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ABSTRACT 

 

 

SPACE TIME EVOLUTION OF DYNAMICAL SYSTEMS WITH FEW DEGREES 

OF FREEDOM 

 

The thesis work  involves analysis of chaotic behavior in physical systems modelled by low 

dimensional equation of motion. The paradigm of chaos became prominent in the late 

1960’s. This has stimulated interest in this field, causing a rapid rise in the quality and 

quantity of research.  

 

As one example of analysing chaotic behavior from a Lagrangian dynamical system, the 

Yang-Mills-Higgs system is studied which exhibits local instability but possesses a globally 

ordered phase by spantaneous symmetry breaking.  Chaotic behavior and chaos to order 

transitions are analyzed. Addition of oscillatory term the region where the chaos-order 

transition occurs identified with an eye on transition back to order. 

 

As a second example, regions of chaotic behavior in the parameter space of the Maxwell-

Bloch equations (also Lorenz-Haken equations) has been studied as a constrained system. 

 

The main part of this work involves identification of chaos in a set of experimental data, the 

monthly average  discharge data of Sakarya River directly. Basic characteristics of chaos 

such as the irregularity of motion, unpredictability and sensitivity to intial conditions can 

thus be understood using nonlinear time series methods.. Using this data, possible low 

dimensional chaotic behavior of Sakarya river flow is investigated. To reveal the chaotic 

dynamics, maximal positive Lyapunov exponent is calculated from the reconstructed phase 

space obtained using the phase space reconstruction method. The approach reconstructs a 

locally equivalent phase space from the scalar time series from which the real system’s 

invariants can be estimated. Positive values for the maximal Lyapunov exponents have been 

calculated and this is an accepted indicator for  chaotic behavior possibility. Analysed data 

contains the montly average flow rates of eleven main branches of Sakarya river through the 

years 1960-2000.  
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ÖZET 

 

 

DÜŞÜK BOYUTLU DİNAMİK SİSTEMLERİN UZAY ZAMAN EVRİMİ 

 

Bu tez çalışmasında düşük boyutlu hareket denklemleriyle modellenmiş fiziksel sitemlerin 

kaotik davranışları incelenmektedir. Kaos paradigması 1960 ların sonunda ortaya atıldı. O 

zamandan beri, bu alandaki araştırmaların niteliği ve niceliği hızlı bir şekilde artmaktadır. 

İlk örnek olarak, Lagranjiyen bir dinamik sistem olan Yang-Mills-Higgs sisteminin kaotik 

yapısı çalışılmıştır. Bu sistem yerel düzensizlikler gösterir fakat ani simetri kırılmalarıyla 

küresel düzenli faza geçiş gösterir. Kaotik davranış ve kaostan düzene geçiş analiz edilmiştir. 

Salınım terimi eklenerek oluşan kaostan düzene geçiş bölgesi saptanmıştır.  

İkinci örnek olarak, kısıtlı sistem olarak alınması gereken (Lorenz-Haken denklemleri olarak 

da bilinen) Maxwell-Bloch denklemlerinin parametre aralıklarının kaotik davranış bölgeleri 

incelenmiştir. 

Bu tezin ana çalışması, Sakarya nehrinin aylık ortalama debi verilerinin yani deneysel olan 

zaman serisi verilerinde kaotik davranış saptanması içermektedir. Hareketteki düzensizlik, 

başlangıç koşullarına olan aşırı hassasiyet ve tahmin edilememezlik gibi kaosun temel 

karakteristikleri doğrusal olmayan zaman serileri metodları ile anlaşılmıştır. Bu verileri 

kullanarak, Sakarya nehir akışının olası düşük boyutlu davranışı araştırılmıştır. Kaotik 

dinamiği ortaya çıkarmak için, en büyük pozitif Lyapunov üsteli hesaplanması faz uzayının 

tekrar inşa edilmesi metodu ile elde edilmiştir. Yaklaşım skaler zaman serilerinden gerçek 

sistemin değişmezlerinin kestirilebileceği yerel eşdeğer faz uzayını yeniden yapılandırır. En 

büyük Lyapunov üstelin pozitif değeri hesaplanması (gözlenmesi), olası kaotik davranışın 

işareti olarak görülüp, kabul edilmiştir. Analiz edilen veri Sakarya nehrini besleyen on bir 

alt nehrin 1960-2000 yılları arasında aylık ortalama debi değerlerini içermektedir.  
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1. INTRODUCTION 

 

Although in everyday life the word chaos is used to describe as a state of disorder and 

irregularity, chaos has a very different and specialized meaning in science. Low dimensional 

chaos involves sensitive dependence on initial conditions[1]. Traditionally, laws of nature  

reflected a complete relation of effects to causes. Until recently, it was assumed that one can 

make arbitrarily accurate predictions for arbitrarily long times of any physical system as long 

as one knows the starting conditions accurately enough. This is very obvious for linear 

systems where the cause and effect connection is clear. In the case of nonlinear systems, the 

cause and effect connection can sometimes be not so simple. Thus the problem of controlling 

such a system arises. Although the systems that chaos theory deals with are complicated and 

most of the time unpredictable, the basic concepts of chaos are not very difficult to 

understand. Now comes the question of how chaotic systems manifest themselves. A system 

can show  multiple periodicity or apparent broadband noise as a result of underlying chaotic 

dynamics. To qualify and quantify chaos there are several dynamical properties to be used. 

Fractal dimension of the reconstructed phase space of the system, Kolmogorov entropy and 

Lyapunov spectrum are most important of these dynamical properties. 

The connection between chaos theory and everyday life involves  the analysis of time series 

obtained from real systems. The difficulty arises from the projection of a multidimensional 

system on a scalar one dimensional time series. Linear methods look for regular structures 

in a data set which means that the intrinsic dynamics of the system is governed by the 

paradigm that small variations cause small effects. So possible irregular behavior of the 

system can not be understood by linear paradigms where small variations in input can lead 

to large variations in the results. 

Before explaining all terms first, let us understand dynamical system’s meaning. [2]. The 

word Dynamic means changing. Dynamical is concerning what is changed. For example, 

position of an artificial satellite changes relative to earth very rapidly so, we can say that this 

satellite is very dynamic. Furthermore, orbital energy of satellite as mentioned before 

changes very little, therefore,  we can say that orbital energy is an approximate invariant. 

Like many other studies, modern dynamic systems studies date to 1900s. However before 

1957 the subject was a specialized field known mostly to astromers and physicists. When 
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artificial satellites came into human life, also computers and powerful algorithms entered the 

stage with quick and easy calculations which are necessary, the study become a topic of 

concern for a broader portion of the scientific and engineering communities.  

Dynamics began with classical mechanics and its application to planetary motions. In 19th 

Century electrical circuits provided more dynamical problems that could be solved. Today, 

high technical progress and computer simulations help to solve these problems, also 

sophisticated perturbation techniques can solve the same types of problems. Soviet 

mathematical physicists’ work is a good historical example for superconvergent perturbation 

techniques. They provided humankind a lot of techniques caused by lack of resources to 

build laboratories and fast computers. 

In addition population and ecology have provided some classical models to dynamics. The 

problem that remains for these specialities is to come up with enough data to create more 

refined forecasts. More promising is the study of biological subsytems, such as the heart and 

its neurological control system, because data can be collected systematically in a laboratory 

environment. These are many large models of the economy, some highly dynamical and 

others hardly at all. No methodology has won the day, because all give forecasts that are not 

nearly dependable. 

Some models in economics and other fields violate a cardinal rule. When a model works 

poorly, the answer is not make it bigger, but to change something fundamental. Main thing 

to do with any kind of problem is to try to determine the limits of applicability to the system 

under study. 

Many business forecasts use predictive methods however, they have little or no theoretical 

justification. They are only curve-fitting techniques needed for extrapolation aimed at 

prediction..  

Today people with little or no specialized scientific training can use dynamics. Study of 

dynamics is not restricted to a small number of scholars and specialists since computers have 

made practical various numerical methods. The analytic theories developed by professional 

scientists do not need  the help of computers and numerical solutions. In this thesis,  basic 

numerical techniques and simple software programs to analyze phenomena have also been 

used. 
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Chaotic systems can be easily analysed by people because, numerical analysis and computer 

graphics are the tools that have made the study of chaotic systems accessible. 

One of the pioneers in using computers in physics, especially for the study of chaos, was 

Mitchell J. Feigenbaum’s work starting in 1974. In the 1960s the MIT meteorologist Edward 

Lorenz had discovered a chaotic dynamical system using approximations to the fluid flow, 

heat conduction and convection equations. Later Lorenz’s results were used for different 

physical models and dynamics Feigenbaum’s work spread knowledge about chaos and its 

usefulness as a modeling tool and teaching device was appreciated throughout the scientific 

community.  

The novelty and exotic behavior of chaotic systems has been over emphasized during the 

period 1974-1990. In the future, present tools will be improved and new tools will become 

available, but these most likely will be further refinements of existing methods. Perhaps 

there will be great breakthroughs, but models adequate for most practical purposes can be 

constructed without waiting for them.  

Dynamic  systems  can  be classified  into  two  groups. The first group involves the simpler 

linear systems. Linear  systems  are  easy  to  understand since they obey the superposition 

principle according to which, for example, doubling the input doubles the output. Therefore,  

linear systems can  be easier to solve and their  long term  behavior  can  be  easily  predicted.  

However,  because  of  this  property,  they  require initial conditions in order to become 

well-posed and set magnitudes for physical phenomena. The second group includes 

nonlinear systems with more complex patterns of behavior. The  relation  between  input  

and  output  is  much  more  complicated  and  impossible  to understand in terms of results 

from the linear theory. This makes non-linear systems more complicated.  Results  from  

non-linear  systems  are  usually  called  chaos  because  of  this reason.  But  this  does  not  

mean  chaos  only  occurs  in  complex  systems  or  equations. Chaotic  behavior  can  easily  

occur  in  a  nonlinear  equation  which  is  not  one  to  one invertible, if this equation is 

observed as a generator of  time series such as; 

 

 𝑥𝑡+1 = 1.9 − 𝑥𝑡
2 (1.1) 
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Many features of Chaos Theory can be understood by the statement “ the behaior of certain 

nonlinear systems depend sensitively on the initial conditions .” [1]. An example can be 

given by comparing the behavior of a system of two nonlinear pendulums. The difference 

between the initial conditions that give rise to a total seperation of trajectories after a short 

while is only one second of arc. Actually, the exact opposite can also be true. Irrespective of 

the initial conditions, the system can finish on a common topological structure, such as the 

well known butterfly in the Lorenz system. 

 

 

 

 

 

 

 

 

 

The explanation for this latter type of chaos is topological transitivity. This roughly means 

that neighborhoods of points are mapped by the system into topologically big sets instead of 

sticking together in one or more localized neighborhoods. 

Chaos Theory can be observed in most science fields for example, in systems that model 

species population and competition between species, in lasers, in heart movements, electrical 

signals from certain nonlinear circuits. The formulation of entropy by Boltzmann, in which 

the distribution of molecular speeds assume that position and velocity be uncorrelated was 

one of the first instances of the use of the term “collision number ansatz” that became known 

as the hypothesis of molecular chaos. Indeed, entropy is one of the parameters that 

characterize chaos. 

Chaotic motion exhibits a lack of determinism even when all random ingredients are not 

present. The nature of a system and the topological structure in which it exists can impose 

limitations on a system, so that although two nearby points can separate exponentially, the 

system remains on a limited structure of the space which can allow it to move in a seemingly 

Figure 1.1. Example plot of two nonlinear pendula that small different 

starting angles. 
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regularly way on a seemingly smooth space, while its chaotic motion lies in a highly 

complicated subspace, also called “ strange attractor.” The well known Lorenz attractor is 

an example. 

 

In general, mathematicians study the mathematical fundamentals of this theory, in terms of 

the theory of dynamical systems and topological measure. On the other hand, there are 

several physical phenomena that can only be explained by nonlinear models. Fortunately, 

chaos theory does not need higher mathematical knowledge. Its fundamentals can be 

understood and applied in terms of relatively simple mathematical concepts such as basic 

algebra, calculus and ordinary differential equations. In this respect application of chaos 

theory to physical systems is not much different from linear mathematical problems. 

 

To summarize, chaos shows complex, unsystematic motion, instabilities and sudden changes 

because of highly sensitive dependence on initial conditions. A chaotic system may seem to 

be haphazard but actually its evolution and invariants (meaning the extent of predictability 

of its final state) only obeys different rules from those of linear systems. Actually, the 

Lyapunov exponent measures this predictability horizon. Seemingly deterministic nonlinear 

systems exhibit such behavior and this aspect of chaos theory is usually called “Deterministic 

chaos”. Simple systems and equations in one variable (for example, the system given in 1.1 

) can generate chaos. Chaos does not mean measurement error or noise, it is independent 

from all of these. 

 

In this thesis, two examples of analysing chaos in terms of systems modelled by differential 

equations will be given. The first example involves investigating chaotic behavior in bosonic 

Yang Mills Fields by the aid of certain standard mathematical tools such as linearized 

stability analysis, Lyapunov’s direct method and lyapunov characteristic exponents. 

An inspiration for studying the established knowledge of the Yang-Mills or Yang Mills 

expanded by Higgs mathematical statements is the significance of this framework in the 

starting instability or stability at, since in the beginning stages all associations were of the 

same quality and depended on non-abelian gauge hypotheses, of which the SU(2) Yang Mills 

is a first example. In this study we consider the accompanying two dimensional (four 

variable) Hamiltonian recommended by Biro Matinyan and Müller. 
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                                                        𝐻 =
𝑃𝑥

2+𝑃𝑦
2

2
+

1

2
𝑥2𝑦2 −

1

2
𝑦2 +

1

8
𝑥4 +

1

4
𝜅y4    .                            (1.2)                                                                  

Here H is hamiltonian P=(px,py) is the momentum and x and y are coordinates and κ is 

nonlinear anharmonicity parameter. In gauge hypotheses the acknowledgedment of diverse 

stages, especially a limiting stage for the most part connected with a disordered field setup 

and the Higgs stage portrayed by an all-around requested field condensate, is a focal issue. 

As needs be the qualification between established dynamical frameworks having or not 

having a complete arrangement of nontrivial integrals of movement is of essential 

significance. In this part coupled Yang- Mills- Higgs framework which displays an all-

inclusive requested stage because of unconstrained symmetry breaking. 

A further example in this thesis is to analyse Maxwell- Bloch equations, sometimes referred 

to as Lorenz-Haken equations. They represent a possible working mechanism for a class of 

lasers. They are based on the classical equations for the electromagnetic field and quantum 

mechanical formulations for the particles under the combined DC and AC magnetic fields. 

