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ABSTRACT

RESOURCE AWARE ADAPTIVE BINARY QUANTIZER DESIGN FOR TARGET

TRACKING IN WIRELESS SENSOR NETWORKS

In this thesis, we design a resource aware adaptive binary quantizer for tracking a moving

target in a Wireless Sensor Network (WSN). Due to stringent WSN resources, such as node

energy or communication bandwidth, rather than transmitting the analog sensor measurements,

sensors first preprocess their measurements and then send binary quantized versions of

their measurements either directly (Single-hop transmission) or via cluster heads (2-hop

transmission) to the Fusion Center (FC). Firstly, at each time step of tracking, the local decision

thresholds of sensors are obtained optimally and dynamically as a result of a Multiobjective

Optimization Problem (MOP). The considered MOP jointly minimizes the estimation error

and number of sensor transmitting to FC under Single-hop links. Secondly, while considering

energy depletion in hardware of sensors during transmission, we also formulate MOP to

minimize the total energy consumption of the WSN under Single-hop and 2-hop links. As

well as MOP, we also prefer Minimum Transmission Energy Path (MTEP) based transmission

where sensors’ observations follow less energy required path which can be either Single-hop

or 2-hop path to reach the FC. Numerical results show that significant savings in both total

energy consumption of WSN and the average number of sensors transmitting to the FC are

provided while keeping good target tracking performance. Finally, we propose a proportional

Time Division Multiple Access (TDMA) based medium access control (MAC) approach

where the time allocated to each sensor to transmit its binary decision to the FC becomes

related with the value of its measurement while considering wireless channel impairments

under Single-hop links. Numerical results show that proportional time allocation provides

better estimation performance as compared to equal time allocation.
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ÖZET

TELSİZ DUYARGA AĞLARDA HEDEF TAKİBİ İÇİN KAYNAK DUYARLI

UYARLANIR NİCEMLEME TASARIMI

Bu tezde, hareketli bir hedefin takibi için bir Telsiz Duyarga Ağı (TDA)’nda kaynak duyarlı

uyarlanır nicemleme tasarlanmıştır. Düğüm enerjisi ya da haberleşme bant genişliği gibi

kısıtlı kaynaklar nedeniyle duyargalar analog iletim yapmak yerine, öncelikle ölçümlerini

ön işlemden geçirirler ve sonra da ikili nicemlenmiş biçimlerini ya doğrudan (tek-atlamalı

iletim) ya da küme başı elemanları yardımıyla (iki-atlamalı iletim) son istatiksel çıkarım için

Tümleştirme Merkezi (TM)’ne göndermektedirler. İlk olarak duyargaların yerel karar eşikleri,

her hedef takibi adımında tanımlanan Çok-amaçlı Eniyileme Problemi (ÇEP) sayesinde eniyi

ve devingen bir şekilde elde edilmektedir. Dikkate alınan ÇEP yöntemi kestirim hatasını

ve merkeze veri gönderen duyarga sayısını tek-atlamalı bağlantılar altında müşterek olarak

azaltmaktadır. İkinci olarak, ÇEP yöntemi aynı zamanda veri iletimi sırasında duyarga

devrelerinde oluşan enerji tüketimi dikkate alınarak TDA’daki toplam enerji tüketimini tek-

atlamalı ve 2-atlamalı bağlantılar altında en aza indirgemek için de formüle edilmiştir. ÇEP’in

yanı sıra duyarga ölçümlerinin en az enerji gerektiren bağlantı yolunu, tek-atlamalı ya da

2-atlamalı, takip ederek TM’ye ulaşmasını sağlayan En düşük İletim Enerjisi Yolu tabanlı veri

iletimi tercih edilmektedir. Sayısal sonuçlar eniyiye yakın takip başarımı sağlamakla birlikte

hem TDA’da harcanan toplam enerji oranında hem de veri iletimi yapan duyarga sayısında

önemli ölçüde tasarruf edildiğini göstermektedir. Son olarak, kablosuz kanaldaki bozulmalar

dikkate alınarak tek-atlamalı kanallar altında her bir duyargaya ikili kararlarını TM’ye iletmesi

için tahsis edilen sürenin kendi ölçümü ile orantılı olduğu oransal Zaman Bölmeli Çoklu

Erişim tabanlı MAC yaklaşımı önerilmektedir. Benzetim sonuçları, duyargalara oransal

zaman tahsisi sağlanmasının, eşit zaman tahsisine göre daha iyi kestirim başarımı sağladığını

göstermektedir.
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1. INTRODUCTION

A wireless sensor network (WSN) is composed of a number of spatially distributed sensors

and a central node called fusion center, and when properly programmed and networked, a

WSN is very useful in diverse application areas such as battlefield surveillance, industrial

process or health monitoring and control [1]. Since a sensor is a tiny, battery powered device,

the resources of the WSN is also limited. Therefore, adaptive sensor management strategies

for WSNs determine the optimal way to manage available resources and task a group of

sensors to collect measurements for statistical inference. Adaptive sensor management covers

topics such as sensor selection, resource allocation, sensor placements. For instance, in a

given region of interest dense deployment of sensors brings redundancy in coverage, sensor

selection problem finds a subset of sensors to transmit to the fusion center and the remaining

sensors stay silent while minimizing the error in estimation [2]. Similarly, dedicating the

available WSN resources such as total transmission energy or transmission bandwidth to a

subset of informative sensors may still provide the desired estimation performance [3].

In a WSN, the transmission of raw sensor measurements to the fusion center brings excessive

energy and bandwidth consumption. Instead, for detection and estimation applications, the

sensor measurements are first preprocessed by taking advantage of sensors limited onboard

signal processing capabilities, and a quantized version of the measurements are sent to

the fusion center. Adaptive sensor management considers joint optimization of multiple

conflicting system objectives, such as minimizing the error on inference, minimizing the total

energy consumption of the network, maximizing the lifetime of the network etc. With sensors

censoring, only sensors with informative observation transmit to the fusion center [4] where

local sensors employ binary on-off signalling. Then local sensor quantization thresholds not

only determine the detection error probability or error in estimation, but also determine the

number of sensors transmitting to the fusion center.

Since sensors in WSN have limited energy resources, excessive energy consumption need

to be mitigated to enhance durability of network. One of the most challenging topic is to

decide which path sensor nodes should use to forward information they collect. In contrast
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to conventional transmissions, single-hop and multi-hop, cluster based data transmission is

more energy efficient for life time of networks, because sensors which are far away from the

base station in direct (single-hop) transmission die out quickly due to high path losses. In

multi-hop, however, those are nearest to base station run out a few time after due to that they

have to forward too much data to destination node. Thus, selecting minimum required energy

path for transmission of sensors’ decisions to destination node become more critical for life

time of WSNs.

On the other hand, since sensors share the same medium, an appropriate medium access

control (MAC) policy needs to be defined [5, 6]. Accordingly, scheduling sensors for state

estimation is an important research topic [7–10]. Different from the MAC protocols designed

for wireless networks which focus on efficient data delivery, WSN MAC protocols should also

consider energy efficiency by maximizing the individual sensor or sensor network lifetime,

or minimizing the communication in the WSN [5, 6]. As an example, time division multiple

access (TDMA) based (MAC) strategies for WSNs allocate certain transmission time slots for

sensor transmissions [8].

In this thesis, we propose a resource efficient target tracking based on binary quantized data

and particle filtering in WSNs. Firstly, we solve an adaptive binary quantizer design problem

where the local decision thresholds of sensors are obtained optimally and dynamically at each

time step of tracking as a result from a Multiobjective Optimization Problem (MOP). Secondly,

total energy consumption of WSN are further reduced by using MOP in our proposed deciding

minimum transmission energy path while sensor are transmitting to fusion center to mitigate

the drawbacks of single-hop and multi-hop transmission. Finally, we also proposed a TDMA

based proportional time allocation method where more time is devoted to informative sensors

to decrease their transmission errors at each time step of tracking by considering fading and

noise channel effects. We first obtain the local sensor decision thresholds by maximizing

Mutual Information (MI) and Fisher Information (FI) and then determine time allocation

for each sensor based on information metrics. Overall, limited resources of a WSN such

as energy, communication bandwidth and number of transmitting sensors are significantly

reduced under different scenarios while maintaining a good estimation performance for target

tracking.
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1.1. LITERATURE SURVEY

Due to stringent resources such as energy and communication bandwidth, sensor

measurements need to be first locally quantized before transmitted to the fusion center.

For target localization, several quantization strategies have been proposed in [11]. For one-

step ahead sensor management in target tracking, the local decision thresholds of sensors

are updated optimally and dynamically at each time step of tracking where sensors transmit

binary decisions to the fusion center [12], [13]. Furthermore, for multi-steps ahead sensor

management, adaptive local quantizer design have been proposed in [14]. It is shown

in [12], [13] that if the target is near a particular sensor, the sensing region of the sensor is

decreased by increasing its decision threshold. Similarly, if a sensor is far away from the

target, the sensing region of a sensor is increased by decreasing the decision threshold. On

the other hand, the sensors far away from the target may carry negligible information about

the target location, and due to reduced sensing threshold, the sensors may become sensitive to

noise perturbations [15].

Design metrics for adaptive sensor management strategies, such as binary quantizer design

and sensor selection, evolve either from information theory or estimation theory. One popular

strategy for sensor selection is to use information driven methods [16], [17], [18], [19] where

the main idea is to assign the network resources to the sensors which provide the most useful

information quantified by entropy or MI. Conditional posterior Cramr-Rao lower bound based

metrics, on the other hand, assigns the network resources to the sensors which minimize the

error in estimation [20], [21], [22], [23]. As shown in [24], for sensor selection, the complexity

to compute the MI increases exponentially with the number of sensors to be selected, whereas

the computational complexity of FI, which is the inverse of the PCRLB, increases linearly

with the number of sensors to be selected.

In the all aforementioned works, single-hop transmissions are considered between sensors and

FC. Since sensors in WSN have limited energy resources, single-hop may not be an energy

efficient for large scale networks in which very large path losses are likely to occur [25],

[26], [27]. In [28], the M-bit quantized sensor measurements are transmitted over multi-hop

relay fading channels where circuit energy is neglected. Estimation performance for target
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tracking are determined under multi-hop relay fading channels. In [29], on the other hand,

it is stated that when energy consumption in transmitter and receiver circuits of relay nodes

are taken into account during transmissions, single-hop transmission would become more

energy efficient than multi-hop unless path loss suppresses energy consumption of circuit

electronics in relay nodes. Nevertheless, a cluster based energy-efficient communication

protocol LEACH (Low-Energy Adaptive Clustering Hierarchy) for micro sensor networks

are proposed in [25] where sensors are divided into different clusters that each cluster has a

cluster head. Cluster heads which are selected adaptively according to energy level of sensors

are responsible for forwarding sensors data to the base station.

