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ABSTRACT

GLOBAL BI-HAMILTONIAN STRUCTURE OF THREE DIMENSIONAL
DYNAMICAL SYSTEMS

In this thesis the conditions for the local existence of the bi-Hamiltonian structure correspond-
ing to a non-vanishing vector field on three dimensional manifolds are obtained by using the
given vector field alone. It is shown that any non-vanishing vector field on a three dimen-
sional manifold is locally bi-Hamiltonian. Then by working on the equations related with the
local existence, the obstructions to extension of local bi-Hamiltonian structure are obtained.
After that, these obstructions are expressed in terms of the characteristic classes related with
the normal bundle of the given vector field. It is shown that any non-vanishing vector field
on a three dimensional manifold is globally bi-Hamiltonian if and only if the Chern class of
the normal bundle of the vector field and Bott class of the transversally holomorphic complex

codimension one foliation defined by the vector field vanishes.



OZET

UC BOYUTLU DINAMIK SISTEMLERIN GLOBAL Bi-HAMILTONYEN YAPISI

Bu tezde ii¢ boyutlu manifoldlar {izerinde hig sifir olmayan bir vektdr alanina karsilik gelen
bi-Hamiltonyen yapinin lokal varlig1 i¢in kosullar sadece verilen vektor alan1 kullanilarak
elde edilmistir. Ug boyutlu bir manifold iizerinde hig sifir olmayan her vektor alaniin lokal
olarak bi-Hamiltonyen oldugu gosterilmistir. Daha sonra, lokal varlikla iligkili denklem-
ler iizerinde calisarak, lokal bi-Hamiltonyen yapilarin genigletilebilmesinin engelleri elde
edilmistir. Bundan sonra, bu engeller verilen vektor alaninin normal demetiyle iliskili karak-
teristik siniflar cinsinden ifade edilmistir. U¢ boyutlu bir manifold iizerinde hig sifir olmayan
bir vektor alaninin global olarak bi-Hamiltonyen olmasi i¢in gerek ve yeter sartin vektor
alaninin normal demetinin Chern sinifinin ve vektdr alan1 ile tanimlanan transversal holo-
morfik kompleks ek-boyutu bir yapraklanmanin Bott sinifinin sifir olmas1 oldugu goster-

ilmistir.
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1. INTRODUCTION

Three dimensional dynamical systems are widely used in mathematics, as well as physics and
engineering sciences for their wide range of applications [1]. Basically it consists of three
ordinary differential equations in three variables describing the local rate of change of these
variables. Then, one could analyze the qualitative behavior such as stability, or the existence
and uniqueness of solutions around certain initial values or boundary conditions. Here, the
dimension three has a special importance from the point of view of modeling real world
applications. Among these systems an important subclass is autonomous dynamical systems,
that is the dynamical systems that do not explicitly depend on the independent variable. Such
systems are especially useful in formulating natural systems since the laws of nature are

assumed to be independent of time.

In this thesis, autonomous three dimensional dynamical systems are investigated from a ge-
ometric point of view. Namely an autonomous three dimensional dynamical system is iden-
tified with a vector field or more specifically as the local section of the tangent bundle of
a three dimensional manifold. Identifying a dynamical system with geometric objects on a
manifold would enable to construct relations between differential geometric structures and
the dynamical system defined on a three dimensional manifold. Then, by using the topologi-
cal properties of three dimensional manifolds, it would be possible to investigate some of the

global properties of three dimensional dynamical systems.

An important property is the local bi-Hamiltonian structure of an autonomous three dimen-
sional dynamical system [2]. In the analysis of dynamical systems, the invariants of the
system, i.e. the quantities or properties that are invariant under the flow describing the dy-
namical system, are important. Many properties of the system, such as Liouville integrability
and stability are usually defined or related with these invariants. A Hamiltonian function is
an invariant of the dynamical system on a Poisson manifold, that is, a manifold with a Poisson

structure.

The main problem that is investigated in this thesis is the following: What are the conditions

to have a global bi-Hamiltonian structure? In other words, what are the obstructions on a



vector field ' (x) on a three dimensional manifold M to be globally decomposed into two

factors .J; (x) and .J () such that

<V><j;(a:)>~=]i(:v) —0,i=1,2 (1.1)

In three dimensions there are many examples of dynamical systems having a global bi-
Hamiltonian structure, which means that the solution of this problem is not empty. On the
other hand, as shown in [3] there is at least one counterexample, which means that the solution

of this problem is not trivial.

In the local existence part of the problem, since we work in three dimensions we search for
Poisson structures defined by the given vector field and we show that it is always possible to
find a compatible pair of Poisson structures with two Hamiltonian functions. In the global
existence part, we prove that it is possible to find two global compatible Poisson structures
if and only if the first Chern class of the normal bundle of the vector field and Bott class of
the transversally holomorphic complex codimension one foliation defined by the vector field

vanishes.



2. PRELIMINARIES

For the definitions in this chapter and for more information one may consult [2], [3], [4].

Definition 2.0.1. 4 Poisson structure on a manifold M is the bilinear map {-,-} : C*°(M) x
C>®(M) — C>*(M) satisfying

i. skew-symmetry condition: {f,g9} = —{g, [}
ii. Jacobiidentity: {{f,g},h} + {{g,h}, [} +{{h,f},9} =0
iii. Leibniz rule: {fg,h} = f{g,h} + g{f, h}

2.1. BI-HAMILTIONIAN STRUCTURE OF AN AUTONOMOUS DYNAMICAL
SYSTEM

Denote the sections of A?(T'M) (that is, the space of p-multivector fields) by AP(M). Cor-
responding to a Poisson structure {-, -}, one can define a Poisson bivector field A € A*(M)
by {f,g} =< A,df ANdg >. Here < -,- > is the pairing between multivector fields and

differential forms: < Xy AXo A+ AXp, a1 Aag A=+ Ay, >= det(< X, a5 >)
As a natural extension of Lie derivative, Schouten-Nijenhuis bracket

[-,-] : AP(M) x AY(M) — APT9=1(M) is defined by the following proposition (for a proof
see [4]).

Proposition 2.1.1. Let M be a smooth n-dimensional manifold and let A(M) be the exterior
algebra of multivector fields on M. There exists a unique R-bilinear map A(M) x A(M) —
A(M), (P,Q) — [P, Q), called the Schouten-Nijenhuis bracket, which satisfies the following

properties:
i. For f,ge A°(M)=C>(M), [f,g]=0
ii. For X € AY(M) = X(M) and a multivector Q € A(M), [X,Q] = L, Q

iii. For P € AP(M),Q € AY(M), [P,Q] = (~1)™[Q, P]



iv. For P e AP(M),Q € AY(M),R € A(M),
[P,QAR] = [P.QJA R+ (-=1)""MQ A [P, R]
Remark 2.1.2. Jacobi identity for {-, -} is equivalent to [\, \] = 0.
(< [A,A],df ANdg A dh >=0)

Associated with a Poisson bivector field A, there is a bundle map J : T*M — T M.
(denote the induced map on the sections by the same letter J : Q' (M) — X(M)) defined by
<J(a),B8 >=Aa A p).

To each H € C°°(M) there is associated vector field v, = J(dH). H is called the Hamil-
tonian function and v, is called the Hamiltonian vector field. The equation & = J(dH) is

called Hamilton s equations of motion.

