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ABSTRACT 

 

 

SET-BASED DYNAMIC CACHE PARTITIONING ON CHIP 

MULTIPROCESSORS 

 

Today, most of the chip multiprocessor architectures utilize a shared second level cache to 

reduce the off-chip memory delay. However, benefit from such a cache may be very 

limited due to cache conflicts caused by applications running in parallel. The alternative 

approach of having a private second level cache dedicated to each core is also problematic, 

since there are always applications with large memory footprints or shared address space 

requirements. In the literature, there are numerous studies that try to partition the second 

level cache. These studies generally focus on dedicating an appropriate number of ways 

and policies to each core according to the runtime memory requirements of applications. 

On the contrast, this study proposes a mechanism to dynamically partition the cache based 

on sets. In this mechanism, the resizing decisions for each logical partition are made 

according to the runtime statistics collected by the hardware at periodic time intervals. 

Since the mechanism focuses on cache sets rather than cache ways, the resizing of the 

cache partitions can be done in a finer-grain, any cache policies can be freely chosen and, 

the additional complexity requirements can be kept at minimum compared to other 

schemes. When compared to the shared baseline cache configuration, the performance 

(throughput) gain in workloads containing solely memory-intensive applications is as 

much as 9%, on the average. For hybrid workloads that run memory- and computation-

intensive applications together, the performance is improved by more than 15% on the 

average across all simulated application mixtures. 

 

 

 

 

 

 

 

 



v 

 

ÖZET 

 

 

SET-BASED DYNAMIC CACHE PARTITIONING ON CHIP 

MULTIPROCESSORS 

 

Günümüzde çoklu çip işlemci mimarileri, çip dışındaki bellek gecikmelerini azaltabilmek 

için paylaşımlı bir ikinci seviye önbellek kullanmaktadırlar. Ancak bu tip bir önbellekten 

elde edilecek fayda, birlikte çalıştırılacak uygulamalardan kaynaklanan önbellek sorunları 

sebebiyle çok kısıtlı olabilir. Her çekirdeğe yönelik özel bir ikinci derece önbellek 

kullanma konusundaki alternatif yaklaşım da sorunludur. Çünkü aşırı bellek gereksinimi 

olan veya paylaşımlı adres alanı ihtiyacı olan uygulamalar her zaman mevcuttur. 

Literatürde ikinci seviye önbelleği bölümlere ayırmaya çalışan çok sayıda çalışma vardır. 

Bu çalışmalar genellikle, uygulamaların çalışma-anı bellek gereksinimlerine göre her bir 

çekirdeğe uygun sayıda önbellek öbeklerinin ve denetimlerinin atanmasına 

odaklanmaktadırlar. Bu çalışma ise diğer çalışmaların aksine önbelleğin küme tabanlı 

olarak dinamik ölçeklenmesine dayalı bir mekanizma önermektedir. Bu mekanizmada, her 

mantıksal bölüm için gerekli boyutlandırma kararları, düzenli aralıklarla donanım 

tarafından toplanan çalışma-anı istatistiklerine göre alınır. Mekanizma, önbellek 

öbeklerinden ziyade kümelerine odaklandığından, önbellek bölümlerinin yeniden 

boyutlandırılması daha ince ayrıntılı olarak yapılabilir; herhangi bir önbellek politikası 

serbestçe seçilebilir ve ilave karmaşıklık gereksinimleri diğer metotlara kıyasla daha düşük 

seviyede tutulabilir. Sonuçlar, paylaşımlı taban seviyesindeki önbellek yapılandırması ile 

karşılaştırıldığında, sadece yoğun bellek kullanan uygulamaları içeren iş yükündeki 

performans (toplam iş çıktısı) artışı, ortalamada %9’a kadar çıkmaktadır.  Belleği ve 

hesaplama yoğunluklu uygulamaları bir arada çalıştıran melez iş yükleri için, performans, 

tüm benzetilmiş uygulama kombinasyonları göz önüne alındığında %15 artmaktadır. 
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1.  INTRODUCTION 

 

The main aim on utilizing multiple processor cores on a single packaging is to improve the 

throughput of a machine by running multiple applications in parallel. Although, this seems 

a very natural approach to improve the performance of a machine, until recently people 

were opting to increase the performance of single processor architectures rather than 

following the multiprocessor direction. In recent years, with the recent progress in the 

process and memory technologies, machine architectures with multiple processor cores 

have become more and more feasible, and started to appear in the electronic markets. 

