
SPACE TIME EVOLUTION OF DYNAMICAL SYSTEMS WITH FEW DEGREES

OF FREEDOM

by

Ergun Eray Akkaya

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Physics

Yeditepe University

2016

iii

ACKNOWLEDGEMENTS

I would like to acknowledge the support and help of my Professor Avadis Simon Hacınlıyan

and thank him for his support since my undergraduate days.Working for my thesis under his

guidance and supervision has been an experience that broadened my mind and presented an

unlimited source of learning.

I thank Assist.Prof.Dr. Hacı Ahmet Yıldırım for his kind advice, help and support for this

research, including his suggestion for analyzing the Sakarya river data.

Finally, I would like to thank my family for their endless love and support, which provided

me a very productive environment thus making the process more beautiful.

iv

ABSTRACT

SPACE TIME EVOLUTION OF DYNAMICAL SYSTEMS WITH FEW DEGREES

OF FREEDOM

The thesis work involves analysis of chaotic behavior in physical systems modelled by low

dimensional equation of motion. The paradigm of chaos became prominent in the late

1960’s. This has stimulated interest in this field, causing a rapid rise in the quality and

quantity of research.

As one example of analysing chaotic behavior from a Lagrangian dynamical system, the

Yang-Mills-Higgs system is studied which exhibits local instability but possesses a globally

ordered phase by spantaneous symmetry breaking. Chaotic behavior and chaos to order

transitions are analyzed. Addition of oscillatory term the region where the chaos-order

transition occurs identified with an eye on transition back to order.

As a second example, regions of chaotic behavior in the parameter space of the Maxwell-

Bloch equations (also Lorenz-Haken equations) has been studied as a constrained system.

The main part of this work involves identification of chaos in a set of experimental data, the

monthly average discharge data of Sakarya River directly. Basic characteristics of chaos

such as the irregularity of motion, unpredictability and sensitivity to intial conditions can

thus be understood using nonlinear time series methods.. Using this data, possible low

dimensional chaotic behavior of Sakarya river flow is investigated. To reveal the chaotic

dynamics, maximal positive Lyapunov exponent is calculated from the reconstructed phase

space obtained using the phase space reconstruction method. The approach reconstructs a

locally equivalent phase space from the scalar time series from which the real system’s

invariants can be estimated. Positive values for the maximal Lyapunov exponents have been

calculated and this is an accepted indicator for chaotic behavior possibility. Analysed data

contains the montly average flow rates of eleven main branches of Sakarya river through the

years 1960-2000.

v

ÖZET

DÜŞÜK BOYUTLU DİNAMİK SİSTEMLERİN UZAY ZAMAN EVRİMİ

Bu tez çalışmasında düşük boyutlu hareket denklemleriyle modellenmiş fiziksel sitemlerin

kaotik davranışları incelenmektedir. Kaos paradigması 1960 ların sonunda ortaya atıldı. O

zamandan beri, bu alandaki araştırmaların niteliği ve niceliği hızlı bir şekilde artmaktadır.

İlk örnek olarak, Lagranjiyen bir dinamik sistem olan Yang-Mills-Higgs sisteminin kaotik

yapısı çalışılmıştır. Bu sistem yerel düzensizlikler gösterir fakat ani simetri kırılmalarıyla

küresel düzenli faza geçiş gösterir. Kaotik davranış ve kaostan düzene geçiş analiz edilmiştir.

Salınım terimi eklenerek oluşan kaostan düzene geçiş bölgesi saptanmıştır.

İkinci örnek olarak, kısıtlı sistem olarak alınması gereken (Lorenz-Haken denklemleri olarak

da bilinen) Maxwell-Bloch denklemlerinin parametre aralıklarının kaotik davranış bölgeleri

incelenmiştir.

Bu tezin ana çalışması, Sakarya nehrinin aylık ortalama debi verilerinin yani deneysel olan

zaman serisi verilerinde kaotik davranış saptanması içermektedir. Hareketteki düzensizlik,

başlangıç koşullarına olan aşırı hassasiyet ve tahmin edilememezlik gibi kaosun temel

karakteristikleri doğrusal olmayan zaman serileri metodları ile anlaşılmıştır. Bu verileri

kullanarak, Sakarya nehir akışının olası düşük boyutlu davranışı araştırılmıştır. Kaotik

dinamiği ortaya çıkarmak için, en büyük pozitif Lyapunov üsteli hesaplanması faz uzayının

tekrar inşa edilmesi metodu ile elde edilmiştir. Yaklaşım skaler zaman serilerinden gerçek

sistemin değişmezlerinin kestirilebileceği yerel eşdeğer faz uzayını yeniden yapılandırır. En

büyük Lyapunov üstelin pozitif değeri hesaplanması (gözlenmesi), olası kaotik davranışın

işareti olarak görülüp, kabul edilmiştir. Analiz edilen veri Sakarya nehrini besleyen on bir

alt nehrin 1960-2000 yılları arasında aylık ortalama debi değerlerini içermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. xi

LIST OF SYMBOLS/ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

2. MATERIALS AND METHODS ... 8

3. CHAOS THEORY AND ITS APPLICATIONS ... 14

4. HAMILTONIAN CHAOS ... 16

4.1 Chaos ın Yang-Mılls equatıons .. 18

4.2 Chaos ın maxwell-bloch ın lagrangıan form .. 26

5. NONLINEAR TIME SERIES ANALYSIS ... 29

5.1 PHASE SPACE RECONSTRUCTION ... 30

5.1.1 Mutual Information ... 30

5.1.2 False-Nearest Neighbors ... 33

5.1.3 Maximal Lyapunov Exponent ... 34

6. RESULTS AND DISCUSSION OF RIVER FLOW ... 36

REFERENCES .. 46

APPENDIX A .. 49

APPENDIX B ... 53

APPENDIX C ... 58

APPENDIX D .. 69

vii

LIST OF FIGURES

Figure 1.1. Example plot of two nonlinear pendula that small different starting angles.. 4

Figure 1.2. Map that demonstrates location of Sakarya River.. ... 7

Figure 2.1. Flow rate data on given months of Aktas Subriver.. ... 8

Figure 2.2. Flow rate data on given months of Besdegirmen Subriver.. 8

Figure 2.3. Flow rate data on given months of Botbasi Subriver.. .. 9

Figure 2.4. Flow rate data on given months of Dogancay Subriver.. 9

Figure 2.5. Flow rate data on given months of Dokurcan Subriver....................................... 9

Figure 2.6. Flow rate data on given months of Hamidiye Subriver.. 10

Figure 2.7. Flow rate data on given months of Karaköy Subriver.. 10

Figure 2.8. Flow rate data on given months of Kargi Subriver.. ... 10

Figure 2.9. Flow rate data on given months of Kocasu Subriver.. 11

Figure 2.10. Flow rate data on given months of Mesecik Subriver.. 11

Figure 2.11. Flow rate data on given months of Taksirkopru Subriver.. 11

Figure 2.12. Correlation for the Aktas Subriver.. .. 12

Figure 2.13. Correlation for the Botbasi Subriver.. ... 12

Figure 3.1. Plot of Lorenz Attractor in 3D ... 14

file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655463
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655464

viii

Figure 3.2. Lorenz Attractor in intervals of Δt=5. ... 14

Figure 4.1. Lyapunov exponents vs time for ... 23

Figure 4.2. Trajectory of y vs Py ... 23

Figure 4.3. Lyapunov exponent values according to change in κ and g parameters 23

Figure 4.4. Lyapunov exponents .. 24

Figure 4.5. The basic operating point shows “throw and catch” chaotic behaviour similar to

Lorentz attractor...27

Figure 4.6. Bifurcation fiagram of the Maxwell-Bloch system .. 28

Figure 4.7. Attractors of the system as g is bifurcation diagram of the Maxwell-Bloch system

..28

Figure 5.1. Steps of data analysis in time series ... 30

Figure 5.2. Mutual information of Aktas Subriver of Sakarya River 32

Figure 5.3. Mutual information of Botbasi Subriver of Sakarya River 33

Figure 5.4. False-Nearest Neighbors for Botbasi Subriver of Sakarya River 34

Figure 6.1. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for Aktas

branch ..37

Figure 6.2. Stretching factor v.s. iteration graph using the Kantz Algorithm for Aktas branch

 ..37

Figure 6.3. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for Botbasi

branch...37

file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655467
file:///C:/Users/akk/Downloads/thesisformatted13haziran.docx%23_Toc453655468

ix

Figure 6.4. Stretching factor v.s. iteration graph using the Kantz Algorithm for Botbasi

branch ..38

Figure 6.5. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Besdegirmen branch ...38

Figure 6.6. Stretching factor v.s. iteration graph using the Kantz Algorithm for Besdegirmen

branch...38

Figure 6.7. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Dogancay branch…..39

Figure 6.8. Stretching factor v.s. iteration graph using the Kantz Algorithm for Dogancay

branch ..39

Figure 6.9. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Hamidiye branch..39

Figure 6.10. Stretching factor v.s. iteration graph using the Kantz Algorithm for Hamidiye

branch ..40

Figure 6.11. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for Kargi

branch ..40

Figure 6.12. Stretching factor v.s. iteration graph using the Kantz Algorithm for Kargi branch

 ..41

Figure 6.13. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for Kocasu

branch...41

Figure 6.14. Stretching factor v.s. iteration graph using the Kantz Algorithm for Kocasu

branch ..42

x

Figure 6.15. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Mesecik branch...42

Figure 6.16. Stretching factor v.s. iteration graph using the Kantz Algorithm for Mesecik

branch ..42

Figure 6.17. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Taksirköprü branch...43

Figure 6.18. Stretching factor v.s. iteration graph using the Kantz Algorithm for Taksirköprü

branch...43

xi

LIST OF TABLES

Table 5.1. Nonlinear Time Series Analysis results of Sakarya River’s tributaries 366

xii

LIST OF SYMBOLS/ABBREVIATIONS

𝐴 Vector potential

B Parameter in Lorenz equations

𝐸⃗⃗ Electric Field

g Coupling constant

H Hamiltonian equation

k Loss rate

L Lagrangian

n Integer value

P Momentum

p Oscillator parameter

𝑃 ⃗⃗⃗⃗ Polarization

𝑅⃗⃗ Any Vector

R Parameter in Lorenz equations

x Position coordinate

y Position coordinate

ynn(k) Integrated time series in box n

snn(k) Fourier transform of correlation function

Rd(k) Distance in d dimensions

𝛾⊥ Perpendicular loss rate

𝛾∥ Parallel loss rate

∆⃗⃗⃗ Population inversion

∆⃗⃗⃗𝟎 Population established by the pump mechanism

λ Lyapunov exponent

λ Eigenvalue

σ Parameter in Lorenz equations

τ Delay time

κ Strength of anharmonic term

1

1. INTRODUCTION

Although in everyday life the word chaos is used to describe as a state of disorder and

irregularity, chaos has a very different and specialized meaning in science. Low dimensional

chaos involves sensitive dependence on initial conditions[1]. Traditionally, laws of nature

reflected a complete relation of effects to causes. Until recently, it was assumed that one can

make arbitrarily accurate predictions for arbitrarily long times of any physical system as long

as one knows the starting conditions accurately enough. This is very obvious for linear

systems where the cause and effect connection is clear. In the case of nonlinear systems, the

cause and effect connection can sometimes be not so simple. Thus the problem of controlling

such a system arises. Although the systems that chaos theory deals with are complicated and

most of the time unpredictable, the basic concepts of chaos are not very difficult to

understand. Now comes the question of how chaotic systems manifest themselves. A system

can show multiple periodicity or apparent broadband noise as a result of underlying chaotic

dynamics. To qualify and quantify chaos there are several dynamical properties to be used.

Fractal dimension of the reconstructed phase space of the system, Kolmogorov entropy and

Lyapunov spectrum are most important of these dynamical properties.

The connection between chaos theory and everyday life involves the analysis of time series

obtained from real systems. The difficulty arises from the projection of a multidimensional

system on a scalar one dimensional time series. Linear methods look for regular structures

in a data set which means that the intrinsic dynamics of the system is governed by the

paradigm that small variations cause small effects. So possible irregular behavior of the

system can not be understood by linear paradigms where small variations in input can lead

to large variations in the results.

Before explaining all terms first, let us understand dynamical system’s meaning. [2]. The

word Dynamic means changing. Dynamical is concerning what is changed. For example,

position of an artificial satellite changes relative to earth very rapidly so, we can say that this

satellite is very dynamic. Furthermore, orbital energy of satellite as mentioned before

changes very little, therefore, we can say that orbital energy is an approximate invariant.

Like many other studies, modern dynamic systems studies date to 1900s. However before

1957 the subject was a specialized field known mostly to astromers and physicists. When

2

artificial satellites came into human life, also computers and powerful algorithms entered the

stage with quick and easy calculations which are necessary, the study become a topic of

concern for a broader portion of the scientific and engineering communities.

Dynamics began with classical mechanics and its application to planetary motions. In 19th

Century electrical circuits provided more dynamical problems that could be solved. Today,

high technical progress and computer simulations help to solve these problems, also

sophisticated perturbation techniques can solve the same types of problems. Soviet

mathematical physicists’ work is a good historical example for superconvergent perturbation

techniques. They provided humankind a lot of techniques caused by lack of resources to

build laboratories and fast computers.

In addition population and ecology have provided some classical models to dynamics. The

problem that remains for these specialities is to come up with enough data to create more

refined forecasts. More promising is the study of biological subsytems, such as the heart and

its neurological control system, because data can be collected systematically in a laboratory

environment. These are many large models of the economy, some highly dynamical and

others hardly at all. No methodology has won the day, because all give forecasts that are not

nearly dependable.

Some models in economics and other fields violate a cardinal rule. When a model works

poorly, the answer is not make it bigger, but to change something fundamental. Main thing

to do with any kind of problem is to try to determine the limits of applicability to the system

under study.

Many business forecasts use predictive methods however, they have little or no theoretical

justification. They are only curve-fitting techniques needed for extrapolation aimed at

prediction..

Today people with little or no specialized scientific training can use dynamics. Study of

dynamics is not restricted to a small number of scholars and specialists since computers have

made practical various numerical methods. The analytic theories developed by professional

scientists do not need the help of computers and numerical solutions. In this thesis, basic

numerical techniques and simple software programs to analyze phenomena have also been

used.

3

Chaotic systems can be easily analysed by people because, numerical analysis and computer

graphics are the tools that have made the study of chaotic systems accessible.

One of the pioneers in using computers in physics, especially for the study of chaos, was

Mitchell J. Feigenbaum’s work starting in 1974. In the 1960s the MIT meteorologist Edward

Lorenz had discovered a chaotic dynamical system using approximations to the fluid flow,

heat conduction and convection equations. Later Lorenz’s results were used for different

physical models and dynamics Feigenbaum’s work spread knowledge about chaos and its

usefulness as a modeling tool and teaching device was appreciated throughout the scientific

community.

The novelty and exotic behavior of chaotic systems has been over emphasized during the

period 1974-1990. In the future, present tools will be improved and new tools will become

available, but these most likely will be further refinements of existing methods. Perhaps

there will be great breakthroughs, but models adequate for most practical purposes can be

constructed without waiting for them.

Dynamic systems can be classified into two groups. The first group involves the simpler

linear systems. Linear systems are easy to understand since they obey the superposition

principle according to which, for example, doubling the input doubles the output. Therefore,

linear systems can be easier to solve and their long term behavior can be easily predicted.