Definition 2.1.3. A Poisson pair on a manifold M is a pair (A1, A2) of Poisson bivector
fields such that [A1, \s] = 0. A bi-Hamiltonain system is prescribed by two Hamiltonian
functions Hy, Hy satisfying:

v = Jl(ng)
v = JQ(dHl)

where J1, Jo are bundle maps determined by A1, Ay respectively. The vector field v is called

a bi-Hamiltonian vector field.

If M is a 3 manifold with volume form 2, associated with a Poisson bivector field A, there
is a one form J = A_) called Poisson one-form. The equation v = J(dH) can be written as
1,82 = J A dH and the Jacobi identity is given by J A dJ = 0. (Note that this equation is
invariant under the multiplication of .J by a differentiable function f. Thatis, (fJ)Ad(fJ) =
f?J A dJ.) Then, a bi-Hamiltonian system is two linearly independent Poisson one-forms
such that ¢,§) = J; AdHy; = Jo A dH;. It can be shown that locally .J; and J; can be chosen
to be proportional to d H, and dH», respectively. (Hence ¢,{) = AdH, A\ dH>.)



2.2. IDENTIFICATION OF VECTOR FIELDS WITH 2-FORMS AND 1-FORMS
IN R3

Let M = IR3. By the definition of the bundle map J,

<J(a),B>=AaNnp)=-ANBANa)=—<J(B),a> (2.1)

Using the metric < -, - >, if one identifies T,M = T M, v —< v,- >4, one can consider J

as a linear transformation R® — R3

<Ju, v >,=— < Jv,u>,=— <v,Ju >, Vu,veR? 22)
= J'u=—-Ju, YuecR? .
This means, one can associate a matrix in so(3) to J : R? — R3.
0 —c b a
Using the isomorphism (s0(3), [,]) = (R?, x), ¢ 0 —a |~ | b |,onecanassign
b a 0 c

a Poisson vector field J € R3 to J at each point. Multiplying a column vector u € R3 by the
matrix corresponding to J is equal to J X u so there is the following relation:
J(dH) = J x V H. From this one can write the bi-Hamiltonian system in R? as two different

compatible Hamiltonian structures such that:

v = J, x VH,
v = Jyx VH,;

Jacobi identity is J; - (V x .J;) = 0, i = 1, 2 and the compatibility condition is
jl - (V x fg) + jg - (V x fl) = 0. Locally fl and jg can be chosen to be proportional to
V H; and V Hy, respectively. (Hence v = A\VH; x VHs.)

Local existence of bi-Hamiltonian structure in R® has been shown in [5].

For the volume form €2 in R3 one has the following isomorphism:



X(R?) — QYR3)

u = ok, Q=<u, >;=q,

Note that (Using the identity: o, A 3 = (—1)P~1 % 1, 3 for any p-form [3)

*LU(LUQ) = _au /\ *LHQ = _a’U /\ au = au /\ a/l)

=10 =ca,

0 = ,(,QN N, ANa,)
= (LD Ao, Na, + 6, Q2N (a, Aay,)
= (L, DN, ANy, + 1, QAo Ao, — 1, QLA Ao,
= 4, QN*0L Q2+ xa, Ao, Ao, — ko, Ao, Ao

v u v u v v

= (

LG4 < u,v >2 —[uf2|v[2)Q

By Lagrange’s identity:

|LUI,UQ’3 = \u|§]v|§— <u,v >§: lu x vlz

So 4,4, =«

uXv

(up to sign). Hence *c,, , = o, A o, (up to sign)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)



3. LOCAL EXISTENCE THEOREM FOR BI-HAMILTONIAN STRUC-
TURES IN THREE DIMENSIONS

3.1. THE FLOW COORDINATES

Given a manifold M and a non-vanishing vector field v on M, we have

_ v(p)
T = 1 ) o G-D

to be the unit vector field of v (p) at p € M. The flow &, defined by T is

dd,
ds

=To®,and &) =id (3.2)

Let (U, x,) be an orthogonal coordinate system around p € M. Let B; (p) be the geodesic
ball around p € M, thatis for any point z € Bj (p) there is a unique geodesic 7, (2) (¢) joining
pand z. Let U, = U,N B; (p) and (fjp, %'p) be the geodesic coordinate chart around p € M.

Namely, if z € U, and , () (t) is the geodesic joining p and z such that ~, (z) (0) = z,

denote
d .
Do) () =3, (2 63
Then
Tp(2) = (), 7, (2) =2 (3:4)

Assuming the geodesic joining p with itself to be the constant map ~, (p) = p, we have

7p (p) = 0 and hence 7, (p) = 0. Let
(7). (T) =T (3-5)

be the coordinates of the vector field T.

Now we can define

v, = {z el,| (% (2),T @))TZM - 0} (3.6)



or equivalently

vp:{zefjpﬁ.f(a:o} 3.7)

where z is the position vector of z € ﬁp in geodesic coordinates around p. Since p = 0 then
p € V, and the set is not empty. The following lemma proves that the set V,, can be considered

as a special set of initial points for each integral curve in (N]p.
Lemma 3.1.1. Each integral curve of T in [7p intersects V), at least at one point.

Proof. Consider the part of the integral curve C, passing through an arbitrary z ¢ @, (p) in
ﬁp, thatis C, = &4 (2) N ﬁp. Define the function

fi o — Rtu{o}

, 2 (3.8)
s (2) = |7, (2s(2))

Since @, (z) with the induced metric from R? is closed, it is complete, and f (P, (z)) > 0
is bounded below. Then, if {azn =9, (E)} is any sequence in C, for which |f (z,)] is
bounded and for which ||df,, || — 0, then we are going to prove that {x,,} has a convergent

subsequence {z,, } — z,. [6]. Let

@, () = @). (7, (@ () (3.9)

be the position vector of ®; (2) in geodesic coordinates. By assumption

L (3 =8, (3) T (3.,3) >0 (3.10)

ldfe, || = @, (2)

which implies that

%, ()T (2, () =2, 3

7 (5. @) eostetsn 0 @

where 0z (s,,) is the angle between -, (P, (z)) and T (@Sn (E)) Since H(fsn (2)
HT (&)Sn (Z)) H =1 we get

# 0 and

cos 0z (s,) — 0 (3.12)



Zp. Then, by Theorem 9.1.9 in [6] Z, is a critical point and f (Z,) is the minimum value of
f. In other words, defining z, = ®,_ (%) implies z,' (%) € V,. Namely z, is the point on

D, (Z,) which is closest to p. O

Now, it is possible to define another neighborhood of p € M,
U,=o,(V,) N0, (3.13)

Using the chart <l7p, %p) we define new coordinate functions as follows: Let z € ﬁp and
®, (z) be the integral curve through z. Since z € ﬁp implies z € @, (V,) and since Dy is

invertible, there exists a z, € V,, and s, € R such that
z =0, (2) (3.14)

Using (3.14) we can define s, to be the first coordinate of the point z.

For the remaining two coordinates, consider the vector Z, which is the tangent vector of the
geodesic joining p and z,, at z,, in geodesic coordinates around p. Now, choose an orthonormal

frame at {"I“ (2,),N(3,),B (Ep)} at z,. Since

Z,-T(3)=0 (3.15)

we have

z, =n(z)N(%) +b(2) B () (3.16)

Now, we could not use the components 7 (z,) and b (z,) of z, as coordinates of the point z
since they are defined at point z, rather than z. Therefore, one should first map the vector
z, to the point z then by defining an appropriate frame at z, we can take the components of
this new vector at z to be the coordinates of the point z. Obviously, one may want to use the
pushforward map (9, ), for this purpose but since this map may not be orthogonal, it may
preserve neither the orthogonality of Z, and T (Z,) nor the orthogonality of N (Z,) and B (Z,,).

