4.15. 

 

 

 

Figure 4.15. Solid Model of conical spring 

 

The dimensions of the solid model are as shown in Table 4.1. 

 

Table 4.1. Dimensions of the solid model conical spring 

 

Cone Angle (degrees) Height 

(mm) 

Smal Radius 

(mm) 

Large Radius 

(mm) 

wire 

Thickness 

(mm) 

25 180 30 113.94 5 

 

This model is used to numerically solve the deflection of the conical spring under an 

applied load. This was done using SolidWorks software. 

 

AISI 1020 cold rolled steel was used as the material of the solid model. The properties of 

this material are given in Table 4.2. 
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Table 4.2. Material properties of AISI 1020 cold rolled steel 

 

AISI 1020 cold rolled steel 

Modulus of Elasticity (GPa) 205 

Poissons Ratio 0.29 

Shear Modulus (Gpa) 80 

Density (kg/m^3) 7870 

 

A fixed boundary condition was applied to the top part of the conical spring to prevent 

motion in any direction. This is shown in Figure 4.16. 

 

 

 

Figure 4.16. Boundary conditon on the conical spring 

 

A vertical compressive load was applied to the tip of the conical spring which is shown in 

Figure 4.17. 

 

 

 

Figure 4.17. Force applied to the tip of the conical spring 
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The solution is done for a range of forces applied to the tip of the spring using large 

displacement analysis in SolidWorks. The forces applied are given in Table 4.3. 

 

Table 4.3. The values of applied forces 

 

Applied Force(N) 

0.1 

1 

3 

5 

10 

15 

20 

25 

30 

 

The results obtained for the displacement of the tip of the spring are given in Table 4.4. 

 

Table 4.4. Applied forces and obtained tip displacements 

 

Applied force(N) 

SolidWorks (Large 

Displacement) 

0.1 0.4014 

1 3.832 

3 12.09 

5 20.2 

10 40.88 

15 62.97 

20 - 

25 - 

30 - 

 

It was seen that SolidWorks was not able to solve the problem after fifteen newtons of 

applied force. Thus ANSYS software was used to obtain another set of solutions for the 

same applied loads. The same steps which are done to compute the solution using 

SolidWorks are done and the results obtained are given in Table 4.5. 
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Table 4.5. Results for displacement obtained by using ANSYS 

 

Applied Force(N) Displacement(mm) 

0.1 0.40909 

1 4.0909 

3 12.273 

5 20.454 

10 40.909 

15 61.363 

20 81.818 

25 102.27 

30 122.73 

 

It is seen that ANSYS was able to calculate for all the loading cases. 

 

In Figure 4.18. both ANSYS and SolidWorks are plotted in the same graph. From this 

graph it is seen that the results obtained from both software are nearly the same. Therefore 

the computational errors are assumed to be negligible. 

It can be seen that the graph is linear. Thus it can be said that the spring behaves linearly in 

this region. Since no data has been obtained beyond this, the end of the linear region is not 

determined. However, from the data the linear range can be said to be above 68.2% of the 

height of the spring. 

 

A curve fitting is applied to the results obtained by ANSYS since it has a larger data set. 

The result for this linear curve fit is shown below; 

 

𝐹 = 0.244𝑧 

 

The R-squared value for this fit is 1. This means almost a perfect fit. By using this equation 

it can be said that the spring constant is 0.244 N/mm for this particular conical spring.  
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Figure 4.18. Results obtained by SolidWorks and ANSYS software 

 

4.3.1. Dynamics of the Conical Spring 

 

As stated in finding the equivalent mass, the equation of motion of the tip of the conical 

spring is simplified to the form given in Equation 4.30. It is seen that this is a basic spring 

mass damper system with a forced excitation. 

 

The natural frequency, the damped natural frequency and the damping ratio of this system 

are given as below; 

 

 

𝜔𝑛 = √
𝑘

m𝑒𝑞
 (4.57) 

   

 
𝜁 =

𝑏

2m𝑒𝑞𝜔𝑛
 (4.58) 

   

 

𝜔𝑑 = √
𝑘

m𝑒𝑞

√1 − (
𝑏

2m𝑒𝑞𝜔𝑛
)

2

 (4.59) 

   

The natural frequency of the spring analyzed in ANSYS and SolidWorks in the previous 

section is calculated as 46.9 Hz. 
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4.4. PULLEY MODEL 

 

The pulley assembly consists of two parts. The first part is the pulley itself and the second 

part is the shaft which is the pulley attached on. These two parts are shown in Figure 4.19. 

 

 

 

Figure 4.19. The pulley attached to the shaft 

 

The pulley has a radius 𝑟𝑝 and a torsional spring is attached to the pulley with spring 

coefficient of 𝑘𝑡. This generates a torque proportional to the angular position of the pulley 

considering the initial position where the spring is upstretched as zero. The torque is 

obtained from Hooke’s law shown below, where the position of the pulley is given as 𝜃𝑝; 

 

 𝜏𝑠𝑝𝑟 = 𝜃𝑝𝑘𝑡 (4.60) 

 

The pulley is driven by the tension 𝑇, which is created by the rope attached to it and the 

shaft is subjected to a torque 𝑀, which is the load moment responsible for coupling with 

the other parts the shaft is attached to. This is shown in Figure 4.20. 

 

 

 

Figure 4.20. Pulley diagram with forces and moments 

 

The pulley has a mass moment of inertia as 𝐼𝑝 and the shaft has a mass moment of inertia 

𝐼𝑠. 
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Thus the free body diagram of the pulley is found as shown in Figure 4.21. 

 

 

 

Figure 4.21. Free body diagram of pulley 

 

The governing dynamical equation is found as shown below; 

 

 ( 𝐼𝑝 + 𝐼𝑠)𝜃̈𝑝 + 𝑏𝜃̇𝑝 + 𝑘𝑡𝜃𝑝 = 𝑇𝑟𝑝 −𝑀 (4.61) 

 

where 𝑏 is the total viscous damping of the pulley and the shaft. This term can be neglected 

if necessary since viscous damping can be assumed to be very low. 

 

It can be seen here that the system is a second order spring mass damper system. The 

natural frequency, damped natural frequency and the damping ratio are given below; 

 

 

𝜔𝑛 = √
𝑘𝑡

( 𝐼𝑝 + 𝐼𝑠)
 (4.62) 

   

 
𝜁 =

𝑏

2( 𝐼𝑝 + 𝐼𝑠)𝜔𝑛
 (4.63) 
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𝜔𝑑 = √
𝑘𝑡

( 𝐼𝑝 + 𝐼𝑠)
√1 − (

𝑏

2( 𝐼𝑝 + 𝐼𝑠)𝜔𝑛
)

2

 (4.64) 

  

 
 

4.5. GENERATOR MODELING AND CHARACTERIZATION 

 

In this project, a DC motor is used a generator. DC motors are driven by an external 

voltage source. They are governed by two coupled differential equations, one of which is 

for the mechanical part and the other is for the electrical part. These equations are given 

below. 

 

 𝐽𝜔̇ + 𝑏𝜔 = 𝑘𝑡𝑖 − 𝑀   (4.65) 

   

 
𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 − 𝑘𝑏𝜔   (4.66) 

 

The parameters for the above equations are 

 

𝐽   Inertia of the DC motor 

𝑏   Viscous damping 

𝑘𝑡   Torque constant 

𝐿   Inductance 

𝑅 = 𝑅𝑚 + 𝑅𝑙𝑜𝑎𝑑 Total resistance which equals the summation 

of coil resistance and load resistance (if any) 

𝑘𝑏   Back EMF constant 

𝑀   Driving torque 

𝑉   Voltage between motor terminals 

 

When the DC motors are used as generators the driving terms change. Generators are 

governed by the same differential equations with modified signs for the driving and the 

load terms. 

 𝐽𝜔̇ + 𝑏𝜔 = −𝑘𝑡𝑖 + 𝑀 (4.67) 

 
𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = −𝑉 + 𝑘𝑏𝜔 (4.68) 
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The generator modeling is done using the generator equations for a closed circuit where no 

external voltage source is used. This crosses out the 𝑉 term in the above equations. The 

electrical constant is equal to the torque constant which is also called motor constant (𝑘𝑡 =

𝑘𝑏 = 𝑘). Hence, the Equations 4.67 and 4.68 reduce to the form shown below. 