In the above literature, it has been assumed that the transmission channels between sensors and

fusion center are error-free. On the other hand, the channels between sensors and the fusion

center may be non-reliable as a result of channel noise and fading. For the distributed detection

in a WSN, the problem of obtaining optimal quantization rules has been reformulated by

incorporating the channel impairments in [30], [31]. Furthermore, the optimal fusion rules

under received sensor measurements subject to the channel fading have been presented in [32],

and [4]. Given full and partial channel knowledge, [32] compares the detection performance

of the optimal and sub-optimal fusion rules where sensors employ polar {−1, 1} signalling.

Considering sensor censoring where sensors transmit on-off signals {0, 1}, [4] formulates the

optimal fusion rules using the statistics of the channels between sensors and the fusion center.

The wireless channel models presented in [32] and [4] are then used in target localization [33]

and target tracking [34].

Since sensors share the same medium, an appropriate medium access control (MAC) policy

needs to be defined [5, 6]. MAC policies for WSNs fall into two categories as contention

based and non-contention based policies. For the contention based MAC policies, the sensors

first sense the medium, if the channel is idle, they then transmit their measurements. Since

simultaneous sensor transmissions may cause collisions, collision avoidance routines and

negotiation between sensors may be required. Such additional signalling may increase the

energy consumption of individual sensors. For the non-contention based MAC policies, time

division multiple access (TDMA) based multiple access strategies allocate certain transmission

slots for sensor transmissions [8]. Since the number of time slots are limited, the scalability of
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the MAC protocol is limited. To extend TDMA based MAC policies for a multi-hop WSNs,

different sensors can access to the same time slot under the specified interference limits of

each other [35]. TDMA is collision free but it requires clock synchronization between sensors

and the central unit [8].

In terms of statistical inference problems, such as localization and tracking, the work presented

in [9] consider a TDMA based sensor scheduling policy where at each time step of tracking,

only one sensor transmit to the central controller. The sensors can be scheduled in a periodic

manner or in a aperiodic manner. In the former case, the optimal transmission pattern needs to

be determined, where in the later case the optimal sensor needs to be selected for transmission

at each time step of tracking. Also for target tracking, in [8], the authors propose a distributed

TDMA scheduling algorithm which consider the slot assignment problem. Finally, in [10],

the authors consider a MAC protocol where the individual sensor measurements are summed

up in the transmission medium and the central node observes the summation of the sensor

measurements. In this scenario, in a dense network, only limited number of sensors contribute

to the aggregate signal, and therefore the aggregate signal becomes sparse. Target tracking is

then performed by using compressed sensing.

1.2. LIST OF CONTRIBUTIONS

In this thesis, resource efficient target tracking in WSNs are investigated. We develop novel

adaptive sensor managements schemes which can noticeably save resources in terms of

communication bandwidth, number of transmitting sensors used and energy consumption

while maintaining a good tracking performance. Our contributions are listed as below,

• Adaptive binary quantizer design problem is solved for target tracking by using MOP

under single-hop and 2-hop transmission. Simulation results show that solutions

obtained by using MOP provides good target tracking performance while significantly

reducing the average number of sensors transmitting to the fusion center at each time

step of tracking.

• Instead of using only single-hop links or 2-hop links, we preferred a system that decide

minimum transmission energy path to transmitting sensor decisions. We also apply
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MOP to reduce energy burden on cluster heads during 2-hop transmission. By deciding

MTEP, we observe that total energy consumption of network during transmission are

become less than transmission under both single-hop and 2-hop links.

• TDMA based proportional time allocation are proposed for transmission of sensors’

observations while considering impairments of the wireless channel. As a result,

proportional time allocation among sensors where informative sensors possess more

time for transmission provide better estimation performance as compared to equal time

allocation.

• Overall, efficient resource managements are performed for target tracking with 1-

bit quantized data under single-hop and 2-hops links while ensuring less energy

consumption and communication traffic.

1.3. THESIS ORGANISATION

The rest of the thesis is organized as follows,

In Chapter 2, we introduce the fundamentals of background information to be used in

following chapters. Firstly, we present target tracking problem which introduce system model

and generation of sensor decisions. Secondly, we explain the particle filtering methods which

is used to state parameters estimation for target tracking problem. In addition, derivation of

information metrics are given under ideal channels which we used for deciding sensor decision

thresholds and allocated times. Finally, we review multiobjective optimization approach with

NBI and NSGA-II methods.

In Chapter 3, adaptive binary quantizer design problem is solved by minimizing estimation

error and reducing number of transmitting sensors using defining objective functions using

MOP under single-hop links assuming ideal channel. In addition, we present simulation

results which compare estimation performance and number of transmitting sensors based on

sensor decision thresholds obtained by maximizing trace of fisher information and MOP.

In Chapter 4, we determine energy consumption of overall network sensors under single-

hop and 2-hop links. We decide minimum transmission energy path for transmitting sensor
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decisions by comparing required energy under single-hop and 2-hop transmissions while

considering energy consumption in hardware of sensor circuits. Furthermore, we also combine

MOP with the MTEP to reduce overload energy consumption on cluster head nodes.

In Chapter 5, we study on medium access model and time division multiple access for

scheduling sensors for target tracking. We proposed proportional time allocation methods

where the simulation results compare the performance of proportional time sharing with equal

time sharing when different number of sensors compete for time allocations. In contrast to

other chapters, optimal and suboptimal metrics are compared based on estimation performance

while considering wireless channel impairments.

In Chapter 6, we give a summary of the basic results of the thesis and mention some

suggestions with future directions.
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2. BACKGROUND

In this chapter, we basically summarize the necessary background for several topics that

will be considered in the thesis. Since we deal with tracking in wireless sensor networks,

we first present the mathematical modeling of system model under target tracking problem

and Monte-Carlo based particle filtering method. Secondly, we mention the information

metrics such as mutual information and fisher information. Finally we briefly review problem

formulation of multiobjective optimization and NBI method.

2.1. TARGET TRACKING PROBLEM

In recent years, tracking moving objects in WSNs become an attractive research area [36], [37].

Due to dynamic nature of moving targets, tracking problem requires dynamic resource

allocation at each time step of tracking. In Figure 2.1, an example of target trajectory are

given with sensor deployments. In thesis, we use different number of sensors depend on

proposed networks. In this chapter, we introduce model parameters for target tracking and

assign decisions based on sensor observations.

2.1.1. System Model

At time step t, we define the target by a 4-dimensional state vector xt , [xt yt ẋt ẏt]
T

where xt and yt are the target location at discrete time steps t, ẋt and ẏt are the target velocities

in x and y directions respectively. Then according to the white noise acceleration model xt+1

is obtained as,

xt+1 = Fxt + υt (2.1)

where ∆ is the target sampling interval, F models the state dynamics and υt is the process

noise, which is assumed to be white, zero-mean and Gaussian with the covariance matrix Q.
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Figure 2.1. An example of target trajectory and sensor deployments, N=9 sensors

F and Q are represented as,

F ,


1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1

 , Q , ρ
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2
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0 ∆3

3
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2

∆2

2
0 ∆ 0

0 ∆2

2
0 ∆

 (2.2)

where ρ denotes the process noise parameter. We assume that the fusion center has perfect

information about the target state-space model in (2.1).

The target is assumed to be an acoustic or an electromagnetic source that follows the power

attenuation model given in [38]. At any time step t, the signal power received at sensor i is

expressed as,

a2i,t =
P0

1 + dαi,t
(2.3)

where P0 denotes the signal power of the target, α is the signal decay exponent. di,t is the
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distance between the target and the ith sensor, di,t =
√

(xi − xt)2 + (yi − yt)2, where (xi, yi)

are the coordinates of the ith sensor. Without loss of generality, in this part, we select α = 2.

At time step t, the received signal at sensor i is given by

zi,t = ai,t + ni,t (2.4)

where ni,t is the measurement noise term modeled as additive white Gaussian noise (AWGN),

i.e., ni,t ∼ N (0, σ2), which represents the cumulative effects of sensor background noise and

the modeling error of signal parameters.

2.1.2. Generation of Sensor Decisions

A sensor measurement zi,t at sensor i is locally binary quantized before its transmission to the

fusion center. Let Di,t be the 1-bit observation of sensor i at time step t, then

Di,t =

 0 −∞ < zi,t < ηi,t

1 ηi,t < zi,t <∞
(2.5)

ηt , [η1,t η2,t . . . ηN,t] represents the vector of sensor decision thresholds at time step t.

Given xt, it is easy to show that the probability of quantization output 1 is,

P (Di,t = 1|xt) = Q

(
ηi,t − ai,t

σ

)
(2.6)

where Q(.) is the complementary distribution function of the standard Gaussian distribution

with zero mean and unit variance,

Q(x) =

∫ ∞
x

1√
2π

exp

(
−t

2

2

)
dt (2.7)
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2.2. PARTICLE FILTERING

Accurate estimation of the state of a system that changes over time using a sequence of noisy

measurements made on the system is required to handle a target tracking problem. Kalman

filter solves Bayesian sequential estimation problem for linear and Gaussian systems. Also

the extended Kalman filter fails for nonlinear systems when the sensor measurements are

quantized [1]. However, the particle-filtering techniques appear quite appropriate for dealing

with this kind of problem. Particle filtering is a general Monte Carlo (sampling) method for

performing inference in state space models where the state of a system evolves in time and

information about the state is obtained via noisy measurements made at each time step [2].

Let Di,t the 1-bit observation of sensor i at time step t, as the received sensors measurements

at time t. We can find the discrete representation of the posterior distribution p(xt+1|Di,t)

using a set of particles xst with related weights ws{s = 1, 2, ...Ns} . The posterior distribution

function at time t can be written approximately as,

p(xt+1|Di,t) ≈
Ns∑
s=1

wsδ
(
xt+1 − xst+1

)
(2.8)

The weight wst+1 of particle xst+1 can be obtained as,

wst+1 ≈ p(Di,t|xst+1) (2.9)

The particle weights are normalized as,

wst+1 =
wst+1∑Ns

j=1w
j
t+1

(2.10)

At the end, the state estimation of target at time step t+ 1 is given as,

x̂t+1 =
Ns∑
s=1

wst+1x
s
t+1 (2.11)
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2.3. INFORMATION METRICS FOR BINARY QUANTIZER DESIGN

In this section, we review the metrics to determine the decision thresholds of local sensors.

In this section, we present information theoretic and estimation theoretic metrics and their

approximations for binary quantizer design. In this part, derivations of information metrics

are only based on ideal channels in which transmitted quantized sensor measurements Dt+1

are taken as same at fusion center. We find derivations of information metrics in Chapter 5 for

considering impairments of the wireless channel.

2.3.1. Mutual Information

At each time step of tracking, fusion center determines the vector of sensor decision thresholds

ηt+1 which maximize the mutual information for the next time step of tracking I(xt+1,Dt+1)

between the received sensor decisions, and the location of the target. The mutual information

is computed from,

I(xt+1,Dt+1) = H(Dt+1)−H(Dt+1|xt+1) (2.12)

where H(Dt+1) is the entropy of Dt+1 and H(Dt+1|xt+1) is the conditional entropy of Dt+1

given the target location xt+1. Firstly, H(Dt+1) is computed from,

H(Dt+1) = −
∑
Dt+1

P (Dt+1) log2 P (Dt+1)

= −
1∑

d1=0

. . .