 

Today, a typical multiprocessor architecture supplies dedicated private caches to each core 

in the first level, and most of the temporal locality in the data streams is captured in that 

same level. However, the first level caches are designed and implemented with 

performance concerns, and, as a result, the size of these caches is usually not large enough 

to exploit the spatial locality in the data streams. For capturing the spatial locality, a larger 

second level cache is utilized, and this cache level is usually shared by all the processor 

cores like in Sun Niagara, IBM Power5, and Intel Core architectures. Such a shared cache 

level is ideal especially for applications that are in producer/consumer relation (shared 

workloads). 

 

However, when the applications, running on different processor cores, are not dependent 

on each other and are executing privately (private workloads), a shared cache level may 

indeed incur performance penalties. A typical example may be given with two private 

workloads accessing the shared level cache and stealing cache lines from each other. In 

such cases, the hit rate to the second level cache for each application will be much lower 

than the hit rate when each application experiences when they run standalone. 

 

In this thesis, we propose a mechanism that logically partitions the second level shared 

cache in multiprocessor architectures. During execution, our partitioning algorithm 

changes the number of sets dedicated to each core according to the memory requirements 

of each application running on those cores. As a result, each core can get its own private 

partition in the second level cache. For determining the memory requirements of each 
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application, and resizing the partitions, we propose a periodic sampling mechanism that 

collects the memory statistics of each core, and a decision logic that tries to partition the 

cache according to those statistics in order to improve the throughput of the machine. 
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1.1. BACKGROUND 

 

1.1.1. Chip Multiprocessors  

 

Chip multiprocessors (CMP) are simply single thread processor cores with private and/or 

shared memory systems. Each core exploit moderate amount of instruction level 

parallelism within any one thread (ILP), and in the same time, it executes multiple threads 

in parallel across multiple processor cores (TLP). 

 

CMP architectures are preferable over superscalar architectures in many terms, such as 

performance, complexity, power and reliability. CMP increase the total throughput of 

running applications without need to increase IPC using aggressive mechanisms such as 

speculative execution and out of order execution. Besides, CMP architectures are 

decentralized allowing load balancing among running applications, where each application 

has its own resources to use and eventually prevent the increase in the die temperature. 

When the reliability is the concern, decreasing hot spots on cores will increase the life time 

of the chip. 

  

In terms of complexity, CMP architectures are less complex compared to superscalar 

architectures. Since CMP do not need any additional hardware mechanisms to extract 

parallelism, Instead of additional hardware we can increase cache size for each core or 

insert two or three additional cores inside silicon space. 

 

Figure 1.1 shows chip multiprocessors architecture which cosists eight cores on a single 

die area. Each core contains its own issue logic, architectural register and physical 

registers, branch predictor table and level one data and instruction caches. 
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Figure 1.1.  Chip multiprocessor architecture 

 

There are two categories of CMPs:  homogenous and heterogeneous. First type involves 

geometrically increasing the number of cores with each advance in feature size. This 

means either duplicating, or quadrupling a same core, and interconnecting them to produce 

a more powerful core. Second type has both a high and low complexity cores where 

applications are mapped to cores in such a way that each application executes on a core 

that best fits its resource requirements. Figure 1.2 shows examples for both types. 
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Figure 1.2.  Symmetric and asymmetric CMP in the same die area 

 

1.2. MEMORY ORGANIZATION  

 

In CMP architectures various memory configurations are proposed but the main 

configurations that used nowadays are as follows: 

 

 First level data and instruction caches, second level private cache for each core. 

Figure 1.3 shows the first configuration. 

 First level data and instruction caches, second level shared cache among cores.  

