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ABSTRACT

GLOBAL BI-HAMILTONIAN STRUCTURE OF THREE DIMENSIONAL

DYNAMICAL SYSTEMS

In this thesis the conditions for the local existence of the bi-Hamiltonian structure correspond-

ing to a non-vanishing vector field on three dimensional manifolds are obtained by using the

given vector field alone. It is shown that any non-vanishing vector field on a three dimen-

sional manifold is locally bi-Hamiltonian. Then by working on the equations related with the

local existence, the obstructions to extension of local bi-Hamiltonian structure are obtained.

After that, these obstructions are expressed in terms of the characteristic classes related with

the normal bundle of the given vector field. It is shown that any non-vanishing vector field

on a three dimensional manifold is globally bi-Hamiltonian if and only if the Chern class of

the normal bundle of the vector field and Bott class of the transversally holomorphic complex

codimension one foliation defined by the vector field vanishes.
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ÖZET

ÜÇ BOYUTLU DİNAMİK SİSTEMLERİN GLOBAL Bİ-HAMİLTONYEN YAPISI

Bu tezde üç boyutlu manifoldlar üzerinde hiç sıfır olmayan bir vektör alanına karşılık gelen

bi-Hamiltonyen yapının lokal varlığı için koşullar sadece verilen vektör alanı kullanılarak

elde edilmiştir. Üç boyutlu bir manifold üzerinde hiç sıfır olmayan her vektör alanının lokal

olarak bi-Hamiltonyen olduğu gösterilmiştir. Daha sonra, lokal varlıkla ilişkili denklem-

ler üzerinde çalışarak, lokal bi-Hamiltonyen yapıların genişletilebilmesinin engelleri elde

edilmiştir. Bundan sonra, bu engeller verilen vektör alanının normal demetiyle ilişkili karak-

teristik sınıflar cinsinden ifade edilmiştir. Üç boyutlu bir manifold üzerinde hiç sıfır olmayan

bir vektör alanının global olarak bi-Hamiltonyen olması için gerek ve yeter şartın vektör

alanının normal demetinin Chern sınıfının ve vektör alanı ile tanımlanan transversal holo-

morfik kompleks ek-boyutu bir yapraklanmanın Bott sınıfının sıfır olması olduğu göster-

ilmiştir.
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1. INTRODUCTION

Three dimensional dynamical systems are widely used in mathematics, as well as physics and

engineering sciences for their wide range of applications [1]. Basically it consists of three

ordinary differential equations in three variables describing the local rate of change of these

variables. Then, one could analyze the qualitative behavior such as stability, or the existence

and uniqueness of solutions around certain initial values or boundary conditions. Here, the

dimension three has a special importance from the point of view of modeling real world

applications. Among these systems an important subclass is autonomous dynamical systems,

that is the dynamical systems that do not explicitly depend on the independent variable. Such

systems are especially useful in formulating natural systems since the laws of nature are

assumed to be independent of time.

In this thesis, autonomous three dimensional dynamical systems are investigated from a ge-

ometric point of view. Namely an autonomous three dimensional dynamical system is iden-

tified with a vector field or more specifically as the local section of the tangent bundle of

a three dimensional manifold. Identifying a dynamical system with geometric objects on a

manifold would enable to construct relations between differential geometric structures and

the dynamical system defined on a three dimensional manifold. Then, by using the topologi-

cal properties of three dimensional manifolds, it would be possible to investigate some of the

global properties of three dimensional dynamical systems.

An important property is the local bi-Hamiltonian structure of an autonomous three dimen-

sional dynamical system [2]. In the analysis of dynamical systems, the invariants of the

system, i.e. the quantities or properties that are invariant under the flow describing the dy-

namical system, are important. Many properties of the system, such as Liouville integrability

and stability are usually defined or related with these invariants. A Hamiltonian function is

an invariant of the dynamical system on a Poisson manifold, that is, a manifold with a Poisson

structure.

The main problem that is investigated in this thesis is the following: What are the conditions

to have a global bi-Hamiltonian structure? In other words, what are the obstructions on a
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vector field v⃗ (x) on a three dimensional manifold M to be globally decomposed into two

factors J⃗1 (x) and J⃗2 (x) such that

v⃗ (x) = J⃗1 (x)× J⃗2 (x)(
∇× J⃗i (x)

)
· J⃗i (x) = 0 , i = 1, 2

J⃗1 · (∇× J⃗2) + J⃗2 · (∇× J⃗1) = 0

(1.1)

In three dimensions there are many examples of dynamical systems having a global bi-

Hamiltonian structure, which means that the solution of this problem is not empty. On the

other hand, as shown in [3] there is at least one counterexample, which means that the solution

of this problem is not trivial.

In the local existence part of the problem, since we work in three dimensions we search for

Poisson structures defined by the given vector field and we show that it is always possible to

find a compatible pair of Poisson structures with two Hamiltonian functions. In the global

existence part, we prove that it is possible to find two global compatible Poisson structures

if and only if the first Chern class of the normal bundle of the vector field and Bott class of

the transversally holomorphic complex codimension one foliation defined by the vector field

vanishes.
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2. PRELIMINARIES

For the definitions in this chapter and for more information one may consult [2], [3], [4].

Definition 2.0.1. A Poisson structure on a manifoldM is the bilinear map {·, ·} : C∞(M)×

C∞(M) → C∞(M) satisfying

i. skew-symmetry condition: {f, g} = −{g, f}

ii. Jacobi identity: {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

iii. Leibniz rule: {fg, h} = f{g, h}+ g{f, h}

2.1. BI-HAMILTIONIAN STRUCTURE OF AN AUTONOMOUS DYNAMICAL

SYSTEM

Denote the sections of Λp(TM) (that is, the space of p-multivector fields) by Ap(M). Cor-

responding to a Poisson structure {·, ·}, one can define a Poisson bivector field Λ ∈ A2(M)

by {f, g} =< Λ, df ∧ dg >. Here < ·, · > is the pairing between multivector fields and

differential forms: < X1 ∧X2 ∧ · · · ∧Xp, α1 ∧ α2 ∧ · · · ∧ αp >= det(< Xi, αj >)

As a natural extension of Lie derivative, Schouten-Nijenhuis bracket

[·, ·] : Ap(M) × Aq(M) → Ap+q−1(M) is defined by the following proposition (for a proof

see [4]).

Proposition 2.1.1. LetM be a smooth n-dimensional manifold and letA(M) be the exterior

algebra of multivector fields onM . There exists a unique R-bilinear mapA(M)×A(M) →

A(M), (P,Q) 7→ [P,Q], called the Schouten-Nijenhuis bracket, which satisfies the following

properties:

i. For f, g ∈ A0(M) = C∞(M), [f, g] = 0

ii. For X ∈ A1(M) = X(M) and a multivector Q ∈ A(M), [X,Q] = L
X
Q

iii. For P ∈ Ap(M), Q ∈ Aq(M), [P,Q] = (−1)pq[Q,P ]
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iv. For P ∈ Ap(M), Q ∈ Aq(M), R ∈ A(M),

[P,Q ∧R] = [P,Q] ∧R + (−1)(p−1)qQ ∧ [P,R]

Remark 2.1.2. Jacobi identity for {·, ·} is equivalent to [Λ,Λ] = 0.

(< [Λ,Λ], df ∧ dg ∧ dh >= 0)

Associated with a Poisson bivector field Λ, there is a bundle map J : T ∗M → TM .

(denote the induced map on the sections by the same letter J : Ω1(M) → X(M)) defined by

< J(α), β >= Λ(α ∧ β).

To each H ∈ C∞(M) there is associated vector field v
H
= J(dH). H is called the Hamil-

tonian function and v
H

is called the Hamiltonian vector field. The equation ẋ = J(dH) is

called Hamilton’s equations of motion.

Definition 2.1.3. A Poisson pair on a manifold M is a pair (Λ1,Λ2) of Poisson bivector

fields such that [Λ1,Λ2] = 0. A bi-Hamiltonain system is prescribed by two Hamiltonian

functions H1, H2 satisfying: v = J1(dH2)

v = J2(dH1)

where J1, J2 are bundle maps determined by Λ1,Λ2 respectively. The vector field v is called

a bi-Hamiltonian vector field.

If M is a 3 manifold with volume form Ω, associated with a Poisson bivector field Λ, there

is a one form J = ΛyΩ called Poisson one-form. The equation v = J(dH) can be written as

ιvΩ = J ∧ dH and the Jacobi identity is given by J ∧ dJ = 0. (Note that this equation is

invariant under the multiplication of J by a differentiable function f . That is, (fJ)∧d(fJ) =

f 2J ∧ dJ .) Then, a bi-Hamiltonian system is two linearly independent Poisson one-forms

such that ιvΩ = J1 ∧ dH2 = J2 ∧ dH1. It can be shown that locally J1 and J2 can be chosen

to be proportional to dH1 and dH2, respectively. (Hence ιvΩ = λdH1 ∧ dH2.)
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2.2. IDENTIFICATION OF VECTOR FIELDS WITH 2-FORMS AND 1-FORMS

IN R3

Let M = R3. By the definition of the bundle map J,

< J(α), β >= Λ(α ∧ β) = −Λ(β ∧ α) = − < J(β), α > (2.1)

Using the metric < ·, · >g, if one identifies TpM ∼= T ∗
pM , v 7→< v, · >g, one can consider J

as a linear transformation R3 → R3

< Ju, v >g= − < Jv, u >g= − < v, JTu >g, ∀u, v ∈ R3

⇒ JTu = −Ju, ∀u ∈ R3
(2.2)

This means, one can associate a matrix in so(3) to J : R3 → R3.

