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ABSTRACT

ARF SYMBOLS AND THE ABSOLUTE GALOIS GROUP OF A LOCAL FIELD

Arf gives a description of the separable closure of the field of formal Laurent series over the
finite field with p elements and of the absolute Galois group of the maximal tamely ramified
closure of this Laurent series field in terms of certain symbols. In our thesis, combining
Arf’s approach with Fontaine-Wintenberger theory of fields of norms and non-abelian local
class field theory, we obtain a description of the absolute Galois group of any local field
in terms of certain hybrid symbols determined from Arf-Steinberg symbols and non-abelian

class formations via non-abelian topological group extensions.




OZET

ARF SEMBOLLERI VE YEREL CiSMIiN MUTLAK GALOIS GRUBU

Arf, p elemanli sonlu cisim iizerine tanimli bigimsel Laurent seriler cisminin ayrilabilir ka-
panisini ve bu cismin maksimal sakin dallanmig geniglemesinin mutlak Galois grubunu, be-
lirli semboller araciligtyla tasvir etmistir. Tezimizde, abelyen olmayan topolojik grup genislemeleri
yardimiyla, Arf’in yaklagimini Fontaine-Wintenberger’in gelistirmis oldugu norm cisimleri
kurami ve abelyen-olmayan yerel sinif cisim kurami ile birlestirerek herhangi bir yerel cis-
min mutlak Galois grubunun bir betimlemesi, Arf-Steinberg sembolleri tarafindan belirlenen

hibrit semboller ve abelyen-olmayan sinif yapilanmalari cinsinden elde edilmistir.
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1. INTRODUCTION

“_.It is the task of young Turkish mathematicians working in these fields first to learn by heart what
Cahit Arf did, and then to continue further study along the lines indicated by him.”
M. Giindiiz Ikeda

Arguably, the most important algebraic object in number theory is the absolute Galois group
G, of a global field L. Therefore, one of the most central problems in number theory is
to describe the topological group Gy, and its arithmetic ! in terms of algebraic and analytic
objects related only to the base field L, which is the content of non-abelian global class field
theory. This is indeed an extremely difficult problem which is still wide open. Following
Chevalley’s philosophy of id¢les, we study a global field L via its completions L, at primes
v of I. Thus following this philosophy, as a first step to understand G'r,, we should study? the
topological groups (71, at each v and this is achieved by non-abelian local class field theory
of IL,, which describes G, and its arithmetic ? in terms of certain algebraic and analytic

objects related to L, for each prime v of L.

Recall that abelian class field theory of the global field L gives a description of the abelianiza-
tion G% = Gal(L®/ L) of the topological group G, (namely, the description of the maximal
abelian part L%/ L inside L*¢? /L) via a unique topological isomorphism called the “Artin-
Takagi-Hasse reciprocity map”

rec, : G2 5 Cp,

of L. Here, C}, denotes a certain topological group whose definition depends solely on the
ground field L and C'., denotes the profinite completion of C. Moreover, the reciprocity
map of L is “natural”, describes all abelian extensions of L and their arithmetic in terms
of 6,5, and is compatible with the abelian class field theory of L, (for details about abelian
local class field theory, see Section 2.3). Here, the main references are Artin-Tate [2] and

Fesenko-Vostokov [7].

So the next natural step then is to extend and generalize class field theory of L so that this

decomposition behaviour of prime ideals p of L in finite Galois extensions E of L
2The group theoretic description of G, for any prime v of L is well known by the work of Koch (see [20]).
3study of higher ramification subgroups G} of G,




“extended theory” of L would describe all (that is, including all non-abelian) Galois exten-
sions of L and their arithmetic in terms of certain “objects” whose definition depends only
on the ground field L via the “non-abelian reciprocity map” of L, so that when restricted
to abelian extensions over L this “extended theory” should reduce to the class field theory
of L and the “non-abelian reciprocity map” of L to the Artin-Takagi-Hasse map recy, of L.
Moreover, there should be a local version of this extended theory of L. That is, there should
be an extended theory of L, describing all Galois extensions of I, and their arithmetic in
terms of objects whose definition depends only on L, via non-abelian reciprocity map of L,

which should be compatible with the global theory.

In fact, in his revolutionary work in 1967 [24], R. P. Langlands introduced his reciprocity
and more generally his functoriality principles (see [24, 25, 26]). Although conjectural in
nature, these principles settled the construction of the non-abelian class field theory of L.
The basic idea of Langlands is to replace the réle played by the characters C, —» C* of the
group C}, appearing in class field theory of L with the higher-dimensional, possibly infinite-
dimensional, representations of C},, where the characters that we are interested in are the
1-dimensional automorphic representations of Cr, = GL(n, Ap). Here, A, denotes the adele
ring of L which is defined by the restricted direct product of L, with respect to O, as v
ranges over all Henselian and Archimedean primes of L. In the local setting, for each prime
v of L, we have Cy,, = GL(n, L,)) and we are interested in the admissible characters of Cf,.
However, global reciprocity principle of Langlands depends on a conjectural group, called the
automorphic Langlands group £, of L, which should be the global version of Weil-Deligne
groups W Dy, of L, for each prime v of L, whose absence is a major obstacle to formulate

global reciprocity principle.

Another, but not unrelated, approach to a non-abelian generalization of local class field the-
ory initiated by Koch is to use Fontaine-Wintenberger theory of arithmetically profinite ex-
tensions (in short, APF-extensions) of local fields and the fields of norms attached to such
extensions (see [8, 9]). In fact, generalizing Koch and de Shalit’s and Fesenko’s works [19],
[5, 6], the non-abelian local class field theory (in the sense of Koch) has been developed by
Laubie [27], Bedikyan [3], and Tkeda and Serbest [12, 13, 14, 15]. There is also the global
version of this theory constructed by Ikeda [11], which is closely related with the hypothetical

group Lr.




Finally, there is the approach of Arf (see [1] and [17]). With the aim to develop the non-
abelian local class field theory over IF,,((t)), Arf gives a description of F,(())**” and of G
where E = F,((¢))(#/™ | n € Zso,p 1 n) is the maximal tamely ramified extension of
FF,((t)) using certain symbols. The idea of Arf is to introduce certain formal expressions sat-
isfying Artin-Schreier type identities that “symbolizes” the process of taking the successive
extensions of Artin-Schreier type over F,,((¢)). For an explanation, see [17]. However, [1]
has a gap, namely Arf’s work just gives a description of the group G not of the absolute

Galois group G, () of Fp((2))-
1.1. THESIS PROBLEM

As described above, in his paper [1], Arfexplicitly constructed the separable closure IF,((¢))*
of the field of formal Laurent series IF,((t)) over IF,, with one indeterminate ¢ and the absolute
Galois group G of E where E = F,((t))(t"/" | n € Zsq,p { n) in terms of certain symbols
which will be called as Arfsymbols* in our thesis. Our first aim is to fill the gap of [1]; that
is, to construct the absolute Galois group GF;((t)} of F,((t)) using the approach of Arf with
some class field theoretic modification, if necessary. Then, our second aim is to construct
the absolute Galois group G of any local field K a la Arf; that is, the aim is to extend Arf’s

construction of Gg to G.
1.2. METHOD

In this section, we describe the method that we use in our thesis:

Let L/ K be an APF and Galois extension. Then the field of norms X(L/K) corresponding
to the extension L/ K is a local field of characteristic p > 0, where p = char(r) (for details,

see [7] and [8, 9]). Moreover, there exists an isomorphism
GX(L/K) = Gal([(seP/L),

under the Fontaine-Wintenberger functor. Now, X(L/K')**? and its Galois group Gx(z/x) can

4called Arfvectors by Whaples




be described in terms of Arf symbols as X(L/K) ~ F,(()). Actually, Arf symbols describe
G, but with a group extension argument together with non-abelian local class field theory
we get a description of G, () as well. Thus, there exists a description of Gal(K**/L) in
terms of Arf symbols and non-abelian local class formations. On the other hand, the group
Gal(L/K), has a description in terms of the non-abelian local class field theory developed
in [14, 15]. In fact, even considering a totally ramified Z,-extension L/ suffices for our
discussion. Now, “glueing” the description of Gg,((¢)) in terms of Arf symbols and non-
abelian local class formations and the description of Gal(L/K) in terms of abelian local
class field theory (for which we prefer to use the K -theoretic formulation) using the theory
of group extensions, we finally get the description of G in terms of Arf symbols, Steinberg
symbols and the non-abelian local class formations. In fact, the main theorem of this thesis

can be stated as follows:

Main Theorem . The following pair of short exact sequences

1
| ”A]fsy}nbols 2 | T A Aut;;(tgf)
1 > GFp((f}) y G > I({H(K’)/NL/KI({J(L) —1
“Non-abelian local Abelian local class
class field theory <N, )/Nge, o) field theory over K
over IF,,((t))” “Steinberg symbols”
1

uniquely describe Gk in terms of Arf symbols, Milnor K-group and non-abelian local class
Jformation modulo the choice of continuous normalized section and 1 defined by (6.2) for
the horizontal short exact sequence, and the choice of continuous normalized section for
the vertical short exact sequence, which is a homomorphism, as the vertical sequence splits

which yields an explicit description of G, (z)) (see Theorem 5.5.2).




1.3. THE LAYOUT OF THE THESIS

The layout of the thesis is as follows:

In the first part of Chapter 2, we review the basic definitions and properties related with local
fields. Then, in the remainder of this chapter, we summarize the ramification theory and give

the statements of abelian local class field theory.