However, because of this property, they require initial conditions in order to become

well-posed and set magnitudes for physical phenomena. The second group includes

nonlinear systems with more complex patterns of behavior. The relation between input

and output is much more complicated and impossible to understand in terms of results

from the linear theory. This makes non-linear systems more complicated. Results from

non-linear systems are usually called chaos because of this reason. But this does not

mean chaos only occurs in complex systems or equations. Chaotic behavior can easily

occur in a nonlinear equation which is not one to one invertible, if this equation is

observed as a generator of time series such as;

 𝑥𝑡+1 = 1.9 − 𝑥𝑡
2 (1.1)

4

Many features of Chaos Theory can be understood by the statement “ the behaior of certain

nonlinear systems depend sensitively on the initial conditions .” [1]. An example can be

given by comparing the behavior of a system of two nonlinear pendulums. The difference

between the initial conditions that give rise to a total seperation of trajectories after a short

while is only one second of arc. Actually, the exact opposite can also be true. Irrespective of

the initial conditions, the system can finish on a common topological structure, such as the

well known butterfly in the Lorenz system.

The explanation for this latter type of chaos is topological transitivity. This roughly means

that neighborhoods of points are mapped by the system into topologically big sets instead of

sticking together in one or more localized neighborhoods.

Chaos Theory can be observed in most science fields for example, in systems that model

species population and competition between species, in lasers, in heart movements, electrical

signals from certain nonlinear circuits. The formulation of entropy by Boltzmann, in which

the distribution of molecular speeds assume that position and velocity be uncorrelated was

one of the first instances of the use of the term “collision number ansatz” that became known

as the hypothesis of molecular chaos. Indeed, entropy is one of the parameters that

characterize chaos.

Chaotic motion exhibits a lack of determinism even when all random ingredients are not

present. The nature of a system and the topological structure in which it exists can impose

limitations on a system, so that although two nearby points can separate exponentially, the

system remains on a limited structure of the space which can allow it to move in a seemingly

Figure 1.1. Example plot of two nonlinear pendula that small different

starting angles.

5

regularly way on a seemingly smooth space, while its chaotic motion lies in a highly

complicated subspace, also called “ strange attractor.” The well known Lorenz attractor is

an example.

In general, mathematicians study the mathematical fundamentals of this theory, in terms of

the theory of dynamical systems and topological measure. On the other hand, there are

several physical phenomena that can only be explained by nonlinear models. Fortunately,

chaos theory does not need higher mathematical knowledge. Its fundamentals can be

understood and applied in terms of relatively simple mathematical concepts such as basic

algebra, calculus and ordinary differential equations. In this respect application of chaos

theory to physical systems is not much different from linear mathematical problems.

To summarize, chaos shows complex, unsystematic motion, instabilities and sudden changes

because of highly sensitive dependence on initial conditions. A chaotic system may seem to

be haphazard but actually its evolution and invariants (meaning the extent of predictability

of its final state) only obeys different rules from those of linear systems. Actually, the

Lyapunov exponent measures this predictability horizon. Seemingly deterministic nonlinear

systems exhibit such behavior and this aspect of chaos theory is usually called “Deterministic

chaos”. Simple systems and equations in one variable (for example, the system given in 1.1

) can generate chaos. Chaos does not mean measurement error or noise, it is independent

from all of these.

In this thesis, two examples of analysing chaos in terms of systems modelled by differential

equations will be given. The first example involves investigating chaotic behavior in bosonic

Yang Mills Fields by the aid of certain standard mathematical tools such as linearized

stability analysis, Lyapunov’s direct method and lyapunov characteristic exponents.

An inspiration for studying the established knowledge of the Yang-Mills or Yang Mills

expanded by Higgs mathematical statements is the significance of this framework in the

starting instability or stability at, since in the beginning stages all associations were of the

same quality and depended on non-abelian gauge hypotheses, of which the SU(2) Yang Mills

is a first example. In this study we consider the accompanying two dimensional (four

variable) Hamiltonian recommended by Biro Matinyan and Müller.

6

 𝐻 =
𝑃𝑥

2+𝑃𝑦
2

2
+

1

2
𝑥2𝑦2 −

1

2
𝑦2 +

1

8
𝑥4 +

1

4
𝜅y4 . (1.2)

Here H is hamiltonian P=(px,py) is the momentum and x and y are coordinates and κ is

nonlinear anharmonicity parameter. In gauge hypotheses the acknowledgedment of diverse

stages, especially a limiting stage for the most part connected with a disordered field setup

and the Higgs stage portrayed by an all-around requested field condensate, is a focal issue.

As needs be the qualification between established dynamical frameworks having or not

having a complete arrangement of nontrivial integrals of movement is of essential

significance. In this part coupled Yang- Mills- Higgs framework which displays an all-

inclusive requested stage because of unconstrained symmetry breaking.

A further example in this thesis is to analyse Maxwell- Bloch equations, sometimes referred

to as Lorenz-Haken equations. They represent a possible working mechanism for a class of

lasers. They are based on the classical equations for the electromagnetic field and quantum

mechanical formulations for the particles under the combined DC and AC magnetic fields.

For regions of appropriate values involving control parameters, seemingly chaotic behavior

can result. Under special conditions on the parameters, the laser model is related to the

Lorenz model and behave similarly. Maxwell-Bloch equations exhibit various types of

routes to chaos for different parameter ranges. In this study, a constrained Lagrangian form

that lead to Maxwell-Bloch equations has been obtained from the equivalent treatment of the

Lorenz model. This allows us to analyze the long term behavior of its attractor.

The main part of the thesis involves the analysis of the Sakarya River flow using nonlinear

time series analysis. Sakarya River is the fourth largest river in Turkey and first largest river

in Marmara and Anatolian Regions (Turkey). It is 810 km long and its width is between 60

m and 150 m. In this river, there are 3 dams for hydroelectric power production. One is

Sarıyar dam located in the Ankara region Nallıhan subriver. It is constructed in the 1950s.

The others are Yenice and Gokcekaya dams which are located in same region of the Sakarya

River.In Figure 1.2., one can see information about Sakarya River’s branches and locations.

7

Figure 1.2. Map that demonstrates location of Sakarya River.

8

2. MATERIALS AND METHODS

The experimental data involves the average monthly discharge rate of Sakarya River. The

data have only scalar values and are taken from the [3] EIE (General Directorate of Electrical

Power Resources Survey and Development Administration). Fifty-four stream flow

observation stations have been set on the Sakarya River by the EIE and the observation

period spans the period 1960-2000. Flow rate time series graphs are presented below. The

units on the x axis is time in months and the y axis is flow rate in m3.

It can be seen that the flow rates for each tributary show similar patterns in spite of the fact

that Sakarya river covers a relatively large and varied region involving two different climatic

regions.

 Figure 2.1. Flow rate data on given months of Aktas Subriver .

 Figure 2.2. Flow rate data on given months of Besdegirmen Subriver .

9

 Figure 2.3. Flow rate data on given months of Botbasi Subriver .

 Figure 2.4. Flow rate data on given months of Dogancay Subriver .

 Figure 2.5. Flow rate data on given months of Dokurcan Subriver .

10

 Figure 2.6. Flow rate data on given months of Hamidiye Subriver .

 Figure 2.7. Flow rate data on given months of Karakoy Subriver .

 Figure 2.8. Flow rate data on given months of Kargi Subriver .

11

 Figure 2.9. Flow rate data on given months of Kocasu Subriver .

 Figure 2.10. Flow rate data on given months of Mesecik Subriver .

 Figure 2.11. Flow rate data on given months of Taksirkopru Subriver .

If one looks at these signals in order to determine their nature, one can see both periodic and

irregular behavior. A study of the correlation function confirms this conjecture. Here is the

correlation function for the Aktas tributary, we observe a decrease up to about 7-8 months,

but the correlation function never reaches zero. It than reveals a periodic behavior involving

approximately 40 months. A similar behavior can also be seen for the Botbasi tributary.

12

Figures showing both correlation functions are presented below. It is clear that such behavior

usually implies that the data involves multiple scales. Multiple scales does not necessarily

imply chaos, however, there are several instances in which such systems make transition to

chaotic behavior, an example involving electro-optical oscillators is given in [4]. In that

case, the dynamical system is given. In the case of Sakarya River flow, a one dimensional

time series is given and the phase space must be reconstructed. This requires setting a delay

time and if multiple time scales are involved, a choice must be made between the zero of the

correlation function and the first minimum of the of the mutual information. Although there

is no clear indication of consistent success, the latter is usually preferred. [5]. It will be

reported in Sections 4 and 5 that the mutual information analysis gives a delay time of 5-9

months. This agrees with the lower figure seen in the correlation graphs.

 Figure 2.12. Correlation for the Aktas Subriver

 Figure 2.13. Correlation for the Botbasi Subriver

13

3. CHAOS THEORY AND ITS APPLICATIONS

As mentioned in introduction, chaotic systems show sensitive dependance to initial

conditions. However, initial conditions may not be well known and be subject to errors,

uncertainities or perturbations. Long-term predictions are impossible. Even the availability

of computational support will not enable one to generate long-term predictions. Poincaré

stated in 1903:

A very small cause which escapes our notice determines a considerable effect that we cannot fail to see...

even if the case that the natural laws had no longer secret for us... we could only know the initial situation

approximately... It may happen that small differences in initial conditions produce very great ones in the final

phenomena.

Let us observe Lorenz deterministic non-periodic flow [1] which is known as one of the best

example of chaos theory. In working on the behavior of a flowing fluid system subject to a

temperature gradient such that conduction and convection effects compete, Lorenz used a

well known approximation to the Navior-Stokes equations and obtained the following

system involving three ordinary nonlinear differential equations containing six parameters:

 𝑥̇ = −𝜎𝑥 + 𝜎𝑦

 𝑦̇ = 𝑅𝑥 − 𝑦 − 𝑥 (2.1)

 𝑧̇ = −𝐵𝑧 + 𝑥𝑦

Since
𝜕𝑥̇

𝜕𝑥
+

𝜕𝑦̇

𝜕𝑦
+

𝜕𝑧̇

𝜕𝑧
= −𝜎 − 1 − 𝐵 < 0, the system is dissipative and has an odd number of

degrees of freedom.

The parameters σ, R,B determine the behavior of the system. These three equations are

extremely sensitive to initial conditions. The ordinary parameter values for demonstrating

chaos are σ=10, R=28, B=8/3. If one starts with suitable initial value and solves the equations

with a numerical procedure, it will be shown that the very well known butterfly pattern as in

the Figure 2.1 emerges.

14

Figure 2.1 shows the Lorenz attractor in x, y and z dimensions. Chaos theory is not used

in local weather reports because of not knowing the initial conditions at time t=0 very

accurately. However, progress is observed for day to day large scale simulations.

Figure 3.2. Lorenz Attractor in intervals of Δt=5 seconds.

Figure 3.1. Plot of Lorenz Attractor in 3D

15

It can be seen in Figure 2.2 that rapid changes of the Lorenz attractor which the figure

demonstrates during the time development of the Lorenz attractor in steps of Δt=5 seconds.

We can categroize chaotic system by in two groups. One is the system has inherent chaotic

behavior in nature, the other is generated by people either artificially or by the way it is

observed. Chaotic systems can be used by industry. Chaotic systems only appear to be

random, but they are indeedly deterministic, they posses an emphasizing order. This

emphasizing order provide to the possibility of controlling chaotic systems.Ott and Grebogi,

Willian Ditto and Louis Pecora are pioneer scientists and have created methods of

controlling chaotic mechanical, electrical and biological systems [6]. Important example is

the fact that syncronized chaos can be used in cyrpto electronic communications.

16

4. HAMILTONIAN CHAOS

Hamiltonian Mechanics is a branch of classical mechanics offering a deeper insight into the

connection between Newtonian and Lagrangian mechanics. It treats generalized coordinates

and moments on equal form. There are many applications such as simple harmonic

oscillators, accelerators,planet orbits and the weather, to name a few. Perturbations in

Hamiltonian systems give rise to chaos, which can be explained through KAM theory

(Kolmogorov- Arnold-Moser)[7]. Although the study of Hamiltonian Mechanics has been

around since the 1800’s, chaos is only now beginning to be understood.

Hamiltonian systems satisfy a number of properties, but before adressing those, an overview

of what a Hamiltonian system needs to be addressed. A Hamiltonian system with n degrees

of freedom on an open subset E of R2n must satisfy the following:

Let H ϵ C2 (E) where H=H(x,y) with x,y ϵ Rn. Then the system.

 𝑥̇ =
𝜕𝐻

𝜕𝑦
 , 𝑦̇ = −

𝜕𝐻

𝜕𝑥
 (4.1)

where x represents a generalized coordinate vector and y represents the correspondin

conjugate momentum vector satisfies

𝜕𝐻

𝜕𝑥
= (

𝜕𝐻

𝜕𝑥1
, … . . ,

𝜕𝐻

𝜕𝑥𝑛
)
𝑇

 𝑎𝑛𝑑
𝜕𝐻

𝜕𝑦
= (

𝜕𝐻

𝜕𝑦1
, … . . ,

𝜕𝐻

𝜕𝑦𝑛
)
𝑇

 (4.2)

with
𝜕𝑥̇

𝜕𝑥
+

𝜕𝑦̇

𝜕𝑦
= 0 so that phase space volume is conserved and hence Hamiltonian systems

have the symplectic property.

Hamiltonian systems are conservative, which can easily be extended to many physical

systems.

Hamiltonian systems have numerous properties. The most well-known property is that

Hamiltonian systems conserve at least one particular quantity, namely energy . More

specifically, the total energy H of the Hamiltonian system remains constant along its

trajectories. This can be proven by taking the derivative of H with respect to time . In doing

so, we get that it equals zero, which proves that H is constant along any solution curve.

17

Therefore, the trajectories of the system are on the surfaces of H, which is a constant. The

critical points of H correspond to the equilibrium points of the system. Furthermore, the

equilibrium points are non-degenerate if the determinant of the second derivative of H is

nonzero when evaluated at the equilibrium points. Stability can also be determined using

the second derivative of H. When evaluating the second derivative at an equilibrium point,

if all the eigenvalues have a positive real part, then that point is stable. If we consider

Hamiltonian systems of degree one, then non-degenerate equilibrium points can be classified

more readily. If an equilibrium point is non-degenerate, than we have that the point in

question is a saddle point of the Hamiltonian system if and only if it is a saddle of the

Hamiltonian function H. Furthermore, it is a center if and only if it is a local maximum or a

local minimum of H.

In a non-chaotic Hamiltonian system near a point of stable equilibrium, the motion is

oscillatory. Thus, geometrically we get that the orbits of the system move on tori. But, for

chaos to be introduced into the system, the tori need to be destroyed. By destroying the

invariant tori, the system in turn creates a cantori which is system of cantor sets. Chirikov

first discovered that for local chaos to ocur in a Hamiltonian system, stable and unstable

manifolds had to intersect. And this chaos occurs when S2 > 1 , where S =
Δω𝑟

𝛺𝑑
 , Δω𝑟 is the

frequency and 𝛺𝑑 is the distance frequency between two unperturbed resonances.

It should be noted that the tori are not perturbed in the integrable Hamiltonian system H that

was defined earlier. Rather, the system becomes perturbed when a nonintegrable Hamilton

perturbation is added. In doing so, the following equation is obtained:

 𝐻 = 𝐻0(𝑦) + 𝜖𝐻1(𝑥, 𝑦) (4.3)

In adding the nonintegrable function, tori begin to deform, and those that survive are “

sufficiently irrational.” In fact, according to KAM theory, tori survive for C’ perturbations if

|
𝑑𝐻0

𝑑𝑦0
∗ 𝑘| > 𝜆|𝑘|−𝜏 for N-1< τ < 1/2r-1 and λ is of order √𝜖 for small ϵ , where λ is based on

frequency. But for chaos to ocur, even these “sufficiently irrational” tori become perturbed.