Using the isomorphism (so(3), [, ]) ∼= (R3,×),


0 −c b

c 0 −a

−b a 0

 7→


a

b

c

, one can assign

a Poisson vector field J⃗ ∈ R3 to J at each point. Multiplying a column vector u ∈ R3 by the

matrix corresponding to J is equal to J⃗ × u so there is the following relation:

J(dH) = J⃗×∇H . From this one can write the bi-Hamiltonian system in R3 as two different

compatible Hamiltonian structures such that: v = J⃗1 ×∇H2

v = J⃗2 ×∇H1

Jacobi identity is J⃗i · (∇× J⃗i) = 0, i = 1, 2 and the compatibility condition is

J⃗1 · (∇ × J⃗2) + J⃗2 · (∇ × J⃗1) = 0. Locally J⃗1 and J⃗2 can be chosen to be proportional to

∇H1 and ∇H2, respectively. (Hence v = λ∇H1 ×∇H2.)

Local existence of bi-Hamiltonian structure in R3 has been shown in [5].

For the volume form Ω in R3 one has the following isomorphism:
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X(R3) → Ω1(R3)

u 7→ ∗ιuΩ =< u, · >g:= αu

(2.3)

Note that (Using the identity: αu ∧ ∗β = (−1)p−1 ∗ ιuβ for any p-form β)

∗ιv(ιuΩ) = −αv ∧ ∗ιuΩ = −αv ∧ αu = αu ∧ αv (2.4)

ιu(ιvιuΩ) = 0

ιv(ιvιuΩ) = 0

 ⇒ ιvιuΩ = cαu×v (2.5)

0 = ιv(ιuΩ ∧ αu ∧ αv)

= (ιvιuΩ) ∧ αu ∧ αv + ιuΩ ∧ ιv(αu ∧ αv)

= (ιvιuΩ) ∧ αu ∧ αv + ιuΩ ∧ ιvαu ∧ αv − ιuΩ ∧ αu ∧ ιvαv

= ιvιuΩ ∧ ∗ιvιuΩ + ∗αu ∧ ιvαu ∧ αv − ∗αu ∧ αu ∧ ιvαv

= (|ιvιuΩ|2g+ < u, v >2
g −|u|2g|v|2g)Ω

(2.6)

By Lagrange’s identity:

|ιvιuΩ|2g = |u|2g|v|2g− < u, v >2
g= |u× v|2g (2.7)

So ιvιuΩ = αu×v (up to sign). Hence ∗αu×v = αu ∧ αv (up to sign)



7

3. LOCAL EXISTENCE THEOREMFOR BI-HAMILTONIAN STRUC-
TURES IN THREE DIMENSIONS

3.1. THE FLOW COORDINATES

Given a manifold M and a non-vanishing vector field v on M , we have

T (p) =
v (p)

∥v (p)∥TpM

(3.1)

to be the unit vector field of v (p) at p ∈M . The flow Φs defined by T is

dΦs

ds
= T ◦ Φs and Φ0 = id (3.2)

Let (Up, xp) be an orthogonal coordinate system around p ∈ M . Let Bδ (p) be the geodesic

ball around p ∈M , that is for any point z ∈ Bδ (p) there is a unique geodesic γp (z) (t) joining

p and z. Let Ũp = Up∩Bδ (p) and
(
Ũp, x̃p

)
be the geodesic coordinate chart around p ∈M .

Namely, if z ∈ Ũp and γp (z) (t) is the geodesic joining p and z such that γp (z) (0) = z,

denote
dγp (z)

dt
(0) =

·
γp (z) (3.3)

Then

x̃p (z) = (xp)∗
·
γp (z) = z̃ (3.4)

Assuming the geodesic joining p with itself to be the constant map γp (p) = p, we have
·
γp (p) = 0 and hence x̃p (p) = 0. Let

(x̃p)∗ (T) = T̃ (3.5)

be the coordinates of the vector field T.

Now we can define

Vp =

{
z ∈ Ũp |

(
·
γp (z) ,T (z)

)
TzM

= 0

}
(3.6)
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or equivalently

Vp =
{
z ∈ Ũp | z̃ · T̃ (z̃) = 0

}
(3.7)

where z̃ is the position vector of z ∈ Ũp in geodesic coordinates around p. Since p̃ = 0 then

p ∈ Vp and the set is not empty. The following lemma proves that the set Vp can be considered

as a special set of initial points for each integral curve in Ũp.

Lemma 3.1.1. Each integral curve of T in Ũp intersects Vp at least at one point.

Proof. Consider the part of the integral curve Cz passing through an arbitrary z /∈ Φs (p) in

Ũp, that is Cz = Φs (z) ∩ Ũp. Define the function

f : Cz −→ R+ ∪ {0}

Φs (z) 7→
∣∣∣ ·γp (Φs (z))

∣∣∣2 (3.8)

Since Φs (z) with the induced metric from R3 is closed, it is complete, and f (Φs (z)) ≥ 0

is bounded below. Then, if
{
xn = Φ̃sn (z̃)

}
is any sequence in Cz for which |f (xn)| is

bounded and for which ∥dfxn∥ → 0, then we are going to prove that {xn} has a convergent

subsequence {xnk
} → zp. [6]. Let

Φ̃s (z̃) = (x̃p)∗

(
·
γp (Φs (z))

)
(3.9)

be the position vector of Φs (z) in geodesic coordinates. By assumption

∥dfxn∥ = Φ̃sn (z̃) ·
dΦ̃sn

ds
(z̃) = Φ̃sn (z̃) · T̃

(
Φ̃sn (z̃)

)
→ 0 (3.10)

which implies that

Φ̃sn (z̃) · T̃
(
Φ̃sn (z̃)

)
=

∥∥∥Φ̃sn (z̃)
∥∥∥∥∥∥T̃(

Φ̃sn (z̃)
)∥∥∥ cos θz̃ (sn) → 0 (3.11)

where θz̃ (sn) is the angle between ·
γp (Φs (z)) and T̃

(
Φ̃sn (z̃)

)
. Since

∥∥∥Φ̃sn (z̃)
∥∥∥ ̸= 0 and∥∥∥T̃(

Φ̃sn (z̃)
)∥∥∥ = 1 we get

cos θz̃ (sn) → 0 (3.12)

Now defineQz̃ = {s ∈ R | cos θz̃ (s)} which is a homeomorphism for −π
2
< θz̃ (s) <

π
2
, and

the subsequence {snk
} = {sn} ∩ Qz̃. Now as cos θz̃ (sn) → 0 then snk

→ (cos θz̃)−1 (0) =
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z̃p. Then, by Theorem 9.1.9 in [6] z̃p is a critical point and f (z̃p) is the minimum value of

f . In other words, defining z̃p = Φ̃sz (z̃) implies x̃−1
p (z̃p) ∈ Vp. Namely z̃p is the point on

Φ̃s (z̃p) which is closest to p̃.

Now, it is possible to define another neighborhood of p ∈M ,

Ûp = Φs (Vp) ∩ Ũp (3.13)

Using the chart
(
Ũp, x̃p

)
we define new coordinate functions as follows: Let z ∈ Ûp and

Φs (z) be the integral curve through z. Since z ∈ Ûp implies z ∈ Φs (Vp) and since Φs is

invertible, there exists a zp ∈ Vp and sz ∈ R such that

z = Φsz (zp) (3.14)

Using (3.14) we can define sz to be the first coordinate of the point z.

For the remaining two coordinates, consider the vector z̃p which is the tangent vector of the

geodesic joining p and zp at zp in geodesic coordinates around p. Now, choose an orthonormal

frame at
{
T̃ (z̃p) , Ñ (z̃p) , B̃ (z̃p)

}
at z̃p. Since

z̃p · T̃ (z̃p) = 0 (3.15)

we have

z̃p = n (zp) Ñ (z̃p) + b (zp) B̃ (z̃p) (3.16)

Now, we could not use the components n (zp) and b (zp) of z̃p as coordinates of the point z

since they are defined at point zp rather than z. Therefore, one should first map the vector

z̃p to the point z then by defining an appropriate frame at z, we can take the components of

this new vector at z to be the coordinates of the point z. Obviously, one may want to use the

pushforward map (Φsz)∗ for this purpose but since this map may not be orthogonal, it may

preserve neither the orthogonality of z̃p and T̃ (z̃p) nor the orthogonality of Ñ (z̃p) and B̃ (z̃p).

To solve the former problem we introduce the following map

(Φsz)
⊥
∗ (ũ) = (Φsz)∗ (ũ)−

(
T̃ (z̃) · (Φsz)∗ (ũ)

)
T̃ (z̃) (3.17)
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Defining the subspaces Qz̃p and Qz̃ of TzpM and TzM respectively as the subspaces orthog-

onal to T̃ (z̃p) and T̃ (z̃) respectively, or simply

Qũ =
{
ũ ∈ TuM | ũ·T̃ (ũ) = 0

}
(3.18)

Proposition 3.1.2. (Φsz)
⊥
∗ is an isomorphism between Qz̃p and Qz̃.