1∑
dN=0

P (D1,t+1 = d1, . . . , DN,t+1 = dN)

× log2 P (D1,t+1 = d1, . . . , DN,t+1 = dN) (2.13)
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where

P (D1,t+1 = d1, . . . , DN,t+1 = dN)

=

∫
P (D1,t+1 = d1, . . . , DN,t+1 = dN |xt+1)p(xt+1)dxt+1

=

∫ ( N∏
i=1

P (Di,t+1 = di|xt+1)

)
p(xt+1)dxt+1 (2.14)

Using the particle filter approximation of p(xt+1) ≈ p(xt+1|Dt), P (D1,t+1 =

d1, . . . , DN,t+1 = dN) is approximated by

P (D1,t+1 = d1, . . . , DN,t+1 = dN) ≈
Ns∑
s=1

wst+1

×

[
N∏
i=1

(
1∑

di=0

P (Di,t+1 = di)P (Di,t+1 = di|xst+1)

)]
(2.15)
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Secondly, the conditional entropy H(Dt+1|xt+1) is computed as,

H(Dt+1|xt+1) = −
∫
xt+1

∑
Dt+1

p(Dt+1,xt+1) log2 p(Dt+1|xt+1)dxt+1

= −
∫
xt+1

∑
Dt+1

[p(Dt+1|xt+1) log2 p(Dt+1|xt+1)] p(xt+1)dxt+1

= −
∫
xt+1

1∑
d1=0

. . .

1∑
dN=0

[(
N∏
i=1

P (Di,t+1 = di|xt+1)

)

log2

(
N∏
i=1

P (Di,t+1 = di|xt+1)

)]
p(xt+1)dxt+1

= −
∫
xt+1

N∑
i=1

1∑
di=0

[P (Di,t+1 = di|xt+1) log2 P (Di,t+1 = di|xt+1)]

p(xt+1)dxt+1 (2.16)

2.3.2. Fisher Information

For a Bayesian estimator, Posterior Cramer Rao Lower Bound (PCRLB) provides the

theoretical performance limit. Let p(Dt+1,xt+1) be the joint probability density of the

received sensor data, Dt+1, and the unknown state, xt+1, then we define x̂t+1 is the estimate

of xt+1 based on Dt+1 for time step t+ 1. Although the PCRLB is an off-line metric, since it

is computed by averaging all the sensor measurements, Conditional PCRLB (C-PCRLB) is a

very useful online sensor management metric, since it provides an error bound for the given

sequence of sensor measurements [39]. In this thesis, by using sensor data received at time

step t, Dt, we utilize the Conditional FIM, which is the inverse of C-PCRLB, to determine

the best sensor management strategy for time step t+ 1. In other words, at time step t, we

find the optimal way of allocating available resources to maximize the Conditional Fisher

Information, Jt+1. Jt+1 which has the form,
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E
{
[x̂t+1 − xt+1][x̂t+1 − xt+1]

T
}
≥ J−1t+1 (2.17)

where Jt+1 is the 4× 4 Fisher information matrix (FIM) defined by,

Jt+1 , Ep(xt+1,Dt+1)

[
−∇xt+1

xt+1
log p (xt+1,Dt+1)

]
= −

∫
xt+1

∑
Dt+1

P (Dt+1|xt+1)
[
−∇xt+1

xt+1
logP (Dt+1|xt+1)

]
p(xt+1)dxt+1︸ ︷︷ ︸

,JD
t+1

−
∫
xt+1

[
−∇xt+1

xt+1
log p (xt+1)

]
p(xt+1)dxt+1︸ ︷︷ ︸

,JP
t+1

(2.18)

where Jt+1 can be decomposed into data part, JDt+1 and prior part, JPt+1. Data part of the

Fisher Information can be further written as,

JDt+1 = −
∫
xt+1

1∑
d1=0

. . .
1∑

dN=0

(
N∏
i=1

P (Di,t+1 = di|xt+1)

)[
−∇xt+1

xt+1
log

(
N∏
i=1

P (Di,t+1 = di|xt+1)

)]
p(xt+1)dxt+1

=
N∑
i=1

{
−
∫
xt+1

1∑
di=0

P (Di,t+1 = di|xt+1)
[
−∇xt+1

xt+1
logP (Di,t+1 = di|xt+1)

]

×p(xt+1)dxt+1

}
(2.19)
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where JDt+1 is equal to sum of each sensors contribution to the Fisher Information, JDi,t+1.

Using the properties given in [11], JDi,t+1 can be written as,

JDi,t+1 =

∫
xt+1

1∑
di=0

1

P (Di,t+1 = di|xt+1)

(
∂

∂xt+1

P (Di,t+1 = di|xt+1)

)2

×p(xt+1)dxt+1 (2.20)

where detailed derivation of ∂
∂xt+1

P (Di,t+1 = di|xt+1) is given in [3]. Using the particle filter

approximation JDi,t+1 is approximated by

JDi,t+1 ≈

NS∑
s=1

1

NS

{
1∑

di=0

1

P (Di,t+1 = di|xst+1)

(
∂

∂xt+1

P (Di,t+1 = di|xst+1)

)2
}

(2.21)

In summary, Jt+1 is written as,

Jt+1 = JDt+1 + JPt+1

=
N∑
i=1

JDi,t+1 + JPt+1 (2.22)

Since we model p(xt+1|D1:t) by a set of particles with associated weights, it becomes very

difficult to calculate the exact JPt+1. Instead, we use a Gaussian approximation such that

p(xt+1|D1:t) ≈ N (µt+1,Σt+1), where

µt+1 ,
1

Ns

Ns∑
s=1

xst+1 (2.23)

and

Σt+1 ,
1

Ns

Ns∑
s=1

(xst+1 − µt+1)(x
s
t+1 − µt+1)

T (2.24)
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Given the Gaussian approximation, it is easy to show that JPt+1 = (Σt+1)
−1.

2.4. MULTIOBJECTIVE OPTIMIZATION

In this section, we first review the fundamentals of multiobjective optimization, then

we summarize Normal Boundary Intersection (NBI) method to solve the multiobjective

optimization problem. The mathematical description of a multiobjective optimization problem

can be stated as follows:

min
χ∈C

[f1(χ) f2(χ) ...fn(χ)]
T (2.25)

where χ is a solution to the MOP. The number of objectives n ≥ 2 and the feasible set C,

C : {χ : h(χ) = 0, g(χ) ≤ 0, a ≤ χ ≤ b} (2.26)

is subject to the equality and inequality constraints denoted as h(χ) and g(χ) respectively, and

explicit variable bounds [a, b]. In a minimization problem, a solution χ1 dominates another

solution χ2 (χ1 � χ2) if and only if

fu(χ1) ≤ fu(χ2) ∀u ∈ {1, 2, .., n}

fv(χ1) < fv(χ2) ∃v ∈ {1, 2, .., n} (2.27)

and a solution χ∗ is the Pareto optimal solution for the MOP if and only if there is no χ ∈ C

that dominates χ∗. Pareto optimal points are also known as non-dominated points. A well

known technique for solving MOPs is to minimize a weighted sum of the objectives. As

shown in [40], minimizing the weighted sum of the objectives suffers from several drawbacks.

First of all, a uniform spread of weights rarely produces a uniform spread of points on the

Pareto front. Some of the optimal design solutions are closely spaced, which reduce the

number of design alternatives. Secondly, if the Pareto optimal curve is not a convex function,

the Pareto points on the concave parts of the actual Pareto optimal curve will be missed.
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Moreover, since it is up to the user to choose appropriate weights, decision on the preferences

may not be clear to the user until the solution is generated.

2.4.1. NBI

The NBI is a computationally efficient method in locating the Pareto optimal points. The NBI

method [41] reduces the MOP to multiple number of single-objective constrained problems,

called NBI subproblems. This method starts with finding the optimizers of each objective

function separately. For the two-objective example illustrated in Figure 2.4.1 [42], the shaded

area represents the region of feasible design and the curve at the lower boundary is the Pareto

optimal front. The convex hull of individual minima (CHIM) is defined as the line segment

AB. Any NBI problem is then specified by a reference point on the CHIM such as the point H.

Let χ∗j be the minimizer of the jth objective and F ∗j = F (χ∗j) = [f1(χ
∗
j)...fn(χ

∗
j)]

T , F ∗ is the

shadow minimum which consists of individual minima of objectives, the payoff matrix Φ, is

an n× n matrix whose jth column is F ∗j − F ∗. Φβ then denotes the reference point H, and

each NBI subproblem is defined as,

max
χ,τ

τ

s.t. Φβ + τv = F (χ)

h(χ) = 0; g(χ) ≤ 0; a ≤ χ ≤ b (2.28)

The length of the line segment HP, τ , represents the new variable introduced by the NBI

subproblem. The new constraint given the NBI subproblem ensures that the point lies inside

the feasible set C. The number of NBI subproblems determines the resolution of the Pareto

front. Clearly larger values for this parameter imply a better resolution of the Pareto front.

If the Pareto set is disconnected, it is concluded that some of the subproblems have no

solution [41]. Each NBI subproblem can be solved with any appropriate optimization method.
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Figure 2.2. The point P is the solution of the single-objective constrained NBI subproblem
outlined with the dashed line v

2.4.2. NSGA-II

Non-Dominating sorting genetic algorithm-II (NSGA-II) is an elitist multiobjective

evolutionary algorithm which keep best individuals in the population. NSGA-II requires

non-dominated solutions in each front and rate them according to their rank and crowding

distance values [43].

As seen in Figure 2.3, parents Pt and offspring populations Qt with size of N are represented

as one population Rt which is sorted based on non-dominated sorting process. Non-dominated

sorting find non-dominated fronts F sets. Solutions which are not dominated by any other

solutions are assigned to first rank (or fitness). Dominated solutions are deleted from the

populations until all non-dominated solutions have their rank level. For example, F1 is

best front. Then, best F sets are transferred to crowded comparison operator. Solutions are

compared according to theirs rank and crowding distance values in crowded comparison

operator part. Operator, firstly, prefer solution which has the lower rank. If the ranks of two

solutions are same, algorithm select the solution that has higher crowding distance (distance

between adjacent solutions). At the end, new populations of Pt + 1 are used to make new
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Figure 2.3. A framework of NSGA-II algorithm

generation of offsprings Qt + 1 and the steps are repeated to find Pareto-optimal front as

shown in Figure 2.4.
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Figure 2.4. Obtaining Pareto optimal front by NSGA-II
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3. ADAPTIVE BINARY QUANTIZER DESIGN WITH MOP

In this chapter, we solve the adaptive binary quantizer design problem in target tracking

using multiobjective optimization. We jointly maximize the trace of the Fisher Information

matrix for minimizing the error in estimation and minimize the sum of sensor transmission

probabilities. We solve the multiobjective problem using NBI method and simulation results

show that NBI provides computationally very efficient results as compared to NSGA-II with

good tracking performance while significantly reducing the average number of transmitting

sensors to the fusion center.

