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ABSTRACT

DIRICHLET PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS WITH
COMPLEX VARIABLES

The theory of boundary-value problems for complex partial differential equations is investi-
gated very intensively, because of its importance for physics and technology of everything in

simply connected applied areas. It is far from being complete.

In this thesis the results of the Dirichlet boundary value problem are for homogeneous and

inhomogeneous complex partial differential equations are collected and analyzed.

This study consists of four chapters. In the first and second chapters, we give historical
background of the Dirichlet problem and some literature search about this problem. Some
basic definitions and theorems from functional analysis and some technical preliminaries are
presented. Moreover, we give some introduction in complex methods for partial differential
equations and the necessary tools that serve to solve higher order boundary value problems

with complex variables.

Chapter 3 is devoted to the investigation of the Dirichlet problem for the one dimensional
partial differential equations with complex variable in the unit disc D := {z : z < 1} of the

complex plane.

In the Chapter 4, we studied the Dirichlet problem for the two dimensional partial differential

equations with complex variable in D? :=D; X D, = {z = (21,2,) : |zl < 1,k = 1,2}.
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OZET

KOMPLEKS DEGERLIi KISMi TUREVLI DIFERANSIYEL DENKLEMLER
ICIN DIRICHLET PROBLEMI

Kompleks kismi tlirevli diferansiyel denklemler i¢in sinir deger problemlerinin teorisi, fizikte
ve uygulamali alanlarin teknolojisindeki 6neminden dolay1 yogun bir sekilde arastirilmak-

tadir. Bu calismalar tamamlanabilmis olmaktan uzaktur.

Bu tezde homojen ve homojen olmayan kompleks diferansiyel denklemler i¢in Dirichlet sinir

deger probleminin sonuglari toplanmis ve analiz edilmistir.

Bu ¢alisma dort boliimden olusmaktadir. i1k boliimde ve ikinci béliimiinde, problemin tarih-
sel gecmisini ve literatiir taramasini verdik. Fonksiyonel analizin bazi temel tanim ve teorem-
leri ve teknik 6n bilgiler tanitilmistir. Buna ek olarak kismi tiirevli diferansiyel denklemler
icin kompleks metodlarin birtakim giris kismi verilmistir ve kompleks degerli yliksek mer-

tebeden sinir deger problemlerinin ¢éziimiine yardime1 olan gerekli araclar da tanitilmistir.

Ugiincii béliim bir boyutlu durumda, kompleks uzayin alt bolgesi olan D := {z : z < 1} de,

kompleks degiskenli Dirichlet probleminin incelenmesine ayrilmaistir.

Dérdiincii boliimde iki boyutlu durumda, D? := D; X D, = {z = (2,,2,) : |z] < L,k =

1,2} *de kompleks degiskenli Dirichlet problemi ele alinmistir.
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1. INTRODUCTION

... “Mathematics is the science where everything is evident.”

Kronecker

The theory of complex partial differential equations and its applications is an effective branch
in mathematics which has grown extremely. Complex partial differential equations have been
a major research area in magnetism, shell theory, medical imaging, electricity, etc. Boundary
value problems for complex partial differential equations combines knowledges and methods
from many fields of mathematics, for examples, complex analysis, functional analysis, partial
differential equations, equations of mathematical physics, computational mathematics etc.
The theory of complex boundary value problems started with the work of [15] and [16], after
that developed by 1. N. Vekua [7], F.D. Gakhov [3], W. Wendland [17].

Some results are achieved which very quickly enhance the development of generalized ana-
lytic functions so complex boundary value problems, reference to [18, 19, 3, 4, 7, 20, 21, 22,
23].

The most important aim of the theory of complex boundary value problems is to derive solu-
tions in closed or analytic form. The investigation of boundary value problems for analytic
functions has relation to many branches. Analytic functions are related with the Cauchy-
Riemann operator d;. So one aspect is to investigate complex boundary value problems for
different type of functions, e.g. functions with several complex variables, generalized ana-
lytic functions, functions satisfying the Cauchy- Riemann equation, functions satisfying the

Poisson equation, functions satisfying the Beltrami equation, reference to [18, 7, 27].

Also some results in this direction i.e. to derive solutions are obtained for special kinds of
equations, namely, for the Cauchy- Riemann equation, for the Beltrami equation, for elliptic

equations, see [18], [24], [25], [3], [26], [4], [23], [18]. Additionally, great interest has arisen



for polyharmonic and for polyanalytic equations, see [28] ,[29], [30], [31], [32].

Along with it, various kinds of conditions imposed on the boundary conditions lead to dif-
ferent complex boundary value problems, for instance the Riemann-Hilbert problem, the

Schwarz problem, the Dirichlet problem see [33, 34, 35, 37].

Moreover, besides the study in the classical unit disc, they have been considered for some
particular domains, for example, fan-shaped domain, a half unit disc, a triangle, the upper
half plane, a quarter plane, a circular ring, etc. [36, 38, 39, 40, 41, 42, 45, 55, 47, 48, 49, 50,
51,52, 53, 54].

On the other hand, boundary value problems have extended to higher dimensional spaces as

a polydisc, a sphere, see [43], [44].

The complex boundary value problems of arbitrary order related with integral representation
formulas. The relation was investigated by H. Begehr, firstly. Essential goal of the theory of
complex boundary value problem is to find solutions to them under the appropriate condi-
tions. The fundamental tools in this direction are the Gauss Theorem and Cauchy-Pompeiu
representation formula. Also, the higher order Cauchy-Pompeiu operators T, , introduced
by H. Begehr and G. Hile, help to obtain solution for higher order complex partial differential

equations.

Complex form Cauchy-Pompeiu representation formula is a generalization of the Cauchy
formula for analytic functions. The area integral arising in that formula is called the Pompeiu
operator which has an important role in treating complex partial differential equations. It is

studied extensively by .N. Vekua [7]. If f € L,(D;C), p > 1, then 9;(Tf) = f and
0,(Tf) =: 1If.

The operator IIf is a strongly singular integral operator. From the Cauchy-Pompeiu repre-
sentation formula it follows that for any w € C*(D; C) N C(D; C) can be attained by known

values on the boundary and values of the first order derivative inside of the domain. Besides



this, for f € L,,(D; C),p > 1,y € C(dD; C), w(z) can be constructed through

d¢ 1 dédn

= [ roFE
D

By the properties of the Pompeiu operator, w is derived as a solution to the differential equa-

1
w(z) = ﬁa£ Y©);

tion w; = f in D. This idea is originated from [.N.Vekua and he proposed an idea to
represent the solution of these type of problems in the form w = Y + Tf, where ¥ is an

analytic function [7].

The model equations are basic inhomogeneous partial differential equations. The differential
operator is obtained by the product of powers of d; and some powers of its complex conjugate
d,. Some fundamental operators are the Laplace operator d;0,, the Bitsadze operator 0;0;,

complex conjugate of the Bitsadze operator d,0,.

Since, the results for the model equations are valid for more general equations of arbitrary
order with some boundary conditions, the main goal of the investigations on model equations

is to extend them to arbitrary order.

In this study, we are mainly interested in the Dirichlet problem of arbitrary order for model
and linear equations, with complex variables. The Dirichlet problem is reduced to a singular
integral equation by the idea of I.N. Vekua [7] for generalized analytic functions. In this
direction the Pompeiu operator Tf and its weak derivative IIf are used. By the integral
operator T, ,,, [8] which is obtained by the iteration of the Pompeiu operator and its conjugate
operator is the main tool for reducing the higher order complex partial differential equations

to a singular integral equation.

The theory of boundary-value problems for complex partial differential equations is far from
being complete. Besides the working group at Free University, Berlin (Germany) there are
working groups in Istanbul and Ankara (Turkey), Astana and Almaty (Kazakhstan), Caracas
(Venesolana), Delhi (India), Yerevan (Armenia), Minsk (Belarus), Dushanbe (Tajikistan),

Tbilisi(Georgia) involved in the reseach.



In this thesis the results of the Dirichlet boundary value problem are for homogeneous and

inhomogeneous complex partial differential equations are collected and analyzed.

This study consists of four chapters. In Chapter 1 and Chapter 2, we give historical back-
ground of the Dirichlet problem and some literature search about this problem. Some basic
definitions and theorems from functional analysis and some technical preliminaries are pre-
sented. Moreover, we give some introduction in complex methods for partial differential
equations and the necessary tools that serve to solve higher order boundary value problems

with complex variables.

Chapter 3 is devoted to the investigation of the Dirichlet problem for the one dimensional
partial differential equations with complex variable in the unit disc D := {z : z < 1} of the
complex plane. Firstly, we start with the Dirichlet problem for first order complex model par-
tial differential equations [2]. An alternative proof is given for the Dirichlet problem for the
inhomogeneous Cauchy-Riemann equation by reducing the problem to the one for analytic
function. Then the Dirichlet problem is considered for a general complex partial differen-
tial equation. It is reduced into a singular integral equation. Then the Dirichlet problem for

second order complex model partial differential equations are treated [2], [56].

The Dirichlet problem for the Laplace operator in D,
w,; =0 in Db w=0 on JD,

has only trivial solution. On the other hand, according to Bitsadze [5], the Dirichlet problem

for the Bitzadze operator
w;; =0 in Db w=0 on 9D,

has infinitely many linearly independent solutions. We showed that the Dirichlet problem
for the complex conjugate of the Bitzadze operator has infinitely many linearly independent

solutions, too [56].

Later, we consider the Dirichlet problem for higher order complex model partial differential



equations [56]. It is seen that these type of problems have infinitely many linearly inde-
pendent solutions. By taking additional boundary conditions we can make them well-posed

problems, [56].

In Chapter 4, we carry these ideas in Chapter 3 to bidisc D? := DD, X D, = {z = (24, 2,) :
|z,| <1,k = 1,2}. Firstly, we derive the solution of the Dirichlet problem of second order
model partial differential equations by using the main results in [2]. Then, we extend the
boundary value problem to a general linear differential equation. Under suitable solvability
conditions, it is seen that the boundary value problem has a unique solution. To reach that
conclusion, the problem is reduced into a singular integral equation. After that, solvability
of the singular integral equation is investigated. For this investigation we mainly use the

Fredholm theory.

Then we derive solution of the Dirichlet problem of fourth order model partial differential
equations using the results that we have obtained for second order partial differential equa-

tions.



2. PRELIMINARIES

2.1. BASIC DEFINITIONS AND THEOREMS FROM FUNCTIONAL ANALYSIS

Definition 2.1.1. [12] Let (E, ||.||g) be a normed space. A function f : [a,b] — E is called
Holder continuous of order a € (0, 1] if there are nonnegative real constants ¢ = c(f) such

that
If@ —fGllg<clt—sI* (2.1)

forall s,t € [a,b]. If «a = 1, then the function f satisfies a Lipschitz condition. Therefore,

every Holder continuous function of order a« = 1 is Lipschitz continuous.

Theorem 2.1.2. Every Lipschitz continuous function is uniformly continuous.

Theorem 2.1.3. [13] Let X be a Banach space and S € B(X). If ||S|| < 1, then I — S is
invertible. Moreover, ||(I —S)™|| < (1 —||SID~

Definition 2.1.4. [14] Let X, Y be Banach spaces over the same field. Let B(X,Y) denote
the set of all bounded operators from X toY. S € B(X,Y) is said to be a Fredholm operator
ifkerS := S71(0) and cokerS :=Y /imS are finite-dimensional, the following quantities,

called nullity and deficiency of S, are finite:

a(S) :=nulS := dimkerS; p(S):=defS :=dimcokerS. (2.2)

indS := a(S) — B(S) € Zis Fredholm index of S.

Theorem 2.1.5 (Fredholm Alternative). [14] For an index-zero Fredholm operator S either

of the following mutually exclusive events takes place:

(1) The equation Sx = 0 has only the zero solution. The equation Sx = y has a unique

solution given an arbitrary right hand side.



(2) The equation Sx = 0 has a nonzero solution. The equation Sx = 0 has finitely many

linearly independent solutions.

Theorem 2.1.6 (Fredholm Theorem). [14] Let K € K(X), where K(X) is the set of all

compact operators on X. Then | — K is an index-zero Fredholm operator.

Definition 2.1.7. [14] Let S € B(X,Y), an operator T € B(Y,X) is a left approximate
inverse of SifTS — 1 € K(X). R € B(Y, X), is a right approximate inverse of S if AR — I €
K(Y). An operator U € B(Y,X) is an approximate inverse of S if U is both right and left
approximate inverse of S. An operator has an approximate inverse is called approximately

invertible.

Theorem 2.1.8 (Noether Criterion). [14] An operator is a Fredholm operator if and only if

it is approximately invertible.

Theorem 2.1.9 (Nikolskii Criterion). [14] An operator is index-zero Fredholm operator if

and only if it is the sum of an invertible operator and a compact operator.

2.2. NOTATIONS AND TECHNICAL PRELIMINARIES

Let C be the complex plane of the variable z = x + iy and x,y € R, x is called the real part
of z and is denoted by Rez, y is called the imaginary part of z and is denoted by Imz. The
complex number z = x — iy is called the conjugate of z. The extended complex plane is

denoted by C := C U {o0}.

A domain D in C is called regular if it is bounded and its boundary 0D is being a smooth

curve.

The complex partial differential operators of first order are defined by

1 . 1 .
0,=5(0:—10,), 9;=5(0,+id,).



Let the complex-valued function w(z,z) = u + iv be defined in D € C and let u = u(x,y),
v = v(x,y) are real-valued functions. When u and v are differentiable and w is independent
of Z in an open set C, the function w is called analytic in the set. The functions u, v then

satisfy the Cauchy-Riemann system of two partial differential equations
d,u=9,v, d,u=-0,v, (2.3)
which is equivalent to the complex homogeneous Cauchy-Riemann equation
a,w = 0.

Theorem 2.2.1. /6] Let w be an analytic function in a simply connected domain D < C and

let T be a simple closed curve, T € D. Then

!W(z)dz =0.

The fundamental tools for solving boundary value problems for complex partial differential

equations are the Gauss Theorem and the Cauchy-Pompeiu representation.

Theorem 2.2.2 (Gauss Theorem, complex form). /6] Let D < C be a regular domain, and

w € CY(D;C) N C(D;C), z=x+iy, then

fwz(z)dxdy = %ﬂ- w(z)dz
D oD
and

fwz(z)dxdy = —%ﬂ- w(z)dz.
D oD

From the Gauss Theorem the Cauchy-Pompeiu representation formulas can be obtained.