Proof. To prove this we only need to check the ker
(
(Φsz)

⊥
∗

)
. Indeed if we let

ũ ∈ ker
(
(Φsz)

⊥
∗

)
(Φsz)

⊥
∗ (ũ) = (Φsz)∗ (ũ)−

(
T̃ (z̃) · (Φsz)∗ (ũ)

)
T̃ (z̃) = 0 (3.19)

from which we get

(Φsz)∗ (ũ) =
(
T̃ (z̃) · (Φsz)∗ (ũ)

)
T̃ (z̃) (3.20)

By (3.2) we have

(Φsz)∗ T̃ (z̃p) = T̃ (z̃) (3.21)

Therefore applying (Φsz)
−1
∗ to both sides of (3.20) gives

ũ =
(
T̃ (z̃) · (Φsz)∗ (ũ)

)
T̃ (z̃p) (3.22)

which projects onto 0 in Qz̃p .

Hence we have the commutative diagram

TzpM
(Φsz )∗−→ TzM

pr ↓ ↓ pr

Qz̃p

(Φsz )
⊥
∗−→ Qz̃

(3.23)

where pr denotes the projection onto corresponding subspaces.

Although (Φsz)
⊥
∗ solves the problem of preserving the orthogonality of z̃p and T̃ (z̃p) along

the integral curve, the latter problem, namely the invariance of the orthogonality of Ñ (z̃p)

and B̃ (z̃p) along the curve requires (Φsz)
⊥
∗ to be orthogonal while it may not be. Now, we

will use the following lemma (page 26 of [7]) to solve this problem:
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Lemma 3.1.3. Let V and W be vector spaces, provided with inner products k and l. Let

L : V → W be a vector space isomorphism. Then there exists a unique positive definite

self-adjoint linear mapping H : W → W such that H ◦ L preserves the inner products.

This Lemma follows from the polar decomposition of the linear transformation L. Defining

an ambient isotopy Ht for the self-adjoint transformation H , one could find an isotopy Lt =

Ht ◦L such that L0 = L and L1 = LO which is an orthogonal transformation. Applying this

construction to Qz̃p

(Φsz )
⊥
∗−→ Qz̃ defines the orthogonal transformation (Φsz)

⊥O
∗ . Now, we may

define the two-frame field on M as

Ñ (z̃) = (Φsz)
⊥O
∗ Ñ (z̃p)

B̃ (z̃) = (Φsz)
⊥O
∗ B̃ (z̃p)

(3.24)

Then, defining z̃ ∈ Qz̃p to be

z̃ = (Φsz)
⊥O
∗ z̃p (3.25)

and applying (Φsz)
⊥O
∗ to (3.16)

z̃ = n (zp) Ñ (z̃) + b (zp) B̃ (z̃) (3.26)

and we define the components of z̃ to be the second and third coordinates of the point z ∈ Ûp,

and we get the coordinates (sz, n (zp) , b (zp)) defined above.

Note that the choice of the frame at zp is arbitrary. One may define the following specific

frame that will help us later on to define the two Hamiltonian functions defined by the vector

field. Let Sε be the sphere of radius ε centered at the point with position vector z̃p + εT̃ (z̃p)

then the unit normal of Sε at z̃p is T̃ (z̃p). Choose ε sufficiently small such that y−1
p (Sε) ⊂

Br (p). We have z̃p ∈ Tz̃pSε. Let σ̃n (z̃p) be the great circle passing through z̃p in the direction

of z̃p. Then rotate this great circle by π/2 around z̃p to obtain another great circle, in other

words,
{
T̃ (z̃p) , Ñ (z̃p) , B̃ (z̃p)

}
is the Darboux frame of σ̃n (z̃p) on Sε where

Ñ (z̃p) =
z̃p
|̃zp|

(3.27)

and

B̃ (z̃p) = T̃ (z̃p)× Ñ (z̃p) (3.28)
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The coordinates of a point z in the coordinate chart
(
Ûp, yp

)
of a point p ∈M , is given by

yp (z) =
(
y1p (z) , y

2
p (z) , y

3
p (z)

)
= (sz, n (zp) , b (zp)) (3.29)

where sz is the arclength of the integral curve segment joining z and zp given in (3.14). The

point zp is on the integral curve passing through z which is closest to p, and (n (zp) , b (zp))

are given by (3.26). Now, consider another coordinate chart
(
Ûq, yq

)
of a point q ∈ M . If

z ∈ Ûp ∩ Ûq, then we have a unique integral curve joining points z, zp and zq defined above.

Figure 3.1. Coordinate transformation

Now we have the coordinates yp (z) = (spz, n (zp) , b (zp)) and yq (z) = (sqz, n (zq) , b (zq)).

To find the coordinate transformation first we start with the fact that

spz − sqz = szqzp (3.30)

where szqzp is the arclength of the integral curve between zp and zq. In order to find the coor-

dinate transformations first note that taking the derivative with respect to spz (or equivalently

sqz) is nothing but the derivative along the integral curve passing through z. Now, since the

points zp and zq are the same for all points on the integral curve segment passing through z

in Ûp ∩ Ûq, therefore the distance between zp and zq is constant for all points on the segment

of the integral and hence its derivative along the the integral curve vanishes.

∂s
zq
zp

∂spz
= 0 (3.31)
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Differentiating (3.30) with respect to spz and using (3.31) lead to

∂sqz
∂spz

= 1 (3.32)

Similarly, since the points p and zp, and q and zq are the same for all points on the integral

curve segment passing through z in Ûp∩Ûq, the tangent vectors of the geodesics joining these

pairs of points remain invariant as we move along the integral curve segment in Ûp∩Ûq. Since

the choice of the frame depends only on the point zp or zq, the components (n (zp) , b (zp))

and (n (zq) , b (zq)) are constant for all points on the integral curve segment passing through

z in Ûp ∩ Ûq. Therefore their derivatives along the integral curve also vanish i.e.

∂n (zq)

∂spz
=
∂b (zq)

∂spz
= 0 (3.33)

Next we need to answer the following question: What happens to sqz when we change

(n (zp) , b (zp))? Note that, given a point z ∈ Ûp ∩ Ûq since the points zp and zq are deter-

mined by the points q and p which are the same for all points in the intersection of coordinate

neighborhoods, the only way of varying (n (zp) , b (zp)) is to change the frame at zp. How-

ever, changing the frame at zp does not change spz and sqp, and by (3.30) does not change sqz.

Therefore we have
∂sqz

∂n (zp)
=

∂sqz
∂b (zp)

= 0 (3.34)

Finally, for the relation between (n (zp) , b (zp)) and (n (zq) , b (zq)) we will use the fact that

they are components of (Φspz)
⊥O
∗ z̃p and (Φsqz)

⊥O
∗ z̃q where z̃p and z̃q are the tangent vectors

of the geodesics joining pairs of points (p, zp) and (q, zq). Since z̃p and z̃q are unit vectors

by definition and (Φspz)
⊥O
∗ and (Φsqz)

⊥O
∗ are orthogonal, (Φspz)

⊥O
∗ z̃p and (Φsqz)

⊥O
∗ z̃q are unit

vectors perpendicular to T (z) at z. Therefore, we have

(Φsqz)
⊥O
∗ z̃q = Apq (z) (Φspz)

⊥O
∗ z̃p (3.35)

where Apq (z) ∈ SO (2) defined by the rotations around T (z). Therefore we have the Jaco-

bian matrix of coordinate transformations

∂yiq (z)

∂yjp (z)
=

 1 0

0 Apq (z)

 (3.36)
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This coordinate transformation suggest that we have the local trivialization

(z) Ûp ⊂M
yp−→ R× R2 (y1, y2, y3)

↓ pr ↓ ↓ ↓

(s) Ûp ∩ Cp −→ R (y1)

(3.37)

In fact, the flow coordinate chart is nothing but the identification of the intersection of Ûp and

a sufficiently small tubular neighborhood of Cp, which we identify with Ûp, with the normal

bundle of T in TM over M , which we denote by Q. The local frame field

{ê1 (z) , ê2 (z) , ê3 (z)} is the adapted orthonormal frame.