Chapter 3 of the thesis involves APF-extensions of local fields, the fields of norms con-
struction of Fontaine-Wintenberger and a very brief summary of non-abelian local class field

theory.

In Chapter 4, we briefly discuss the construction of the separable closure of a local field of

positive characteristic.

In Chapter 5, following Arf’s paper [1], we introduce Arf symbols and some of the basic
properties of these symbols. Thereby, employing such symbols we explain Arf’s construction
of the separable closure F,((¢))** of F,((t)) and the absolute Galois group G g of E. In
the last section, we describe G, (()) in terms of Arf symbols and non-abelian local class

formations.

Finally, in Chapter 6 which is the main part of the thesis, we construct the absolute Galois
group G g of any local field K using the theory of non-abelian topological group extensions,
Fontaine-Wintenberger theory of fields of norms and the theory of Arf symbols combained
with Milnor K;-theory of K and non-abelian local class field theory of IF,((t)).




2. PRELIMINARIES ON LOCAL FIELDS

In this chapter, we present some necessary definitions and properties concerning local fields.
Moreover, we give the statements of the abelian local class field theory after reviewing the
higher ramification subgroups in the upper numbering of the absolute Galois group G of
the local field X which has a significant role in the theory of APF-extensions over K. The

main refences for this chapter are [2], [7] and [12].

2.1. LOCAL FIELDS AND THEIR EXTENSIONS

In this section, we recall some basic definitions and properties of the local fields which are

one of the fundamental objects of local class field theory.

Let K be a local field, that is, a complete discrete valuation field with finite residue class

field. Throughout the thesis, we shall use the following notations.

p: a fixed prime number;

o vk : I(* — Z: adiscrete valuation normalized by vy (K*) = Z with vg(0) = oo;
o O ={a € K : vg(a) > 0}: the ring of integers of K with respect to vg;

o px = {a € K : vg(a) > 0}: the unique maximal ideal of O;

o kg = Ok/pk: the residue class field of K of order ¢ = p/ for some f € N;

o Ux = {a € Ok : vg(a) = 0}: the group of units of K;

o g € Ok: aprime element of K, that is, vg(7mg) = 1;

o U} =1+ ngQk : the group of principal units of ;

o Ul =1+ m,Ok (i € Z>,): higher groups of units;

o K*°: g fixed separable closure of K;

o Gy = Gal(K*P/K): the absolute Galois group of K.




Let L be a finite extension over K. Then, L is also a local field. In this case, we have the
following identity
e(L/K)f(L/K) = [L: K].

Here, e(L/K) is the “ramification index” defined by
e(L/K) = (vp(L) : vg(K™)),
and f(L/K) is the “residue degree” defined by

J(L/K) = [kL, : k).

Note that, in this case v;, = ﬁu;( o Ny i where N/ : L* — K* is the norm map.

Local fields are classified as follows:

e if char(K') = 0, then K is a finite extension of Q,;

e if char(K) = p > 0, then K is a finite extension of F,((¢)) where ¢ = p° for some

s €N,

Definition 2.1.1. Let L/ K be a finite extension of local fields. Then the extension L/ K is
called

(i) “unramified” if kL : k) = [L: K] thatise(L/K) = 1;
(ii) “totally ramified” if ki, = ki thatis f(L/K) = 1;

(iii) “tamelyramified” if k1 |k is a separable extension andp t e( L/ K) where char(k i) =

p>0;
(iv) “wildly totally ramified” if k;, = kx and the degree of L/ K is a power of p = char(K).

The compositum of all finite unramified extensions of K in a fixed separable closure K°¢?
is called the “maximal unramified extension ” of K and is denoted by K. In general,
K" is not a complete field. Its maximality implies c K*" = K" for any automorphism
o of the separable closure K*%® over K. Thus, K*"/K is a Galois extension. Moreover,

K" /K is procyclic and its topological generator ¢ of Gal(K*"/K) which is mapped on




the topological generator Frob, of Gal(IF;°?/IF,) is called a “Frobenius automorphism” of
K. If L/K is any separable extension, then its “maximal unramified subextension” Lo/ K is

defined by Lo := LN K.
2.2. RAMIFICATION THEORY

Let K be a local field. Let K% be a fixed separable closure of K and G be the absolute
Galois group of K. In this section, we shall summarize the higher ramification subgroups
in the upper numbering of G'r which will be needed in the theory of arithmetically profinite

extensions over K which will be discussed in Chapter 3. The main references for this section

are [7] and [12].
Let L/ K be a finite separable extension and o € Homg (L, K*%). We define
iL/f((O") 1= Mingeo, {ve(o(z) — )},
and fort € R>_,
v .= #{o € Homg (L, K*%P) : ip/k(0) =t + 1}.

Then, the “Hasse-Herbrand transition function” of L/ K,

wrx i Rs_1 = Ry
is defined by the rule

fou (i If = RZO;

70

pr/i(u) =
u if —1<u<0.

The function ¢,/ is monotone increasing, continuous and piecewise linear. Moreover, ¢,/
induces a homeomorphism R>_; — R>_;. So, we may define its inverse ¥/ x = (pE}K.

In the remainder of this section, we further suppose that L/ K is a finite Galois extension

with Galois group G := Gal(L/K). For u € R>_,, the “u-th ramification group” G, of G




in the lower numbering is a normal subgroup of G defined as
Gu = {O' S G Z'L/K(O') 2 U+ 1}

Observe that for every pair u,u’ € R>_;, we have the following properties:
e G_, =G.
e (5, has order ,.
o Ifu > u,then G, C G,,.

Therefore, the family {GM}HEIRZ_1 induces a natural filtration on G, which we call the “lower
ramification filtration” on G. Any number u € Rx_, which satisfies G, # G4 for every

€ € R is called a “break in the lower ramification filtration”.

Using Hasse-Herbrand function, the “v-th ramification group” G of G in the upper number-
ing is defined as

G' = G‘#,’L/K(U) @1

forv € Rs_,. Note that for every v, v € Rs_,, if v/ > v then G¥ C G". Hence, the
family {G"},er, _, induces a filtration on G’ which we call “upper ramification filtration” on
G. Similarly, any number v € R>_; which satisfies G* # G*** for every € € R is called

a “break in the upper ramification filtration”.

Remark 2.2.1. Let F /K be a subextension of L/ K and H = Gal(L/F'). Now, we have the

following properties of lower and upper ramification filtrations on G:

(i) Foru € R>_;, we have
He= Gyn I

(i) (Herbrand’s Theorem) Suppose further that H is a normal subgroup of G. Then, for
v € Rs_y, we have '

(G/H)' =G H/H. 2.2)

This enables us to introduce the upper ramification filtration G on G for an infinite

Galois extensions.
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(iii) The Hasse-Herbrand functions @ and 1 satisfy the following transitivity laws

YPrL/Kk = PrjK CPL/F

and

Yk = VriF © Vr/K-

Now, let L/ K be an infinite Galois extension with Galois group G. Let K C F C F' C L
be a chain of finite Galois subextensions F'/ K and /K of L/K. Define the morphism

th' (v) : Gal(F'/K)" — Gal(F/K)",

forv € R _; which is the restriction morphisms from F' to F', by the following commutative

diagram

¢E (v)

Gal(F/K) 4

Gal(F"/K)"®

isom. intro. in (2.2)

Gal(F'/K)'Gal(F'/F)/Gal(F'/F)
induced by Equation (2.2). Here, “can.” denotes the canonical group homomorphism. So,

we get the following inverse system:
(Gal(F/K)?;tE (v) : Gal(F'/K)® — Gal(F/K)"}. (2.3)
Then, the inverse limit of this system is denoted by
&= lim Gal(F/K)"
KCFCL

and called the “v-th ramification group” of G in the upper numbering. Note that for every
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pairv,v’ € Rs 4, ifv < ¥/, then G¥ C G via the commutativity of the following diagram

tE (v)

Gal(F/K)? +—="" Gal(F'/K)"®

A
ine. inc.
Ff

Gal(F/K)” =) Gal(F'/K)”

for every chain K ¢ F' C F' C L. Here, “inc.” denotes the inclusion homomorphism
of groups. The family {G"},cr,_, induces a filtration on G called the “upper ramification

filtration” on G. Moreover,
(i) Forv € R>_;, G” is a closed subgroup of .
(i) ﬂueRE,, G'=<1g >.
(iii) Gt =G.
(iv) G°={o € G:0(x) =z (mod p.),Vz € O}

Any number v € R>_, is called a “break in the upper filtration” {G"},er, ,of G ifvisa

break in the upper filtration of some finite quotient G/ H for some normal subgroup H of G.

(v) (Hasse-Arf Theorem) The upper ramification breaks in abelian extensions over K oc-

cur at integers.

(vi) The upper ramification breaks in separable extensions over /' occur at rational num-

bers.
2.3. ABELIAN LOCAL CLASS FIELD THEORY

Here K denotes again a local field. Let K% be a fixed separable closure of K and Gk
denote the absolute Galois group Gal(K*®?/K) of K. Let G’ be the closure of the first
commutator subgroup (G, G| of Gk and G‘}‘}’ be the maximal abelian Hausdorff quotient
group G /G of Gg. Let K be the profinite completion of the multiplicative group K.

The main reference for this section is [12].

Theorem 2.3.1 (The local Artin reciprocity map over K). There exists a natural algebraic




12
and topological isomorphism
ag t KX = G%

called, “the local Artin reciprocity map of K", which is “unique” satisfying the following

conditions:

(i) We have
ag(K*) = W2,

where W is the Weil group of K.