To solve the former problem we introduce the following map

(@.)F @) = (@), @ — (TE)- (@), @) T() (3.17)
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Defining the subspaces ()3, and Q> of T, M and T’ M respectively as the subspaces orthog-

onal to T (Z,) and T (2) respectively, or simply
O = {ﬁ e T,M | &T (@) = o}

Proposition 3.1.2. (&, )"

*

is an isomorphism between Qz, and Q.

Proof. To prove this we only need to check the ker <((I>Sz)f> . Indeed if we let
u € ker <(<I>Sz)f>

By (3.2) we have
(®:.). T (%) =T ()

Therefore applying (®,.). " to both sides of (3.20) gives

which projects onto 0 in ().

Hence we have the commutative diagram

o v
prl 4 pr
(q)sz)i
Qz, Qz

where pr denotes the projection onto corresponding subspaces.

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Although (®, )T solves the problem of preserving the orthogonality of z, and T (Z,) along

*

the integral curve, the latter problem, namely the invariance of the orthogonality of N (Zp)

and B (Z,) along the curve requires (®,,)> to be orthogonal while it may not be. Now, we

will use the following lemma (page 26 of [7]) to solve this problem:
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Lemma 3.1.3. Let V and W be vector spaces, provided with inner products k and l. Let
L : V. — W be a vector space isomorphism. Then there exists a unique positive definite

self-adjoint linear mapping H : W — W such that H o L preserves the inner products.

This Lemma follows from the polar decomposition of the linear transformation L. Defining
an ambient isotopy H, for the self-adjoint transformation H, one could find an isotopy L; =
H, o L such that Ly = L and L; = L© which is an orthogonal transformation. Applying this
construction to (), (M*L (25 defines the orthogonal transformation (@sz)jo . Now, we may

define the two-frame field on M as

* (3.24)

Then, defining z € ()3, to be
Z=(9,)°%, (3.25)

*

and applying (®,.)1 to (3.16)
Z=n(3)N(Z) +b(z)B(3) (3.26)

and we define the components of Z to be the second and third coordinates of the point z € ﬁp,

and we get the coordinates (s,,n (2,),b(%,)) defined above.

Note that the choice of the frame at 2, is arbitrary. One may define the following specific
frame that will help us later on to define the two Hamiltonian functions defined by the vector
field. Let S. be the sphere of radius ¢ centered at the point with position vector Z, + £T (Z,,)
then the unit normal of S. at Z, is T (Z,). Choose ¢ sufficiently small such that y, " (S:) C
B, (p). Wehavez, € T3 S.. Let 7, (Z,) be the great circle passing through z, in the direction
of Z,. Then rotate this great circle by 7/2 around Z, to obtain another great circle, in other
words, {T (%,),N(3,),B (Ep)} is the Darboux frame of 7,, (Z,) on S; where
N 7

N (gp) =

- [z

(3.27)

and

B (%) =T (3) X N(3) (3.28)
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The coordinates of a point z in the coordinate chart ((/]\p, yp) of a point p € M, is given by

Up (2) = (4 (2) 9 (2) 9 (2)) = (52,1 (%) .0 (2,)) (3.29)

where s, is the arclength of the integral curve segment joining z and z, given in (3.14). The
point 2, is on the integral curve passing through z which is closest to p, and (n (2,),b(z,))
are given by (3.26). Now, consider another coordinate chart ((7(1, yq) ofapointq € M. If

z € Up N (7(1, then we have a unique integral curve joining points z, 2, and z, defined above.

Figure 3.1. Coordinate transformation

Now we have the coordinates y, (2) = (s£,n(2,),0(z,)) and y, (2) = (s%,n(2,),b(2,)).

To find the coordinate transformation first we start with the fact that
st — sl =52t (3.30)

where s2? is the arclength of the integral curve between z, and z,. In order to find the coor-
dinate transformations first note that taking the derivative with respect to s? (or equivalently
s9) is nothing but the derivative along the integral curve passing through z. Now, since the
points 2, and z, are the same for all points on the integral curve segment passing through =
il (7}, N (7[1, therefore the distance between 2, and z, is constant for all points on the segment
of the integral and hence its derivative along the the integral curve vanishes.

I55 _ (3.31)

0sb
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Differentiating (3.30) with respect to s* and using (3.31) lead to

q
0s4

p pr—
0ss

1 (3.32)

Similarly, since the points p and 2, and ¢ and z, are the same for all points on the integral
curve segment passing through 2 in [7,, N (7,1, the tangent vectors of the geodesics joining these
pairs of points remain invariant as we move along the integral curve segment in ﬁpﬂ (A]q. Since
the choice of the frame depends only on the point 2, or z,, the components (n (z,),b(2,))
and (n (z,),b(z,)) are constant for all points on the integral curve segment passing through

zin ﬁp N ﬁq. Therefore their derivatives along the integral curve also vanish i.e.

on (z,) _ b (z,) _0 (3.33)

0s? 0sb

Next we need to answer the following question: What happens to s¢ when we change

(n (%) ,b(2,))? Note that, given a point z € (/jp N Uq since the points 2, and z, are deter-
mined by the points ¢ and p which are the same for all points in the intersection of coordinate
neighborhoods, the only way of varying (n (z,),b(z,)) is to change the frame at z,. How-
ever, changing the frame at 2, does not change s? and s?, and by (3.30) does not change s?.

Therefore we have
dst 0s?
on (zp) ob (2p)

=0 (3.34)

Finally, for the relation between (n (z,),b(%,)) and (n (z,),b(z,)) we will use the fact that
they are components of (Q)Sg)jO z, and (<I>Sg)jo z, where z,, and z, are the tangent vectors
of the geodesics joining pairs of points (p, z,) and (g, z,). Since Z, and Z, are unit vectors
by definition and (@sg)jo and (q)sg)Lo are orthogonal, ((IDSg)*LO z, and (q)sg)jo Z, are unit

*

vectors perpendicular to T (z) at z. Therefore, we have

((Dsg)jO 2, = Ay (2) ((I)s”)lo Z, (3.35)

z/ %

where A,, (z) € SO (2) defined by the rotations around T (z). Therefore we have the Jaco-

bian matrix of coordinate transformations

a7 _ (3.36)
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This coordinate transformation suggest that we have the local trivialization

(2) U,c M 5 RxR® (y',4%9°)
1 prl 1 { (3.37)
(s) U,nC, — R (")

In fact, the flow coordinate chart is nothing but the identification of the intersection of ﬁp and
a sufficiently small tubular neighborhood of C),, which we identify with ﬁp, with the normal
bundle of T in 7'M over M, which we denote by (). The local frame field

{€1(z),ex2(2),e3(2)} is the adapted orthonormal frame.