 

 𝐽𝜔̇ + 𝑏𝜔 = −𝑘𝑖 +𝑀  (4.69) 

   

 
𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑘𝜔   (4.70) 

 

In order to decouple this differential equation system, 𝜔 terms can be written in terms of 𝑖 

using Equation 4.70, which yields 

 

 

𝜔 =
𝐿
𝑑𝑖
𝑑𝑡
+ 𝑅𝑖

𝑘
 

(4.71) 

 

𝜔̇ =
𝐿
𝑑2𝑖
𝑑𝑡2

+ 𝑅
𝑑𝑖
𝑑𝑡

𝑘
 

(4.72) 

 

When above equations are used in Equation 4.69 a second order differential equation is 

obtained for 𝑖. 

 

 
𝐿𝐽
𝑑2𝑖

𝑑𝑡2
+ (𝐿𝑏 + 𝑅𝐽)

𝑑𝑖

𝑑𝑡
+ (𝑘2 + 𝑅𝑏)𝑖 = 𝑘𝑀   (4.73) 

 

The same method can be applied to find the decoupled differential equation of 𝜔. The 𝑖 

terms can be written in terms of 𝜔 using Equation 4.69 which are given below; 

 

 
𝑖 =

𝑀 − 𝐽𝜔̇ − 𝑏𝜔 

𝑘
 (4.74) 

   

 𝑑𝑖

𝑑𝑡
=
−𝐽𝜔̈ − 𝑏𝜔̇

𝑘
 (4.75) 
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Using above equations in Equation 4.70 gives the second order differential equation for 𝜔 

as follows. 

 

 𝐿𝐽𝜔̈ + (𝐿𝑏 + 𝑅𝐽)𝜔̇ + (𝑘2 + 𝑅𝑏)𝜔 = 𝑅𝑀 (4.76) 

 

Both Equation 4.73 and 4.76 are second order differential equations and have the same 

coefficients which are the equivalent mass 𝐿𝐽, the equivalent damping (𝐿𝑏 + 𝑅𝐽) and the 

equivalent spring constant (𝑘2 + 𝑅𝑏). It is seen that the equations being of second order is 

caused by including the inductance of the DC motor since the inertia cannot be neglected. 

Thus it can be said that the inductance of the DC motor induces a second pole on the 

system which may cause oscillation if the system is critically or under damped. 

 

Equations 4.69 and 4.70 can be solved using state space method. This is done for when the 

motor is not driven by any external torque (𝑀 = 0). 

 

State vector is given as 

 

 𝑆 = [
𝜔
𝑖
] (4.77) 

 

The system reduces to the form given below. 

 

 𝑆̇ = 𝐴 𝑆 (4.78) 

 

where the matrix A is 

 

 

𝐴 =

[
 
 
 −
𝑏

𝑗
−
𝑘

𝑗
𝑘

𝐿
−
𝑅

𝐿]
 
 
 

 (4.79) 

 

The solution to Equation 4.78 is well-known: 

 

 𝑆 = 𝑒𝐴𝑡𝑆0 (4.80) 
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where 𝑆0 is the state vector at 𝑡 = 0. 

 

As it is seen, there are five different parameters governing the generator equations: 𝐽, 𝑏, 𝑘, 

𝐿 and 𝑅𝑚. These parameters have to be determined in order to fully characterize the DC 

motor. 

 

The DC motor to be characterized and used in the experiments is chosen as Mabuchi RS-

360SH (Figure 4.22.). During the characterization process the motor is driven mostly by an 

external voltage source. Thus the DC motor equations are applicable. 

 

 

 

Figure 4.22. Mabuchi RS-360SH DC motor 

 

4.5.1. Internal Resistance 

 

The internal resistance 𝑅𝑚 of the DC motor is measured by using a multi-meter in 

ohmmeter mode. The measurement was repeated a few times. The average result is 

 

𝑅𝑚 = 22.9 Ω 

 

with negligible variance. 

 

4.5.2. Motor Constant 

 

In order to measure the motor constant 𝑘, the relationship between the back EMF (voltage 

induced due to the rotation without external voltage) and angular speed is used. This 

relation is 

 

 𝑘𝜔 = 𝑉𝑒𝑚𝑓 (4.81) 
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However, measuring 𝑉𝑒𝑚𝑓 is difficult because without an external voltage the motor will 

continuously slow down due to damping. Nevertheless, when the motor is supplied a 

constant voltage after a period of time the back EMF will cancel the supplied voltage (𝑉 =

𝑉𝑒𝑚𝑓) and the motor will reach a steady state. Therefore, for a motor running at constant 

speed under an external voltage V,  𝑘𝜔 = 𝑉. 

 

An experiment is conducted to obtain the data required. A power supply is used for a 

constant voltage input to the motor. After the steady state is reached the rotor angular 

speed and the current is measured. For angular speed a tachometer is used. Current is read 

directly from the power supply. 

 

 

 

Figure 4.23. Rectangular part attached to shaft of motor 

 

A rectangular part is mounted to the shaft of the motor, Figure 4.23, on which a reflective 

patch is placed. The optical tachometer measures the frequency of the shaft rotation based 

on the light pulses reflected from the patch. For reliability, the current is also measured by 

using a multimeter. 

 

This experiment is conducted for supply voltages ranging from 2 V (for the motor to work 

properly) to 12 V. The collected experimental data is shown in Table 4.6 where the 

frequency of rotation is converted from RPM to rad/s. The data obtained is then plotted in 

Figure 4.24. 
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Table 4.6. Voltage and angular velocity data 

 

Voltage (V) Average Current (mA) Angular Velocity (rad/s) 

2 48.00 79.59 

3 49.33 168.70 

4 50.67 251.01 

5 52.67 335.10 

6 55.67 407.78 

7 59.33 490.09 

8 63.33 564.23 

9 68.33 647.27 

10 73.33 726.13 

11 79.67 795.87 

12 85.67 869.17 

 

 

 

Figure 4.24. Voltage vs. angular velocity graph 

 

It can be seen that the relationship is linear as expected. However, in order to get rid of any 

unwanted nonlinearity effects at low velocities, a linear regression is applied to the data for 

5-12 V, with intercept at origin. The result is the following. 

 

 𝜔 = 71.702𝑉 (4.82) 

 

The correlation coefficient of the fit is found as 0.9943. Thus motor constant k is found as 

 

𝑘 =
1

71.702
= 0.0139

Vs

rad
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4.5.3. Damping Coefficient  

 

At steady state the mechanical equation for the DC motor reduces to the following. 

 

 𝑏𝜔 = 𝑘𝑖 (4.83) 

 

The damping is then obtained as shown below. 

 

 
𝑏 =

𝑘𝑖

𝜔
=
𝑘2𝑖

𝑉
= 1.9321 × 10−4

𝑖

𝑉
 (4.84) 

 

Therefore, in order to calculate the damping coefficient 𝑏, the current and voltage data in 

Table 4.6 can be used in Equation 4.84. The calculated damping data is presented in Table 

4.7 and then plotted versus angular speed (Figure 4.25.). 

 

Table 4.7. Calculated angular velocity and damping data 

 

Angular Velocity (rad/s) Damping (N m s/rad) 

143.40 4.67E-06 

215.11 3.20E-06 

286.81 2.46E-06 

358.51 2.05E-06 

430.21 1.80E-06 

501.91 1.65E-06 

573.62 1.54E-06 

645.32 1.48E-06 

717.02 1.43E-06 

788.72 1.41E-06 

860.42 1.39E-06 

932.126 1.35E-06 

1003.828 1.37E-06 

1075.53 1.37E-06 

1147.232 1.39E-06 
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Figure 4.25. Damping vs. angular velocity 

 

Although the graph shows the behavior of the damping more data is needed to be sure that 

the behavior does not change in higher angular velocities and if no change occurs to see the 

steady state value clearly. In order to do this more data is collected for current from 12 V 

up to 16 V in one volt increments. 

 

After the same calculations for angular velocity and damping are made, the extended data 

are plotted again and the graph is given in Figure 4.26. 

 

 

 

Figure 4.26. Damping vs. angular velocity in 2-16 V range 

 

The graph clearly shows the behavior of damping and the steady state value can be found 

clearly. A curve fitting is applied in power form 𝑏 = 𝐴𝜔𝐵 + 𝑏𝑠𝑠 and it is given below. 
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 𝑏 = 0.0412𝜔−1.894 + 1.39 ∗ 10−6 (4.85) 

 

The damping is relatively high at low angular velocities but it reaches a constant value 

after 600 
rad

s
 which corresponds to nearly 8.4 volts applied to the motor and can be taken 

as 1.39 ∗ 10−6  
Nms

rad
. Also it is seen that the highest damping observed is 4.67 ∗ 10−6  

𝑁𝑚𝑠

𝑟𝑎𝑑
 

which is a very small value and can be neglected if needed. 