For regions of appropriate values involving control parameters, seemingly chaotic behavior 

can result.  Under special conditions on the parameters, the laser model is related to the 

Lorenz model and behave similarly. Maxwell-Bloch equations exhibit various types of 

routes to chaos for different parameter ranges. In this study, a constrained Lagrangian form 

that lead to Maxwell-Bloch equations has been obtained from the equivalent treatment of the 

Lorenz model. This allows us to analyze the long term behavior of its attractor.  

 

The main part of the thesis involves the analysis of the Sakarya River flow using nonlinear 

time series analysis. Sakarya River is the fourth largest river in Turkey and first largest river 

in Marmara and Anatolian Regions (Turkey). It is 810 km long and its width is between 60 

m and 150 m. In this river, there are 3 dams for hydroelectric power production. One is 

Sarıyar dam located in the Ankara region Nallıhan subriver. It is constructed in the 1950s. 

The others are Yenice and Gokcekaya dams which are located in same region of the Sakarya 

River.In Figure 1.2., one can see information about Sakarya River’s branches and locations.  
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Figure 1.2. Map that demonstrates location of Sakarya River. 
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2. MATERIALS AND METHODS 

 

The experimental data involves the average monthly discharge rate of Sakarya River. The 

data have only scalar values and are taken from the [3] EIE (General Directorate of Electrical 

Power Resources Survey and Development Administration). Fifty-four stream flow 

observation stations have been set on the Sakarya River by the EIE and the observation 

period spans the period 1960-2000. Flow rate time series graphs are presented below. The 

units on the x axis is time in months and the y axis is flow rate in m3. 

It can be seen that the flow rates for each tributary show similar patterns in spite of the fact 

that Sakarya river covers a relatively large and varied region involving two different climatic 

regions. 

        

 

 

 

 

 

               Figure 2.1. Flow rate data on given months of Aktas Subriver . 

 

 

 

 

 

 

                 Figure 2.2. Flow rate data on given months of Besdegirmen Subriver . 
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                 Figure 2.3. Flow rate data on given months of Botbasi Subriver . 

 

 

 

 

 

 

                  Figure 2.4. Flow rate data on given months of Dogancay Subriver . 

 

 

 

 

 

 

                  Figure 2.5. Flow rate data on given months of Dokurcan Subriver . 
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              Figure 2.6. Flow rate data on given months of Hamidiye Subriver . 

 

 

 

 

          

     Figure 2.7. Flow rate data on given months of Karakoy Subriver . 

 

 

 

 

 

 

                  Figure 2.8. Flow rate data on given months of Kargi Subriver . 
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                 Figure 2.9. Flow rate data on given months of Kocasu Subriver .  

 

 

 

 

 

         

                  Figure 2.10. Flow rate data on given months of Mesecik Subriver . 

 

  

 

 

 

                 Figure 2.11. Flow rate data on given months of Taksirkopru Subriver . 

If one looks at these signals in order to determine their nature, one can see both periodic and 

irregular behavior. A study of the correlation function confirms this conjecture. Here is the 

correlation function for the Aktas tributary, we observe a decrease up to about 7-8 months, 

but the correlation function never reaches zero. It than reveals a periodic behavior involving 

approximately 40 months. A similar behavior can also be seen for the Botbasi tributary. 
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Figures showing both correlation functions are presented below. It is clear that such behavior 

usually implies that the data involves multiple scales. Multiple scales does not necessarily 

imply chaos, however, there are several instances in which such systems make transition to 

chaotic behavior, an example involving electro-optical oscillators is given in  [4]. In that 

case, the dynamical system is given. In the case of Sakarya River flow, a one dimensional 

time series is given and the phase space must be reconstructed. This requires setting a delay 

time and if multiple time scales are involved, a choice must be made between the zero of the 

correlation function and the first minimum of the of the mutual information. Although there 

is no clear indication of consistent success, the latter is usually preferred. [5]. It will be 

reported in Sections 4 and 5 that the mutual information analysis gives a delay time of 5-9 

months. This agrees with the lower figure seen in the correlation graphs. 

 

 

  

     

 

                   Figure 2.12. Correlation for the Aktas Subriver 

 

 

 

 

   

                    Figure 2.13. Correlation for the Botbasi Subriver 
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3. CHAOS THEORY AND ITS APPLICATIONS 

 

As mentioned in introduction, chaotic systems show sensitive dependance to initial 

conditions. However, initial conditions may not be well known and be subject to errors, 

uncertainities or perturbations. Long-term predictions are impossible. Even the availability 

of computational support will not enable one to generate long-term predictions.  Poincaré 

stated in 1903: 

A very small cause which escapes our notice determines  a considerable effect that we cannot fail to see... 

even if the case that the natural laws had no longer secret for us... we could only know the initial situation 

approximately... It may happen that small differences in initial conditions produce very great ones in the final 

phenomena. 

Let us observe Lorenz deterministic non-periodic flow [1] which is known as one of the best 

example of chaos theory. In working on the behavior of a flowing fluid system subject to a 

temperature gradient such that conduction and convection effects compete, Lorenz used a 

well known approximation to the Navior-Stokes equations and obtained the following 

system involving three ordinary nonlinear differential equations containing six parameters:  

                                                    𝑥̇ = −𝜎𝑥 + 𝜎𝑦      

                                                           𝑦̇ = 𝑅𝑥 − 𝑦 − 𝑥                                                     (2.1)                                     

                                                            𝑧̇ = −𝐵𝑧 + 𝑥𝑦      

Since 
𝜕𝑥̇

𝜕𝑥
+

𝜕𝑦̇

𝜕𝑦
+

𝜕𝑧̇

𝜕𝑧
= −𝜎 − 1 − 𝐵 < 0, the system is dissipative and has an odd number of 

degrees of freedom. 

The parameters σ, R,B determine the behavior of the system. These three equations are 

extremely sensitive to initial conditions. The ordinary parameter values for demonstrating 

chaos are σ=10, R=28, B=8/3. If one starts with suitable initial value and solves the equations 

with a numerical procedure, it will be shown that the very well known butterfly pattern as in 

the Figure 2.1 emerges. 
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Figure 2.1 shows the Lorenz attractor  in x, y and z  dimensions.  Chaos theory is not used 

in local weather reports because of not knowing the initial conditions at time t=0 very 

accurately. However, progress is observed for day to day large scale simulations.  

 

Figure 3.2. Lorenz Attractor in intervals of Δt=5 seconds. 

 

 

Figure 3.1. Plot of  Lorenz Attractor in 3D 
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It can be seen in Figure 2.2 that rapid changes of the Lorenz attractor which the figure 

demonstrates during the time development of the Lorenz attractor in steps of Δt=5 seconds.  

We can categroize chaotic system by in two groups. One is the system has inherent chaotic 

behavior in nature, the other is generated  by people either artificially or by the way it is 

observed. Chaotic systems can be used by industry. Chaotic systems only appear to be 

random, but they are indeedly deterministic, they posses an emphasizing order. This 

emphasizing order provide to the possibility of controlling chaotic systems.Ott and Grebogi, 

Willian Ditto and Louis Pecora are pioneer scientists and have created methods of 

controlling chaotic mechanical, electrical and biological systems [6]. Important example is 

the fact that syncronized chaos can be used in cyrpto electronic communications.  
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4. HAMILTONIAN CHAOS 
 

Hamiltonian Mechanics is a branch of classical mechanics offering a deeper insight into the 

connection between Newtonian and Lagrangian mechanics. It treats generalized coordinates 

and moments on equal form. There are many applications such as simple harmonic 

oscillators, accelerators,planet orbits and the weather, to name a few. Perturbations in 

Hamiltonian systems give rise to chaos, which can be explained through KAM theory 

(Kolmogorov- Arnold-Moser)[7]. Although  the study of Hamiltonian Mechanics has been 

around since the 1800’s, chaos is only now beginning to be understood. 

Hamiltonian systems satisfy a number of properties, but before adressing those, an overview 

of what a Hamiltonian system needs to be addressed. A Hamiltonian system with n degrees 

of freedom on an open subset E of R2n must satisfy the following: 

Let H ϵ C2 (E) where H=H(x,y) with x,y ϵ Rn. Then the system. 

 

                                                         𝑥̇ =
𝜕𝐻

𝜕𝑦
 , 𝑦̇ = −

𝜕𝐻

𝜕𝑥
                                                    (4.1)                   

where x represents a generalized coordinate vector and y represents the correspondin 

conjugate momentum vector satisfies  

                                
𝜕𝐻

𝜕𝑥
= (

𝜕𝐻

𝜕𝑥1
, … . . ,

𝜕𝐻

𝜕𝑥𝑛
)
𝑇

    𝑎𝑛𝑑   
𝜕𝐻

𝜕𝑦
= (

𝜕𝐻

𝜕𝑦1
, … . . ,

𝜕𝐻

𝜕𝑦𝑛
)
𝑇

               (4.2)                 

with 
𝜕𝑥̇

𝜕𝑥
+

𝜕𝑦̇

𝜕𝑦
= 0 so that phase space volume is conserved and hence Hamiltonian systems 

have the symplectic property.                              

Hamiltonian systems are conservative, which can easily be extended to many physical 

systems. 

Hamiltonian systems have numerous properties. The most well-known property is that 

Hamiltonian systems conserve at least one particular quantity, namely energy . More 

specifically, the total energy H of the Hamiltonian system remains constant along its 

trajectories. This can be proven by taking the derivative of H with respect to time . In doing 

so, we get that it equals zero, which proves that H is constant along any solution curve.  
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Therefore, the trajectories of the system are on the surfaces of H, which is a constant. The 

critical points of H correspond to the equilibrium points of the system. Furthermore, the 

equilibrium points are non-degenerate if the determinant of the second derivative of H is 

nonzero when evaluated at the equilibrium points. Stability can  also be determined using 

the second derivative of H. When evaluating the second derivative at an equilibrium point, 

if all the eigenvalues have a positive real part, then that point is stable. If we consider 

Hamiltonian systems of degree one, then non-degenerate equilibrium points can be classified 

more readily. If an equilibrium point is non-degenerate, than we have that the point in 

question is a saddle point of the Hamiltonian system if and only if it is a saddle of the 

Hamiltonian function H. Furthermore, it is a center if  and only if it is a local maximum or a 

local minimum of H.               

In a non-chaotic Hamiltonian system near a point of stable equilibrium, the motion is 

oscillatory. Thus, geometrically we get that the orbits of the system move on tori. But, for 

chaos to be introduced into the system, the tori need to be destroyed. By destroying the 

invariant tori, the system in turn creates a cantori which is system of cantor sets. Chirikov 

first discovered that for local chaos to ocur in a Hamiltonian system, stable and unstable 

manifolds had to intersect. And this chaos occurs when S2 > 1 , where S =
Δω𝑟

𝛺𝑑
 , Δω𝑟 is the 

frequency and 𝛺𝑑 is the distance frequency between two unperturbed resonances. 

It should be noted that the tori are not perturbed in the integrable Hamiltonian system H that 

was defined earlier. Rather, the system becomes perturbed when a nonintegrable Hamilton 

perturbation is added. In doing so, the following equation is obtained: 

                                                𝐻 = 𝐻0(𝑦) + 𝜖𝐻1(𝑥, 𝑦)                                                   (4.3)                                                                         

In adding the nonintegrable function, tori begin to deform, and those that survive are “ 

sufficiently irrational.” In fact, according to KAM theory, tori survive for C’ perturbations if 

|
𝑑𝐻0

𝑑𝑦0
∗ 𝑘| > 𝜆|𝑘|−𝜏 for N-1< τ < 1/2r-1 and λ is of order √𝜖 for small ϵ , where λ is based on 

frequency. But for chaos to ocur, even these “sufficiently irrational” tori become perturbed. 
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4.1  CHAOS IN YANG-MILLS  EQUATIONS 

In the electromagnetic case, the gauge transformation that led to the minimal substitution  

  depended on a single parameter, the electric charge e. This gauge 

transformation is Abelian since two successive transformations commute. 

It is possible to consider more complicated cases. The equations of motion are still in                      

3+1 dimensional Minkowski space time. However the potential now depends on an internal 

degree of freedom respecting an  symmetry. This theory is the free Yang Mills fields 

with the equations of motion, involving the field strength F and a coupling constant g [15]:  

                                                                                                  (4.4)                                                                                     

The field strength is derived from a vector potential 𝐴𝜇
𝑎: 

                                                                                    (4.5)                                                                       

Here, the Latin letters denote the inward degrees of flexibility and take the range of 1,2 or 3 

while the Greek letters denote spacetime parts taking the range 0,1,2,3. For the 

electrodynamic case the third term vanishes since there is one only one internal degree of 

freedom that is the electric charge. A summation over the full range over repeated indices is 

assumed throughout. The energy momentum tensor can be obtained as 

                                                                                         (4.6)                                                                                         

is the Minkowski space time metric tensor. We seek a class of solutions of  these 

equations for which the Poynting vector vanishes in an appropriate coordinate frame , 

 which means there is no energy flow . 

Using this condition and fixing the gauge by , equation 3.4 can be written as  

                                                                                                (4.7) 
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This solution admits two conserved quantities, namely the angular momenta  

and the corresponding quantity in Yang-Mills internal indices . 

This condition implies that   is zero for the solution representing the vacuum and the 

external color charge density if not. Here dots are used for the time derivatives, the Latin 

indices  denote spacelike ones. The notation   means a space gradient .The 

constraints  and  lead to 

(4.8) 

This equation implies one of the following conditions: 

 , 

 , 

 , 

corresponding to homogeneous, static and irrotational vector potentials respectively.In the 

homogenous case Yang Mills equations becomes 

                                                                                       (4.9) 

 We can derive these relations from the following Hamiltonian,                                                         

                                                                            (4.10) 

Here,  denotes the three dimensional vector potential having components . The 

spherical symmetry if this Hamiltonian in both space and internal degrees of freedom is 

manifest. The system given by this Hamiltonian is also known as classical Yang Mills 

mechanics, where it was originally used to prove instability of pure Yang Mills fields. 

In gauge theories the different phases’ realization, particularly a confining phase is usually 

associated with a disordered field configuration and the Higgs phase featured by a globally 
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ordered field , is a central situation. Accordingly the existence or otherwise of a full set of 

nontrivial first integrals of motion in a classical dynamical systems is crucial for the stability 

issue. In this part we will add add a scalar doublet (in gauge space) of fields and will denote 

this as a coupled Yang-Mills-Higgs system. Rapid symmetry breaking will force this system 

from the initial unstable state to a globally ordered phase. 