18

4.1 CHAOS IN YANG-MILLS EQUATIONS

In the electromagnetic case, the gauge transformation that led to the minimal substitution

 depended on a single parameter, the electric charge e. This gauge

transformation is Abelian since two successive transformations commute.

It is possible to consider more complicated cases. The equations of motion are still in

3+1 dimensional Minkowski space time. However the potential now depends on an internal

degree of freedom respecting an symmetry. This theory is the free Yang Mills fields

with the equations of motion, involving the field strength F and a coupling constant g [15]:

 (4.4)

The field strength is derived from a vector potential 𝐴𝜇
𝑎:

 (4.5)

Here, the Latin letters denote the inward degrees of flexibility and take the range of 1,2 or 3

while the Greek letters denote spacetime parts taking the range 0,1,2,3. For the

electrodynamic case the third term vanishes since there is one only one internal degree of

freedom that is the electric charge. A summation over the full range over repeated indices is

assumed throughout. The energy momentum tensor can be obtained as

 (4.6)

is the Minkowski space time metric tensor. We seek a class of solutions of these

equations for which the Poynting vector vanishes in an appropriate coordinate frame ,

 which means there is no energy flow .

Using this condition and fixing the gauge by , equation 3.4 can be written as

 (4.7)

mech can i

e
P P A

c
 

 SU 2

0
caabca

FAgF 








cbabcaaa
AAgAAF  









aaa

v

a
FFgFFT

2

1


g


0 0
0

a a

j i ji
T F F 

0
0

a
A 

0
,


c

ji

b

j

abca

jji

a

i
FAgFA 

19

This solution admits two conserved quantities, namely the angular momenta

and the corresponding quantity in Yang-Mills internal indices .

This condition implies that is zero for the solution representing the vacuum and the

external color charge density if not. Here dots are used for the time derivatives, the Latin

indices denote spacelike ones. The notation means a space gradient .The

constraints and lead to

(4.8)

This equation implies one of the following conditions:

 ,

 ,

 ,

corresponding to homogeneous, static and irrotational vector potentials respectively.In the

homogenous case Yang Mills equations becomes

 (4.9)

 We can derive these relations from the following Hamiltonian,

 (4.10)

Here, denotes the three dimensional vector potential having components . The

spherical symmetry if this Hamiltonian in both space and internal degrees of freedom is

manifest. The system given by this Hamiltonian is also known as classical Yang Mills

mechanics, where it was originally used to prove instability of pure Yang Mills fields.

In gauge theories the different phases’ realization, particularly a confining phase is usually

associated with a disordered field configuration and the Higgs phase featured by a globally

a a

i ijk j k
M A A

a abc b c

i i
N A A

a
N

, ,i j k
,ij k

F
k ij
F

0
a

N  0
i

M 

0
,


a

ji
A

0
a

i
A

0
,,


a

ij

a

ji
AA

  0
2


a

i

b

j

b

j

b

i

a

j

a

j

a

i
AAAAAAgA

     
a ba

ba

aYM
AAgAH

,

222

4

1

2

1 

a
A a

i
A

 , ,
0

a a a

i i j j i
A A A 

20

ordered field , is a central situation. Accordingly the existence or otherwise of a full set of

nontrivial first integrals of motion in a classical dynamical systems is crucial for the stability

issue. In this part we will add add a scalar doublet (in gauge space) of fields and will denote

this as a coupled Yang-Mills-Higgs system. Rapid symmetry breaking will force this system

from the initial unstable state to a globally ordered phase.

This system has SU(2) as the internal isospin gauge group. It contains an isodoublet scalar

field besides the customary Yang Mills gauge fields. Its Hamiltonian density in the

gauge is [8]

 (4.11)

Here the scalar isodoublet Higgs field is represented by

 (4.12)

With being related to the vacuum expectation value of the Higgs field by

 (4.13)

is a coupling constant can be described the strength of the quartic self-interaction of the

Higgs fields. After the equation of motion following from the Hamiltonian there is a

constraint equation which is the generalization of the nonabelian Gauss law

 (4.14)

Let take consider again homogeneous gauge field configuration and a Higgs field tending to

one point with its vacuum expectation value , requiring , one arrives at the

following simplified Hamiltonian for degrees of freedom [9]

0
0

a
A 

2222

2

222

2

22
))((

2
))(()(

4
)(

2

1



 

aa

a

iaYM
BBA

g
BHH 


































3

21

2

1

2

1

iB

BiB




















2

0




 
aacb

abcc

i

b

i

abc
BBBBAA )(

2

1
 

 0
a

B  

2n 

21

 (4.15)

According to the physical perception, at high energy, unification with strong fields or very

wide amplitude motion in the model system, the addition of the Higgs condensate is not

important and the motion is still chaotic.(v=0 is always chaotic, if v is very large compared

to x and y on a closed orbit the motion is simple harmonic.) Meanwhile, for weak fields the

nonlinear coupling becomes insignificant and the motion is prevalent by stable,

ordinary oscillations.

By the method of rescaling of the amplitudes and time it is anything but difficult to see that

the motion administered by the Hamiltonian is controlled by a single dimensionless

parameter

 (4.16)

Here is the conserved energy. For the system converges to pure Yang Mills

mechanics. Chaos appears then for small values of the parameter , in spite of the motion

becomes ordinary when is large.

 It can be deduced that the spontaneous breaking of the gauge symmetry by the Higgs

mechanism has a stabilizing effect on the nonabelian gauge field dynamics.

Beyond these results, if we consider Higgs field as a dynamical field coupled to the gauge

field, the equations of motion are that of the Georgi-Glashow model [15]

 (4.17)

 (4.18)

where is the covariant derivative. Making the ansatz

and in the gauge a purified system of equation can be derived. Setting

 and , it becomes

   22

22

2222

42

1

2

1
yx

g
yxyxH 




g

2 2
x y

H

vg
K

4

42



H 0K 

K

K

 3SO

cbabca

v
DgFD)()( 




)()(

2








m
DD

bbaa


ab ab abc c
D g A

  
    ()

a

i aij j
A a t

2 ()
a a

b t 
0

0
a

A 

i
a x

a
b y

22

 (4.19)

 (4.20)

Performing the scale transformations , and with and

 we arrive at the following simple dynamical system

 (4.21)

 (4.22)

containing only one scale parameter .It has been shown that this system contains

chaotic motion in a large range of values of the energy and of the parameter .

In this section, we compute Lyapunov exponents with the aid of Fortran code that

implements the Wolf algorithm[10] explained below.

First of all we investigate how exponents are changing with respect to the scale parameter,

. And we found that system possesses chaotic motion in wide range of value of .

Especially we scan for the interval from to .Here are some of graphs for the

specific values of .

322
36 xxyxg 

 

322
6 pyyyxyg 

 

t t x x y y
1

m
 

6

m

g
 

32

2

1
xxyx 

32
pyyyxy 

2
p

g




p

p p

0.05p  4p 

p

23

Figure 4.1. Lyapunov exponents vs time for

Figure 4.2. Trajectory of y vs Py

Figure 4.3. Lyapunov exponent values according to change in κ and g parameters

24

In Figure 4.3. Changing of parameters κ and g parameters are being changed by the use of

Wolf Algorithm [10] and Lyapunov exponent values are seen below zero and stabilesizes

when g parameter came to 5 that parameter values are arbitrary numbers.

Lyapunov Exponents are dynamical invariants that can be calculated with relative ease for

systems modelled with differential equations (continuous time systems), maps (discrete time

systems) and time series. The Lyapunov exponents measure the exponential rate of

separation of nearby trajectories as shown in Figure 4.4.

 Figure 4.4. Lyapunov Exponents

Wolf’s algorithm [10] is one of the simplest methods for the calculation of Lyapunov

exponents One starts from a fiducial trajectory As mentioned before Lyapunov

exponents are defined by the long term evolution of an infitesimal hypersphere of states. The

dynamical system

 (4.23)

is augmented by N neighboring trajectories that obey the variational equations.

)(tx

)(/)(
}{ jii

xfdttdx 

25

 (4.24)

where δx(0) is the initial separation between neighboring trajectories, δx(t) is the separation

at time t, dots denote time derivatives and is the Jacobian of the dynamical system

evaluated on the fiducial trajectory. Each variational equation obeys the initial condition

denoting that the jth component of the i’th variational equation is 1, the other

components are 0, thus forming an hypersphere around the fiducial trajectory. The

variational equations can be obtained from the dynamical system using a symbolic

programming language. The REDUCE code. The Fortran code is that given by Wolf. As a

numerical integrator for the fiducial trajectory and the variational equations, the reference to

the proprietary IMSL routines have been replaced by Numerical Recipes routines for fourth

order Runge Kutta integration with adaptive quality control [11].

The fourth order Runge Kutta method has a number of advantages. First of all it is self

starting. Secondly it is a robust method for most systems except those that are unusually stiff

[23]. Thirdly, for a step size of h, the error is O(h5). This enables one to make a check by

assuming that the exact integral I, and the Runge Kutta result of stepsize h are related by

. Since function evaluations for a stepsize 2h are included in the stepsize h,

one can obtain I(h) and I(2h) given as . One can combine these to estimate

the error term Ah5 and adjust the stepsize for quality control.

Chaotic behavior involves stretching which corresponds to positive Lyapunov exponents and

folding which corresponds to negative ones. As the hypersphere evolves, the directions

corresponding to stretching will grow exponentially and dominate. To avoid information

loss due to truncation errors that will come from the finite precision, the rates of increase

and decrease must be recorded and Gram Schmidt orthogonalization must be performed in

order to accurately follow the evolution of the hypersphere about the fiducial trajectory.

)(/))((
)(

tx
x

f
dttxd

tx

 













)(txx

f













ijji
x  

5
)(AhhII 

5
32)2(AhhII 

26

4.2 CHAOS IN MAXWELL-BLOCH IN LAGRANGIAN FORM

The Lorenz and Maxwell-Bloch systems are not in Hamiltonian form. However, pretty much

as on account of the Lorenz model, [12] it can be reexpressed as an constrained , velocity

subordinate Lagrangian system.

The Lorenz system can be composed in Lagrangian form and can be studied as a mechanical

syste[16] along in spite of the fact that it is a compound mechanical thermodynamical

dissipative system. The Maxwell-Bloch conditions have a bigger number of parameters than

the Lorenz framework however this framework can be changed into the Lorenz framework,

if x=𝐸⃗⃗, y=g𝑃⃗⃗/k and z=∆⃗⃗⃗0-∆⃗⃗⃗ changes are made. Then, the following parametric

identifications also need to be made k=σ, γ˪ =g2/k, R=g2∆0/k, γ||=B.

Consider a one-particle system with a velocity dependent Lagrangian of the form.

 𝐿 =
1

2𝑚
〖(mv-λ𝐴)2=

1

2
𝑚𝑣⃗2 − 𝜆𝒗⃗⃗⃗ ∙ 𝐴 +

𝜆2

2𝑚
𝐴2 (4.24)

𝐴 is the vector potential and V=(λ2𝐴2)/2m is the scalar potential. The explicit form of our

nonlinear potential can be written;

𝜆

𝑚
𝐴 (𝐸⃗⃗,

𝑔𝑷

𝑘
, (∆⃗⃗⃗𝟎 − Δ⃗⃗⃗)) =

1

𝜏

[

 𝑘 (−𝐸⃗⃗ +

𝑔𝑃⃗⃗

𝑘
)

𝐸⃗⃗ (
𝑔2∆𝟎

𝑘
− (Δ⃗⃗⃗0 − Δ⃗⃗⃗)

𝑔(𝑬⃗⃗⃗∙𝑷⃗⃗⃗)

𝑘
− 𝛾∥(∆𝟎 − ∆)]

 (4.25)

We now proceed to determine the constrained form;

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇
−

𝜕𝐿

𝜕𝑥
= 0 (4.26)

Using Equation 3.25, the constrained form can be written and equation of motion can be

observed.

After determining constrained form, equation of motion can be written as;

 𝑚𝑣̇ =
𝒑̇

𝑚
+

𝜆

𝑚
𝐴̇ (4.27)

This yields the following equations of motion:

27

𝐸̇ = −𝑘𝐸 + 𝑔𝑃

𝑃̇ = −𝛾⊥𝑃 + 𝑔𝐸 △

 △̇= −𝛾∥(△ − △0) − 4𝑔𝑃𝐸 (4.28)

The generalized equations of motion yielding the butterfly shaped attractor is given for P=0,

which leads to chaotic behavior for certain choices of parameters, in particular the case for

the operating point k=11.75, g=6.06, g⊥ =2.66, g||=2.75, ∆0 =28 is illustrated in

 Figure 4.5. The basic operating point shows "Throw and catch" chaotic behavior

similar to the Lorentz attractor.

Figure 4.5. The dominant chaotic behavior exhibited by the system is generated by the so-

called “Throw and Catch” mechanism, mechanism [13] where an unstable fixed point is

surrounded by two stable fixed points. More specifically, two linearized equilibrium point

with a pair of complex conjugate eigenvalues with slightly positive real parts (assumed

stable) surround an unstable third equilibrium point with eigenvalues (+ - -). The unstable

point throws the system from the region of one stable point to the other one. Both the Lorenz

model and this model has an unstable fixed point surrounded by two stable fixed points as

described.

For the operating point indicated, the linearized eigenvalues for the unstable fixed point at

the origin (0,0,0) are {−39.5920008645444, 25.1820008645444, −2.75}, while the

surrounding fixed points are located at {E -> ±1.26036, P -> ±2.44376, Δ -> 0.851088} have

the linearized eigenvalues {-18.4623, 0.651145 ±17.2217 I} that correspond to the throw

catch mechanism.[14]

Such a phase diagram is indicative of a relatively rich bifurcation scheme including Hopf

bifurcation and a t ypical bifurcation diagram involving the varied variable g against E where

28

a branch point and two Hopf bifurcation points are indicated. The diagram has been

generated by Kuznetsov’s MATHCONT software[15].

Figure 4.6. Bifurcation diagram of the Maxwell Bloch system

The transition from a regular system to a single center, throw and catch mechanism and a

limit cycle like structure can clearly be seen as g is increased.

Figure 4.7. Attractors of the system as g is varied about the operating point

29

5. NONLINEAR TIME SERIES ANALYSIS

When one observes complicated behavior in nature, it is natural to look for a simple

underlying cause. With one dimensional experimental data only, one asks whether the

dynamics underlying the data involve a low dimensional chaotic system or nondeterministic

and random components. In most cases, only a single sequence of measurements at

successive times (a time series) would be available .

A natural phenomenon like river flow is highly complicated and most of the time treated as

nondeterministic. Understanding the behavior of its underlying dynamics will lead to a more

reliable base for choosing an appropriate modeling and prediction method. Some recent

studies [16] showed that low-dimensional deterministic techniques can be applied as an

alternative method for modeling and the results are encouraging. A complicated behavior in

nature can be identified as deterministic and chaotic or nondeterministic and random,

subjected to its underlying dynamics. Studies using low- dimensional deterministic

techniques for modeling and prediction of river flow dynamics are attracting interest and

producing encouraging results. Thus, low-dimensional deterministic techniques constitute

an available alternative for studying river flow dynamics provided that sufficient care is

exercised in their application and in interpreting the results [16].