 

4.5.4. Inertia 

 

In order to find the inertia 𝐽 of the DC motor, a rope with a known weight attached is rolled 

around the shaft of the DC motor. The duration of the fall of the weight is directly related 

to the inertia of the motor. Therefore, measuring the time of fall over a specified height 

enables calculation of the inertia. 

 

The setup is shown in Figure 4.27. as a diagram. As seen from the figure, 𝑟  is the shaft 

radius of the DC is motor and 𝑚 is the weight on the rope. The stacking effect while 

winding the rope on the shaft is neglected. 

 

 

 

Figure 4.27. Diagram of the inertia experiment system 

 

To solve for inertia of the DC motor free-body diagrams (FBD) the shaft and the weight 

are drawn using the model above (Figure 4.28). 

s 
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Figure 4.28. Free-body diagrams (FBD) for motor inertia testing setup.  

 

The equations of motion are derived using the FBD as presented below. 

 

 𝐽𝜔̇ = 𝑇𝑟 (4.86) 

   

 𝑚𝑎 = 𝑚𝑔 − 𝑇 (4.87) 

 

It is seen here that the damping is neglected for ease of calculations since it can be 

considered to be negligible, as discussed before in Section 4.5.3 on damping. By 

combining the two equations by eliminating the tension term 𝑇 the following first order 

differential equation is obtained. 

 

 𝐽𝜔̇ + 𝑟𝑚𝑎 = 𝑟𝑚𝑔 (4.88) 

 

Since the rope is continuously tight and assumed to be inelastic, the relationship between 

angular acceleration and the acceleration of the weight is 𝜔̇ =
𝑎

𝑟
. Using this relationship the 

above equation changes to the form below. 

 

 
(
𝐽

𝑟
+ 𝑟𝑚)𝑎 = 𝑟𝑚𝑔 (4.89) 

 

The acceleration is then found as 
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 𝑎 =
𝑚𝑔

(
𝐽
𝑟2
+𝑚)

 
(4.90) 

 

It is seen that acceleration is constant. Therefore, the position of the weight as a function of 

time is given by 

 

 
𝑠 = 𝑠0 + 𝑣0𝑡 +

1

2
𝑎𝑡2 (4.91) 

 

where 𝑠0 and 𝑣0 are the initial height and the initial velocity. In this experiment, both of 

these initial values are taken as zero due to the selected coordinate system and initial 

condition. Therefore,  𝑠 =
1

2
𝑎𝑡2. Using the acceleration result, the equation below, relating 

height to time, is obtained. 

 

 
ℎ =

1

2

𝑚𝑔

(
𝐽
𝑟2
+𝑚)

𝑡2 (4.92) 

 

Solving for inertia, we reach 

 

 
𝐽 = (

𝑚𝑔𝑡2

2ℎ
−𝑚)𝑟2 (4.93) 

 

In the experiment, the motor is fixed at a point which is less than the rope length so that it 

is guaranteed that the weight will hit the ground. The weight is then released from rest and 

the time it takes to reach the ground is measured via a chronometer. The setup can be seen 

in Figure 4.29. 

 



53 

 

 

 

Figure 4.29. The DC motor, and, a rope with weight attached  

 

It is important that the initial position of the weight is not too small and the weight itself is 

just enough to start the motion when it is released. This is necessary to decrease the human 

error in measuring time of motion. 

 

The measured values for initial height, weight, and shaft radius are given in Table 4.8. 

 

Table 4.8. Initial height, weight and shaft radius values used 

 

Weight m(kg) 0.25 

Initial height s(m) 0.705 

Shaft radius r(m) 0.0012 

 

After numerous trials, the experimental results yielded an average time of motion as 0.69 

seconds. Plugging in the value measured for time and the other parameters the mass 

moment of inertia is obtained as 

 

𝐽 = 8.32 ∗ 10−7 kg m2 

 

4.5.5. Inductance 

 

For the measurement of inductance 𝐿 an LCR meter is used. The LCR meter is connected 

to the terminals of the DC motor and the inductance value is found as given below. 

Rope 
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𝐿 = 13.73 mH 

 

To verify this, an experimental setup is made where a power supply which is used as a 

constant voltage source, a shunt resistor and the DC motor are connected in series. The 

shaft of the DC motor is fixed thus it cannot rotate. This results in a simple RL circuit. The 

circuit diagram is shown in Figure 4.30. 𝑅𝑠 is the shunt resistor and it is taken as 𝑅𝑠 =

23.37 Ω. 

 

 

 

Figure 4.30. Circuit diagram of the experiment 

 

A constant voltage 𝑉 is applied as a step input to the system and the voltage change at the 

shunt resistor is measured. From this the current flow through the circuit is calculated 

using Ohm’s law. 

 

 
𝑖 =

𝑉𝑠
𝑅𝑠

 

 

(4.94) 

The total resistance of the system which is given below is calculated using Ohm’s law after 

steady state has been reached; 

 

 𝑅𝑡𝑜𝑡 = 𝑅𝑠 + 𝑅𝑚 + 𝑅𝑠𝑢𝑝𝑝𝑙𝑦 (4.95) 

   

 
𝑅𝑡𝑜𝑡 =

𝑉

𝑖
 (4.96) 

 

This is done in order to include the internal resistance of the power supply into the 

calculations. 
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The differential equation representing this system is given below. 

 

 
𝐿
𝑑𝑖

𝑑𝑡
+ (𝑅𝑡𝑜𝑡)𝑖 = 𝑉 (4.97) 

 

The solution of this differential equation is given below where the initial condition for 

current is taken as zero. 

 

 
𝑖 =

𝑉

𝑅𝑡𝑜𝑡
(1 − 𝑒−(

𝑅𝑡𝑜𝑡
𝐿
)𝑡) (4.98) 

 

The current calculated using the shunt resistor and the theoretical current calculated using 

the above equation is plotted and compared. 

 

The experiments are done using two different power supplies and a 9 V battery. Different 

voltages are applied to the system. The change in voltage does not affect the system 

behavior and the only affect is the change in steady state value of the system thus it is not 

necessary to conduct experiments using the same applied voltage. 

 

First, a voltage of 10 V is applied to the system using the YH-305D model TT T-ECHI-C 

power supply (Power Supply 1). After steady state has been reached the total resistance of 

the system is calculated. This was found as given below; 

 

𝑅𝑡𝑜𝑡 = 52.21 Ω 

 

Since the shunt resistor is known and the motor resistance has been measured previously 

the resistance contributed by the power supply can be found as; 

 

𝑅𝑠𝑢𝑝𝑝𝑙𝑦 = 7.94 Ω 

 

Since all the variables in the theoretical calculation for current in Equation 4.98 is known 

the experimental result for current and the calculated theoretical result is plotted together in 

a graph which is given in Figure 4.31. 
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Figure 4.31. Response of the motor internal circuit to a step input (Power Supply 1). 

 

It is seen that there is a large difference between the two curves in transient stage. This is 

due to the effect of the power supply. The power supply contains a large control 

mechanism to regulate current and because of this it is not able to supply a voltage as a 

step input to the circuit and thus it creates a lag in supplied voltage. 

 

Another test is done using a different power supply, FeedBack Power Supply 01-100 

(Power Supply 2). The supply voltage was 5 V. Th total resistance is calculated using the 

steady state current and it is found as; 

 

𝑅𝑡𝑜𝑡 = 46.11 Ω 

 

The resistance of the power supply was found as; 

 

𝑅𝑠𝑢𝑝𝑝𝑙𝑦 = 0.84 Ω 

 

The experimental result for current and the calculated theoretical results are plotted 

together as given in Figure 4.32. In this graph it is seen that the difference between the 

curves are lower. This is due to the power supply being better at providing a step input to 

the circuit. 
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Figure 4.32. Response of the motor internal circuit to a step input (Power Supply 2). 

 

In order to rule out the effects of the control mechanism problem in the power supplies, a 9 

V battery is used as a constant voltage source. The total resistance is measured as; 

 

𝑅𝑡𝑜𝑡 = 65.05 Ω 

 

The resistance of the power supply was found as; 

 

𝑅𝑠𝑢𝑝𝑝𝑙𝑦 = 19.78 Ω 

 

The experimental result for current and the calculated theoretical results are plotted 

together as given in Figure 4.33. 

 

 

 

Figure 4.33. Response of the motor internal circuit to a step input using 9V battery. 
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It is seen that there is no lag in the system since there is no control mechanism regulating 

the current thus the calculated and the measured current values are nearly the same. 

 

This proves the inductance value obtained from the LCR meter is valid. The 9 V battery 

results show that the power supplies used are not able to provide a correct step input 

voltage to the system due to their control mechanisms. 