This system has SU(2) as the internal isospin gauge group. It  contains an isodoublet scalar 

field besides the customary Yang Mills gauge fields. Its Hamiltonian density in the 

gauge is [8] 

               (4.11) 

         

Here the scalar isodoublet Higgs field  is represented by  

                                                                                           (4.12)                                                                                                                        

With  being related to the vacuum expectation value of the Higgs field by 

                                                                                                                  (4.13)                                                                                     

is a coupling constant can be described the strength of the quartic self-interaction of the 

Higgs fields. After the equation of motion following from the Hamiltonian there is a 

constraint equation which is the generalization of the nonabelian Gauss law 

                                                                  (4.14)                                                   

Let take consider again homogeneous gauge field configuration and a Higgs field tending to 

one point with its vacuum expectation value , requiring , one arrives at the 

following simplified Hamiltonian for degrees of freedom [9]  
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                                                                      (4.15)                        

According to the physical perception, at high energy, unification with strong fields or very 

wide amplitude motion in the model system, the addition of the Higgs condensate   is not 

important and the motion is still chaotic.(v=0 is always chaotic, if v is very large compared 

to x and y on a closed orbit the motion is simple harmonic.) Meanwhile, for weak fields the 

nonlinear coupling becomes insignificant and the motion is prevalent by stable, 

ordinary oscillations. 

By the method of rescaling of the amplitudes and time it is anything but difficult to see that 

the motion administered by the Hamiltonian is controlled by a single dimensionless 

parameter 

                                                                                                                       (4.16)                                       

Here is the conserved energy. For the system converges to pure Yang Mills 

mechanics. Chaos appears then for small values of the parameter , in spite of  the motion 

becomes ordinary when  is large. 

 It can be deduced that the spontaneous breaking of the gauge symmetry by the Higgs 

mechanism has a stabilizing effect on the nonabelian gauge field dynamics. 

Beyond these results,  if we consider Higgs field as a dynamical field coupled to the gauge 

field, the equations of motion are that of the  Georgi-Glashow model [15] 

                                                                                          (4.17)  

                                                                                      (4.18)                        

where  is the covariant derivative. Making the ansatz     

and     in the  gauge a purified system of equation can be derived. Setting 
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                                                                                                        (4.19)                                                 

                                                                                                  (4.20)                                                       

Performing the scale transformations ,   and  with  and 

 we arrive at the following simple dynamical system  

                                                                                                               (4.21) 

                                                                                                         (4.22) 

                   

containing only one scale parameter .It has been shown that this system contains 

chaotic motion in a large range of values of the energy and of the parameter . 

In this section, we compute Lyapunov exponents with the aid of Fortran code that 

implements the Wolf algorithm[10] explained below.  

First of all we investigate how exponents are changing with respect to the scale parameter, 

. And we found that system possesses chaotic motion in wide range of value of  . 

Especially we  scan for the interval from  to .Here are some of graphs for  the 

specific values of .  
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Figure 4.1. Lyapunov exponents vs time for 

 

 

Figure 4.2. Trajectory of  y vs Py 

 

 

Figure 4.3. Lyapunov exponent values according to change in  κ and g parameters 
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In Figure 4.3. Changing of parameters κ and g parameters are being changed by the use of 

Wolf Algorithm [10] and Lyapunov exponent values are seen below zero and stabilesizes 

when g parameter came to 5 that parameter values are arbitrary numbers.  

Lyapunov Exponents are dynamical invariants that can be calculated with relative ease for 

systems modelled with differential equations (continuous time systems), maps (discrete time 

systems) and time series. The Lyapunov exponents measure the exponential rate of 

separation of nearby trajectories as shown in Figure 4.4.   

 

 

 

 

 

 

 

                  

                                             Figure 4.4.  Lyapunov Exponents 

Wolf’s algorithm [10] is one of the simplest methods for the calculation of Lyapunov 

exponents  One starts from a fiducial trajectory  As mentioned before Lyapunov 

exponents are defined by the long term evolution of an infitesimal hypersphere of states. The 

dynamical system  

                                                                                                        (4.23)                                        

is augmented by N neighboring trajectories that obey the variational equations. 

)(tx

)(/)(
}{ jii

xfdttdx 
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                                                                                                                           (4.24)                                                  

  

where δx(0) is the initial separation between neighboring trajectories, δx(t) is the separation 

at time t, dots denote time derivatives and is the Jacobian of the dynamical system 

evaluated on the fiducial trajectory. Each variational equation obeys the initial condition 

denoting that the jth component of the i’th variational equation is 1, the other 

components are 0, thus forming an hypersphere around the fiducial trajectory. The 

variational equations can be obtained from the dynamical system using a symbolic 

programming language. The REDUCE  code. The Fortran code is that given by Wolf. As a 

numerical integrator for the fiducial trajectory and the variational equations, the reference to 

the proprietary IMSL routines have been replaced by Numerical Recipes  routines for fourth 

order Runge Kutta integration with adaptive quality control [11]. 

The fourth order Runge Kutta method has a number of advantages. First of all it is self 

starting. Secondly it is a robust method for most systems except those that are unusually stiff 

[23]. Thirdly, for a step size of h, the error is O(h5). This enables one to make a check by 

assuming that the exact integral I, and the Runge Kutta result of stepsize h are related by 

. Since function evaluations for a stepsize 2h are included in the stepsize h, 

one can obtain I(h) and I(2h) given as . One can combine these to estimate 

the error term Ah5 and adjust the stepsize for quality control.  

Chaotic behavior involves stretching which corresponds to positive Lyapunov exponents and 

folding which corresponds to negative ones. As the hypersphere evolves, the directions 

corresponding to stretching will grow exponentially and dominate. To avoid information 

loss due to truncation errors that will come from the finite precision, the rates of increase 

and decrease must be recorded and Gram Schmidt orthogonalization must be performed in 

order to accurately follow the evolution of the hypersphere about the fiducial trajectory. 
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4.2 CHAOS IN MAXWELL-BLOCH IN LAGRANGIAN FORM 

The Lorenz and Maxwell-Bloch systems are not in Hamiltonian form. However, pretty much 

as on account of the Lorenz model, [12] it can be reexpressed as an constrained , velocity 

subordinate Lagrangian system. 

The Lorenz system can be composed in Lagrangian form and can be studied as a mechanical 

syste[16] along in spite of the fact that it is a compound mechanical thermodynamical 

dissipative system. The Maxwell-Bloch conditions have a bigger number of parameters than 

the Lorenz framework however this framework can be changed into the Lorenz framework, 

if x=𝐸⃗⃗, y=g𝑃⃗⃗/k and z=∆⃗⃗⃗0-∆⃗⃗⃗  changes are made. Then, the following parametric 

identifications also need to be made k=σ, γ˪ =g2/k, R=g2∆0/k, γ||=B. 

Consider a one-particle system with a velocity dependent Lagrangian of the form. 

                                     𝐿 =
1

2𝑚
〖(mv-λ𝐴)2=

1

2
𝑚𝑣⃗2 − 𝜆𝒗⃗⃗⃗ ∙ 𝐴 +

𝜆2

2𝑚
𝐴2                          (4.24)                                 

𝐴 is the vector potential and V=(λ2𝐴2)/2m is the scalar potential. The explicit form of our 

nonlinear potential can be written; 

                               
𝜆

𝑚
𝐴 (𝐸⃗⃗,

𝑔𝑷

𝑘
, (∆⃗⃗⃗𝟎 − Δ⃗⃗⃗)) =

1

𝜏

[
 
 
 
 𝑘 (−𝐸⃗⃗ +

𝑔𝑃⃗⃗

𝑘
)

𝐸⃗⃗ (
𝑔2∆𝟎

𝑘
− (Δ⃗⃗⃗0 − Δ⃗⃗⃗)

𝑔(𝑬⃗⃗⃗∙𝑷⃗⃗⃗)

𝑘
− 𝛾∥(∆𝟎 − ∆)]

 
 
 
 

                           (4.25)                                    

We now proceed to determine the constrained form; 

                                                             
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇
−

𝜕𝐿

𝜕𝑥
= 0                                                    (4.26)                                                                                     

Using Equation 3.25, the constrained form can be written and equation of motion can be 

observed.  

After determining constrained form, equation of motion can be written as; 

                                            𝑚𝑣̇ =
𝒑̇

𝑚
+

𝜆

𝑚
𝐴̇                                                      (4.27)                                          

This yields the following equations of motion: 
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𝐸̇ = −𝑘𝐸 + 𝑔𝑃 

𝑃̇ = −𝛾⊥𝑃 + 𝑔𝐸 △ 

                                                         △̇= −𝛾∥(△ − △0) − 4𝑔𝑃𝐸                                 (4.28) 

The generalized equations of motion yielding the butterfly shaped attractor is given for  P=0, 

which leads to chaotic behavior for certain choices of parameters, in particular the case for 

the operating point k=11.75, g=6.06, g⊥ =2.66, g||=2.75, ∆0 =28 is illustrated in  

 

 

 

 

        Figure 4.5. The basic operating point shows "Throw and catch" chaotic behavior 

similar to the Lorentz attractor. 

Figure 4.5. The dominant chaotic behavior exhibited by the system is generated by the so-

called “Throw and Catch” mechanism, mechanism [13] where an unstable fixed point is 

surrounded by two stable fixed points. More specifically, two linearized equilibrium point 

with a pair of complex conjugate eigenvalues with slightly positive real parts (assumed 

stable) surround an unstable third equilibrium point with eigenvalues (+ - -). The unstable 

point throws the system from the region of one stable point to the other one. Both the Lorenz 

model and this model has an unstable fixed point surrounded by two stable fixed points as 

described.  

For the operating point indicated, the linearized eigenvalues for the unstable fixed point at 

the origin (0,0,0) are {−39.5920008645444, 25.1820008645444, −2.75}, while the 

surrounding fixed points are located at {E -> ±1.26036, P -> ±2.44376, Δ -> 0.851088} have 

the linearized eigenvalues {-18.4623, 0.651145 ±17.2217 I} that correspond to the throw 

catch mechanism.[14]  

Such a phase diagram is indicative of a relatively rich bifurcation scheme including Hopf 

bifurcation and a t ypical bifurcation diagram involving the varied variable g against E where 
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a branch point and two Hopf bifurcation points are indicated. The diagram has been 

generated by Kuznetsov’s MATHCONT software[15].  

 

 

 

 

 

 

 

Figure 4.6.  Bifurcation diagram of the Maxwell Bloch system 

The transition from a regular system to a single center, throw and catch mechanism and a 

limit cycle like structure can clearly be seen as g is increased. 

 

Figure  4.7.  Attractors of the system as g is varied about the operating point 
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5. NONLINEAR TIME SERIES ANALYSIS 

 

When one observes complicated behavior in nature, it is natural to look for a simple 

underlying cause. With one dimensional experimental data only, one asks whether the 

dynamics underlying the data involve a low dimensional chaotic system or nondeterministic 

and random components. In most cases, only a single sequence of measurements at 

successive times (a time series) would be available .  

A natural phenomenon like river flow is highly complicated and most of the time treated as 

nondeterministic. Understanding the behavior of its underlying dynamics will lead to a more 

reliable base for choosing an appropriate modeling and prediction method. Some recent 

studies [16] showed that low-dimensional deterministic techniques can be applied as an 

alternative method for modeling and the results are encouraging. A complicated behavior in 

nature can be identified as deterministic and chaotic or nondeterministic and random, 

subjected to its underlying dynamics. Studies using low- dimensional deterministic 

techniques for modeling and prediction of river flow dynamics are attracting interest and 

producing encouraging results. Thus, low-dimensional deterministic techniques constitute 

an available alternative for studying river flow dynamics provided that sufficient care is 

exercised in their application and in interpreting the results [16]. 

Observational data obtained from natural phenomena adds another complication via 

measurement errors and scalar values which purely represents the underlying dynamical 

system. A well-known and widely used approach to overcome these difficulties is phase 

space reconstruction method. Based on the theorem of Takens, one can construct a phase 

space which successively resembles the global behavior of the original dynamical system 

from scalar measurements. A brief outline of the technique is given in Figure 5.1. When one 

observes complicated behavior in nature, one seeks a simple underlying cause. With only 

experimental data, one asks whether the dynamics are deterministic and chaotic or 

nondeterministic and random. In most cases, one might have only a single sequence of 

measurements at successive times. 

.  
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Figure 5.1. Steps of data analysis in time series 

5.1 PHASE SPACE RECONSTRUCTION 

As the scalar measurements are taken at arbitrary but equally spaced time intervals, a suitable 

delay time is the key point to preserve the global behavior of the dynamics. A small delay 

time can lead to a strongly correlated phase space vectors; on the other hand, information 

loss is inevitable if a large delay time value; the delay time can be estimated from a) Mutual 

information and b) autocorrelations [17].  

 

5.1.1 Mutual Information 

As discussed before in previous section delay time is an important ingredient of the step by 

step procedure to construct the phase space. If time delay is very short when it is taken  

reconstructed vectors’ components  will be too close to each other, causing the state space 

frame to be seen on the diagonal line, so loss of information about the real system will be 

had. If it is too long, important periodicity informaton will be lost. 

In order to start the phase space reconstruction from the scalar flow rate snn(k), where k is 

the time step, we need to construct the delay vector 𝑦⃗𝑛𝑛(𝑘) given by;  

                             𝑦⃗𝑛𝑛(𝑘) = [𝑠𝑛𝑛(𝑘),  𝑠𝑛𝑛(𝑘 + 𝜏), 𝑠𝑛𝑛(𝑘 + 𝑑 − 1)𝜏)  ]                          (5.1)τ 

is the delay time and d means the embedding dimension. Time delay can be found from the 

first zero of the correlation function (linear criterion) or first minimum of the average mutual 

information [18].    
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The logic behind this approach can be summarized as follows. Let the underlying dynamical 

system be given by Equations (3.23a). Then using the Taylor expansion 

we see that the one dimensional signal 

contains information about the underlying N dimensional system. 

Using a very long  delay time will cause the correlations between the parts of reconstructed 

vectors to be lost and signals will be errorly recognized as random. That’s why information 

between  a random variable and another random variable is known  mutual information.  