Figure 1.4 shows the second configuration. 
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Figure 1.3.  PL1C and PL2C Configuration in CMP 

 

 

 

Figure 1.4.  PL1C and SL2C Configuration in CMP 
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1.2.1. Level two private cache  

 

One of the cache configurations that are commonly used in CMP architectures is with a 

second level private cache space dedicated to each core. The main reason behind using 

such configuration is that the data in the cache space resides close to the core reducing the 

access latency. Moreover, reducing the distance between the data and processor has major 

impact in reducing power dissipation. On the other hand the private level two cache not 

very flexible configuration cause a core cannot use the cache space of idle core(s).  

 

Second level private cache configuration is implemented in AMD’s Athlon™ 64 X2 Dual-

Core processors. Furthermore, the private level two caches gives maximum performance 

gains when the running workload types are private or when there is data sharing between 

them.  

 

1.2.2. Level two shared cache 

 

Shared second level cache is another widely used configuration in CMP architectures, 

since it provides flexibility. Furthermore, a copy of data can be accessed by all cores 

resulting in decreasing off-chip access. However, shared level two caches have certain 

disadvantages such as data pollution since they can be accessed by all cores. Moreover, 

when the distance between the cache and the processor is not close, higher hit latencies are 

expected.  

 

Furthermore additional communication networks necessary between level one cache and 

second level cache and extra directory bits for keeping track of data owners in the other 

words cache coherency protocols are needed. 

 

 Lastly the shared level two cache cause unfairness among running threads, especially if 

one of the running application is memory intensive which always access the cache and 

continuously  invalidate the computational application data. 

 

Examples of second level shared cache configuration is implemented in Sun Niagara, IBM 

Power5, and Intel Core architectures. Furthermore, the shared level two caches give 
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maximum performance gains when the running workload types are in producer/consumer 

relation.  

 

1.3. MOTIVATION  

 

Introduction of cache levels to each core in CMP architectures adds new requirements to 

the hardware, such as additional circuitry necessary for running a cache coherency 

protocol, additional die area for the SRAM structure that stores the cache levels, additional 

wiring to move data to/from the cache, etc. Although, they require such design and 

implementation complexities, caches are valuable structures for reducing the performance 

penalties caused by the memory bottleneck of the Von Neumann architecture.  

 

On-chip second level cache configurations as private or shared do not maximize the 

performance of CMPs. We believe the workload type is an important factor in determining 

the best second level cache configuration that later leads to reduce the off-chip accesses 

and increase in CMP performance. Moreover, there is a need for alleviating cache 

unfairness among threads by defining a run time mechanism that decide the amount of 

cache space  required by each core. 

 

The benefits we get from our proposed design in this thesis are two folds. First, we provide 

a private and an adaptive partitioning mechanism for each core, and we reduce the 

performance penalties due to cache steals resulting from running private workloads [1]. 

 

Second, we still keep an adaptive shared partition inside this cache level, and thus, we can 

improve the performance of the machine when the processor cores are running shared 

workloads. Additionally, this shared partition may act as a buffer area for private 

workloads to prevent them stealing cache resources from each other. 

 

Finally, there are many cache-way partitioning studies in the literature. However, to the 

best of our knowledge, this work is one of the first studies that propose logical cache-set 

partitioning to improve the processor performance. Here, we would like to further 

emphasize the logical keyword: in this study, we do not change the physical organization 

of the cache, but only change the procedure for accessing the cache sets. To achieve this, 
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we propose an additional circuitry which we call the Set-Based Partitioning (SBP) Address 

Translation Logic. The details of the proposed algorithm and logic are explained in 

Chapter three.  

 

There are many advantages of a set-based cache partitioning mechanism compared to a 

way-based partitioning mechanism. Here, we list some of them to motivate our study: 

 

  Finer-grain of control on a typical second level cache. There are much more cache 

 sets than cache ways. When the caches are partitioned based on ways, the minimum 

 resizing amount can be set in a much coarser-grain, since we dedicate at least set 

 number of additional cache blocks to an application. If the application requires only 

 a part of this additional resource, oscillations may be observed in the control 

 mechanism when resource downsizing and upsizing decisions are taken.  