Let (Up, xp) be an orthogonal chart forM and
(
Ûp, yp

)
be the corresponding flow coordinate

chart defined above, which are related by

yi = yi
(
x1, x2, x3

)
(3.38)

Let
{̂
ik (x)

}
be an orthonormal coordinate frame field in the former coordinate system and

{êk (y)} be the orthonormal frame field {T (y) ,N (y) ,B (y)} defined by (3.1) and (3.24)

in the latter coordinate system. We assume both to be right handed. Without restriction of

generality we may assume that
{̂
ik (x)

}
is the standart Euclidean frame with the gradient

operator

∇ = îk∂xk (3.39)

Then, one can define the new local non-coordinate basis of vector fields as the directional

derivatives along the frame field {êk (y)}

êi = eji (x) ∂xj = eji (y) ∂yj (3.40)

Taking the definition of the latter coordinate system we have

ê1 =
∂

∂y1
(3.41)

These basis vectors are involutive but not commutative. Now let us define the structure
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functions
(
Ck

ij (y)
)

via the relation

[êi, êj] = Ck
ij (y) êk (3.42)

and subject to the integrability condition (Jacobi identity)

⊙
i,j,k

[[êi, êj] , êk] =
(
−ê[k

(
C l

ij]

)
+ C l

m[kC
m
ij]

)
êl = 0 (3.43)

(Here
⊙

denotes a cyclic sum over the indices.) Finally, the curl and divergence of the basis

vectors are given by
∇× êi (y) = −1

2
εjklCi

klêj (y)

∇ · êi (y) = Cj
ji (y)

(3.44)

3.2. POISSON STRUCTURES IN THREE DIMENSIONS

Now, we will show that every three dimensional dynamical system is locally bi-Hamiltonian,

namely there are two Poisson vector fields J⃗1 and J⃗2 and two Hamiltonian functions H1 and

H2 such that
·
x⃗ (t) = v⃗ (x⃗ (t)) = J⃗1 ×∇H2 = J⃗2 ×∇H1 (3.45)

And the Jacobi identity becomes

(
∇× J⃗

)
· J⃗ = 0 (3.46)

Note that, Jacobi identity for Poisson vector fields has a dilatation symmetry in the sense that

if J⃗ is a Poisson vector field, i.e. satisfies the Jacobi identity then fJ⃗ is also a Poisson vector

field. Since (
∇× fJ⃗

)
· f⃗J =

(
∇f × J⃗ + f∇× J⃗

)
· fJ⃗

= f 2
(
∇× J⃗

)
· J⃗ = 0

(3.47)

Proposition 3.2.1. A non-vanishing vector field v on M defines two Poisson structures on

M .

Proof. Adopting the coordinate system and frames defined before, and keeping (3.45) in
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mind, we will start with assuming that

ê1 · J⃗ = 0 (3.48)

and hence we have the Poisson vector field

J⃗ = αê2 + βê3 (3.49)

and its curl is subject to the Jacobi identity (3.46) which leads to

∇⃗ × J⃗ = ∇α× ê2 + α∇× ê2 +∇β × ê3 + β∇× ê3 (3.50)

Then, applying the Jacobi identity (3.46) obtained by taking the dot product of (3.49) with

(3.50), and using triple vector product identities we get

β∂y1α− α∂y1β − α2C2
31 − αβ

(
C3

31 + C2
12

)
− β2C3

12 = 0 (3.51)

If J⃗ = 0⃗ then ∥v⃗∥ = 0 and hence v⃗ = 0⃗ which contradicts with our assumption that the vector

field is non-vanishing. Therefore we assume

J⃗ ̸= 0⃗ (3.52)

which means that α ̸= 0 or β ̸= 0. Now we assume α ̸= 0, while the case β ̸= 0 is similar

and amounts to rotation of the frame. Defining

µ =
β

α
(3.53)

and dividing (3.51) by α2 we get

∂y1µ = −C2
31 − µ

(
C3

31 + C2
12

)
− µ2C3

12 (3.54)

whose characteristic curve is the integral curve of (3.45) in arclenght parametrization. There-

fore on the solution curve we have

dµ

ds
= −C2

31 − µ
(
C3

31 + C2
12

)
− µ2C3

12 (3.55)
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in the arclength variable s = y1. The Riccati equation (3.55) is equivalent to a linear sec-

ond order equation and hence possesses two linearly independent solutions leading to two

Poisson vector fields for dynamical system under consideration. Since the vector field v (x)

is assumed to be non-vanishing, then for each x0 ∈ R it is possible to find a neighborhood

foliated by the integral curves of v (x) which are nothing but characteristic curves of (3.54).

Therefore the solutions of (3.55) can be extended to the whole neighborhood. It is a Riccati

equation and has two independent solutions which we call µi for i = 1, 2. Hence we have

two Poisson vector fields

J⃗i = αi (ê2 + µiê3) (3.56)

where the coefficients αi are arbitrary.

Taking the advantage of the freedom of choosing arbitrary scaling factors we may restrict the

coefficients by imposing further assumptions on our Poisson vector fields. Our next condition

will be compatibility of Poisson structures.

Definition 3.2.2. Two Poisson structures J⃗1 and J⃗2 are compatible if J⃗1+J⃗2 is also a Poisson

structure.

Proposition 3.2.3. Poisson structures obtained in (3.56) are compatible if

∂y1 ln
αi

αj

= C3
12 (µi − µj) (3.57)

Proof. Let

J⃗ = J⃗1 + J⃗2 (3.58)

Using (3.46) for J⃗1, J⃗2 and J⃗(
∇× J⃗

)
· J⃗ = ∇×

(
J⃗1 + J⃗2

)
·
(
J⃗1 + J⃗2

)
=

(
∇× J⃗2

)
· J⃗1 +

(
∇× J⃗1

)
· J⃗2

(3.59)

Therefore we need to show that

(
∇× J⃗i

)
· J⃗j = −

(
∇× J⃗j

)
· J⃗i (3.60)
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For the Poisson vector fields defined in (3.56),

∇× J⃗i = ∇αi × (ê2 + µiê3) + αi (∇× ê2 +∇µi × ê3 + µi∇× ê3) (3.61)

Then taking the dot product of both sides by J⃗j and using (3.54) gives

(
∇× J⃗i

)
· J⃗j = αiαj (∇× ê2 +∇µi × ê3 + µi∇× ê3) · (ê2 + µj ê3)

+ αj (∇αi × (ê2 + µiê3)) · (ê2 + µj ê3)

= αiαj (−C2
31 − ∂y1µi − C3

31µi + (−C2
12 − µiC

3
12)µj)

+ αiαj ((ê2 + µiê3)× (ê2 + µj ê3)) · ∇ lnαi

= αiαj (µi − µj) (C
2
12 + C3

12µi − ∂y1 lnαi)

(3.62)

Therefore the compatibility condition (3.60) implies that

C2
12 + C3

12µi − ∂y1 lnαi = C2
12 + C3

12µj − ∂y1 lnαj (3.63)

and hence we get

∂y1 ln
αi

αj

= C3
12 (µi − µj) (3.64)

whose characteristic curve is the solution curve of (3.45) in arclenght parametrization

d

ds
ln
αi

αj

= C3
12 (µi − µj) (3.65)

then, by a similar line of reasoning as above the solutions of (3.65) can also be extended

to the whole neighborhood. Therefore, the Poisson vector fields obtained from solutions of

Riccati equation are always compatible and the proposition follows.

3.3. BI-HAMILTONIAN SYSTEMS IN THREE DIMENSIONS

A dynamical system
·
x⃗ (t) = v⃗ (x⃗ (t)) (3.66)
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is called bi-Hamiltonian if there is a pair of Poisson structures J⃗1 and J⃗2, and a pair of func-

tions H1 and H2 such that

v⃗ (x⃗) = J⃗1 ×∇H2 = J⃗2 ×∇H1 (3.67)

Having a pair of Poisson structures obtained in (3.56) and even a compatible pair obtained

in (3.57) do not guarantee the existence of Hamiltonian functions even locally.

Proposition 3.3.1. The dynamical system (3.66) is locally bi-Hamiltonian with a pair of

Poisson structures obtained in (3.56) if and only if

∂y1 lnαi = ∂y1 ln ∥v⃗∥+ C3
31 + µiC

3
12 (3.68)

Proof. For this purpose we first need to write down the equations for the Hamiltonian func-

tions. The equation (3.67) implies that

ê1 · ∇Hi = ∂y1Hi = 0 (3.69)

so the Hamiltonian functions depend only on variables y2 and y3. This is the invariance

condition of Hamiltonian functions under the flow generated by v⃗ (x). Therefore the first

equation for Hamiltonian functions can be written as

ê1 (Hi) = 0 (3.70)

The gradient of the Hamiltonian functions reduce to

∇Hj = (ê2 (Hj)) ê2 + (ê3 (Hj)) ê3 (3.71)

Inserting (3.56) and (3.71) into (3.67)

v⃗ = ∥v⃗∥ ê1 = αi (ê3 (Hj)− µiê2 (Hj)) ê1 (3.72)

Hence

ê3 (Hj)− µiê2 (Hj) =
∥v⃗∥
αi

(3.73)
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Now, defining

u⃗i = −µiê2 + ê3 (3.74)

the (3.73) can be written as

u⃗i (Hj) =
∥v⃗∥
αi

(3.75)

These two equations (3.70) and (3.75) for Hamiltonian functions are subject to the integra-

bility condition

ê1 (u⃗i (Hj))− u⃗i (ê1 (Hj)) = [ê1, u⃗i] (Hj) (3.76)

Using the commutation relation given in (3.42)

[ê1, u⃗i] = [ê1, ê3 − µiê2]

= [ê1, ê3]− µi [ê1, ê2]− (∂y1µi) ê2

= −Ck
31êk − µiC

k
12êk − (∂y1µi) ê2

= − (C1
31 + µiC

1
12) ê1 − (C3

31 + µiC
3
12) ê3

+ (−C2
31 − µiC

2
12 − ∂y1µi) ê2

(3.77)

Now, using the Riccati equation (3.54) defining µi we obtain

[ê1, u⃗i] = −
(
C1

31 + µiC
1
12

)
ê1 −

(
C3

31 + µiC
3
12

)
u⃗i (3.78)

and applyingHj to both sides of (3.78), and using two equations (3.70) and (3.75) for Hamil-

tonian functions we get

[ê1, u⃗i] (Hj) = −
(
C3

31 + µiC
3
12

) ∥v⃗∥
αi

(3.79)

Therefore our integrability condition for Hamiltonian functions becomes,

∂y1

(
∥v⃗∥
αi

)
= −

(
C3

31 + µiC
3
12

) ∥v⃗∥
αi

(3.80)

hence

∂y1 ln
(
αi

∥v⃗∥

)
= µiC

3
12 + C3

31 (3.81)

and the proposition follows.