One can only see the information sent to a channel and the information that is sent back from 

the channel. As an example, assume that X and Y are random variables with a common 

probability distibution P(X;Y). The interaction probability of observing x by a measurement 

of X and observing y by a measurement of Y, namely Pxy(x;y), should be different from the 

product of the individual probabilities P(x) of measuring x out of the set X and P(y)of 

measuring y out of the set Y respectively. This implies that the two are not independent and  

the two sets are correlated. The logarithm of that ratio in bits is therefore called the average 

mutual information of X and Y and is given by 

                                                          log2
𝑃𝑋𝑌(𝑥;𝑦)

𝑃(𝑥)𝑃(𝑦)
                                 (5.2)      

Thus we can sum over the sets X and Y and obtain the average mutual  information as;                                                                      

                                 𝐼(𝑋; 𝑌) = −∑ ∑ 𝑃𝑋𝑌(𝑥; 𝑦)𝑙𝑜𝑔2
𝑃𝑋𝑌(𝑥;𝑦)

𝑃(𝑥)𝑃(𝑦)𝑦𝑥                                (5.3)                                                

To apply this formula to time series analysis, we take S(n) as set X and S(n+τ) as set Y. The 

average mutual information is then given by 

                              𝐼(𝜏) = −∑ ∑ 𝑃(𝑠(𝑛 + 𝜏), 𝑠(𝑛)))𝑙𝑜𝑔2 [
𝑃(𝑠(𝑛+𝜏),𝑠(𝑛))

𝑃(𝑠(𝑛+𝜏))𝑃(𝑠(𝑛))
]𝑦𝑥    

                                              𝐼(𝑋; 𝑌) = 𝐷(𝑝(𝑥, 𝑦)||𝑝(𝑥)𝑝(𝑦))                                       (5.4) 

                                          𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦𝑥  

Here p(x) and p(y) are the probability distributions and the entropy is the logarithm of the 

ratio between the actual distribution and the distribution where the mutul informations are 
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equal. Figure mutual shows the Delay time vs Information in bits of Sakarya river’s branch 

Aktaş. Figure.mutual shows us the first minimum of data gives us delay time of the Aktas 

tributary which is 5.  This calculations are made by using the TISEAN “Time Series Analysis 

package software in C++” [19] 

 

 

 

 

 

 

 

 

To estimate minimum mutual information is found as five. The delay time is necessary for 

constructing the 2n+1 dimensional delay vector from the data We also need to determine the 

embedding dimension in order to construct the delay vector. If the embedding dimension is 

smaller than the proper dimension, points that are not neighbors on the original attractor will 

merge erroneously into the same neighborhood via projection to a lower dimensional space. 

Then finding false-nearest neighbors of all  those points on embedded attractor requires 

increasing the dimensionality of the embedding space until the number of neighbors 

stabilize. Figure 4.3 shows mutual information of botbasi subriver. 

 

 

 

 

 

 

Figure 5.2. Mutual information of Aktaş Subriver of Sakarya River 
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As one can see in Figure 4.3. first minimum is four. The minima of the  mutual information 

for all tributaries are given in Table  5.1 and range between 5 and 9.   

5.1.2 False-Nearest Neighbors 

One of the main problems of reconstructing a phase space from a scalar time series is 

choosing a suitable embedding dimension, which will at least topologically preserve the 

global properties of the dynamical system at least locally. Embedding dimension directly 

affects the attractor trajectory in the phase space, which alters the neighborhood of the points. 

If the embedding dimension is chosen to be smaller than the actual attractor dimension, 

projection of the trajectory will map false values into other neighborhoods of values; these 

are called the false neighbors. The calculation goes as follows: Choose a vector 𝑅𝑖
⃗⃗ ⃗⃗  

constructed using the delay time suggested by mutual information and calculate the distance 

between its nearest neighbors 𝑅𝑗
⃗⃗ ⃗⃗  in an arbitrary dimension. Iterate this procedure for all the 

successive vectors and calculate Ri using the following equation. 

 

                                                        𝑅𝑖 =
|𝑅𝑖+1−𝑅𝑗+1|

‖𝑅𝑖⃗⃗⃗⃗⃗−𝑅𝑗⃗⃗ ⃗⃗ ⃗‖
                                                (5.5)   

 

A point of data is selected as a false neighbor if the distance, Ri exceeds a given threshold. 

A typical false neighbor’s calculation is shown in Figure 5.4. 

Displacement of  (d+1) dimension and nearest neighbor’s delayed time vector can be 

calculated as follows,  

 

Figure 5.3. Mutual information of Botbaşı subriver of Sakarya River 
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              𝑅𝑑+1(𝑘)2 = ∑ [𝑠𝑛𝑛(𝑘𝑑+1
𝑚=1 + (𝑚 − 1)𝜏) − 𝑠𝑛𝑛(𝑘 + (𝑚 − 1)𝜏]2                       (4.6) 

 

Displacement of (d+1) dimension and displacement of d dimension Rd+1/Rd will be 

calculated. Where this ratio achieves a threshold points further increasing the dimensionality 

of the delay vector will no longer introduce false neighbors, since we are not embedding the 

system into a lower dimensional manifold. 

 

                                       √
𝑅𝑑+1

2 (𝑘)−𝑅𝑑
2(𝑘)

𝑅𝑑
2(𝑘)

=
|𝑠(𝑘+𝑑𝜏)−𝑠𝑛𝑛(𝑘+𝑑𝜏)|

𝑅𝑑(𝑘)
                                         (5.7) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. False-Nearest Neighbors for Botbasi branch of Sakarya River 

5.1.3 Maximal Lyapunov Exponent 

Lyapunov exponent is a measure of divergence or convergence of orbits in a phase space, 

which can also be calculated for a time series. As the reconstructed phase space preserves 

the topology of the underlying dynamics, Lyapunov exponents calculated for the embedded 

phase space will show the chaotic nature of the original attractor. The rate of exponential 

growth between the nearby trajectories is called as the maximal Lyapunov exponent and a 

positive rate indicates chaotic behavior. The following equation is used to calculate the 

stretching of the trajectories;  

                                  𝑆(𝜖,𝑚, 𝑡) =< ln
1

𝑢𝑛
𝜎𝑠𝑛𝜖𝑢𝑛|𝑠𝑛+𝑡 − 𝑠𝑛′+𝑡| >                                 (5.7)       
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 is a neighboring point to sn in the phase space in the course of the attractor, ϵ is the box 

size. At a future time t the distance between these points will be 𝑠𝑛+𝑡 − 𝑠𝑛′+𝑡. So the formula 

measures the growth of this distance in time from the initial distance. If S (ϵ,m,t) is linear for 

a range of iterations, the slope of this line gives an approximate value for the maximal 

Lyapunov exponent. If a robust increase, which is sufficient to determine its sign, is 

observed, this can be taken as an indicator of chaotic behavior.  

5.1.4 BASIC TIME SERIES ANALYSIS PROCEDURE USING TISEAN 

In order to perform time series analysis, attractor reconstruction and Lyapunov exponent 

calculation using TISEAN, the following steps should be carried out: 

 Using the autocorrelation  function one gets a linear estimate of the delay time from its first 

zero. A better estimate of the delay time can be found from the mutual information by 

plotting it versus time. Using its first minimum, one can find a suitable delay time. The 

relevant TISEAN command is: 

mutual: Estimates the time delayed mutual information  of the data set. To estimate the 

embedding dimension, one finds the lowest dimension where fraction of the false nearest 

neighbors stabilize by plotting this fraction against embedding dimension. time. The relevant 

TISEAN command is:  

false_nearest: Determines the fraction of false nearest neighbors.To estimate the Maximal 

Lyapunov Exponent, one uses the TISEAN commands lyap_k or lyap_r.  

lyap_k: Estimates the maximal Lyapunov exponent using the Kantz  algorithm. 

lyap_r: Estimates the maximal Lyapunov exponent using the Rosenstein  algorithm. 

corr: To compute the autocorrelation of a scalar data set. 

 

'n
s
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6. RESULTS AND DISCUSSION OF RIVER FLOW 
 

Table.6.1 shows us mutual information values, embedding dimension values and Lyapr 

values which are the largest Lyapunov exponent of a given scalar data set using the algorithm 

of Rosenstein et al [20]; (this is claimed to be a better estimate for smaller data sets as 

explained below). Lyapk values are largest Lyapunov exponent of a given scalar data set 

using the algorithm of Kantz [21], with further explanation in [22].  

 

Table 6.1. Nonlinear Time Series Analysis results of Sakarya River’s tributaries 

 

The algorithm proposed by Kantz establishes that the divergence rate trajectories fluctuate 

along the trajectory, with the fluctuation given by the spectrum of effective Lyapunov 

exponents. Rosenstein et al. have proposed a similar algorithm where the distance between 

the trajectories is defined as the Euclidian norm in the reconstructed phase space and they 

have also used only one neighbor trajectory. The algorithm suggested by Rosenstein is more 

effective when the number of data is relatively small. In our study, the results obtained from 

each algorithm are in parallel with each other. A typical Lyapunov Exponent by stretching 

exponent calculation using the Rosenstein approach is illustrated in Figure.6.2, while the 

calculation using the standard Kantz approach is illustrated in Figure 6.3.  The statistical 

issues involved in the selection of the approach are discussed extensively in [23] and [24]. 

Branches of 

Sakarya river 

Mutual 

information 

Embedding 

dimension 

Lyapr 

values 

Lyapk 

values 

Aktas 5 6 0.012 0.008 

Besdegirmen 4 6 0.018 0.021 

Botbasi 4 5 0.014 0.016 

Dogancay 4 4 0.016 0.012 

Dokurcan 4 5 0.016 0.016 

Hamidiye 7 6 0.015 0.008 

Karakoy 4 6 0.021 0.034 

Kargi 9 4 0.010 0.012 

Kocasu 4 6 0.018 0.030 

Mesecik 8 6 0.009 0.020 

Taksirkopru 4 11 0.015 0.039 
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             Figure 6.1. Stretching factor v.s. iteration graph using the Rosenstein Algorithm 

for Aktas branch 

 

 

              Figure 6.2. Stretching factor v.s. iteration graph using the Kantz Algorithm for 

Aktas branch 

 

 

 

 

 

  

Figure 6.3. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for               

Botbasi branch 
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Figure 6.4. Stretching factor v.s. iteration graph using the Kantz Algorithm for               

Botbasi branch 

 

 

 

 

 

Figure 6.5. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for               

Besdegirmen branch 

 

 

 

 

 

Figure 6.6. Stretching factor v.s. iteration graph using the Kantz Algorithm for               

Besdegirmen branch 
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   Figure 6.7. Stretching factor v.s. iteration graph using the Rosenstein Algorithm 

for               Dogancay branch 

 

 

 

 

 

Figure 6.8. Stretching factor v.s. iteration graph using the Kanz Algorithm for               

Dogancay branch 

 

 

 

 

  

 

Figure 6.9. Stretching factor v.s. iteration graph using the Rosenstein Algorithm for               

Hamidiye  branch. 
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      Figure 6.10. Stretching factor v.s. iteration graph using the Kantz Algorithm for 

Hamidiye branch. 

 

 

 

 

 

 

                Figure 6.11. Stretching factor v.s. iteration graph using the Rosenstein Algorithm 

for Kargi branch. 
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             Figure 6.12. Stretching factor v.s. iteration graph using the Kantz Algorithm for 

Kargi branch. 

 

 

 

 

 

 

                Figure 6.13. Stretching factor v.s. iteration graph using the Rosenstein Algorithm 

for Kocasu branch. 
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              Figure 6.14. Stretching factor v.s. iteration graph using the Kantz Algorithm for 

Kocasu branch. 

 

         

 

 

 

 

                Figure 6.15. Stretching factor v.s. iteration graph using the Rosenstein Algorithm 

for Mesecik branch 

  

 

 

               

 

 

        Figure 6.16. Stretching factor v.s. iteration graph using the Kantz Algorithm for 

Mesecik branch 
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                Figure 6.17. Stretching factor v.s. iteration graph using the Rosenstein Algorithm 

for Taksirkpopru branch 

 

 

 

 

 

 

                   Figure 6.18. Stretching factor v.s. iteration graph using the Kanz Algorithm for 

Taksirkpopru branc 
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7. CONCLUSION 

 

Understanding the dynamics of river flow is crucial to select a feasible modeling method to 

forecast river discharge. In this study, phase space reconstruction method is used to obtain a 

depiction of the underlying dynamics, which will preserve the global invariants of the 

system. Maximal Lyapunov exponent, which is a very strong evidence for chaotic behavior 

for eleven branches of the Sakarya River has been calculated. These results are encouraging 

for applying chaotic modeling routines instead of probabilistic methods. 

As a result, monthly mean flow values of Sakarya River show chaotic behavior as quantified 

by the maximal Lyapunov Exponent. That may imply that the river has no long time  trend, 

which is observed by [24]. That seems to be due to the dams on the river and the increasing 

use of the river’s water by the people and also climate changes. According to article [25], 

Benue River in Nigeria has a comparable trend but no low dimensional phase space chaotic 

dynamics has been observed there. Therefore, we can say Sakarya River has limited future 

for electricity from dams and other human exploitation because of its chaotic dynamics.  We 

have studied the article by S. Isik et al. [16] that reaches the same conclusions using quasi-

linear time series analysis methods from regular statistical analysis. This work corroborates 

the findings and finally demonstrates that the phenomenon may be better understood by 

nonlinear time series analysis than stochastic techniques. 

Maxwell-Bloch equations which is related to Lorenz type systems was transformed into 

Lagrangian form and equations of motions are constructed in this formalism. The equations 

of motion can be used to analyze situations under  this system is going to chaos. 

Then again, Hamiltonian systems protect the stage space volume along these lines a butterfly 

sort attractor can not be straightforwardly communicated in this notation. The benefit of 

utilizing the present formalism empowers one to attempt the wide assortment of instruments 

accessible for building approximate solutions of Hamiltonian systems.The  below  results  

obtained  numerically  by  the  use  of  a  Fortran  code  that  include  wolf  algorithm in 

order to determine trajectories and lyapunov exponents of dynamical system, and a reduce 

code which calculates the variational equations needed for wolf algorithm.  In the equation 

of  motions the parameter p is kept constant and the coefficient of oscillator term  g  varied  

from  0  to  2.  It  is  seen  that  regular motion  become  dominant  when  the coefficient of 
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oscillatory term increased. We also analyze maximal lyapunov exponents of the system  

under  the  specific  range  of  parameter.  It  is observed  that  when  the  parameter  g  is 

converging to zero lyapunov exponents gets bigger. Some of the  phase space trajectories 

and lyapunov exponents were presented to illustrate this. 
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APPENDIX A: MUTUAL INFORMATION C++ CODE 
 

In  Mutual Information part delay time is calculated by the use of TISEAN software 

package. Estimates the time delayed mutual information of the data. It is the simplest 

possible  realization. It uses a fixed mesh of boxes. No finite sample corrections are 

implemented so far.  This package is called by typing mutual.exe in command prompt then 

type data which is  time series then output file name is created. Result calculations are 

collected in given name output file in computer  documentary. 

Using C++ code below, one can enter following ; 

Enter the command line.  

“ mutual.exe filename.dat -D (maximal time delay example 20) -ofilenamemut.dat” 

The first line contains the number of occupied boxes, the second one the shannon entropy 

(normalized to the number of occupied boxes), the last D lines the mutual information 

(first column: delay, second column: mutual information). 