Theorem 2.2.3 (Cauchy-Pompeiu representations). /6] Let D < C be a regular domain,
w € CY(D;C)NC(D;C), {=¢&+in, then

1 ag 1 dgdn
{—Z_Ejfwz(oz—z

W) = 3 [ W)
aD




and

w(z) = __.[ (f)— - —ﬂ w{(g)M

hold for all z € D.

Let us define the integral operator, which is used to solve boundary value problems for the

inhomogeneous Cauchy-Riemann equation.

Definition 2.2.4. /7] For f € L,(D; C) the integral operator

déd
77@)_——j f" Z€C,
is called Pompeiu operator. By T we denote
déd
77@)———f E" z€C.

The Pompeiu operator is studied in detail by I.N.Vekua [7] plays a critical role in treating the
boundary value problems for the Cauchy-Riemann equation. It has some important properties

listed below.

Theorem 2.2.5. [6] Let D < C be a bounded domain. If f € L,(D; C) then Tf is analytic in
C\ D, vanishing at infinity.

Theorem 2.2.6. [6] If f € L,(D; C) then

f f TF(@)es(2)dxdy + f f@e@dxdy = 0,

where @ is an arbitrary complex-valued function in D being continuously differentiable and

having compact support in D.

The Theorem 2.2.6 implies that for f € L,(D), Tf is differentiable with respect to Z in weak
sense with

9,Tf=f in D. (2.4)
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Theorem 2.2.7. [11] If f € L,(D),p > 1, then Tf has generalized first order derivative

with respect to z equal to

d
Mf(z) = fff(() ¢d Z”)z Z€C 2.5)

It is a singular integral operator being understood in the Cauchy principal sense,

Mf(z) := hm——f FQG—y @dn e
—2z)?
where D, is the domain D \ {¢ :| { — z I< €}. They can be analyzed with the theory of
Calderon-Zygmund [9].
Pompeiu Integral Operators of Higher Order
By iteration of the Pompeiu operator T, and its conjugate T, a hierarchy of kernel functions
and higher order integral operators are constructed. Then, related to the integral operators,

Cauchy-Pompeiu representation formulas are derived.

Definition 2.2.8. [10] Letm,n € Z, 0 < m + nand 0 < m? + n?,

(EmEDn

CEET if m=0
(! ="
Km,n(Z) = 9 (m — 1)!7’[ zn lf n= 0
g 1 2 m-1 1 n-1 1\ .
| - D)= 08 |z| Z? ZE if mn=1
r=1 s=1

For 0 < m? + n?, these kernel functions determine fundamental solutions to d™d%. Ker-
nel functions of the form in Definition 2.2.8 are studied in detail in [11]. Their elementary

properties are

asz,n(Z) = Km—l,n(Z)J
aZKm,n(Z) = Km,n—l(z)'

Km,n =

=

nm-
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Moreover, simple calculations confirm that, for radii R,

j | Kmn(2) ldxdy < oo, if 0<m+n.

1zI<R
Definition 2.2.9. [10] For a domain D c C, f € L;(D;C) and m,n € Zwith0 <m+n
Tunf @ = [[ Knnz = OF@dedn i 1<m2 472,
D

Toof(2) = f(2).

For particular choices of m and n, the operators T, ,, are

To f(2) =Tf(2),

T1of (2) = Tf(2),

T_11f(2) = 1If (2),

Ty f (2) = 1If (2).

We will give some essential theorems that we use in our study. The results, that are recalled

here without proofs, can be found in [11].

Theorem 2.2.10. Let D be a bounded domain, and suppose m + n = 1, and let w be a
complex valued function in L,(D). Then the integral T,,, ,w(z) converges absolutely for

almost all z € C. Moreover, if
(i) 1<p<2, whenm+n=1,
(ii) 1<p<oo,whenm+n=2 mn<0,
(iii) 1 <p < oo, whenm+n =2, mn > 0,
(iv) 1<p < oo, whenm+n =3,
then for any bounded domain ), Ty, , pW(2) € L,,(Q) with

”Tm,n,DW(Z) ”p,ﬂ < M(m, np, Dr 'Q) ”W(Z) ”1,D' (26)
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Theorem 2.2.11. Let D be a bounded domain, and suppose m +n = 1, and let w € L,(D)

where

(i) 2<p<oo,whenm+n=1,
(ii) 1<p< oo, whenm+n=2 mn<0,
(iii) 1 <p < oo, whenm+n=2 mn>0,

(iv) 1<p < oo, whenm+n = 3.

Then T, , pW exists as a Lebesgue integral for all z in C, T, ,, pw is continuous in C, and for
| z|< RwithR >0,

| TonnpW(2) 1< M|IW(2)lp,ps 2.7)

where M = M(m,n,p, D) in cases (i) and (ii), M = M(m,n,p, D, R) in (iii) and (iv).
We will discuss Holder continuity of the integral T, ,, pw.

Theorem 2.2.12. Suppose m +n = 1 and mn < 0, let D be a bounded domain in C, and

assume that w is a complex valued function in L,(D), suppose also that

(i) 2<p<ooifm+n=1,
(ii) 2<p<ooifm+n=2
(iii) 1<p <o, ifm+n=23
(iv 1<p<ooifm+n2=4
For z € C, set
V() = TnoW(2) = || Kaz = (@),
D
Then, for z,,z, € C, saywith | z, |,| z, I< R,

| zy — 2, | if m+nz=0,

| v(z1) = v(2,) IS M|Wll,p
@®-2)
lzy,—2z, 1 » if m+n=1,
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where M = M(m,n,p) in case (i)) M = M(m,n,p,D) in cases (ii) and (iii),and M =
M(m,n,p,D,R) in case (iv).

The following theorem is about strongly singular integral operators.
Theorem 2.2.13. Assume m +n = 0, (im,n) # (0,0), and let w be a complex valued
function in L,(D), and

1T oWllpp < M@)IWIlp,p- (2.8)

Lemma 2.2.14. Let p be a complex valued function and for p € Cy (C),

Tonp =Tpmp, if m+n=0, (2.9)

TmnP = TmiinPz = Tmni1Pz f m+nz=0, (2.10)
0,(Tynp) =Tmeinp, if m+n=1, (2.11)
0;(Tnp) = Trn—1p, if m+n=1, (2.12)
0,(Tyunp) = Timnps if m+n=0, (2.13)
0;(Tmnp) = Tnpz if m+n=0. (2.14)

Note that iterating (2.13) and (2.14), we obtain that T, , p € C*(C) and satisfying

ak+l ak+lp
s =T 355 ) =
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3. DIRICHLET PROBLEM FOR THE ONE-DIMENSIONAL PAR-
TIAL DIFFERENTIAL EQUATIONS WITH COMPLEX VARI-
ABLE

In the present chapter, we consider the Dirichlet problem for arbitrary order partial differential
equations with complex variable in the unit disc D := {z : |z| < 1} of the complex plane.
In the case of the unit disc Dirichlet problem and also other boundary value problems can be
solved certainly. Because of this, for the unit disc the Pompeiu operator is known explicitly

[1]. For that reason, in our study this particular domain is considered.

3.1. DIRICHLET PROBLEM FOR FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONS

In this section, we investigate the Dirichlet problem for first order partial differential equa-
tions with complex variable. We begin with the following theorem of Begehr [2] about the
analytic functions.

Dirichlet problem for analytic functions. Find an analytic function w(z) in the unit disc,

i.e. a solution to w; = 0 in D, satisfying for given y € C(9D; C)
w(z) =y(z) on dD.

Firstly, we present Plemelj-Sokhotzki formula which is useful for our study in the future.

Theorem 3.1.1 (Plemelj-Sokhotzki). /3] Let I' be a smooth contour (open or closed) and
©({) a function of position on the contour, which satisfies the Holder condition. Then the

Cauchy type integral
d¢

(—2z

1
@) = 5 [ 90
r

has the limiting values

ot(1) := lim  P(2),d (1) := lim P(2)

z—-T,ZEDT Z—T,ZED™



15

at all points of the contour T, where D* is the bounded domain with 0D* = T and D~ =

C\ (D* UT). Moreover, fort €T

1
P*(@) = Z9() + O ()

O~(0) = =0 @) + O@),

the singular integral

ag
!w@%_z

being understood in the sense of the principal value.

Theorem 3.1.2. /2] The Dirichlet problem for analytic functions is solvable if and only if for

lz| <1
1 zd(¢ _o. 11
7t ) YOT =5 = 3.1
D

The solution then is uniquely given by the Cauchy integral

dg
{—z

1
w@) = o— | ¥ (3.2)

oD

Since the Cauchy integral (3.2) provides an analytic function in ID and in C\ ID, from Plemelj-

Sokhotzki formula it follows

lim w(z) - z—»lzi?elm- w(z) =y({), (€ID.

z—{,zeED*
To obtain
Zj{ig;WW(Z) =y(), ¢e€adb,
the condition
qu{i;relm)_ w(z)=0

is necessary and sufficient.

Note. The Plemelj-Sokhotzki formula holds if y ({) is Holder continuous but from the topo-

logical properties of the unit disc Holder continuity is not needed [4].
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Necessary part. Let the Dirichlet problem can be solvable and w(z) is the solution of this

problem. From the statement w(z) is analytic and having continuous boundary values
limw(z) =y(¢), ¢€0D.
Z—

For |z| > 1, we consider the function

1 1 1 f z d{ 13
oD z oD
For |z| > 1, we have that
1
1' — ===, € 6]]))
mz=z7=¢ ¢
Thus,
1
limw <—_>
z—=( Z
exists, i.e.
limw(z
lim w(2)

exists for |z| > 1. Applying formula (3.3), we get

1\ v ¢ ¢ dq
W(Z)_W<E>_2nim{c—z+(‘—z 1}(

— f v© -1+ -1 T
Since y(z) is continuous, we may take the limit
: 1 a¢ 1 ¢ d¢
lim () + ﬁaf Q) -v@) 7= + ﬁaf 0@ -r@) 75T
D D

+lim j @) - y(z)}— =y (Q)-

lim {w(z) w(l)} r(Q)-

lim W(z)— llm w(z) =y ().

z—{,zeD* ,ZzeED™

This is equivalent to

Therefore,

Since

lim  w(z) =y(),

z—{,zeD*
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we obtain

1
lim w(z)= Ilim W<E>=O'

z—{,zED~ z—{,zeD*

As w(o) = 0, applying the maximum principle for analytic functions, we get w(z) = 0 for

1 1 Zd{ _0
W(E) Zm Y(O '

Sufficient part. Let formula (3.1) holds. Adding (3.1) to (3.2), we obtain

1 g 4 d¢
0= [ rOS T

|z| > 1. That means that

In a similar manner in previous part, we can write

lim  w(z) =y({)

z—{,zeDt

It can be easily seen that w; = 0 in D.

Therefore the Dirichlet problem
w;=0 inD, w=0o0ndD

for a first-order homogeneous partial differential equation has only trivial solution.

Theorem 3.1.3. /2] The Dirichlet problem for the inhomogeneous Cauchy-Riemann equation
in the unit disc

w;=f in D, w=y on 0D

for f € L;(ID; C) and y € C(0D; C) is solvable if and only if for |z| < 1

1 zdéd
y(c)— - ff F2e L (3.4)

2mi
aD

The solution then is uniquely given by

dfdn

w(z) = — f Yz

(3.5)

Firstly, we give the proof of the Theorem from [2].
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The representation (3.4) follows from Theorem 2.2.3 if problem is solvable. The uniqueness
is a consequence of Theorem 3.1.2. The equation (3.5) is a solution under (3.4) follows by

observing the properties of the Pompeiu operator and from

¢ 4 ag
w(z )—z—mm V(f){E+C-_Z_—1}?
1 1 >
_%J f((){g_z + 1_22-5}6156177 =v(2) (3.6)
D

for |z| = 1.

The equation (3.4) is also necessary follows from Theorem 3.1.2. Applying (3.1) to the
boundary value of the analytic function w — Tf in D, i.e. toy — Tf on dD gives (3.4)

— ﬂ f(f)%l ’ g

because of

b [7)<1
_ ;g
———f O [ 1_Z(€_zd€dn
1Z1<1 aD
S ] ~alfdn

I€|<1

as is seen from the Cauchy formula.

Proof. Using the Pompeiu operator the problem will be reduced to the ones for analytic func-

tion. Then, this problem can be defined as

w=Tf);=f in Db W—=Tf)(z)=y—Tf on JD.

That problem is solvable if and only if

o f r@) -

and the solution is uniquely obtained as

=0

1 dq
w=THE) = 5 | 7O ~TFEN7=5 3.7
)
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From Gauss Theorem it follows
zdéd
j f(c)— ] F2e - (3.8)

and from the Cauchy Pompeiu representation it follows

27l'l

=-T ! didn _ 3.9
7 ) = —Tf(2) -~ = (3.9)
D
O]
In a similar manner we can study the Dirichlet problem
w,=0inD, w=0on dJD (3.10)

for a first order model complex partial differential equation.

Theorem 3.1.4. /2] The Dirichlet problem for the inhomogeneous complex conjugate Cauchy-

Riemann equation in the unit disc
w,=finD, w=y(z)ondD

for f € L;(ID; C) and y € C(0D; C) is solvable if and only if for |z| < 1

1 dedn
| f F= @1
The solution then is uniquely given by the formula
1 déd
wz) =~ y(z)———fff(c) g, (3.12)
aD

Note that (3.11) and (3.12) can be attained by the one for the Theorem 3.1.3 through complex

conjugation and using the fact that

Hence the Dirichlet problem

w,=0inD, w=0o0ndD (3.13)
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for first-order homogeneous complex conjugate Cauchy Riemann equation in D has only

trivial solution.