Observational data obtained from natural phenomena adds another complication via

measurement errors and scalar values which purely represents the underlying dynamical

system. A well-known and widely used approach to overcome these difficulties is phase

space reconstruction method. Based on the theorem of Takens, one can construct a phase

space which successively resembles the global behavior of the original dynamical system

from scalar measurements. A brief outline of the technique is given in Figure 5.1. When one

observes complicated behavior in nature, one seeks a simple underlying cause. With only

experimental data, one asks whether the dynamics are deterministic and chaotic or

nondeterministic and random. In most cases, one might have only a single sequence of

measurements at successive times.

.

30

Figure 5.1. Steps of data analysis in time series

5.1 PHASE SPACE RECONSTRUCTION

As the scalar measurements are taken at arbitrary but equally spaced time intervals, a suitable

delay time is the key point to preserve the global behavior of the dynamics. A small delay

time can lead to a strongly correlated phase space vectors; on the other hand, information

loss is inevitable if a large delay time value; the delay time can be estimated from a) Mutual

information and b) autocorrelations [17].

5.1.1 Mutual Information

As discussed before in previous section delay time is an important ingredient of the step by

step procedure to construct the phase space. If time delay is very short when it is taken

reconstructed vectors’ components will be too close to each other, causing the state space

frame to be seen on the diagonal line, so loss of information about the real system will be

had. If it is too long, important periodicity informaton will be lost.

In order to start the phase space reconstruction from the scalar flow rate snn(k), where k is

the time step, we need to construct the delay vector 𝑦⃗𝑛𝑛(𝑘) given by;

 𝑦⃗𝑛𝑛(𝑘) = [𝑠𝑛𝑛(𝑘), 𝑠𝑛𝑛(𝑘 + 𝜏), 𝑠𝑛𝑛(𝑘 + 𝑑 − 1)𝜏)] (5.1)τ

is the delay time and d means the embedding dimension. Time delay can be found from the

first zero of the correlation function (linear criterion) or first minimum of the average mutual

information [18].

31

The logic behind this approach can be summarized as follows. Let the underlying dynamical

system be given by Equations (3.23a). Then using the Taylor expansion

we see that the one dimensional signal

contains information about the underlying N dimensional system.

Using a very long delay time will cause the correlations between the parts of reconstructed

vectors to be lost and signals will be errorly recognized as random. That’s why information

between a random variable and another random variable is known mutual information.

One can only see the information sent to a channel and the information that is sent back from

the channel. As an example, assume that X and Y are random variables with a common

probability distibution P(X;Y). The interaction probability of observing x by a measurement

of X and observing y by a measurement of Y, namely Pxy(x;y), should be different from the

product of the individual probabilities P(x) of measuring x out of the set X and P(y)of

measuring y out of the set Y respectively. This implies that the two are not independent and

the two sets are correlated. The logarithm of that ratio in bits is therefore called the average

mutual information of X and Y and is given by

 log2
𝑃𝑋𝑌(𝑥;𝑦)

𝑃(𝑥)𝑃(𝑦)
 (5.2)

Thus we can sum over the sets X and Y and obtain the average mutual information as;

 𝐼(𝑋; 𝑌) = −∑ ∑ 𝑃𝑋𝑌(𝑥; 𝑦)𝑙𝑜𝑔2
𝑃𝑋𝑌(𝑥;𝑦)

𝑃(𝑥)𝑃(𝑦)𝑦𝑥 (5.3)

To apply this formula to time series analysis, we take S(n) as set X and S(n+τ) as set Y. The

average mutual information is then given by

 𝐼(𝜏) = −∑ ∑ 𝑃(𝑠(𝑛 + 𝜏), 𝑠(𝑛)))𝑙𝑜𝑔2 [
𝑃(𝑠(𝑛+𝜏),𝑠(𝑛))

𝑃(𝑠(𝑛+𝜏))𝑃(𝑠(𝑛))
]𝑦𝑥

 𝐼(𝑋; 𝑌) = 𝐷(𝑝(𝑥, 𝑦)||𝑝(𝑥)𝑝(𝑦)) (5.4)

 𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦𝑥

Here p(x) and p(y) are the probability distributions and the entropy is the logarithm of the

ratio between the actual distribution and the distribution where the mutul informations are

...)(...)()(












  nn

n

t
f

x

s
ats

dt

ds
atsats

32

equal. Figure mutual shows the Delay time vs Information in bits of Sakarya river’s branch

Aktaş. Figure.mutual shows us the first minimum of data gives us delay time of the Aktas

tributary which is 5. This calculations are made by using the TISEAN “Time Series Analysis

package software in C++” [19]

To estimate minimum mutual information is found as five. The delay time is necessary for

constructing the 2n+1 dimensional delay vector from the data We also need to determine the

embedding dimension in order to construct the delay vector. If the embedding dimension is

smaller than the proper dimension, points that are not neighbors on the original attractor will

merge erroneously into the same neighborhood via projection to a lower dimensional space.

Then finding false-nearest neighbors of all those points on embedded attractor requires

increasing the dimensionality of the embedding space until the number of neighbors

stabilize. Figure 4.3 shows mutual information of botbasi subriver.

Figure 5.2. Mutual information of Aktaş Subriver of Sakarya River

33

As one can see in Figure 4.3. first minimum is four. The minima of the mutual information

for all tributaries are given in Table 5.1 and range between 5 and 9.

5.1.2 False-Nearest Neighbors

One of the main problems of reconstructing a phase space from a scalar time series is

choosing a suitable embedding dimension, which will at least topologically preserve the

global properties of the dynamical system at least locally. Embedding dimension directly

affects the attractor trajectory in the phase space, which alters the neighborhood of the points.

If the embedding dimension is chosen to be smaller than the actual attractor dimension,

projection of the trajectory will map false values into other neighborhoods of values; these

are called the false neighbors. The calculation goes as follows: Choose a vector 𝑅𝑖
⃗⃗ ⃗⃗

constructed using the delay time suggested by mutual information and calculate the distance

between its nearest neighbors 𝑅𝑗
⃗⃗ ⃗⃗ in an arbitrary dimension. Iterate this procedure for all the

successive vectors and calculate Ri using the following equation.

 𝑅𝑖 =
|𝑅𝑖+1−𝑅𝑗+1|

‖𝑅𝑖⃗⃗⃗⃗⃗−𝑅𝑗⃗⃗ ⃗⃗ ⃗‖
 (5.5)

A point of data is selected as a false neighbor if the distance, Ri exceeds a given threshold.

A typical false neighbor’s calculation is shown in Figure 5.4.

Displacement of (d+1) dimension and nearest neighbor’s delayed time vector can be

calculated as follows,

Figure 5.3. Mutual information of Botbaşı subriver of Sakarya River

34

 𝑅𝑑+1(𝑘)2 = ∑ [𝑠𝑛𝑛(𝑘𝑑+1
𝑚=1 + (𝑚 − 1)𝜏) − 𝑠𝑛𝑛(𝑘 + (𝑚 − 1)𝜏]2 (4.6)

Displacement of (d+1) dimension and displacement of d dimension Rd+1/Rd will be

calculated. Where this ratio achieves a threshold points further increasing the dimensionality

of the delay vector will no longer introduce false neighbors, since we are not embedding the

system into a lower dimensional manifold.

 √
𝑅𝑑+1

2 (𝑘)−𝑅𝑑
2(𝑘)

𝑅𝑑
2(𝑘)

=
|𝑠(𝑘+𝑑𝜏)−𝑠𝑛𝑛(𝑘+𝑑𝜏)|

𝑅𝑑(𝑘)
 (5.7)

Figure 5.4. False-Nearest Neighbors for Botbasi branch of Sakarya River

5.1.3 Maximal Lyapunov Exponent

Lyapunov exponent is a measure of divergence or convergence of orbits in a phase space,

which can also be calculated for a time series. As the reconstructed phase space preserves

the topology of the underlying dynamics, Lyapunov exponents calculated for the embedded

phase space will show the chaotic nature of the original attractor. The rate of exponential

growth between the nearby trajectories is called as the maximal Lyapunov exponent and a

positive rate indicates chaotic behavior. The following equation is used to calculate the

stretching of the trajectories;

 𝑆(𝜖,𝑚, 𝑡) =< ln
1

𝑢𝑛
𝜎𝑠𝑛𝜖𝑢𝑛|𝑠𝑛+𝑡 − 𝑠𝑛′+𝑡| > (5.7)

35

 is a neighboring point to sn in the phase space in the course of the attractor, ϵ is the box

size. At a future time t the distance between these points will be 𝑠𝑛+𝑡 − 𝑠𝑛′+𝑡. So the formula

measures the growth of this distance in time from the initial distance. If S (ϵ,m,t) is linear for

a range of iterations, the slope of this line gives an approximate value for the maximal

Lyapunov exponent. If a robust increase, which is sufficient to determine its sign, is

observed, this can be taken as an indicator of chaotic behavior.

5.1.4 BASIC TIME SERIES ANALYSIS PROCEDURE USING TISEAN

In order to perform time series analysis, attractor reconstruction and Lyapunov exponent

calculation using TISEAN, the following steps should be carried out:

 Using the autocorrelation function one gets a linear estimate of the delay time from its first

zero. A better estimate of the delay time can be found from the mutual information by

plotting it versus time. Using its first minimum, one can find a suitable delay time. The

relevant TISEAN command is:

mutual: Estimates the time delayed mutual information of the data set. To estimate the

embedding dimension, one finds the lowest dimension where fraction of the false nearest

neighbors stabilize by plotting this fraction against embedding dimension. time. The relevant

TISEAN command is:

false_nearest: Determines the fraction of false nearest neighbors.To estimate the Maximal

Lyapunov Exponent, one uses the TISEAN commands lyap_k or lyap_r.

lyap_k: Estimates the maximal Lyapunov exponent using the Kantz algorithm.

lyap_r: Estimates the maximal Lyapunov exponent using the Rosenstein algorithm.

corr: To compute the autocorrelation of a scalar data set.

'n
s

36

6. RESULTS AND DISCUSSION OF RIVER FLOW

Table.6.1 shows us mutual information values, embedding dimension values and Lyapr

values which are the largest Lyapunov exponent of a given scalar data set using the algorithm

of Rosenstein et al [20]; (this is claimed to be a better estimate for smaller data sets as

explained below). Lyapk values are largest Lyapunov exponent of a given scalar data set

using the algorithm of Kantz [21], with further explanation in [22].

Table 6.1. Nonlinear Time Series Analysis results of Sakarya River’s tributaries

The algorithm proposed by Kantz establishes that the divergence rate trajectories fluctuate

along the trajectory, with the fluctuation given by the spectrum of effective Lyapunov

exponents. Rosenstein et al. have proposed a similar algorithm where the distance between

the trajectories is defined as the Euclidian norm in the reconstructed phase space and they

have also used only one neighbor trajectory. The algorithm suggested by Rosenstein is more

effective when the number of data is relatively small. In our study, the results obtained from

each algorithm are in parallel with each other. A typical Lyapunov Exponent by stretching

exponent calculation using the Rosenstein approach is illustrated in Figure.6.2, while the

calculation using the standard Kantz approach is illustrated in Figure 6.3. The statistical

issues involved in the selection of the approach are discussed extensively in [23] and [24].

Branches of

Sakarya river

Mutual

information

Embedding

dimension

Lyapr

values

Lyapk

values

Aktas 5 6 0.012 0.008

Besdegirmen 4 6 0.018 0.021

Botbasi 4 5 0.014 0.016

Dogancay 4 4 0.016 0.012

Dokurcan 4 5 0.016 0.016

Hamidiye 7 6 0.015 0.008

Karakoy 4 6 0.021 0.034

Kargi 9 4 0.010 0.012

Kocasu 4 6 0.018 0.030

Mesecik 8 6 0.009 0.020

Taksirkopru 4 11 0.015 0.039

37

 Figure 6.1. Stretching factor v.s. iteration graph using the Rosenstein Algorithm

for Aktas branch

 Figure 6.2. Stretching factor v.s. iteration graph using the Kantz Algorithm for

Aktas branch

Figure 6.3. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Botbasi branch

38

Figure 6.4. Stretching factor v.s. iteration graph using the Kantz Algorithm for

Botbasi branch

Figure 6.5. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Besdegirmen branch

Figure 6.6. Stretching factor v.s. iteration graph using the Kantz Algorithm for

Besdegirmen branch

39

 Figure 6.7. Stretching factor v.s. iteration graph using the Rosenstein Algorithm

for Dogancay branch

Figure 6.8. Stretching factor v.s. iteration graph using the Kanz Algorithm for

Dogancay branch

Figure 6.9. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for

Hamidiye branch.

40

 Figure 6.10. Stretching factor v.s. iteration graph using the Kantz Algorithm for

Hamidiye branch.

 Figure 6.11. Stretching factor v.s. iteration graph using the Rosenstein Algorithm

for Kargi branch.

41

 Figure 6.12. Stretching factor v.s. iteration graph using the Kantz Algorithm for

Kargi branch.

 Figure 6.13. Stretching factor v.s. iteration graph using the Rosenstein Algorithm

for Kocasu branch.

42

 Figure 6.14. Stretching factor v.s. iteration graph using the Kantz Algorithm for

Kocasu branch.

 Figure 6.15. Stretching factor v.s. iteration graph using the Rosenstein Algorithm

for Mesecik branch

 Figure 6.16. Stretching factor v.s. iteration graph using the Kantz Algorithm for

Mesecik branch

43

 Figure 6.17. Stretching factor v.s. iteration graph using the Rosenstein Algorithm

for Taksirkpopru branch

 Figure 6.18. Stretching factor v.s. iteration graph using the Kanz Algorithm for

Taksirkpopru branc

44

7. CONCLUSION

Understanding the dynamics of river flow is crucial to select a feasible modeling method to

forecast river discharge. In this study, phase space reconstruction method is used to obtain a

depiction of the underlying dynamics, which will preserve the global invariants of the

system. Maximal Lyapunov exponent, which is a very strong evidence for chaotic behavior

for eleven branches of the Sakarya River has been calculated. These results are encouraging

for applying chaotic modeling routines instead of probabilistic methods.

As a result, monthly mean flow values of Sakarya River show chaotic behavior as quantified

by the maximal Lyapunov Exponent. That may imply that the river has no long time trend,

which is observed by [24]. That seems to be due to the dams on the river and the increasing

use of the river’s water by the people and also climate changes. According to article [25],

Benue River in Nigeria has a comparable trend but no low dimensional phase space chaotic

dynamics has been observed there. Therefore, we can say Sakarya River has limited future

for electricity from dams and other human exploitation because of its chaotic dynamics. We

have studied the article by S. Isik et al. [16] that reaches the same conclusions using quasi-

linear time series analysis methods from regular statistical analysis. This work corroborates

the findings and finally demonstrates that the phenomenon may be better understood by

nonlinear time series analysis than stochastic techniques.

Maxwell-Bloch equations which is related to Lorenz type systems was transformed into

Lagrangian form and equations of motions are constructed in this formalism. The equations

of motion can be used to analyze situations under this system is going to chaos.

Then again, Hamiltonian systems protect the stage space volume along these lines a butterfly

sort attractor can not be straightforwardly communicated in this notation. The benefit of

utilizing the present formalism empowers one to attempt the wide assortment of instruments

accessible for building approximate solutions of Hamiltonian systems.The below results

obtained numerically by the use of a Fortran code that include wolf algorithm in

order to determine trajectories and lyapunov exponents of dynamical system, and a reduce

code which calculates the variational equations needed for wolf algorithm. In the equation

of motions the parameter p is kept constant and the coefficient of oscillator term g varied

from 0 to 2. It is seen that regular motion become dominant when the coefficient of

45

oscillatory term increased. We also analyze maximal lyapunov exponents of the system

under the specific range of parameter. It is observed that when the parameter g is

converging to zero lyapunov exponents gets bigger. Some of the phase space trajectories

and lyapunov exponents were presented to illustrate this.