  Cache Policy Freedom and Keeping Cache Structure as it is. When, the cache ways 

 are assigned to different applications, the default cache policies and the 

 organization can no longer be used. On the contrast, when a set-based partitioning 

 is utilized, no modifications are required on the existing cache organization.  

  Minimum Additional Circuitry. In a way-based partitioning scheme, each cache 

 way requires multiple counters and wires to collect way-based statistics. That 

 means there is a limit for the number of ways each way-based partitioning 

 mechanism can ideally support.  

 

In a set-based scheme, on the other hand, even a fully-associative cache 

configuration might be feasible, and the number of counters necessary to collect 

statistics is limited by the number of cores. 

 

1.4. THESIS OUTLINE    

 

The thesis organization as follow: In Chapter two, the background study about different 

methods that used in partitioning second level cache among running applications based on 

variety range of matrices. In Chapter three we give a detailed explanation of our design 

proposal for partitioning second level cache followed by our experimental methodology in 

Chapter four. In Chapter five we present our simulation results and include our 
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discussions. Finally, in Chapter six we conclude our study by summarizing the obtained 

results and providing additional ideas that can be implemented as a future work. 
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2. RELATED WORK  

 

 

Caches are crucial structures that enable us to fight with the well-known Memory Wall 

problem. SMP and CMP are new architectures, which they offer the opportunity to obtain 

higher throughputs by allowing TLP, face the challenge of sharing resources such as last 

levels of shared caches. Consequently, there is a need for efficient usage of last level 

caches to prevent any starvations among running threads. 

 

There are numerous studies that propose new strategies and configurations related to 

shared caches. In this section, we give background information specifically on adaptive 

caches. 

 

2.1. STATIC L2 CACHE PARTITIONING  

 

Stone et al [2] examined static partitioning of the cache memory among processors. They 

believe that LRU which explicitly partition the cache based on demands of applications is 

not the optimal policy. They proposed using a referenced stream miss rate as a function of 

cache allocation size of individual competing processes. Chiou et al [3] propose static 

partition of L2 caches by giving specific number of cache ways to running threads based 

on profiling information for each thread. The main disadvantage of static cache 

partitioning is that it is not very flexible. Assigning fixed partitions from a cache to 

applications is not a very good idea, especially if one of the running applications is 

memory-intensive and the other is computational-intensive. In that case, inefficient 

resource usage of caches is imminent. 

 

2.2. DYNAMIC L2 CACHE PARTITIONING 

 

The dynamic partitioning of shared caches is firstly investigated by Suh et al [4] [5]. The 

proposed study is based on a low overhead, online memory monitoring scheme utilizing a 

set of hardware counters. The counters indicate the marginal gain in cache hits as the size 
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of the cache is increased. This gain which is proportional to the cache miss rate as a 

function of cache size. 

 

The overall flow of the partitioning scheme can be viewed as a set of four modules: on-line 

cache monitor, O/S processor scheduler, partition module, and cache replacement unit.  

The scheduler provides the partition module with the set of executing processes that shares 

the cache at the same time. Then, the partition module uses this scheduling information and 

the marginal gain information from the on-line cache monitor to decide a cache partition. 

The proposed module uses a greedy algorithm to allocate each cache block to a process 

that obtains the maximum marginal gain by having one additional block. Finally, the 

replacement unit maps these partitions to the appropriate parts of the cache. 

 

Kim et al introduce fairness metrics for only a shared resource which is the L2 cache, in 

CMP architectures [6]. These metrics keeps O/S scheduler from three main problems 

which are: 

 

 Thread starvation, which happens when one thread fails in competing for sufficient 

cache space necessary to make satisfactory forward progress.  

 Priority inversion, where a higher priority thread achieves a slower forward progress 

than a lower priority thread, despite the attempt by the O/S to provide more time 

slices to the higher priority thread. This happens when the higher priority thread 

loses to the lower priority thread (or other threads) in competing for cache space. 

 Forward progress rate of a thread is highly dependent on the thread mix in a co-

schedule
1
. This makes the forward progress rate difficult to characterize or predict, 

making the system behaviour unpredictable. 