3.1.1 Dirichlet Problem For Linear Differential Equations

In this section we will extend the notion of solution of Dirichlet Problem for model equations
to a linear differential equation. We will try to find a solution to first order linear differential
equation

w; +q(2)w, + 2w, +r(2)w+r,(Z)w = f(z) in D (3.14)
satisfying the Dirichlet boundary condition
w(z) =y(z) on 0D (3.15)

where 11(z),7,(2), f(2) € L,(ID), q1(2), q2(2),71(2),72(z) are measurable bounded func-

tions and satisfying

1q1(2) | +142(2) I= g0 < 1. (3.16)

Lemma 3.1.5. The Dirichlet problem (3.14) and (3.15) is equivalent to the singular integral
equation
I+ +K)g = f(2) = a1, — 42 (2P, — 11 (2P — 129 (3.17)
where w(z) = Y(z) + To19(2),
ﬁg =q1T-119(2) + q;T_1:9(2)
= q:11g(2) + q.11g(2) (3.18)

and

I?g =11(2)T19(2) +1,(2)T,19(2). (3.19)

Proof. We write (3.14) as

w; = f(2) = (1 (D)W + @2 (D)W, + 11 (DW + 15(2)W). (3.20)
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Then,

—

w; = f(z) in D, (3.21)

w(z) = y(z) on 9D, (3.22)

where f(2) = f(2) — (q,(2)w, + q,(2)W, +,(2)w + 1, (2)W). By Theorem 3.1.3 solution
of (3.14) and (3.15) is w(2) = P(2) + To.f (2). Let w; = g(2). Then,

9(2) = (@) + To f @)z (3.23)

9(2) + ¢, (D)W, + ¢, (D)W, + 1, (2w + 1, (2)W = f(2) in D. (3.24)

Since w; = g(z) in D,

w(z) = ¢(z)+T0_1g(z),vT/ =yY(z) + T0,1Q(Z)'Wz = ¢z+T—1,19(Z)’W_z =y, + T—1,1g(Z)-
After substituting these derivatives the result follows:
g(z) + Q1(Z)T—1,19(Z) + CIZ(Z)T—I,lg(Z) + TI(Z)TO,lg(Z) + 7, (Z)To,lg(z)

= f(2) — 1, — ()P, — 1 (2P — 1Y (3.25)

Therefore, g = (I + T+ K) ™ (f (2) — q1¥, — q2(2)Y, — 11 (2)Y — 1,1) satisfies (3.17) if
and only if w(z) = Y(z) + T, 9(2) satisfies (3.14) with the boundary condition (3.15). [

Solvability of The Singular Integral Equation

Lemma 3.1.6. If
qo 1 11, <1 (3.26)

for p > 1, then the operator I + 1l is invertible.

Proof. By the properties of norm, we obtain
1 g 1p,m)=I1 q:11g + 2119 (2) 11, )

<l q:11g I, ) + 1l 92119 (2) Il )

=1 q:(2) 111G I,y + 1 2(2) 1l g (2) Il m)
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= q1(2) 1 +1q2(2) ) Il TIg 1l m)
<q, [l Hg ”Lp([D))< 1.

If condition q, Il I |l (py< 1 holds, then we get || Il Il,,m)< 1. By Theorem 2.1.3 the

operator I + II is invertible. [

Lemma 3.1.7. For bounded functions r,(2),7,(2) and for p > 2, the operator K is a com-

pact operator.

Proof. Firstly, we will consider the boundedness of K.
| I?g =1 71(2)T919(2) +12(2)T¢19(2) |
<IT1(2)T019(2) | +172(2)To19(2) |
By Theorem 2.2.11 we get
| Kg I<I7:(2) | M(p, D) Il gll1,m) + I72(2) M (0, D) |G|, (o)

= (72 | +|r2(2) DM, D) | gll.,m) = C(, D) Il gll1, ),

where M (p, D), C (p, D) are always nonnegative constants, depending on the quantities in the
parentheses.

By Theorem 2.2.12 we obtain

1T019(21) = To,19(22)| = M(P) Il gllo, @121 — 221

where 0 < a < 1, p > 2. It is Holder continuous, in particular T ,9(z) is uniformly

continuous. So, by Arzela-Ascoli Theorem, the operators in K g are compact operators. [

Now, we can apply the Fredholm alternative.

Theorem 3.1.8. If qo || T1 ||, (0y< 1 is satisfied, then (3.14) with the boundary condition
(3.15) has a solution of the form w(z) = Y(z) + Ty19(z), where g is a solution of the

singular integral equation (3.17) and Y (z) is an analytic function in D.
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Proof. 1f (3.26) is satisfied then by Lemma 3.1.6 is I + II is invertible. In Lemma 3.1.7, we
have showed that K is compact. By Nikolskii Criterion, the operator I + IT + K is Fredholm
operator with index zero. Theorem 2.1.5 implies that the singular integral (3.17) has the
Fredholm alternative, i.e. it has at least a solution. Hence, if g is a solution of (3.17), then

w(z) = Y(z) + Ty19(2) is a solution to (3.14) and (3.15). U

Also, we can find the solution of (3.14) and (3.15) by denoting the solution as w = w; + w,

where w; is the solution of the problem
wy; =0 inD, wy =y(2) on dD, (3.27)

and w, is a solution of the problem

Wo:+q1(2)Wa+q2(2)Wa, + 11 (2)Wy + 75 (2)W, = f(2) —q1(2)Wi,— g2 ()W, — 11 (Z2)wy
—1,(z)w; inD, (3.28)
w,=0 on JD. (3.29)

By Theorem 3.1.2 the solution of (3.27) is
1 j ag
wi@) = 5 | Y75 = %@,
aD
Then the problem (3.28) and (3.29) becomes

Wy =f—q.(DY, — QZ(Z)@ —r(2)Y —r; (Z)J’ — q1(2)W3; — @2 (2)Wo, — T1(Z)W,

w,(z) =0 on OJD. (3.31)
Then,
w,; =f,inD, w,=00on 0D (3.32)

where f; =f—q.(2DY,— CIZ(Z)@_H @)Y—r, (Z)l/) —q1(2)W2; — q2(Z) Wy, — 71 (Z)W, —
r,(z)w,. By Theorem 3.1.3

w, = To,lfz-
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By previous method we conclude that the problem (3.30) and (3.31) is equivalent to the
singular integral equation

(I+T+K)g, =7, (3.33)

where w, =T, 9,.

Thus, if g, is a solution of the singular integral equation (3.33), then T ; g, is a solution of
the problem (3.30) and (3.31). Hence w = w; + w, = Y(z) + T 19, is a solution of (3.14)
and (3.15).

Example 3.1.9. Let us consider the problem
w; + 222w, + 22w, + 23w + zZW = 4727 + 8z2* + 8232 + 22°2% + 22323 in D (3.34)
w(z) = 2z%2% on dD. (3.35)
Then, w, = 2 is a solution of the problem
Wy, = 0in D (3.36)
w, = 2z%2% on dD. (3.37)
and w, = 2z*Z% — 2 is a solution of the problem
Ways + 272wy, + 22W,, + 23w, + z2ZW, = 4227 + 8z2* + 8232 + 22°2% + 22323 — 223
— 227 in D, (3.38)
w, = 0 on dD. (3.39)

So, solution of the problem (3.34), (3.35) is w(z) = w; + w, = 22272

Now, we consider the linear differential equation
w, +q,(2)w; + q,(2)w; +ri(2)w +1r,(2)w = f(z) in D (3.40)
satisfying the Dirichlet boundary condition

w(z) =y(z) ondD, (3.41)
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where 11(z),7,(2), f(2) € L,(ID), q1(2), q2(2),71(2),72(2z) are measurable bounded func-
tions and satisfying

1g1(2) | +142(2) I= g0 < 1. (3.42)

Lemma 3.1.10. The Dirichlet problem (3.40) and (3.41) is equivalent to the singular integral

equation

I+0+K)g=f2) - q1¥: — @20, — 1.2 — 19 (3.43)

where w(z) = Y(z) + T1,9(2),

ﬁg = Q1T1,—1g(z) + qZTl,—lg(Z)

= q:1g(2) + q.Tg(2) (3.44)
and
Kg =11(2)T109(2) + 1,(2)T1,09(2). (3.45)
Proof. We write (3.40) as
w, = f(2) = (q1(Dw; + g2 (2)w; + 11 (2w + 12 (2)W). (3.46)
Then,
w, = f(z) in D, (3.47)
w(z) = y(z) on dD, (3.48)

where f(2) = f(2) — (q,(2)w; + q,(2)W, + 1, (2)w + 1, (2)W). By Theorem 3.1.4 solution
of (3.40) and (3.41) is w(2) = ¥(2) + T1of (2). Let w, = g(2). Then,

9(2) = @(2) + T1of @), (3.49)
Sincew, = g(z) in D,
w(z) = P(2) + T109(2), W = P(2) + T1,9(2), w; = P (2)); + T1,-19(2), W; = P(2),

+T1,—19(Z)-

After substituting these derivatives the result follows

9(2) + q1(2)T1-19(2) + q2(2)T1,-19(2) + 11(2)T1,09(2) +13(2)T1,09(2)
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=f - (DM @); — 1@)Y(2), — (@)Y (2) — (2P (2). (3.50)

Therefore, g = (I + 11 + K) "2 (f (2) — q1¥; — q2(2)¥; — 11 (2)Y — 1) satisfies (3.43) if
and only if w(z) = Y(z) + T4 ,9(2) satisfies (3.40) with the boundary condition (3.41). [

Solvability of The Singular Integral Equation

Lemma 3.1.11. If
qo NI, m<1 (3.51)

for p > 1, then the operator 1 + 1l is invertible.

Proof. By the properties of norm we obtain

1 g 1, @=I1 ¢:Tlg + q211g(2) I, (o)
<Il q:11g ) + 11 429 (@) 111,
=1 q,(2) 11 TIg Il ) + 1 45(2) 11 g (2) Il ()
=(q:(2) 1 +1q2(2) ) 1 Tg I,y
< qo 11 g 1l )< 1.

If condition g, || II He,m< 1 holds, then we get || TI ll.,m< 1. By Theorem 2.1.3 the

operator I + II is invertible. [

Lemma 3.1.12. For bounded functions r,(z),1,(z) and for p > 2, the operator K is a

compact operator.

Proof. Firstly, we will consider the boundedness of K.
| Kg =17 (2)T1,09(2) +12(2)T1,09(2) |

<IT(2)T109@) | + 1 172(2)T109(2) | .
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By Theorem 2.2.11, we get
| Rg I<I71(2) | M(p, D) Il gll1, @) + Im2(2) M (p, D) |G|, o)

=72 | +[r2(2)DM(p, D) Il gll1,m) = C(2, D) Il gl (),

where M (p, D), C(p, D) are always nonnegative constants, depending on the quantities in the
parentheses.

By Theorem 2.2.12, we obtain

IT1,09(21) — T109(z2)| < M(p) |l g”L,,(JD))|Z1 — Z,|%

where 0 < a < 1, p > 2. It is Holder continuous, in particular T, g (z) is uniformly

continuous. So, by Arzela-Ascoli Theorem, the operators in K g are compact operators. [

Now, we can apply the Fredholm alternative.

Theorem 3.1.13. If qo Il T1 I, ()< 1 is satisfied, then (3.40) with the boundary condition
(3.41) has a solution of the form w(z) = Y(z) + T1,9(2), where g is a solution of the

singular integral equation (3.43) and Y (z) is an analytic function in D.

Proof. 1f (3.51) is satisfied then by Lemma 3.1.11 I + IT is invertible. In Lemma 3.1.12, we
have showed that K is compact. By Nikolskii Criterion, the operator I + [T + K is Fredholm
operator with index zero. Theorem 2.1.5 implies that the singular integral equation (3.43)

has the Fredholm alternative, i.e. it has at least a solution. Hence, if g is a solution of (3.43),

then w(z) = Y(z) + T1,09(2) is a solution to (3.40) and (3.41). ]

Also we can investigate the boundary value problem by separating into the boundary value
problems
w, =0 inD,
w; =y(z) on dD
and

Wy, + q1(2)Wy; + q2(2)Wy; + 71(2)w, + 1 (2)W,



=f(2) — q.(D)W1z — @2(2)Wy; — T (2w, —T(2)w; D,

w,, =0 on JD.
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3.2. DIRICHLET PROBLEM FOR SECOND ORDER PARTIAL DIFFERENTIAL

EQUATIONS

In this section, we study the Dirichlet problem for second-order partial differential equations

with complex variable.

As is well-known, the basic second order differential operators are the Laplace operator 9,0,

the Bitsadze operator 0%, and 2 which is the complex conjugate of the Bitsadze operator.

In the present section we will consider the Dirichlet problem for second-order homogeneous

and inhomogeneous partial differential equations.

Lemma 3.2.1. /2] The Dirichlet problem for the Laplace equation
w,; =0inD, w=0o0ndD

is only trivially solvable, i.e. w = 0.

Therefore, the Dirichlet problem for a inhomogeneous partial differential equation
wy,;=finD, w=yondD

has a unique solution in D and we have the following theorem.

Theorem 3.2.2. /2] The Dirichlet problem for the Poisson equation in the unit disc
w,,=finD, w=yondD

for f € Li(D; C) and y € C(0D; C) is uniquely given by the formula

¢ 1
A1) £ | r©6. @ odsan

2mi

1
w(z) = o— V(()(
aD

=12
where G,(z,{) = log|1(%zzz| ,2,( €D, { #+ z.

(3.52)
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As Bitsadze has shown in [5], it is not take place for the Dirichlet problem for the Bitsadze
equation

W;; =0inD, w =0 on dD. (3.53)

Lemma 3.2.3. /2] The Dirichlet problem (3.53) has infinitely many linearly independent

solutions.

This means that the Dirichlet problem for the Bitsadze equation is ill-posed. We can make a

unique solution in I taking additional condition w; on dID. We have the following theorem.

Theorem 3.2.4. /2] The Dirichlet problem for the inhomogeneous Bitsadze equation in the
unit disc

Wy, =f(2)inD, w=y, w; =y, on dD (3.54)

for f € L,(ID; C) and y,, v, € C(0D; C) is solvable if and only if for |z| < 1

z-‘f<yo(<_> _Vl@)du f f(é

ZmaD 1-2¢ 4
and
— [rno= ff @)
oD

The solution then is uniquely given by the formula

1 {(—z
w@) = 5 [ 1@ - o [ 2ag + f FOSZagan
a]D) oD

Finally, we consider the Dirichlet problem for the second order model partial differential
equation

w,, =0inD, w =0 on dD. (3.55)

We have the following result.

Lemma 3.2.5. The Dirichlet problem (3.55) has infinitely many linearly independent solu-

tions.
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Proof. Integrating w(z), we get w(z) = 0,(z) +z60,(z) where 6,(z) and 0,(z) are analytic
functions in D. Since w = 0 on dD, Z6,(z) + 6,(z) = 0 on dD.