Corollary 3.3.2. The pair of Poisson structures J⃗i = αi (ê2 + µiê3) where αi is defined by
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(3.68) and µi is defined by (3.54) is compatible.

Proof. What we need is to show that (3.57) is satisfied. Indeed, writing (3.68) for αi and

αj

∂y1 lnαi = ∂y1 ln ∥v⃗∥+ C3
31 + µiC

3
12

∂y1 lnαj = ∂y1 ln ∥v⃗∥+ C3
31 + µjC

3
12

(3.82)

and subtracting the second from the first proves the corollary.

Remark 3.3.3. Note that, for a pair of compatible Poisson structures, J⃗1 and J⃗2, the dilata-

tion symmetry J⃗ → fJ⃗ and the additive symmetry J⃗1 + J⃗2 do not imply that J⃗1 + fJ⃗2 is a

Poisson structure. Indeed if we apply the Jacobi identity condition and using triple vector

identity (
J⃗1 + fJ⃗2

)
· ∇ ×

(
J⃗1 + fJ⃗2

)
= −∇f ·

(
J⃗1 × J⃗2

)
= 0 (3.83)

which implies that

∂y1f = 0 (3.84)

3.4. THE RELATION BETWEEN POISSON VECTOR FIELDS ANDHAMILTONI-

ANS

Now we try to describe the relation between the pair of compatible Poisson structures and

Hamiltonian functions. But first, we need the following lemma to describe this relation.

Lemma 3.4.1. For the bi-Hamiltonian system with a pair of compatible Poisson structures

defined above,

∇ · ê1 = ∂y1 ln
α1α2 (µ2 − µ1)

∥v⃗∥2
(3.85)

Proof. Adding the equations for integrability conditions of Hamiltonian functions (3.68)

for i = 1, 2 we get

∂y1 ln (α1α2) = ∂y1 ln
(
∥v⃗∥2

)
+ 2C3

31 + (µ1 + µ2)C
3
12 (3.86)

On the other hand, subtracting the Riccati equations satisfied by µ1 and µ2, and the dividing
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by (µ2 − µ1) gives

∂y1 ln (µ2 − µ1) = −
(
C3

31 + C2
12

)
− (µ1 + µ2)C

3
12 (3.87)

Adding (3.86) to (3.87) and using (3.44) we get

∂y1 ln (α1α2 (µ2 − µ1)) = ∂y1 ln
(
∥v⃗∥2

)
+∇ · ê1 (3.88)

and the lemma follows.

Proposition 3.4.2. Given a bi-Hamiltonian system with a pair of compatible Poisson struc-

tures, then there exists a canonical pair of compatible Poisson structures J⃗1, J⃗2 with the same

Hamiltonian functions H1, H2 such that

J⃗i = (−1)i+1 ϕ∇Hi (3.89)

where

ϕ =
α1α2 (µ2 − µ1)

∥v⃗∥
(3.90)

Proof. Since Poisson vectors are linearly independent one could write Hamiltonians in

terms of Poisson vectors
∇H1 = σ1

1J⃗1 + σ2
1J⃗2

∇H2 = σ1
2J⃗1 + σ2

2J⃗2
(3.91)

Since
∥v⃗∥ ê1 = J⃗1 ×∇H2 = σ2

2J⃗1 × J⃗2

= J⃗2 ×∇H1 = −σ1
1J⃗1 × J⃗2

(3.92)

and

J⃗1 × J⃗2 = α1α2 (µ2 − µ1) ê1 (3.93)

we get

σ2
2 = −σ1

1 =
∥v⃗∥

α1α2 (µ2 − µ1)
(3.94)

Since we have

∇×∇H1 = ∇σ1
1 × J⃗1 +∇σ2

1 × J⃗2 + σ1
1∇⃗ × J⃗1 + σ2

1∇× J⃗2 = 0⃗

∇×∇H2 = ∇σ1
2 × J⃗1 +∇σ2

2 × J⃗2 + σ1
2∇⃗ × J⃗1 + σ2

2∇× J⃗2 = 0⃗
(3.95)
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Taking the dot product of both sides with J⃗1 we get

∂y1 lnσ2
1 =

J⃗1·(∇×J⃗2)
α1α2(µ2−µ1)

∂y1 lnσ2
2 =

J⃗1·(∇×J⃗2)
α1α2(µ2−µ1)

(3.96)

Similarly taking the dot product of both sides with J⃗2 we get

∂y1 lnσ1
1 = − J⃗2·(∇×J⃗1)

α1α2(µ2−µ1)

∂y1 lnσ1
2 = − J⃗2·(∇×J⃗1)

α1α2(µ2−µ1)

(3.97)

Now, compatibility implies that

∂y1 lnσ1
1 = ∂y1 lnσ1

2 = ∂y1 lnσ2
1 = ∂y1 lnσ2

2 =
J⃗1 ·

(
∇× J⃗2

)
α1α2 (µ2 − µ1)

(3.98)

Inserting (3.68) into (3.62),

J⃗1 ·
(
∇× J⃗2

)
α1α2 (µ2 − µ1)

= − (∂y1 ln (∥v⃗∥) +∇ · ê1) (3.99)

and using (3.88)

∂y1 lnσi
j = −∂y1 lnϕ (3.100)

Therefore

σi
j =

Ψi
j (y

2, y3)

ϕ
(3.101)

and
∇H1 = 1

ϕ

(
Ψ1

1 (y
2, y3) J⃗1 +Ψ2

1 (y
2, y3) J⃗2

)
∇H2 = 1

ϕ

(
Ψ1

2 (y
2, y3) J⃗1 −Ψ1

1 (y
2, y3) J⃗2

) (3.102)

Inserting (3.102) and (3.93) into (3.67)

∥v⃗∥ ê1 = −Ψ1
1 (y

2, y3)

ϕ
α1α2 (µ2 − µ1) ê1 (3.103)

we get

Ψ1
1

(
y2, y3

)
= −1 (3.104)
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and finally
∇H1 = − ∥v⃗∥

α1α2(µ2−µ1)

(
J⃗1 −Ψ2

1 (y
2, y3) J⃗2

)
∇H2 = ∥v⃗∥

α1α2(µ2−µ1)

(
Ψ1

2 (y
2, y3) J⃗1 + J⃗2

) (3.105)

Note that

∇H1 ×∇H2 = −
(
1 + Ψ1

2Ψ
2
1

) ∥v⃗∥2

α1α2 (µ2 − µ1)
ê1 (3.106)

For the Hamiltonians to be functionally independent RHS of (3.106) must not vanish, i.e.

1 + Ψ1
2Ψ

2
1 ̸= 0 (3.107)

Now let us define
K⃗1 =

J⃗1−Ψ2
1J⃗2

1+Ψ1
2Ψ

2
1

= − α1α2(µ2−µ1)

(1+Ψ1
2Ψ

2
1)∥v⃗∥

∇H1

K⃗2 =
J⃗2+Ψ1

2J⃗1
1+Ψ1

2Ψ
2
1

= α1α2(µ2−µ1)

(1+Ψ1
2Ψ

2
1)∥v⃗∥

∇H2

(3.108)

By (3.67) and (3.108) we get

K⃗1 ×∇H1 = 0⃗ K⃗2 ×∇H2 = 0⃗

K⃗2 ×∇H1 = ∥v⃗∥ ê1 K⃗1 ×∇H2 = ∥v⃗∥ ê1
(3.109)

Choosing K⃗i to be our new Poisson structure the proposition follows.

Therefore, we can write the local existence theorem of bi-Hamiltonian systems in three di-

mensions which generalizes the result of [5].