Here is the C++ code below: 

/*Author: Rainer Hegger. Last modified, Sep 20, 2000 */ 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <limits.h> 
#include <string.h> 
#include "routines/tsa.h" 
 
#define WID_STR "Estimates the time delayed mutual information\n\t\ 
of the data set" 
 
 
char *file_out=NULL,stout=1; 
char *infile=NULL; 
unsigned long length=ULONG_MAX,exclude=0; 
unsigned int column=1; 
unsigned int verbosity=0xff; 
long partitions=16,corrlength=20; 
long *array,*h1,*h11,**h2; 
 
void show_options(char *progname) 
{ 
  what_i_do(progname,WID_STR); 
  fprintf(stderr," Usage: %s [Options]\n\n",progname); 
  fprintf(stderr," Options:\n"); 
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  fprintf(stderr,"Everything not being a valid option will be interpreted" 
          " as a possible" 
          " datafile.\nIf no datafile is given stdin is read. Just - also" 
          " means stdin\n"); 
  fprintf(stderr,"\t-l # of points to be used [Default is all]\n"); 
  fprintf(stderr,"\t-x # of lines to be ignored [Default is 0]\n"); 
  fprintf(stderr,"\t-c column to read  [Default is 1]\n"); 
  fprintf(stderr,"\t-b # of boxes [Default is 16]\n"); 
  fprintf(stderr,"\t-D max. time delay [Default is 20]\n"); 
  fprintf(stderr,"\t-o output file [-o without name means 'datafile'.mut;" 
   "\n\t\tNo -o means write to stdout]\n"); 
  fprintf(stderr,"\t-V verbosity level [Default is 1]\n\t\t" 
          "0='only panic messages'\n\t\t" 
          "1='+ input/output messages'\n"); 
  fprintf(stderr,"\t-h  show these options\n"); 
  fprintf(stderr,"\n"); 
  exit(0); 
} 
 
void scan_options(int n,char** in) 
{ 
  char *out; 
 
  if ((out=check_option(in,n,'l','u')) != NULL) 
    sscanf(out,"%lu",&length); 
  if ((out=check_option(in,n,'x','u')) != NULL) 
    sscanf(out,"%lu",&exclude); 
  if ((out=check_option(in,n,'c','u')) != NULL) 
    sscanf(out,"%u",&column); 
  if ((out=check_option(in,n,'b','u')) != NULL) 
    sscanf(out,"%lu",&partitions); 
  if ((out=check_option(in,n,'D','u')) != NULL) 
    sscanf(out,"%lu",&corrlength); 
  if ((out=check_option(in,n,'V','u')) != NULL) 
    sscanf(out,"%u",&verbosity); 
  if ((out=check_option(in,n,'o','o')) != NULL) { 
    stout=0; 
    if (strlen(out) > 0) 
      file_out=out; 
  } 
} 
 
double make_cond_entropy(long t) 
{ 
  long i,j,hi,hii,count=0; 
  double hpi,hpj,pij,cond_ent=0.0,norm; 
 
  for (i=0;i<partitions;i++) { 
    h1[i]=h11[i]=0; 
    for (j=0;j<partitions;j++) 
      h2[i][j]=0; 
  } 
  for (i=0;i<length;i++) 
    if (i >= t) { 
      hii=array[i]; 
      hi=array[i-t]; 
      h1[hi]++; 
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      h11[hii]++; 
      h2[hi][hii]++; 
      count++; 
    } 
 
  norm=1.0/(double)count; 
  cond_ent=0.0; 
 
  for (i=0;i<partitions;i++) { 
    hpi=(double)(h1[i])*norm; 
    if (hpi > 0.0) { 
      for (j=0;j<partitions;j++) { 
 hpj=(double)(h11[j])*norm; 
 if (hpj > 0.0) { 
   pij=(double)h2[i][j]*norm; 
   if (pij > 0.0) 
     cond_ent += pij*log(pij/hpj/hpi); 
 } 
      } 
    } 
  } 
 
  return cond_ent; 
} 
 
int main(int argc,char** argv) 
{ 
  char stdi=0; 
  long tau,i; 
  double *series,min,interval,shannon; 
  FILE *file; 
   
  if (scan_help(argc,argv)) 
    show_options(argv[0]); 
   
  scan_options(argc,argv); 
#ifndef OMIT_WHAT_I_DO 
  if (verbosity&VER_INPUT) 
    what_i_do(argv[0],WID_STR); 
#endif 
 
  infile=search_datafile(argc,argv,&column,verbosity); 
  if (infile == NULL) 
    stdi=1; 
 
  if (file_out == NULL) { 
    if (!stdi) { 
      check_alloc(file_out=(char*)calloc(strlen(infile)+5,(size_t)1)); 
      strcpy(file_out,infile); 
      strcat(file_out,".mut"); 
    } 
    else { 
      check_alloc(file_out=(char*)calloc((size_t)10,(size_t)1)); 
      strcpy(file_out,"stdin.mut"); 
    } 
  } 
  if (!stout) 
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    test_outfile(file_out); 
 
  series=(double*)get_series(infile,&length,exclude,column,verbosity); 
  rescale_data(series,length,&min,&interval); 
 
  check_alloc(h1=(long *)malloc(sizeof(long)*partitions)); 
  check_alloc(h11=(long *)malloc(sizeof(long)*partitions)); 
  check_alloc(h2=(long **)malloc(sizeof(long *)*partitions)); 
  for (i=0;i<partitions;i++)  
    check_alloc(h2[i]=(long *)malloc(sizeof(long)*partitions)); 
  check_alloc(array=(long *)malloc(sizeof(long)*length)); 
  for (i=0;i<length;i++) 
    if (series[i] < 1.0) 
      array[i]=(long)(series[i]*(double)partitions); 
    else 
      array[i]=partitions-1; 
  free(series); 
 
  shannon=make_cond_entropy(0); 
  if (corrlength >= length) 
    corrlength=length-1; 
 
  if (!stout) { 
    file=fopen(file_out,"w"); 
    if (verbosity&VER_INPUT) 
      fprintf(stderr,"Opened %s for writing\n",file_out); 
    fprintf(file,"#shannon= %e\n",shannon); 
    fprintf(file,"%d %e\n",0,shannon); 
    for (tau=1;tau<=corrlength;tau++) { 
      fprintf(file,"%ld %e\n",tau,make_cond_entropy(tau)); 
      fflush(file); 
    } 
    fclose(file); 
  } 
  else { 
    if (verbosity&VER_INPUT) 
      fprintf(stderr,"Writing to stdout\n"); 
    fprintf(stdout,"#shannon= %e\n",shannon); 
    fprintf(stdout,"%d %e\n",0,shannon); 
    for (tau=1;tau<=corrlength;tau++) { 
      fprintf(stdout,"%ld %e\n",tau,make_cond_entropy(tau)); 
      fflush(stdout); 
    } 
  } 
 
  return 0; 
} 
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APPENDIX B: FALSE NEAREST C++ CODE 
 

This program looks for the nearest neighbors of all data points in m dimensions and iterates 

these neighbors one step into the future. If the ratio of the distance of the iteration and that 

of the nearest neighbor exceeds a given threshold the point is marked as a wrong neighbor. 

The output is the fraction of false neighbors for the specified embedding dimensions. 

Program implemented a new second criterion. If the distance to the nearest neighbor 

becomes smaller than the standard deviation of the data devided by the threshold, the point 

is omitted as mentioned before in embedding dimension part.  This turns out to be a stricter 

criterion, but can show the effect that for increasing embedding dimensions the number of 

points which enter the statistics is so small, that the whole statistics is meanlingless. 

In command prompt, one can call by typing false_ nearest.exe  then one must call original 

time series data by typing data file name then create a new file name therefore, calculated 

false nearest dimensions collected in this new file name data in directory.  

Finding embedding time of applied data of Sakarya River by using TISEAN false_nearest 

C++ code. Code is given below, code can be used by typing; 

false_nearest.exe filename.dat -ofilenamefal.dat  

/*Author: Rainer Hegger. Last modified: Sep 3, 1999 */ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <limits.h> 
#include <math.h> 
#include "routines/tsa.h" 
 
#define WID_STR "Determines the fraction of false nearest neighbors." 
 
char *outfile=NULL; 
char *infile=NULL; 
char stdo=1; 
unsigned long length=ULONG_MAX,exclude=0,theiler=0; 
unsigned int column=1,delay=1,maxdim=5,mindim=1; 
unsigned int verbosity=0xff; 
double rt=10.0; 
double eps0=1.0e-5; 
double *series; 
double aveps,vareps; 
double varianz; 
 
#define BOX 1024 
int ibox=BOX-1; 

http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1/docs/chaospaper/node9.html
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long **box,*list; 
unsigned long toolarge; 
 
void show_options(char *progname) 
{ 
  what_i_do(progname,WID_STR); 
  fprintf(stderr," Usage: %s [options]\n",progname); 
  fprintf(stderr," Options:\n"); 
  fprintf(stderr,"Everything not being a valid option will be interpreted" 
          " as a possible" 
          " datafile.\nIf no datafile is given stdin is read. Just - also" 
          " means stdin\n"); 
  fprintf(stderr,"\t-l # of data [default: whole file]\n"); 
  fprintf(stderr,"\t-x # of lines to ignore [default: 0]\n"); 
  fprintf(stderr,"\t-c column to read [default: 1]\n"); 
  fprintf(stderr,"\t-m minimal embedding dimension [default: 1]\n"); 
  fprintf(stderr,"\t-M maximal embedding dimension [default: 5]\n"); 
  fprintf(stderr,"\t-d delay [default: 1]\n"); 
  fprintf(stderr,"\t-f escape factor [default: 10.0]\n"); 
  fprintf(stderr,"\t-t theiler window [default: 0]\n"); 
  fprintf(stderr,"\t-o output file [default: 'datafile'.fnn; without -o" 
   " stdout]\n"); 
  fprintf(stderr,"\t-V verbosity level [default: 3]\n\t\t" 
          "0='only panic messages'\n\t\t" 
          "1='+ input/output messages'\n\t\t" 
          "2='+ information about the current state\n"); 
  fprintf(stderr,"\t-h show these options\n"); 
  exit(0); 
} 
 
void scan_options(int n,char **in) 
{ 
  char *out; 
 
  if ((out=check_option(in,n,'l','u')) != NULL) 
    sscanf(out,"%lu",&length); 
  if ((out=check_option(in,n,'x','u')) != NULL) 
    sscanf(out,"%lu",&exclude); 
  if ((out=check_option(in,n,'c','u')) != NULL) 
    sscanf(out,"%u",&column); 
  if ((out=check_option(in,n,'m','u')) != NULL) 
    sscanf(out,"%u",&mindim); 
  if ((out=check_option(in,n,'M','u')) != NULL) 
    sscanf(out,"%u",&maxdim); 
  if ((out=check_option(in,n,'d','u')) != NULL) 
    sscanf(out,"%u",&delay); 
  if ((out=check_option(in,n,'f','f')) != NULL) 
    sscanf(out,"%lf",&rt); 
  if ((out=check_option(in,n,'t','u')) != NULL) 
    sscanf(out,"%lu",&theiler); 
  if ((out=check_option(in,n,'V','u')) != NULL) 
    sscanf(out,"%u",&verbosity); 
  if ((out=check_option(in,n,'o','o')) != NULL) { 
    stdo=0; 
    if (strlen(out) > 0) 
      outfile=out; 
  } 
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} 
 
char find_nearest(long n,unsigned int dim,double eps) 
{ 
  int x,y,x1,x2,y1,i,i1; 
  long element,which= -1; 
  double dx,maxdx,mindx=1.1,factor; 
 
  x=(int)(series[n-(dim-1)*delay]/eps)&ibox; 
  y=(int)(series[n]/eps)&ibox; 
   
  for (x1=x-1;x1<=x+1;x1++) { 
    x2=x1&ibox; 
    for (y1=y-1;y1<=y+1;y1++) { 
      element=box[x2][y1&ibox]; 
      while (element != -1) { 
 if (labs(element-n) > theiler) { 
   maxdx=fabs(series[n]-series[element]); 
   for (i=1;i<dim;i++) { 
     i1=i*delay; 
     dx=fabs(series[n-i1]-series[element-i1]); 
     if (dx > maxdx) 
       maxdx=dx; 
   } 
   if ((maxdx < mindx) && (maxdx > 0.0)) { 
     which=element; 
     mindx=maxdx; 
   } 
 } 
 element=list[element]; 
      } 
    } 
  } 
 
  if ((which != -1) && (mindx <= eps) && (mindx <= varianz/rt)) { 
    aveps += mindx; 
    vareps += mindx*mindx; 
    factor=fabs(series[n+1]-series[which+1])/mindx; 
    if (factor > rt) 
      toolarge++; 
    return 1; 
  } 
  return 0; 
} 
 
int main(int argc,char **argv) 
{ 
  char stdi=0; 
  FILE *file=NULL; 
  double min,inter,epsilon,av; 
  char *nearest,alldone; 
  long i; 
  unsigned int dim; 
  unsigned long donesofar; 
 
  if (scan_help(argc,argv)) 
    show_options(argv[0]); 
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  scan_options(argc,argv); 
#ifndef OMIT_WHAT_I_DO 
  if (verbosity&VER_INPUT) 
    what_i_do(argv[0],WID_STR); 
#endif 
 
  infile=search_datafile(argc,argv,&column,verbosity); 
  if (infile == NULL) 
    stdi=1; 
 
  if (outfile == NULL) { 
    if (!stdi) { 
      check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1)); 
      strcpy(outfile,infile); 
      strcat(outfile,".fnn"); 
    } 
    else { 
      check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1)); 
      strcpy(outfile,"stdin.fnn"); 
    } 
  } 
  if (!stdo) 
    test_outfile(outfile); 
 
  series=(double*)get_series(infile,&length,exclude,column,verbosity); 
  rescale_data(series,length,&min,&inter); 
  variance(series,length,&av,&varianz); 
 
  check_alloc(list=(long*)malloc(sizeof(long)*length)); 
  check_alloc(nearest=(char*)malloc(length)); 
  check_alloc(box=(long**)malloc(sizeof(long*)*BOX)); 
  for (i=0;i<BOX;i++) 
    check_alloc(box[i]=(long*)malloc(sizeof(long)*BOX)); 
 
  if (!stdo) { 
    file=fopen(outfile,"w"); 
    if (verbosity&VER_INPUT) 
      fprintf(stderr,"Opened %s for writing\n",outfile); 
  } 
  else { 
    if (verbosity&VER_INPUT) 
      fprintf(stderr,"Writing to stdout\n"); 
  } 
 
  for (dim=mindim;dim<=maxdim;dim++) { 
    epsilon=eps0; 
    toolarge=0; 
    alldone=0; 
    donesofar=0; 
    aveps=0.0; 
    vareps=0.0; 
    for (i=0;i<length;i++) 
      nearest[i]=0; 
    if (verbosity&VER_USR1) 
      fprintf(stderr,"Start for dimension=%u\n",dim); 
    while (!alldone && (epsilon < 2.*varianz/rt)) { 
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      alldone=1; 
      make_box(series,box,list,length-1,BOX,dim,delay,epsilon); 
      for (i=(dim-1)*delay;i<length-1;i++) 
 if (!nearest[i]) { 
   nearest[i]=find_nearest(i,dim,epsilon); 
   alldone &= nearest[i]; 
   donesofar += (unsigned long)nearest[i]; 
 } 
      if (verbosity&VER_USR1) 
 fprintf(stderr,"Found %lu up to epsilon=%e\n",donesofar,epsilon*inter); 
      epsilon*=sqrt(2.0); 
      if (!donesofar) 
 eps0=epsilon; 
    } 
    if (donesofar == 0) { 
      fprintf(stderr,"Not enough points found!\n"); 
      exit(FALSE_NEAREST_NOT_ENOUGH_POINTS); 
    } 
    aveps *= (1./(double)donesofar); 
    vareps *= (1./(double)donesofar); 
    if (stdo) { 
      fprintf(stdout,"%u %e %e %e\n",dim,(double)toolarge/(double)donesofar, 
       aveps,vareps); 
      fflush(stdout); 
    } 
    else { 
      fprintf(file,"%u %e %e %e\n",dim,(double)toolarge/(double)donesofar, 
       aveps,vareps); 
      fflush(file); 
    } 
  } 
  if (!stdo) 
    fclose(file); 
 
  if (infile != NULL) 
    free(infile); 
  if (outfile != NULL) 
    free(outfile); 
  free(series); 
  free(list); 
  free(nearest); 
  for (i=0;i<BOX;i++) 
    free(box[i]); 
  free(box); 
  return 0; } 
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APPENDIX C: LYAPUNOV EXPONENTS C++ CODES  
 

Lyapunov exponent are calculated in two different algorithms. One is with Kantz algorithm 

that is called Lyap_k.  