0;0,(z) = 0,0,(z) = 0and 0,(z) = —26,(z) on dD. From Theorem 3.1.4 it follows that

0,(z) = —z0,(z) in D, too. Hence w(z) = (1 — |z|?)8,(z) for arbitrary analytic function

0,(2). In particular, if we take 8,(z) = z* then w,(2) = (1 — |z|?*)z* is a solution of the
Dirichlet problem for any k € N. It is easily seen that these solutions are linearly independent

over C. O]

This means that the Dirichlet problem for the complex conjugate of the inhomogeneous Bit-
sadze equation is ill-posed. We can make it well-posed problem, taking additional condition

w, on 0D. We have the following theorem.

Theorem 3.2.6. The Dirichlet problem for the complex conjugate of the inhomogeneous Bit-

sadze equation in D
W, =f(2) inD, w=yow, =y on 0D (3.:56)

for f € L;(ID; C) and y,, vy, € C(0D; C) is solvable if and only if for |z| < 1

4 Yo({) Y1({)
_2m'6£ <1_Z( z > f f(() dédn_o

and

1
ZMJ @~ f F@ = 5zd¢dn = 0.

The solution then is uniquely given by the formula

w(z) = — y(c)—( L[y la+ L ff(é) 2 dgdy
07t 2mi | "OT=, =

2mi
aD

Proof. The problem is equivalent to the system
w,=winD, w(z) =y, on dD,

w, =f(z)inD, w(z) =y, on ID.
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These problems are uniquely solvable according to Theorem 3.1.4 if and only if

B zdfdn
o [ O = f w2 (.57)
aD
1 3 zdfdn
“3 PO - f | ro2=20 (359
Then, the solutions are
1 dfdn
v =5 ) yo(c)— - (3.59)
1 dEdn
0= 5 | h(()— - j - (3.60
respectively.
Inserting w into (3.57) and (3.59), applying formulas
1 dédn
”ﬂ C-9 -2
_f—z+1 {—z d(__f—z
_1—25 27Ti 1—2575_1—25’
1} dgdn
@ D@ -2
———ff L agan = S22
-z Z { ¢—z (—2
So, we get the solution and solvablhty conditions. O

3.2.1 Dirichlet Problem for Linear Differential Equations

In this section we will extend the notion of solution of Dirichlet Problem for model equa-
tions to a linear differential equation. We will try to find a solution to second order linear

differential equation

Wiz + q1(2)W,z + q2(2)Wy; + q3(2)W,, + qu(2)W,, + 171 (2)W;
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+r,(2)w; +r3(2)w, +r(2)w, +rs(2)w +1(2)w = f(2) in D (3.61)
satisfying the Dirichlet boundary condition
w(z) =y,(2), w; =v,(2) on dD, (3.62)

where
T‘l(Z),TZ(Z),T3(Z),T‘4(Z),T5(Z),T6(Z), f(Z) € Lp(]D))l (363)

q1(2),9,(2),q5(2),q4(2),71(2),75(2),73(2),14(2),75(2), r¢(2) are measurable bounded func-

tions and satisfying

1q:1(2) | +102(2) | +1q3(2) | +1qu(2) 1< qo < 1. (3.64)

Lemma 3.2.7. The Dirichlet problem (3.61) and (3.62) is equivalent to the singular integral

equation

a+ m+ I?)g =f(2)— 1, — qz(Z)E = 432D Vo2 — 43(2) 215, — CME — 4714,

—r1(2)P,—1; (Z)E_Q 2o, —13(2)2¢4, _T4(Z)%_T4(Z)ZE_TS 2)Yo—1s5(2)7y,
—16(2)Po — T6(D) 2y, (3.65)

where w(z) = Y,(2) + Z2Y1(2) + T .9(2),
ﬁg =q1T-119(2) + q;T_1:19(z) + q3T_,,9 + q,.T_,,9(2)

= q,11g(2) + q,11g(2) + qs1,g + q,11,g (3.66)

and
I?g =11(2)T019(2) +1(2)T019(2) + 13(2)T_129(2) + T4(2)T_1,9(2) + 15(2)T,9(2)

+16(2)T,9(2). (3.67)

Proof. We write (3.61) as

Wz = f(2) = q1(D)W;z — 2(2IWz; — q5(D)W;; — 4u (D)W, — T1(2)W,

—1r(2)w; — 1r3(2)w, — (2w, — r5(2)w —re(2)w. (3.68)
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Then
w,; = f(z) inD, (3.69)

w(z) =yo(2), w; =y,(2) on dD, (3.70)
where
f@ = (@) = (01(2D)Wzz + 42(D)Wez + 45 (D)W, + 4u(2)W,,
+r,(2)w; + (2w + r3(2)w, + 1 (2)w, + s (2)w + T (2)W).

By Theorem 3.2.4, solution of (3.61) and (3.62) is

w(z) =Yo(2) + 72¢,(2) + To,zﬁz_j-
Let w;; = g(z). Then
9(2) = Wo(2) + 21(2) + Toof (2) 2 (3.71)
9(2) + q1(D)W,; + 42 (2)Wy; + 43 (D)W, + qu(2)W,,
+r1(2)w; + r(2)w; + r3(2Dw, + 1,(2)w,
rs(Z)w +1re(2)w = f(2) in D. (3.72)

Since w;; = g(z) in D,

w(z) = Po(2) + 2P1(2) + To29(2), W = Yo(2) + 2¢1(2) + To9(2), W,

=Yo, + 21, +T_1,9(2), W, =Yg, +2¢,, +T_,,9(2), w;

= Inbl + TO,lg'W_Z = E + TO,lgr sz = lpOzz + Z_lplzz + T—Z,Zg(Z)JW_ZZ

= lpOZZ + leblzz + T—Z,Zg(z)' Wy = lplz + T—l,lg(z)rw_zz'

=Y, + T—1,1g(Z)-
After substituting these derivatives the result follows
9(@) +q:T_119(2) + q2T_119(2) + q3T 329 + quT _529(2)r1(2)T,19(2)
+7,(2)T019(2) + 13(2)T-1,9(2) + 14(2)T_1,9(2) + 15(2)T(,9(2)
+76(2)To9(2) = [ — q11, — qz(Z)E = q3(2)Pozz — 43(2) 214,

—qaWozz — ‘hzﬂ 112, — Tz(z)ﬁ —13(2)Yo, — 13(2) 24,
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— 143D, — To(2) 21, — T5(2)Po — T5(2) 2y — T6(2) Py —T6(D)zy.  (3.73)

Therefore,

g=0U+ m+ E)_l(qllplz - ‘b(z)E = 43D Vo2, — q3(2) 214,

—qsWozz — Q4ZE —ri1(@P; — 1y (Z)E —13(2) Yo, — 13(2) 71,
—m(z)% - T4(Z)ZE —15(2)Y —15(2)ZY; — Te(z)% - Te(Z)ZE)

satisfies (3.65) if and only if w(z) = Y,(2) + Z,(2) + T(,9(z) satisfies (3.61) with the
boundary condition (3.62). [

Solvability of the Singular Integral Equation

Lemma 3.2.8. If
Go 11 T 11, )< 1 (3.74)

is satisfied for p > 1, then the operator I + 1 is invertible.

Proof. By the properties of norm, we obtain
I g 1, @y=11 41119 + q.T1g + q311,9 + quTT,9 1l )

<l q.1g Il @) + 11 ¢210g 1, ) + 11 g3T1,9 11, )

+ 11 guTT,9 1, y=1 4:(2) 1 g 11, @) + | 45(2) 11l g (2) Il
+1q5(2) 11 TLg @) + 1 q4(2) 111 TLg 11, m)
=q@)1+1q,@) 1 +1g3(2) 1 +1q.(2) 1)

X 11 TG 1l )< qo 11 TIg 11, )< 1.

If condition q, || TI L)< 1 holds, then we get || I HL,m< 1. By Theorem 2.1.3, the

operator I + II is invertible. [

Lemma 3.2.9. For bounded functions r;(z), i =1,..,6 and for p > 2, the operator K is

a compact operator.
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Proof. Firstly, we will consider the boundedness of K.

| Kg 1=1 7(2)T019(2) + 175,(2)T019(2) +13(2)T-1,9(2)
+14(D)T-129(2) +75(D)T029(2) +16(2)T0,9(2) |
<I T (D)T019(@) | + 1 15(2D)T019() | + | 73(2)T_1,9(2) |
+174(DT_1,9@) | + 1 75(2)To,92) | + 1 76(2)To,9(2) | .

By Theorem 2.2.11, we get
<I7:1(2) I M(p, D) Il gll1,m) + [72(2)IM (P, D)|glL,m)

+1752) | M@, D) Il glly,@my+ | 74(2) | M@, D) Il gl m)
+1752) | M, D) Il glly, @)+ | 76(2) | M, D) Il gl my
= (1722 | +r(@|+ 1 732 | +174(2) | + 1 75(2) | + | 76(2) DM (p, D)

X gll,m = C, D) Il gllo, )

where M (p, D), C(p, D) are always nonnegative constants, depending on the quantities in the
parentheses.
By Theorem 2.2.12, the operators in K are Hlder continuous, in particular, they are uniformly

continuous. So, by Arzela-Ascoli Theorem, the operators in K g are compact operators. [

Now, we can apply the Fredholm alternative.

Theorem 3.2.10. If q, Il 11 H,m< 1is satisfied, then (3.61) with the boundary condition
(3.62) has a solution of the form w(z) = Yy(z) + Z,(z) + T, ,9(2), where g is a solution

of the singular integral equation (3.65) and Yy (z),Y,(2) are analytic functions in D.

Proof. 1f (3.74) is satisfied then by Theorem 2.1.3 I + II is invertible. In Lemma 3.2.9 we
have showed that K is compact. By Nikolskii Criterion, the operator I + IT + K is Fredholm
operator with index zero. Theorem 2.1.5 implies that the singular integral equation (3.65)

has the Fredholm alternative, i.e. it has at least a solution. Hence, if g is a solution of (3.65),
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then w(z) = Yo(2) + 2¢1(2) + T,,9(2) is a solution to (3.61) with the boundary condition
(3.62). ]

Also, we can find the solution of (3.61) and (3.62) by denoting the solution as w = w; +w,

where w; is the solution of the problem
Wiz; =0 inD, wy =y,(2), wiz; =v1(2) on 0D (3.75)
and w, is a solution of the problem

Wozz + q1(2)Wazz + 42(2)Wazz + q3(2)Wazz + qu(2)Woy, + 11(2) Wy,
+7,(2)Wy; + 13(2)W, + 14(2)Wo, + 15(2)W, + 16(2)W, = f(2)
—q1(ZDIW12z — Q2(2)W12z — 3(2)W1zz — Qa(2)W1 — T1(2)W1;
—1,(2D)wy; —1r3(2)wy, — 1, (2)W,, —1rs(2)w; —16(2)w; in D, (3.76)
w, =0, w,; =0 on dD. (3.77)

By Theorem 3.2.4, the solution of (3.75) is

1 di 1 (—z
(@ = 5 | 1725 - ﬁa£ r@—dd

oD ( —Z
=Po(2) + 211 (2).
Then the problem (3.76) and (3.77) becomes
Wozz + Q1(Z2)Wazz + 42(2)Wazz + 43(2)Waz,
+ 44 (2)Way, + 11 (2)Wy; + 15(2)Woy + 173(2)Wo, (3.78)
+7,(2)W,, + 15(2)W,, + 16(2)W,
= (@) — Q112 — ©(DP1, — G2 Wozz — 45(2) 212,
~qaozz = QaZW122 = T1 (D1 — T2 (D)1
~73(D) o, = 3(2)21, — 74D o, — T4(D) 21,
—15(2)Po — 15(2) 2P, — 16(2) Py — T6(2)z; in D, (3.79)

w, =0, wy, = 0 on 9D. (3.80)
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Then
Wy = foinD, w, =0, w,; =0 ondD, (3.81)

where

f2=f(@ = 11z = ©@DY1; — G:(DVozz — 4:(D 71
~qalozz = 44712z — T1(DP1 — T2(2)1 — T3(2D)Wo,
—r3(D 21, = T4 (Do, — T4(2) 71,

—r5 (D)o — 15 (D21 — T6(2) Py — T6 ()71

By Theorem 3.2.4, we obtain
W, = To,zf;-

By previous method, we conclude that the problem (3.76) and (3.77) is equivalent to the

singular integral equation
I+ m+ k\)gz = f(2) — q1¥1, — CIZ(Z)E — q3(D)VPoz,
—q3(2)Z P15, — CI4E - %ZE —r@Y, — 1, (Z)E
—13(2)Po, — 13(2) 21, — 7'4(2)% - T4(Z)ZE —15(2)P,
—r5(2) 21 — 16(2)Po — 16 ()7, (3.82)

where w, =T, 9,.

Example 3.2.11. Let us consider the problem
Wi+ 272W,+22W 5+ 2w, +2W,,+ 723w, + 22 W, + 4zw,+ 5w, + 32w+ 222w = 2023+ 423
+242%73424727°+12223+1223 245232 +42°7+423 + 528+ 42373+ 422+ 2423 7 +302% 22
+32° +6232% + 122 + 277 + 47723 + 82% in D, (3.83)
w(z) =2z°+2232> + 42 w,=5z2*+4232+4 on dD. (3.84)
Then w, = 4Z is a solution of the problem
Wiz =0in D, (3.85)

w, =2°+22z322 + 42, w,; =524+ 4232+ 4 on dD (3.86)
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and w, = z° + 2z37% is a solution of the problem
Woss+22°Wo s+ 22W, - + ZWy,, + ZWoy, + Z23W, s + 2°W,, + 42w, , + 5W,, + 32w, + 22%W,
= 247273+ 242%7° + 12223 + 12232+ 5232* + 42°2 + 423 + 52° + 42323 + 42% + 247377
+302z222 4325462323 +122°+ 22" +42* 23+ 4z— 423 — 422 — 122> -8z in D, (3.87)
w, =0, w,;, =0o0nadD. (3.88)

So, solution of the problem (3.83) - (3.84) is w(z) = w, + w, = 2° + 2232% + 42.