Let (Up, x,) be an orthogonal chart for M/ and (ﬁp, yp) be the corresponding flow coordinate

chart defined above, which are related by
y =gyt (a:l,x2,x3) (3.38)

Let {?k (m)} be an orthonormal coordinate frame field in the former coordinate system and
{€x (y)} be the orthonormal frame field {T (y) ,N(y),B (y)} defined by (3.1) and (3.24)
in the latter coordinate system. We assume both to be right handed. Without restriction of
generality we may assume that {;k (x)} is the standart Euclidean frame with the gradient
operator

V =130 (3.39)

Then, one can define the new local non-coordinate basis of vector fields as the directional

derivatives along the frame field {ej (y)}

(2

e =€l (X) 0o = €] (¥) O (3.40)

Taking the definition of the latter coordinate system we have

. 0

These basis vectors are involutive but not commutative. Now let us define the structure
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functions (CY. (y)) via the relation
lei €] = ij (y) éx (3.42)
and subject to the integrability condition (Jacobi identity)

O 2], &] = (= (Ciy) + CrpCi) @ = 0 (3.43)
irj,k
(Here (©) denotes a cyclic sum over the indices.) Finally, the curl and divergence of the basis
vectors are given by
V X & = —1gkcig.
(¥) 2 1€ (¥) (3.44)
V-e(y) = ij'i (y)

3.2. POISSON STRUCTURES IN THREE DIMENSIONS

Now, we will show that every three dimensional dynamical system is locally bi-Hamiltonian,
namely there are two Poisson vector fields fl and J; and two Hamiltonian functions H; and
H, such that

F(t)=T(F(t) = Jy x VHy = Jy x VH, (3.45)

And the Jacobi identity becomes
(v X f) T=0 (3.46)

Note that, Jacobi identity for Poisson vector fields has a dilatation symmetry in the sense that

if J is a Poisson vector field, i.e. satisfies the Jacobi identity then f J is also a Poisson vector

field. Since

(vaf)-fii - (fof+fV><f>-ff
e (3.47)
= (vxJ)T=0

Proposition 3.2.1. 4 non-vanishing vector field v on M defines two Poisson structures on

M.

Proof.  Adopting the coordinate system and frames defined before, and keeping (3.45) in
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mind, we will start with assuming that
er-J=0 (3.48)

and hence we have the Poisson vector field

-

J = 04/6\2 + ﬁ/e\g (349)
and its curl is subject to the Jacobi identity (3.46) which leads to
VxJ=Vaxé+aV xé+ VB xe;+ 8V X & (3.50)

Then, applying the Jacobi identity (3.46) obtained by taking the dot product of (3.49) with

(3.50), and using triple vector product identities we get
BOj a0 — by — o*Ch — af (Qﬁ:’1 - 0122) —B52C3, =0 (3.51)

If J = O then ||| = 0 and hence 7 = ( which contradicts with our assumption that the vector

field is non-vanishing. Therefore we assume
J#0 (3.52)

which means that o # 0 or § # 0. Now we assume « # 0, while the case 5 # 0 is similar

and amounts to rotation of the frame. Defining

= (3.53)

B
«
and dividing (3.51) by o we get

Oy = —C5 — (Cgl + 0122) — *Chy (3.54)

whose characteristic curve is the integral curve of (3.45) in arclenght parametrization. There-

fore on the solution curve we have

dp
ds = _C:'?l — M (C??l + 0122) - Mchz (3.55)
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in the arclength variable s = y'. The Riccati equation (3.55) is equivalent to a linear sec-
ond order equation and hence possesses two linearly independent solutions leading to two
Poisson vector fields for dynamical system under consideration. Since the vector field v (x)
is assumed to be non-vanishing, then for each xo € R it is possible to find a neighborhood
foliated by the integral curves of v (x) which are nothing but characteristic curves of (3.54).
Therefore the solutions of (3.55) can be extended to the whole neighborhood. It is a Riccati
equation and has two independent solutions which we call yu; for © = 1,2. Hence we have
two Poisson vector fields

-

where the coefficients «; are arbitrary. [

Taking the advantage of the freedom of choosing arbitrary scaling factors we may restrict the
coefficients by imposing further assumptions on our Poisson vector fields. Our next condition

will be compatibility of Poisson structures.

Definition 3.2.2. Two Poisson structures fl and fg are compatible if (71 + J_é is also a Poisson

Structure.

Proposition 3.2.3. Poisson structures obtained in (3.56) are compatible if
a; 3
Oyt In — = CFy (i — 145) (3.57)
@
Proof. Let

J=J +J, (3.58)

Using (3.46) for J;, J and J

—

(vXj>-f - VX<ﬁ+L)-<£+J2)

- (ijz)'jl—i-(vle)-JQ (359

Therefore we need to show that

(VxB) Ty ==(Vx )T, (3.60)
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For the Poisson vector fields defined in (3.56),
V x J_; = VO(Z‘ X (/6\2 + /Ll/ég) + (V X /6\2 + Vuz X é\g + ,uZV X /6\3) (361)
Then taking the dot product of both sides by J; and using (3.54) gives

(v X Jj-) T =y (VX 8+ Vit X 6+ 1,V X &) - (6 + 11;63)
+ a; (Va; x (€2 + wies)) - (e2 + pjes)
= ;o (=05 = Oy — Cip + (=Cfy — 11:C) py) (3.62)
+ oo ((e2 + pies) x (ez + pjes)) - Vine,
= a;a; (i — 1) (Chy + Copy — Oy Inay)

Therefore the compatibility condition (3.60) implies that
Cty + Ciopi — O Inay; = CFy + Clopj — 9,0 Inqy (3.63)

and hence we get

Q
Oy In— = Cy (115 — 115) (3.64)
J

whose characteristic curve is the solution curve of (3.45) in arclenght parametrization

d Q;
75 lna—j = Oy (1 — 115) (3.65)

then, by a similar line of reasoning as above the solutions of (3.65) can also be extended
to the whole neighborhood. Therefore, the Poisson vector fields obtained from solutions of

Riccati equation are always compatible and the proposition follows. [
3.3. BI-HAMILTONIAN SYSTEMS IN THREE DIMENSIONS

A dynamical system

Z(t) =7 (Z (1)) (3.66)
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is called bi-Hamiltonian if there is a pair of Poisson structures J; and J;, and a pair of func-

tions H; and H, such that
T(%) = Jy x VHy = Jo x VH; (3.67)

Having a pair of Poisson structures obtained in (3.56) and even a compatible pair obtained

in (3.57) do not guarantee the existence of Hamiltonian functions even locally.

Proposition 3.3.1. The dynamical system (3.66) is locally bi-Hamiltonian with a pair of

Poisson structures obtained in (3.56) if and only if
OpIna; = 0,1 In |0 + C3y + 1:C5, (3.68)

Proof.  For this purpose we first need to write down the equations for the Hamiltonian func-

tions. The equation (3.67) implies that
& -VH; =0, H; =0 (3.69)

so the Hamiltonian functions depend only on variables y? and 3®. This is the invariance
condition of Hamiltonian functions under the flow generated by ¢/ (x). Therefore the first

equation for Hamiltonian functions can be written as
el (H)=0 (3.70)

The gradient of the Hamiltonian functions reduce to
VIH; = (e2 (H;)) ez + (es (H;)) es (3.71)

Inserting (3.56) and (3.71) into (3.67)

v = ||v]|er = ;i (€3 (H;) — ez (Hj)) e (3.72)
Hence
- . U
es (Hj) — piex (Hy) = Ha_“ (3.73)
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Now, defining

the (3.73) can be written as
(1) = 11 (3.75)
Q;

These two equations (3.70) and (3.75) for Hamiltonian functions are subject to the integra-
bility condition
e1 (u; (Hy)) — u; (ey (Hj)) = [ex, ui] (Hj) (3.76)
Using the commutation relation given in (3.42)
[517 ﬁz} = [51733 - Uié\2]
= [51753] — Hi [/6\1,@2] - (ayllh') €5
— :’flé\k — Hiofz/@\k r (ayl,ui> ) (3.77)
(C§1 T NZC112) Ciy— (Cgl + Niciob) €3
+ <_C§1 - ,Ui0122 - 8@/1/%') €5

Now, using the Riccati equation (3.54) defining ; we obtain
[e1, @) = — (C?h + Ni0112) e — (C??l + MC132) u; (3.78)

and applying H; to both sides of (3.78), and using two equations (3.70) and (3.75) for Hamil-

tonian functions we get

L U
[e1, @] (Hj) = — (C5) + 1:CY) HaH (3.79)

)

Therefore our integrability condition for Hamiltonian functions becomes,

17]] 3 5\ 17
Oop | — | =—(C C 3.80
y! ( o ( 31+ H 12) a; ( )
hence
Oy In (H%H) = w,C3y + C3, (3.81)
and the proposition follows. U

Corollary 3.3.2. The pair of Poisson structures Ji = a (€2 + pie3) where «; is defined by
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(3.68) and p; is defined by (3.54) is compatible.