A n-dimensional system will have n Lyapunov exponents. The Lyapunov exponents are 

used to study the stability of a system, e. g., a fixed point has only negative Lyapunov 

exponents, periodic systems have one zero and else negative Lyapunov exponents, and 

chaotic systems have at least one positive Lyapunov exponent.  

To estimate the Lyapunov exponent of time series, several approaches were suggested, like 

the methods of Wolff, Kantz or Rosenstein. Here we will use the method of Rosenstein 

provided by the TISEAN toolbox.  

Let us consider the Henon system as a typical example code, 

C++ source code is,   

a = 2;  

b = 0;  

x(1,1) = .91;  

x(1,2) = 0;  

for i = 2:10001      

x(i,1) = 1 - a * x(i-1,1)^2 + b * x(i-1,2);      

x(i,2) = x(i-1,1);  

end x(1,:) = []; save henon.dat x -ascii -tabs  

In order to compute the Lyapunov exponent using TISEAN we call 

tiseanPath = 'C:\Programme\MATLAB6p5\work\Tisean\'; system([tiseanPath, 'lyap_r -s20 

-o lyap.dat henon.dat']);  l = load('lyap.dat'); plot(l(:,1), l(:,2)) xlabel('Iteration'), 

ylabel('log(stretching factor)')  

 

Here is the TISEAN software C code below:  

 
Lyap k code : 
 
/*Author: Rainer Hegger. Last modified: Sep 3, 1999*/ 
#include <math.h> 
#include <limits.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "routines/tsa.h" 
 
#define WID_STR "Estimates the maximal Lyapunov exponent using the Kantz\n\t\ 
algorithm" 
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#define BOX 128 
const unsigned int ibox=BOX-1; 
 
unsigned long length=ULONG_MAX; 
unsigned long exclude=0; 
unsigned long reference=ULONG_MAX; 
unsigned int maxdim=2; 
unsigned int mindim=2; 
unsigned int delay=1; 
unsigned int column=1; 
unsigned int epscount=5; 
unsigned int maxiter=50; 
unsigned int window=0; 
unsigned int verbosity=0xff; 
double epsmin=1.e-3,epsmax=1.e-2; 
char eps0set=0,eps1set=0; 
char *outfile=NULL; 
char *infile=NULL; 
 
double *series,**lyap; 
long box[BOX][BOX],*liste,**lfound,*found,**count; 
double max,min; 
 
void show_options(char *progname) 
{ 
  what_i_do(progname,WID_STR); 
 
  fprintf(stderr," Usage: %s [options]\n",progname); 
  fprintf(stderr," Options:\n"); 
  fprintf(stderr,"Everything not being a valid option will be " 
   "interpreted as a possible datafile.\nIf no datafile " 
   "is given stdin is read. Just - also means stdin\n"); 
  fprintf(stderr,"\t-l # of data [default: whole file]\n"); 
  fprintf(stderr,"\t-x # of lines to be ignored [default: 0]\n"); 
  fprintf(stderr,"\t-c column to read [default: 1]\n"); 
  fprintf(stderr,"\t-M maxdim [default: 2]\n"); 
  fprintf(stderr,"\t-m mindim [default: 2]\n"); 
  fprintf(stderr,"\t-d delay [default: 1]\n"); 
  fprintf(stderr,"\t-r mineps [default: (data interval)/1000]\n"); 
  fprintf(stderr,"\t-R maxeps [default: (data interval)/100]\n"); 
  fprintf(stderr,"\t-# # of eps [default: 5]\n"); 
  fprintf(stderr,"\t-n # of reference points [default: # of data]\n"); 
  fprintf(stderr,"\t-s # of iterations [default: 50]\n"); 
  fprintf(stderr,"\t-t time window [default: 0]\n"); 
  fprintf(stderr,"\t-o outfile [default: 'datafile'.lyap]\n"); 
  fprintf(stderr,"\t-V verbosity level [default: 3]\n\t\t" 
   "0='only panic messages'\n\t\t" 
   "1='+ input/output messages'\n\t\t" 
   "2='+ plus statistics'\n"); 
  fprintf(stderr,"\t-h show these options\n"); 
  exit(0); 
} 
 
void scan_options(int n,char **str) 
{ 
  char *out; 
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  if ((out=check_option(str,n,'l','u')) != NULL) 
    sscanf(out,"%lu",&length); 
  if ((out=check_option(str,n,'x','u')) != NULL) 
    sscanf(out,"%lu",&exclude); 
  if ((out=check_option(str,n,'c','u')) != NULL) 
    sscanf(out,"%u",&column); 
  if ((out=check_option(str,n,'M','u')) != NULL) 
    sscanf(out,"%u",&maxdim); 
  if ((out=check_option(str,n,'m','u')) != NULL) 
    sscanf(out,"%u",&mindim); 
  if ((out=check_option(str,n,'d','u')) != NULL) 
    sscanf(out,"%u",&delay); 
  if ((out=check_option(str,n,'r','f')) != NULL) { 
    eps0set=1; 
    sscanf(out,"%lf",&epsmin); 
  } 
  if ((out=check_option(str,n,'R','f')) != NULL) { 
    eps1set=1; 
    sscanf(out,"%lf",&epsmax); 
  } 
  if ((out=check_option(str,n,'#','u')) != NULL) 
    sscanf(out,"%u",&epscount); 
  if ((out=check_option(str,n,'n','u')) != NULL) 
    sscanf(out,"%lu",&reference); 
  if ((out=check_option(str,n,'s','u')) != NULL) 
    sscanf(out,"%u",&maxiter); 
  if ((out=check_option(str,n,'t','u')) != NULL) 
    sscanf(out,"%u",&window); 
  if ((out=check_option(str,n,'V','u')) != NULL) 
    sscanf(out,"%u",&verbosity); 
  if ((out=check_option(str,n,'o','o')) != NULL) 
    if (strlen(out) > 0) 
      outfile=out; 
} 
 
void put_in_boxes(double eps) 
{ 
  unsigned long i; 
  long j,k; 
  static unsigned long blength; 
 
  blength=length-(maxdim-1)*delay-maxiter; 
 
  for (i=0;i<BOX;i++) 
    for (j=0;j<BOX;j++) 
      box[i][j]= -1; 
 
  for (i=0;i<blength;i++) { 
    j=(long)(series[i]/eps)&ibox; 
    k=(long)(series[i+delay]/eps)&ibox; 
    liste[i]=box[j][k]; 
    box[j][k]=i; 
  } 
} 
 
void lfind_neighbors(long act,double eps) 
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{ 
  unsigned int hi,k,k1; 
  long i,j,i1,i2,j1,element; 
  static long lwindow; 
  double dx,eps2=sqr(eps); 
 
  lwindow=(long)window; 
  for (hi=0;hi<maxdim-1;hi++) 
    found[hi]=0; 
  i=(long)(series[act]/eps)&ibox; 
  j=(long)(series[act+delay]/eps)&ibox; 
  for (i1=i-1;i1<=i+1;i1++) { 
    i2=i1&ibox; 
    for (j1=j-1;j1<=j+1;j1++) { 
      element=box[i2][j1&ibox]; 
      while (element != -1) { 
 if ((element < (act-lwindow)) || (element > (act+lwindow))) { 
   dx=sqr(series[act]-series[element]); 
   if (dx <= eps2) { 
     for (k=1;k<maxdim;k++) { 
       k1=k*delay; 
       dx += sqr(series[act+k1]-series[element+k1]); 
       if (dx <= eps2) { 
  k1=k-1; 
  lfound[k1][found[k1]]=element; 
  found[k1]++; 
       } 
       else 
  break; 
     } 
   } 
 } 
 element=liste[element]; 
      } 
    } 
  } 
} 
 
void iterate_points(long act) 
{ 
  double **lfactor; 
  double *dx; 
  unsigned int i,j,l,l1; 
  long k,element,**lcount; 
   
  check_alloc(lfactor=(double**)malloc(sizeof(double*)*(maxdim-1))); 
  check_alloc(lcount=(long**)malloc(sizeof(long*)*(maxdim-1))); 
  for (i=0;i<maxdim-1;i++) { 
    check_alloc(lfactor[i]=(double*)malloc(sizeof(double)*(maxiter+1))); 
    check_alloc(lcount[i]=(long*)malloc(sizeof(long)*(maxiter+1))); 
  } 
  check_alloc(dx=(double*)malloc(sizeof(double)*(maxiter+1))); 
 
  for (i=0;i<=maxiter;i++) 
    for (j=0;j<maxdim-1;j++) { 
      lfactor[j][i]=0.0; 
      lcount[j][i]=0; 
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    } 
   
  for (j=mindim-2;j<maxdim-1;j++) { 
    for (k=0;k<found[j];k++) { 
      element=lfound[j][k]; 
      for (i=0;i<=maxiter;i++) 
 dx[i]=sqr(series[act+i]-series[element+i]); 
      for (l=1;l<j+2;l++) { 
 l1=l*delay; 
 for (i=0;i<=maxiter;i++) 
   dx[i] += sqr(series[act+i+l1]-series[element+l1+i]); 
      } 
      for (i=0;i<=maxiter;i++) 
 if (dx[i] > 0.0){ 
   lcount[j][i]++; 
   lfactor[j][i] += dx[i]; 
 } 
    } 
  } 
  for (i=mindim-2;i<maxdim-1;i++) 
    for (j=0;j<=maxiter;j++) 
      if (lcount[i][j]) { 
 count[i][j]++; 
 lyap[i][j] += log(lfactor[i][j]/lcount[i][j])/2.0; 
      } 
   
  for (i=0;i<maxdim-1;i++){ 
    free(lfactor[i]); 
    free(lcount[i]); 
  } 
  free(lcount); 
  free(lfactor); 
  free(dx); 
} 
 
int main(int argc,char **argv) 
{ 
  char stdi=0; 
  double eps_fak; 
  double epsilon; 
  unsigned int i,j,l; 
  FILE *fout; 
 
  if (scan_help(argc,argv)) 
    show_options(argv[0]); 
   
  scan_options(argc,argv); 
#ifndef OMIT_WHAT_I_DO 
  if (verbosity&VER_INPUT) 
    what_i_do(argv[0],WID_STR); 
#endif 
 
  infile=search_datafile(argc,argv,&column,verbosity); 
  if (infile == NULL) 
    stdi=1; 
 
  if (outfile == NULL) { 
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    if (!stdi) { 
      check_alloc(outfile=(char*)calloc(strlen(infile)+6,1)); 
      sprintf(outfile,"%s.lyap",infile); 
    } 
    else { 
      check_alloc(outfile=(char*)calloc(11,1)); 
      sprintf(outfile,"stdin.lyap"); 
    } 
  } 
  test_outfile(outfile); 
 
  series=get_series(infile,&length,exclude,column,verbosity); 
  rescale_data(series,length,&min,&max); 
 
  if (eps0set) 
    epsmin /= max; 
  if (eps1set) 
    epsmax /= max; 
 
  if (epsmin >= epsmax) { 
    epsmax=epsmin; 
    epscount=1; 
  } 
   
  if (reference > (length-maxiter-(maxdim-1)*delay)) 
    reference=length-maxiter-(maxdim-1)*delay; 
  if ((maxiter+(maxdim-1)*delay) >= length) { 
    fprintf(stderr,"Too few points to handle these parameters!\n"); 
    exit(LYAP_K__MAXITER_TOO_LARGE); 
  } 
 
  if (maxdim < 2) 
    maxdim=2; 
  if (mindim < 2) 
    mindim=2; 
  if (mindim > maxdim) 
    maxdim=mindim; 
   
  check_alloc(liste=(long*)malloc(sizeof(long)*(length))); 
  check_alloc(found=(long*)malloc(sizeof(long)*(maxdim-1))); 
  check_alloc(lfound=(long**)malloc(sizeof(long*)*(maxdim-1))); 
  for (i=0;i<maxdim-1;i++) 
    check_alloc(lfound[i]=(long*)malloc(sizeof(long)*(length))); 
  check_alloc(count=(long**)malloc(sizeof(long*)*(maxdim-1))); 
  for (i=0;i<maxdim-1;i++) 
    check_alloc(count[i]=(long*)malloc(sizeof(long)*(maxiter+1))); 
  check_alloc(lyap=(double**)malloc(sizeof(double*)*(maxdim-1))); 
  for (i=0;i<maxdim-1;i++) 
    check_alloc(lyap[i]=(double*)malloc(sizeof(double)*(maxiter+1))); 
 
  if (epscount == 1) 
    eps_fak=1.0; 
  else 
    eps_fak=pow(epsmax/epsmin,1.0/(double)(epscount-1)); 
 
  fout=fopen(outfile,"w"); 
  if (verbosity&VER_INPUT) 
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    fprintf(stderr,"Opened %s for writing\n",outfile); 
  for (l=0;l<epscount;l++) { 
    epsilon=epsmin*pow(eps_fak,(double)l); 
    for (i=0;i<maxdim-1;i++) 
      for (j=0;j<=maxiter;j++) { 
 count[i][j]=0; 
 lyap[i][j]=0.0; 
      } 
    put_in_boxes(epsilon); 
    for (i=0;i<reference;i++) { 
      lfind_neighbors(i,epsilon); 
      iterate_points(i); 
    } 
    if (verbosity&VER_USR1) 
      fprintf(stderr,"epsilon= %e\n",epsilon*max); 
    for (i=mindim-2;i<maxdim-1;i++) { 
      fprintf(fout,"#epsilon= %e  dim= %d\n",epsilon*max,i+2); 
      for (j=0;j<=maxiter;j++) 
 if (count[i][j]) 
   fprintf(fout,"%d %e %ld\n",j,lyap[i][j]/count[i][j],count[i][j]); 
      fprintf(fout,"\n"); 
    } 
    fflush(fout); 
  } 
  fclose(fout); 
  return 0;} 
 
 
For each embedding dimension and each length scale the file contains a block of data 

consisting of 3 columns 

1. The number of the iteration 

2. The logarithm of the stretching factor (the slope is the Lyapunov exponent if it is a 

straight line) 

3. The number of points for which a neighborhood with enough points was found 

 
 
 
 
 
 
 
 
The other is calculated by Rosenstein algorithm. Here is the code below: 
 
Lyap r code: 
 
/*Author: Rainer Hegger, last modified: Sep 4, 1999 */ 
#include <stdio.h> 
#include <stdlib.h> 
#include <malloc.h> 
#include <math.h> 
#include <limits.h> 
#include <string.h> 
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#include "routines/tsa.h" 
 
#define WID_STR "Estimates the maximal Lyapunov exponent; Rosenstein et al." 
 