Now, we consider the linear differential equation

Wy + Q1(2)W,; + 02(2)W,; + 43(2)W;,
+q44(2)W;; + 11(2)W; + 12 (D)W, + 13(2)W,
+r,2)w, +rs(2)w+rs(2)w = f(2) in D (3.89)
satisfying the Dirichlet boundary condition
w(z) =yo(2), w, =y,(2) on dD, (3.90)

where
1r1(2),75(2),13(2),174(2),75(2),76(2), f (2) € Lp,(D),

and q,(2),q9,(2),q3(2), q4(2),r1(2),71,(2),75(2),74(2),75(2), r¢(2) are measurable bounded

functions and satisfying

1q1(2) 1 +1q(2) | +1q3(2) | +1q4(2) IS qo < 1. (3.91)
Lemma 3.2.12. The Dirichlet problem (3.89) and (3.90) is equivalent to the singular integral
equation
I+T+K)g=f(2) - CI1E — q2(2)V12 — G3(2DWozz — 43(2) 2122 — Q022 — QaZP12,

_7'1(2)% - ZE — 12D, —12(2) 21, — 75 (Z))E —1y(2D)P — 75 (Z)% —Ts (Z)ZE
—16(2)Yo —16(2) 2, (3.92)
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where w(z) = P, + zp; + T309(2),

ﬁg =q1T1-19(2) + q;T1-19(z) + q3T,_29 + q.T,_,9(2)

= q,11g(2) + q,11g(2) + qs1,g + q,11,g (3.93)

and
Kg =11(2D)T2-19(2) +12(2)T5-19(2) +73(2)T109(2) + 14(2)T19(2) + 15(2)T209(2)

76(2)T209(2). (3.94)

Proof. We write (3.89) as

W, = f(2) = q1(2)W,z — q2(2)W,z — q3(2)Wzz — qa(2)W3;

—11(2)w; = 1,(2)w; — 13(2)w, — 14 (2)W, — 15(2)W — 16 (2)W. (3.95)
Then
w,, = f(z) inD, (3.96)
w(z) = y,(2), w, = y1(z) on aD, (3.97)
where

f@) = f(2) — 1(2)W,z — 42(2)W,; — 43(DIW;; — qu(2)W5;
—11(2)W; — 15 (D)W — T3(2)w, — T4 (2)W, — 15(2)W — T (2)W.

By Theorem 3.2.6, solution of (3.89) and (3.90) is

w(z) = Yo(2) + 29, (2) + Tz,oﬁz—j-

Let w,, = g(z). Then,

9(2) = (Yo(2) + z¢1(2) + Tz,of(;))zz: (3.98)
9(2) + Q1(DWy; + 42 (2)W; + q3(2) W2z + qu(2)Wzz + 11 (2)W;
+7,(2)w; +r3(2)w, + 14, (2)w, + 15(2)w + 16 (2)W = f(2) in D. (3.99)

Since w,, = g(z) in D,

w(z) = Po(2) + 21(2) + T2,09(2), W
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=Yo(2) + 2Y1(2) + T09(2), W, = 21(2) + T1,9(2),
w, =9,(2) + T1,09(2), w;

= Yo, — 21, + T2 19, W; = Por — 21, + Ty 19, W3z = Yoz

+lelzz + TZ,—Zg(Z)IW_Zz' = l/]()ZZ + Z_lplzz + TZ,—Zg(Z)' sz‘

= E + T1,—1g(z)»W_zz' =Y, + Tl,—lg(z)'

After substituting these derivatives the result follows
9(2) +q1T1,19(2) + q;T1,19(2) + q3T;, 29

+q4T2,-29(2) + 11(DT2-19(2) + 12(DT, 19 (2)
+73(2)T109(2) + T4(DT109(2) +75(2)T209(2) + 16(D)T209(2)
= (@) — @11, — ©@DV1, — G202z — 432212, — Astozs
—Q4ZP12s = T1 (Do, — 21, — T2 (D)o, = T2(2) 21, — T3 (D)1
— 1, (2P, — (2P — T5(2) 2, — 16(2)Pe — T6(2) 2. (3.100)

Therefore,
g=U+T+K)f — 11, — (D1,
~43(2Wozz = G327 122 — QWozz = Q4122 — T1(D Vo
—2, = 12(D)Po, — T2(2) 21, — 13(2))P1 — T4(2D)Py
—15(2)o — T5(2) 21 — T6(2)Po — T6(2)21)1)
satisfies (3.92) if and only if w(2) = $(2) + 29(2) + T,09(2) satisfies (3.89) with the
boundary condition (3.90). O

Solvability of the Singular Integral Equation

Lemma 3.2.13. If
qo NI, m<1 (3.101)

for p > 1, then the operator I + 1l is invertible.
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Proof. By the properties of norm, we obtain

|1 TIg 11, )=l q.01g + q,11g + qs11,9 + q,11,g Iz, )
<I1 ¢:Tg Hymy + 11 ¢21G ey + 11 431159 11 ) + 11 quT12G 11, ()
=1 q,(2) 1 g I, @y + 1 q2(2) N1 TG 1l
+143(2) N1 TLg 1l ) + 1 44(2) 11 g 11, )
= q@1+1q:(2) 1 +1q3(2) | +1q.(2) ) Il II,g ”Lp(lD))
< qo 11 TIg 11, )< 1.

If condition q, || T1 L,m<1 holds, then we get || TI ll,m< 1. By Theorem 2.1.3, the

operator I + II is invertible. [

Lemma 3.2.14. For bounded functions r;(z), i =1,..,6 and for p > 2, the operator K is

a compact operator.

Proof. Firstly, we will consider the boundedness of K.

| I?g |=171(2)T5-19(2) + 172(2)T2-19(2) + 13(2)T1,09(2)
+14(2)T109(2) +15(2)T209(2) +16(2)T2,09(2) ISI 71(2)T,-19(2) |
+ 1 72(2)T5-19(@) | + 1 73(2)T1,09(2) | + 1 74(2)T1,09(2) |

+174(DT109(2) | + 1 15(2)T209(2) | + 1 76(2)T4,09(2) |

By Theorem 2.2.11, we get
| Kg I1<I7(2) | M(p, D) Il gll1, @) + 172(2)IM (2, D) |Gl o)

t173(2) I M, D) Il gllo,m)t | 74(2) | M(p, D) Il gll1,m)
t175(2) | M(p, D) Il gllo, )t | 76(2) | M(p, D) Il gll1,m)

= (7@ | +lr2(2) |+ 173(2) | +174(2) | + 1 75(2) |
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+176(2) DM(p, D) Il gl = C(p, D) Il gll., )

where M (p, D), C(p, D) are always nonnegative constants, depending on the quantities in the
parentheses.
By Theorem 2.2.12, the operators in K are Holder continuous, in particular, they are uniformly

continuous. So, by Arzela-Ascoli Theorem, the operators in K g are compact operators. [

Now, we can apply the Fredholm alternative.

Theorem 3.2.15. If qo Il 1 ||, )< 1 is satisfied, then (3.89) with the boundary condition

(3.90) has a solution of the form w(z) = Yy(z) + zy,(z) + T,,9(2), where g is a solution
of the singular integral equation (3.92) and Y y(z),Y,(2) are analytic functions in D.

Proof. 1f (3.101) is satisfied then by Lemma 2.1.3, I + II is invertible. In Lemma 3.2.14, we
have showed that K is compact. By Nikolskii Criterion, the operator I + IT + K is Fredholm
operator with index zero. Theorem 2.1.5 implies that the singular integral equation (3.92) has

the Fredholm alternative, i.e. it has at least a solution. Hence, if g is a solution of (3.92) , then

w(z) = Po(2) + z1(2) + T,09(2) is a solution to the (3.89) with the boundary condition
(3.90) . N

Also we can investigate the boundary value problem by separating into the boundary value
problems

Wi, =0 inD,
wy =v0(2), wi,=v,(2) on JD
and
Wozz T q1(2)Wazz + q2(2)Wazz + q3(2)Waz;
+q4(2)Wazz + 11(2)Wa; + 12(2)Wo; + 13(2) Wy,

+1r,(2)W,, + 1rs(2)w, + 14(2)W,

=f = q1(@2)W1z: — ©2(Z2)W1; — q3(Z)W1zz — Qa(2)W1z; — T1(2)Wy;
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=T (2)Wy; — 13(2)W1, — T4(2)Wy, — T5(2)wy —T(2)Ww; inD,

w; =0, w;,=0 on JD.

3.3. DIRICHLET PROBLEM FOR HIGHER ORDER PARTIAL DIFFERENTIAL
EQUATIONS

In this section, we will investigate the Dirichlet problem for higher order complex partial

differential equations.

Lemma 3.3.1. The Dirichlet problem
Ow=0inD, w=00ndD, k € Z*, k > 2

has infinitely many linearly independent solutions over C.

Proof. From the differential equation w;x = 0 it follows that w«-: is the analytic function.

By integration we have that

k
w(z) = Z 7" 1@, (2), where @;, i =1, ...,k are analytic in D.

n=1

Then
k

Z z¥" . (z) = 0 on OD.
n=1

Since @ (2) is analytic in D, we have that

k-1
9e(2) = = ) 77, (2) on OD.
n=1
k-1
Applying Theorem 3.1.3, we get ¢, (z) = — ¥ z¥"¢,(2) in D. Hence, we have the
n=1

following solution.
k-1

w(z) = ) 2", () (1 - |26,

n=1
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Then the expected result is obtained. 0

This means that the Dirichlet problem for the higher order complex partial differential equa-
tions is ill-posed. We can make it well-posed problem, taking additional conditions w;m, m =

1,...,k — 1 on dD. We have the following theorem.

Theorem 3.3.2. /2] The Dirichlet problem
Ofw =f(2) inD, Ojw =y,,on0D,0<v<k—-1

is uniquely solvable for f € L,(ID; C) and y, € C(0D;C), 0 <v < k — 1, if and only if for

0<v<<k-—-1,

k-1 5 @ (E)/’l—v (_1)k—vZ- jiCo) (E)k—l—v ~
ZZ—mi(_l)A -2 - “t T f -2 =1 @M="

A=v

The solution then is uniquely given by the formula

w(z) =

k-1 - _
) (n@QC—2" | D[ Q) T2+
f d{ +-— g ( dédn.

2mi vl (—z k-1 (—z

v=0 oD
Moreover, we have the following result.

Lemma 3.3.3. The Dirichlet problem
Ok'w=0inD, w=00noD, k€ Z*, k> 2

has infinitely many linearly independent solutions over C.

Proof. Integrating w(z) with respect to z we obtain

k

w(z) = Z Mo ), (3.102)

m=1

where @;(2), i = 1,.., k are analytic functions in D. Since

w = 0 on 0D,
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k
Z zZ¥""Mp,.(z) = 0 on D,

m=1
we have that
k-1
0(2) = = ) 77, (2) on 0D
m=1

and @, (z) is analytic function in D, Theorem 3.1.4 can be applied. Then the expected result
is obtained. In a similar way, we can make a unique solution in D problem for this equation,

taking additional conditions w,m, m = 1, ...,k — 1 on dD. O

We have the following theorem.

Theorem 3.3.4. The Dirichlet problem
o*w=f(z2)inD, 0w =7y,,0ndD, 0<v<k-1

is uniquely solvable for f € L,(ID; C) and y, € C(0D;C), 0 <v < k — 1, if and only if for

0<v<k-1,

z LYo @=L (=D*z ([ f@Q) -z )
;Zﬂlf( i 1-2z{ (A-=w)! e+ T _[ 1—Z(_(k—1—y)!d€d77_0

(3.103)
The solution then is uniquely given by the formula

k-1
_ (D" (@) @€ - Z)v ( 1)" (O (¢ -2kt
w(z) _Z 27T f vl = ff (k= 1)! T—z dédn.

v=0 oD

(3.104)

Proof. For k = 1, the condition (3.103) is just the condition (3.11) in Theorem 3.1.4, and the
solution (3.104) is just the solution (3.12) in Theorem 3.1.4. Assuming Theorem 3.3.4 holds

for k — 1, the problem is equivalent to the system
" 'w=winD, d)w=y,, ondD0<v<k-2,

d,w=finD, 0,w =y,_,, ondD,
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with the solvability conditions

k-1
—Z v VA(O -2 .
?.]‘( nr —z{ (A—V)! d¢
A=v. 9D
L& 1)’” 0@ G-
ﬂ 1-2z{(k—1— vydfd'?—O, 0<sv<k-2, (3.105)
ACY) _
o | Ve (97 25—7 1—{d5d = 0. (3.106)
ab D

The solutions then are uniquely given by the formulas

w(z) = z el [rQE-2,,

2Ti V! (-2

D

( 1)" w@ -2
ﬂ (k-1 7—z dfdn0=v <k-2, (3.107)
! )
w(z) = _ﬁa Vie- 1(() — n£ {_dedn. (3.108)

Inserting w into (3.105) and (3.108) gives (3.103) with (3.104) on the basis of

1 w(@) (=2
Eg1—zq‘(k—z—v)!dfd”

1 (z_ )k—l—v -
= 1 d
Zm Vi (O(k—l—v)'(l—z() ¢

(_ )k—l—v .
. déd
j]f(()(k_l_v)'(l_zz) a
for0 <v<k-—2,and
(C_ )kZ
ﬂ Oh—ma—a""

— k-1 )
-2 ié

1
= znlaDV (¢ )(k—l)!(f—z)

1 = (Z_Z)k—l .~
- déd.
”gf@(k—l)!(f—z) s
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Lemma 3.3.5. The Dirichlet problem
o7ojw =0 inD, w=0o0n0dD, m,n€Z*, (mn)=+(11)

has infinitely many linearly independent solutions.

The proof of Lemma 3.3.5 is based on the following 4 lemmas.

Lemma 3.3.6. Assume that f (z) is analytic functioninD = {z : |z| < 1}. Then the following
formula holds

dz f(z)_i 1 f™m9(0)

o f 7= =1 > 0. (3.109)

k-m+1 — 1’ -
—~ Z (m—-1)!

Proof. We denote that

@)
=5 f zkf(c) = f iz =%

L ()
(-2 \{-z ()z
SRS TAY

G-z \{(G -2z {k)z

=) O 5)z
o ) TO\T= = ) 2%

1 1f%D)
==l — ——— fi > 1.
21T =) or any k >

It is first order difference equation. Solving it we get
k
1 1 m=1(0
Ik:—lo—z ! (), k>0.

zk i zk=-m+1 (m —1)!