3.1. FUSION OF SENSOR DECISIONS UNDER IDEAL CHANNELS

Let the fusion center receive the data vector Dt = [D1,t, . . . , DN,t] from the N sensors, then

p(Dt|xt) =
N∏
i=1

p(Di,t|xt) (3.1)

Based on the received sensor decisions, the MMSE estimate of the target location is obtained

as,

x̂t =

∫
xtp(xt|Dt)dxt (3.2)

Here p(xt|Dt) represents the posterior PDF of the target location upon the reception of sensor

decisions at time t. As a result of Bayes rule p(xt|Dt) ∝ P (Dt|xt)p(xt). p(xt) ≈ p(xt|Dt−1)

is the prior probability of target location that is the probability distribution of xt upon the

reception of sensor decisions Dt−1. We compute Eqn. 3.2 numerically using the sequential

importance resampling (SIR) based Particle Filtering method as described in Algorithm 3.1.

For tracking the target emitting energy, we use a sequential importance resampling (SIR) based

Particle Filtering method as shown in Algorithm 3.1. For the propagation step of the algorithm,

we determine the vector of decision thresholds ηt using Multiobjective optimization. After the
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fusion center receives the binary sensor measurements from N sensors, the particle weights

are updated and the target location is estimated for t+1. Furthermore, resampling step avoids

the situation that all but one of the importance weights are close to zero [44].

p(xt|Dt) ≈
Ns∑
s=1

wst δ(xt − xst) (3.3)

where Ns is the total number of particles, and wst = 1/Ns. Then, xst+1’s are obtained by

propagating xst using Eqn. 2.1 to obtain the prior

p(xt+1|Dt) ≈
1

Ns

Ns∑
s=1

δ(xt+1 − xst+1) (3.4)

Algorithm 3.1. SIR based Particle Filtering with MOP for Target Tracking

Set t = 0. Generate initial particles xs0 ∼ p(x0) with ∀s , ws0 = N−1s .
while t ≤ TS do

Propagate particles xst+1 = Fxst +υt and p(xt+1|Dt) =
1
Ns

∑Ns

s=1 δ(xt+1−xst+1).
Decide sensor decision thresholds using Multiobjective Optimization.
Get binary sensor measurements, wst+1 ∝ p(Dt+1|xst+1). (Updating weights)
wst+1 =

ws
t+1∑Ns

j=1 w
j
t+1

. (Normalizing weights)

x̂t+1 =
∑Ns

s=1w
s
t+1x

s
t+1. (State estimation)

{xst+1, N
−1
s } = Resampling(xst+1, w

s
t+1)

t = t+ 1

end while

3.2. OBJECTIVE FUNCTIONS

Here, we consider joint optimization of two objective functions. By considering the

first objective function, we desire to reduce the estimation error in target tracking and

by considering the second objective function, we desire to minimize the total number of

sensors reporting to the fusion center. Note that the objective functions are conflicting where

minimizing the total number of sensors reporting to the fusion center increases the estimation

error.
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3.2.1. Objective Function 1: Trace of FIM

Since C-PCRLB is the lower bound on the estimation error, minimizing the lower bound

Tr
{
J−1t+1

}
also minimizes the error in estimation. Similarly, under Gaussian assumption,

maximizing the determinant of the FIM, det (Jt+1), is equivalent to minimizing the volume

of the uncertainty ellipsoid [45]. These two metrics are quite popular in sensor management

problems. Furthermore, the inverse of Tr {Jt+1} is further a lower bound on Tr
{
J−1t+1

}
[46]. It

is also shown in [14], [47] that maximizing Tr {Jt+1}maximizes the FIM in a positive definite

sense. Despite maximizing Tr {Jt+1} yields suboptimality 1 relative to minimizing Tr
{
J−1t+1

}
or maximizing det (Jt+1), evaluation of Tr {Jt+1} significantly reduces the computation

time of the objective function due to its simple form. Therefore, in this part, we maximize

Tr {Jt+1} for sensor management as,

min
ηt+1

f1(ηt+1) = −Tr {Jt+1} (3.5)

= −
N∑
i=1

Tr
{
JDi,t+1

}

The vector of decision thresholds ηt+1 minimizing −Tr {Jt+1} can be easily obtained by

using line-search. Since the total FIM is the sum of each sensors individual FIM, the line-

search minimizing −Tr {Jt+1} becomes decoupled at each sensor.

3.2.2. Objective Function 2: Sum of Sensor Transmission Probabilities

In this part, we assumed an ON-OFF strategy, that is, if Di,t = 1, the sensor reports to the

fusion center, otherwise it stays silent. Then, energy conservation of sensor is realized by

forcing the ON probability (sensor transmission probability) p(Di,t+1 = 1) to zero. Then, the

second objective function, f2(ηt+1), the sum of sensor transmission probabilities reduces the

1Let J be a n×n real symmetric FIM whose diagonal entries are equal to its eigenvalues (λ1, . . . , λn) where
Tr{J} =

∑n
j=1 λj . Maximization of Tr{J} does not guarantee the minimization of Tr{J−1} =

∑n
j=1 λ

−1
j or

maximization of det{J} =
∏n

j=1 λj .
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number of sensors transmitting to the fusion center as,

min
ηt+1

f2(ηt+1) =
N∑
i=1

p(Di,t+1 = 1) (3.6)

where p(Di,t+1 = 1) = p(zi,t+1 > ηi,t+1) and

N∑
i=1

p(zi,t+1 > ηi,t+1)

=

∫ { N∑
i=1

p(zi,t+1 > ηi,t+1|xt+1)

}
p(xt+1|D1:t)dxt+1

≈ 1

NS

NS∑
s=1

{
N∑
i=1

p(zi,t+1 > ηi,t+1|xst+1)

}
(3.7)

The vector of decision thresholds ηt+1 minimizing f2(ηt+1) as
∑N

i=1 p(zi,t+1 > ηi,t+1) ≈ 0

can be easily obtained by setting ηt+1 = ηUB where ηUB is the vector of upper bounds on

the decision thresholds.

For the Multiobjective optimization problem considered in this part, we set χ = ηt+1. We

have selected the resolution of the NBI as 10. That is we have obtained 9 Pareto-optimal

solutions between the two conflicting objectives. Each NBI subproblem given in Eqn. 2.28 is

solved by using Matlab’s ”fmincon” optimization routine. For an arbitrary target trajectory,

Figure 3.1 shows the Pareto-optimal front between f1(ηt+1) and f2(ηt+1) at time t = 1. Since

we do not know the actual Pareto-front, we also obtained the Pareto-Optimal front using a

multiobjective evolutionary algorithm called Non-dominated Sorting Genetic Algorithm - II

(NSGA-II) as well [43]. Simulation results in Matlab, show that both algorithms yield the

similar Pareto-optimal front. Note that the performance of NSGA-II heavily depends on the

population size, crossover and mutation probabilities. On a 3.6 GHz computer with 8 GB

RAM, for NBI and NSGA-II, the entire Pareto-optimal front shown in Figure 3.1 are obtained

in 17 and 214 seconds, respectively. Note that for real-time implementation, evaluation of the

Pareto-optimal front should be less than the sampling interval ∆. The processing time for the
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optimization of Eqn. 2.28 can be significantly reduced using advanced solvers.
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Figure 3.1. Pareto optimal front obtained with NBI and NSGA-II at time step t = 1. For
NSGA-II we used population size 200, crossover parameter 5, mutation parameter 5, and the

Pareto-optimal front is shown after 100 generations.

Having obtained the Pareto-optimal front between f1(ηt+1) and f2(ηt+1), we should decide

on a solution on the Pareto optimal front. We call the solution which maximizes the trace of

FIM as Solution 1. We call the solution which achieves at least 99% of the maximum trace

of the FIM as Solution 2, and finally we call the solution which has the nearest Euclidean

distance to the shadow minimum of the problem as Solution 3. Solution 3 has been shown as

a useful trade-off solution for the multiobjective optimization problem given in [48].

3.3. NUMERICAL RESULTS

We consider N = 9 sensors, which are uniformly deployed in an area of size 20m×20m. The

target has power P0 = 1000. We select the process noise parameter as ρ = 2.5× 10−3. The

target is sampled at every ∆ = 0.5 seconds. The measurement noise variance is selected as

σ2 = 1. The minimum and the maximum values of the sensor decision threshold are selected

as 0 and 20 respectively. In our simulations, we track the target for 20 time steps (10 seconds)
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in Ttrials = 200 different trials (target trajectories).
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Figure 3.2. MSE at each time step of tracking

Figure 3.2 shows the sum of mean squared error on X and Y axes at each time step of

tracking. In Figure 3.2, we obtain Solution 1 by both minimizing Tr
{
J−1t+1

}
and maximizing

Tr {Jt+1}. In terms of MSE, simulation results show that maximizing Tr {Jt+1} causes little

suboptimality instead of minimizing Tr
{
J−1t+1

}
. Figure 3.2 also shows that the MSE of target

tracking obtained by using Solution 1 and Solution 2 are similar since they both achieve

similar Fisher Information as shown in Figure 3.1. The Fisher Information of Solution 3 is

relatively less than those of Solution 1 and Solution 2, so the MSE of Solution 3 is worse than

MSEs of Solution 1 and Solution 2.

Figure 3.3 shows the average Number of sensors transmitting to the fusion center at each

time step of tracking. Simulation results in Figure 3.3 show that while using Solution 1,

during the entire observation period on the average around 4.5 sensors (half of the sensors)

are transmitting at each step of tracking. On the other hand when we use Solution 2, the

number of sensors transmitting to the fusion center becomes a function of the target location

as well. Note that at around time step t = 8 (4th second), the target is close to sensor 5

located at the origin, so very few sensors are reporting to the fusion center due to reduced



28

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (Sec.)

N
um

be
r 

of
 T

ra
ns

m
itt

in
g 

S
en

so
rs

 

 

Solution 1−min tr(J−1)
Solution 1−max tr(J)
Solution 2
Solution 3

Figure 3.3. Average number of sensors transmitting to the Fusion Center at each time step of
tracking

uncertainty. Around time step t = 14 (7th second), the target is in between sensors 5, 6, 8,

and 9. Due to the increased uncertainty, on the average 3 sensors report to the fusion center.

Finally, when the target approaches sensor 9, sensor 9 becomes informative, the uncertainty

on target location decreases, and the average number of sensors transmitting to the fusion

center also decreases. Using Solution 3, only few sensors transmit to the fusion center during

the entire time steps of tracking. Hence, Solution 2 becomes a good trade-off solution jointly

minimizing the estimation error and the total number of transmitting sensors.

Finally, Figure 3.4 shows illustrative sensor locations and the target trajectory sampled up

to time step t = 8. Figure 3.4 (a) shows the values of sensor decision thresholds at t = 8

when Solution 1 is selected from the Pareto-optimal front and Figure 3.4-(b) shows the values

of sensor decision thresholds at t = 8 when Solution 2 is selected from the Pareto-optimal

front. As can be seen from the figures, the sensor near the actual target location is assigned a

relatively higher threshold value as discussed in [12]. On the other hand, if we use Solution

1, the sensors which are relatively far away from the target are assigned a small decision

threshold. Since such sensors may carry negligible information about the target location,
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Solution 2 increases the decision thresholds of these sensors and they are forced to stay silent.