Proof. What we need is to show that (3.57) is satisfied. Indeed, writing (3.68) for a; and

Q@
811nal- == 811n17+03+ iCS
Y 1 In ||| 31 T HiCia (3.82)
Oplna; = Oy In|v]| + C5) + 14;CF,
and subtracting the second from the first proves the corollary. [

Remark 3.3.3. Note that, for a pair of compatible Poisson structures, Ji and J;, the dilata-
tion symmetry J = fjand the additive symmetry Ji + Jo do not imply that Ji + ffg is a
Poisson structure. Indeed if we apply the Jacobi identity condition and using triple vector
identity

(Ji+15) -V x (L4 fh) ==9f(Jix}) =0 (3.83)

which implies that
O f =0 (3.84)

3.4. THE RELATION BETWEEN POISSON VECTOR FIELDS AND HAMILTONI-
ANS

Now we try to describe the relation between the pair of compatible Poisson structures and

Hamiltonian functions. But first, we need the following lemma to describe this relation.

Lemma 3.4.1. For the bi-Hamiltonian system with a pair of compatible Poisson structures

defined above,

V.6 =0, In 222 mz_ ) (3.85)
v

Proof. Adding the equations for integrability conditions of Hamiltonian functions (3.68)

forv = 1,2 we get
D1 In (ra0) = 9r In (||5]]%) + 205, + (1 + p2) C (3.86)

On the other hand, subtracting the Riccati equations satisfied by j; and us, and the dividing
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by (p2 — 1) gives
Oy In (112 — pn) = — (C31 + Cfy) — (m + p2) CFy (3.87)
Adding (3.86) to (3.87) and using (3.44) we get
Oyt In(aras (2 — 1)) = 9, In (||7]) + V- & (3.88)

and the lemma follows. O]

Proposition 3.4.2. Given a bi-Hamiltonian system with a pair of compatible Poisson struc-
tures, then there exists a canonical pair of compatible Poisson structures J1, Jo with the same

Hamiltonian functions H,, Hy such that

Ji = (=1)"" ¢VH, (3.89)
where
6= oy (pg — i) (3.90)
|17 '

Proof.  Since Poisson vectors are linearly independent one could write Hamiltonians in

terms of Poisson vectors
VHl = O'%Jl + U%JQ

o o (3.91)
VHQ = O-%Jl‘l_o-%JQ
Since
HUHé\l = {)1 X VHQ = a%JiX JQ_‘ (392)
= J2 X VHl = —O'%Jl X JQ
and
Ji % Jy = ar (pa — 1) € (3.93)
we get
2 ! Q10 (MQ - Ml)
Since we have
V xVH, = VO'%X(E—FVU%XL];—}-O'%ﬁXJZ—f—O'%VXJ; =0 (3.95)
VXVH, = Volx 1 +Voix h+0iVxJi+02VxJ, = 0 '



Taking the dot product of both sides with J; we get

7i(vx5)
2 __
8y1 ln01 - aga2((lt2—ft)1)
J1- (VX J:
2 o 1 2
ayl ll’l 0-2 — 011042(H2_/Jz1)

Similarly taking the dot product of both sides with Jo we get

)
1 — _
8y1 In o1 = a1_‘a2<(u2—_‘u)1)
J2~ VXJl
1
ayl 11'1 0-2 — a1a2(,LL27,LL1)

Now, compatibility implies that

i (v14)

dypInoy =0y lnoy = dyplno; = dpInoj = g (flg — 1)

Inserting (3.68) into (3.62),
(o)
aras (2 — )

== (O In (7)) +V -&)

and using (3.88)
(9y1 In O'; = —8y1 lngzﬁ

Therefore A
. YY)
! ¢
and
VH, = %(‘I’% (v %) i+ VT (y% y°) 2)
VH, = <‘If% (W% %) Ji — UL (%, 0°) fz)
6

U (v2, y°)

1]l e = — arag (2 — ) &

we get

\I}% (y27y3) =-1

23

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)
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and finally
VH, = —MLH_(J?—‘I’(ZJ y)z)
H;"f #) 1 ) (3.105)
VHy = bl (WA T+ )
Note that ,
VH, x VH, = — (14 whw?) — 5 (3.106)

ra (pg — fir)
For the Hamiltonians to be functionally independent RHS of (3.106) must not vanish, i.e.

1+ WW2 £0 (3.107)
Now let us define
= - J2 . ogaa(pe—p
K= Ty = (1+‘1’1“P2)H“HVH1 (3.108)
77 L+UlTi  oqas(pa—m) VH '
2T ey T (wed)|
By (3.67) and (3.108) we get
Kl X VHl = 6 [_('2 X VHQ = 6
y . (3.109)
KQ X VHl = HUH €1 K1 X VHQ = HUH €1
Choosing K, to be our new Poisson structure the proposition follows. [

Therefore, we can write the local existence theorem of bi-Hamiltonian systems in three di-

mensions which generalizes the result of [5].

Theorem 3.4.3. Any three dimensional dynamical system
Z(t) =7 (Z (1)) (3.110)
has a pair of compatible Poisson structures
J; = o; (€ + pics) (3.111)
in which ;s are determined by the equation

Oy i = ~C3 — i (Cgl + C'122) — ;O (3.112)
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and «; s are determined by the equation
OpIna; = 0,1 In |0 + O3y + .03y (3.113)

Furthermore (3.110) is a locally bi-Hamiltonian system with a pair of local Hamiltonian
functions determined by

J; = (=) eV H, (3.114)

where
b= 10 (MQ - Ml)
[l

(3.115)

3.5. BI-HAMILTONIAN SYSTEMS ON THREE MANIFOLDS BY DIFFERENTIAL
FORMS

In order to obtain and express the obstructions to the global existence of bi-Hamiltonian struc-
tures on three manifolds by certain cohomology groups and characteristic classes, we will
reformulate the problem by using differential forms. For this purpose, if M is a 3 manifold

with volume form €2, associated with a Poisson bivector A, there is a one form

J =A.Q (3.116)
called Poisson one-form. The equation
v=J(dH) (3.117)
can be written as
12 =JNdH (3.118)
and the Jacobi identity is given by
JNANdJ =0 (3.119)

Then, a bi-Hamiltonian system is two linearly independent Poisson one-forms such that

LUQ = Jl VAN dH2 = JQ VAN dH1 (3120)
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It can be shown that locally J; and J, can be chosen to be proportional to dH; and dHs,
respectively, and hence

1,Q = OdH, A dH,. (3.121)

For the rest of our work, we will use the following commutative diagrams for the identifica-

tion of vector fields and differential forms on R?

d d d

0 — AR?}) — AR — AR} — A3(R3 — O
I T %2, 12,92 % (3.122)
0 — C*°[R}) L xR L5 xR 2 C°(RY) — 0
and
$Lulp§l = Lyxofd

(3.123)
k (kL QN L) = u-v

The Jacobi identity for Poisson vector fields (3.119) implies that there are 1-forms 3; such
that
dJ; = Bi N J; (3.124)

foreachi =1, 2.