 

The fairness metrics that are used in partitioning (based on ways) the cache statically 

and dynamically are represented in equation (2.1), (2.2), (2.3), (2.4), (2.5) 

respectively. 

 

                                                           
 
1
Co-schedule: assignment of threads with different characteristics by operating system to available CPUs, as 

example of such mix a memory-intensive thread with a computational-intensive thread. 
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(2.1) 

  
  

                               

(2.2) 

  
  

                    
          
          

 
 

(2.3) 

  
  

                                

(2.4) 

  
  

                                            

(2.5) 

 

           It represents the number of misses for thread i, when it is sharing the 

cache with other running threads. 

            The Miss rate for thread i, when it is sharing the cache with other 

running threads. 

           The Number of cache misses for thread i, when it runs alone in the 

system. 

            Cache miss rate for thread i, when it runs alone in the system. 

 

Hsu et al examine various cache policies such as communist and utilitarian policies. The 

communist policy tends to achieve fairness rather than maximizing the performance for 

running threads which is the case for a utilitarian policy. They propose the usage of 

instruction per cycle and misses per access matrices to decide the allocation process of 

cache resource among competing applications in CMPs. Additionally, they use   weighted 

IPC (WIPC) metric, which is equal to IPC of thread when it is run alone divided by the 

IPC for a thread running with other competing threads in the system. Then, they apply both 

the utilitarian model (maximizing WIPC, i.e., minimizing aggregate relative degradation) 
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and the communist model (equalizing WIPC, i.e., equalizing relative degradation across all 

threads). Finally, they conclude that using a traditional cache replacement policy such as 

LRU and performing static cache partitioning are not sufficient to provide near optimal 

performance. They state that some thread-aware cache resource allocation mechanism is 

required, and use of communist or utilitarian policy for partitioning cache in CMP may not 

work perfectly for some type of workloads [7].  

 

Settle et al also investigate a dynamic cache partitioning mechanism, again based on cache 

ways. The Partition control mechanism gives large percentage of available cache storage to 

applications with high degree of global data reuse to increase the chances of process 

utilization [8]. They need to modify the LRU policy to collect the reuse information of the 

running threads in the system. When the thread id of the cache request differs from that of 

the normal LRU candidate, the cache controller checks the reuse of the candidate line to 

determine its potential for harming the system performance. The reuse is simply the cache 

access frequency counter that is used in least frequently used cache replacement policies. If 

the reuse rank of the candidate thread relative to the other cache lines in the set is higher 

than a threshold value, the line is not considered for eviction. Instead, the LRU - 1 line is 

evaluated and the process repeats itself. If there are no options available under this scheme, 

the algorithm reverts back to the normal LRU candidate. By consulting the reuse 

information of each potential victim cache line, this algorithm helps increase the time that 

data from another thread stays in the cache. Thus, in the case where one thread has a very 

high cache access frequency, this technique will make it less likely for the high frequency 

thread to evict important data belonging to another thread that accesses the cache much 

less often. 

 

Lin et al propose partitioning the cache based on an O/S technique called page coloring. A 

page color is several common bits between the cache index and the physical page number 

in the physical address. A physically addressed cache is divided into non-intersecting 

regions by page color, and pages with the same color are mapped to the same cache region. 

By assigning different page colors to different processes the cache space is partitioned 

between cores for running programs. Limiting the physical memory pages within a subset 

of colors enables the O/S to limit the cache used by a given process to cache regions of 

those colors. On the other hand, when a decision is made to increase the cache resource of 
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a given process, i.e. increasing the number of colors used by the process, the kernel will 

enforce the decision by re-arranging the virtual-physical memory mapping of the process. 