Theorem 3.4.3. Any three dimensional dynamical system

·
x⃗ (t) = v⃗ (x⃗ (t)) (3.110)

has a pair of compatible Poisson structures

J⃗i = αi (ê2 + µiê3) (3.111)

in which µi’s are determined by the equation

∂y1µi = −C2
31 − µi

(
C3

31 + C2
12

)
− µ2

iC
3
12 (3.112)
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and αi’s are determined by the equation

∂y1 lnαi = ∂y1 ln ∥v⃗∥+ C3
31 + µiC

3
12 (3.113)

Furthermore (3.110) is a locally bi-Hamiltonian system with a pair of local Hamiltonian

functions determined by

J⃗i = (−1)i+1 ϕ∇Hi (3.114)

where

ϕ =
α1α2 (µ2 − µ1)

∥v⃗∥
(3.115)

3.5. BI-HAMILTONIAN SYSTEMSONTHREEMANIFOLDSBYDIFFERENTIAL

FORMS

In order to obtain and express the obstructions to the global existence of bi-Hamiltonian struc-

tures on three manifolds by certain cohomology groups and characteristic classes, we will

reformulate the problem by using differential forms. For this purpose, if M is a 3 manifold

with volume form Ω, associated with a Poisson bivector Λ, there is a one form

J = ΛyΩ (3.116)

called Poisson one-form. The equation

v = J(dH) (3.117)

can be written as

ιvΩ = J ∧ dH (3.118)

and the Jacobi identity is given by

J ∧ dJ = 0 (3.119)

Then, a bi-Hamiltonian system is two linearly independent Poisson one-forms such that

ιvΩ = J1 ∧ dH2 = J2 ∧ dH1 (3.120)
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It can be shown that locally J1 and J2 can be chosen to be proportional to dH1 and dH2,

respectively, and hence

ιvΩ = ΦdH1 ∧ dH2. (3.121)

For the rest of our work, we will use the following commutative diagrams for the identifica-

tion of vector fields and differential forms on R3

0 −→ Λ0 (R3)
d−→ Λ1 (R3)

d−→ Λ2 (R3)
d−→ Λ3 (R3) −→ 0

∥ ↑ ∗ıvΩ ↑ ıvΩ ↑ ∗

0 −→ C∞ (R3)
∇−→ X (R3)

∇×−→ X (R3)
∇·−→ C∞ (R3) −→ 0

(3.122)

and
∗ιuιvΩ = ιu×vΩ

∗ (∗ιuΩ ∧ ιvΩ) = u · v
(3.123)

The Jacobi identity for Poisson vector fields (3.119) implies that there are 1-forms βi such

that

dJi = βi ∧ Ji (3.124)

for each i = 1, 2.

Proposition 3.5.1. There is a 1-form β such that

dJi = β ∧ Ji (3.125)

for each i = 1, 2.

Proof. Applying (3.124) to the compatibility condition

J1 ∧ dJ2 + J2 ∧ dJ1 = 0 (3.126)

we get

(β1 − β2) ∧ J1 ∧ J2 = 0 (3.127)

which implies that

β1 − β2 = b1J1 + b2J2 (3.128)
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and therefore we can define

β = β1 − b1J1 = β2 + b2J2 (3.129)

Hence

β ∧ Ji = βi ∧ Ji = dJi (3.130)

and the proposition follows.

Note that β is a TM valued 1-form. namely,

ιê1β ̸= 0 (3.131)

in general. Now we are going to show that by an appropriate change of Poisson vectors, we

may reduce it to a Q valued 1-form.

Lemma 3.5.2.

ιê1β = ιê1 (d lnϕ) (3.132)

where ϕ is the function defined in (3.90)

Proof. For the ease of computation we carry out the computation for Poisson vector fields,

then map them to differential forms The Jacobi identity (3.46) implies that ∇×Ji is orthog-

onal to Ji and therefore we get

∇× Ji = ai1ê1 + ai2ê1 × Ji (3.133)

By the definition of Poisson vector fields we have

J1 × J2 = ϕ ∥v⃗∥ ê1 (3.134)

we can rewrite (3.133) in the form

∇× J1 = a11
ϕ∥v⃗∥J1 × J2 + a12ê1 × J1

∇× J2 = a21
ϕ∥v⃗∥J1 × J2 + a22ê1 × J2

(3.135)
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or
∇× J1 =

(
− a11

ϕ∥v⃗∥J2 + a12ê1

)
× J1

∇× J2 =
(

a21
ϕ∥v⃗∥J1 + a22ê1

)
× J2

(3.136)

Now, the compatibility condition (3.60) implies

(a22ê1 × J2) · J1 = − (a12ê1 × J1) · J2 (3.137)

and therefore we have

(J2 × J1) · (a22ê1) = − (J1 × J2) · (a12ê1) (3.138)

using (3.134) we get

−ϕ ∥v⃗∥ ê1 · a22ê1 = −ϕ ∥v⃗∥ ê1 · a12ê1 (3.139)

and obtain

a22 = a12 =
a

ϕ ∥v⃗∥
(3.140)

Now, we can rewrite (3.136)

∇× J1 =
(
− a11

ϕ∥v⃗∥J2 +
a

ϕ∥v⃗∥ ê1

)
× J1

∇× J2 =
(

a21
ϕ∥v⃗∥J1 +

a
ϕ∥v⃗∥ ê1

)
× J2

(3.141)

Let

ξ =
a21
ϕ ∥v⃗∥

J1 −
a11
ϕ ∥v⃗∥

J2 +
a

ϕ ∥v⃗∥
ê1 (3.142)

where the coefficients a21, a11 and a are given by

a11 = (∇× J1) · ê1
a21 = (∇× J2) · ê1
a = (∇× J1) · J2

(3.143)

Therefore ξ can be written as

ξ =
((∇× J2) · ê1) J1 − ((∇× J1) · ê1) J2 + ((∇× J1) · J2) ê1

ϕ ∥v⃗∥
(3.144)
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Now, using (3.99), (3.85) and (3.90) we get

(∇× J1) · J2 = ϕ ∥v⃗∥ (∂y1 lnϕ) (3.145)

and hence

ξ =
((∇× J2) · ê1) J1 − ((∇× J1) · ê1) J2

ϕ ∥v⃗∥
+ (∂y1 lnϕ) ê1 (3.146)

Now using the vector identities

(∇× Ji) · ê1 = ∇ · (Ji × ê1) + (∇× ê1) · Ji (3.147)

and

[u, v] = − (∇ · u) v + (∇ · v)u−∇× (u× v) (3.148)

after some computation we obtain

ξ = ∇ lnϕ+ ê1 ×
(
[ê1 × J1, ê1 × J2]

ϕ ∥v⃗∥
− ê1 ×∇ ln ∥v⃗∥

)
(3.149)

hence

ξ · ê1 = ê1 · ∇ lnϕ (3.150)

defining

β = ∗ιξΩ (3.151)

and using (3.123) the lemma follows.

Now we define new Poisson one forms Ki

Ji = ϕKi (3.152)

Taking the exterior derivatives of both sides

dJi = dϕ ∧Ki + ϕdKi = β ∧ ϕKi (3.153)

and dividing both sides by ϕ

dKi = (β − d lnϕ) ∧Ki (3.154)
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Let

γ = β − d lnϕ (3.155)

Now, by the lemma above

ιê1γ = ιê1β − ιê1 (d lnϕ) = 0 (3.156)

and

dKi = γ ∧Ki (3.157)
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4. GLOBAL EXISTENCE THEOREM FOR BI-HAMILTONIAN
STRUCTURES IN THREE DIMENSIONS

In this section, we investigate the conditions for which the local existence theorem holds

globally. To study the global properties of the vector field v by topological means, we will

relate the vector field with its normal bundle.

4.1. THE COMPLEX LINE BUNDLE Q → M

Let E be the 1-dimensional subbundle of TM generated by the non-vanishing vector field

v (y). Let Qz = TzM/Ez and Q = ∪
z∈M

Qz. Q is isomorphic to the orthogonal complement

bundle to E in TM . Then we have the short exact sequence

0 → E
i−→ TM

π−→ Q −→ 0

↓ ↓ πTM ↓ πQ
M M M

(4.1)

4.1.1. The Complex Structure on Fibers of Q → M

By using the cross product with T (z) we can define a complex structure Λ on the fibers of

Q→M

Q
Λ−→ Q

(z, v) 7−→ (z,T× v)
(4.2)

For a normal vector ê2 (z) fixed by the choice of coordinate system, the complex structure

allows us to identify fibers of Q→M with C as follows. Let

Q(1,0) =
{
v−

√
−1Λ (v) | v ∈ Q

}
(4.3)

and

Q(0,1) =
{
v+

√
−1Λ (v) | v ∈ Q

}
(4.4)
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Therefore we have the isomorphism π(1,0) defined by

Q
π(1,0)

−→ Q(1,0)

(z, v) 7−→
(
z, v−

√
−1Λ (v)

) (4.5)

which satisfies

π(1,0) (Λ (v)) =
√
−1π(1,0) (v) (4.6)

Hence we have

π(1,0) (y2ê2 + y3ê3) = y2π(1,0) (ê2) + y3π(1,0) (Λ (ê2))

= y2π(1,0) (ê2) +
√
−1y3π(1,0) (ê2)

=
(
y2 +

√
−1y3

)
π(1,0) (ê2)

(4.7)

for all (y, y2ê2 + y3ê3) ∈ Q.