Proposition 3.5.1. There is a 1-form [ such that

dJi =B N J; (3.125)

foreachi=1,2.

Proof.  Applying (3.124) to the compatibility condition

T AdTy+ Jo NdJ, =0 (3.126)

we get

(Br—=Ba) NJL ATy =0 (3.127)

which implies that
B1— o = b1J1 + by Ja (3.128)



and therefore we can define

B=p1—biJi = P2+ baJs

Hence

BAJi=BiNJy=dJ;
and the proposition follows.

Note that § is a T'M valued 1-form. namely,

[@16 7é 0
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(3.129)

(3.130)

]

(3.131)

in general. Now we are going to show that by an appropriate change of Poisson vectors, we

may reduce it to a () valued 1-form.

Lemma 3.5.2.
LEl/B = lg (d In 925)

where ¢ is the function defined in (3.90)

(3.132)

Proof.  For the ease of computation we carry out the computation for Poisson vector fields,

then map them to differential forms The Jacobi identity (3.46) implies that V x J; is orthog-

onal to J; and therefore we get

V X JZ = CLilé\l + az’2é\1 X J,L

By the definition of Poisson vector fields we have

Jl X J2 = ¢ H'l7H /6\1

we can rewrite (3.133) in the form

VXJl = ﬁJ1><J2+a12é\1le
VXJQ = %Jlxbig—f—agg/@\lxz]g

il

(3.133)

(3.134)

(3.135)



or
V x Jl = (-ﬁjg —|—G12/€\1> X Jl

VxJ, = (%Jl n a22€1> % J

Now, the compatibility condition (3.60) implies
(ageey X Jo) - J1 = — (apey X Jy) - Jo
and therefore we have
(Jo x Jp) - (ager) = — (J1 X J3) - (a12€7)

using (3.134) we get

—¢ HIZTH €1 - (e = —¢ ”UH €] - a12€]
and obtain
a
Q29 = Q12 = N
¢ ||v|

Now, we can rewrite (3.136)

Vx g = (=8t gt ) x5

o[l
Vxdy = <¢||25|| L+ e 1) X Jy
Let
a1 ai a
§= —J1 — ——Jo + ——=-€1
oxlfof] ¢ ||V ¢ ||V

where the coefficients as1, a1 and a are given by

a1 = (V X Jl) . /6\1
asy = (V X Jg) . /6\1
a = (VxJ)-Jo

Therefore £ can be written as

((V X JQ) . /6\1) Jl — ((V X Jl) . /6\1) Jg + ((V X Jl) . JQ) (/2\1

<= Gl
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(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)
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Now, using (3.99), (3.85) and (3.90) we get

(V x 1) - Jo = ||| (91 In g) (3.145)
and hence
¢ = XD @)W VX @)y 544, (3.146)
¢ [|7]]
Now using the vector identities
and
[, v] == (V-w)v+ (V-v)u—V x (uxv) (3.148)
after some computation we obtain
E—Ving+a x <[€1 X j\];\ X Y HUH) (3.149)
hence
£-e1=e€-Vinog (3.150)
defining
B = *1 (3.151)
and using (3.123) the lemma follows. O
Now we define new Poisson one forms K;
J; = ¢K; (3.152)
Taking the exterior derivatives of both sides
dJ; =dp NK; + ¢dK; = BN ¢ K; (3.153)

and dividing both sides by ¢
dK; = (f —dIn¢) A K; (3.154)
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Let
y=p—-dn¢ (3.155)

Now, by the lemma above
ey = te,f —te (dIng) =0 (3.156)

and

dK; =7 N K; (3.157)
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4. GLOBAL EXISTENCE THEOREM FOR BI-HAMILTONIAN
STRUCTURES IN THREE DIMENSIONS

In this section, we investigate the conditions for which the local existence theorem holds
globally. To study the global properties of the vector field v by topological means, we will

relate the vector field with its normal bundle.
4.1. THE COMPLEX LINE BUNDLEQ — M

Let E be the 1-dimensional subbundle of 7'M generated by the non-vanishing vector field
v(y). LetQ, =T,.M/E, and Q = UMQZ. ( is isomorphic to the orthogonal complement
FAS]

bundle to £ in T'"M. Then we have the short exact sequence

0 - E % T™M % @Q — 0
4 \ T o) 4.1
M M M

4.1.1. The Complex Structure on Fibers of Q — M

By using the cross product with T (z) we can define a complex structure A on the fibers of
Q—M
Q & Q

(z,v) — (2, T xV)

(4.2)

For a normal vector e, (z) fixed by the choice of coordinate system, the complex structure

allows us to identify fibers of Q — M with C as follows. Let
QUMY = {v—-V—1IA(v)|veQ} (4.3)

and

QY = {v+V-1A(v) |veQ} (4.4)
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Therefore we have the isomorphism 71 defined by

=(1,0)
Q 5 Quo s
(,v) — (2,v = V=TA(v))
which satisfies
(A (V) = V=170 (v) (4.6)
Hence we have
100 (8 +y'E) =yt (@) + 00 (A @)
= y27r(1’0) (/6\2) + \/__13/37.‘.(1,0) (/6\2) (47)

= (y*+V-1y%) 710 (&)
for all (y,y°€; + y’e3) € Q.

With the help of this complex structure the coordinate transformations given by (3.36) sug-
gests that in any flow coordinate neighborhood around p € M has the structure of a complex
line bundle over the integral curve passing through p € M. Since we now have A, () €
U (1) and therefore

Apg (2) = eV (4.8)

the coordinate transformations has the form

oyl (z 1 0
i) _ (4.9)
ﬁyf; (2) 0 eﬁepq(z)
and gives the local coordinates in the form
U,cM 2 R x C
(4.10)

(z) = Wy V-1Y)
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4.1.2. The Basic Connection on Q — M

By definition of () we have the commutative diagram for tangent bundles

Q M Q

1 (mq), b mq (4.11)
TM ERLY M

Using the pullback bundle

THh(TM) 3 Q

(y,u;v,0) (y;u)
+(mq), L mo (4.12)
TM ™ M
(y;v) (v)

we obtain the short exact sequence of bundles over ()

0 - mo(TM) ™ 1@ ™ vQ = o0
(y,u;v,0) (y, w5 v, w) (y,u; 0, w)
1 I I (4.13)
0 = w(E) 5 mpTM) % 15@Q — 0

(y7 U; 61) <y7 Uu, U) (y> Uu; w)

Definition 4.1.1. A connection on () is an R—bilinear map

vV T(TM)xT(Q) — I'(Q) (4.14)
(v,8) = Vs

satisfying the properties
. Vo(fs)=v(f)s+ fVys
ii. Vi,s=fVys

Since £ is generated by a non-vanishing vector field, it is an integrable subbundle of 7'M/ .
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Given a section s of @, it is possible to lift it to a section s of 7'M such that

s =pr(s) (4.15)

where pr is the projection from 7'M to (). Then it is possible to define a connection according
to which the covariant derivative of a section s of () in the direction of a section e¢ of F is
given by

Vs = pr(L£3) = prle,3] (4.16)

where L. is the Lie derivative in the direction of e. Such a connection is called a basic

connection or a Bott connection [8].