3.4. DISCUSSIONS

In this part, we solve the adaptive binary quantization design problem for local sensors by

using a MOP. The trade-off solutions between maximum Fisher Information solution and

minimum sums of transmission probabilities are obtained by using computationally efficient

NBI method. By using MOP, we can obtain solutions which increase the thresholds of the

sensors that are far away from the target. Increasing the thresholds of such sensors has small

effect on estimation but significantly reduces the average number of sensors transmitting to

the fusion center at each time step of tracking.
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4. ENERGY AWARE DATA TRANSMISSION OF SENSOR

DECISIONS

Since a WSN is composed of energy limited sensor nodes, excessive energy consumption

needs to be mitigated in order to enhance the durability of network. In [27], it is stated that as

the number of hops between sensor and destination node increases more energy consumption

occurs in WSN as compared to single-hop while considering energy dissipations in hardware.

Moreover, in [25], the proposed clustering work for energy efficient wireless micro-sensor

networks show that solely single-hop or multi-hop transmissions are not energy efficient for

energy constrained nodes. In direct transmission (single-hop), sensors need high transmit

power to transmit their measurements to the destination node due to long distances. Thus, this

leads to quick run out of sensors batteries. In multi-hop transmission, sensor measurements

need to be transmitted over multiple relays to reach FC. Considering transmitting and receiving

circuit electronic energy consumption, the sensors which are closer to FC die out quickly due

to huge amount of data arrive from dependent sensor nodes. Thus, clustering based 2-hop

data transmission become more preferable for energy efficiency. In clustering method, there

is a cluster head for each group of sensors. Sensors in each group send their measurements

to the corresponding cluster head for transmission to the FC. Nevertheless, transmitting to

destination node via cluster head may not be the best energy efficient way in every case due

to extra energy burden on CHs. In this chapter, thus, we prefer a minimum transmission

energy path (MTEP) for target tracking between sensors and FC to get rid of the drawbacks

of single-hop and 2-hop transmission. In this chapter, we consider an illustrative of WSN

to determine drawbacks and benefits of single-hop and cluster based 2-hop transmission. In

addition, MTEP based transmission with MOP which has been proposed in previous chapter

is considered to reduce further the overall energy consumption of the network by preventing

redundant energy consumption in CHs.



32

4.1. SELECTION OF DATA TRANSMISSION PATH

There are two scenarios that sensor can forward their measurements to the destination

node. One way is to direct communication with fusion center without any intermediate

relays. Other path is to transmit information over one relay (2-hop) or through multiple

intermediates nodes(multi-hop) to reach fusion center. In both cases, single-hop and 2-hop,

energy consumption in each path need to be calculated to decide which path consumes less

energy. In this chapter, we only consider 2-hop and single-hop data transmissions.

Figure 4.1. Transmission path in 2-hop and Single-hop

4.1.1. Data Transmission under Single-hop Links

In Figure 4.1, a sensor node either transmits its data to its cluster head for forwarding to the

fusion center (FC) or send directly to FC. There are two cases we can consider in order to

make a comparison between single-hop and 2-hop. We need to calculate energy consumption

under single-hop when energy dissipations in hardware of a node during transmission as
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shown in Figure 4.2.

Figure 4.2. Energy consumption steps during single-hop transmission

Thus, required energy for transmitting m− bit from a sensor node to FC can be expressed as,

ET (m, ds,FC) = ETcircuit ×m+ εamp ×m× d23 (4.1)

4.1.2. Data Transmission under 2-hop Links

As regards 2-hop transmission, a sensor observation is transmitted to FC through a

intermediate node as shown in Figure 4.1. Figure 4.3 show energy dissipation steps for

transmission m− bit observation of a sensor node to FC through a cluster head. Thus, energy

required for transmitting m− bit can be expressed as,

ET (m, di,j) = ETcircuit ×m+ εamp ×m× d2i,j (4.2)

where di,j is the distance between transmitter sensor node and receiver sensor node. Energy

required for m bit data to be received accurately at sensor jth node is given by

ER,j(m) = ERcircuit ×m (4.3)
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Figure 4.3. Energy consumption steps during 2-hop transmission

Required energy for transmitting m− bit to FC through a relay node as shown in Figure 4.1

would be depend on both Eqn. 4.2 and Eqn. 4.3. Therefore, energy dissipation under 2-hop

transmission is expressed as,

ET (m, ds,FC) = {ET (m, ds,CH) + ER,j(m) + ET (m, dCH,FC)}

= m× (3× Ecircuit + εamp × (d21 + d22)) (4.4)

Taking into consideration of circuit energy, 2-hop transmission can become more efficient

only if Eqn. 4.1 is greater than Eqn. 4.4. Thus, this inequality can be concluded according to

distance shown in Figure 4.1 as,

(d23 − (d21 + d22)) >
2× Ecircuit

εamp
(4.5)
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According to that, 2-hop transmission requires less energy only if distance from a sensor node

to FC suppresses total circuit energy consumption.

4.1.3. MTEP based Data Transmission

In previous part, we show that required energy for transmitting sensor observations basically

depend on which parameters in both single-hop and 2-hop links and under which conditions

they can become more energy efficient for overall network. Here, we consider MTEP in

which sensor data requires less energy than using solely single-hop or 2-hop transmission.
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Figure 4.4. A WSN example with 4 clusters (N=100 randomly deployed sensors)

Figure 4.4 shows the considered network which has 100 sensors deployed randomly in an

area with a size of 100 × 100. Sensors are divided into 4 clusters where one fixed sensor

are selected as cluster head. Fusion center (FC) is located out of this area with a 50 m

away from nearest sensor node. We find CH nodes by using K-means clustering algorithm.

K-means clustering firstly find centroids of K clusters and then groups the sensors according

to minimum distance to the centroids [49]. Since there may not be a sensor node at centroid
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location, we select nearest sensor node to its centroid as CH. The considered system make a

comparison as given in Eqn. 4.5 between direct (single-hop) and 2-hop transmission in terms

of required energy for each sensors data to reach to FC. Based on required energy, each sensor

observation is transmitted to over minimum energy path. The aim is to minimize overall

energy consumption of network by preventing unnecessary data load on cluster heads that

leads more circuit energy consumption as well as overload communication traffics. By this

way, sensors closest to fusion center more than cluster heads would sooner transmitting theirs

observations to the destination node over single-hop links. On the other hand, sensors that

would more exposure path loss in case of direct transmission to destination node prioritize

2-hop transmission with theirs corresponding cluster heads.

4.1.4. Numerical Results

In this simulation, we do not consider target tracking and we only assume each sensor send

its local decision in every second of 20 seconds to the FC. Figure 4.4 shows network topology

of sensors deployments in each cluster. In this part, we also assume that sensor nodes become

cluster head in order according to minimum distance to central node. By this way we aim to

reduce energy burden on fixed CHs. T.

Algorithm 4.1. MTEP based data transmission

Let t = 1

while t ≤ T do
Calculate required energy for each sensors’ data to reach FC under single-hop and
2-hop transmission
if E2−hop < Eshop then

Select 2-hop transmission
else

Decide Single-hop transmission
end if

end while
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Figure 4.5. Total energy consumption of network at each second with varying CHs

Figure 4.5 shows total energy consumptions of network which are estimated in case of

single-hop, 2-hop and MTEP transmissions in every second. As seen in Figure 4.5, energy

requirement under single-hop remain constant due to that sensors transmit with fixed distances

to FC each time step of tracking. Total energy consumption of network under 2-hop

transmission varies because CH nodes changes in every second. On the other hand, the

MTEP that follow minimum required energy path to reach FC consumes less energy than

both solely single-hop and 2-hop transmissions at each second. This is because, MTEP based

transmission compares required energy using single-hop and 2-hop for transmitting each

observation of a sensor to FC as expressed Algorithm 4.1. Thus, each sensor decision follow

either single-hop or 2-hop path based on total energy consumption until data reach destination

node.

Nevertheless, in Figure 4.6, energy consumption of each sensor are presented under single-

hop, 2-hop transmission and MTEP with fixed CH. It can be seen that majority of sensors

except CH nodes use less energy in 2-hop and MTEP than single-hop transmission. In

single-hop transmission, each sensor communicates with FC directly which leads high energy
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Figure 4.6. Energy consumption of each sensor in both three cases with fixed CHs (1: MTEP,
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consumption in sensor nodes as much clearly seen in Figure 4.7.

However, in 2-hop transmission, sensors send theirs observations to their corresponded CH

that results in less energy consumption in these sensor nodes than directly transmitting to FC.

Nevertheless, under 2-hop transmission as shown in Figure 4.8, too much energy consumption

occurs in CH nodes due to receiving and transmitting energy consumption for data coming

from sensor nodes in cluster. Especially CHs which are away from the FC consume more

energy to transmit measurements of sensor nodes in clusters.

On the other hand, massive energy consumption in CH nodes under 2-hop are halved as seen

clearly in Figure 4.9 with MTEP transmission while maintaining less energy dissipation in

other sensors as compared to single-hop.

Although MTEP transmission reduce the overall energy consumption of network as compared

to single-hop and 2-hop, energy consumption in CHs is still high despite much less burden on

CHs than 2-hop transmission. Thus, in next section we consider energy consumption under
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Figure 4.9. Energy consumption of each sensor under MTEP for fixed CHs

single-hop and MTEP on a sample of WSN by applying MOP method as applied in Chapter 3.

4.2. SENSOR DECISIONS WITH MOP UNDER MTEP

In the previous section, we determine under which cases data transmission in 2-hop or single-

hop can be favourable based on energy requirements. In this section, we apply MOP method

to minimize energy consumption by forcing less informative sensors silent under single-hop

and MTEP transmission. Thus, less energy consumption occurs in both sensor nodes and

CHs by preventing unnecessary transmissions. Our aim is to reduce overall network energy

consumption while maintaining high estimation performance.

4.2.1. Objective Functions

Here, we consider two objective functions under MTEP transmission. Although the first

objective function is same as in Section 3.2.1, we differently consider energy consumption of

sensor nodes as second objective.
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4.2.1.1. Objective Function 1: Trace of FIM

In this part, we use same objective function as defined in Section 3.2.1.

4.2.1.2. Objective Function 2: Total energy consumption in WSN

By considering energy consumption transmission and receiving of any m-bit sensor

measurement in Eqn. 4.2 and Eqn. 4.3, Eqn. 3.6 turns into

min
ηt+1

f2(ηt+1) =
N∑
i=1

Ei,FC × p(Di,t+1 = 1) (4.6)

where Ei,FC is the required energy for transmitting from ith sensor node to FC under single-

hop or 2-hop.

In this study, transmitter and receiver circuit energy are taken as ERcircuit = ETcircuit =

Ecircuit= 50nJ and εamp = 0.1nJ [25]. Let m = 1 in Eqn. 4.2 and Eqn. 4.3 due to that we

assume binary quantization in this work.