With the help of this complex structure the coordinate transformations given by (3.36) sug-

gests that in any flow coordinate neighborhood around p ∈M has the structure of a complex

line bundle over the integral curve passing through p ∈ M . Since we now have Apq (z) ∈

U (1) and therefore

Apq (z) = e
√
−1θpq(z) (4.8)

the coordinate transformations has the form

∂yiq (z)

∂yjp (z)
=

 1 0

0 e
√
−1θpq(z)

 (4.9)

and gives the local coordinates in the form

Ûp ⊂M
yp−→ R× C

(z) 7→
(
y1, y2 +

√
−1y3

) (4.10)
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4.1.2. The Basic Connection on Q → M

By definition of Q we have the commutative diagram for tangent bundles

TQ
πTQ−→ Q

↓ (πQ)∗ ↓ πQ
TM

πTM−→ M

(4.11)

Using the pullback bundle

π∗
Q (TM)

πTQ−→ Q

(y, u; v, 0) (y;u)

↓ (πQ)∗ ↓ πQ
TM

πTM−→ M

(y; v) (y)

(4.12)

we obtain the short exact sequence of bundles over Q

0 → π∗
Q (TM)

iTM−→ TQ
πV Q−→ V Q → 0

(y, u; v, 0) (y, u; v, w) (y, u; 0, w)

↓ ↓ ∥

0 → π∗
Q (E)

iE−→ π∗
Q (TM)

πQ−→ π∗
Q (Q) → 0

(y, u; e1) (y, u; v) (y, u;w)

(4.13)

Definition 4.1.1. A connection on Q is an R−bilinear map

∇ : Γ(TM)× Γ(Q) → Γ(Q)

(v, s) 7→ ∇vs
(4.14)

satisfying the properties

i. ∇v (fs) = v (f) s+ f∇vs

ii. ∇fvs = f∇vs

Since E is generated by a non-vanishing vector field, it is an integrable subbundle of TM .
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Given a section s of Q, it is possible to lift it to a section s̃ of TM such that

s = pr (s̃) (4.15)

where pr is the projection from TM toQ. Then it is possible to define a connection according

to which the covariant derivative of a section s of Q in the direction of a section e of E is

given by

∇es = pr (Les̃) = pr[e, s̃] (4.16)

where Le is the Lie derivative in the direction of e. Such a connection is called a basic

connection or a Bott connection [8].

Now, it is possible to define a similar connection for the complexified bundle π(1,0)Q, and

this connection is called the complex Bott connection. Note that, one may also repeat the

same calculation for the dual bundle Q∗ and also of its complexification π(1,0)Q∗. We will

keep using the same name and notation for the connections on the dual bundle.

4.2. THE FIRST OBSTRUCTION: CHERN CLASS OF Q

Now, we try to find conditions for which a non-vanishing vector field v⃗ decomposes

v⃗ = ϕ∇H1 ×∇H2 (4.17)

for some globally defined function ϕ, H1 and H2. with the Poisson vector fields

Ji = (−1)i+1 ϕ∇Hi (4.18)

This implies that we have

ϕv⃗ = J1 × J2 (4.19)

For a vector field to be decomposed into the form (4.19), first of all the vector field must

be written as a product of two globally defined, linearly independent non-vanishing vector

fields J1 and J2. For this purpose let

ιv⃗Ω = w (4.20)
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Our question is to decompose the w into a product of two globally defined one forms ρ1 and

ρ2.

w = ρ1 ∧ ρ2 (4.21)

Since v is a non-vanishing vector field then w is a 2-form of constant rank 2 for ιuιvΩ = 0

for u ∈ X(M) implies up = λpvp ∈ TpM at each p ∈ M . If we let Sw to be the subbundle

of TM on which w is of maximal rank, then we have Sw
∼= Q defined in (4.1) .

Theorem 4.2.1. [9] Let Σ be an Rn-bundle over a connected base space M . Let w be a

2-form on Σ of constant rank 2s. Let Sw be the subbundle of Σ on which w is of maximal

rank. w decomposes if and only if

i. Sw is a trivial bundle.

ii. The representation of its normalization as a map w1 : M → SO(2s)/U(s) arising

from any trivialization of Sw lifts to SO(2s).

In our case, when s = 1, sinceU(1) ∼= SO(2), SO(2)/U(1) is a point so the second condition

in the theorem is satisfied. Hence, w decomposes if and only if Sw is trivial.

Note that, a complex line bundle Q is trivial if and only if c1(Q) = 0, or equivalently if and

only if it has a global section.

Since the decomposition of the 2-form w into a globally defined 1-forms ρ1 and ρ2 is a nec-

essary condition for the existence a global bi-Hamiltonian structure. However, the decom-

position does not imply that the factors ρi satisfy the condition

ρi ∧ dρi = 0 (4.22)

In order to determine the effect of a vanishing Chern class condition on the constructions

made so far, we are going to investigate the Riccati equation defining the Poisson vector

fields.

Since our Poisson vectors and related integrability conditions are determined by the local

solutions of the Riccati equation (3.112), they are defined locally on each chart. Let {Jp
i }

and {Jq
i } be the Poisson vector fields in flow coordinate charts (Up, yp) and (Uq, yq) around

points p ∈M and q ∈M , respectively. Around point p ∈M , the Poisson vector fields {Jp
i }
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are determined by µp
i , α

p
i and the local frame {êp2, ê

p
3}. Given the local frame, we can write

the Riccati equation (3.112) whose solutions are µp
i ’s, and using µp

i ’s we can determine αp
i ’s

by the equation (3.113). Now, if c1 (Q) = 0, which is a necessary condition for the existence

of global bi-Hamiltonian structure, then we have a global section of Q, i.e. a global vector

field normal to v⃗. Using the metric on M , we can normalize the global section of Q and take

it as ê2 and define ê3 = ê1 × ê2. Then we have the global frame field

êpi = êqi (4.23)

In order to understand the relation between local Poisson vector fields obtained in two dif-

ferent coordinate neighborhoods, we first need the following lemma

Lemma 4.2.2. If two solutions µ1 (t) and µ2 (t) of the Riccati equation

dµi

dt
= −C2

31 − µi

(
C3

31 + C2
12

)
− µ2

iC
3
12 (4.24)

are known, then the general solution µ (t) is given by

µ− µ1 = K (µ− µ2) e
∫
C3

12(µ2−µ1)dt (4.25)

where K is an arbitrary constant.

Proof.
d

dt
(µ− µ1) = −(µ− µ1)

(
C3

31 + C2
12

)
− (µ2 − µ2

1)C
3
12 (4.26)

Dividing by µ− µ1 gives

d

dt
ln (µ− µ1) = −

(
C3

31 + C2
12

)
− (µ+ µ1)C

3
12 (4.27)

Similarly
d

dt
ln (µ− µ2) = −

(
C3

31 + C2
12

)
− (µ+ µ2)C

3
12 (4.28)

Hence
d

dt
ln
(
µ− µ1

µ− µ2

)
= −(µ2 − µ1)C

3
12 (4.29)

And the result follows.
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Theorem 4.2.3. If c1 (Q) = 0, then two pairs of compatible Poisson vector fields {Jp
i } and

{Jq
i } obtained on two intersecting coordinate neighborhoodsUp andUq are related onUp∩Uq

by
Jq
i

∥Jq
i ∥

=
Jp
i

∥Jp
i ∥

(4.30)

Proof. Given the global frame field {ê2, ê3} defined both on coordinate neighborhoods Up

and Uq, Riccati equations for µi’s can be written as

∂y1µ
r
i = (∇× ê2) · ê2 + µr

i ((∇× ê2) · ê3 + (∇× ê3) · ê2) + (µr
i )

2 (∇× ê3) · ê3 (4.31)

for r = p, q Therefore, on Up ∩Uq, µ
p
i and µq

i are four solutions of the same Riccati equation

for i = 1, 2. By the lemma above we have

µq
i − µp

1 = Kpq
i (µq

i − µp
2) e

∫
C3

12(µ
p
2−µp

1)dy1 (4.32)

Now, using the compatibility condition (3.57)

C3
12 (µ

p
2 − µp

1) = ∂y1 ln
αp
2

αp
1

(4.33)

(4.32) becomes

µq
i − µp

1 = Kpq
i (µq

i − µp
2)
αp
2

αp
1

(4.34)

where

Kpq
i = Kpq

i

(
y2p, y

3
p

)
(4.35)

is constant w.r.t. y1p . Multiplying both sides by αp
1α

q
i in (4.34) gives

αp
1α

q
i (µ

q
i − µp

1) = Kpq
i α

p
2α

q
i (µ

q
i − µp

2) (4.36)

which leads to

Jq
i × Jp

1 = Kpq
i J

q
i × Jp

2 (4.37)

Rearranging (4.37) we obtain

Jq
i × (Jp

1 −Kpq
i J

p
2 ) = 0 (4.38)
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Since

∂y1K
pq
i = 0 (4.39)

by compatibility we can take

J̃p
i = Jp

1 −Kpq
i J

p
2 (4.40)

to be our new Poisson vector fields on the neighborhood Up, and obtain

Jq
i × J̃p

i = 0 (4.41)

By compatibility this new Poisson vector fields J̃p
i produce functionally dependent Hamil-

tonians and therefore, for the simplicity of notation, we will assume without restriction of

generality that

J̃p
i = Jp

i (4.42)

and get the result

Jq
i = λqpJp

i (4.43)

and the theorem follows.

This theorem states clearly the reason one may fail to extend local Poisson vector fields into

global vector fields even if c1 (Q) = 0. In order to extend the local Poisson vector fields into

a global one, one should have

Jq
i = Jp

i (4.44)

on Up∩Uq. However not the Poisson vectors but their unit vectors are global. Then, we have

the following result.

Corollary 4.2.4. If c1 (Q) = 0, then we have two global sections ĵi of Q satisfying

ĵi ·
(
∇× ĵi

)
= 0 (4.45)

and

Jp
i × ĵi = 0 (4.46)
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Obviously, ĵi’s provide the global Poisson vector fields but since

∂y1
∥Jp

2∥
∥Jp

1∥
̸= 0 (4.47)

in general, they may not lead to a pair of compatible Poisson structures. Now, we take ĵ1 as

our first global Poisson vector field, and then going to check if we can find another global

Poisson vector field compatible with this one by rescaling ĵ2.