Now, it is possible to define a similar connection for the complexified bundle 7(:?(Q), and
this connection is called the complex Bott connection. Note that, one may also repeat the
same calculation for the dual bundle Q* and also of its complexification 7(19Q*. We will

keep using the same name and notation for the connections on the dual bundle.

4.2. THE FIRST OBSTRUCTION: CHERN CLASS OF Q

Now, we try to find conditions for which a non-vanishing vector field v decomposes

v =¢VH; x VH, (4.17)
for some globally defined function ¢, H; and H,. with the Poisson vector fields

J; = (=1)" ¢V H, (4.18)

This implies that we have

gbﬁz Ji X Jy (419)

For a vector field to be decomposed into the form (4.19), first of all the vector field must
be written as a product of two globally defined, linearly independent non-vanishing vector

fields J; and J5. For this purpose let

178 = w (4.20)
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Our question is to decompose the w into a product of two globally defined one forms p; and

p2-
w = p1 N\ p2 (4.21)

Since v is a non-vanishing vector field then w is a 2-form of constant rank 2 for ¢,,¢,2 = 0
for u € X(M) implies v, = \,v, € T,M ateach p € M. If we let S,, to be the subbundle

of TM on which w is of maximal rank, then we have 5,, = @ defined in (4.1) .

Theorem 4.2.1. [9] Let 3. be an R"-bundle over a connected base space M. Let w be a
2-form on % of constant rank 2s. Let S,, be the subbundle of ¥ on which w is of maximal

rank. w decomposes if and only if
i. Sy is a trivial bundle.

ii. The representation of its normalization as a map wy : M — SO(2s)/U(s) arising

from any trivialization of S,, lifts to SO(2s).

In our case, when s = 1, since U(1) = SO(2), SO(2)/U(1) is a point so the second condition

in the theorem is satisfied. Hence, w decomposes if and only if S, is trivial.

Note that, a complex line bundle @ is trivial if and only if ¢1(Q) = 0, or equivalently if and

only if it has a global section.

Since the decomposition of the 2-form w into a globally defined 1-forms p; and p is a nec-
essary condition for the existence a global bi-Hamiltonian structure. However, the decom-

position does not imply that the factors p; satisfy the condition

In order to determine the effect of a vanishing Chern class condition on the constructions
made so far, we are going to investigate the Riccati equation defining the Poisson vector

fields.

Since our Poisson vectors and related integrability conditions are determined by the local
solutions of the Riccati equation (3.112), they are defined locally on each chart. Let {J!}
and {J/'} be the Poisson vector fields in flow coordinate charts (U,, y,) and (U,, y,) around

points p € M and ¢ € M, respectively. Around point p € M, the Poisson vector fields {J/'}
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are determined by 1%, o and the local frame {e%, e}}. Given the local frame, we can write
the Riccati equation (3.112) whose solutions are £!’s, and using 1}’s we can determine o’s
by the equation (3.113). Now, if ¢; (@) = 0, which is a necessary condition for the existence
of global bi-Hamiltonian structure, then we have a global section of (), i.e. a global vector
field normal to ¥. Using the metric on M, we can normalize the global section of () and take

it as e and define e3 = €7 x e3. Then we have the global frame field

=P
€;

e (4.23)

In order to understand the relation between local Poisson vector fields obtained in two dif-

ferent coordinate neighborhoods, we first need the following lemma

Lemma 4.2.2. [f two solutions p; (t) and ps (t) of the Riccati equation

dps;
dt B _C§1 — M (03?1 + 0122) - M?Cf’z (4.24)

are known, then the general solution 11 (t) is given by
o= =K (1 — o) el Cralpzmmndt (4.25)

where K is an arbitrary constant.

Proof.
d

77 (=) = —=(p = m) (C + ) — (1 — )Yy (4.26)

Dividing by 1 — p1 gives

%m (=) = = (G + Cz) = (1 + m)Ct (4.27)
Similarly
% In(p = pa) = = (C51 + Cy) — (1 + 412) (4.28)
Hence
%m (z - Z:) = —(p2 = m)CY, (4.29)

And the result follows. O]
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Theorem 4.2.3. If ¢; (Q) = 0, then two pairs of compatible Poisson vector fields {J'} and

{J1} obtained on two intersecting coordinate neighborhoods U, and U, are related on U,NU,

by
J? JP
i i (4.30)
IS 17

Proof.  Given the global frame field {€5, €3} defined both on coordinate neighborhoods U,

and Uy, Riccati equations for ;;’s can be written as
Oy = (VX 8) -G+ (VX 8) 8+ (V xE) )+ (u)° (V xe3)-e5 (431)

for r = p, ¢ Therefore, on U, N U,, ;¥ and 1] are four solutions of the same Riccati equation

for i = 1, 2. By the lemma above we have
pl = i = K i = i) ] G (432)

Now, using the compatibility condition (3.57)

p

[0
CPy (1 — 1) = 0,n In a_g (4.33)
1
(4.32) becomes
ap
p = = K (] = ) = (4.34)
1
where
K} = K" (v2, up) (4.35)

is constant w.r.t. y). Multiplying both sides by of o in (4.34) gives
ajof (uf — my) = Koo (pf — ) (4.36)

which leads to

JIx JP = KPJ? x Jb (4.37)

Rearranging (4.37) we obtain

Jéx (JP — KPP =0 (4.38)
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Since

D K" =0 (4.39)

by compatibility we can take

JP=J7 — KMJY (4.40)

to be our new Poisson vector fields on the neighborhood U, and obtain
Jix JP =0 (4.41)

By compatibility this new Poisson vector fields jf’ produce functionally dependent Hamil-

tonians and therefore, for the simplicity of notation, we will assume without restriction of

generality that
JP=JP (4.42)
and get the result
J& =\ JP (4.43)
and the theorem follows. O

This theorem states clearly the reason one may fail to extend local Poisson vector fields into
global vector fields even if ¢; (Q)) = 0. In order to extend the local Poisson vector fields into
a global one, one should have

Ji=Jr (4.44)

K3 (2

on U, NU,. However not the Poisson vectors but their unit vectors are global. Then, we have

the following result.

Corollary 4.2.4. If c; (Q) = 0, then we have two global sections 32 of Q) satisfying
G (V) =0 (4.45)

and

JP x5 =0 (4.46)
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Obviously, fi’s provide the global Poisson vector fields but since

24

By
I

£0 (4.47)

in general, they may not lead to a pair of compatible Poisson structures. Now, we take }'\1 as
our first global Poisson vector field, and then going to check if we can find another global

Poisson vector field compatible with this one by rescaling 52.

4.3. THE SECOND OBSTRUCTION: BOTT CLASS OF THE COMPLEX CODI-
MENSION ONE FOLIATION

Since v is a nonvanishing vector field on M, it defines a real codimension two foliation on M.
Since Q = T'M /E is a complex line bundle on M, this foliation has complex codimension
one. Now, by assuming our primary obstruction, which is the vanishing of the Chern class,
we will define the Bott class of the complex codimension 1 foliation and then show that the
system admits two globally defined Hamiltonian functions if and only if the Bott Class is

trivial. First, we will give some definitions.