4.2.1.3. Energy Consumption under MTEP with MOP

In Figure 4.10, N=25 sensors are deployed regularly in an area of 100× 100 and the center

node are assumed as FC. Each sensor sends its binary decisions to the nearest CH node for

transmission to the FC. In this deployment, each sensor observation is transmitted to FC

according to the MTEP. Under such sensor and FC deployments, MTEP every time select

2-hop due to that CHs are closest to FC than the other sensors, so none of them use single-hop

due to much energy consumption.

In Figure 4.10 the sensors are divided into three groups as; primary (pink), secondary (red)

and central (green). Secondary sensor nodes are also called as CH. 2-hop transmissions are

in the flow direction to FC. Primary sensors send their quantized measurements taken from

target to the corresponded cluster head nodes which are responsible for both transmitting
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Figure 4.10. MTEP transmission tree (Red arrows:1st hop, Blue arrows:2nd hop (N=25))

their own measurements and primary sensor measurements to the FC. Required energy for

transmitting 1-bit decision of any primary sensor is expressed as,

Ei,FC = ET (1, di,v(i)) + ER,v(i)(1) + ET (1, dv(i),FC) (4.7)

di,v(i) is the distance between ith sensor and its cluster head v(i). ET (1, di,v(i)) is the required

energy for transmitting 1-bit decision of a primary sensor to its cluster head. Cluster head

v(i) needs ER,v(i)(1) energy to receive 1-bit measurement of ith sensor.In addition, cluster

head requires also energy ET (1, di,v(i)) in order to transmit this bit to the FC with a distance

dv(i),FC . On the other side, if a ith sensor is a cluster head required energy turns to

Ei,FC = ET (1, di,FC) (4.8)

As we assume central sensor node is also FC, required energy for transmitting data of central

sensor node to FC are assumed zero.
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4.2.1.4. Energy Consumption under Single-hop Links with MOP

In this part, same sensor deployments are used as shown in Figure 4.10. In contrast, all

sensor send their measurement directly to the FC without any relay nodes under single-hop

transmission. The required energy of each sensor to send its measurement to the FC is depend

on distance between FC and sensor i. Thus, transmission energy of each sensor turns to a

simple form as,

Ei,FC = ET (1, di,FC) (4.9)

4.2.2. Numerical Results

We consider N = 25 sensors, which are uniformly deployed in an area of size 100m100m

as shown in Figure 4.10. Target has a power of P0 = 1000. Process noise is taken as

ρ = 2.5× 10−3. Target are sampled at every ∆ = 2 seconds. Threshold values are varying

from 0 to 20. N = 1000 particles are used for particle filter method. Target is tracked

along 40 seconds for each of its 50 different trajectories. The starting point of the target

trajectory for each trial again is derived from the p(x0) distribution. Let l be number of

trial(l ∈ 1, 2, , T = 50) and t be target steps in each trial, estimated mean square error (MSE)

is calculated as,

MSE(t) =
1

T

T∑
l=1

[
(xlt(1)− x̂lt(1))

2 + (xlt(2)− x̂lt(2))
2
]

(4.10)

where in the lth trial (40 sec. target observation) xt and x̂t are the actual and estimated target

states at sample t respectively.

For an arbitrary target trajectory, Figure 4.11 shows the Pareto-optimal fronts between f1(ηt+1)

and f2(ηt+1) at time t = 1 obtained by NBI method under both single-hop and MTEP. As seen

in Figure 4.11, instead of selecting sensor threshold values that maximizes FI under single-hop

and MTEP transmission, the solution obtained by MOP reduce total energy consumption
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significantly while maintaining almost same FI.

Figure 4.12 show the total mean squared error in the X and Y axes (MSE). Figure 4.12 give a

comparison between sensor threshold values obtained by maximizing Tr {Jt+1} (Solution 1)

and those obtained by MOP method (Solution 2). In additon, MTEP transmission is presented

in Figure 4.12 as using Solution 2. It is clear that all three methods yield nearly similar

estimation performance.

Figure 4.13 shows the average number of sensors transmitting at each time step of tracking.

Simulation results presented in Figure 4.13 give information on number of sensors transmitting

to FC under Solution 1 and Solution 2. Nearly half of the total number of sensors, about

12, are transmitting under single-hop transmission while maximizing Tr
{
J−1t+1

}
(Solution

1). However, number of transmitting sensors vary approximately between 4-7 sensors while

using Solution 2 in both single-hop and MTEP transmission.

Figure 4.14 shows average total energy consumption of T = 50 trials for each step of
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Figure 4.14. Total energy consumption in WSN

target tracking during transmission of sensors measurements in three cases mentioned above.

As shown, total consumed energy of network in Solution 2 which is obtained by applying

MOP becomes much less than that in Solution 1 which is obtained by maximizing Tr {Jt+1}.

Required energy decreases dramatically, because the number of sensors is reduced by applying

MOP as observed in Figure 4.13. Furthermore, consumed energy in MTEP transmission is less

than single-hop transmission as shown in Figure 4.14 while both have nearly same number of

sensors transmitting to FC as shown Figure 4.13(b). Required transmission energy for primary

sensors to transmit their measurements to nearest sensor node(cluster head) decreases due to

reduced distance under 2-hop transmission. Total energy consumption of considered WSN in

Figure 4.10 under MTEP transmission is much less than that under single-hop transmission

even if we consider the circuit energy consumption of cluster head nodes during receiving

and transmitting.
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4.3. DISCUSSIONS

In this part, a MOP is provided for minimizing energy consumption with estimation error

in WSN instead of minimizing sensor probabilities. Simulation results show that, less

energy is consumed for target tracking while estimation performance are similar with sensor

thresholds obtained using MOP. Furthermore, proposed MTEP transmission which is more

energy efficient than single-hop and 2-hop transmission enable sensors that are far away from

target to transmit their measurements with less energy to FC. In addition, overload energy

consumption in CHs are reduced with MOP under MTEP transmission.
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5. TDMA BASED MAC SCHEME FOR TRANSMISSION OF

DECISION UNDER FADING CHANNELS

In previous chapters, we consider perfect channels between sensors and the fusion center for

target tracking, but we assume sensors transmit binary decisions to a distant fusion center over

fading noisy channels in this chapter. Under channel fading and noise, we first determine the

optimal local sensor decision thresholds by first maximizing the mutual information between

received sensor measurements and the target location. We then determine the optimal sensor

thresholds by minimizing the error in estimation by minimizing the trace of the C-PCRLB

matrix. In our formulation, the fusion center employs hard decision decoding and arrive binary

decisions for each sensor transmissions. Different from the channel fading models presented

in [4,32–34] where the transmission error occurs as a function of received signal amplitude, in

our formulation transmission errors becomes a function of each sensor transmission duration.

We employ a person by person optimization method, in order to determine each sensors local

decision threshold. Determining the optimal sensor decision thresholds by maximizing the

mutual information or by minimizing trace of C-PCRLB become computationally costly.

Therefore, we also used two suboptimal metrics to determine the optimal sensor thresholds

where the first one is an upperbound on mutual information (sum of individual sensor mutual

information) and the second one is a lower bound on the trace of C-PCRLB (trace of Fisher

Information Matrix).

5.1. MEDIUM ACCESS MODEL

In this section, we consider sensors have access to the transmission medium in a TDMA

manner as shown in Fig. 5.1. In its allocated time interval, each sensor employs an ON-OFF

Figure 5.1. Time Division Multiple Access
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strategy, and transmits the waveform ϕi,t(n) according to,

ϕi,t(n) =


√
2PT cos (2πf0n) , n ∈ {0, 1, . . . , Sti − 1} if Di,t = 1

0 if Di,t = 0
(5.1)

where PT is the transmit signal power, Sti is the number of samples transmitted from sensor i

at time step t. Note that f0 = fm/fs where fm is the carrier frequency and fs is the sampling

rate, then 0 < f0 < 0.5 . Let ∆t , [∆t
1, ∆

t
2, . . . , ∆

t
N ] be the time allocation vector to all

sensors at time step t. For sensor i, number of samples transmitting the signal ϕi,t(n) is then

expressed as Sti = ∆t
i × fs samples. Here, the total time duration for sensors to transmit their

decisions to fusion center should be less than the time step of tracking,
∑N

i=1∆
t
i ≤ ∆.

In this part, at each time step of tracking, we first consider equal time allocations to all

sensors in the WSN to transmit their measurements to the fusion center, i.e., ∆t
i = ∆/N for

i ∈ {1, 2, . . . , N} and t ∈ {1, 2, . . . , T} where we define T as the total number of time steps

in tracking. Later in the chapter, we propose a proportional time sharing approach where the

informative sensors about the target are given more time to transmit their decisions hence

decreasing their probability of transmission errors.

5.2. WIRELESS CHANNEL EFFECTS

In this section we jointly consider path loss and narrowband multipath fading effects which

distorts the transmitted sensor waveforms. Let ϕ̃i,t(n) represents the signal received from

sensor i at the fusion center. ϕ̃i,t(n) then has the form,

ϕ̃i,t(n) =

 A cos (2πf0n+ φ) + w(n) if Di,t = 1

w(n) if Di,t = 0
(5.2)

Here, w(n) is the zero mean white Gaussian channel noise with variance σ2
w. Under

narrowband fading model, the signal gain A and the phase offset φ are independent random

variables. Phase offsetφ is uniformly distributed between 0 and 2π. The gain A is Rayleigh
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distributed with probability density function (PDF),

p(A) =
2A

PR
exp

(
−A

2

PR

)
(5.3)

PR is the power of the received waveform which is a function of the distance between sensor

and the fusion center. In this section, we consider the simplified path loss model between

sensor i (transmitter) and the fusion center (receiver) as,

PR =
PT

(di,FC)
2 (5.4)

where di,FC represents the distance between sensor i and the fusion center. In this part, we

assume that the fusion center is located far from the sensor field. Then d1,FC ≈ d2,FC ≈

. . . ≈ dN,FC ≈ dFC where dFC represents the distance between sensor field and fusion center.

For the signal received from sensor i, the fusion center employs hard decision decoding to

conclude the decision of sensor i. Upon employing the periodogram receiver [50], under

Rayleigh fading channel, the test statistic for ϕ̃i,t(n), T (ϕ̃i,t) is obtained as,

T (ϕ̃i,t) =
1

Sti

∣∣∣∣∣∣
St
i−1∑
n=0

ϕ̃i,t(n) exp (−j2πf0n)

∣∣∣∣∣∣
2

(5.5)

Then, the probabilities of the received binary decision {0, 1} for the ith sensor is expressed

as [50],

P1|0 , P (Ri,t = 1|Di,t = 0)

= P (T (ϕ̃i,t) > γ|Di,t = 0) = exp

(
− γ

σ2
w

)
(5.6)
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and

P1|1 , P (Ri,t = 1|Di,t = 1)

= P (T (ϕ̃i,t) > γ|Di,t = 1) = exp

(
− γ

Si
(
Pr

4

)
+ σ2

w

)
(5.7)

where γ is the threshold used for signal reception at the fusion center.