 

4.6. CONTACT/IMPACT PROBLEM MODELING 

 

It is seen from the design that there are three points where contact problems occur. These 

contact problems are between the tip of the conical spring and the tire (contact and no-

contact states of the tip); the pulley and the tip of the conical spring (tightness and 

looseness of the rope); and, the ratchet and the pulley shaft (engaged or disengaged states 

of the ratchet). 

 

4.6.1. Tip Of The Conical Spring And Base 

 

In this section, the contact between the tip of the conical spring and the tire is modeled. 

Firstly, a condition representing the contact between the tip of the conical spring and the 

point on the tire should be defined. The position of the contact point on the tire is denoted 

as 𝐷, which was modeled in Section 4.2 and the position of the tip of the conical spring is 

denoted as 𝑝𝑐, which is measured form the undeflected position of the tire. This is shown 

in Figure 4.34. 
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Figure 4.34. Positions of tire and spring as measured from the undeflected tire position. 

 

The condition is given as shown below. 

 

 𝐷 = 𝑝𝑐 (4.99) 

 

It is known that the position of the tip of the spring can only be greater or equal to the 

position of the deflection of the tire. This can be said by assuming no penetration occurs 

between the two parts. 

 

If 𝑝𝑐 > 𝐷, then the conical spring is not in contact with the tire. Thus, if there is no contact 

between the two parts and a state of contact is detected, an impact occurs where 

momentum equations must be solved to find the kinematics after the impact. In this, the 

coefficient of restitution between the tire surface and the tip of the conical spring is used as 

shown below. 
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𝑒𝑡𝑖𝑟𝑒 =

(𝑝̇𝑐 − 𝐷𝑣)𝑎𝑓𝑡𝑒𝑟
(𝑝̇𝑐 − 𝐷𝑣)𝑏𝑒𝑓𝑜𝑟𝑒

 (4.100) 

   

4.6.2. Rope Tightness 

 

Similar boundary condition must be defined for the pulley and the tip of the conical spring 

since the connection is done by a rope. The rope can have two states which are tight and 

loose. The state of the rope is determined by the condition given below where the static 

equilibrium positions of the pulley 𝜃𝑝𝑠 and the tip of the conical spring 𝑝𝑐𝑠 found in 

Section 4.1 are used. 

 

 (𝑝𝑐 − 𝑝𝑐𝑠)𝑟𝑝 = (𝜃𝑝𝑠 − 𝜃𝑝) (4.101) 

 

The loose case is defined as shown below; 

 

 (𝑝𝑐 − 𝑝𝑐𝑠)𝑟𝑝 > (𝜃𝑝𝑠 − 𝜃𝑝) (4.102) 

 

This means that the tip of the conical spring has travelled a greater distance then the pulley 

has wound up the rope, thus the rope becomes loose. 

 

The impact in this case is defined as the rope changing states from loose to tight. Since the 

rope cannot exert a negative tensile force to a connected body there is no collision from 

changing states from tight to loose. 

 

To calculate the kinematics after the collision, the momentum equation must be solved. 

While doing this the rope is assumed to be fully elastic thus momentum is conserved. This 

equation is given below; 

 

 𝑚𝑒𝑞𝑟𝑝
2𝑝̇𝑐𝑏𝑒𝑓𝑜𝑟𝑒 + (𝐼𝑝 + 𝐼𝑠)𝜃̇𝑝𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑚𝑒𝑞𝑟𝑝

2𝑝̇𝑐𝑎𝑓𝑡𝑒𝑟 + (𝐼𝑝 + 𝐼𝑠)𝜃̇𝑝𝑎𝑓𝑡𝑒𝑟 (4.103) 

 

It is seen that there are two unknowns in the above equation. These are the angular velocity 

of the pulley and the velocity of the tip of the conical spring after the collusion. In order to 
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solve this problem another equation is needed. This second equation comes from the 

conservation of energy. This is given below; 

 

 1

2
𝑚𝑒𝑞𝑝̇𝑐

2
𝑏𝑒𝑓𝑜𝑟𝑒

+
1

2
(𝐼𝑝 + 𝐼𝑠)𝜃̇𝑝

2
𝑏𝑒𝑓𝑜𝑟𝑒

=
1

2
𝑚𝑒𝑞𝑝̇𝑐

2
𝑎𝑓𝑡𝑒𝑟

+
1

2
(𝐼𝑝 + 𝐼𝑠)𝜃̇𝑝

2
𝑎𝑓𝑡𝑒𝑟

 (4.104) 

 

Solving these equations together the angular velocity of the pulley and the velocity of the 

tip of the conical spring after the collision are obtained as given below; 

 

 
𝑝̇𝑐𝑎𝑓𝑡𝑒𝑟 =

(𝑘 − 1)

(𝑘 + 1)
𝑝̇𝑐𝑏𝑒𝑓𝑜𝑟𝑒 −

2𝑟𝑝

𝑘 + 1
𝜃̇𝑝𝑏𝑒𝑓𝑜𝑟𝑒 (4.105) 

   

 
𝜃̇𝑝𝑎𝑓𝑡𝑒𝑟 =

(1 − 𝑘)

(𝑘 + 1)
𝜃̇𝑝𝑏𝑒𝑓𝑜𝑟𝑒 −

2𝑘

𝑟𝑝(𝑘 + 1)
𝑝̇𝑐𝑏𝑒𝑓𝑜𝑟𝑒 (4.106) 

   

4.6.3. Ratchet Engagement 

 

The ratchet in this design is driven by the shaft connected to the pulley and the driven part 

connected to the ratchet is the generator. The driver shaft is connected to the inner ring and 

the outer ring is connected to the driven generator shaft. This is shown in Figure 4.35. 

 

 

 

Figure 4.35. Driving and driven angular velocities 

 

The condition for the ratchet to be engaged is given as 
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 𝜃̇𝑝 = 𝜔 (4.107) 

   

It is known that the angular velocity of the load cannot be lower than the angular velocity 

of the ratchet. 

 

There are two conditions for the ratchet to be disengaged these are given in below; 

 

 𝜃̇𝑝 ≤ 0   (4.108) 

   

or 

 

 𝜃̇𝑝 > 0 and 𝜃̈𝑝 < 𝜔̇ (4.109) 

 

The case for engagement or disengagement is permanent until the other condition is 

satisfied. 

 

The assumption is made that when the ratchet changes state from being disengaged to 

being engaged, the pulley and the shaft energy is very large that it can be treated as an 

infinite energy source. Thus the velocity of the pulley is not affected by the transfer of 

rotational energy via the ratchet to the generator. The collision analysis is not done for the 

ratchet.   
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5. NUMERICAL SIMULATION 

 

 

Numerical simulation codes were written in order to simulate the system. The dynamic 

models provided in Section 2 are used to generate these simulation codes. 

 

5.1. CONTACT AND COLLISION PROBLEM SIMULATION 

 

In this simulation the tip of the conical spring can lose contact with the tire base and the 

rope in the pulley can get to a loose state. 

 

The simulation determines the state changes and calculates impact problems for the tip of 

the conical spring and the pulley. These calculations are done using the methods provided 

in section 2.6. 

 

The flow chart of the algorithm of this numerical simulation code is given in Figure 5.1. 



64 

 

Start

Set 
Deflection 
Motion of 

Tire

Initialize 
Generator 

Motion, 
Current or 
Terminal 

Voltage and 
Ratchet 

Moment to  
zero

Check Simulation Step 
Number Less then Total 

Number of Steps 

Increase 
Simulation 

Step Number

Plot Results 
for Conical 

Sprin, Pulley 
and 

Generator 
Motion, 

Current, and 
Calculated 
Forces and 

Ratcet 
Moment

End

Set Assembly 
Parameters 

(Rope Length 
etc.)

Set Harvester 
Parameters 

(spring 
,pulley and 
generator 

parameters)

Set 
Simulation 
Parameters 
for Vehicle 
(number of 
tie rotation 

cycles,vehicle 
speed, 

number of 
simulation 

steps)

Calculate 
Static 

Positions

Check For Collision In 
Conical Spring

Use Collision 
Model For 

Spring

Check For 
Collision In Pulley

Use Collision 
Model For 

Puley

Collision

No Collision

Collision

No Collision

Check Ratchet 
Engagement

Transfer 
Pulley 

Kinematics to 
Generator

Engaged

Calculate 
Forces

Solve System 
Equations 
For a Small 

Time Interval

Disengaged

True

False

 

 

Figure 5.1. Flowchart of Contact and Collision Problem Simulation 
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5.2. COMPLETE POWER TRANSMISSION TO PULLEY 

 

An assumption is made that the contact between the ground and the tip of the conical 

spring is constantly maintained and the rope is always tight. Thus, the deflection motion of 

the tire is directly converted to angular motion of the pulley. Thus, it can be said that the 

power is completely transmitted to the pulley. 