4.3.1. Poisson Vector Fields of Trivial Normal Bundle

For the rest of our work, we will assume that () and its dual Q* are trivial bundles. By (4.45)

it has two global sections 51 satisfying

Ji Ndji =0 (4.48)

and

=1 (4.49)

satisfying
dj: =T N i (4.50)
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for globally defined I';’s. These E’s are related with the local Poisson vector fields J by

TP = |72 i (4.51)
and
K? =475, (4.52)
where
T
v = ”¢—” (4.53)
By (3.157) we have
dK? =~ N KP (4.54)
Using (4.52) into (4.54) leads to
dj; = (v* — dInyP) A7, (4.55)

Redefining I';’s if necessary, comparing (4.50) with (4.55) we get
T, =" — dlny? (4.56)

Since, 31 and 32 are not compatible we introduce a local Poisson form ;” defined on the

coordinate neighborhood U, of p € M, which is compatible with 31 and parallel to ;2 ie.

3= 172 (4.57)
and
GNP+ P Adj =0 (4.58)
Now, (4.57) implies that
dj? = (Ty +dlIn fP) A 4P (4.59)

Putting (4.50) and (4.59) into (4.58) we get

AT +dIn YA+ AT AGL =0 (4.60)
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or equivalently

Ty =Ty —dInfYAJI AP =0 (4.61)
and using (4.57) we find
Iy =Ty —dInfPYAJ1 AJa =0 (4.62)
which amounts to
Ty —T9) AJi Ado =dIn fP AJ1 Ao (4.63)

Our aim here is to find the obstruction for the extending f? to M, or for (4.63) to hold globally.
For this purpose we consider the connections on () defined by I';’s. By (4.56) we define the

curvature of these connections to be

k= dl; = dy (4.64)

Taking the exterior derivative of (4.54) we get

dyP AKP =0 (4.65)
and hence
dy’ A =0 (4.66)
which leads to
k=dy = AJs (4.67)

Now multiplying both sides of (4.63) with ¢

Ty —To) Ak =dlnf* Ak =d((In f?) k) (4.68)

Let
=E=T1-Ty) Ak (4.69)

We have a compatible pair of global Poisson structures, i.e. f? is globally defined, if and
only if = is exact. Now we are going to show that the cohomology class of = vanishes if and

only if the Bott class of the complex codimension 1 foliation vanishes. Since () is a complex
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line bundle we have

c1(Q) = [x] (4.70)

Since the vanishing of ¢; ((Q) is a necessary condition let

Cc1 = dhl (471)
therefore we have
which implies that on U,
hi =~ +dInh? (4.73)
Then the Bott class [8]
hiANep = (P +dIinh?) Ady? = dInh? A Kk + 4P A dryP (4.74)
Now by (3.156) and (4.67) we have
Y ANdyP =0 (4.75)
hence we get
hiANep =d((InhP) k) (4.76)

Our last step is to compute the function /4”. Since h; is globally defined, on U, N U, we have

hy =~ 4+ dInh? =~% 4 dInh? 4.77)
Hence
P q he
AP — :dlnﬁ (4.78)

On the other hand, since I';’s are globally defined, by (4.56) we have

P
AP — 4% =dIn W (4.79)
and hence
Pq/)P
dIn hey =0 (4.80)

B!
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Now, we have the following theorem.
Theorem 4.3.1. The cohomology class of = vanishes if and only if the Bott class vanishes.

Proof.  1f the Bott class vanishes, then we have a globally defined function / such that

d((Inh) k) =0 (4.81)

Then choosing f = h leads to a compatible pair of global Poisson structures. Conversely if

there is a pair of global Poisson structures then v becomes a global form and by (4.78) we

have
ha
dln T =0 (4.82)
on U, N U,. Therefore
Inh? — In h? = % (4.83)

where ¢ is a constant on U, N U,. Now fixing a point 2o € U, N U,

¢ =1Inh?(xg) —Inh? (x9) =Inc? — Inc? (4.84)
we obtain
h?  h
—=—=h (4.85)
cP c4

where h is a globally defined function. Therefore

dlinh = dlnh? (4.86)

and

[ Acr) = [d((Inh) k)] = 0 (4.87)

and the theorem follows. O]
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5. CONCLUSION

In this work, the bi-Hamiltonian structure defined by a nonvanishing vector field on a three
dimensional manifold is investigated. Bi-Hamiltonian structures are defined by symplectic
or Poisson structures on a manifold. Since our manifold is odd dimensional, we begin with
searching for Poisson structures defined by the given vector field. As Poisson structures
defined by Jacobi identities we compute the Jacobi identity in the flow coordinate system de-
fined by the vector field and found that the Jacobi identity amounts to a Riccati equation. By
the local existence theorem, the Riccati equation has at least two independent solutions and
these solutions define two families of Poisson structures. Then, it is shown that in these fami-
lies of solutions, it is possible to find families of compatible pairs of Poisson structures. Next,
we investigate the condition for the existence of two functionally independent Hamiltonian
functions and show that these conditions satisfy the conditions obtained for the compatible
Poisson structures. Therefore, we formulated the local existence theorem for bi-Hamiltonian
structures stating that given a non-vanishing vector field on a three dimensional manifold,
locally it is always possible to find a compatible pair of Poisson structures with two Hamil-

tonian functions.

The second part of our work is devoted to the investigation of global existence of bi-Hamil-
tonian structures. For this purpose, first we study the space of all bi-Hamiltonian structures
which is a subbundle of the normal bundle of the nonvanishing vector field. Therefore, the
existence of a global section of the subbundle, which is the global bi-Hamiltonian structure,
implies the existence of a global nontrivial section of the normal bundle. Since, it is possible
to define a complex structure on the fibers of the normal bundle given by taking the cross
product with the given vector field, the normal bundle has the structure of a complex line
bundle. Therefore, the existence of a global section of a complex line bundle implies that it
is trivial and its first Chern class vanishes. Hence, the first Chern class of the normal bundle
becomes the primary obstruction to the existence of bi-Hamiltonian structure. Obviously this
condition is necessary but not sufficient since the existence of a global section of the subbun-
dle implies a global section of the bundle itself but the converse may not be true. Therefore

with the assumption of the vanishing first Chern class we investigate the relation among local
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Poisson structures defined on different neighborhoods on the intersection of these neighbor-
hoods. This problem is called the extension problem, which can be stated as follows: Given
locally defined objects on coordinate neighborhoods, is it possible to find an extension which
is well-defined on the union of neighborhoods? The answer of this question lies on the rela-
tion of quantities on the intersection of neighborhoods. Since our local object is essentially
defined by a Riccati equation, with the help of the relations between solutions of Riccati
equation we are managed to obtain the relation between local bi-Hamiltonian structures on
the intersection of neighborhoods and obstructions to such an extension.Then we showed that
it is possible to find two global Poisson structures if and only if the first Chern class vanishes.

However, this pair of global Poisson structures may fail to be compatible.

In order to study the global existence of a compatible pair of global Poisson structures, we
investigate the complex codimension one foliation defined by the nonvanishing vector field.
Then we formulate a globally defined 3-form on the manifold and showed that compatibil-
ity is equivalent to the vanishing of the cohomology class of this 3-form. Furthermore we
computed the Bott class of the complex codimension one foliation and showed that above de-
fined 3-form vanishes if and only if the Bott class vanishes. Therefore, vanishing of the Bott
class of the complex codimension one foliation defined by the nonvanishing vector field is
the secondary obstruction which is sufficient to imply the global existence of bi-Hamiltonian

structures.
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