Since

we have that

Therefore,

It is easy to see that

f(()

- 2mi J—
aD

0
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Hence,

Kk
1 1 fom-1(0)
he= ?f(z) - Z zk=m+1 (m — 1)1’ k= 0.

m=1

Lemma 3.3.7. Assume that f (2) is analytic functionin D = {z : |z| < 1}. Then the following

formula holds

. -
1 [ ——d]  ~ ZTF(0)
2_7fia£ @f@m _ ;T k>0, (3.110)

Proof. We have that

d¢ QO .
-z zfnjz"(c—z) a@
f Qo
= o2mi ) o@-n®
1 _( 1 _l>1
(-2 \{-z ¢()z

1 _( 1 _ 1 )1
(k((_ —2) - Zk+1((_ ) 5k+1(‘ Z

1 e
ﬁa£ T

We denote that

Since

we have that

Then
1 } 1 1

@G- 0G-2 (F

f JACO
Jie = 2mi ("((—Z)

Q1 Q)

Therefore,

“omi 1(¢ —2) @ 2mi ) ¢kt 4
oD oD
_ F@ &
=21t 2mi 7
oD
_ f(©)
= Z]k—l - 2_7l'l €k+1 Z
aD
£®0 )

=Z_]k—1_ k' k21



49

In the same manner in Lemma 3.3.6, we get

k sk—m £(m) 0)
]k — Z-k]0 — Z u

m!
It is easy to see that
O
Jo = 2mi ) 7— z
oD
QO . 1 f©®
B me ((—z)(z B 2mi J (1—2{)(“'

Since,
1 _ Z +1
1-20¢ 1-2( ¢

1 fr—
Jo = mef«)( Lot 7)E =/,

it follows that

Consequently,

]k:_zkf(o)_zw:_zw,kzo.

m! m!
m=1 m=0

Lemma 3.3.8. Assume that f (z) is analytic functioninD = {z : |z| < 1}. Then the following
formula holds

k

I QY ()
Zm_f{ _Z‘Zk o k=0 (3.111)
Proof. Let
P $F Q) rzdg = f f(é)—Z
k= 27-”6][)) Z Ck(l )
On the basis of
1 A 1

F1-20)  i(1-20) | (F

Z 1 P
szf“>(m+ﬁ> ‘

()
(= 1)!

it follows that

=ZPy_,+2Z
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and
P, =z PO+Z 7k= m“];nm—_l)g)')-
Here
=k [ LD o

)

Lemma 3.3.9. Assume that f (z) is analytic functioninD = {z : |z| < 1}. Then the following
formula holds

_ o1 ™)
1 f ST gl = 5T+ FO) ~ ) o

m=1

, k>0, (3.112)

Proof. We denote that
d{

mei"f(i)— d{_ ff({)("(l )

Since,
1 z

1
f0-2z) 1-2 7

it follows that

1 _ z 4 1

-z  ¢ra-z) ¢
Therefore, _
d¢

T 2mi ff(o("‘l(l— 4 2m
1 1
= e+ 3 [ F©
oD
1 £ 0)
=zt T
and

1 S Fm(0)
Tk = _TO + Z

zk zk-m  ml
m=1

It can be computed

f f(()—

Zm
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1 1 1\
= ﬁa£ £ (5 — - 3> = ~f(2) + £(0)

Hence,

£ (0)

m!

1 Sl
Te=— (/@ +fOD+ ) —=

3.3.1 Dirichlet Problem for Linear Differential Equations

In this section we will extend the notion of solution of Dirichlet Problem for model equations
to a linear differential equation. We will try to find a solution to higher order linear differential

equation
k k
kw + z q1,(2)0 T olw + Z 05,(2)0305 W
=1 =1

k-1 1

Y (@)™ 0F W + by ()00 ]
=0 m=0
=f(z) in D, (3.113)
with the boundary conditions
olw=y,(2), 0<I<k-1, (3.114)
where
iy by, f € L, (ID) (3.115)

and q,;(2), q;j(2), j = 1, .., k are measurable bounded functions satisfying

k
z (1 q@ 1 +1q25(2) 1) < qo < 1. (3.116)
j=1

Lemma 3.3.10. The Dirichlet problem (3.113), (3.114) is equivalent to the singular integral
equation

(I+T+K)=f-0(2), (3.117)
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where w = 251—210 2™ +Torg(2), Yu,i=0,..,k—1areanalytic functions,

k k
g =) q,;(DH;g + Z q2;(2)1;g, (3.118)
j=1 j=1
k-1 1
Ry =D [amTmieting@ + b msiamd @] (3.119)
=0 m=0
and
k k-1 K k—1
0(2) = Y (DL Y M+ ) 4y (OET Y 2,
=1 =0 = =
k-1 1 k-1 k—1
£ |am@O™Or Y 2 + by (OTOET Y | (3.120)
=0 m=0 m=0 m=0

Proof. From Theorem 3.3.2, solution of the problem
dkw=g in D,

b=y(z), 0<l<k-1

is
k-1

W= I+ Tog (@)

m=0
If we differentiate w using the differentiability properties of the Pompeiu operator, and after

substituting these derivatives into (3.113), we obtain the singular integral (3.117). Therefore,

g satisfies (3.117) if and only if w = ¥ 2™, + Ty x9(2) satisties the problem (3.113) -

m=0

(3.114). O

So, we should investigate the solvability of the equation (3.117).

Solvability of the Singular Integral Equation

Lemma 3.3.11. If
Qo] <1 (3.121)

for p > 1, then the operator I + 1l is invertible.
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Proof. By the properties of norm, we get

k
Igll,m = ) 4y @Lg + 62, m)

j=1

k
<D (@@ + 45 @) 1Nl 0
j=1

< quIng”Lp(lD)) <L

If (3.121) holds, then we get ||I|| L, < 1.By Theorem 2.1.3, the operator I + I is invertible.
]

Lemma 3.3.12. K is a compact operator:

Proof. By Theorem 2.2.11, operators in K are bounded, and also by Theorem 2.2.12, they
are Holder continuous, in particular they are uniformly continuous. So, by Arzela-Ascoli

Theorem they are compact. [

In that case, it is easy to apply Fredholm alternative.

Theorem 3.3.13. If condition q0||l'lj||Lp(,D) < 1 is satisfied, then the problem (3.113), (3.114)

k-1 -

has a solution of the formw = Y. _ Z™p,, + T, g(z), where g is a solution of (3.117).

Proof. 1f condition qo||Tl;|l,, < 1 holds then by Lemma 3.3.11 I + Il is invertible. In

previous lemma we have proved that K is compact. From the statement of Nikolskii Criterion,

the operator I + IT + K is Fredholm operator with index zero. Theorem 2.1.5 implies that

the singular integral equation 3.117 has the Fredholm alternative, that means it has at least
k=1 -

a solution. Therefore, if g is a solution of (3.117), thenw = ¥~ Z™p,, + T, g(2) isa
solution to the problem (3.113), (3.114). [

Alternatively, we can find the solution of the problem (3.113), (3.114) by denoting the solu-



tion as w = w; + w, where w, is the solution of the problem
o%w, =0 inD,

oiw, =y,(2), 0<Il<k-1.

and w, is a solution of the problem

Ow, + Z q1,(2)0  dlw, + Z 45, (2)0}057
] 1
k-1

2

l
D @m0y ™07 w, + by ()70 ™)

0 m=0

k
= f@) - ZqU(z)a Jolwy = ) 4,,()0105 v,
j=1

k-1

=0 m=0

diw, =0, 0<I<k-1.
The other Dirichlet problem with linear differential equation is
k k
kw + Z q1,(2)05 0w + Z 02;(2)030 W
j=1 j=1
k-1

=0 m=0
with the boundary conditions

odlw=y,(z), 0<Il<k-1.

l
_ Z Z (@ ()5 ™07 W, + byu(2)070™w,] in D,

+ Z Z [ (2)05 ™07 W + by (2)0705™W] = f(z) in D,

54

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

Solution of (3.126), (3.127) can be attained by the one for the problem (3.113), (3.114)

through complex conjugation and using the Theorem 3.3.4.
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4. DIRICHLET PROBLEM FOR TWO DIMENSIONAL PARTIAL
DIFFERENTIAL EQUATION WITH COMPLEX VARIABLES

In Chapter 4, we carry ideas in Chapter 3 to bidisc D? := D; X D, = {z = (2,2;) : |zx]| <
1,k = 1, 2}. Firstly, we derive the solution of the Dirichlet problem of second order model
partial differential equations by using the main results in [2]. Then, we extend the boundary
value problem to a general linear differential equation. Under suitable solvability conditions,
it is seen that the boundary value problem has a unique solution. To reach that conclusion,
the problem is reduced into a singular integral equation. After that, applying the Fredholm

Theory, we can study the solvability of the singular integral equation.

4.1. DIRICHLET PROBLEM FOR EQUATION OF SECOND ORDER PARTIAL
DIFFERENTIAL EQUATIONS

In this section we study the solution of the Dirichlet problem for the model equation in D? :=

{z=1(2,2,) 12,1 <1, |z,| <1} =D; X D,. We have the following main theorem.

Theorem 4.1.1. The Dirichlet problem defined as

Wiz, = f(21,25) in Dy XDy, (24,2;) € Dy X Dy, (4.1)
W(z1,2,) =y, on 0Dy XDy (24,2,) € 0Dy X Dy, (4.2)
wy; =y, on 0D, XDy, (z4,2z,) € 0Dy X Dy (4.3)

forw, f € Li(IDy X Dy; C), vy € C(0D; X Dy; C) andy, € C(0Dy X Dy; €), | z; I< 1,
| z, |1< 1 is solvable if and only if
1 Z,d{ 1 Z,d&,dn
o | e - [ e ZEE T — o (44)
Dy

2mi 1—7,(, 1-7,{,
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and

Z4,d{, 2 ag,
) 1T ifﬁi NGl T b,

T
D; D,

The solution is uniquely given as

w(zy,2;) = %agﬂ Vo1, z)c lzl T 2mi if@i ]/1((1,52 - 2z2 C(lfl—dZi
e

Proof. We decompose the Dirichlet problem (4.1) - (4.3) into the system of Dirichlet prob-

lems of first order:
w;, =w in D, w=y, on JID; XDy, 4.7)

(L)Z'Z ES f ln Dz, w = )/1 on aDZ X Dﬂ, i.e. WZ‘1 = )/1 on aDZ X ]:Dﬂ. (4.8)

By Theorem 3.1.3, the Dirichlet problem (4.7) for w, € L;(IDy; C), yo € C(dD; X Dy; C),

| z, 1< 1 1is solvable if and only if

Z;dq,
ana Vo((pzz)ﬁ - — .ff w((pzz) d€1d771 =0, (4.9)
Dy

the solution then is uniquely given by

_Z j f w(cl,zz)dfldm- (4.10)

1
w(zy,2;) = 2 j- yO((erZ) -7,

oDy
Moreover, the Dirichlet problem (4.8) for f € L,(IDy; C), Y, € C(0D, X Dy; €), | z, I< 11is
solvable if and only if

Z_Zd(Z

T f FlnG) e dbdi; =0, (411)

1
i f ¥1(21,42) Zz(

oD,

the solution then is uniquely given by

dé,d 772

42

(4.12)

0 = 5= [ Bt f f@ 803

(2=
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We insert the equation (4.12) into equations (4.9) and (4.10). For this we will obtain w ({4, z;).

By changing the variables, we get

ds,d N2
(1, 2)—_ ¥1(¢1, <5 { — f f((y(z S~z
6]DJ2
Then it follows that
i )’0((1'Z2) o (1{
oD Z164
- f] el RAGROY f FGu e TR T dg,dn, =0
0Dy
and
1
W(Z1:ZZ)=2_ j Yo((pzz) __Jj 2T J V1((1'(2)—
I oDy
1 dé,dn, ( déqdn,
- ﬂ FGu i e (4.13)
So, we obtain (4.5) and (4.6), respectively. [

Note. We can decompose the Dirichlet problem (4.1)-(4.3) into the system of Dirichlet prob-

lems of first order as :

w, =w in D, w=y, on 0JD; XDy, (4.14)

a)z'l = f ln ]:Dﬂ, w = )/1 on aDﬂ X ]:Dz, i.e. WZ'2 = )/1 on aDﬂ X ]:Dz. (4.15)

Let us consider the Dirichlet problem defined as
WZ_1Z_z = 22_1 ln D]l X ]:Dz,

w(z,,2,) = Z,°Z, on 0D, X D,

WZ'1 == 22_12_2 on aIDZ X ]:Dﬂ.
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Since,

1 -2 _ Z_1df1 -1 d(z
ﬁ j ¢4 221_2-1{1 nanffj (1(2 e df1d771

Dy
1 - Zy dé,dn,
N P,
T[ZD J (11_21(1{2_22 &,dn,y

1 _ s Zpdq, szSezdnz
P 2210 ——— =
an 1 _22{2 1 _Zzzz

6]]))2

Solvability conditions are satisfied. So, we can compute the solution of the Dirichlet problem

by the following formula

. d{, dé&dn,
w(zy,72) = mle L —2z, m2mi ﬂf (162 272617
oD, D; 9D,
_ff .U - d&idn, dSydn, — 525
— 210, — 2, Lo
D; D,

4.2. DIRICHLET PROBLEM FOR LINEAR DIFFERENTIAL EQUATIONS

In this section we will extend the notion of solution of (4.1)-(4.3) to a linear differential
equation. We employ the Laurent Schwarz notations.

Leta = (ay, a5,05,a,), |lal=a;+a,+as+a,, o, €N, i=1,.,4

la
and 9, := m We will try to find a solution w(zy,z,) € WP?(D; X D,) to the
Dirichlet problem

0,0, W)+ ) Q20 2)0w (2, 2)

|la|=2,a1+az<2,
az+as<z,(ay,a3)#(1,1)

) s ) + ) 5a( 20w (2, 72)

lal=2,a1+az<2, la|s1
az+ag<2,(aq,a3)#(1,1)
+ Z t.(20,2,) 00w (20 2,) = f(20,2,) in Dy x D, (4.16)
la|=1

satisfying the nonhomogeneous boundary conditions

w(z1,25) =vo(21,2,) on 0D; X Dy, (4.17)
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wy =v1(21,2;) on 0Dy X Dy, (4.18)

where

Sar touf € Lp(]D]l X ]DZ)

and q,, 7, S, t, are measurable bounded functions satisfying the condition

b @+ |

la|=2,a1+a2<2,
az+as<z,(a1,a3)#(1,1)

+ 150100 | 150001 | +1t0100 | +1t0001) < g <1 (4.19)

Note. In the linear equation (4.16), we restrict the values of «;, i =1,..,4 i.e. the deriva-
tives of w(z4, z,). Otherwise, we obtain the unbounded operators, and it is a deep investiga-

tion of integro differential equations.