 

After this transmission is done the ratchet state is checked since all the kinematic 

properties of the pulley are known. The appropriate generator model is used for open or 

closed circuits, and, according to the ratchet state the generator dynamic equations are 

solved for the ratchet velocity, acceleration, current, and the rate of change of current. The 

flow chart of the algorithm of this numerical simulation code is given in Figure 5.2. 
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Figure 5.2. Flowchart of complete power transmission to pulley simulation case 
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6. EXPERIMENTAL DESIGN AND TESTING 

 

 

An experimental setup is designed in order to test the TPMS energy harvester. This test is 

necessary in order to validate the numerical simulations performed using the previous 

algorithms provided in Section 5. 

 

The experimental setup consists of two parts. The first part includes a design of a cam in 

order to simulate the tire deflection and the second part is the prototype energy harvester 

itself. 

 

6.1. CAM DESIGN AND MECHANISM 

 

A cam is designed to provide the radial deflection model, which is modeled in Section 4.2. 

A roller is placed inside the cam and the radial change in diameter provides the modeled 

deflection. The cam profile is given in Figure 6.1. 

 

 

 

Figure 6.1. Basic sketch of the designed cam 

 

This cam profile is obtained by placing a bar inside a tire rim. This is shown in Figure 6.2. 
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Figure 6.2. Cam obtained by placing a bar inside a circular part 

 

Due to manufacturing errors the steel bar placed in the circular part is not straight. This 

causes a change in the radial deflection profile. This issue is not taken into account. 

 

This produced cam is placed on a shaft. The shaft contains a gear that is used to connect to 

a DC motor in order to drive the cam. The gear ratio used is 3:1 in order to increase the 

torque produced by the driving DC motor on the cam. The shaft is then placed on a 

structure in order to hold the cam and the DC motor in place. This is shown in Figure 6.3. 

Figure 6.4. shows the individual components in detail. 

 

 

 

Figure 6.3. Structure where the DC motor and the Cam is placed 

bar 



69 

 

 

 

Figure 6.4. Components of the main structure 

 

6.2. PROTOTYPE DESIGN GENERATION ONE 

 

A scaled up version of the prototype is designed for experimental testing. This prototype is 

shown in Figure 6.5. Figure 6.6 shows the components in detail. 

 

 

 

Figure 6.5. Prototype generation One 
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Figure 6.6. Components of the prototype generation one 

 

Here a helical spring is used where a conical spring is supposed to be in the original 

design. However, the only reason for using a conical spring in the original design is to 

prevent damage to the tire in case of flat tire, which would be a possibility had a straight 

helical spring been used due to the nonzero solid height. Therefore, use of a helical spring 

in place of a conical spring will not affect the function of the harvester. The properties of 

the helical spring used in the experiment are given in Table 6.1. 

 

Table 6.1. Helical spring properties used in the prototype 

 

Major Diameter 40 mm 

Height 113 mm 

Wire Thickness 2.5 mm 

Number of Coils 8 

Material stainless steel 17-7 a313 

End Type Closed Ends 

 

The stiffness of the helical spring is calculated using Equation 3.6 as 1.168
𝑁

𝑚𝑚
. 
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The torsional spring used in the experimental setup is basically another conical spring. This 

however causes problems in high angular rotations. No calculations for the stiffness of the 

torsional spring is made due to it being used only for testing purposes. As a one way 

bearing, OWC307GXLZ is used from BOCA company. 

 

The prototype is placed on the main structure where the cam is placed. This is shown in 

Figure 6.7. 

 

 

 

Figure 6.7. Prototype placed on the main structure of the cam 

 

This experimental setup is tested in order to check if it works properly. A voltage of 3 V is 

applied to the driving DC motor in order to rotate the cam and the voltage between the 

terminals of the generator are measured. The test results are as shown in Figure 6.8. 
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Figure 6.8. Prototype test results 

 

Here it is seen that the one way bearing is not operating correctly because it is engaged all 

the time since negative voltage peaks are obtained. This is thought to be by the coupling 

element that the one way bearing is placed in and unwanted loads are accumulated on the 

one way bearing. Due to the problems in the torsional spring and the one way bearing 

some changes are made to the prototype design. 

 

6.3. PROTOTYPE DESIGN GENERATION TWO 

 

In order to tackle the problems observed in the generation one design. Some changes are 

made. In order to reduce the unwanted loads on the one way bearing a 3 mm helical 

coupling shown in Figure 6.9. is used. 

 

 

 

Figure 6.9. Helical coupling used to relieve the unwanted loads on the bearing 
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Turning is used to expand the 3mm shaft hole of the coupling in one side in order to place 

the one way bearing inside the coupling. The prototype with the coupling used is shown in 

Figure 6.10. 

 

 

 

Figure 6.10. The prototype with the helical coupling and new torsional spring. 

 

As a torsional spring a helical spring is used. The geometric properties of this spring are 

given in Table 6.2. 

 

Table 6.2. The properties of the helical spring used in place of the torsional spring. 

 

Major Diameter 17 mm 

Wire Thickness 1 mm 

Number of Coils 4.25 

End Type Straight Offset 

 

The material for the helical spring is unknown here. To determine the material of the 

helical spring an experiment was conducted. The spring was placed in an Instron universal 

testing machine. A compressive deflection was given to the spring and the force was 

measured using the sensors in the universal testing machine. The graph of the experimental 

results is given in Figure 6.11. 
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Figure 6.11. Deflection and force data obtained from universal testing machine 

 

Using the slope of the graph the linear spring constant is obtained as 0.331
N

mm
. The spring 

constant is used to calculate the shear modulus of the material. The shear modulus is 

obtained as 52 𝐺𝑃𝑎. In the widely used spring materials the property closest to this shear 

modulus is Beryllium-copper B197 with shear modulus of 50.3 𝐺𝑃𝑎. Thus the material of 

the torsional spring is determined as Beryllium-copper B197. As a result, the torsional 

stiffness of the helical spring is calculated as 0.0283
𝑁𝑚

𝑟𝑎𝑑
. 

 

This new prototype is tested in order to check if it works properly. A voltage of 3 V is 

applied to the driving DC motor in order to rotate the cam and the voltage between the 

terminals of the generator is measured. The test results are as shown in Figure 6.12. 
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Figure 6.12. Prototype test results 

 

Since the results obtained from the new system are as expected, one can claim that the one 

way bearing is operating better. 

 

6.4. EXPERIMENTAL PROCEDURE 

 

6.4.1. Measuring the Voltage Generated 

 

A voltage source is connected to the DC motor in order to rotate the cam. After the cam 

has reached its full speed, data of the voltage generated between the terminals of the 

generator is measured. This is done by using a data acquisition card (DAQ) card and 

LABVIEW software of National Instruments Company. 

 

6.4.2. Measuring Power Output 

 

The generator is connected to a circuit containing two parallel resistors, acting as an 

adjustable electrical load. This circuit diagram is shown in Figure 6.13. 
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Figure 6.13. Diagram of the circuit in order to measure power output over the resistor 

 

This is done using a 500 ohm potentiometer and a 125 ohm resistor. This circuit is done in 

order to scale the equivalent resistance to a range of 0-100 ohms. The voltage difference 

between the terminals of the dc motor is measured and the current is calculated using 

Ohm’s law given below. 

 

 
𝑖 =

𝑉

𝑅𝑒𝑞
 (6.1) 

 

where 𝑅𝑒𝑞 is the equivalent resistance of the circuit and it is measured before starting the 

experiment. 

 

The electrical power formula given below is used in order to calculate the power output of 

the generator. 

 

 
𝑃𝑜𝑤𝑒𝑟 = 𝑖2𝑅𝑒𝑞 =

𝑉2

𝑅𝑒𝑞
 (6.2) 
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7. RESULTS AND DISCUSSION 

 

 

7.1. OPEN CURCUIT EXPERIMENTS 

 

A voltage of 3 V is applied to the DC motor and the open circuit voltage is measured 

between the terminals of the generator. The results are given in Figure 7.1. 

 

 

 

Figure 7.1. Voltage generated by applying 3V to the main DC motor 

 

The voltage profile is observed to be periodic with a period of 0.89 seconds, which is same 

as the period of the cam rotation. This period corresponds to a vehicle speed of 5 km/h. 