If the number of colors used is m, then all virtual memory pages, if not paged out, are 

mapped onto physical memory pages of those colors. When the number of colors increases 

to m+1, the kernel assigns one more color to the process and move roughly one of every 

m+1 of the existing pages to the new color. This process involves allocating physical pages 

of the new color, copying the memory contents and freeing the old pages. When a decision 

is made to reduce cache resources, the kernel will also recolor a fraction of virtual memory 

pages, accordingly. Moreover a hardware mechanism may support a finer granularity of 

cache allocation when it is needed. Finally, a sufficient software approach used to achieve 

cache partitioning in operating systems through memory address mapping. The authors 

claim that the proposed software approach can further be used as a tool to evaluate the 

hardware design and performance in multi-core architectures [9]. 

 

Rafique et al propose using a hardware quota enforcement mechanism to manage shared 

caches in CMP while a communication between the hardware and O/S establish to apply a 

wide variety of policies by tuning the quotas during regularly scheduled O/S interventions 

[10]. Disadvantage of this work is the limitations of the proposed hardware mechanism that 

only supports a coarse granularity of cache allocation. 

 

Qureshi et al partition the ways in the cache dynamically among competing applications. 

They propose a low overhead utility hardware circuit that monitors the reduction in misses 

for each application for a given amount of cache resource. Later, they collect the 

information by a circuit named utility monitor (UMON) used for deciding the amount of 

cache resources that each application need for periodic intervals [11]. The process of 

information collection by UMON to decide cache partitioning is based on stack distance 

profiling. Each set in a cache can be seen as a LRU stack, where lines are sorted by their 

last access cycle. In that way, the first line of the LRU stack is the most recently used 

(MRU) line while the last line is the LRU line. For a k-way associative cache with a LRU 

replacement algorithm, there is a need for k+1 counters: C1, C2, . . . Ck, C>k. On each 

cache access, one of the counters is incremented. If it is a cache access to a line in the ith 

position in the LRU stack of the set, Ci is incremented. If it is a cache miss, the line is not 

found in the LRU stack and, as a result, we increment the miss counter C>k. Stack distance 
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profile  characteristic is that the number of cache misses for a smaller cache with the same 

number of sets can be easily computed using the stack distance profile.  

 

For example, for a k’-way associative cache, where k’ < k, the new number of misses can 

be computed as:  

 

     Misses = C>k +   
 
           

(2.6) 

 

Using the stack distance histogram of two applications, the UMON can derive the optimal 

L2 cache partition that would minimize the total number of misses, as this last number 

corresponds to the sum of misses of each thread with the assigned number of ways. 

 

Moreto et al propose dynamic cache partitioning to maximize the total throughput of 

running threads by minimizing the total cost. A partitioning algorithm assigns higher cost 

to isolated L2 misses due to its higher impact on performance and giving lower cost to 

clustered L2 misses. The cost assigning process implemented by extra hardware, which are 

auxiliary tag directory (ATD), miss status holding register (MSHR) and hit status holding 

register (HSHR).  

 

The job of ATD is keeping track of the L2 accesses for any possible cache configuration. 

Independently of the number of ways assigned to each core, storing the tags and LRU 

counters of the last K accesses of the thread, where K is the L2 associativity. The Miss 

Status Holding Register (MSHR) and the Hit Status Holding Register (HSHR) are used to 

compute the MLP cost of the access. The MSHR and HSHR are similar to an L2 miss 

buffer and are used to hold information about any load that has missed or hit in the L2 

cache. The modified L2 MSHR and HSHR have one extra field that contains the MLP cost 

of a miss or a hit. Moreover it also stores the stack distance of each access. Based on the 

gathered information from the MLP cost and stack distance, a performance benefit of 

converting L2 misses into hits when assigning more ways to a thread is estimated.  Their 

proposed design performs 10 per cent better over traditional eviction policies with LRU 

[12] [13]. 
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3. SET BASED PARTITIONING CACHE 

 

 

This chapter explains the design and implementation details of our proposed design. We 

introduce two additional counters that keep tracking cache accesses and cache misses. 

Additionally, we introduce a hardware control mechanism that runs our partitioning 

algorithm. As shown in Figure 3.1 the partitioning algorithm decides and changes the size 

of each partition on shared second level cache, dynamically. Finally there is no need for 

modifying the cache replacement algorithm, since the partitions are decided at set 

granularity. The details of the partition algorithm are given in the following section. 