#define NMAX 256 
 
char *outfile=NULL; 
char *infile=NULL; 
char epsset=0; 
double *series,*lyap; 
long box[NMAX][NMAX],*list; 
unsigned int dim=2,delay=1,steps=10,mindist=0; 
unsigned int column=1; 
unsigned int verbosity=0xff; 
const unsigned int nmax=NMAX-1; 
unsigned long length=ULONG_MAX,exclude=0; 
long *found; 
double eps0=1.e-3,eps,epsinv; 
 
void show_options(char *progname) 
{ 
  what_i_do(progname,WID_STR); 
  fprintf(stderr," Usage: %s [options]\n",progname); 
  fprintf(stderr," Options:\n"); 
  fprintf(stderr,"Everything not being a valid option will be interpreted" 
          " as a possible" 
          " datafile.\nIf no datafile is given stdin is read. Just - also" 
          " means stdin\n"); 
  fprintf(stderr,"\t-l # of datapoints [default is whole file]\n"); 
  fprintf(stderr,"\t-x # of lines to be ignored [default is 0]\n"); 
  fprintf(stderr,"\t-c column to read[default 1]\n"); 
  fprintf(stderr,"\t-m embedding dimension [default 2]\n"); 
  fprintf(stderr,"\t-d delay  [default 1]\n"); 
  fprintf(stderr,"\t-t time window to omit [default 0]\n"); 
  fprintf(stderr,"\t-r epsilon size to start with [default " 
   "(data interval)/1000]\n"); 
  fprintf(stderr,"\t-s # of iterations [default 10]\n"); 
  fprintf(stderr,"\t-o name of output file [default 'datafile'.ros]\n"); 
  fprintf(stderr,"\t-V verbosity level [default 3]\n\t\t" 
          "0='only panic messages'\n\t\t" 
          "1='+ input/output messages'\n\t\t" 
          "2='+ give more detailed information about the length scales\n"); 
  fprintf(stderr,"\t-h show these options\n"); 
  fprintf(stderr,"\n"); 
  exit(0); 
} 
 
void scan_options(int n,char **argv) 
{ 
  char *out; 
 
  if ((out=check_option(argv,n,'l','u')) != NULL) 
    sscanf(out,"%lu",&length); 
  if ((out=check_option(argv,n,'x','u')) != NULL) 
    sscanf(out,"%lu",&exclude); 
  if ((out=check_option(argv,n,'c','u')) != NULL) 
    sscanf(out,"%u",&column); 
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  if ((out=check_option(argv,n,'m','u')) != NULL) 
    sscanf(out,"%u",&dim); 
  if ((out=check_option(argv,n,'d','u')) != NULL) 
    sscanf(out,"%u",&delay); 
  if ((out=check_option(argv,n,'t','u')) != NULL) 
    sscanf(out,"%u",&mindist); 
  if ((out=check_option(argv,n,'r','f')) != NULL) { 
    epsset=1; 
    sscanf(out,"%lf",&eps0); 
  } 
  if ((out=check_option(argv,n,'s','u')) != NULL) 
    sscanf(out,"%u",&steps); 
  if ((out=check_option(argv,n,'V','u')) != NULL) 
    sscanf(out,"%u",&verbosity); 
  if ((out=check_option(argv,n,'o','o')) != NULL) 
    if (strlen(out) > 0) 
      outfile=out; 
} 
       
void put_in_boxes(void) 
{ 
  int i,j,x,y,del; 
   
  for (i=0;i<NMAX;i++) 
    for (j=0;j<NMAX;j++) 
      box[i][j]= -1; 
 
  del=delay*(dim-1); 
  for (i=0;i<length-del-steps;i++) { 
    x=(int)(series[i]*epsinv)&nmax; 
    y=(int)(series[i+del]*epsinv)&nmax; 
    list[i]=box[x][y]; 
    box[x][y]=i; 
  } 
} 
 
char make_iterate(long act) 
{ 
  char ok=0; 
  int x,y,i,j,i1,k,del1=dim*delay; 
  long element,minelement= -1; 
  double dx,mindx=1.0; 
 
  x=(int)(series[act]*epsinv)&nmax; 
  y=(int)(series[act+delay*(dim-1)]*epsinv)&nmax; 
  for (i=x-1;i<=x+1;i++) { 
    i1=i&nmax; 
    for (j=y-1;j<=y+1;j++) { 
      element=box[i1][j&nmax]; 
      while (element != -1) { 
 if (labs(act-element) > mindist) { 
   dx=0.0; 
   for (k=0;k<del1;k+=delay) { 
     dx += (series[act+k]-series[element+k])* 
       (series[act+k]-series[element+k]); 
     if (dx > eps) 
       break; 
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   } 
   if (k==del1) { 
     if (dx < mindx) { 
       ok=1; 
       if (dx > 0.0) { 
  mindx=dx; 
  minelement=element; 
       } 
     } 
   } 
 } 
 element=list[element]; 
      } 
    } 
  } 
  if ((minelement != -1) ) { 
    act--; 
    minelement--; 
    for (i=0;i<=steps;i++) { 
      act++; 
      minelement++; 
      dx=0.0; 
      for (j=0;j<del1;j+=delay) { 
 dx += (series[act+j]-series[minelement+j])* 
   (series[act+j]-series[minelement+j]); 
      } 
      if (dx > 0.0) { 
 found[i]++; 
 lyap[i] += log(dx); 
      } 
    } 
  } 
  return ok; 
} 
 
int main(int argc,char **argv) 
{ 
  char stdi=0,*done,alldone; 
  int i; 
  long n; 
  long maxlength; 
  double min,max; 
  FILE *file; 
   
  if (scan_help(argc,argv)) 
    show_options(argv[0]); 
 
  scan_options(argc,argv); 
#ifndef OMIT_WHAT_I_DO 
  if (verbosity&VER_INPUT) 
    what_i_do(argv[0],WID_STR); 
#endif 
 
  infile=search_datafile(argc,argv,&column,verbosity); 
  if (infile == NULL) 
    stdi=1; 
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  if (outfile == NULL) { 
    if (!stdi) { 
      check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1)); 
      strcpy(outfile,infile); 
      strcat(outfile,".ros"); 
    } 
    else { 
      check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1)); 
      strcpy(outfile,"stdin.ros"); 
    } 
  } 
  test_outfile(outfile); 
 
  series=(double*)get_series(infile,&length,exclude,column,verbosity); 
  rescale_data(series,length,&min,&max); 
 
  if (epsset) 
    eps0 /= max; 
 
  check_alloc(list=(long*)malloc(length*sizeof(long))); 
  check_alloc(lyap=(double*)malloc((steps+1)*sizeof(double))); 
  check_alloc(found=(long*)malloc((steps+1)*sizeof(long))); 
  check_alloc(done=(char*)malloc(length)); 
 
  for (i=0;i<=steps;i++) { 
    lyap[i]=0.0; 
    found[i]=0; 
  } 
  for (i=0;i<length;i++) 
    done[i]=0; 
   
  maxlength=length-delay*(dim-1)-steps-1-mindist; 
  alldone=0; 
  file=fopen(outfile,"w"); 
  if (verbosity&VER_INPUT) 
    fprintf(stderr,"Opened %s for writing\n",outfile); 
  for (eps=eps0;!alldone;eps*=1.1) { 
    epsinv=1.0/eps; 
    put_in_boxes(); 
    alldone=1; 
    for (n=0;n<=maxlength;n++) { 
      if (!done[n]) 
 done[n]=make_iterate(n); 
      alldone &= done[n]; 
    } 
    if (verbosity&VER_USR1) 
      fprintf(stderr,"epsilon: %e already found: %ld\n",eps*max,found[0]); 
  }  
  for (i=0;i<=steps;i++) 
    if (found[i]) 
      fprintf(file,"%d %e\n",i,lyap[i]/found[i]/2.0); 
  fclose(file); 
 
  return 0; 
} 
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APPENDIX D: REDUCE AND FORTRAN CODES FOR THE WOLF 

ALGORITHM 
 

In a classic and highly readable paper [A. Wolf, J. B. Swift, H. L. Swinney, and J. A. 

Vastano, Physica D 16, 285-317 (1985)], Alan Wolf and collaborators described algorithms 

for calculating the spectrum of Lyapunov exponents from systems in which the equations 

are known as differential equations.  as well as the largest Lyapunov exponent from an 

experimental time series. Included here is code ported to a standard FORTRAN 77 compiler 

from Wolf's Fortran code for calculating the spectrum of Lyapunov exponents for maps and 

flows when the equations are known. The code includes examples for many systems 

including the Lorenz attractor and the Maxwell Bloch system: 

To generate the variational equations (3.24) the following REDUCE Code (Anthony C.. 

Hearn, REDUCE User’s Manual Version 3.8, Santa Monica, CA (2004)) can be used: 

Since the equations of motion for different systems are included, the relevant system must 

be uncommented by removing the % marks in Column 1.In this case, the Maxwell Bloch 

equations have been uncommented. 

 

off echo; 

% Generates the variational equations for the Wolf system  

 

operator aa,v,y; 

 

% Lorenz 

%s:=43/2-Sqrt(3)*Sqrt(283)/2; 

%r:=50; 

%b:=4; 

%n:=3; 

%v(1):=s*(y(2)-y(1)); 

%v(2):=y(1)*(r-y(3))-y(2); 

%v(3):=y(1)*y(2)-b*y(3); 

 

% Henon Heiles scaled 

% n:=4; 

% v(1):=y(3); 

% v(2):=y(4); 

% v(3):=-y(1)-2*eps*y(1)*y(2); 

% v(4):=-y(2)-eps*y(1)**2+eps*y(2)**2; 

 

% Sprottd; 

%n:=3; 

%v(1):=-y(2)+y(2)**2+y(3)**2; 

http://sprott.physics.wisc.edu/chaos/lespec.for
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%v(2):=y(1)+y(3)+y(3)**2; 

%v(3):=; 

 

 

%Rossler; 

%a:=0.15; 

%b:=0.20; 

%cc:=10; 

%n:=3; 

%v(1):=-(y(2)+y(3));  

%v(2):=y(1)+a*y(2); 

%v(3):=b+y(3)*(y(1)-cc); 

 

%Rossler Hyper-chaos 

%a:=0.25; 

%b:=3.0; 

%cc:=0.05; 

%d:=0.5; 

%n:=4; 

%v(1):=-(y(2)+y(3)); 

%v(2):=y(1)+a*y(2)+y(4); 

%v(3):=b+y(3)*y(1); 

%v(4):=cc*y(4)-d*y(3); 

 

 

%SprottO 

%N:=3; 

  

%v(1):=y(2); 

%v(2):=y(1)-y(3); 

%v(3):=y(1)+y(1)*y(3)+b*y(2); 

 

%Lasereqs 

n:=3; 

EE:=y(1); 

P:=y(2); 

DL:=y(3); 

v(1):=-ak*EE+g*P; 

v(2):=-gper*P+g*EE*DL; 

v(3):=-gpar*(DL-DL0)-4*g*P*EE; 

 

 

 

nd:=n**2+n; 

for j:=1:n do 

for k:=1:n do 

aa(j,k):=df(v(j),y(k)); 

 

for i:=1:n do  
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for k:=1:n do  

v(i+n*k):=for j1:=1:n sum aa(k,j1)*y(n*j1+i); 

 

 

%load_package gentran; 

%load_package scope; 

%GENTRANLANG!* := FORTRAN$ 

%FORTLINELEN!* :=72; 

on fort; 

off period; 

%off getdecs; 

%off gendecs; 

out"laser.fort"; 

write "      subroutine FCN(t,y,v) "; 

write "      implicit real*8(a-h,o-z)"; 

write "*     subroutine for wolf integration"; 

write "      dimension y(12),v(12) "; 

%write "      parameter(s=16.0d0,r=45.92d0,b=4.0d0)"; 

write "      parameter(ak=16.0d0,g=4.92d0,gper=4.0d0,gpar=3.0d0,DL0=1.0d0)"; 

for i:=1:nd do write v(i):=v(i); 

write "      RETURN"; 

write "      END"; 

SHUT"laser.fort"; 

;end; 

;end;; 

 

The Fortran 77 code below is adapted from Wolf. N is the number of equations in the 

dynamical system (3 for Maxwell Bloch, 4 for Yang-Mills Higgs, NN is the sum of N 

equations and N2variational equations for the Wolf algorithm. FCN contains the dynamical 

system, it can be copied from the REDUCE code output. Must be declared external so that 

it can be passed to the integrator. In this case the Numerical Recipes Runge Kutta integrator 

RKQC is used. It is declared external and passed to ODEINT which is the generic integrator 

in WOLF’s paper and references to the IMSL routine there. As coded below, the fiducial 

trajectory is written to the file traj1.dat and liapunov exponent data is echoed to the terminal 

and also written to the file liap1.dat. Older versions of both files are erased. The program is 

commented to describe the meaning of the input parameters Integration tolerance, number 

of integration steps, time per step and the number of steps where intermediate results are 

printed. The various parts are also shown by comments. The point at which the REDUCE 

Wolf output is to be inserted is also shown by comments in FCN. Sample FCN functions for 

Lorenz and Laser systems are given in commented outg form. The program runs in double 

precision. 