The mean peak voltage is measured as 0.95 V and the RMS voltage generated is found as 

0.17 V. 

 

The same experiment was done using the numerical simulation algorithm presented in 

Section 5.2 using the period found from the experiment. The numerical simulation results 

are given in Figure 7.2. 
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Figure 7.2. Numerical simulation results for tire period of 0.89 seconds 

 

The peak voltage generated from the simulation is 1.18 V and the RMS voltage generated 

is found as 0.17 V. These results are summarized in the following table (Table 7.1). 

 

Table 7.1. Summary of the results obtained from applying 3 V to the main DC motor 

 

Method Peak Open circuit Voltage (V) RMS Open circuit Voltage (V) 

Experiment 0.95 0.17 

Numerical Simulation 1.18 0.17 

% Deviation 24.21 0.00 

 

It is seen from both numerical and experimental results are considerably close to one 

another where the deviation of the peak open circuit voltage is 24.21% and the deviation of 

RMS voltage is 0.00% which means that although the signals may not be the same they are 

acceptable. The same experiment and numerical simulation is done when 4 volts are 

applied to the DC motor rotating the cam in order to verify the numerical simulation 

algorithm again. The experimental results are given in Figure 7.3. 
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Figure 7.3. Voltage generated by applying 4V to the main DC motor 

 

The voltage profile is observed to be periodic again and the period of the voltage is 

measured from the graph as 0.41 seconds which is same as the period of the cam rotation. 

This period corresponds to 11 km/h vehicle speed. The mean peak voltage is calculated as 

2.72 volts and the RMS voltage generated is found as 0.43 volts. 

 

The same experiment was done using the numerical simulation algorithm in Section 5.2 for 

open circuit voltage using the period found from the experiment. The numerical simulation 

results are given in Figure 7.4. 

 

 

 

Figure 7.4. Numerical simulation results for tire period of 0.41 seconds 
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The peak voltage generated from the simulation is 2.62 volts and the RMS voltage 

generated is found as 0.39 volts. These results are summarized in the following table 

(Table 7.2). 

 

Table 7.2. Summary of the results obtained from applying 4 V to the main DC motor 

 

Method Peak Open circuit Voltage (V) RMS Open circuit Voltage (V) 

Experiment 2.72 0.43 

Numerical Simulation 2.62 0.39 

% Deviation -3.68 -9.3 

 

The deviations of the numerical simulation have many sources, some of which are listed 

below. 

 

 In the experiment the cam rapidly decelerates and accelerates when compressing 

the conical spring (this effects the voltage peak values generated). 

 The one way bearing does not work ideally since negative voltages are observed in 

the experiment. 

 At slow speeds, when the tip of the helical spring is near the middle of the straight 

piece on the rim, the generator slows down and passes into the nonlinear damping 

zone. 

 

In spite of these reasons, the results obtained from the experiments and numerical 

simulation can be said to be considerably close to one another. The deviations of 4 V 

experiments are -3.68% for peak voltage and -9.3% for RMS voltage which are acceptable. 

This indicates the validity of the analytical model and the numerical algorithm for open 

circuit case. 

 

7.2. CLOSED CIRCUIT EXPERIMENTS 

 

For the closed circuit experiments with an electrical load a voltage of 3 V is applied to the 

DC motor rotating the cam. Then, the equivalent resistance connected to the generator is 

set to values ranging from 4 Ω to 89 Ω. The power output is measured. The same 

experiment is done numerically for a resistance range of 0 Ω to 100 Ω.. Maximum power 
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obtained for each resistance value is plotted for both experimental and numerical 

simulation. The results are given in Figure 7.5. 

 

 

 

Figure 7.5. Maximum power obtained for experiment and numerical simulation 

 

It is seen that the maximum points of the numerical simulation result and the experimental 

results match and it is seen that the maximum point of numerical simulation is obtained at 

50 Ω. This is due to the generator internal resistance increase due to connection of cables 

and the connection to the circuit. Thus it can be said the maximum power output is 

obtained at the equivalent internal resistance of the generator. 

 

In the right portion of the maximum point the results seem to diverge from one another, 

this is due to the heating of the resistors both in the circuit connected to the generator and 

the internal resistor of the generator. 

 

Numerical simulation is done to obtain average power output for a vehicle velocity range 

of 0 to 150 km/h. The results are given in Figure 7.6. 
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Figure 7.6. Average power simulation results vs. vehicle speed. 

 

It is seen that the average power output behaves similarly to a second order polynomial. 

Thus a second order polynomial curve fitting is applied and the equation obtained is given 

below; 

 

𝑃𝑜𝑤𝑒𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 10−5𝑉2 − 0.00003𝑉 

 

The correlation coefficient of the fit (goodness of fit) is 0.998. This strongly supports the 

choice a second order polynomial for the curve fit. 
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8. CONCLUSION AND FUTURE WORK 

 

 

In this thesis a novel, patent-applied design is modeled. The modeling includes vehicle tire 

deflection modeling, conical spring equivalent mass modeling, modeling dynamical 

equations of systems and DC generator modeling and characterization. By using these 

models the numerical algorithms are generated and used to simulate the system under 

given vehicle velocities using the numerical software MATLAB. In order to compare the 

numerical algorithm validity prototype is designed. After the prototype is tested to work 

properly, open and closed circuit experiments are conducted. 

 

The open circuit experiments are used to verify the validity of the numerical algorithm. 

The closed circuit experiments are one in order to measure the power output of the 

harvester under certain electrical loading conditions. The average power output curve is 

generated for vehicle velocity ranging from 0 to 150 km/h vehicle speed. 

 

It is observed that the power output of the harvester is proportional to the square of the 

vehicle speed. At low vehicle speeds (around 20 km/h) the harvester generates an average 

power of 2.2 mW. This is enough power for a currently used TPMS to work properly. 

 

As future work the algorithm solving for contact and collision problem can be perfected to 

solve the system behavior at high speeds when the system is working non-ideally (conical 

spring loses contact, rope loosens). 
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APPENDIX A: CONTACT AND COLLISION PROBLEM 

SIMULATION 

 

 

Algorithm A.1. Main function 

 

%% main code file 

clc 

close all 

clear variables 

  

numCor=1e-6; 

%% Parameters 

%assembly 

H=0.1; 

Lr=0.07; 

initComp=0.0; 

  

%particle 

mc=0.1;%kg 

bc=0.005;%N*s/m 

kc=100;%N*m 

  

%pulley 

Ip=1;%kg*m^2 

bp=0.005;%N*m*s/rad 

kp=524.88;%N*m/rad 

rp=0.008;%m 

  

%generator 

Ig=0.001; 

bg=4.88e-6; 

kb=0.0253;%torque constant 

kt=kb; 

R=22.9;%ohm 

L=13.73e-3 ; 

  

%% Coefficient of Restitutions 

eb=0.5;%base 

  

%% Base Parameters 

pts=100; 

amp=0.02; 

Ncycles=5; 

freq=5; 
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[x,t,deltaT,n]=setTireMotion(pts,amp,Ncycles,freq); 

  

  

figure 

plot(t,x(:,1)) 

title('Base Motion Position') 

  

%% Initial Positions 

  

[thts,ys,Ts,Ns,offset]=TpmsAssembly(H,Lr,rp,kc,kp,initComp); 

  

x(:,1)=x(:,1)+offset; 

y(1,:)=[ys,0,0]; 

tht(1,:)=[thts,0,0]; 

alpha(1,:)=[0,0,0]; 

i(1,:)=[0,0]; 

power(1)=0; 

  

T(1)=Ts; 

N(1)=Ns; 

M(1)=0; 

  

%% LOOP 

  

for ii=1:n-1 

    %% Boundary Conditions 

    %no penetration boundary for base 

    if x(ii,1)>y(ii,1) 

        y(ii,1)=x(ii,1); 

    end 

    %rope cannot break boundary 

    if thts-tht(ii,1)>(y(ii,1)-ys)*rp 

        tht(ii,1)=-(y(ii,1)-ys)*rp+thts; 

    end 

  

    %% Collision Calculations 

    %collision on base(consevertaion of momentum  

    %and energy with coefficient of restitution) 

    if x(ii,1)>=y(ii,1) && x(ii,2)-y(ii,2)>0 

        y(ii,2)=-eb*(y(ii,2)-x(ii,2))+x(ii,2); 

    end 

    %collision on pulley(conservation of momentum and energy  

    %fully elastic collision 

    if thts-tht(ii,1)>=(y(ii,1)-ys)*rp && 

y(ii,2)*rp+tht(ii,2)<0 

        k=mc*rp^2/Ip; 

        thtb=tht(ii,:);%theta before collision 

        tht(ii,2)=(1-k)/(k+1)*tht(ii,2)-

2*k/(rp*(k+1))*y(ii,2); 

        y(ii,2)=(k-1)/(k+1)*y(ii,2)-2*rp/(k+1)*thtb(2); 
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    end 