(i) (Isomorphism theorem) Let L] K be an abelian extension. Then the homomorphism
QLK - T(h; E-Ii) G?g ﬂ Gal(L/K)

satisfies

NL = KGI’(O.’L/K) = ﬂ NF/K(F:;)
KCFCL

where I | K runs through the finite subextension of L] K.

(iii) (Existence theorem) Let L[ be an abelian extension. The map
L Ny,
defines a one-to-one correspondence
{L/K :abelian} +— {N N <ipea f{‘:;}

Moreover, if L, L, and Ly over K are three abelian extensions over K, we have the

Jollowing properties:

o [L: K] < oo <= Ny, is an open subgroup of KX (equivalently, (E; : NL) <

0);
o [, CLy& N, 2N,

° NLlﬂL2 = NLlNLg;
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® NL1L2 ZNLI ﬂNLz.

(iv) (Ramification theory) Let L|/K be an abelian extension. For every i € Z>p, v €
(i—1,i] € Randz € KX, we have

CfL/K(.’L') € Gal(L/K)” e U;(NL

(v) (Functoriality) For an abelian extension L]K, we have the following functoriality

properties:

o Forne Aut(K) andz € KX,

ax(n(z)) = Rouc (@)

where 1) is any automorphism of the field K which satisfies Nk =m

o [f furthermore L] K is finite, then for every x € f’?,

() e = e (Ngc(a)

e IfL/K is finite, for every x € I/(_;, we have

ap(z) = Viksn(ak(z))

where Vi, : G2 — G% is the group-theoretic transfer homomorphism (Ver-
K L P

lagerung).
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3. FONTAINE-WINTENBERGER THEORY OF FIELDS OF NORMS

In this chapter, we shall briefly review the theory of APF-extensions over local fields and
Fontaine-Wintenberger theory of fields of norms associated to such extensions. The main

references that we follow for this chapter are [7], [8, 9] and [36].

Throughout this chapter, K denotes a local field. Fix a separable closure K *% of K and let
Gk = Gal(K*”/ K') be the absolute Galois group of .

3.1. APF-EXTENSIONS OVER LOCAL FIELDS

In this section, we summarize the theory of APF-extensions over local fields. As usual, we

denote by {G% }uer,, the upper ramification filtration of Gc. Set
R’ = (K*%)%% = {z € K*% : g(z) = z,Vo € G%}.
Now, we introduce an “arithmetically profinite extension” which will be frequently used in

this chapter.

Definition 3.1.1. An extension L/ K is said to be an “arithmetically profinite (in short APF)

extension” if one of the following equivalent conditions holds:

(i) GxGr € Gk, YveRs_y;

open

(fl) (GK : G}(GL) < oo, Vv € RZ—I;
(iii) [LNRY : K] < o0, Vv € R>_;.

Remark 3.1.2. It is important to note that if L/K is APFE one can define also the lower
ramification filtration. Moreover notice that if L/ K is an APF-extension, then [ky, : kk| <

0.
Example 3.1.3. We have the following examples of APF-extensions.

(i) If L/ K is an abelian extension with [ky, : kx| < oo, then L is an APF-extension over
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K. In particular, any abelian totally ramified Z,-extension-is an APF-extension (see

[7)).

Proof. For an abelian extension L/ K, we know that Gal(L/K)? is the image of G¥ in
Gal(L/K) by the definition of upper ramification filtration (2.1) in Chapter 2. Since,
every G has finite index in G° by the Hasse-Arf theorem, we conclude that every
Gal(L/K)" has finite index in Gal(L/K). Hence, L/K is an APF-extension by Defi-
nition 3.1.1. (]

(ii) Every p-adic Lie extension L/ K is also an APF-extension (for the positive character-

istic case see [35]; for the characteristic zero case see [31]).

Let L/ K be an APF-extension. Put GY = G, N GY%, and define

fOU(G?{ L G%G?{)d’b {f UAS RZU;
v if —1<v<.

Yrx(v) =

Note that, 11/x is a well defined map v + Yr/i(v) for v € R>_; and it establishes a
continuous, strictly monotone increasing and piecewise-linear bijection 9/ @ Ry 1 —
R>_;. We denote the inverse of ¥,/ by v/ = 1,05/11{.

Let L/K be a Galois APF-extension. In this case, we can define the “u-th ramification

subgroup” Gal(L/K), of Gal(L/K) in the lower numbering by setting
Gal(L/K), = Gal(L/K)?rx®

foru € R>_;.

Remark 3.1.4. Let L/ K be a finite separable extension and L' | L an APF-extension. Then,

L'[K is also an APF-extension, and we have the following transitivity rules for the maps
Yk and o
Yk =YLk © YryL

and

PrjK = PL'JL O PL/K-

The following theorem (see Proposition 1.2.3 in [36]) is important in what follows:
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Theorem 3.1.5. Given a tower of field extensions K C F' C L, C K*%®. Then:
(i) if F /K is finite, then L/ K is an APF-extension <= L/I' is an APF-extension;
(i) if L/ F is finite, then L] K is an APF-extension <= F [ K is an APF-extension,

(iii) if L/ K is an APF-extension, then so is F | K.
3.2. FONTAINE-WINTENBERGER THEORY OF FIELDS OF NORMS

Let L/K be an infinite APF-extension and {L;}icz, be an increasing directed family of
subextensions L;/K in L/K such that:

(i) [Li: K] < 00, Vi € Zo;

(ii) Usego, i = L.

Then,
{L;(QNLI-,/L.» tlals —% L?}i,i’ezzu (3.1)

i<if

is an inverse system where the transition morphisms are the norm maps
NLif/Ls : L™ — L™,
forevery i,i’ € Z»o with i < ¢'. Let
X(L/K)* := @Lix
i
be the inverse limit of this system (3.1).

Remark 3.2.1. The group X(L/K)* is independent of the choice of the family {L;}icz..,
defined above. Let St/x be the partially ordered family of all finite subextensions in L/ K.

Hence,

X(L/K)* = lim M
J\*IESL/K




where as before the inverse limit is taken with respect to the norm maps
1\11\,12/3\_,1l : ﬁ’fzx — ﬂ/[lx,

Jor every My, My € Sy i with My € M.

We set
X(L/K) := X(L/K)* U {0}

where 0 is a fixed formal symbol. The addition on X(L/K) is defined by the rule

+: X(L/K) x X(I/K) = X(L/K)
((@ar), (Bar)) = (o) + (Bar) = (vu1)

where vy € M is defined by the limit

vy = limyreares,  Naryy(car + Bar) € M
(M:M] 00
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(3.2)

(3.3)

whose existence is guaranteed by the fact that I/ K is an APF-extension. Now, we have the

following theorem.

Theorem 3.2.2 (Fontaine-Wintenberger). Let L/ K be an APF-extension. Then X(L/K) is

a field under the addition defined by (3.2) and under the componentwise multiplication on

X(L/K)*. We call the field X(L/K) “ field of norms” attached to the APF-extension L] K.

From now on, consider the following specific increasing directed family { L }icz.,, of subex-

tensions L;/K in L/ K such that:
(i) Lo/ K is the maximal unramified subextension of L/ K;

(i) L;/K is the maximal tamely ramified subextension of L/ K;

(iii) fori > 2, let L;/ L, be defined inductively as finite subextensions of L/L; such that

o L; C Ly,

® UiEZEQ Li = L'
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Note that [Lg : K| < oo, and according to the part (iii) of Definition 2.1.1, it follows that
Lo C Ly, with [L; : K] < co. Therefore, we have

v (ar,) = vi,(ar,) (3.4)
forany (ar,)icz,, € X(L/K). Hence, the map
vy X(L/K) = Z.U {0}
defined by the rule

Vx{f,/x)((OfL,-)iezzo) = vio(ar,) (3.5)

is a discrete valuation on X(L/K). Then, we have the following main theorem of Fontaine-

Wintenberger theory (see Theorem 2.1.3 in [36]) :

Theorem 3.2.3 (Fontaine-Wintenberger). Let L/K is an APF-extension and X(L/K) the
field of norms attached to L/ K. Then:

(i) the field X(L/K) is complete with respect to vx(1 k) defined by (3.5);

(i) Kx(L/K) — KLS

(iii) char(X(L/K)) = char(kk) = p.

3.3. THE ABSOLUTE GALOIS GROUP Gx(1/k) OF X(L/K) ATTACHED TO AN
APF-EXTENSION L/K

Let L be an infinite APF-extension over K. Let F'/K be a finite subextension of L/K and

E/L be a finite subextension of K**? /K that is we have the tower
KCFCLC ECK™

of field extensions. It follows from (i) and (i) of Theorem 3.1.5 that L/F is an infinite

APF-extension. Moreover, we have

X(L/K) = X(L/F).
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Again by Theorem 3.1.5, E/K is also an infinite APF-extension such that
X(L/K) < X(E/K)
under the natural topological embedding
M X(L/K) - X(E/K),

depending on a finite extension M over K with LM = E. Let us briefly recall the definition
of the embedding eﬁf‘”. Let {Li}iezzo be an increasing directed family of subextensions

L;/K in L/ K such that:
(@) [Li : K] < 00, Vi € Zso;
(11) UiEZzoLi — L

Then, obviously, { L; M }icz., is an increasing directed family of subextensions in & /K such

that
(1) [L;ﬁn’[ ! I(] < OO,V?. € Zzg;
(if) Uiczyo LiM = E.