46

REFERENCES

1. E. N. Lorenz ,Deterministic Nonperiodic Flow,Journal of the Atmospheric Sciences,

1963,

2. F. Morrison , The Art of Modeling Dynamic System, Dover, 2008

3. Directorate of Electrical Power Resources survey and Development Administration,

"Monthly Mean Flows of Turkey Rivers (1935-2000)", EIE (2003)

4. M Peil, M. Jacquot, Y.K. Chembo, L. Larger, T. Erneux, Route to Chaos and Multiple

Time Scale Dynamics in Broadband Bandpass Nonlinear Delay Electro-Optic Oscillators,

Physical Review E 79 : 026208,2009

5. J.M. Matinerie, A.M. Albano, A.I. Mees, P.E. Rapp, Mutual Information, Strange

Atrractors and the Optimal Estimation of Dimension, Physical Review A45, 10: 7058-7064,

1992.

6. W. Ditto and L. Pecora , Mastering Chaos , Scientific American, 78-84,August 1993

7. H.W. Broer KAM Theory: The Legacy of Kolmogorov’s 1954 Paper, University of

Groningen, 2003

8. T.S. Biro, S.G. Matinyan, B. Müller, Chaos and Gauge Field Theory, World Scientific ,

56, 1994.

9. O.O. Aybar, A.S. Hacinliyan, I. Kusbeyzi Aybari, K. Koseyan, B. Deruni, Stability and

Chaos in a Classical Yang-Mills-Higgs System”, Chaotic Modelling and Simulation, 6: 215-

221, 2013.

10. A. Wolf, J.B. Swift, H.L. Swinney and J.A Vastano, Determining Lyapunov Exponents

from a Time Series, Physica D, 16:285-317, 1985.

11. W. H. Press S.A. Teukolsky , W. T. Vetterling, B. P. Flannery,”Numerical Recipes in

Fortran 77, Second Edition”, Cambridge University Press, 521-43064-X ,1992

12. M.J. Finn, Classical Mechanics. Infinity Science Press, 2008

47

13. Aslı Umur, Local Non-Perturbative Methods for Algebraic Calculations of Lyapunov

Exponents, M.S. Thesis Bogazici University, 1997.

14. A.S. Hacinliyan, E.E. Akkaya, I. Kusbeyzi, O.O Aybar, Maxwell-Bloch Equations as

Predator-Prey System, Second Chaotic Modeling and Simulation International Conference,

Chania Grecee 2009.

15. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, 1995.

16. S. Isik , E. Dogan , L. Kalin , M. Sasal and N. Agiralioglu , Effects of Anthropogenic

Activities on the Lower Sakarya River. Catena, 75:172-181, Elsevier Publishing 2008

17. H.D.I. Abarbanel, R. Brown, J.J. Sidonowich, L.S. Tsimring, The Analysis of Observed

Chaotic Data, Reviews of Modern Physics, 65, 4:1331-1392, 1993.

18. A. M. Fraser and H.L. Swinney, Independent Coordinates for Strange Attractors from

Mutual Information, Phyical Review A, 33:1134-1140, 1986.

19. R. Hegger , H. Kantz , and T. Schreiber , Practical Implementation of Nonlinear Time

Series Methods: The TISEAN Package, CHAOS 9: 413, 1999

20. M.T. Rosenstein , J.J. Collins and C.J. De Luca , A Practical Method for Calculating

Largest Lyapunov Exponents from Small Data Sets, Physics D 65: 117, 1993

21. H. Kantz , A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time

Series. Physical Letter A 185:77, 1994

22. B. Pompe , Measuring Statistical Dependences in a Time Series Journal of Statistical

Physics, 73:587, 1993

23. M. Palus, Testing for Nonlinearity Using Redundancies: Quantitative and Qualitative

Aspects, Physica D 80:186, 1995

24. A. Atalay and C. Ikiel . Trend Analysis of Monthly and Annual Flow Values of Sakarya

River (Turkey). GEOMED 2007 International Symposium,2007

25. O. Martins, M.A. Sadeeq and I.E. Ahanequ , Nonlinear Deterministic Chaos in Benue

River Flow Daily Time Sequence, Journal of Water Resource and Protection, 3:747-757,

2011

http://ojps.aip.org/journals/doc/CHAOEH-home/top.html

48

26. H.A. Yildirim, E.E. Akkaya, A.S. Hacinliyan, G. Sahin, Maxwell-Bloch Equations a

Lorenz Type Chaotic System in Lagrangian Form, Chaotic Modelling and Simulation

International Conference, 749-751, 2013.

27. G. Witvoet, Control of Chaotic Dynamical Systems using OGY, Traineeship Report

Technische Universiteit Eindhoven, DCT 2005.36

28. T. S. Parker, L. O Chua, Practical Numerical Algorithms for Chaotic System, Springer

Verlag, 0-387-96688-9, 1989

29. B. Sivakumar, Nonlinear Determinism in River Flow: Prediction as a Possible Indicator,

Wiley Earth Surface Processes and Landforms, 32,7:969-979, 2007.

30. B. Sivakumar, V.P. Singh, Hyrologic System Complexity and Nonlinear Dynamic

Concepts for a Catchment Classification Framework, Hydrology and Earth System Sciences,

16: 4119-4131, 2012

31. B. Sivakumar, Dynamics of Sediment Transport in the Missisippi River Basin: A

Temporal Scaling Analysis, MODSIM , A05, 2007

32. J. Wu, J. Lu, J. Wang, Application of Chaos and Fractal Models to Water Quality Time

Series Prediction, Elsevier Environmental Modelling and Software, 24: 632-636, 2009.

33. E. N. Lorenz, Designing Chaotic Models, Journal of the Atmospheric Sciences, 62: 1547-

1587, 2004

34. M.A. Ghorbani , R. Daneshfaraz, H. Arvanagi, A. Pourzangbar, S. M Saghebian, S. K.

Kar, Local Prediction in River Discharge Time Series, Journal of Civil Engineering and

Urbanism, 2:51-55, 2012

49

APPENDIX A: MUTUAL INFORMATION C++ CODE

In Mutual Information part delay time is calculated by the use of TISEAN software

package. Estimates the time delayed mutual information of the data. It is the simplest

possible realization. It uses a fixed mesh of boxes. No finite sample corrections are

implemented so far. This package is called by typing mutual.exe in command prompt then

type data which is time series then output file name is created. Result calculations are

collected in given name output file in computer documentary.

Using C++ code below, one can enter following ;

Enter the command line.

“ mutual.exe filename.dat -D (maximal time delay example 20) -ofilenamemut.dat”

The first line contains the number of occupied boxes, the second one the shannon entropy

(normalized to the number of occupied boxes), the last D lines the mutual information

(first column: delay, second column: mutual information).

Here is the C++ code below:

/*Author: Rainer Hegger. Last modified, Sep 20, 2000 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <string.h>
#include "routines/tsa.h"

#define WID_STR "Estimates the time delayed mutual information\n\t\
of the data set"

char *file_out=NULL,stout=1;
char *infile=NULL;
unsigned long length=ULONG_MAX,exclude=0;
unsigned int column=1;
unsigned int verbosity=0xff;
long partitions=16,corrlength=20;
long *array,*h1,*h11,**h2;

void show_options(char *progname)
{
 what_i_do(progname,WID_STR);
 fprintf(stderr," Usage: %s [Options]\n\n",progname);
 fprintf(stderr," Options:\n");

50

 fprintf(stderr,"Everything not being a valid option will be interpreted"
 " as a possible"
 " datafile.\nIf no datafile is given stdin is read. Just - also"
 " means stdin\n");
 fprintf(stderr,"\t-l # of points to be used [Default is all]\n");
 fprintf(stderr,"\t-x # of lines to be ignored [Default is 0]\n");
 fprintf(stderr,"\t-c column to read [Default is 1]\n");
 fprintf(stderr,"\t-b # of boxes [Default is 16]\n");
 fprintf(stderr,"\t-D max. time delay [Default is 20]\n");
 fprintf(stderr,"\t-o output file [-o without name means 'datafile'.mut;"
 "\n\t\tNo -o means write to stdout]\n");
 fprintf(stderr,"\t-V verbosity level [Default is 1]\n\t\t"
 "0='only panic messages'\n\t\t"
 "1='+ input/output messages'\n");
 fprintf(stderr,"\t-h show these options\n");
 fprintf(stderr,"\n");
 exit(0);
}

void scan_options(int n,char** in)
{
 char *out;

 if ((out=check_option(in,n,'l','u')) != NULL)
 sscanf(out,"%lu",&length);
 if ((out=check_option(in,n,'x','u')) != NULL)
 sscanf(out,"%lu",&exclude);
 if ((out=check_option(in,n,'c','u')) != NULL)
 sscanf(out,"%u",&column);
 if ((out=check_option(in,n,'b','u')) != NULL)
 sscanf(out,"%lu",&partitions);
 if ((out=check_option(in,n,'D','u')) != NULL)
 sscanf(out,"%lu",&corrlength);
 if ((out=check_option(in,n,'V','u')) != NULL)
 sscanf(out,"%u",&verbosity);
 if ((out=check_option(in,n,'o','o')) != NULL) {
 stout=0;
 if (strlen(out) > 0)
 file_out=out;
 }
}

double make_cond_entropy(long t)
{
 long i,j,hi,hii,count=0;
 double hpi,hpj,pij,cond_ent=0.0,norm;

 for (i=0;i<partitions;i++) {
 h1[i]=h11[i]=0;
 for (j=0;j<partitions;j++)
 h2[i][j]=0;
 }
 for (i=0;i<length;i++)
 if (i >= t) {
 hii=array[i];
 hi=array[i-t];
 h1[hi]++;

51

 h11[hii]++;
 h2[hi][hii]++;
 count++;
 }

 norm=1.0/(double)count;
 cond_ent=0.0;

 for (i=0;i<partitions;i++) {
 hpi=(double)(h1[i])*norm;
 if (hpi > 0.0) {
 for (j=0;j<partitions;j++) {
 hpj=(double)(h11[j])*norm;
 if (hpj > 0.0) {
 pij=(double)h2[i][j]*norm;
 if (pij > 0.0)
 cond_ent += pij*log(pij/hpj/hpi);
 }
 }
 }
 }

 return cond_ent;
}

int main(int argc,char** argv)
{
 char stdi=0;
 long tau,i;
 double *series,min,interval,shannon;
 FILE *file;

 if (scan_help(argc,argv))
 show_options(argv[0]);

 scan_options(argc,argv);
#ifndef OMIT_WHAT_I_DO
 if (verbosity&VER_INPUT)
 what_i_do(argv[0],WID_STR);
#endif

 infile=search_datafile(argc,argv,&column,verbosity);
 if (infile == NULL)
 stdi=1;

 if (file_out == NULL) {
 if (!stdi) {
 check_alloc(file_out=(char*)calloc(strlen(infile)+5,(size_t)1));
 strcpy(file_out,infile);
 strcat(file_out,".mut");
 }
 else {
 check_alloc(file_out=(char*)calloc((size_t)10,(size_t)1));
 strcpy(file_out,"stdin.mut");
 }
 }
 if (!stout)

52

 test_outfile(file_out);

 series=(double*)get_series(infile,&length,exclude,column,verbosity);
 rescale_data(series,length,&min,&interval);

 check_alloc(h1=(long *)malloc(sizeof(long)*partitions));
 check_alloc(h11=(long *)malloc(sizeof(long)*partitions));
 check_alloc(h2=(long **)malloc(sizeof(long *)*partitions));
 for (i=0;i<partitions;i++)
 check_alloc(h2[i]=(long *)malloc(sizeof(long)*partitions));
 check_alloc(array=(long *)malloc(sizeof(long)*length));
 for (i=0;i<length;i++)
 if (series[i] < 1.0)
 array[i]=(long)(series[i]*(double)partitions);
 else
 array[i]=partitions-1;
 free(series);

 shannon=make_cond_entropy(0);
 if (corrlength >= length)
 corrlength=length-1;

 if (!stout) {
 file=fopen(file_out,"w");
 if (verbosity&VER_INPUT)
 fprintf(stderr,"Opened %s for writing\n",file_out);
 fprintf(file,"#shannon= %e\n",shannon);
 fprintf(file,"%d %e\n",0,shannon);
 for (tau=1;tau<=corrlength;tau++) {
 fprintf(file,"%ld %e\n",tau,make_cond_entropy(tau));
 fflush(file);
 }
 fclose(file);
 }
 else {
 if (verbosity&VER_INPUT)
 fprintf(stderr,"Writing to stdout\n");
 fprintf(stdout,"#shannon= %e\n",shannon);
 fprintf(stdout,"%d %e\n",0,shannon);
 for (tau=1;tau<=corrlength;tau++) {
 fprintf(stdout,"%ld %e\n",tau,make_cond_entropy(tau));
 fflush(stdout);
 }
 }

 return 0;
}

53

APPENDIX B: FALSE NEAREST C++ CODE

This program looks for the nearest neighbors of all data points in m dimensions and iterates

these neighbors one step into the future. If the ratio of the distance of the iteration and that

of the nearest neighbor exceeds a given threshold the point is marked as a wrong neighbor.

The output is the fraction of false neighbors for the specified embedding dimensions.

Program implemented a new second criterion. If the distance to the nearest neighbor

becomes smaller than the standard deviation of the data devided by the threshold, the point

is omitted as mentioned before in embedding dimension part. This turns out to be a stricter

criterion, but can show the effect that for increasing embedding dimensions the number of

points which enter the statistics is so small, that the whole statistics is meanlingless.

In command prompt, one can call by typing false_ nearest.exe then one must call original

time series data by typing data file name then create a new file name therefore, calculated

false nearest dimensions collected in this new file name data in directory.