4.3. THE SECOND OBSTRUCTION: BOTT CLASS OF THE COMPLEX CODI-

MENSION ONE FOLIATION

Since v is a nonvanishing vector field onM , it defines a real codimension two foliation onM .

Since Q = TM/E is a complex line bundle on M , this foliation has complex codimension

one. Now, by assuming our primary obstruction, which is the vanishing of the Chern class,

we will define the Bott class of the complex codimension 1 foliation and then show that the

system admits two globally defined Hamiltonian functions if and only if the Bott Class is

trivial. First, we will give some definitions.

4.3.1. Poisson Vector Fields of Trivial Normal Bundle

For the rest of our work, we will assume that Q and its dual Q∗ are trivial bundles. By (4.45)

it has two global sections ĵi satisfying

ĵi ∧ dĵi = 0 (4.48)

and ∥∥∥ĵi∥∥∥ = 1 (4.49)

satisfying

dĵi = Γi ∧ ĵi (4.50)
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for globally defined Γi’s. These ĵi’s are related with the local Poisson vector fields JP
i by

Jp
i = ∥Jp

i ∥ ĵi (4.51)

and

Kp
i = ψp

i ĵi (4.52)

where

ψp
i =

∥Jp
i ∥
ϕp

(4.53)

By (3.157) we have

dKp
i = γp ∧Kp

i (4.54)

Using (4.52) into (4.54) leads to

dĵi = (γp − d lnψp
i ) ∧ ĵi (4.55)

Redefining Γi’s if necessary, comparing (4.50) with (4.55) we get

Γi = γp − d lnψp
i (4.56)

Since, ĵ1 and ĵ2 are not compatible we introduce a local Poisson form jp defined on the

coordinate neighborhood Up of p ∈M , which is compatible with ĵ1 and parallel to ĵ2 i.e.

jp = fpĵ2 (4.57)

and

ĵ1 ∧ djp + jp ∧ dĵ1 = 0 (4.58)

Now, (4.57) implies that

djp = (Γ2 + d ln fp) ∧ jp (4.59)

Putting (4.50) and (4.59) into (4.58) we get

ĵ1 ∧ (Γ2 + d ln fp) ∧ jp + jp ∧ Γ1 ∧ ĵ1 = 0 (4.60)
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or equivalently

(Γ1 − Γ2 − d ln fp) ∧ ĵ1 ∧ jp = 0 (4.61)

and using (4.57) we find

(Γ1 − Γ2 − d ln fp) ∧ ĵ1 ∧ ĵ2 = 0 (4.62)

which amounts to

(Γ1 − Γ2) ∧ ĵ1 ∧ ĵ2 = d ln fp ∧ ĵ1 ∧ ĵ2 (4.63)

Our aim here is to find the obstruction for the extending fp toM , or for (4.63) to hold globally.

For this purpose we consider the connections on Q defined by Γi’s. By (4.56) we define the

curvature of these connections to be

κ = dΓi = dγp (4.64)

Taking the exterior derivative of (4.54) we get

dγp ∧Kp
i = 0 (4.65)

and hence

dγp ∧ ĵi = 0 (4.66)

which leads to

κ = dγp = φĵ1 ∧ ĵ2 (4.67)

Now multiplying both sides of (4.63) with φ

(Γ1 − Γ2) ∧ κ = d ln fp ∧ κ = d ((ln fp)κ) (4.68)

Let

Ξ = (Γ1 − Γ2) ∧ κ (4.69)

We have a compatible pair of global Poisson structures, i.e. fp is globally defined, if and

only if Ξ is exact. Now we are going to show that the cohomology class of Ξ vanishes if and

only if the Bott class of the complex codimension 1 foliation vanishes. Since Q is a complex
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line bundle we have

c1 (Q) = [κ] (4.70)

Since the vanishing of c1 (Q) is a necessary condition let

c1 = dh1 (4.71)

therefore we have

dh1 = κ = dγp (4.72)

which implies that on Up

h1 = γp + d lnhp (4.73)

Then the Bott class [8]

h1 ∧ c1 = (γp + d lnhp) ∧ dγp = d lnhp ∧ κ+ γp ∧ dγp (4.74)

Now by (3.156) and (4.67) we have

γp ∧ dγp = 0 (4.75)

hence we get

h1 ∧ c1 = d ((lnhp)κ) (4.76)

Our last step is to compute the function hp. Since h1 is globally defined, on Up ∩Uq we have

h1 = γp + d lnhp = γq + d lnhq (4.77)

Hence

γp − γq = d ln
hq

hp
(4.78)

On the other hand, since Γi’s are globally defined, by (4.56) we have

γp − γq = d ln
ψp
i

ψq
i

(4.79)

and hence

d ln
hpψp

i

hqψq
i

= 0 (4.80)
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Now, we have the following theorem.

Theorem 4.3.1. The cohomology class of Ξ vanishes if and only if the Bott class vanishes.

Proof. If the Bott class vanishes, then we have a globally defined function h such that

d ((lnh)κ) = 0 (4.81)

Then choosing f = h leads to a compatible pair of global Poisson structures. Conversely if

there is a pair of global Poisson structures then γ becomes a global form and by (4.78) we

have

d ln
hq

hp
= 0 (4.82)

on Up ∩ Uq. Therefore

lnhq − lnhp = cqp (4.83)

where cqp is a constant on Up ∩ Uq. Now fixing a point x0 ∈ Up ∩ Uq

cqp = lnhq (x0)− lnhp (x0) = ln cq − ln cp (4.84)

we obtain
hp

cp
=
hq

cq
= h (4.85)

where h is a globally defined function. Therefore

d lnh = d lnhp (4.86)

and

[h1 ∧ c1] = [d ((lnh)κ)] = 0 (4.87)

and the theorem follows.
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5. CONCLUSION

In this work, the bi-Hamiltonian structure defined by a nonvanishing vector field on a three

dimensional manifold is investigated. Bi-Hamiltonian structures are defined by symplectic

or Poisson structures on a manifold. Since our manifold is odd dimensional, we begin with

searching for Poisson structures defined by the given vector field. As Poisson structures

defined by Jacobi identities we compute the Jacobi identity in the flow coordinate system de-

fined by the vector field and found that the Jacobi identity amounts to a Riccati equation. By

the local existence theorem, the Riccati equation has at least two independent solutions and

these solutions define two families of Poisson structures. Then, it is shown that in these fami-

lies of solutions, it is possible to find families of compatible pairs of Poisson structures. Next,

we investigate the condition for the existence of two functionally independent Hamiltonian

functions and show that these conditions satisfy the conditions obtained for the compatible

Poisson structures. Therefore, we formulated the local existence theorem for bi-Hamiltonian

structures stating that given a non-vanishing vector field on a three dimensional manifold,

locally it is always possible to find a compatible pair of Poisson structures with two Hamil-

tonian functions.

The second part of our work is devoted to the investigation of global existence of bi-Hamil-

tonian structures. For this purpose, first we study the space of all bi-Hamiltonian structures

which is a subbundle of the normal bundle of the nonvanishing vector field. Therefore, the

existence of a global section of the subbundle, which is the global bi-Hamiltonian structure,

implies the existence of a global nontrivial section of the normal bundle. Since, it is possible

to define a complex structure on the fibers of the normal bundle given by taking the cross

product with the given vector field, the normal bundle has the structure of a complex line

bundle. Therefore, the existence of a global section of a complex line bundle implies that it

is trivial and its first Chern class vanishes. Hence, the first Chern class of the normal bundle

becomes the primary obstruction to the existence of bi-Hamiltonian structure. Obviously this

condition is necessary but not sufficient since the existence of a global section of the subbun-

dle implies a global section of the bundle itself but the converse may not be true. Therefore

with the assumption of the vanishing first Chern class we investigate the relation among local
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Poisson structures defined on different neighborhoods on the intersection of these neighbor-

hoods. This problem is called the extension problem, which can be stated as follows: Given

locally defined objects on coordinate neighborhoods, is it possible to find an extension which

is well-defined on the union of neighborhoods? The answer of this question lies on the rela-

tion of quantities on the intersection of neighborhoods. Since our local object is essentially

defined by a Riccati equation, with the help of the relations between solutions of Riccati

equation we are managed to obtain the relation between local bi-Hamiltonian structures on

the intersection of neighborhoods and obstructions to such an extension.Then we showed that

it is possible to find two global Poisson structures if and only if the first Chern class vanishes.

However, this pair of global Poisson structures may fail to be compatible.

In order to study the global existence of a compatible pair of global Poisson structures, we

investigate the complex codimension one foliation defined by the nonvanishing vector field.

Then we formulate a globally defined 3-form on the manifold and showed that compatibil-

ity is equivalent to the vanishing of the cohomology class of this 3-form. Furthermore we

computed the Bott class of the complex codimension one foliation and showed that above de-

fined 3-form vanishes if and only if the Bott class vanishes. Therefore, vanishing of the Bott

class of the complex codimension one foliation defined by the nonvanishing vector field is

the secondary obstruction which is sufficient to imply the global existence of bi-Hamiltonian

structures.
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