Given target location xt, the joint PDF of received sensor decisions Rt = [R1,t, . . . , RN,t] of

N sensors is described as,

P (Rt|xt) =
N∏
i=1

P (Ri,t|xt) (5.8)

where

P (Ri,t = 1|xt) = P1|0P (Di,t = 0|xt) + P1|1P (Di,t = 1|xt)

P (Ri,t = 0|xt) = P0|0P (Di,t = 0|xt) + P0|1P (Di,t = 1|xt) (5.9)

and P0|0 = 1− P1|0, P0|1 = 1− P1|1.

5.3. FUSION OF SENSOR DECISIONS UNDER FADING CHANNELS

Based on the received sensor decisions, the MMSE estimate of the target location is obtained

as,

x̂t =

∫
xtp(xt|Rt)dxt (5.10)

Here p(xt|Rt) represents the posterior PDF of the target location upon the reception of sensor

decisions at time t. As a result of Bayes rule p(xt|Rt) ∝ P (Rt|xt)p(xt). Here, P (Rt|xt) is

computed as defined in (5.8). p(xt) ≈ p(xt|Rt−1) is the prior probability of target location
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that is the probability distribution of xt upon the reception of sensor decisions Rt−1. We

compute (5.10) numerically using the sequential importance resampling (SIR) based Particle

Filtering method as described next.

A SIR based Particle Filtering method as shown in Algorithm 3.1. Here p(xt|Rt) is

approximated by particles xst and their weights wst .

p(xt|Rt) ≈
Ns∑
s=1

wst δ(xt − xst) (5.11)

where Ns is the total number of particles, and wst = 1/Ns. Then, xst+1’s are obtained by

propagating xst using (2.1) to obtain the prior

p(xt+1|Rt) ≈
1

Ns

Ns∑
s=1

δ(xt+1 − xst+1) (5.12)

During the propagation step of the algorithm, we determine the vector of sensor decision

thresholds ηt and time allocations of each sensor ∆t
i’s using p(xt+1|Rt). After the fusion

center receives the binary sensor decisions Rt+1 over erroneous channels with decision error

probabilities P1|0 and P0|1 from N sensors, the particle weights are updated and the target

location is estimated for t+ 1.

5.4. OPTIMIZATION OF SENSOR DECISION THRESHOLDS

At time step t of tracking, the sensor decision thresholds for the next time step of tracking

ηt+1 are obtained according to a Person by person optimization algorithm as follows:
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Algorithm 5.1. Evaluation of the optimal sensor decision thresholds

(1) Let c = 0, N sensor thresholds are initialized by an arbitrary value ηct+1 =

[ηc1,t+1, η
c
2,t+1 . . . η

c
N,t+1] = [1 1 . . . 1].

(2) i = 1

while i ≤ N do
ηc+1
i,t+1 = arg max

η∈{ηmin,ηmax}
Information(ηc+1

1,t+1, η
c+1
2,t+1 . . . η, . . . , η

c
N,t+1).

i = i+ 1.
end while
(3) If ηc+1

t+1 ≈ ηct+1, Stop. Otherwise, set c = c+ 1, and go to the Step (2).

For information maximization, either Mutual Information or Fisher Information can be used.

By considering impairments of the wireless channels, entropy in Eqn. 2.13 for received sensor

decisions Rt = [R1,t, . . . , RN,t] turns to,

H(Rt+1) = −
∑
Rt+1

P (Rt+1) log2 P (Rt+1)

= −
1∑

r1=0

. . .
1∑

rN=0

P (R1,t+1 = r1, . . . , RN,t+1 = rN)

× log2 P (D1,t+1 = r1, . . . , RN,t+1 = rN) (5.13)

where

P (R1,t+1 = r1, . . . , RN,t+1 = rN) ≈
Ns∑
s=1

wst+1

×

[
N∏
i=1

(
1∑

di=0

P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xst+1)

)]
(5.14)
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Secondly, the conditional entropy in Eqn. 5.15 is modified as,

H(Rt+1|xt+1) = −
∫
xt+1

N∑
i=1

1∑
ri=0

[(
1∑

di=0

P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xt+1)

)

log2

(
1∑

di=0

P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xt+1)

)]

×p(xt+1)dxt+1 (5.15)

detailed derivation can be found in Equation (A.5). Note that computation of Eqn. 5.13

requires 2N summations which may become computationally expensive when N is large.

Rather than maximizing I(xt+1,Rt+1), one can maximize its upperbound [51],

I(xt+1,Rt+1) ≤
N∑
i=1

I(xt+1, Ri,t+1) (5.16)

where I(xt+1, Ri,t+1) = H(Ri,t+1) − H(Ri,t+1|xt+1). For sensor i, H(Ri,t+1) and

H(Ri,t+1|xt+1) can be computed similar to Eqn. 2.13 and Eqn. 5.15.

As regards FI, JDi,t+1 in Eqn. 5.18 turns to,

JDi,t+1 ≈

NS∑
s=1

1

NS

{
1∑

ri=0

1(∑1
di=0 P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xst+1)

)
[

1∑
di=0

P (Ri,t+1 = ri|Di,t+1 = di)

(
∂

∂xt+1

P (Di,t+1 = di|xst+1)

)]2 (5.17)
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In summary, Jt+1 is written as,

Jt+1 = JDt+1 + JPt+1

=
N∑
i=1

JDi,t+1 + JPt+1 (5.18)

detailed derivation are given in Equation (B.4). For trace of fisher information we can

maximize JDi,t+1 to find optimum threshold for each sensor, because JPt+1 is constant. Thus,

maximizing trace of JDi,t+1 is same as to maximize trace of total fisher information Jt+1.

In contrast, we can only minimize trace of inverse total fisher information Jt+1 to obtain

optimum threshold for each sensor. Therefore, trace of inverse of total fisher information

takes more time find optimum thresholds than trace of total fisher information as shown in

Table 5.2.

Since the computation of exact mutual information I(xt+1,Rt+1) is computationally costly,

we also maximize mutual information, by maximizing its upperbound presented in Eqn.

5.16. We maximize the Fisher Information by minimizing the trace of the inverse Fisher

Information matrix. We then maximize Fisher Information by maximizing the trace of the

Fisher Information matrix which is a computationally less demanding metric.

At step 2 of Algorithm 5.1, the search interval of η is determined by the minimum and the

maximum distances between target and sensor location. Since the minimum distance between

sensor and target location dmin = 0, ηmax =
√
P0. Similarly, since the maximum distance

between sensor and target location is dmax meters, ηmin =
√

P0

1+d2max
. In order to get the

search space between ηmin and ηmax, d is increased with steps of 1 meters between dmin and

dmax.

5.5. NUMERICAL RESULTS

In this section, we compare the MSE performances of four different metrics, namely (exact)

mutual information, upperbound on mutual information, trace of inverse Fisher Information
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matrix, and trace of Fisher Information matrix. Considered simulation parameters are

summarized in Table 5.1.

Table 5.1. Simulation parameters

Parameters Values

Number of Sensors 9

Area 30m×30m

Fusion center location (100,0)

Source Power (P0) 1e4 W

Rb 10 bit/sec

Transmit Power (PT ) 10 W

Channel Noise (σ2
w) 1

Measurement Noise (σ2
n) 1

P1|0 0.01

Number of Trials 100

In Fig 5.2, we present the target tracking performance of the local sensor decision rules when

the channels between sensors and the fusion center are ideal. The simulation results show that

all four metrics yield similar estimation performance. Nevertheless, exact mutual information

takes long time to obtain sensor decision thresholds at each time step of tracking as compared

to other metrics as shown in Table 5.2 due to 2N summations in Eqn. 2.13.

Table 5.2. Execution time to obtain optimum sensor thresholds comparison

Information Metrics Elapsed Time (sec.)

Exact MI 190

Upperbound MI 0.3

Trace of Inverse FI 3.7

Trace of FI 0.4

Fig 5.3 shows the target tracking performance under fading channels. The simulation results

show that binary quantization thresholds obtained by maximizing the mutual information
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Figure 5.2. Target tracking performance of information metrics under ideal channels, N = 9
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Figure 5.3. Target tracking performance of information metrics fading channels, N = 9.
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and minimizing the trace of inverse FIM yield similar estimation performance. Among

the suboptimal metrics the upperbound of the mutual information yield better estimation

performance than that of trace of FIM.

5.6. PROPORTIONAL TIME ALLOCATION

In the previous section, we analyze the performance of different binary quantizer metrics

under fading channels. We assume that the total available time is equally distributed among

sensors. In this scenario, all sensors are treated equally. On the other hand, depending on the

target location, some sensor transmissions may become more informative and if such sensors

are allocated more time, their transmissions are less subject to channel errors. In this section,

we study proportional time allocation (PTA) methods, so that the informative sensors are

allocated more time and sensors far away from the target location are allocated less time and

even they are forced to stay silent.

In this section, we consider the upperbound on Mutual Information as the performance metric,

since its easy to compute and yield better estimation performance than that of trace of FIM.

5.6.1. PTA maximizing the upperbound on Mutual Information

In this PTA scheme, at each time step of tracking, the total available time ∆ is distributed

among sensors in order to maximize the upperbound on the mutual information, i.e.,

max
∆1,...,∆N

∑N
i=1 I(xt+1, Ri,t+1)

such that
∑N

i=1∆i ≤ ∆ (5.19)
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5.6.2. PTA with respect to individual Mutual Information

In this PTA scheme, at each time step of tracking, the total available time ∆ is distributed

among sensors relatively to their individual mutual information,

∆i = ∆× I(xt+1, Ri,t+1)∑N
i=1 I(xt+1, Ri,t+1)

(5.20)

5.6.3. Numerical Results

In this section, we present illustrative examples which compares the estimation performance

of PTA scheme as compared to ETA scheme. In Fig 5.4, optimal time allocations for the PTA

scheme are both obtained by maximizing the upperbound on Mutual Information and with

respect to individual Mutual Information. When PTA scheme is executed by maximizing

the upperbound on Mutual Information, the entire transmission is partitioned among few

informative sensors. If the observation of such sensors are lower than their decision thresholds,

these sensors don’t transmit and time allocated for their transmission is wasted. As seen in

Table 5.3, all time is allocated most informative sensor by maximizing the upperbound on

Mutual Information. Thus, only one sensor has high correctly transmission probability P1|1.

As a consequence, PTA maximizing the upperbound on Mutual Information yields the worst

estimation performance. Not shown here, a similar result is also obtained when we directly

maximize the exact mutual information. An alternative approach is to determine the time

allocation of each sensor with respect to its individual Mutual Information. By doing so, time

allocation of each sensor becomes fairer than as obtained by maximizing the upperbound

on Mutual Information as shown in Table 5.3. Simulation results show that, for N = 9

sensors in the WSN, using PTA with respect to individual Mutual Information, provides

better estimation performance as compared to ETA where the sensor decision thresholds are

obtained by maximizing the mutual information or upperbound on mutual information. We

obtain a similar result in Fig 5.5 where for N = 16 sensors, estimation performance of PTA

is better than that of ETA. Note that when the number of sensors in the WSN is relatively

large, the allocated time duration per each sensor become very short. Therefore, when the
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Figure 5.4. Performance Comparison between ETA and PTA, N = 9.