Lemma 4.2.1. The Dirichlet problem (4.16)-(4.18) is equivalent to the singular integral
equation

u+ I+ I?)g(zl,zz) = f(z1,22) — 0(24, 2,), (4.20)

where

w(zy,2;) =

% f Yo(Su 2 Z)Z 1z1 T 2mi ff f ZIEH ) d{ZZZ C{lfl—dZi

by D; 8D,

dédn, d& dn
_ff fj- f (1, (2 2 = lpaln)ﬂ,am)z()/o’yl) +TDH;0,1T1DZ;0,19(21’22)'

— 7z G —
Dy Dy

ﬁg = z qa(zlﬂZZ)T]D)H;—aZ,l—alTH))Z;—a4,1—a3g

la|=2,a1+a1<2,
az+ay<2,(aq,a3)#(1,1)

+ § Ta’(zl'ZZ)TID)H;—aZ,l—(xlTDZ;—a4,1—a3g + S(0,1,0,0)T]D)ﬂ;—l,lT]D)Z;O,lg

la|=2,a1+a1<2,
az+as<z,(a1,a3)#(1,1)

+500,001)(Z1,22)Tp;01Tpy-1,19 + L0100 Dyi-1,1T D019 + 0,001 (21, Z22) 01 TDy-1195

Kg = 5(1,0,0,0)T1D)2;0,1g + 5(0,0,1,0)T1D>]1;0,1g + S(o,o,o,o)TDH;0,1T[D>Z;0,1Q + t(l,O,O,O)T]D)Z;O,lg

+t0,0,1,00 py;019 + £(0,0,0,0) T D;;01 T D019

0(z1,2;) = 0;,0;,(Wap,op, (Yo, Y1) + Z qa(21,22)0(Wop,om, Vo, V1))

lal=2,a1+a1<2,
az+as<2,(aq,a3)#(1,1)
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) )0 anan, Vo) + ) 5alzn 22)0u(an,om, (Vo V1))

|a|=2,a1+a1<2, |a|<1
az+ag<2,(a1,a3)#(1,1)

+ Z ta(Z1,22)0Won,00, Vo Y1).

la|s1

Proof. We write the linear differential equation (4.16) as

0,,05,W(Z1,2,) = f(21,2) — § qa(21,22)0,W (21, 23)
la|=2,a1+a2<2,
az+ays<2,(aq,a3)#(1,1)

=) e m)IWGE ) — ) 5u( 2)0aw (2, 72)

la|=2,a1+a<2, |1
az+as<2,(aq,a3)#(1,1)

_ Z t, (20, 2,)0.w(z1,2,) in Dy X D,
la|<1

Then the Dirichlet problem (4.16)-(4.18) turns into

0,0, w(z1,2,) =f in Dy x Dy, (4.21)
w(z1,25) =vo(21,2,) on 0Dy X Dy, (4.22)
w; =v1(21,2;) on 0Dy X Dy, (4.23)

where

F=feuzm)= ) 0 z)0awz,2)

|la|=2,a1+a2<2,
az+as<2,(aq,a3)#(1,1)

— E To(21,2,)0,W(24,2,)
|lal=2,a1+a2<2,
az+ag<2,(ag,a3)#(1,1)

= a2 (2 7) = ) (2, 2)0 (7 i Dy X D
la|=1 |a|<1

This type solution of problem (4.21)-(4.23) follows from Theorem 4.1.1, so
d¢,

{1— 2,

w(zy,2,) = o

f Yo(1,22)

oD,

o | [ i S

T 21T 22— 2,61 — 2
D, oD,
1 df1d771 dfzdnz
. ff ff 9@ 8 L T (4.24)

Dy Dy
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or shortly
w(zy,2;) = 1/’611»11,61@2 Yo ¥V1) + T]D)ﬂ,-o,1T1D>Z,-0,19(Z1' Z;). (4.25)

Let 0,,0,,w(zy,2;) = g(21,2;). Then

g =0:0; Wop,op, Yo, Y1) + Tpi01Tpy019 (21, Z2))-

It follows that,

g+t § qa(21,22)0,W (24, 23)
|a|=2,a1+a2<2,
az+as<2,(aq,a3)#(1,1)

) )W )

|a|=2,a1+a2<2,
az+as<2,(aq,a3)#(1,1)

¥ (20, 200W(E 2) + ) a0 7)AW@ ) = f(z07) in Dy x Dy,
lal=1 lal=1

(4.26)
Here, the derivatives of Yap, op,(¥o, Y1) With respect to Z; is equal to zero, because

Yo, op, (Yo, V1) is an analytic function with respect to Z;. If we integrate
0,,07,w(z1,2,) = 9(24,2,),
with respect to z,, Z, respectively, we get
w(zy,2;) = 1/)0,1D)]1 + T]D)ﬂ;o,1(1/11,1mz) + T]D)ﬂ;O,lT]D)Z;O,lg(Zl' Z,),

where Y p,, ¥4 p, are analytic functions with respect to Z;, Z, ,respectively. Then

0aW = 0a(Yop, + Ty (W1p,) + Toy01Tpy019(21 22))- (4.27)

Substituting the derivative (4.27) into (4.26), and arranging the operators, we obtain the sin-
gular integral equation (4.20).

Therefore, g(z,,z,) is the solution of the singular integral equation (4.20) if and only if
w(Z1,23) = Yoap,om, Vo, Y1) + Ty01 T w019 (21, Z2) is the solution of the Dirichlet problem
(4.16)-(4.18). [

Solvability of the Singular Integral Equation

Lemma 4.2.2. If the condition (4.19) is satisfied, then I + 11 is invertible.
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Proof.

”Hg”Lp(]D)ﬂXDZ) < qa(zllZZ)T]D)ﬂ;—az,l—alT]]))g;—a4,1—a3g”Lp(]D)ﬂX]D)Z)

lal=2,a1+az<2,
az+ay<2,(aq,a3)#(1,1)

+| Ta(Z1,22)Tpy-ay1-a, T Dy-ay1-a: 9 ||L,,(1D>ﬂ><m>2)

lal=2,a1+a2<2,
az+as<2,(aq,a3)#(1,1)

+||5(0,1,0,0)TDH;—1,1T1D>2;0,19||L,,(1D>ﬂ><m>2) + ”S(O,O,O,l)T]D)]l;O,lTlD)Z;—l,lg”Lp(]DJﬂXID)Z)

+1t0,1,00Tpy-1,1 D019 L, yx05) + 1€0,0,01) T D301 TDy-1,19 11, (g xDy)

= | qa(zllzz) | ”Tl]))n;—az,l—alT]D)Z;—tx4,1—a3g”Lp(]D)nx]D)Z)

|lal=2,a1+a2<2,
az+as<2,(aq,a3)#(1,1)

+ | ‘I"a(Zl,ZZ) | ”T]D)]l;—az,l—alT]D)Z;—a4,1—a3g”L,,(]D)HXID)Z)

|a|=2,a1+a2<2,
aztays<2,(aq,a3)#(1,1)

+ | $(0,1,0,0) | ”T]D)ﬂ;—l,lTlD)g;O,lg||Lp(]]])]1><]D)Z)+ | 5(0,0,0,1) | ||Tm>ﬂ;o,1T1n)2;—1,1g||L,,(m>ﬂ><m>2)

+ 1 t0,1,00 | ||T1D>n;—1,1T1D>2;0,1g”L,,(]D)ﬂxm)z)'i‘ | t0,001) | ||T1D)ﬂ,-0,1T1D)2;—1,19”Lp(lD)ﬂx]D)Z)
=l (1,001 | ”T]D)Z;—l,lg”L myxny) T 1 90,1,1,0) | ||T]D)]1;—1,1g”L (D;xDy)
P 14

+ 140,101 | ”T]Dﬂ;—l,lT]D)Z;—l,lg||Lp(]]))]1><]]])2)+ | 7(1,001) | ”T]D)Z;—l,lg”Lp(]D)ﬂX]D)Z)

+ 170110 | ”T]D)ﬂ;—l,lglle(lD)]lxDz)-l' | 70,1,01) | ||T1D>]1;—1,1T1D>2;—1,1g”L,,(]D)ﬂxu)z)

+ 150100 | ITp;-11T D019 |, @x0)F 1 500,001)(Z1,22) | ITpy01 Dy -119 1, ,xD5)

+ | to,1,0,0) | ||T1D>ﬂ;—1,1T1D)2;0,19||Lp(m>ﬂ><1n>z)+ | t(0,0,0,1)(z1'22) | ”TIDJH;O,lT]D)Z;—l,lg”Lp(]D)ﬂXIDJZ)'

Using Theorem 2.2.13, we get

”ﬁg”Lp(]D)ﬂX]D)Z) <l 4,001 | M(p)”g”Lp(DﬂxDZ)+ | 90,1,1,0) | M(p)”g”Lp(Dﬂxm)Z)

+ 1490101 | M(p)||TDﬂ;—1,1g||Lp(n)1xD2)+ | 71,0,01) | M(p)”g”Lp(meZ)
+ 170110 | M(p)llglle(]D)ﬂX]D)z)-l_ | 701,01 | M(p)”T]I))ﬂ;—l,lg”Lp(DﬂxDZ)
+ 150,100 | M@ITp,019L,mx0)tF | S001) | MPIITD30,19ll1,m,xD5)

+ | L0100 | M(p)IlTDZ;O,lglle(D1XD2)+ | Sc0,001) | M(P)||TDH;0,19||LP(D1><DZ)'

where M is a constant depending on the quantities in the parenthesis.

Moreover, by Theorem 2.2.13 and Theorem 2.2.11 , we have that

||ﬁg||L,,(m>ﬂ><m>2) <l 4,001 | M(P)||9||L,,(Dﬂxm>z)+ | 4¢0,1,1,0) | M(P)||9||L,,(Dﬂxm>2)
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+ 190101 | M(p)M’(p)”g”Lp(Dﬂxﬂ))z)+ | 7(1,0,01) | M(Z’)”?”Lp(m)ﬂxﬂ))z)

+ 170110 | M(p)llglle(DﬂX]D)z)-}_ | 70,101 | M(p)M,(p)”y”Lp(lD)ﬂXDZ)
+ 1 S0,1,00) | M@)M'(p, ]D)z)”g”L,,(DﬂxDZ)"' | Sc0,00,1) | M@)M'(p, ]DZ)”g”Lp(]D)ZX]D)Z)
+ 1 t100 | MM (0, DG, x0T | S©00,1) | MPIM' (0, D)IGlL, ,xD)»

where M' is a constant depending on the quantities in the parenthesis.

||ﬁg||Lp(m>ﬂxm>z) < C(p, Dy, D) G2, yx0y) (| G100 |+ 190100 | + 1490101 |

+ 17000 | H 170110 | F 170101 I +1S0100 | + 150001 | + 10100 | + 150001 )

= C(p, Dy, D) Z | qo(21,22) | + 1 74(21,2) | + | Sw01,00 | T 150001 |

|lal=2,a1+a2<2,
az+tays<2,(aq,a3)#(1,1)

+ 1 tw100 | +1t0001) |) ”.g”Lp(]D)Zx]D)Z)'

From equation (4.19) it follows

”ﬁg”Lp(]D)ﬂX]D)Z) < C(p, Dy, D2)qollg1l1, D,y < 1-

By Theorem 2.1.3, I + I is invertible. U

Lemma 4.2.3. For measurable bounded functions S, t,, f € L,(IDy X Dy) and for p > 2

the operator Kisa compact operator.

Proof. We start with the boundedness of K.
| I?g 1=1 51,0000 D,;019 + 500,0,1,0) ;019 T 50,0000 D330,1 T D019 T E(1,0,00) T Dy;019

+t(0,0,1,0)T1D>ﬂ;o,1g + t(o,o,o,o)Tm)ﬂ;o,1T1D)2;o,1g .

By the triangle inequality it follows that,
| Kg I<1 $(1,00,0)TDy;019 | + 150,010 Dy;019 | + 1500000 y;01 T D019 |

+ 1 1,000 019 | + 10,010 D019 | + 1 £0,00,0) T g0 350,19 |

=1 51,000 !l Tnyo19 | + 150,010 Il Tpgod | + 150,000 I Tngo1Tp 019 |
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+ 1 1000 I Tpy019 | + 1 001,00 I Togo19 |+ 1 t0,000) | Tngo1Tp,019 |-

By Theorem 2.2.11, we can write

| 1?9 1<l S(1,0,0,0) | S(p, Dz)”g”Lp(Dz)"' | Sc0,0,1,0) | S(p, ]D)ﬂ)”g”L,,(Dﬂ)

+ 1 50,000 | S(p, ]D)Il)”TID)Z;O,l.g”Lp(]D)ﬂ)-I_ | t1,000) | S(p, DZ)”?”LP(DZ)

+ 1 two10) | S@DDNGIL,my+ | twooo | S@ DT, 019w,

where S is a constant depending on the quantities in the parenthesis.
| Rg 1<l S(1,0,0,0) | S, ]D)z)”g”Lp(ID)Z)"‘ | Sc0,0,1,0) | S(p, Dﬂ)”g”LP(Dﬂ)

+ 1 S00,000) | S(p, Dy)S'(p, Dz)llg”Lp([D)zx[D)z)-l' | €1,0,0,0) | S(p, DZ)llglle(DZ)
+ 1 to010 | S, D]l)”?”Lp(]D)n)-l_ | £(0,0,00) | S(p, DS’ (p, DZ)”E”LP(]D)ZXID)Z)
< C(p, Dy, ]D)Z)”g”Lp(ID)ZXID)Z)ﬂ

where S’, C are constants depending on the quantities in the parenthesis. There are one-
dimensional and two-dimensional operators in K. In the previous chapter, we have proved
that one-dimensional operators are Holder continuous, in particular, they are uniformly con-
tinuous.

We will show that two-dimensional operators in K are Holder continuous. By Theorem 2.2.12

it follows that

| Tp01Tp;019(21,22) — Ty, Tpy019 (21, 22) |
< M@, D) Tpgo19l1,my | (21,22) — (21, 22) 1,

where 0 < a <1, p > 2,(24,2,),(21,25) € Dy X Dy fori # j,i,j = 1,2. Applying

Theorem 2.2.12 again, we obtain,
| TDﬁ;o,lTnJ)B;mg(Zp Z3) — TDﬁ;0,1T1D>ﬁ,-0,1g(Z;' z3) |

< M(p' ]D)ﬁ)C(p' Dﬁ)llgllLP(DﬁXDﬁ) | (Zl’Zz) - (ZI'Z;) 1“.