For the above directed families, there exists sufficiently large m = m(M) € Zs,, satisfying
Np,mynam(z) = Nijppi(2) (3.6)
for j > i > m and for each & € L;. Then for every (o, )icz., € X(L/K)*,

M X(L/K) < X(E/K)

!
(or)iczso = (O, a1)iczs0
where o, € L; M for every i € Zx,

ar,. ifi > m,

! _ i
Qpm = .
NL,,lﬂrI/L,-AJI(a'Lm) ifi < m.
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Therefore, X(F/K) is an extension of the complete discrete valuation field X(Z/K') under

the embedding EED“VQ

Remark 3.3.1. Suppose that M and M’ are two finite extensions over K satisfying LM =

LM’ = E, then the corresponding topological embeddings eﬁg, egg) are the same. So, we

shall set e(L“'Q = €L,E-

sep

Now, let £/L be any separable extension. Let us denote by S, the partially ordered family

of all finite separable subextensions in £/ L. Then we have the following result.
Proposition 3.3.2. The system
{X(E’/I{), Ept B . X(EI/I() = X(EH/I{)}E’|E”ESEE;3L
E'CE"
is inductive whose limit is given by

X(E,L/K) = lim X(E'/K).

Besyl,

Theorem 3.3.3 (Fontaine-Wintenberger). Let L/ K be an APF-extension. Then, the fields of

norms functor
Xf}}’; : {seperable ext of L} = {separable ext of X(L/K)}

defines an equivalence between the category of separable extensions of L and the category
of separable extensions of X(L/K). More precisely, if E is a separable extension of L,
then the functor X[y associates to E the field X(E, L/ K). If moreover, E/L is a Galois
extension, then the extension X(E, L/ K)/X(L/K) is also Galois, and we have a canonical

isomorphism

X[k : Gal(X(E, L/K)/X(L/K)) = Gal(E/L).

In particular, if E = L*?, we get the following corollary.

Corollary 3.3.4. Let L/ K be an APF-extension. Then, there is a canonical isomorphism

Gal(X(L**?, L/ K)/X(L/K)) ~ Gal(L*L).
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Note that X(L*%, L/ K) = X(L/K)*®. Therefore, Corollary 3.3.4 can be reformulated as

GK(L/K) 2= .

3.4. ABRIEF SUMMARY OF NON-ABELIAN LOCAL CLASS FIELD THEORY

Using Fontaine-Wintenberger theory of fields of norms attached to APF-extensions over K,
it is possible to develop non-abelian local class field theory of K. That is, there exists a
topological group V ;¢ which depends only on the local field K and a topological group iso-
morphism

Vi — Gk,

satisfying basic functorial properties, the “existence” theorem and the “ramification” theo-

rem. For details, see [3], [14, 15] and [27].
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4. CONSTRUCTION OF THE SEPARABLE CLOSURE OF A FIELD
OF POSITIVE CHARACTERISTIC

In the first part of this chapter, we give a brief discussion of cyclic extensions of fields. Then
in the second part, we review the well known construction of the seperable closure of a local
field K of characteristic p which will be used in the next chapter. For all details, we refer the

reader to [7], [23].
4.1. CYCLIC EXTENSIONS OF FIELDS

Let K be any field.

Theorem 4.1.1. Let K be a field containing a primitive n-th root of unity where n € Z
such that ged(n, char(K)) = 1. Then for a cyclic extension L] K of degree n, there is an
element o € L such that [ = K (), and « satisfies an equation x™ — a = 0 for some a € K.
Conversely, let a € K and a be a root of 2" — a. Then K(a)/K is a cyclic extension of

degree d, d | n, and o € K.

Theorem 4.1.2 (Artin-Schreier). Let K be a field with char(K) = p > 0. For a cyclic
extension L/ K with [L : K| = p, there is an element o« € L such that L = K(«a) and o
satisfies an equation ¥ — x — a = 0 with some a € K. Conversely, let o € K and consider

the polynomial p,(x) = aP — x — a. Then, either

(i) pa(z) is irreducible. In this case, if « is a root of p,(x) then the extension K (a)/K is
cyclic with [K(a) : K| = p;

or
(ii) pa(z) has one root in K. In this case, all roots of p,(x) belong to K.

In order to mention the notion of solvability of a finite group G, we first introduce the com-
mutator (also known as derived) subgroup of G. The “derived subgroup” G’ of G is defined

as

G' = {aba"'b Y a,b € G).
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For any i € Zxg, “i-th derived subgroup” G of G is defined as follows:
() GO = G;
(i) GM = G";
(iiiy GO = (GE-VY,
This gives a sequence of normal subgroups
GoGM oGP ...
of . Now, recall that a finite group G is called a “solvable  group if G = (e) for some

n > 0 where e is the identity element of G.

Let K be any field and E/K be a finite separable extension. Let L be the smallest Galois
extension of K containing E. Then E/K is called a “solvable extension” if Gal(L/K) is a
solvable group.

A finite extension F'/K is called “solvable by radicals” if this extension is separable and

there is a finite extension F// K which contains F', having a tower decomposition
K=FCFHKCEC---CE,=FE

such that each extension E;,, / E; can be obtained by adjoining one of the following elements:
(i) a root of unity,
(ii) aroot of a polynomial z" — a € E;[z] with ged(n, char(E;)) = 1,
(iii) a root of a polynomial p,(z) = 2” — z — a € E;[z] if char(£;) = p > 0.

Theorem 4.1.3. Assume that /K is a separable extension. Then

E is solvable by radicals <= FE is a solvable extension of K. (4.1)
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4.2. SEPARABLE CLOSURE OF A LOCAL FIELD OF CHARACTERISTIC p

Now, we assume that K is a local field. The next well known theorem is a powerful tool for

describing the separable closure /{°% of K.
Theorem 4.2.1. Every finite separable extension of K is solvable.
Proof. See Chapter 4, Lemma 1.2 of [7]. O

The particular case we are concerned with in this section is the case K = IF,,((t)), the field of
formal Laurent series over the finite field IF,. By Theorem 4.1.3, K is solvable by radicals.

Then, immediately the following corollary holds true.

Corollary 4.2.2. Let K = F,((t)). Then, the separable closure K** of K is obtained by
adjoining to K:

(i) the elements of the algebraic closure F, of IF,;
(ii) all n-th roots of the indeterminate t of K such that ged(n,p) = 1;
(iii) all roots of Artin-Schreier polynomial p,(z) = 2> — x — a € K|z].

This is indeed the starting point of Arf’s construction of ', ((£))*® in terms of certain symbols

which is the content of next chapter.
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5. AN OVERVIEW OF ARF SYMBOLS

“..0 sembolizmi hala benimsetemedim sanyorum. Ama belki oldiikten sonra benimserler. Ben
devam edecegim. Daha ig bitmedi...”

Cahit Arf

In his important paper [1], Arf explicitly constructed the separable closure IF,((t)) of the
field of formal Laurent series F,((¢)) with one indeterminate ¢ over the finite field IF, with p
elements and the absolute Galois group G g of the maximal tamely ramified extension F
of F,((¢)) in terms of certain symbols, which will be called Arfsymbols (also known as
Arfvectors following Whaples) in this work. Here, E = F,((t))#" | n € Zso,p 1 n).
In our thesis, we shall construct the absolute Galois group G'x of any local field K 4 la Arf.
More precisely, the aim is to extend Arf’s construction of G to G using Arf symbols,

Milnor K-theory and non-abelian local class field theory.

For a fixed prime number p, let F,((¢)) denote the field of formal Laurent series with one
indeterminate ¢ over the finite extensions of IF,,. The field IF,((¢)) is a valued field, equipped

with the valuation

v:TF,((t)) = ZU {co}

defined by v(0) = co and
v Zaiti — min{i | a; # 0},

forevery 0 # >, a;t' € F,((t)), which is complete with respect to this valuation. From the
previous chapter, it is known that the separable closure F,((£))* of F,((t)) is obtained by
adjoining to F,((¢)) :

(i) the n-th roots of the indeterminate ¢ of F,((¢)) where p { n;
(ii) the roots of Artin-Schreier polynomial p,(z) = 2P — x — a with a € F,((t)).
Note that F,((¢))* = F,((t))*.

Let Z,) denote the local ring obtained by localization of Z at the prime p. So, any element
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v € Zy) has the formv = 2 € Q where m, n € Z and p { n. If v is furthermore a unit

element in Zy), then p does not divide m as well.
5.1. ARF SYMBOLS

In this section, we shall briefly review the paper [1] of Arf, which is one of the main theories
that we shall use in our work. Here, we first introduce the defining relations of the Arf

symbols.

Definition 5.1.1. Introduce a “symbol” of lengthn € N by

61 52 gn

vy Vo ... UVp

where §; € Fp and v; € L) positive withj =1,...,n.