Finding embedding time of applied data of Sakarya River by using TISEAN false_nearest

C++ code. Code is given below, code can be used by typing;

false_nearest.exe filename.dat -ofilenamefal.dat

/*Author: Rainer Hegger. Last modified: Sep 3, 1999 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <math.h>
#include "routines/tsa.h"

#define WID_STR "Determines the fraction of false nearest neighbors."

char *outfile=NULL;
char *infile=NULL;
char stdo=1;
unsigned long length=ULONG_MAX,exclude=0,theiler=0;
unsigned int column=1,delay=1,maxdim=5,mindim=1;
unsigned int verbosity=0xff;
double rt=10.0;
double eps0=1.0e-5;
double *series;
double aveps,vareps;
double varianz;

#define BOX 1024
int ibox=BOX-1;

http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1/docs/chaospaper/node9.html

54

long **box,*list;
unsigned long toolarge;

void show_options(char *progname)
{
 what_i_do(progname,WID_STR);
 fprintf(stderr," Usage: %s [options]\n",progname);
 fprintf(stderr," Options:\n");
 fprintf(stderr,"Everything not being a valid option will be interpreted"
 " as a possible"
 " datafile.\nIf no datafile is given stdin is read. Just - also"
 " means stdin\n");
 fprintf(stderr,"\t-l # of data [default: whole file]\n");
 fprintf(stderr,"\t-x # of lines to ignore [default: 0]\n");
 fprintf(stderr,"\t-c column to read [default: 1]\n");
 fprintf(stderr,"\t-m minimal embedding dimension [default: 1]\n");
 fprintf(stderr,"\t-M maximal embedding dimension [default: 5]\n");
 fprintf(stderr,"\t-d delay [default: 1]\n");
 fprintf(stderr,"\t-f escape factor [default: 10.0]\n");
 fprintf(stderr,"\t-t theiler window [default: 0]\n");
 fprintf(stderr,"\t-o output file [default: 'datafile'.fnn; without -o"
 " stdout]\n");
 fprintf(stderr,"\t-V verbosity level [default: 3]\n\t\t"
 "0='only panic messages'\n\t\t"
 "1='+ input/output messages'\n\t\t"
 "2='+ information about the current state\n");
 fprintf(stderr,"\t-h show these options\n");
 exit(0);
}

void scan_options(int n,char **in)
{
 char *out;

 if ((out=check_option(in,n,'l','u')) != NULL)
 sscanf(out,"%lu",&length);
 if ((out=check_option(in,n,'x','u')) != NULL)
 sscanf(out,"%lu",&exclude);
 if ((out=check_option(in,n,'c','u')) != NULL)
 sscanf(out,"%u",&column);
 if ((out=check_option(in,n,'m','u')) != NULL)
 sscanf(out,"%u",&mindim);
 if ((out=check_option(in,n,'M','u')) != NULL)
 sscanf(out,"%u",&maxdim);
 if ((out=check_option(in,n,'d','u')) != NULL)
 sscanf(out,"%u",&delay);
 if ((out=check_option(in,n,'f','f')) != NULL)
 sscanf(out,"%lf",&rt);
 if ((out=check_option(in,n,'t','u')) != NULL)
 sscanf(out,"%lu",&theiler);
 if ((out=check_option(in,n,'V','u')) != NULL)
 sscanf(out,"%u",&verbosity);
 if ((out=check_option(in,n,'o','o')) != NULL) {
 stdo=0;
 if (strlen(out) > 0)
 outfile=out;
 }

55

}

char find_nearest(long n,unsigned int dim,double eps)
{
 int x,y,x1,x2,y1,i,i1;
 long element,which= -1;
 double dx,maxdx,mindx=1.1,factor;

 x=(int)(series[n-(dim-1)*delay]/eps)&ibox;
 y=(int)(series[n]/eps)&ibox;

 for (x1=x-1;x1<=x+1;x1++) {
 x2=x1&ibox;
 for (y1=y-1;y1<=y+1;y1++) {
 element=box[x2][y1&ibox];
 while (element != -1) {
 if (labs(element-n) > theiler) {
 maxdx=fabs(series[n]-series[element]);
 for (i=1;i<dim;i++) {
 i1=i*delay;
 dx=fabs(series[n-i1]-series[element-i1]);
 if (dx > maxdx)
 maxdx=dx;
 }
 if ((maxdx < mindx) && (maxdx > 0.0)) {
 which=element;
 mindx=maxdx;
 }
 }
 element=list[element];
 }
 }
 }

 if ((which != -1) && (mindx <= eps) && (mindx <= varianz/rt)) {
 aveps += mindx;
 vareps += mindx*mindx;
 factor=fabs(series[n+1]-series[which+1])/mindx;
 if (factor > rt)
 toolarge++;
 return 1;
 }
 return 0;
}

int main(int argc,char **argv)
{
 char stdi=0;
 FILE *file=NULL;
 double min,inter,epsilon,av;
 char *nearest,alldone;
 long i;
 unsigned int dim;
 unsigned long donesofar;

 if (scan_help(argc,argv))
 show_options(argv[0]);

56

 scan_options(argc,argv);
#ifndef OMIT_WHAT_I_DO
 if (verbosity&VER_INPUT)
 what_i_do(argv[0],WID_STR);
#endif

 infile=search_datafile(argc,argv,&column,verbosity);
 if (infile == NULL)
 stdi=1;

 if (outfile == NULL) {
 if (!stdi) {
 check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1));
 strcpy(outfile,infile);
 strcat(outfile,".fnn");
 }
 else {
 check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1));
 strcpy(outfile,"stdin.fnn");
 }
 }
 if (!stdo)
 test_outfile(outfile);

 series=(double*)get_series(infile,&length,exclude,column,verbosity);
 rescale_data(series,length,&min,&inter);
 variance(series,length,&av,&varianz);

 check_alloc(list=(long*)malloc(sizeof(long)*length));
 check_alloc(nearest=(char*)malloc(length));
 check_alloc(box=(long**)malloc(sizeof(long*)*BOX));
 for (i=0;i<BOX;i++)
 check_alloc(box[i]=(long*)malloc(sizeof(long)*BOX));

 if (!stdo) {
 file=fopen(outfile,"w");
 if (verbosity&VER_INPUT)
 fprintf(stderr,"Opened %s for writing\n",outfile);
 }
 else {
 if (verbosity&VER_INPUT)
 fprintf(stderr,"Writing to stdout\n");
 }

 for (dim=mindim;dim<=maxdim;dim++) {
 epsilon=eps0;
 toolarge=0;
 alldone=0;
 donesofar=0;
 aveps=0.0;
 vareps=0.0;
 for (i=0;i<length;i++)
 nearest[i]=0;
 if (verbosity&VER_USR1)
 fprintf(stderr,"Start for dimension=%u\n",dim);
 while (!alldone && (epsilon < 2.*varianz/rt)) {

57

 alldone=1;
 make_box(series,box,list,length-1,BOX,dim,delay,epsilon);
 for (i=(dim-1)*delay;i<length-1;i++)
 if (!nearest[i]) {
 nearest[i]=find_nearest(i,dim,epsilon);
 alldone &= nearest[i];
 donesofar += (unsigned long)nearest[i];
 }
 if (verbosity&VER_USR1)
 fprintf(stderr,"Found %lu up to epsilon=%e\n",donesofar,epsilon*inter);
 epsilon*=sqrt(2.0);
 if (!donesofar)
 eps0=epsilon;
 }
 if (donesofar == 0) {
 fprintf(stderr,"Not enough points found!\n");
 exit(FALSE_NEAREST_NOT_ENOUGH_POINTS);
 }
 aveps *= (1./(double)donesofar);
 vareps *= (1./(double)donesofar);
 if (stdo) {
 fprintf(stdout,"%u %e %e %e\n",dim,(double)toolarge/(double)donesofar,
 aveps,vareps);
 fflush(stdout);
 }
 else {
 fprintf(file,"%u %e %e %e\n",dim,(double)toolarge/(double)donesofar,
 aveps,vareps);
 fflush(file);
 }
 }
 if (!stdo)
 fclose(file);

 if (infile != NULL)
 free(infile);
 if (outfile != NULL)
 free(outfile);
 free(series);
 free(list);
 free(nearest);
 for (i=0;i<BOX;i++)
 free(box[i]);
 free(box);
 return 0; }

58

APPENDIX C: LYAPUNOV EXPONENTS C++ CODES

Lyapunov exponent are calculated in two different algorithms. One is with Kantz algorithm

that is called Lyap_k.

A n-dimensional system will have n Lyapunov exponents. The Lyapunov exponents are

used to study the stability of a system, e. g., a fixed point has only negative Lyapunov

exponents, periodic systems have one zero and else negative Lyapunov exponents, and

chaotic systems have at least one positive Lyapunov exponent.

To estimate the Lyapunov exponent of time series, several approaches were suggested, like

the methods of Wolff, Kantz or Rosenstein. Here we will use the method of Rosenstein

provided by the TISEAN toolbox.

Let us consider the Henon system as a typical example code,

C++ source code is,

a = 2;

b = 0;

x(1,1) = .91;

x(1,2) = 0;

for i = 2:10001

x(i,1) = 1 - a * x(i-1,1)^2 + b * x(i-1,2);

x(i,2) = x(i-1,1);

end x(1,:) = []; save henon.dat x -ascii -tabs

In order to compute the Lyapunov exponent using TISEAN we call

tiseanPath = 'C:\Programme\MATLAB6p5\work\Tisean\'; system([tiseanPath, 'lyap_r -s20

-o lyap.dat henon.dat']); l = load('lyap.dat'); plot(l(:,1), l(:,2)) xlabel('Iteration'),

ylabel('log(stretching factor)')

Here is the TISEAN software C code below:

Lyap k code :

/*Author: Rainer Hegger. Last modified: Sep 3, 1999*/
#include <math.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "routines/tsa.h"

#define WID_STR "Estimates the maximal Lyapunov exponent using the Kantz\n\t\
algorithm"

59

#define BOX 128
const unsigned int ibox=BOX-1;

unsigned long length=ULONG_MAX;
unsigned long exclude=0;
unsigned long reference=ULONG_MAX;
unsigned int maxdim=2;
unsigned int mindim=2;
unsigned int delay=1;
unsigned int column=1;
unsigned int epscount=5;
unsigned int maxiter=50;
unsigned int window=0;
unsigned int verbosity=0xff;
double epsmin=1.e-3,epsmax=1.e-2;
char eps0set=0,eps1set=0;
char *outfile=NULL;
char *infile=NULL;

double *series,**lyap;
long box[BOX][BOX],*liste,**lfound,*found,**count;
double max,min;

void show_options(char *progname)
{
 what_i_do(progname,WID_STR);

 fprintf(stderr," Usage: %s [options]\n",progname);
 fprintf(stderr," Options:\n");
 fprintf(stderr,"Everything not being a valid option will be "
 "interpreted as a possible datafile.\nIf no datafile "
 "is given stdin is read. Just - also means stdin\n");
 fprintf(stderr,"\t-l # of data [default: whole file]\n");
 fprintf(stderr,"\t-x # of lines to be ignored [default: 0]\n");
 fprintf(stderr,"\t-c column to read [default: 1]\n");
 fprintf(stderr,"\t-M maxdim [default: 2]\n");
 fprintf(stderr,"\t-m mindim [default: 2]\n");
 fprintf(stderr,"\t-d delay [default: 1]\n");
 fprintf(stderr,"\t-r mineps [default: (data interval)/1000]\n");
 fprintf(stderr,"\t-R maxeps [default: (data interval)/100]\n");
 fprintf(stderr,"\t-# # of eps [default: 5]\n");
 fprintf(stderr,"\t-n # of reference points [default: # of data]\n");
 fprintf(stderr,"\t-s # of iterations [default: 50]\n");
 fprintf(stderr,"\t-t time window [default: 0]\n");
 fprintf(stderr,"\t-o outfile [default: 'datafile'.lyap]\n");
 fprintf(stderr,"\t-V verbosity level [default: 3]\n\t\t"
 "0='only panic messages'\n\t\t"
 "1='+ input/output messages'\n\t\t"
 "2='+ plus statistics'\n");
 fprintf(stderr,"\t-h show these options\n");
 exit(0);
}

void scan_options(int n,char **str)
{
 char *out;

60

 if ((out=check_option(str,n,'l','u')) != NULL)
 sscanf(out,"%lu",&length);
 if ((out=check_option(str,n,'x','u')) != NULL)
 sscanf(out,"%lu",&exclude);
 if ((out=check_option(str,n,'c','u')) != NULL)
 sscanf(out,"%u",&column);
 if ((out=check_option(str,n,'M','u')) != NULL)
 sscanf(out,"%u",&maxdim);
 if ((out=check_option(str,n,'m','u')) != NULL)
 sscanf(out,"%u",&mindim);
 if ((out=check_option(str,n,'d','u')) != NULL)
 sscanf(out,"%u",&delay);
 if ((out=check_option(str,n,'r','f')) != NULL) {
 eps0set=1;
 sscanf(out,"%lf",&epsmin);
 }
 if ((out=check_option(str,n,'R','f')) != NULL) {
 eps1set=1;
 sscanf(out,"%lf",&epsmax);
 }
 if ((out=check_option(str,n,'#','u')) != NULL)
 sscanf(out,"%u",&epscount);
 if ((out=check_option(str,n,'n','u')) != NULL)
 sscanf(out,"%lu",&reference);
 if ((out=check_option(str,n,'s','u')) != NULL)
 sscanf(out,"%u",&maxiter);
 if ((out=check_option(str,n,'t','u')) != NULL)
 sscanf(out,"%u",&window);
 if ((out=check_option(str,n,'V','u')) != NULL)
 sscanf(out,"%u",&verbosity);
 if ((out=check_option(str,n,'o','o')) != NULL)
 if (strlen(out) > 0)
 outfile=out;
}

void put_in_boxes(double eps)
{
 unsigned long i;
 long j,k;
 static unsigned long blength;

 blength=length-(maxdim-1)*delay-maxiter;

 for (i=0;i<BOX;i++)
 for (j=0;j<BOX;j++)
 box[i][j]= -1;

 for (i=0;i<blength;i++) {
 j=(long)(series[i]/eps)&ibox;
 k=(long)(series[i+delay]/eps)&ibox;
 liste[i]=box[j][k];
 box[j][k]=i;
 }
}

void lfind_neighbors(long act,double eps)

61

{
 unsigned int hi,k,k1;
 long i,j,i1,i2,j1,element;
 static long lwindow;
 double dx,eps2=sqr(eps);

 lwindow=(long)window;
 for (hi=0;hi<maxdim-1;hi++)
 found[hi]=0;
 i=(long)(series[act]/eps)&ibox;
 j=(long)(series[act+delay]/eps)&ibox;
 for (i1=i-1;i1<=i+1;i1++) {
 i2=i1&ibox;
 for (j1=j-1;j1<=j+1;j1++) {
 element=box[i2][j1&ibox];
 while (element != -1) {
 if ((element < (act-lwindow)) || (element > (act+lwindow))) {
 dx=sqr(series[act]-series[element]);
 if (dx <= eps2) {
 for (k=1;k<maxdim;k++) {
 k1=k*delay;
 dx += sqr(series[act+k1]-series[element+k1]);
 if (dx <= eps2) {
 k1=k-1;
 lfound[k1][found[k1]]=element;
 found[k1]++;
 }
 else
 break;
 }
 }
 }
 element=liste[element];
 }
 }
 }
}

void iterate_points(long act)
{
 double **lfactor;
 double *dx;
 unsigned int i,j,l,l1;
 long k,element,**lcount;

 check_alloc(lfactor=(double**)malloc(sizeof(double*)*(maxdim-1)));
 check_alloc(lcount=(long**)malloc(sizeof(long*)*(maxdim-1)));
 for (i=0;i<maxdim-1;i++) {
 check_alloc(lfactor[i]=(double*)malloc(sizeof(double)*(maxiter+1)));
 check_alloc(lcount[i]=(long*)malloc(sizeof(long)*(maxiter+1)));
 }
 check_alloc(dx=(double*)malloc(sizeof(double)*(maxiter+1)));

 for (i=0;i<=maxiter;i++)
 for (j=0;j<maxdim-1;j++) {
 lfactor[j][i]=0.0;
 lcount[j][i]=0;