Each term in K are uniformly continuous and bounded. By Arzela-Ascoli Theorem, the

operators in K g are compact operators. O]

Now, we can apply the Fredholm alternative.
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Theorem 4.2.4. [f the condition (4.19) is satisfied, then the Dirichlet problem (4.16)-(4.17)

-(4.18) has a solution of the form w(zy,2;) = Yop,op, Yo, V1) + Tpy01TD,019(21,22),

where g(z4, z,) is a solution of the singular integral equation (4.20).

Proof. If the condition (4.19) is satisfied then by Lemma 4.2.2, I + II is invertible and
K is compact. From Nikolskii Criterion it follows that I + I1 + K is Fredholm operator
with index zero. Theorem 2.1.5 implies that the singular integral equation (4.20) has the
Fredholm alternative. Fredholm alternative states that the equation has at least a solution.
Therefore, if g(z,, z,) is a solution of the singular integral equation (4.20), then w(z,,z,) =
Yop,op, Yo, V1) + Tpy01TD,019(21, 22) is a solution to the Dirichlet problem (4.16)-(4.18).

O]

4.3. DIRICHLET PROBLEM FOR EQUATION OF FOURTH ORDER PARTIAL
DIFFERENTIAL EQUATIONS

In this section, we construct the solution and solvability conditions of the Dirichlet prob-
lem for the fourth order differential equation. Applying the main Theorem 4.1.1 in previous

section, we obtain the following fundamental theorem.

Theorem 4.3.1. The Dirichlet problem defined as

W,2z2 = f(21,2,) €Dy X Dy, ie. (21,2;) € Dy X Dy, (4.28)
w(z,2z,) =y, on 0Dy XD, ie (z4,2,) €0D; XDy, (4.29)
wy; =y1 on 0Dy XDy, ie (2,2;) € 0Dy X Dy, (4.30)
Wz =V2 on 0Dy XDy e (z1,2;) € 0D X Dy, (4.31)
W2, =Yy; on 0Dy XDy, le. (zy,2;) € 0D, XDy (4.32)

for Wz-l,wz-lz-z,wz-lzz-z,f € L;(IDg X Dy; €), ¥o,Y2 € C(ODy X Dy; C) and y,,y5 € C(0D, X
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Dy; ©), | z; 1< 1,1 z, 1< 1 is solvable if and only if

d 11 2 d
rGuaree - o | [ nGutarEe 2 dsian,

ZmaDn ~ A D; oD, 1=2:66 =
+ %ﬁ ﬂ O —Z-;}Cl ?jz_dedfldnl = 0. (4.33)
D; Dy
%a ! V3(21,62) Z_Zdz-izz - f f f(z, z)Zdezi;; = (4.34)
2mi | Yolr7) Zldz‘Qc 7 2mi ﬂ f ¥allwa) Z;c ¢ —(zz dérdn,
oDy 1 D, D, ) 15152 2
A ﬂ ﬂ aiﬂ e o A e
_ﬂ_z_mﬂ ff Hﬂ am[g S e R et ]

P e o

and

d 2 d
Y1(21, (2) & -(2 7_[27_” ]J j Y2(¢1, (2 ZZ- zlzldfzdnz

2mi — 73§, — 730, ¢1 —
oD, Dy 0Dy
Z d(z dé,dn,
7.[2 21i ff D‘[fam'[ 121(ET (2 — 7,0, {2 5, -2, ds,dn,

_ %ﬂ ﬂ ff fGu8)g —Z-;'ziz ?fl—dz ?jz_d?zclfzdnz = 0. (4.36)
Dy Dy D,

Then the solution is uniquely given as

wienz) = g [ 1@z 7S - DL [ e e Sl

G D; 0Dy ~ % (1 — A
ez || || [ rcosog Lo 2 ?fidzz
T ﬂ ﬂ ﬂ f (6 dgzzz o

L oot o,
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Proof. We construct a system of Dirichlet problems of second order:

Wzz, =@ 1nDg XDy, (4.38)
w=y, on 0D; XD, w,; =y; on 0D, XDy, (4.39)
Wz 7 =f inDy XDy, (4.40)
w=Y, on 0Dy XDy w; =y; on 0JDy XDy (4.41)

By Theorem 4.1.1, the Dirichlet problem (4.38)-(4.39) is solvable if and only if

Zd 2 Zd Zd 2
yi(z mi——f]w( 20y 2820 _ (4.42)

2mi 2¢ — 730,

and

Z;d{, Zy dd,
Vo((bzz) — 7.0, T Tomi ff f V1((1:<2 — 7.0, — d€1d771

oDy Dy 0Dy

1 Z ds,dn, _
+t— y Dﬂ @ (81, $2) T 7.0, -1z d&,dn, = 0. (4.43)

The solution then is uniquely given as

wien ) = g [ oz S - DL [ g 2 St

Zm

— 2361 =2,
oDy Dy 9D,
d¢,dn, d§,dn;,
— 4.44
) JJocon e s (4
]1 2
and the Dirichlet problem (4.40)-(4.41) is solvable if and only if
Z,d¢ f Z,d&,dn
Z,06, 206207);
) _ - - ) = 0 445
27”6]]) Y3(21 {2) — 7,0, f(z, 2) — 7,0, ( )
2

and

d 2 d
rGua e = o | [ nGut e S dsian,

2mi — 7104 — 27101 G5 —
oDy D, 9D,
1 Z; dé,dn, _
+Fﬂmﬂf@1’<2)1—2& (Z_szfldnl_o. (4.46)

The solution then is uniquely given as

oz = g [ Gz = 2o [ [ e 2 S

Zy — 20— 24
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= f | f [ rGuen i e, @47)

— 21 {3 —

We insert the equation (4.47) into equations (4.42)-(4.44). For this, we will construct w(z,, ().
Changing of the variables, we get

w(z4,0;) = _aDﬂ ¥2(C1,C2) —1 Z, T 2mi iﬂf@i [EIE (2 = 2Zz (fl—dzi
I

Then, it follows

1 Zld(1 Z-l d(Z
o [ 1oz - o [ [ e s

oDy Dy 0Dy

ff ﬂ {zm ! 726y &2) ~1€1 P ff f ACRD dNZCZ fld'fl

1 1

T -

and ]
% f e - ff {Zm f VG
L [t et ] f ottt
Z2 — g dEadn, = 0 (4.49)
and
[ [Tl oy =3 f gt
[ frecfss ?fz“'zz}?ffzz?fzdz:

]
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Note. Alternatively, we may decompose the Dirichlet problem defined in Theorem 4.3.1 into
the system of Dirichlet problems of second order as:

WZ-lz-1 =w in ]DHX]D)Z, wW=%Y, on a]D)ﬂX]:Dz, WZ-1 =Y. On a]D)]]X]Dz, (451)

wz_lz_l = f in [D]l X ]:Dz, w = yo on aDZ X [D]l' (Uz'l = )/1 on aDZ X Dﬂ. (4.52)

Example 4.3.2. Let us consider the Dirichlet problem defined as

W, 2,2 = 36Z122 ln [D]l X Dz,

Z,°7,
w(z,,2,) = 2,°2,° + 2z, on 0D X Dy,
—252;3
wy, =3z;"Z;°on 0D, X Dy,

Wyz = 92,°Z,° on 0Dy X Dy,

Wz-lzz-2 = 182-12_22 on a]D)Z X Dﬂ. (453)
Since,
1 -2, Z;d{, ﬂ j 7 ag,
i 9, 7, 1—- 7,0, T, 18(1(2 1— 7,0, 0, — d€1d771
oDy D; 0Dy
1 . > Zp  d&dn,
+—ijf36 — dé,dn, =0, 4.54
T2 (1{21—2151 0, -7, §ydm, (4.54)
D; D,
-2 %d0, lﬁ _ 5 Z,d&,dn,
182 - — 36z2,(,———— =0, 4.55
i 1(2 40, n 162 1— 2,0, ( )
oD,
1 Z;d{y ﬂ j ad,
i j ((1 S+ 222)1 e TL'Zn'l (1 52 1(1 7, - d€1dn1
oDy D; 8D,
252 d{1 dé,dn,
9 dé.d
nz 2mi ffﬂf i 1-2 1(1(1 $ b1 o
D; D, 8Dy
2 di, dé&,dn, d&,dr
_Tz_ffffff f 18(1(2 _1 s 52_772 ~861 n1d51dn1
3 2mi 2 J 1 1(1(2 (,62—2,(,— (4

[ o S
and

% f 3% {_2312—2(1?62 m 2mi ﬂ f 9(125221— %, zldcl d52dlta
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nz 2mi .U .U f 1866, 1-— _22(2 szfzcz ?fl_dZidfzd”z

D; Dy 0Dy
! . . 4 d§dn, d&,di, _
n_g y Dﬂ 60T 7 g 7 g, e =0 (4S])

Since the solvability conditions are satisfied, we can compute the w(z4, z,) by the following

formula

w(z1,2,) = 5— f((l 7° +22,) 7 ___ﬂ f 3(-12(—23 df, dgdn,

aln)ﬂ —z, T2mi .y —2;G,— 74
e[| [t
i ff ﬂ ﬂ j it c;dzzcz o

] [[soecg o e e = o

D Dy Dy Dy

4.4. DIRICHLET PROBLEM FOR LINEAR DIFFERENTIAL EQUATIONS

In this section we will extend the notion of solution of the model equation in Theorem 4.3.1
to a linear differential equation. We will try to find a solution w(z4, z,) € WP2(ID; X D,) to

the Dirichlet problem

ag_163_2‘/‘}(21’22) + z qa(Zl'ZZ)aaW(erZZ)

lal=4,a1+a2<3,
az+ays<3,(aq,a3)#(2,2)

+ z ra(ZbZZ)m

|lal=4,a1+a<3,
az+ay<3,(aq,a3)#(2,2)

+ Z Sa(zl,ZZ)aaW(ZlJZZ)

|a|<3,a1+a2<3,
a3+ay,<3

t ) ez WG m) = f(z17) in Dy xD; (4.58)

|la|<3,a1+a2<3,
az+a4<3

satisfying the nonhomogeneous boundary conditions

w(z1,2,) =y, on 9Dy XDy (24,2,) € 0Dy X Dy, (4.59)
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WZ-1 =Yy On a]D)Z X Dn, (Zl' ZZ) € a]D)Z X Dn, (460)
WZ-1Z-2 = ]/2 on aDﬂ X ]:Dz, (Zli Zz) € aDﬂ X ]:Dz, (4.61)
WZ-IZZ-z = )/3 on aDZ X ]:Dﬂ, (Zl' Zz) € aIDZ X [D]l' (462)

where

Sa touf € Lp(]D)Il X ]D)Z)

and q,, 7, Sq t, are measurable bounded functions satisfying the condition

| qa(21,22) | + 1 74(21,22) | + Z | sa(21,22) | +1ta(21,2) |
la|=2,a1+a2<2, |a|<3,a1+a2<3,
az+as<2,(aq,a3)#(1,1) az+a4<3,(az,a4)#(0,0)
<q,<1. (4.63)

Note. In the linear differential equation, we restrict the values of a;, i = 1,..,4 or the
derivatives of wW(z4,z,). Otherwise, we obtain the unbounded operators, and it is deep in-

vestigation of integro differential equations.

Lemma 4.4.1. The Dirichlet problem is equivalent to the singular integral equation

I+ T+ K)g(z1,2,) = f(21,2,) — 0(24,2,), (4.64)
where
w(z1,2;) = %aﬁlﬂ VO(Q'ZZ) —z, m2mi ﬂamf)z V(S0 G2) d(ZZZ ?fl—dz
] agl e
L ] o et e
e W’z o,
or shortly,

w(zq,2;) = lpaDn,aDZ(Yo')/p)/z'Y?,) *+ Tp,;01 7301 Dy01 T D019, (4.66)



ﬁg = Z qa(21, ZZ)aa(T]D)]l;o,lT]DJﬂ;O,lT]D)Z;O,lTID)Z;O,lg)

|a|=4,a1+a2<3,
az+as<3,(a1,a3)#(2,2)

+ Z T(Z1, Zz)aa(Tm)ﬂ;o,1TD1;0,1T1D>2;0,1T1D)2;0,19)

|la|=4,a1+a2<3,
az+as<3,(a1,a3)#(2,2)

+ z Sq (21, ZZ)aa(T]D)]I;O,IT]D)]I;O,lTID)Z;O,lTlD)Z;O,lg)

|a|<3,a1+a2<3,
az+a4<3,(ap,a4)+(0,0)

+ Z ta(Z1,22)00(Tp;01Tpy0,1 Tpy0,1 TDy0,19)s

|a|<3,a1+a2<3,
a3 +a4<3,(az,a4)#(0,0)

Eg = z Sa(ZDZZ)aa(T]D)H;O,lT]D)H;O,lT]D)Z;O,lTDZ;O,lg)

|a|<3,a1+a2<3,
a3+a4<3,(az,a4)=(0,0)

+ Z ta(ZlﬂZz)aa(TID)H;O,lT]DJH;O,IT]D)Z;O,IT]]J)Z;O,IQ)'

|a|<3,a1+a2<3,
az+a4<3,(az,a4)=(0,0)

0(z1,2,) = az'laz'z (lpamﬂ,amz()’o’)/p)/z’)/s)

+ Z Qa(zpZz)aa(lpam,amz(yo»yl:Vz:V3)

|lal=4,a1+a2<3,
az+as<3,(a1,a3)#(2,2)

+ Z ra(Z1:Zz)aa(lpamﬂ,amz(ymV1rY2'Y3)

|a|=4,a1+a2<3,
az+a4<3,(a1,a3)#(2,2)

+ Z Sa(zlvZz)aa(wau))n,aﬂmz(yo'Vl'Vz'Vs)

|a|<3,a1+a2<3,
az+ay<3

F ) (20,200 oman, oV V2 V)

|a|£3,a1+a2<3,
az+as<3

In a similar manner in previous section, we obtain the following result.

Theorem 4.4.2. If the condition (4.63) is satisfied, then the Dirichlet problem (4.58)-(4.62)

has a solution of the form

w(zy,2,) = l/)amﬂ,amz()’o')/1')/z')/3) + Tp,;01 01T Dy301 T Dy01 95

where g is a solution of the singular integral equation (4.64).
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