Let A denote the set of all possible formal E-linear combinations of the symbols defined
above and a fixed formal symbol denoted by 1. Then, A has a natural [Z-vector space struc-

ture. Consider the natural £-linear embedding
E— A

defined by

o a.l,

for all @ € E. From now on, we shall identify .1 with « for every o € E. Now, consider

the subgroup N of A generated by the elements of A given by:

€1 £2 €L+§g ‘Sn fl 52 6;, én

v vV ... Vp . Up Vi, Vg ... Vp ... Vyn

. 61 €2 5}’: &n ’ (5‘1)

vy, Vo9 ... Vi ... Vp
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p
- (f] - L 52)
vp v t
forn > 2,
ij 62 e 572 _ ‘Sl ‘52 v ‘En B §1§2 €3 SR én ’ (53)
mnp Vs ... Uy vy Vo ... Vn Vi+vy V3 ... Uy
& G G G &) (& &G &G G &
vy ... Vj1 Vip Vipr ... Vp vy ... Vi1 Vi Vigr ... Vp
& G GG e G & G o &Ga&  LGr oo &
vy ... Vi1 Vj + Vit1 ... Vn o ..o Vi + vip Viy1 ... Wn
(5.4)
& & v Lad £ B & ... &a-1 &n & & & w0 Epei
by Vg ... Vp1 Unpp Vi ovvo Vpo1 Wn £ v Vy ... Vnp
P
4 €1 £2 'gn—lfn . (55)
vy, Vo ... Vpqtuvpp

Note that, Relation (5.1) and Relations (5.2)-(5.5) encode the additivity and the p-powering
operation of symbols, respectively. Denote the factor group A/N by 7, and for any symbol

(&1 G e dn in A, set

Vi Vo ... Vy

El 62 €n s 51 62 gn —}—N,

V1T Vo ... IV v Vg ... Uy

where &; € F, and v; € Z, positive with j = 1,...,n.

Definition 5.1.2. An element

fl &2 gn

v Yy ... Vp

in o/, where &; € T, and positive v; € Ty, (respectively, v; € Z(’; )) withj =1,...,nis
called a “general (respectively, fundamental) Arf symbol of lengthn”.
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Remark 5.1.3. The factor group &/ consists of all possible formal E-linear combinations of

1 and of the general Arf symbols.

Moreover, observe that the following equalities for general Arf symbols hold:

& & o GG & b & oo &G o

vy Vo ... Uy P vy UV Vyp ... Vp
1!
+ £1 52 e h. o gn , (5l6)
vy, V9 ... Vp ... Vp
) .
Sl % (5.7)
vp v L
forn > 2,
ff ‘52 e €n. . gl £2 S ‘En n ‘51'52 §3 v gn , (58)
mp Va ... UV, Vy Vo ... Vp m+ve v ... Uy

& oo &Ga & G b & G & Gnooo G

VY1 ... Vi1 Vip Vigr o ... Up V... Vi1 YV Vigr ... U
o e sen el fa o 608 Gn 6
- )
1% I S R + Viyi ... U vy ... Vj + vip Vi1 .- Vp
(5.9)
§1 EZ LR 57171 ﬁﬁ . ‘Sl v fn—l gn + En fl {2 O gn—l
v
i Vo ... Vp-1 Vpp 5 Un1 VUn L Vi V2 ... Vnpa
él 2 .. —l‘fp
B 3 &y | (5.10)
Vi Vo ... Vp1 T URD

Definition 5.1.4. Let % be any IF,-basis over [F,. Define a “fundamental Arf symbol of

length n.”" with respect to the basis 98 by

ﬁl 462 671

Y Vo ... Vy
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where 3; € B, v; € Z("p} withi=1,...n

Proposition 5.1.5. Let & be any F,-basis over .. Then, 1 and the fundamental Arf symbols

with respect to 9B span the veclor space </ over I.

Proof. As 2 is an IF,-basis of Fp, any £ € [F, has a unique expression § = ¢, 81 +- - - +¢;;
where f,,...,8; € #andcy,...,c; € Fp. Therefore,

& e+ + e Clﬁl +ciBy
vp v
=C1 'BI + ¢ ﬁJ Clﬁl -t %
v v t
r D
=¢ ﬁl + co .6_]
174 1%

That is, it is true for n = 1. For n = 2, we consider {61 62} where £1,&, € F,. Then, the

]
following 4 different cases occur:

° v, € Z(’;) positive;

* v € Lp) — ZE;), vy € Z(p) positive;

° Y € Z(p), vy € Lp) — Z{’;) positive;

1,V € L) — Ly positive.
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In Case 1, we assume that 11,1, € Za) positive. Then, we have

&L & B ciBu + -+ asbis cafa + -+ el
vy Ve vy %)
Bi1 cafar + -+ cafPar Bis cafar + -+ cafa
=c11 +e G
%41 1% 51 %)
B Ba B Paa B Ba
=Cy1C21 + C11C22 + e+ C1sCo
S ) vy Vg vy
i s
Bri Boj
= C1iCoj
=1 i=1 vy e

That is, 1 and the fundamental Arf symbols with respect to 22 span the vector space . In
Case 2, 1, € Zy) — Z(’;}), vy € ZE;) positive. That is, vy = pv' where /' € Z(’;). Then by

using Equation (5.8), we have

& & cnfu -+ easbs cafar + -+ cuBy

V1 g 151 Uy

aP ¢y flar + -+ corBu

pv %]

& (g [0700)]
= +

Voo I

when ¢;1811 + -+ + c1:81s = @ and ¢21 821 + - - - + cotffar = va. Clearly, Case 3 is similar to
the Case 2. Now, let us consider the Case 4. For Case 4, vy, v € Z,) — Z(’;), then v, = p/

and v, = pv”’ where V', V" € Za )
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Then by using Equations (5.8) and (5.9), we obtain

& & _ enBu + o+ esBis P+ A+ caBau
v 154 Vo
aP ,},P
pVJ pyh'
g or avy?
- +
UJ pVﬂ' Vf + pyﬂ
_Ja i a 7| ay? i ay?
v ¢ v oV v+ p” v+ p”
a o
AT tv "

Here, of = & € F, and 4? = & € F,. This shows that all other cases are turned into the
first case. Therefore, the desired result can evidently be obtained by applying the similar

argument for an Arf symbol of arbitrary length. O

In [1], Arf proved that 7 is a ring under the natural addition and a certain multiplication on
&7, which will be defined in the remainder of this section. In order to do so, we introduce the

following expansion mapping

E{!ﬁ—}ﬁ

17

Forany A € 7, setting

P St LI
0 0 )

V2(i) (i)
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where v(i) € Zy, positive, we define an element { A; ¢ } of & by:
14

(i) ¢ (@) (i)
ES(A)g{A;g}:Z &7 & . Gy MY

¥ i ug) D ur(:()i) v(i) +v

Here, we use the convention that {1; ¢ } = {5 }
v v

Proposition 5.1.6. For two elements A, A’ € </, the following relation
Ee(A+ A') = E¢(A)+ E¢(4")

holds. This relation shows that the expansion mapping is additive on </ .

That is, by Proposition 5.1.6 for two elements {A; ¢ } , {A’; J } € &/, the following relation
v v

{A+A’;€}:{A;£}+{A’;§} (5.11)
v v v

holds.

Proposition 5.1.7. The image E<(A) € &/ of A € &/ under the expansion mapping
Eg c il —

does not depend on the choice of particular representation of A as a linear combination of
symbols {‘El B e

vy vy ... Vn

Proof.  Forv(i), u(j) € Zy) positive, suppose that any two representation of A is equal that

is

v(i) i i i e ; . "
t u{i) I/é) Vr(z():') ; tHy VF) VQ(,,J) uf;'(g.)

i (B £0) @ i G 0 6)]
o Z n® &7 & - &g _ Z A &7 & - &y
i
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Then,
i (i) () @) () €] (1) (7)
(i) i i (4) i) j j
= 1/1() ué ) . n(! ; vy (7) u:EJ) I/?E){?i)

Apply the expansion mapping to both sides, then we obtain

B0 =3 g4 .o o | e . g A
v I 7 Vz(z(;) v(i) + v = |9 DL Vflji w(g) +v

In addition, by using Equation (5.11), we have

et} =fo) s}

Therefore,
E¢(0) = {D;g} =0
v v
that is,
> ). e | ) @ gl A9
: V{i) Vél) .!/r(:()i) v(i) +v ¥ VP) yé‘) e V(Jﬁ) p(j) +v
1
6 & ... & . | o .
Now, for A = € »/ introduce the following truncation mapping
vy Vg ... Vn
T:94 = A
AmTA)=A
where A is defined by
B & & . & T
A= vy V2 ... Vpol
1 ifn=1.
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By using truncation mapping, for A = SR and B = W Mo Wl s
Vi Va2 ... Un B M2 ... My

can define their product in 2/ by

AB = {AE; e } + {EB; f"} + {EE; En'lr } . (5.12)
[y Un Un + Hr
Note that the multiplication on <7 is commutative and associative. Moreover, product of two

non-zero symbols is a non-zero symbol. Therefore, the ring &/ becomes an integral domain

with respect to the addition and the multiplication defined by Equation (5.12).
5.2. IDENTITIES SATISFIED BY ARF SYMBOLS

One of the fundamental goal of this chapter is to give a detailed presentation of Arf’s de-
scription of F,((¢))**?. We start with introducing the preparatory identities satisfied by Arf

symbols.

Lemma 5.2.1. The following identities hold:

g & ... & & ... & &L & ... &

mp Wp ... Vpp Vpyr ... Vp v Vg ... Vy
N L & oo Gt GEa oo
b
Vi Vo ... Vhol VptVhyr ... Vp
(5.13)
g8 & .. & _Ja & €n " & & ... & tETn (5.14)
mp ¥ap ... Unp h Va ... Uy Vi Va2 ... Vn

Proof. For h = 1, Identity (5.13) corresponds to Equation (5.8). Now, assume that the
identity holds for k. Then by Equation (5.9), we have

E o & B B bl 8 8 B &
VID ... Vi VpgiD Vhi2 ... Vn VD ... UpD Vpgl ... Uy
+{§i’ & b fn}_{f v 8y b e fn}

VID ... URD Vpal+Vhga ... Vp mp ... (Uh+Vat1)D Vhg2 .- Vn
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From this equality and the validity of Identity (5.13) for A, it follows that the identity is true
for h + 1. So, this identity is true for all A € N by induction.