62

 }

 for (j=mindim-2;j<maxdim-1;j++) {
 for (k=0;k<found[j];k++) {
 element=lfound[j][k];
 for (i=0;i<=maxiter;i++)
 dx[i]=sqr(series[act+i]-series[element+i]);
 for (l=1;l<j+2;l++) {
 l1=l*delay;
 for (i=0;i<=maxiter;i++)
 dx[i] += sqr(series[act+i+l1]-series[element+l1+i]);
 }
 for (i=0;i<=maxiter;i++)
 if (dx[i] > 0.0){
 lcount[j][i]++;
 lfactor[j][i] += dx[i];
 }
 }
 }
 for (i=mindim-2;i<maxdim-1;i++)
 for (j=0;j<=maxiter;j++)
 if (lcount[i][j]) {
 count[i][j]++;
 lyap[i][j] += log(lfactor[i][j]/lcount[i][j])/2.0;
 }

 for (i=0;i<maxdim-1;i++){
 free(lfactor[i]);
 free(lcount[i]);
 }
 free(lcount);
 free(lfactor);
 free(dx);
}

int main(int argc,char **argv)
{
 char stdi=0;
 double eps_fak;
 double epsilon;
 unsigned int i,j,l;
 FILE *fout;

 if (scan_help(argc,argv))
 show_options(argv[0]);

 scan_options(argc,argv);
#ifndef OMIT_WHAT_I_DO
 if (verbosity&VER_INPUT)
 what_i_do(argv[0],WID_STR);
#endif

 infile=search_datafile(argc,argv,&column,verbosity);
 if (infile == NULL)
 stdi=1;

 if (outfile == NULL) {

63

 if (!stdi) {
 check_alloc(outfile=(char*)calloc(strlen(infile)+6,1));
 sprintf(outfile,"%s.lyap",infile);
 }
 else {
 check_alloc(outfile=(char*)calloc(11,1));
 sprintf(outfile,"stdin.lyap");
 }
 }
 test_outfile(outfile);

 series=get_series(infile,&length,exclude,column,verbosity);
 rescale_data(series,length,&min,&max);

 if (eps0set)
 epsmin /= max;
 if (eps1set)
 epsmax /= max;

 if (epsmin >= epsmax) {
 epsmax=epsmin;
 epscount=1;
 }

 if (reference > (length-maxiter-(maxdim-1)*delay))
 reference=length-maxiter-(maxdim-1)*delay;
 if ((maxiter+(maxdim-1)*delay) >= length) {
 fprintf(stderr,"Too few points to handle these parameters!\n");
 exit(LYAP_K__MAXITER_TOO_LARGE);
 }

 if (maxdim < 2)
 maxdim=2;
 if (mindim < 2)
 mindim=2;
 if (mindim > maxdim)
 maxdim=mindim;

 check_alloc(liste=(long*)malloc(sizeof(long)*(length)));
 check_alloc(found=(long*)malloc(sizeof(long)*(maxdim-1)));
 check_alloc(lfound=(long**)malloc(sizeof(long*)*(maxdim-1)));
 for (i=0;i<maxdim-1;i++)
 check_alloc(lfound[i]=(long*)malloc(sizeof(long)*(length)));
 check_alloc(count=(long**)malloc(sizeof(long*)*(maxdim-1)));
 for (i=0;i<maxdim-1;i++)
 check_alloc(count[i]=(long*)malloc(sizeof(long)*(maxiter+1)));
 check_alloc(lyap=(double**)malloc(sizeof(double*)*(maxdim-1)));
 for (i=0;i<maxdim-1;i++)
 check_alloc(lyap[i]=(double*)malloc(sizeof(double)*(maxiter+1)));

 if (epscount == 1)
 eps_fak=1.0;
 else
 eps_fak=pow(epsmax/epsmin,1.0/(double)(epscount-1));

 fout=fopen(outfile,"w");
 if (verbosity&VER_INPUT)

64

 fprintf(stderr,"Opened %s for writing\n",outfile);
 for (l=0;l<epscount;l++) {
 epsilon=epsmin*pow(eps_fak,(double)l);
 for (i=0;i<maxdim-1;i++)
 for (j=0;j<=maxiter;j++) {
 count[i][j]=0;
 lyap[i][j]=0.0;
 }
 put_in_boxes(epsilon);
 for (i=0;i<reference;i++) {
 lfind_neighbors(i,epsilon);
 iterate_points(i);
 }
 if (verbosity&VER_USR1)
 fprintf(stderr,"epsilon= %e\n",epsilon*max);
 for (i=mindim-2;i<maxdim-1;i++) {
 fprintf(fout,"#epsilon= %e dim= %d\n",epsilon*max,i+2);
 for (j=0;j<=maxiter;j++)
 if (count[i][j])
 fprintf(fout,"%d %e %ld\n",j,lyap[i][j]/count[i][j],count[i][j]);
 fprintf(fout,"\n");
 }
 fflush(fout);
 }
 fclose(fout);
 return 0;}

For each embedding dimension and each length scale the file contains a block of data

consisting of 3 columns

1. The number of the iteration

2. The logarithm of the stretching factor (the slope is the Lyapunov exponent if it is a

straight line)

3. The number of points for which a neighborhood with enough points was found

The other is calculated by Rosenstein algorithm. Here is the code below:

Lyap r code:

/*Author: Rainer Hegger, last modified: Sep 4, 1999 */
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
#include <limits.h>
#include <string.h>

65

#include "routines/tsa.h"

#define WID_STR "Estimates the maximal Lyapunov exponent; Rosenstein et al."

#define NMAX 256

char *outfile=NULL;
char *infile=NULL;
char epsset=0;
double *series,*lyap;
long box[NMAX][NMAX],*list;
unsigned int dim=2,delay=1,steps=10,mindist=0;
unsigned int column=1;
unsigned int verbosity=0xff;
const unsigned int nmax=NMAX-1;
unsigned long length=ULONG_MAX,exclude=0;
long *found;
double eps0=1.e-3,eps,epsinv;

void show_options(char *progname)
{
 what_i_do(progname,WID_STR);
 fprintf(stderr," Usage: %s [options]\n",progname);
 fprintf(stderr," Options:\n");
 fprintf(stderr,"Everything not being a valid option will be interpreted"
 " as a possible"
 " datafile.\nIf no datafile is given stdin is read. Just - also"
 " means stdin\n");
 fprintf(stderr,"\t-l # of datapoints [default is whole file]\n");
 fprintf(stderr,"\t-x # of lines to be ignored [default is 0]\n");
 fprintf(stderr,"\t-c column to read[default 1]\n");
 fprintf(stderr,"\t-m embedding dimension [default 2]\n");
 fprintf(stderr,"\t-d delay [default 1]\n");
 fprintf(stderr,"\t-t time window to omit [default 0]\n");
 fprintf(stderr,"\t-r epsilon size to start with [default "
 "(data interval)/1000]\n");
 fprintf(stderr,"\t-s # of iterations [default 10]\n");
 fprintf(stderr,"\t-o name of output file [default 'datafile'.ros]\n");
 fprintf(stderr,"\t-V verbosity level [default 3]\n\t\t"
 "0='only panic messages'\n\t\t"
 "1='+ input/output messages'\n\t\t"
 "2='+ give more detailed information about the length scales\n");
 fprintf(stderr,"\t-h show these options\n");
 fprintf(stderr,"\n");
 exit(0);
}

void scan_options(int n,char **argv)
{
 char *out;

 if ((out=check_option(argv,n,'l','u')) != NULL)
 sscanf(out,"%lu",&length);
 if ((out=check_option(argv,n,'x','u')) != NULL)
 sscanf(out,"%lu",&exclude);
 if ((out=check_option(argv,n,'c','u')) != NULL)
 sscanf(out,"%u",&column);

66

 if ((out=check_option(argv,n,'m','u')) != NULL)
 sscanf(out,"%u",&dim);
 if ((out=check_option(argv,n,'d','u')) != NULL)
 sscanf(out,"%u",&delay);
 if ((out=check_option(argv,n,'t','u')) != NULL)
 sscanf(out,"%u",&mindist);
 if ((out=check_option(argv,n,'r','f')) != NULL) {
 epsset=1;
 sscanf(out,"%lf",&eps0);
 }
 if ((out=check_option(argv,n,'s','u')) != NULL)
 sscanf(out,"%u",&steps);
 if ((out=check_option(argv,n,'V','u')) != NULL)
 sscanf(out,"%u",&verbosity);
 if ((out=check_option(argv,n,'o','o')) != NULL)
 if (strlen(out) > 0)
 outfile=out;
}

void put_in_boxes(void)
{
 int i,j,x,y,del;

 for (i=0;i<NMAX;i++)
 for (j=0;j<NMAX;j++)
 box[i][j]= -1;

 del=delay*(dim-1);
 for (i=0;i<length-del-steps;i++) {
 x=(int)(series[i]*epsinv)&nmax;
 y=(int)(series[i+del]*epsinv)&nmax;
 list[i]=box[x][y];
 box[x][y]=i;
 }
}

char make_iterate(long act)
{
 char ok=0;
 int x,y,i,j,i1,k,del1=dim*delay;
 long element,minelement= -1;
 double dx,mindx=1.0;

 x=(int)(series[act]*epsinv)&nmax;
 y=(int)(series[act+delay*(dim-1)]*epsinv)&nmax;
 for (i=x-1;i<=x+1;i++) {
 i1=i&nmax;
 for (j=y-1;j<=y+1;j++) {
 element=box[i1][j&nmax];
 while (element != -1) {
 if (labs(act-element) > mindist) {
 dx=0.0;
 for (k=0;k<del1;k+=delay) {
 dx += (series[act+k]-series[element+k])*
 (series[act+k]-series[element+k]);
 if (dx > eps)
 break;

67

 }
 if (k==del1) {
 if (dx < mindx) {
 ok=1;
 if (dx > 0.0) {
 mindx=dx;
 minelement=element;
 }
 }
 }
 }
 element=list[element];
 }
 }
 }
 if ((minelement != -1)) {
 act--;
 minelement--;
 for (i=0;i<=steps;i++) {
 act++;
 minelement++;
 dx=0.0;
 for (j=0;j<del1;j+=delay) {
 dx += (series[act+j]-series[minelement+j])*
 (series[act+j]-series[minelement+j]);
 }
 if (dx > 0.0) {
 found[i]++;
 lyap[i] += log(dx);
 }
 }
 }
 return ok;
}

int main(int argc,char **argv)
{
 char stdi=0,*done,alldone;
 int i;
 long n;
 long maxlength;
 double min,max;
 FILE *file;

 if (scan_help(argc,argv))
 show_options(argv[0]);

 scan_options(argc,argv);
#ifndef OMIT_WHAT_I_DO
 if (verbosity&VER_INPUT)
 what_i_do(argv[0],WID_STR);
#endif

 infile=search_datafile(argc,argv,&column,verbosity);
 if (infile == NULL)
 stdi=1;

68

 if (outfile == NULL) {
 if (!stdi) {
 check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1));
 strcpy(outfile,infile);
 strcat(outfile,".ros");
 }
 else {
 check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1));
 strcpy(outfile,"stdin.ros");
 }
 }
 test_outfile(outfile);

 series=(double*)get_series(infile,&length,exclude,column,verbosity);
 rescale_data(series,length,&min,&max);

 if (epsset)
 eps0 /= max;

 check_alloc(list=(long*)malloc(length*sizeof(long)));
 check_alloc(lyap=(double*)malloc((steps+1)*sizeof(double)));
 check_alloc(found=(long*)malloc((steps+1)*sizeof(long)));
 check_alloc(done=(char*)malloc(length));

 for (i=0;i<=steps;i++) {
 lyap[i]=0.0;
 found[i]=0;
 }
 for (i=0;i<length;i++)
 done[i]=0;

 maxlength=length-delay*(dim-1)-steps-1-mindist;
 alldone=0;
 file=fopen(outfile,"w");
 if (verbosity&VER_INPUT)
 fprintf(stderr,"Opened %s for writing\n",outfile);
 for (eps=eps0;!alldone;eps*=1.1) {
 epsinv=1.0/eps;
 put_in_boxes();
 alldone=1;
 for (n=0;n<=maxlength;n++) {
 if (!done[n])
 done[n]=make_iterate(n);
 alldone &= done[n];
 }
 if (verbosity&VER_USR1)
 fprintf(stderr,"epsilon: %e already found: %ld\n",eps*max,found[0]);
 }
 for (i=0;i<=steps;i++)
 if (found[i])
 fprintf(file,"%d %e\n",i,lyap[i]/found[i]/2.0);
 fclose(file);

 return 0;
}

69

APPENDIX D: REDUCE AND FORTRAN CODES FOR THE WOLF

ALGORITHM

In a classic and highly readable paper [A. Wolf, J. B. Swift, H. L. Swinney, and J. A.

Vastano, Physica D 16, 285-317 (1985)], Alan Wolf and collaborators described algorithms

for calculating the spectrum of Lyapunov exponents from systems in which the equations

are known as differential equations. as well as the largest Lyapunov exponent from an

experimental time series. Included here is code ported to a standard FORTRAN 77 compiler

from Wolf's Fortran code for calculating the spectrum of Lyapunov exponents for maps and

flows when the equations are known. The code includes examples for many systems

including the Lorenz attractor and the Maxwell Bloch system:

To generate the variational equations (3.24) the following REDUCE Code (Anthony C..

Hearn, REDUCE User’s Manual Version 3.8, Santa Monica, CA (2004)) can be used:

Since the equations of motion for different systems are included, the relevant system must

be uncommented by removing the % marks in Column 1.In this case, the Maxwell Bloch

equations have been uncommented.

off echo;

% Generates the variational equations for the Wolf system

operator aa,v,y;

% Lorenz

%s:=43/2-Sqrt(3)*Sqrt(283)/2;

%r:=50;

%b:=4;

%n:=3;

%v(1):=s*(y(2)-y(1));

%v(2):=y(1)*(r-y(3))-y(2);

%v(3):=y(1)*y(2)-b*y(3);

% Henon Heiles scaled

% n:=4;

% v(1):=y(3);

% v(2):=y(4);

% v(3):=-y(1)-2*eps*y(1)*y(2);

% v(4):=-y(2)-eps*y(1)**2+eps*y(2)**2;

% Sprottd;

%n:=3;

%v(1):=-y(2)+y(2)**2+y(3)**2;

http://sprott.physics.wisc.edu/chaos/lespec.for

70

%v(2):=y(1)+y(3)+y(3)**2;

%v(3):=;

%Rossler;

%a:=0.15;

%b:=0.20;

%cc:=10;

%n:=3;

%v(1):=-(y(2)+y(3));

%v(2):=y(1)+a*y(2);

%v(3):=b+y(3)*(y(1)-cc);

%Rossler Hyper-chaos

%a:=0.25;

%b:=3.0;

%cc:=0.05;

%d:=0.5;

%n:=4;

%v(1):=-(y(2)+y(3));

%v(2):=y(1)+a*y(2)+y(4);

%v(3):=b+y(3)*y(1);

%v(4):=cc*y(4)-d*y(3);

%SprottO

%N:=3;

%v(1):=y(2);

%v(2):=y(1)-y(3);

%v(3):=y(1)+y(1)*y(3)+b*y(2);

%Lasereqs

n:=3;

EE:=y(1);

P:=y(2);

DL:=y(3);

v(1):=-ak*EE+g*P;

v(2):=-gper*P+g*EE*DL;

v(3):=-gpar*(DL-DL0)-4*g*P*EE;

nd:=n**2+n;

for j:=1:n do

for k:=1:n do

aa(j,k):=df(v(j),y(k));

for i:=1:n do

71

for k:=1:n do

v(i+n*k):=for j1:=1:n sum aa(k,j1)*y(n*j1+i);

%load_package gentran;

%load_package scope;

%GENTRANLANG!* := FORTRAN$

%FORTLINELEN!* :=72;

on fort;

off period;

%off getdecs;

%off gendecs;

out"laser.fort";

write " subroutine FCN(t,y,v) ";

write " implicit real*8(a-h,o-z)";

write "* subroutine for wolf integration";

write " dimension y(12),v(12) ";

%write " parameter(s=16.0d0,r=45.92d0,b=4.0d0)";

write " parameter(ak=16.0d0,g=4.92d0,gper=4.0d0,gpar=3.0d0,DL0=1.0d0)";

for i:=1:nd do write v(i):=v(i);

write " RETURN";

write " END";

SHUT"laser.fort";

;end;

;end;;

The Fortran 77 code below is adapted from Wolf. N is the number of equations in the

dynamical system (3 for Maxwell Bloch, 4 for Yang-Mills Higgs, NN is the sum of N

equations and N2variational equations for the Wolf algorithm. FCN contains the dynamical

system, it can be copied from the REDUCE code output. Must be declared external so that

it can be passed to the integrator. In this case the Numerical Recipes Runge Kutta integrator

RKQC is used. It is declared external and passed to ODEINT which is the generic integrator

in WOLF’s paper and references to the IMSL routine there. As coded below, the fiducial

trajectory is written to the file traj1.dat and liapunov exponent data is echoed to the terminal

and also written to the file liap1.dat. Older versions of both files are erased. The program is

commented to describe the meaning of the input parameters Integration tolerance, number

of integration steps, time per step and the number of steps where intermediate results are

printed. The various parts are also shown by comments. The point at which the REDUCE

Wolf output is to be inserted is also shown by comments in FCN. Sample FCN functions for

Lorenz and Laser systems are given in commented outg form. The program runs in double

precision.