    %ratchet engagement 

    if tht(ii,2)>=alpha(ii,2) && tht(ii,3)-alpha(ii,3)>0 

        alpha(ii,3)=tht(ii,3); 

    end 

     %pulley velocity cannot pass generator velocity 

    if tht(ii,2)>alpha(ii,2) 

        alpha(ii,2)=tht(ii,2); 

    end 

         

   %% Force Calculations 

   %moment 

   if tht(ii,2)-alpha(ii,2)<-numCor 

       M(ii)=0; 

   else 

       M(ii)=Ig*alpha(ii,3)+bg*alpha(ii,2)+kt*i(ii,1); 

   end 

   %tension 

   if thts-tht(ii,1)-(y(ii,1)-ys)*rp<-numCor 

       T(ii)=0; 

   else 

       

T(ii)=(tht(ii,3)*Ip+tht(ii,2)*bp+tht(ii,1)*kp+M(ii))/rp; 

   end 

   %normal force 

   if x(ii,1)-y(ii,1)<-numCor 

       N(ii)=0; 

   else 

       N(ii)=y(ii,3)*mc+y(ii,2)*bc+y(ii,1)*kc-T(ii); 

   end 

    %% Motion Calculations 

    %conical spring 

    

[y(ii+1,1),y(ii+1,2),y(ii+1,3)]=Solver(mc,bc,kc,N(ii)+T(ii),y

(ii,1),y(ii,2),deltaT); 

    %pulley 

    

[tht(ii+1,1),tht(ii+1,2),tht(ii+1,3)]=Solver(Ip,bp,kp,T(ii)*r

p-M(ii),tht(ii,1),tht(ii,2),deltaT); 

    %generator 

    

[alpha(ii+1,3),alpha(ii+1,2),alpha(ii+1,1),i(ii+1,3),i(ii+1,2

),i(ii+1,1),power(ii+1)]=GeneratorModule2... 

        (L,Ig,bg,R,kb,M(ii),i(ii,1),i(ii,2),deltaT); 

     

    end 

  

%% Plot Resuts 

%results for conical spring 

subplot(5,1,1) 
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plot(t,x(:,1)) 

hold on 

plot(t,y(:,1),'r') 

SprStatic(1:n)=ys; 

plot(t,SprStatic,'k') 

title('base motion(blue) Srping(red)') 

%results for pulley 

subplot(5,1,2) 

plot(t,tht(:,1),'r') 

title('theta') 

hold on 

PulStatic(1:n)=thts; 

plot(t,PulStatic,'k') 

%results for ratchet 

subplot(5,1,3) 

plot(t,alpha(:,2)); 

title('generator') 

%current results 

subplot(5,1,4) 

plot(t,i(:,1)); 

title('current') 

%force results 

subplot(5,1,5) 

plot(t(1:n-1),T); 

hold on 

% plot(N,'ro') 

plot(t(1:n-1),M,'k+') 

  

figure; 

plot(t,power) 

title('power') 

  

work=t*power'; 

  

fprintf('max Normal Force is %f \n',max(N)) 

fprintf('max Tension is %f \n',max(T)) 

fprintf('max Ratchet moment is %f \n',max(M)) 

 

Algorithm A.2. setTireMotion.m function 

 

function [x,t,delT,nn]=setTireMotion(pts,amp,Ncycles,freq) 

  

Tstart=0; 

  

[~,delT,TPeriod,xPos,xVel,xAcc]=tireMotionCYK(freq,pts,amp); 

  

xdum=[xPos,xVel,xAcc]; 

x=xdum; 
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for ii=1:Ncycles-1 

    x=[x;xdum]; 

end 

  

t=linspace(Tstart,TPeriod*Ncycles,length(x)); 

nn=length(x); 

end 

 

Algorithm A.3. tireMotionCYK.m function 

 

function [nn,delT,TPeriod,x,v,a]=tireMotionCYK(freq,nBump,Y) 

  

bumpR=30/360;%bump ratio in angles 

  

%% 

%set time 

TPeriod=1/freq; 

Tbump=bumpR*TPeriod;%Duration of bump in seconds 

t=linspace(0,Tbump,nBump);%time during bump 

tRise=t(1:nBump/4);%rise time 

TT=tRise(nBump/4);%peak time 

delT=t(2); 

  

%% 

nn=round(TPeriod/delT); 

x=zeros(nn,1); 

v=zeros(nn,1); 

a=zeros(nn,1); 

  

  

%% 

%equations giving the motion of bump 

amax=120*Y/TT^2; 

x(1:nBump/4)=amax/120/TT^3*tRise.^3.*(6*tRise.^2-

15*TT*tRise+10*TT^2); 

x(nBump/4+1:3*nBump/4)=x(nBump/4); 

x(3*nBump/4+1:nBump)=flipud(x(1:nBump/4)); 

  

v(1:nBump/4)=amax/4/TT^3*tRise.^2.*(tRise-TT).^2; 

v(nBump/4+1:3*nBump/4)=v(nBump/4); 

v(3*nBump/4+1:nBump)=flipud(v(1:nBump/4)); 

  

a(1:nBump/4)=amax/TT^3*tRise.*(tRise-TT/2).*(tRise-TT); 

a(nBump/4+1:3*nBump/4)=a(nBump/4); 

a(3*nBump/4+1:nBump)=flipud(a(1:nBump/4)); 

end 
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Algorithm A.4. TpmsAssembly.m function 

 

function 

[thtf,yf,Tf,Nf,offset]=TpmsAssembly(H,Lr,Rp,kc,kt,initComp) 

  

if Lr>H+pi*Rp 

    display('rope slack: do not begin') 

end 

  

%% assembly of pulley and conical spring 

L=(H+pi*Rp-Lr)/(kt+Rp^2*kc); 

  

thts=Rp*kc*L; 

ys=kt*L; 

Ts=kt/Rp*thts; 

  

%% assembly to the ground 

  

offset=ys+initComp; 

  

thtf=thts-initComp/Rp; 

if thtf<=0 

    thtf=0; 

end 

yf=ys+initComp; 

Tf=thtf*kt/Rp; 

Nf=kc*yf-Tf; 

  

if thtf<0 

    display('Error thts<0') 

end 

  

end 

 

Algorithm A.5. Solver.m function 

 

function [x,dx,ddx]=Solver(m,b,k,F,x0,dx0,t) 

%this function solves second order linear differential 

equations 

%where m(mass)=kg b(damping)=N*s/m k(spring  constant)=N/m 

  

if(k==0 && b~=0) 

    %solve for k=0 and b=!0 

    C2=m/b*(F/b-dx0); 

    C1=x0-C2; 

    x=F/b*t+C2*exp(-b/m*t)+C1; 

    dx=F/b-b/m*C2*exp(-b/m*t); 
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    ddx=(b/m)^2*C2*exp(-b/m*t); 

end 

  

if(b==0 && k~=0) 

    %solve for k=!0 and b=0 

    wn=sqrt(k/m); 

    A=dx0/wn; 

    B=x0-F/k; 

    x=F/k+A*sin(wn*t)+B*cos(wn*t); 

    dx=A*wn*cos(wn*t)-B*wn*sin(wn*t); 

    ddx=-A*wn^2*sin(wn*t)-B*wn^2*cos(wn*t); 

end 

  

if(b==0 && k==0) 

    %solve for k=0 and b=0 

    C2=x0; 

    C1=dx0; 

    x=1/2*F/m*t^2+C1*t+C2; 

    dx=F/m*t+C1; 

    ddx=F/m; 

end 

if(k~=0 && b~=0) 

f=F/m; 

wn=sqrt(k/m); 

zeta=b/(2*m*wn); 

if zeta<1 

    %solve for underdamped system 

    wd=wn*sqrt(1-zeta^2); 

    wd=wn*sqrt(1-zeta^2); 

    B=x0-F/k; 

    A=(dx0+zeta*wn*B)/wd; 

    x=F/k+exp(-zeta*wn*t)*(A*sin(wd*t)+B*cos(wd*t)); 

    dx=exp(-zeta*wn*t)*(-(zeta*wn*A+wd*B)*sin(wd*t)+(A*wd-

zeta*wn*B)*cos(wd*t)); 

end 

     

if zeta==1 

    %solve for critically damped system 

    B=x0-F/m; 

    A=dx0+wn*B; 

    x=F/k+(A*t+B)*exp(-wn*t); 

    dx=(-wn*A*t+A-wn*B)*exp(-wn*t); 

end 

     

if zeta>1 

    %solve for overdamped system 

    wd=wn*sqrt(zeta^2-1); 

    B=(dx0+(wd+zeta*wn)*(x0-F/k))/(2*wd); 

    A=x0-F/k-B; 

    x=F/k+exp(-zeta*wn*t)*(A*exp(-wd*t)+B*exp(wd*t)); 
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    dx=A*(-wd-zeta*wn)*exp((-wd-zeta*wn)*t)+B*(wd-

zeta*wn)*exp((wd-zeta*wn)*t); 

end 

ddx=f-2*zeta*wn*dx-wn^2*x; 

end 

end 

 

Algorithm A.6. GeneratorModule2.m function 

 

function 

[ddalpha,dalpha,alpha,ddi,di,i,power]=GeneratorModule2... 