Moreover, Identity (5.14) can be viewed as a special case of Identity (5.13) for b = n.
According to Equation (5.10), we obtain

28. 8| [ag.. 6 6l a2 8. &
VIp VD ... UnD Mp AP ... Va1D Vp P \vp vop ... vpoap
B 8 & - Eneh 1
vip vap ... (Up+vn-1)p
_ g 8 ... §1 &l & )& & . &2 +£nf1£n & & oo &g
- +‘t_f;';' tl’nul‘l"l/n
vip vap ... Vp—D Vp V1 V2 ... Vp-i Vi V2 ... Vnp-2
51 52 gnflgn En#l‘fn El 62 En—?
- —tVn—1+Vn
VT Vo ... Vp—1t+tiy vy Vo ... Vp_2
_ 6{} 55 ?1—1 fn _ él €2 En—lgn +§i fl 5‘2 ‘Sn—l
np vap ... Vn_1P Vn vy Vg ... Vp—1t+Vp L Vi V2 ... Vn-

if we assume the validity of Identity (5.14) for n — 1. Then, from this equality and Identity

(5.13) we obtain that Identity (5.14) is true for n. Also, for n = 1, it corresponds to Equation
(5.8). Thus, Identity (5.14) is true for all n € N by induction. O

Lemma 5.2.2. The following identity holds:

é- n Z n' fnl éng . E"!

nlng! ooyl |, ; ;
v ni+ngt..np=n 12 { mvVv Ny ... Wy

(5.15)

Proof. From Equation (5.12) which is the definition of the multiplication, we first deduce

the following by induction on [
& & .o a)el i & oo & £ &G &
1 g2 ... Y v i=1 i ... Vi1 V Vi ... Y

{51 b . & . a} {fl & ... & 5}
+ + ;
vy Vo ... V4V ... Y v Ve ... VYV

Then, Identity (5.15) is obtained by induction on n. O




Let
(i.5) g(i,j) g(i,j) o §(w)
_ n 1 2 n(i,7)
Ai = — - . 1 c
; tv(i.d) V{u) Vz(w) I}(1.3)

n(ij)
where v(i, j) € Z,) positive. Now, we introduce the symbol

{AI A Al;gl ‘fl}

51 4
by the reduction formula

{A[ fl[_L o A1;£1 vk & 51}:{.{4]{/4[_1 o A1;€1 e E!l};g\f}.
VYT, ... Y vy ... Vi 1%

By using the last symbol, we obtain the following identity which indicates the form of m-th

power of any Arf symbol with length n.

Lemma 5.2.3.
m
fl 5‘2 v gn.
vy Un
m! —mr =T —m mi D my
B > ] !{A[ AN AT n Sn (5.16)
it LT = Tmyimmat ... TNy M1V myy
holds where
& & ... &
A=
v g Vp—1
Proof. The proof is done by using induction on m by first showing that:
mj my
=. gn —m; —my_ —m fn éa it
{A, } {A A oo BB} ’ }
Vn min myy,
my my
- —my . ‘En % VT gn fu
= {A A7... A
mal, e TV, Vg
¢ my mij—1 m; m
—y —mi —r M-l —mi fn n €n nooree el :
+E {A oo A A A cow A 3
i MiVy Mi_1Vp Vp Milp... "YU,
{ mi mi—1 mi+1 my
§ : s —mi+l  —mig —m v n . -
_;_ A . fl 4 A 1 . A ’ n n n .
: MVp ... Mi_Vp (Mi+ v, ... myy,

Then, the right hand side of Identity (5.16) can be obtained by induction on {.

36
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Using Identities (5.15) and (5.16) with n = p and m = p, respectively we get the following

identities:
P P P
§ 3 1 & .. &a & & ... G p
= and = ;
v vp v Vs ... Uy v, Vs ... Vp_i UnD

Also by induction on n, we obtain the following identity

6 & .. &l [e¢ e . e

T Ve ... Vy mp vap ... Upp

Then, from Equation (5.7) and Identity (5.14), we get the following identities which will play

an important role in the proof of Theorem 5.3.5:

r
El )¢ :f—u (5.17)
v 12

& & oL & p_ & & o & _ §1 & oo &n éi (5.18)

tvn
vy Vo ... Uy VY Vg ... Vy vy Vo ... Vi

Moreover, Equations (5.17) and (5.18) yield the following theorem:
Theorem 5.2.4. The integral domain o7 is a field and it is algebraic over Fp((1)).

Proof. Now, consider the tower
F() cE=ehChC - CHpC---CH,

where &7, is the subring of & obtained by adjoining length n Arf symbols to @,_;. Then,
Equation (5.17) implies that &7 is algebraic over E and Equation (5.18) implies that &7, is
algebraic over &, ;. So, &, is algebraic over F,((t)) as E is algebraic over F,((t)) for all
n=1,2,.... Then, & = U, is algebraic over F,((¢)). Moreover, & is an integral domain
and algebraic over F,((¢)). Therefore, & is a field which is algebraic over IF,((2)). d
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5.3. DESCRIPTION OF F,((£))*** A LA ARF

Arf symbols and the essential identities satisfied by them that are discussed previously in
Section 5.1 and Section 5.2 allow us to describe the separable closure IF,,((¢))*% of F,((t)).
More precisely, we prove that there exists an isomorphism & =~ F,,((¢))*¢®. In order to show

this, we introduce p-extensions of fields following the first section of Chapter 6 of [30].

Definition 5.3.1. An extension L/ K of fields is called a p-extension if L]/ K is Galois and
(L : K] = p° for some s € N.

Lemma 5.3.2. Any finite Galois extension M of IF,((t)) corresponds to a p-extension M E,, .,

of Eny.m; i= () (8™, . .., #1/™) for some n; where pt ny, andi € N.

Proof. Let M /F,((t)) be a finite Galois extension. Then, there exists a, oz, ..., a; € M,
Cays e -+ Cn, € F, such that M = F,((1))(cu, g, . . ., 053 Cngy « oo Cngs £/, .. ., 81/74) where
«; istheroot of an Artin-Schreier polynomial @ —z—a; € F,((t))[z] and ¢y, is a root of unity.
Then, [M : F,((t))] = p' = [ME,,, n, ¢ Eny,..n] Thatis, ME,, . ., is a p-extension of
(]

Definition 5.3.3. A field L is p-closed if it has no Galois extension of degree p.

Assume that the characteristic char(/) of K is p > 0. Consider the homomorphism
Pl L
defined by
P(z) =aP —z, Vo € L.

Clearly, Ker(y)) = IF,. Moreover, for a € L, the polynomial f,(t) = ¥ —t — a is separable
over L. If « € L**? is any root of f,(¢), thena+1,...,a + p — 1 are the other roots of this

polynomial. Note that, we have two cases:

(i) if @ is in the image of 1, then there exists ap € L such that ¥(p) = of — a9 = a
which implies f,(ag) = 0. Therefore, all roots of f,(¢) belong to L.

(ii) if @ is not in the image of 1, then all roots of f,(t) are in L*** — L. Thus, the splitting
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field of f,(t) becomes cyclic extension of L of degree p.

Therefore, if L is assumed to be p-closed, there are no Galois extensions of degree p over L.

Thus, the lemma below follows immediately.
Lemma 5.3.4. Let L./ K be an extension of fields. If the field L is p-closed with char(K) of
K is p > 0, then the homomorphism
w:L—> L
defined by
W(z) =2 —z, Vz € L.

is surjective. Moreover, we obtain the following exact sequence
/
0Z/pZ L5 L—0

with Ker(v) = F,.
The important theorem obtained by Arf can be stated as follows.
Theorem 5.3.5 (Arf). The field o/ is the separable closure of F,((t)).

Proof. From the previous section, by Theorem 5.2.4, &/ is an algebraic extension of F,,((¢)).
By Lemma 5.3.2, it is sufficient to prove that &7 is a p-closed. Thus, it is enough to show
that each element of & is of the form 2P — z with 2 € 7. Here, each element of & can be

written as a sum of elements of the form

& & - &y

vy Vg ... Vyn

w
Il

where the coefficients a belong to £ and can always be written as a sum

6= E—|—b’-”—b
— i
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where j1; € Zp) positive. Therefore,

P é‘n g]. £2 gﬂﬁl
y=nh -t =0y
v Uy Vn-1
with
2 .. & & n;
ey SIS &n ) Z En i
vy Vo9 ... Vy i Vv Vo ... Vn W
From this we deduce the assertion by induction on n. tJ

Therefore, we conclude this section with an important theorem which describes the separable

closure Fp,((t))°cP.

5.4. CONSTRUCTION OF THE ABSOLUTE GALOIS GROUP G VIA ARF SYM-
BOLS

In this section, we shall first describe the automorphisms of <7 that leave the elements of £/

invariant in terms of Arf symbols. Let o € Autg(2/). Clearly o : &/ — o7 satisfies:

a( &1 & ... & . m M2 --- fm )
vy, vV ... Uy M1 M2 ... Hm
I R S L SR T
vy g ... Vp M1 M2 ... My

and

( & & i La m N2 ... Nm )
ag

v g ... Up H1 M2 ... H;j

- 51752 ses B o m T2 - TNm . (5.20)

h VUV ... Vp 1 M2 oo Hm
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Theorem 5.4.1. There exist symbols bbb € IF, such that

125 T 2 T v; v

(5.21)

& & ... & Z" & & oo & Gy Gy - &
i=0

vy Vo ... Vp v, Ve ...V Vigh Viyg ... Vy
o

Here, fori =0,

& & ... &
=1
vy Vg ... VU;
a
and when i = n,
Civr &2 oo G| ;
Visi Viga ... Vn

Proof.  Start with verifying the case that n = 1. From Equation (5.17), we have the follow-
ing

§ 3 £

where té" € E. Hence, {5} is a root of Artin-Schreier equation p,(z) = a2? —2 —a =0
v

where a :_f; € E. Since o € Autp(#/), it is obvious that & {E

v

} is another root of p,(x).