 Program liapode

 implicit real*8(a-h,o-z)

* N = # of nonlnear equations, NN= total # of equations

 PARAMETER (N =3)

 PARAMETER (NN=12)

* FOR THE NUM-REC INTEGRATOR

72

 DIMENSION Y(NN),ZNORM(N),GSC(N),CUM(N),YPRIME(NN),YSCAL(NN)

*

* INITIAL CONDITIONS FOR NONLINEAR SYSTEM

*

 EXTERNAL FCN,RKQC

 open(18, file='traj1.dat', status='unknown')

 open(19, file='liap1.dat', status='unknown')

 Y(1)=1.0 D0

 Y(2)=1.0 D0

 Y(3)=0.0 D0

*

* INITIAL CONDITIONS FOR LINEAR SYSTEM (ORTHONORMAL FRAME)

*

 DO 10 I=N+1,NN

10 Y(I)=0

 DO 20 I=1,N

 Y((N+1)*I)=1.0 D0

20 CUM(I)=0

*

* INTEGRATION TOLERANCE, # OF INTEGRATION STEPS,

* TIME PER STEP, AND I/O RATE

*

 WRITE(*,*) 'TOL,NSTEP,STPSZE,IO'

 READ(*,*) TOL,NSTEP,STPSZE,IO

 STTOL=0

*

* Initialization for integration

*

 NEQ=NN

 X=0.0 D0

 IND=1

*

 DO 100 I=1,NSTEP

 XEND=STPSZE*FLOAT(I)

*

* Call any ODE Integrator - This is an IMSL routine

* in the original

* CALL DVERK(NEQ,FCN,X,Y,XEND,TOL,IND,C,NEQ,W,IER)

* replaced by a Numerical Recipes routine

* CALL RKQC(Y,YPRIME,NEQ,X,STPSZE,TOL,YSCAL,HDID,HNEXT,FCN)

 CALL ODEINT(Y,NEQ,X,XEND,TOL,STPSZE,STTOL,NOK,NBAD,FCN,RKQC)

 X=XEND

*

* Construct a new orthonormal basis by Gram-Schmidt method

*

* Normalize first vector

*

 ZNORM(1)=0.0

 DO 30 J=1,N

73

30 ZNORM(1)=ZNORM(1)+Y(N*J+1)**2

 ZNORM(1)=SQRT(ZNORM(1))

 DO 40 J=1,N

40 Y(N*J+1)=Y(N*J+1)/ZNORM(1)

*

* GENERATE THE NEW ORTHONORMAL SET OF VECTORS

*

 DO 80 J=2,N

*

* GENERATE J-1 GSR COEFFICIENTS

*

 DO 50 K=1,J-1

 GSC(K)=0.0

 DO 50 L=1,N

 GSC(K)=GSC(K)+Y(N*L+J)*Y(N*L+K)

50 CONTINUE

*

* CONSTRUCT A NEW VECTOR

*

 DO 60 K=1,N

 DO 60 L=1,J-1

 Y(N*K+J)=Y(N*K+J)-GSC(L)*Y(N*K+L)

60 CONTINUE

*

* CALCULATE THE VECTOR'S NORM

*

 ZNORM(J)=0.0 D0

 DO 70 K=1,N

 ZNORM(J)=ZNORM(J)+Y(N*K+J)**2

70 CONTINUE

 ZNORM(J)=SQRT(ZNORM(J))

*

* NORMALIZE THE NEW VECTOR

*

 DO 80 K=1,N

 Y(N*K+J)=Y(N*K+J)/ZNORM(J)

80 CONTINUE

*

* UPDATE RUNNING VECTOR MAGNITUDES

*

 DO 90 K=1,N

90 CUM(K)=CUM(K)+DLOG(ZNORM(K))/DLOG(2.0D0)

*

* NORMALIZE EXPONENT AND PRINT EVERY IO ITERATIONS

*

 IF(MOD(I,IO).EQ.0) THEN

 WRITE(*,126) X,(CUM(K)/X,K=1,N)

 WRITE(*,126) X,(CUM(K)/X,K=1,N)

74

 END IF

126 Format('X= ',f12.7,' LE = ',3(F13.7,1x))

 WRITE(18,138) X, Y(1),Y(2),Y(3)

138 FORMAT(1X,F10.2, 3(1X,F14.4))

100 CONTINUE

 CLOSE (18)

 CLOSE (19)

 STOP

 END

*

* RHS OF THE LORENZ EQUATIONS

*

 subroutine fcn(t,y,v)

 implicit real*8(a-h,o-z)

* subroutine for wolf integration

 dimension y(12),v(12)

c INSERT THE OUTPUT OF THE WOLF REDUCE RUN HERE. THE MAXWELL-

c BLOCH OUTPUT IS HERE

 parameter(ak=1.75d0,g=1.06d0,gper=2.1d0,gpar=1.0d0,dl0=28.0d0)

 v(1)=y(2)*g-y(1)*ak

 v(2)=y(3)*y(1)*g-y(2)*gper

 v(3)=-y(3)*gpar-4*y(2)*y(1)*g+dl0*gpar

 v(4)=y(7)*g-y(4)*ak

 v(5)=y(8)*g-y(5)*ak

 v(6)=y(9)*g-y(6)*ak

 v(7)=y(10)*y(1)*g-y(7)*gper+y(4)*y(3)*g

 v(8)=y(11)*y(1)*g-y(8)*gper+y(5)*y(3)*g

 v(9)=y(12)*y(1)*g-y(9)*gper+y(6)*y(3)*g

 v(10)=-y(10)*gpar-4*y(7)*y(1)*g-4*y(4)*y(2)*g

 v(11)=-y(11)*gpar-4*y(8)*y(1)*g-4*y(5)*y(2)*g

 v(12)=-y(12)*gpar-4*y(9)*y(1)*g-4*y(6)*y(2)*g

c REDUCE OUTPUT ENDS HERE

 return

 end

 SUBROUTINEODEINT(YSTART,NVAR,X1,X2,EPS,H1,HMIN,NOK,

 & NBAD,DERIVS,RKQC)

 IMPLICIT REAL*8(A-H,O-Z)

 PARAMETER (MAXSTP=10000,NMAX=12,TWO=2.0D0,ZERO=0.0D0,TINY=1.D-

30)

 COMMON /PATH/ KMAX,KOUNT,DXSAV,XP(200),YP(10,200)

 DIMENSION YSTART(NVAR),YSCAL(NMAX),Y(NMAX),DYDX(NMAX)

 X=X1

 H=SIGN(H1,X2-X1)

 NOK=0

 NBAD=0

 KOUNT=0

75

 DO 11 I=1,NVAR

 Y(I)=YSTART(I)

11 CONTINUE

 XSAV=X-DXSAV*TWO

 DO 16 NSTP=1,MAXSTP

 CALL DERIVS(X,Y,DYDX)

 DO 12 I=1,NVAR

 YSCAL(I)=ABS(Y(I))+ABS(H*DYDX(I))+TINY

12 CONTINUE

 IF(KMAX.GT.0)THEN

 IF(ABS(X-XSAV).GT.ABS(DXSAV)) THEN

 IF(KOUNT.LT.KMAX-1)THEN

 KOUNT=KOUNT+1

 XP(KOUNT)=X

 DO 13 I=1,NVAR

 YP(I,KOUNT)=Y(I)

13 CONTINUE

 XSAV=X

 ENDIF

 ENDIF

 ENDIF

 IF((X+H-X2)*(X+H-X1).GT.ZERO) H=X2-X

 CALL RKQC(Y,DYDX,NVAR,X,H,EPS,YSCAL,HDID,HNEXT,DERIVS)

 IF(HDID.EQ.H)THEN

 NOK=NOK+1

 ELSE

 NBAD=NBAD+1

 ENDIF

 IF((X-X2)*(X2-X1).GE.ZERO)THEN

 DO 14 I=1,NVAR

 YSTART(I)=Y(I)

14 CONTINUE

 IF(KMAX.NE.0)THEN

 KOUNT=KOUNT+1

 XP(KOUNT)=X

 DO 15 I=1,NVAR

 YP(I,KOUNT)=Y(I)

15 CONTINUE

 ENDIF

 RETURN

 ENDIF

 IF(ABS(HNEXT).LT.HMIN) PAUSE 'Stepsize smaller than minimum.'

 H=HNEXT

16 CONTINUE

 PAUSE 'Too many steps.'

 RETURN

 END

 SUBROUTINE RK4(Y,DYDX,N,X,H,YOUT,DERIVS)

76

 implicit real*8(a-h,o-z)

 PARAMETER (NMAX=12)

 DIMENSION Y(N),DYDX(N),YOUT(N),YT(NMAX),DYT(NMAX),DYM(NMAX)

 HH=H*0.5

 H6=H/6.

 XH=X+HH

 DO 11 I=1,N

 YT(I)=Y(I)+HH*DYDX(I)

11 CONTINUE

 CALL DERIVS(XH,YT,DYT)

 DO 12 I=1,N

 YT(I)=Y(I)+HH*DYT(I)

12 CONTINUE

 CALL DERIVS(XH,YT,DYM)

 DO 13 I=1,N

 YT(I)=Y(I)+H*DYM(I)

 DYM(I)=DYT(I)+DYM(I)

13 CONTINUE

 CALL DERIVS(X+H,YT,DYT)

 DO 14 I=1,N

 YOUT(I)=Y(I)+H6*(DYDX(I)+DYT(I)+2.*DYM(I))

14 CONTINUE

 RETURN

 END

 SUBROUTINE RKQC(Y,DYDX,N,X,HTRY,EPS,YSCAL,HDID,HNEXT,DERIVS)

 implicit real*8(a-h,o-z)

 PARAMETER (NMAX=12,FCOR=.0666666667d0,

 * ONE=1.d0,SAFETY=0.9d0,ERRCON=6.d-4)

 EXTERNAL DERIVS

 DIMENSION

Y(N),DYDX(N),YSCAL(N),YTEMP(NMAX),YSAV(NMAX),DYSAV(NMAX)

 PGROW=-0.20d0

 PSHRNK=-0.25d0

 XSAV=X

 DO 11 I=1,N

 YSAV(I)=Y(I)

 DYSAV(I)=DYDX(I)

11 CONTINUE

 H=HTRY

1 HH=0.5*H

 CALL RK4(YSAV,DYSAV,N,XSAV,HH,YTEMP,DERIVS)

 X=XSAV+HH

 CALL DERIVS(X,YTEMP,DYDX)

 CALL RK4(YTEMP,DYDX,N,X,HH,Y,DERIVS)

 X=XSAV+H

 IF(X.EQ.XSAV)PAUSE 'Stepsize not significant in RKQC.'

 CALL RK4(YSAV,DYSAV,N,XSAV,H,YTEMP,DERIVS)

 ERRMAX=0.

77

 DO 12 I=1,N

 YTEMP(I)=Y(I)-YTEMP(I)

 ERRMAX=MAX(ERRMAX,ABS(YTEMP(I)/YSCAL(I)))

12 CONTINUE

 ERRMAX=ERRMAX/EPS

 IF(ERRMAX.GT.ONE) THEN

 H=SAFETY*H*(ERRMAX**PSHRNK)

 GOTO 1

 ELSE

 HDID=H

 IF(ERRMAX.GT.ERRCON)THEN

 HNEXT=SAFETY*H*(ERRMAX**PGROW)

 ELSE

 HNEXT=4.d0*H

 ENDIF

 ENDIF

 DO 13 I=1,N

 Y(I)=Y(I)+YTEMP(I)*FCOR

13 CONTINUE

 RETURN

 END

C HERE ARE THE LORENZ AND LASER WOLF OUTPUTS THEY ARE

C COMMENTED OUT.

*

* RHS OF THE LORENZ EQUATIONS

*

* subroutine fcn(t,y,v)

* implicit real*8(a-h,o-z)

* subroutine for wolf integration

* dimension y(12),v(12)

* COMMON/ENBYKLP/S,R,B

* v(1)=s*(y(2)-y(1))

* v(2)=-y(3)*y(1)-y(2)+y(1)*r

* v(3)=-y(3)*b+y(2)*y(1)

* v(4)=s*(y(7)-y(4))

* v(5)=s*(y(8)-y(5))

* v(6)=s*(y(9)-y(6))

* v(7)=-y(10)*y(1)-y(7)-y(4)*y(3)+y(4)*r

* v(8)=-y(11)*y(1)-y(8)-y(5)*y(3)+y(5)*r

* v(9)=-y(12)*y(1)-y(9)-y(6)*y(3)+y(6)*r

* v(10)=-y(10)*b+y(7)*y(1)+y(4)*y(2)

* v(11)=-y(11)*b+y(8)*y(1)+y(5)*y(2)

* v(12)=-y(12)*b+y(9)*y(1)+y(6)*y(2)

* return

* end

78

*

* RHS OF THE LASER EQUATIONS

*

 subroutine fcn(t,y,v)

 implicit real*8(a-h,o-z)

* subroutine for wolf integration

 dimension y(12),v(12)

 COMMON/ENBYKLP/AK,G,GPER,GPAR,DL0,IFLAG

* parameter(ak=1.0d-1,g=64.92d0,gper=44.0d0,gpar=43.0d0,dl0=100.0d0)

 v(1)=y(2)*g-y(1)*ak

 v(2)=y(3)*y(1)*g-y(2)*gper

 v(3)=-y(3)*gpar-4*y(2)*y(1)*g+dl0*gpar

 v(4)=y(7)*g-y(4)*ak

 v(5)=y(8)*g-y(5)*ak

 v(6)=y(9)*g-y(6)*ak

 v(7)=y(10)*y(1)*g-y(7)*gper+y(4)*y(3)*g

 v(8)=y(11)*y(1)*g-y(8)*gper+y(5)*y(3)*g

 v(9)=y(12)*y(1)*g-y(9)*gper+y(6)*y(3)*g

 v(10)=-y(10)*gpar-4*y(7)*y(1)*g-4*y(4)*y(2)*g

 v(11)=-y(11)*gpar-4*y(8)*y(1)*g-4*y(5)*y(2)*g

 v(12)=-y(12)*gpar-4*y(9)*y(1)*g-4*y(6)*y(2)*g

 return

 end