Table 5.3. Probabilities of the received binary decisions and PTA values of each nodes at one
step of tracking

Weight w.r.t. maximize MI Weight w.r.t. Indiviual MI

Sensor Nodes Sensor Threshold PTA P1|1 PTA P1|1

Node 1 70.71 1.00 0.96 0.65 0.93

Node 2 11.04 0.00 0.01 0.12 0.71

Node 3 4.54 0.00 0.01 0.01 0.11

Node 4 9.95 0.00 0.01 0.12 0.70

Node 5 8.31 0.00 0.01 0.07 0.54

Node 6 4.16 0.00 0.01 0.01 0.09

Node 7 4.54 0.00 0.01 0.01 0.11

Node 8 4.16 0.00 0.01 0.01 0.09

Node 9 3.33 0.00 0.01 0.00 0.03
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Figure 5.5. Performance Comparison between ETA and PTA, N = 16.

number of sensors in the network is large, we need to first select a number of informative

sensors and turn-off the sensors which are far from the target of interest. In Fig. 5.6, we first

select NA sensors among N sensors in the WSN where NA represents the number of time

allocated sensors. Our simulation results show that when NA is small, the selected sensors

receive enough time to transmit their binary decisions successfully on the other hand if their

measurements are less than the threshold, fusion center may get insufficient decisions from

sensors. As NA further increases, PTA provides better estimation performance than that

of ETA. For large values of NA close to N estimation error increases as a result of small

transmission duration per each sensor, hence increasing the probability of transmission errors.
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Figure 5.6. Performance of ETA and PTA with sensor selection
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6. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this thesis, efficient resource managements with adaptive binary quantizer design problem

under single-hop and 2-hop links for target tracking in WSNs have been investigated. The

main aim of the thesis is to provide significant savings in the limited resources of network

while keeping good estimation performance for target tracking.

We first solved adaptive binary quantizer design problem under single-hop links for target

tracking using multiobjective optimization methods. A good trade off solution between

estimation error and sum of sensor transmission probabilities were obtained by the help

of NBI method which takes less time than NSGA-II. Simulation results show that number

of transmitting sensors are reduced significantly as well as ensuring a good estimation

performance.

Energy consumption performance has been also investigated while considering energy

depletion in hardware of senor nodes under single-hop and 2-hop links to prolong life time

of network. While energy burden on sensor nodes were significantly reduced under cluster

based 2-hop transmission, transmitting under single-hop caused more energy consumption on

sensors especially which are far away from the FC. While 2-hop significantly reduce energy

consumption of sensor nodes except CHs in cluster, overall energy consumption of network

becomes higher than single-hop. This because because less energy consumption occurs when

some sensors send directly to FC instead of transmission over CHs. Thus, we prefer MTEP

where senors’ data follow less required energy path to prevent fast depletion of the sensors

which are far away from FC. The considered MTEP is a composition of single-hop and 2-hop

transmission, so sensor’s data follow either single-hop or 2-hop link to reach FC based on

required energy. Thus, MTEP curtailed excessive energy consumption on cluster heads under

2-hops by routing some sensors’ information to use single-hop transmission. Furthermore,

by using MOP we forced less informative sensors to stay silent. Thus, we reduce energy

consumption by impeding less informative sensors about target location from unnecessary

transmission to CHs and FC. We observed that even though circuit energy is considered,

MTEP are more energy efficient than single-hop transmission in terms of overall energy
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consumption of network.

Adaptive binary quantizer design problem was also solved while considering wireless channel

effects. In addition, we obtained sensor decision thresholds by different information metrics

with comparing estimation performances and computation times. As we observed that optimal

metrics of MI and FI are computationally heavy, we also used suboptimal metrics version of

them. By using these suboptimal metrics, the objective function becomes decoupled among

sensors and sensor decision thresholds were obtained easily. For the case where the total

transmission duration is equally distributed among sensors in a TDMA manner, our simulation

results showed that maximizing the mutual information or minimizing the trace of C-PCRLB

yield similar estimation performance, where among the less complex metrics the upperbound

on mutual information yields better estimation performance than the lower bound on the trace

of C-PCRLB. Based information metrics, we proposed a proportional time allocation strategy

where the time allocated to each sensor is determined as a function of its information. So

that the informative sensors acquires more time to decrease their transmission errors and

the non-informative sensors are forced to stay silent. In our simulation results show that,

when the number of sensors in the WSN is relatively large, proportional time allocation

improves the estimation performance as compared to equal time allocation. However, for

further increasing in number of selected sensors both allocation performance got worse on

estimation performance due to small transmission duration per each sensor that result in

increased probability of transmission errors.

As a future work, we want to deal with larger sensor networks in which massive traffic

burden occurs in cluster head nodes while considering energy consumption in hardware. We

will propose an energy based adaptive transmission by considering only informative sensors

about target location. Cluster heads would make a decision about the sensors’ data. If the

information is distorted under wireless channel impairments, cluster heads would not transmit

such data to destination node. Thus, apart from improvements on estimation performance,

energy consumption in CHs can also be reduced by cancelling transmission of distorted signal

to FC. On the other hand, knowing that sensors’ measurements have to reach destination node

at a certain time for target tracking, achieving low transmission latency is also a big challenge

need to be alleviated for moving targets.
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APPENDIX A: MI UNDER NON-IDEAL CHANNELS

If the wireless channel is not ideal the mutual information in Eqn. 2.12 can be expressed as,

I(xt+1,Rt+1) = H(Rt+1)−H(Rt+1|xt+1) (A.1)

where H(Rt+1) is the entropy of Rt+1 and H(Rt+1|xt+1) is the conditional entropy of Rt+1

given the target location xt+1. Firstly, H(Rt+1) is computed from,

H(Rt+1) = −
∑
Rt+1

P (Rt+1) log2 P (Rt+1)

= −
1∑

r1=0

. . .
1∑

rN=0

P (R1,t+1 = r1, . . . , RN,t+1 = rN)

× log2 P (D1,t+1 = r1, . . . , RN,t+1 = rN) (A.2)

where

P (R1,t+1 = r1, . . . , RN,t+1 = rN)

=

∫
P (R1,t+1 = r1, . . . , RN,t+1 = rN |xt+1)p(xt+1)dxt+1

=

∫ ( N∏
i=1

P (Ri,t+1 = ri|xt+1)

)
p(xt+1)dxt+1 (A.3)
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Using the particle filter approximation of p(xt+1) ≈ p(xt+1|Rt), P (R1,t+1 =

r1, . . . , RN,t+1 = rN) is approximated by

P (R1,t+1 = r1, . . . , RN,t+1 = rN) ≈
Ns∑
s=1

wst+1

×

[
N∏
i=1

(
1∑

di=0

P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xst+1)

)]
(A.4)

Secondly, the conditional entropy H(Rt+1|xt+1) is computed as,

H(Rt+1|xt+1) = −
∫
xt+1

∑
Rt+1

p(Rt+1,xt+1) log2 p(Rt+1|xt+1)dxt+1

= −
∫
xt+1

∑
Rt+1

[p(Rt+1|xt+1) log2 p(Rt+1|xt+1)] p(xt+1)dxt+1

= −
∫
xt+1

1∑
r1=0

. . .
1∑

rN=0

[(
N∏
i=1

P (Ri,t+1 = ri|xt+1)

)

log2

(
N∏
i=1

P (Ri,t+1 = ri|xt+1)

)]
p(xt+1)dxt+1

= −
∫
xt+1

N∑
i=1

1∑
ri=0

[P (Ri,t+1 = ri|xt+1) log2 P (Ri,t+1 = ri|xt+1)]

×p(xt+1)dxt+1

= −
∫
xt+1

N∑
i=1

1∑
ri=0

[(
1∑

di=0

P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xt+1)

)

log2

(
1∑

di=0

P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xt+1)

)]
p(xt+1)dxt+1 (A.5)
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APPENDIX B: FI UNDER NON-IDEAL CHANNELS

Jt+1 has the form,

E
{
[x̂t+1 − xt+1][x̂t+1 − xt+1]

T
}
≥ J−1t+1 (B.1)

where Jt+1 is the 4× 4 Fisher information matrix (FIM). If the channel is not ideal, Jt+1 in

Eqn. 2.18 is defined by,

Jt+1 , Ep(xt+1,Rt+1)

[
−∇xt+1

xt+1
log p (xt+1,Rt+1)

]
= −

∫
xt+1

∑
Rt+1

P (Rt+1|xt+1)
[
−∇xt+1

xt+1
logP (Rt+1|xt+1)

]
p(xt+1)dxt+1︸ ︷︷ ︸

,JD
t+1

−
∫
xt+1

[
−∇xt+1

xt+1
log p (xt+1)

]
p(xt+1)dxt+1︸ ︷︷ ︸

,JP
t+1

(B.2)

where Jt+1 can be decomposed into data part, JDt+1 and prior part, JPt+1. Data part of the

Fisher Information can be further written as,

JDt+1 = −
∫
xt+1

1∑
r1=0

. . .

1∑
rN=0

(
N∏
i=1

P (Ri,t+1 = ri|xt+1)

)

[
−∇xt+1

xt+1
log

(
N∏
i=1

P (Ri,t+1 = ri|xt+1)

)]
p(xt+1)dxt+1

=
N∑
i=1

{
−
∫
xt+1

1∑
ri=0

P (Ri,t+1 = ri|xt+1)
[
−∇xt+1

xt+1
logP (Ri,t+1 = ri|xt+1)

]

×p(xt+1)dxt+1

}
(B.3)
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where JDt+1 is equal to sum of each sensors contribution to the Fisher Information, JDi,t+1.

Using the properties given in [11], JDi,t+1 can be written as,

JDi,t+1 =

∫
xt+1

1∑
ri=0

1

P (Ri,t+1 = ri|xt+1)

(
∂

∂xt+1

P (Ri,t+1 = ri|xt+1)

)2

p(xt+1)dxt+1

=

∫
xt+1

1∑
ri=0

1(∑1
di=0 P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xt+1)

)
[

1∑
di=0

P (Ri,t+1 = ri|Di,t+1 = di)

(
∂

∂xt+1

P (Di,t+1 = di|xt+1)

)]2

×p(xt+1)dxt+1 (B.4)

where detailed derivation of ∂
∂xt+1

P (Di,t+1 = di|xt+1) is given in [3]. Using the particle filter

approximation JDi,t+1 is approximated by

JDi,t+1 ≈

NS∑
s=1

1

NS

{
1∑

ri=0

1(∑1
di=0 P (Ri,t+1 = ri|Di,t+1 = di)P (Di,t+1 = di|xst+1)

)
[

1∑
di=0

P (Ri,t+1 = ri|Di,t+1 = di)

(
∂

∂xt+1

P (Di,t+1 = di|xst+1)

)]2 (B.5)

In summary, Jt+1 is written as,

Jt+1 = JDt+1 + JPt+1

=
N∑
i=1

JDi,t+1 + JPt+1 (B.6)