Therefore, there exists a unique

1 € I, satisfying
12

el _fel e
v vy |V

a

Now, we suppose that n = 2. Then, it is known that the assertion holds:

§1<f2p 5152_f1£2_

= —
1 g v V2 14!

31

. 2 | . 5 ; -
That is, is a root of Artin-Schreier equation p,(z) = 2 — z — a = 0 where
vy
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1758 tU2

this time a = {El} & € &/ which is the algebraic extension of 24 = FE obtained by

adjoining length 1 Arf symbols. Moreover, o & L is a root of Artin-Schreier equation

i a2
S : 31 31 €2 : f
Poa)(z) = 2P —z—o(a) = Owitho(a) = + e which has p distinct roots.
1251 1258

Now, introduce p distinct linear combinations

&1 & N &1 &2

vy s 141 " Vo

as A runs over IF,. Then, we obtain

( & & n &1 &2 —I-)\)p—( &1 & i §1 1) -1—/\)—0((1):0.

vy Yy 151 D) v 2 n %)
o o
: , & &
Therefore, there exists A € IF,,, which we shall denote by A = , so that
vy s

a

, G & _J& & N & & N L &
vy Vg Yy Ve 14} %) V1 s
o4 o

Using induction, we can show that

&L & ... & Z?:ﬂ & & .o & Eiv1 vz oo &n

Vi Vp ... Vg n vy Va'a Viyr Vig2 ... Un
. . &G &L ... & .
Here we make the convention that for i = 0, = 1; and for i = n,
vy, Vo ... VY
a
§iv1 &ivz -0 Gn
= il
Viyi Viga ... Vn

OJ

Furthermore, by applying o to Equations (5.6)-(5.10), we obtain the following type of sym-




bols which satisfy certain, similar equations (see [1]).
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& & &y o & &L & ... & €n
vy Vg ... vp Vy vy Vo ... Vp vV,
1!
N & & B €n  (5.22)
" Vg vy ... Vy
p ,
¢ = ¢ : (5.23)
vp v
forn > 2,
P
& & .. & _ & &2 o0 & . §i1&2 &3 &n (524
mp Vg ... WV vy Vo ... VU v+ g Vn )
S ooon G & S o G|l & & & S o K
Vi ... Vpx VP Vpyr ... Yy & Vi ... Vp_1 Vp Vppu Vn Y
" i v s Gafppr s G B &1 Eilh G oo
Vi ... Vpl VhtVpy1 ... Vn . V1 ... Vp1t+URP Vhpyp1 ... Vn .
(5.25)
&1 & fnt 0| & s G & B & & Enil,
Y Ve ... Vp—

wnp 1 Vn—1 Vn S
o o

Introduce the mapping

e(f}:.ngﬁlﬁ‘p

given by
S {S; E] ;
Vilg
for
g ﬂ - fp(:i()s) c ot
i tU(l) V:Ei) U2(i) el I/(i)

n(i)

Vn-1+ Pl
o

(5.26)
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where the element [S; «f} in IF, is defined by
4 a

[s-g] =, 60 & . gy 1%

o

From Equations (5.17) and (5.18), we get

“{S?E}:{“S5i}+ [s; f] | (5.27)

Moreover, from Equations (5.12), (5.20) and (5.27), we obtain

[K; én] |:§, T]m:| _ [E {E, Mm } ; fn] s l{z’ &n } -E; 'Um} i [E E; Enlhm } .
Unl, Hm o Hm Unlg Vn Hm ], Vp + Hm o

(5.28)

Conversely, if the above Equations (5.22)-(5.26) and Equation (5.28) are satisfied, then Equa-

tion (5.21) is an automorphism of &7 that fixes the elements of .

Now, consider the elements of the form

poyo? [ d e
a tui) VF) Vés) I/(;-()_J

where (i) € Z, non-negative. Then, such elements A € &/ form an integral domain

denoted by 2/’. Moreover, the set of all elements of the form

poy A0 8 & by
i) i i i
At P U CRO N

where 1(i) € Zp) positive form an ideal Z of 2/’

The residue class ring &7’ /T = &/ is clearly an algebra over [F,. The residue classes
1:=1 modZ

and
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form an IF,-basis of 27. Generally, we denote the residue class with

51 {2 ‘Sn . ‘El ‘52 gn

pe= mod Z.
vy Vo ... Vp Vi Vo ... Vy

Furthermore, for A = 3. 9@ |1~ °2 ") | by reducing E¢ (A) modulo Z, we

! @ 0 (i) v

VT Vs Valy

have

£ il) gél) ff:()i) nté

A 1=20 Lo 0)
2 i |V Ve e VeV

Then, the following equations are satisfied:

G & ... GG . & & & o &G oo b

h
V1 Vo ... 143 R vy Vo9 ... Vp ... UVp
"
SEE R A
V1 Vg ... Vp ... Uy
P
= ; (5.30)
vp v
forn > 2,
{f{l §2 gn gl 62 fn + 61{2 63 En ’ (531)
mp Vs ... Vy v Vg ... Vn Vi+Ve Vg ... Uy
& et & G o G| & Gt & Shr o G
i ... Vpa Vpp Vpp1 ... Vn 31 Vh1 Vp Vpya ... Vn
x & oo bhr Gbhr o S| & &k G e &
Vi eeo Vpy Vi+Vppr .0 Yy V1 ... VUp_1t+Upp Vpyr ... U
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51 62 o gnul ﬁ _ El e gn—l gn . ‘Sl ‘52 . &nflgﬁ
vy Voo, Vpa Unpp Vi ... Vp_1 Vn Vi Va2 ... UYp_1t+UpD ,
(5.33)
) [ ) o). o
v 1 v Iz B]v vt p
P D D P ]
él 52 st §n _ 51 62 s §n _ §1 52 s fn _ (5.35)
v Ve ... Up mp vap ... Uupp v, V9 ... Vp

Equations (5.29)-(5.34) when compared with the preceding Equations (5.22)-(5.26) and Equa-
tion (5.28) show that the mapping

o3 G & b = 8 & o b wheren € F,  (5.36)
vee M

V) Vs vy Vo ... Uy "

from o7 to F,, is a homomorphism. Moreover, each homomorphisms from & to [F, which

leaves the element of IF,, fixed correspond to o. That is, we obtain the following theorem:

Theorem 5.4.2. There exists an isomorphism
Autg (&) = Homg (o, T,)

defined by

*

oo,
where o* is given by (5.36), for all o € Autg(#).

Note that, Autz (/) is nothing but the absolute Galois group G of E. Therefore, G has a
description in terms of Arf symbols. Now, we can describe the absolute Galois group G, (1))
in terms of Arf symbols and non-abelian local class field theory which is the topic of the next

section.
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5.5. CONSTRUCTION OF THE ABSOLUTE GALOIS GROUP G, (1)

In this section, we shall construct the absolute Galois group G, of Fp((t)) using Arf
symbols and the non-abelian local class field theory of F,((¢)). Recall that we have the

following identifications
Gg = Autg(E*?) = Autp(F,((t))*?") ~ Autp(</) ~ Homg, (,F,),
where F is the maximal tamely ramified extension of F,((¢)); that is,
E =F,(()(t"" | n € Zso,pt n).
Theorem 5.5.1. The following natural short exact sequence
L = Gp <> Gy, — Gal(E/F,((t))) — 1 (5.37)

splits.
Proof. For a proof, see Theorem 2.2 in [21]. ]

Note that, there exists group theoretical description of Gal(E/F,((t))) given by Iwasawa
(see [18] and 7.5.3 of [30]), which states that Gal( E//IF,((t))) is a 2-generated profinite group

with genarators o, 3 satisfying the unique “tame” relation aSa~!

= . However, [wasawa’s
description of Gal(E/FF,((¢))) does not encode the arithmetic information of the non-abelian
extension E/IF,(())). Thus, we shall use the non-abelian local class field theory of I((%))

introduced in [14].

By the non-abelian local class field theory of IF,((t)), there exists a topological group iso-
morphism

Gal(E/F,((2)) = Ve, (n/NEjE, () (5.38)

which in return defines the following split short exact sequence

1= Gg = Gry) > Ve, )/ Neje iy = 1-
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Therefore, there exists asection s : Gal(E/F,((t))) = Gr, () of 7 : Gr,()) — Gal(E/F,((2)))
which is furthermore a continuous homomorphism, inducing an action «; of Gal(E /F,((t)))

on G'g by conjugation in G, () as follows.
For k € Gal(E/F,((t))) and v € G, we have
s(r)ys(k)™ = s(k)ys(x™")

and

r(s(k)ys(k™1)) = r(s(k))r(Nr(s(k™)) = wr(P)e ™ = ke~ =1

as vy € Gg = Ker(r). Therefore, there exists a unique ' € G such that s(k)ys(k™) = 7/

which defines an action of Gal(E/IF,((t))) on Gg. So, there exists a homomorphism

6 : Gal(E/F,((t))) — Aut(Gg)

defined by
k0,
for every k € Gal(E/F,((t))), where
9,5 : GE —p GE
is the homomorphism given by
Ox(v) =,

forall v € Gg.