 

      Program liapode 

      implicit real*8(a-h,o-z) 

*     N = # of nonlnear equations, NN= total # of equations 

      PARAMETER (N =3) 

      PARAMETER (NN=12) 

*     FOR THE NUM-REC INTEGRATOR 
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      DIMENSION Y(NN),ZNORM(N),GSC(N),CUM(N),YPRIME(NN),YSCAL(NN) 

* 

*     INITIAL CONDITIONS FOR NONLINEAR SYSTEM 

* 

      EXTERNAL FCN,RKQC 

      open(18, file='traj1.dat', status='unknown') 

      open(19, file='liap1.dat', status='unknown') 

      Y(1)=1.0 D0 

      Y(2)=1.0  D0 

      Y(3)=0.0  D0 

* 

*     INITIAL CONDITIONS FOR LINEAR SYSTEM (ORTHONORMAL FRAME) 

* 

      DO 10 I=N+1,NN 

10    Y(I)=0 

      DO 20 I=1,N 

      Y((N+1)*I)=1.0 D0 

20    CUM(I)=0 

* 

*    INTEGRATION TOLERANCE, # OF INTEGRATION STEPS, 

*    TIME PER STEP, AND I/O RATE 

* 

      WRITE(*,*) 'TOL,NSTEP,STPSZE,IO' 

      READ(*,*) TOL,NSTEP,STPSZE,IO 

      STTOL=0 

* 

*     Initialization for integration 

* 

      NEQ=NN 

      X=0.0 D0 

      IND=1 

* 

      DO 100 I=1,NSTEP 

      XEND=STPSZE*FLOAT(I) 

* 

*     Call any ODE Integrator - This is an IMSL routine 

*     in the original 

*     CALL DVERK(NEQ,FCN,X,Y,XEND,TOL,IND,C,NEQ,W,IER) 

*     replaced by a Numerical Recipes routine 

*     CALL RKQC(Y,YPRIME,NEQ,X,STPSZE,TOL,YSCAL,HDID,HNEXT,FCN) 

      CALL ODEINT(Y,NEQ,X,XEND,TOL,STPSZE,STTOL,NOK,NBAD,FCN,RKQC) 

      X=XEND 

* 

*     Construct a new orthonormal basis by Gram-Schmidt method 

* 

*     Normalize first vector 

* 

      ZNORM(1)=0.0 

      DO 30 J=1,N 
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30    ZNORM(1)=ZNORM(1)+Y(N*J+1)**2 

      ZNORM(1)=SQRT(ZNORM(1)) 

 

      DO 40 J=1,N 

40    Y(N*J+1)=Y(N*J+1)/ZNORM(1) 

* 

*     GENERATE THE NEW ORTHONORMAL SET OF VECTORS 

* 

      DO 80 J=2,N 

* 

*     GENERATE J-1 GSR COEFFICIENTS 

* 

      DO 50 K=1,J-1 

      GSC(K)=0.0 

      DO 50 L=1,N 

      GSC(K)=GSC(K)+Y(N*L+J)*Y(N*L+K) 

50    CONTINUE 

* 

*     CONSTRUCT A NEW VECTOR 

* 

      DO 60 K=1,N 

      DO 60 L=1,J-1 

      Y(N*K+J)=Y(N*K+J)-GSC(L)*Y(N*K+L) 

60    CONTINUE 

* 

*     CALCULATE THE VECTOR'S NORM 

* 

      ZNORM(J)=0.0 D0 

      DO 70 K=1,N 

      ZNORM(J)=ZNORM(J)+Y(N*K+J)**2 

70    CONTINUE 

      ZNORM(J)=SQRT(ZNORM(J)) 

* 

*     NORMALIZE THE NEW VECTOR 

* 

      DO 80 K=1,N 

      Y(N*K+J)=Y(N*K+J)/ZNORM(J) 

80    CONTINUE 

* 

*     UPDATE RUNNING VECTOR MAGNITUDES 

* 

      DO 90 K=1,N 

90    CUM(K)=CUM(K)+DLOG(ZNORM(K))/DLOG(2.0D0) 

* 

*     NORMALIZE EXPONENT AND PRINT EVERY IO ITERATIONS 

* 

       IF(MOD(I,IO).EQ.0) THEN  

        WRITE(*,126) X,(CUM(K)/X,K=1,N) 

         WRITE(*,126) X,(CUM(K)/X,K=1,N) 
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        END IF 

126   Format('X= ',f12.7,' LE = ',3(F13.7,1x)) 

      WRITE(18,138) X, Y(1),Y(2),Y(3) 

138   FORMAT(1X,F10.2, 3(1X,F14.4)) 

100   CONTINUE 

      CLOSE (18) 

      CLOSE (19) 

      STOP 

      END 

 

* 

*     RHS OF THE LORENZ EQUATIONS 

* 

      subroutine fcn(t,y,v)  

      implicit real*8(a-h,o-z) 

*     subroutine for wolf integration 

      dimension y(12),v(12)  

c   INSERT THE OUTPUT OF THE WOLF REDUCE RUN HERE. THE MAXWELL-   

c   BLOCH OUTPUT IS HERE     

       parameter(ak=1.75d0,g=1.06d0,gper=2.1d0,gpar=1.0d0,dl0=28.0d0) 

      v(1)=y(2)*g-y(1)*ak 

      v(2)=y(3)*y(1)*g-y(2)*gper 

      v(3)=-y(3)*gpar-4*y(2)*y(1)*g+dl0*gpar 

      v(4)=y(7)*g-y(4)*ak 

      v(5)=y(8)*g-y(5)*ak 

      v(6)=y(9)*g-y(6)*ak 

      v(7)=y(10)*y(1)*g-y(7)*gper+y(4)*y(3)*g 

      v(8)=y(11)*y(1)*g-y(8)*gper+y(5)*y(3)*g 

      v(9)=y(12)*y(1)*g-y(9)*gper+y(6)*y(3)*g 

      v(10)=-y(10)*gpar-4*y(7)*y(1)*g-4*y(4)*y(2)*g 

      v(11)=-y(11)*gpar-4*y(8)*y(1)*g-4*y(5)*y(2)*g 

      v(12)=-y(12)*gpar-4*y(9)*y(1)*g-4*y(6)*y(2)*g 

c    REDUCE OUTPUT ENDS HERE       

      return 

      end 

 

 

      SUBROUTINEODEINT(YSTART,NVAR,X1,X2,EPS,H1,HMIN,NOK, 

    & NBAD,DERIVS,RKQC) 

      IMPLICIT REAL*8(A-H,O-Z) 

      PARAMETER (MAXSTP=10000,NMAX=12,TWO=2.0D0,ZERO=0.0D0,TINY=1.D-

30) 

      COMMON /PATH/ KMAX,KOUNT,DXSAV,XP(200),YP(10,200) 

      DIMENSION YSTART(NVAR),YSCAL(NMAX),Y(NMAX),DYDX(NMAX) 

      X=X1 

      H=SIGN(H1,X2-X1) 

      NOK=0 

      NBAD=0 

      KOUNT=0 
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      DO 11 I=1,NVAR 

        Y(I)=YSTART(I) 

11    CONTINUE 

      XSAV=X-DXSAV*TWO 

      DO 16 NSTP=1,MAXSTP 

        CALL DERIVS(X,Y,DYDX) 

        DO 12 I=1,NVAR 

          YSCAL(I)=ABS(Y(I))+ABS(H*DYDX(I))+TINY 

12      CONTINUE 

        IF(KMAX.GT.0)THEN 

          IF(ABS(X-XSAV).GT.ABS(DXSAV)) THEN 

            IF(KOUNT.LT.KMAX-1)THEN 

              KOUNT=KOUNT+1 

              XP(KOUNT)=X 

              DO 13 I=1,NVAR 

                YP(I,KOUNT)=Y(I) 

13            CONTINUE 

              XSAV=X 

            ENDIF 

          ENDIF 

        ENDIF 

        IF((X+H-X2)*(X+H-X1).GT.ZERO) H=X2-X 

        CALL RKQC(Y,DYDX,NVAR,X,H,EPS,YSCAL,HDID,HNEXT,DERIVS) 

        IF(HDID.EQ.H)THEN 

          NOK=NOK+1 

        ELSE 

          NBAD=NBAD+1 

        ENDIF 

        IF((X-X2)*(X2-X1).GE.ZERO)THEN 

          DO 14 I=1,NVAR 

            YSTART(I)=Y(I) 

14        CONTINUE 

          IF(KMAX.NE.0)THEN 

            KOUNT=KOUNT+1 

            XP(KOUNT)=X 

            DO 15 I=1,NVAR 

              YP(I,KOUNT)=Y(I) 

15          CONTINUE 

          ENDIF 

          RETURN 

        ENDIF 

        IF(ABS(HNEXT).LT.HMIN) PAUSE 'Stepsize smaller than minimum.' 

        H=HNEXT 

16    CONTINUE 

      PAUSE 'Too many steps.' 

      RETURN 

      END 

 

      SUBROUTINE RK4(Y,DYDX,N,X,H,YOUT,DERIVS) 
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      implicit real*8(a-h,o-z) 

      PARAMETER (NMAX=12) 

      DIMENSION Y(N),DYDX(N),YOUT(N),YT(NMAX),DYT(NMAX),DYM(NMAX) 

      HH=H*0.5 

      H6=H/6. 

      XH=X+HH 

      DO 11 I=1,N 

        YT(I)=Y(I)+HH*DYDX(I) 

11    CONTINUE 

      CALL DERIVS(XH,YT,DYT) 

      DO 12 I=1,N 

        YT(I)=Y(I)+HH*DYT(I) 

12    CONTINUE 

      CALL DERIVS(XH,YT,DYM) 

      DO 13 I=1,N 

        YT(I)=Y(I)+H*DYM(I) 

        DYM(I)=DYT(I)+DYM(I) 

13    CONTINUE 

      CALL DERIVS(X+H,YT,DYT) 

      DO 14 I=1,N 

        YOUT(I)=Y(I)+H6*(DYDX(I)+DYT(I)+2.*DYM(I)) 

14    CONTINUE 

      RETURN 

      END 

 

      SUBROUTINE RKQC(Y,DYDX,N,X,HTRY,EPS,YSCAL,HDID,HNEXT,DERIVS) 

      implicit real*8(a-h,o-z) 

      PARAMETER (NMAX=12,FCOR=.0666666667d0, 

     *    ONE=1.d0,SAFETY=0.9d0,ERRCON=6.d-4) 

      EXTERNAL DERIVS 

      DIMENSION 

Y(N),DYDX(N),YSCAL(N),YTEMP(NMAX),YSAV(NMAX),DYSAV(NMAX) 

      PGROW=-0.20d0 

      PSHRNK=-0.25d0 

      XSAV=X 

      DO 11 I=1,N 

        YSAV(I)=Y(I) 

        DYSAV(I)=DYDX(I) 

11    CONTINUE 

      H=HTRY 

1     HH=0.5*H 

      CALL RK4(YSAV,DYSAV,N,XSAV,HH,YTEMP,DERIVS) 

      X=XSAV+HH 

      CALL DERIVS(X,YTEMP,DYDX) 

      CALL RK4(YTEMP,DYDX,N,X,HH,Y,DERIVS) 

      X=XSAV+H 

      IF(X.EQ.XSAV)PAUSE 'Stepsize not significant in RKQC.' 

      CALL RK4(YSAV,DYSAV,N,XSAV,H,YTEMP,DERIVS) 

      ERRMAX=0. 
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      DO 12 I=1,N 

        YTEMP(I)=Y(I)-YTEMP(I) 

        ERRMAX=MAX(ERRMAX,ABS(YTEMP(I)/YSCAL(I))) 

12    CONTINUE 

      ERRMAX=ERRMAX/EPS 

      IF(ERRMAX.GT.ONE) THEN 

        H=SAFETY*H*(ERRMAX**PSHRNK) 

        GOTO 1 

      ELSE 

        HDID=H 

        IF(ERRMAX.GT.ERRCON)THEN 

          HNEXT=SAFETY*H*(ERRMAX**PGROW) 

        ELSE 

          HNEXT=4.d0*H 

        ENDIF 

      ENDIF 

      DO 13 I=1,N 

        Y(I)=Y(I)+YTEMP(I)*FCOR 

13    CONTINUE 

      RETURN 

      END 

 

C     HERE ARE THE LORENZ AND LASER WOLF OUTPUTS THEY ARE  

C     COMMENTED OUT. 

 

* 

*     RHS OF THE LORENZ EQUATIONS 

* 

*      subroutine fcn(t,y,v)  

*      implicit real*8(a-h,o-z) 

*     subroutine for wolf integration 

*      dimension y(12),v(12) 

* COMMON/ENBYKLP/S,R,B 

* v(1)=s*(y(2)-y(1)) 

*      v(2)=-y(3)*y(1)-y(2)+y(1)*r 

*      v(3)=-y(3)*b+y(2)*y(1) 

*      v(4)=s*(y(7)-y(4)) 

*      v(5)=s*(y(8)-y(5)) 

*      v(6)=s*(y(9)-y(6)) 

*      v(7)=-y(10)*y(1)-y(7)-y(4)*y(3)+y(4)*r 

*      v(8)=-y(11)*y(1)-y(8)-y(5)*y(3)+y(5)*r 

*      v(9)=-y(12)*y(1)-y(9)-y(6)*y(3)+y(6)*r 

*      v(10)=-y(10)*b+y(7)*y(1)+y(4)*y(2) 

*      v(11)=-y(11)*b+y(8)*y(1)+y(5)*y(2) 

*      v(12)=-y(12)*b+y(9)*y(1)+y(6)*y(2) 

*      return 

*      end 
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* 

*     RHS OF THE LASER EQUATIONS 

* 

      subroutine fcn(t,y,v)  

   implicit real*8(a-h,o-z) 

*      subroutine for wolf integration 

      dimension y(12),v(12)  

      COMMON/ENBYKLP/AK,G,GPER,GPAR,DL0,IFLAG 

*      parameter(ak=1.0d-1,g=64.92d0,gper=44.0d0,gpar=43.0d0,dl0=100.0d0) 

      v(1)=y(2)*g-y(1)*ak 

      v(2)=y(3)*y(1)*g-y(2)*gper 

      v(3)=-y(3)*gpar-4*y(2)*y(1)*g+dl0*gpar 

      v(4)=y(7)*g-y(4)*ak 

      v(5)=y(8)*g-y(5)*ak 

      v(6)=y(9)*g-y(6)*ak 

      v(7)=y(10)*y(1)*g-y(7)*gper+y(4)*y(3)*g 

      v(8)=y(11)*y(1)*g-y(8)*gper+y(5)*y(3)*g 

      v(9)=y(12)*y(1)*g-y(9)*gper+y(6)*y(3)*g 

      v(10)=-y(10)*gpar-4*y(7)*y(1)*g-4*y(4)*y(2)*g 

      v(11)=-y(11)*gpar-4*y(8)*y(1)*g-4*y(5)*y(2)*g 

      v(12)=-y(12)*gpar-4*y(9)*y(1)*g-4*y(6)*y(2)*g 

      return 

      end 

 

 