    (L,I,b,R,kb,Mr,i0,di0,t) 

% L;%indctance 

% I;%inertia 

% b;%damping 

% R;%resistance 

% kb;%electrical constant 

kt=kb; 

% Mr;%applied moment 

  

m=L*I; 

c=L*b+R*I; 

k=kb*kt+R*b; 

f=kb*Mr; 

  

[i,di,ddi]=Solver(m,c,k,f,i0,di0,t); 

  

%% Solve for motion 

alpha=0; 

dalpha=(L*di+R*i)/kb; 

ddalpha=L/kb*ddi+R/kb*di; 

  

power=i*R^2; 

end 
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APPENDIX B: COMPLETE POWER TRANSMISSION TO PULLEY 

 

 

Algorithm B.1. Main function 

 

clc 

clear variables 

close all 

  

ncyc=3;%number of cycles 

nn=1000;%number of data points 

  

load=10; 

%pulley properties 

Rp=8e-3;%pulley radius m 

  

period=0.89; 

angvel=2*pi/period; %rad/s 

Vms=angvel*0.2; %m/s 

%% Create n cycles of tire motion 

[x,t,dt]=TireMotionV(Vms,nn,ncyc); 

  

  

  

figure 

subplot(3,1,1) 

plot(t,x(:,1)) 

title('tire position') 

  

subplot(3,1,2) 

plot(t,x(:,2)) 

title('tire velocity') 

  

subplot(3,1,3) 

plot(t,x(:,3)) 

title('tire acceleration') 

  

%% Pulley motion 

  

theta=-x/Rp; 

  

% plot(theta(:,1)) 

  

%% Initial Values 

alpha=[0 0]; 

i=[0 0]; 

M=[0]; 
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power=[0]; 

  

  

%% Simulate motion using dt time intervals 

  

for ii=1:(nn*ncyc)-1 

     

    %engagement check 

    if theta(ii,2)>alpha(ii,1) 

        RE=1; 

    end 

    if theta(ii,2)<=0 || (theta(ii,2)>0 && 

theta(ii,3)<alpha(ii,2)) 

        RE=0; 

    end 

    [dummyi,dummyalpha,dummyM,power(ii+1)]=... 

        

generatorDyn3(theta(ii,:),alpha(ii,:),i(ii,:),RE,dt,load); 

    alpha=[alpha;dummyalpha]; 

    i=[i;dummyi]; 

    M=[M,dummyM]; 

end 

  

%% Calculate RMS power 

RMSPOW= sqrt(sum((i(:,1).^2*load).^2)/(nn*ncyc)); 

fprintf('RMS POWER İS %f Watt\n',RMSPOW) 

  

%% Plot results 

figure 

subplot(5,1,1) 

plot(t,theta(:,2),'r') 

hold on 

plot(t,alpha(:,1)) 

title('motor velocity blue pulleyn red') 

  

subplot(5,1,2) 

plot(t,theta(:,3),'r') 

hold on 

plot(t,alpha(:,2)) 

title('motor acceleration blue pulleyn red') 

  

subplot(5,1,3) 

plot(t,i(:,1)) 

title('current') 

  

subplot(5,1,4) 

plot(t,M) 

title('Ratchet moment') 

  

subplot(5,1,5) 
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plot(t,power) 

title('Power') 

 

Algorithm B.2. TireMotionV.m function 

 

function [x,t,dt]=TireMotionV(V,nn,ncyc) 

%V in m/s 

n=10000; 

R=200e-3;%radius in m 

h=20e-3;%height in m 

  

beta=acos((R-h)/R);%degrees 

omega=V/R;%rad/s 

  

Tpeak=beta/omega;%s 

Ttot=2*pi/omega; 

  

TTrise=linspace(0,Tpeak,n); 

delt=TTrise(2)-TTrise(1); 

  

TTdown=linspace(TTrise(n)+delt,2*Tpeak,n-1); 

  

TTrest=linspace(TTdown(n-1)+delt,Ttot,n-1); 

  

% TTrest=linspace(TTdown(n),Ttot,n/2); 

  

%rise 

ralpha=omega*TTrise; 

xr=R-(R-h)./cos(beta-ralpha); 

  

%down 

dalpha=omega*TTdown; 

xd=R-(R-h)./cos(beta-dalpha); 

  

%rest 

xrest=R-R*ones(1,n-1); 

  

pos=[xr,xd,xrest]; 

TT=[TTrise,TTdown,TTrest]; 

  

% figure 

% plot(TT,x) 

  

up=spline(TT,pos);%position 

vp=fnder(up,1);%velocity 

ap=fnder(up,2);%acceleration 

  

time=linspace(0,Ttot,nn); 
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dt=time(2)-time(1); 

  

u=ppval(up,time); 

v=ppval(vp,time); 

a=ppval(ap,time); 

u=u'; 

v=v'; 

a=a'; 

     

d=[]; 

dd=[]; 

ddd=[]; 

for ii=1:1:ncyc 

    d=[d;u]; 

    dd=[dd;v]; 

    ddd=[ddd;a]; 

end 

  

t=[]; 

tdummy=0; 

for ii=1:1:ncyc 

    t=[t time+tdummy]; 

    tdummy=t(nn*ii); 

end 

x=[d dd ddd]; 

  

% figure 

% subplot(3,1,1) 

% plot(t,x(:,1)) 

% subplot(3,1,2) 

% plot(t,x(:,2)) 

% subplot(3,1,3) 

% plot(t,x(:,3)) 

  

end 

 

Algorithm B.2. generatorDyn3.m function 

 

function 

[i,alpha,M,power]=generatorDyn3(theta,alpha0,i0,RE,dt,load,ex

tload) 

  

%generator properties 

I=8.3e-7;%inertia kg m^2 

b=1.39e-6;%damping N m s/rad 

L=13.73e-3;%inductance H 

k=0.0139;%electrical constant V s/rad 

R=22.9+load+extload;%total resistance ohm 
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brat=6e-4;%ratchet damping N-m-s/rad 

%Ratchet engaged case 

if RE==1 

    alpha(1,1:2)=theta(1,2:3); 

%     alpha(1,1)=theta(1,2); 

%     if alpha0(1,2)<theta(1,3) 

%         alpha(1,2)=theta(1,3); 

%     else 

%         alpha(1,2)=alpha0(1,2); 

%     end 

  

    i(1,1)=k*alpha(1)/R+(i0(1)-k*alpha(1)/R)*exp(-R/L*dt); 

    i(1,2)=k/L*alpha(1)-R/L*i(1,1); 

    M=(I*alpha(1,2)+b*alpha(1,1)+k*i(1,1)); 

    if M<0 

        display('check for error') 

    end 

%ratceht disengaged case 

else 

%     if alpha0(1)<=0 

%         M=0; 

%     else 

%         M=-Mrat; 

%     end 

    M=0; 

    beff=b+brat; 

%     m=L*I; 

%     c=L*beff+R*I; 

%     z=k^2+R*beff; 

%     f=R*M; 

%     [alpha(1,1),alpha(1,2),dddalpha]=... 

%         Solver(m,c,z,f,alpha0(1),alpha0(2),dt); 

%     i(1,1)=(-I*alpha(1,2)-beff*alpha(1,1))/k; 

%     i(1,2)=(-I*dddalpha-beff*alpha(1,2))/k; 

    A=[-beff/I,-k/I;k/L,-R/L]; 

    s0=[alpha0(1);i0(1)]; 

    s=expm(A*dt)*s0; 

    sdot=A*s; 

    alpha=[s(1),sdot(1)]; 

    i=[s(2),sdot(2)]; 

end 

  

power=i(1,1)^2*load; 

end 

 