From the theory of group extensions (see [4]), Gr,(() is topologically isomorphic to the
semi-direct product Gg 9. Gal(E/F,((t)))(see [20] and 7.5.13 of [30]). Thus, we have

proven the following theorem:

Theorem 5.5.2. There exists a topological group isomorphism

G,y — Autg(#) Xg- Vi, () /NEm, ()
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where 0* : V(1) /NEje, @y — Aut(Autg () sits in the following commutative diagram

Gal(E/F,((t))) —2——— Aut(G)

| T

V() /NBje, ) — 5 Aut(Autg(#))

of continuous group homomorphisms.
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6. CONSTRUCTION OF THE ABSOLUTE GALOIS GROUP G OF A
LOCAL FIELD K

In this chapter, K denotes any local field with no restriction on char(K’). Our aim is to
describe the absolute Galois group G of K by using certain hybrid symbols constructed out

of Arf symbols and Steinberg symbols.

6.1. STATEMENT OF THE MAIN THEOREM

In this section, we shall state the main theorem of our thesis. However, we shall postpone its

proof to Section 6.2.

Main Theorem . The following pair of short exact sequences

1
AutE(.sz?’)
L———Gr y G — KM(K) Ny KM (L) — 1

~

V() /NEJE, (@)

L
hl

uniquely describe G i in terms of Arfsymbols, Milnor K-group and non-abelian local class
Sformation modulo the choice of continuous normalized section and v defined by (6.2) for
the horizontal short exact sequence, and the choice of continuous normalized section for
the vertical short exact sequence, which is a homomorphism, as the vertical sequence splits

which yields an explicit description of Gz, (4)) (see Theorem 5.5.2).
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6.2. PROOF OF THE MAIN THEOREM

Our proof consists of the following steps:

(M)

(if)

(iii)

Let L be an infinite Galois APF-extension of K and X(L/K) be the field of norms
corresponding to L/K. Recall that, X(L/K) is a local field of char(X(L/K)) =

char(kx) = p > 0. Moreover, there is an isomorphism (see Chapter 3):

GX(L/K} &= Gal(f(sep/L) = GL.

By Cohen-Gabber Structure Theorem of local fields in equal characteristic case (see
[22]), the field of norms X(/K) of the APF-extension L/K can be identified with a

finite extension of IF,((¢)).

By [10], choose L/K in such a way that X(L/K) ~ [F,((¢)) and Gal(L/K) is a
closed subgroup of a p-adic Lie group such that it is isomorphic to Z,. Furthermore,
Gal(K**?/L) ~ Gg,(()) which has description in terms of Arf symbols and the non-
abelian local class field theory as described in Section 5.5. Therefore, the following

isomorphism
Gry() =~ Gxuyi) ~ Gal(L**/L) = Gal(K**/L),
clearly holds under the mapping

i Gryy = Gal(K*P/L) < G.

(iv) Note that, G’k sits in the short exact sequence

1 — Gal(K**/L) < Gy — Gal(L/K) — 1 (6.1)

of profinite groups. Observe that Gi acts on (g, via conjugation, which induces a
group homomorphism

'l,[)g : GK/GL — Oll'[(GL),
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defined in the natural way. Therefore, there exists a group homomorphism
Tesy ! 0
¥ Gal(L/K) =5 Gy /G 2 Out(Gr) = Aut(G)/In(G)  (6.2)

where Inn(Gp) consists of all inner automorphisms of G, and Out(Gy) is the outer

automorphism group of G, which is the cokernel of

o GL — AUt(GL).

(v) To sum up, there exists the following short exact sequence of profinite groups:
1 — Gx/x) < Gg —» Gal(L/K) — 1. (6.3)

Here:

o Gx(1/k) can be described by Arf symbols and the non-abelian local class field

theory, as X(L/K) ~ IF,((t)) by (44);

e Gal(L/K) can be described by the non-abelian local class field theory of K (see
[5, 6], [12, 13, 14]). We shall, however, choose a totally ramified Z,-extension,

which suffices for our purposes;

e G is a topological group extension of Gal(L/K) by Gx(z,k) (see Chapter 6 of
[34]).

(vi) Let s : Gal(L/K) — G be the continuous, normalized section of (6.3) which exists
in the profinite category (see Proposition 1.3.2 of [34]). The fixed section
s : Gal(L/K) — G identifies a function

f:Gal(L/K) x Gal(L/K) = Gr,s)

satisfying the equation
s(g9)s(g') = f(9,9")s(g9),

for every g, ¢’ € Gal(L/K). Additionally, by using ¥* : Gal(L/K) — Aut(Gr,)))>
Y, DY »((2))
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let us identify the lifting
’4/) : Gal(L/I{) — Oll't(GFp((t))) = Aut(GFP((t)))/Inn(Ggp((t)))

where Inn(Gr, ((1))) consists of all inner automorphisms of G'g,(z)). Also, Out(Gr,()))

is the outer automorphism group of Gg.*p((t)) which is the cokernel of
a : Gry(@) = Aut(Gr,(1))-
For g,¢',¢" € Gal(L/K), the following gives a relation between [ and ¢* by
()¢ (g') = £ (9,909 (99")

where a : Gr, () — Aut(Gr,)). Moreover, for every g,¢',g" € Gal(L/K), the

following identity, which is named cocycle condition,

f(9,9")1 (99, 9") =" (F(d',9")f(9,9'd")
holds. Now, introduce a composition law on
Efye = Gr(o) * Gal(L/K)

by the rule
(m, g)(m’, ¢') = (my*(9)(m') f(9,9'),99)

for all (m, g),(m’,¢") € Eyy-. Here, the center Z(Gp,(q) is trivial by Mochizuki
[29]. Therefore, if we fix ¢ : Gal(L/K) — Out(Gr,(@)), then there exists a unique
topological extension of Gal(L/K) by G, () up to equivalence (for details, see [4]).
Thus, by Section 8 of the paper [14], there exists a topological group isomorphism

2 GK :> Ef,l',jt
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which sits in the following commutative diagram

jEW

1 — Gr() —— Gx —= Gal(L/K) — 1

‘ ol

1 —— Gry()) — Bty —— Gal(L/K) —— 1
of short exact sequence.

From the discussion above, there exists the following short exact sequence
1= GFP((f}) — Gg —» Gal(L/K’) — 1. (6.4)

By the abelian local class field theory of K, which we reviewed in the third part of Chapter

2 in our thesis, the short exact sequence (6.4) yields

1— GE'p((t)) — GK — I({"}[(IT{)/NL/KI({U(L) —1 (65)

where KM(K) = (K*)®= /I denotes the n-th Milnor K -group of the local field K (actually,
Milnor K-theory can be defined for an arbitrary field). Here,

(I{X)@n :!(x ® ®I(XJ

n—copy

is the n-fold tensor product of K * with itselfand I denotes the subgroup of (/*)® generated

by the set of Steinberg relations:
{a1® - ®ap:ai,... 6, € K*suchthat a; + a; = 1 for some i # j}.
For the abelian extension L/ K, there is the K -theoretic universal norm homomorphism

Ny - KM(L) - KM ().
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In particular, when n = 1, we have K (K) = K* and in this case, the norm map coincides

with the usual universal norm map Ny : L% — KX where

NL/K(LX) = ﬂ NF/K(FX)'
K C FCL
Sinite

For details, see [28].

Remark 6.2.1. Observe that, we have used the K-theoretic formulation of abelian local
class field theory over K with an aim to generalize our discussion to the symbol theoretic
descriptions of n-dimensional local fields and their absolute Galois groups, which is closely

related to the ongoing work of Ikeda and Serbest [16].

6.3. FURTHER WORK

We finish our thesis by a list of possible future research directions that are based on our

construction. It would be very interesting to answer the following natural questions:

(i) Complete the unfinished project of Arf started in [1]. Namely, it would be very inter-
esting to construct a non-abelian local class field theory over F,((¢)) and then over K
using hybrid “Arf-Steinberg” symbols, and study its relationship with the non-abelian
local class field theory developed in [3], [14] and [27].

(i) Study the relationship between the symbol theoretic construction of G in our thesis

and the local Langlands reciprocity principle.

(iii) Give a similar symbol theoretic description of G as well as a non-abelian local class

field theory of K where this time K is an n-dimensional local field (see Remark 6.2.1).

(iv) Quite recently, Fontaine-Wintenberger theory has been generalized by Scholze (see
[32, 33]), where he introduced certain valued fields called perfectoid ficlds. It seems
to be possible to extend the results of our thesis without much difficulty to perfectoid

fields.
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7. CONCLUSION

In this thesis, we made an overview of Arf symbols and reviewed Arf’s construction of G
in terms of his symbols. We then completed a gap in Arf’s paper. Namely, using Koch’s
group theoretic description of the absolute Galois group G, () of Fp((%)), we managed to
construct G, () using a modification of Arf'symbols via non-abelian local class field theory.
Next, combining our modification of Arf’s construction with Fontaine- Wintenberger theory
of fields of norms attached to AP F-extensions, we obtained a description of the absolute
Galois group Gk of any local field K in terms of “hybrid symbols” constructed out of Arf
symbols, Steinberg symbols of Milnor’s K -theory and non-abelian local class field theory.
Thus, the symbols that we introduce in our thesis should be considered as the non-abelian

version of KM(K) where K is a local field.
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