 

 

 

Figure 3.1.  SBP cache 

 

3.1. PARTITIONING ALGORITHM  
 

The main aim of our partitioning proposal is to decrease the number of misses or (miss 

rate) for each core when accessing second level cache to achieve better performance when 

compared to baseline SL2UC. The partitioning algorithm flowchart is given in Figure 3.2. 

Note that after initializing logically private and shared partitions on the second level cache 

the partition algorithm goes in to an infinite loop.  Inside this loop, we collect cache access 
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and miss statistics for each core until an update interval ends. These statistics are collected 

in dedicated hardware counters. At the end of each update interval, the dynamic miss rate 

for each core is calculated as follows:    

 

Dynamic miss rate =  

  Number of miss (interval) /Number of total access (interval)  

(3.1) 

 

Here, the dynamic miss rate is the miss rate for that specific update interval. As a result it 

indicates the instant value of the miss rate rather than its cumulative value, and it is a 

useful parameter for tracking down the memory requirements of the running applications. 

The final step in the algorithm is the calculation of the dynamic miss rate difference 

between cores. This parameter is calculated as shown in equation (3.2).  

 

Dynamic miss rate difference =  

 |dynamic miss rate core0 - dynamic miss rate core1|   

(3.2) 

 

When the dynamic miss rate difference value is less than a specific SBPThreshold value, 

we keep the existing configuration; otherwise, we increase the partition size of the core 

with the higher miss rate by s sets. Additionally, we update the offset and the size of 

private partition as well as the size of the shared partition. This update process is realized 

by the SBP cache address translation logic.  
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Figure 3.2.  Set based partitioning algorithm flowchart 
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3.1.1. SBP cache address translation logic (SBPATL) 

 

The SBP address translation logic is used to translate a physical address to the appropriate 

partition. In Figure 3.3, the logical layout of the SBP cache and its address translation logic 

are shown. For instance, when the Core one private partition is being accessed, any 

physical address is mapped to cache sets between m and x by the SBPATL.  

 

Figure 3.4 shows a detailed example to further explain this mechanism. A physical address 

is divided into three fields as tag, set and block offset. In a typical cache access the 

extracted set field is used to locate the cache set where the data is assumed to be located. In 

that case, the raw decoder selects the cache set and then the tag bits of the physical address 

and the tag bits of the all cache ways are compared. When any of these tag fields of the 

cache ways matches with the tag of the physical address a cache hit occurs and the 

corresponding data block on the cache way is accessed. In a SBP cache, an additional 

control circuitry, which we call SBPATL, is located between the address bus that supplies 

the physical address and the cache raw decoder. In this example, the extracted set value is 

800.  This set number and the accessing core number (i.e. one, for this example) are 

supplied to the SBPATL, which knows that core number one is using cache sets between 

1000 and 1500. The equation (3.3) given below is used to compute the new accessed set 

number (1300, for this example).  

 

Accessed Set=  

(Original set from physical address% core’s private partition size)+core offset             

(3.3) 
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Figure 3.3.  Level two partitioned cache for two cores 
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Figure 3.4.  SBPATL example in SBP cache 

  

 3.2. SBP THRESHOLD VALUE  

 

Our partitioning algorithm mainly depends on the miss rate difference between cores. In 

our case we need to define a suitable miss rate difference threshold value, which is tailored 

to the miss rate values of applications, in order to keep track of application behaviors. 

 

The chosen miss rate difference threshold value is either fixed or dynamic. In our study, 

first we tested five per cent and 10 per cent as fixed threshold values to decide whether a 

core needs more cache sets or not in our partitioning algorithm. Unfortunately, the 

performance results were inconsistent for these fixed threshold values as we expected. As a 

result, we decide utilizing a dynamic threshold mechanism called SBPMDTA. 
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3.2.1. SBP miss rate difference threshold average (SPBMDTA) 

 

SBPMDTA parameter monitors or keeps the history of the miss rate difference values 

among cores for a specific window. We suppose if we can watch the miss rate difference 

values among cores for multiple periods, we can reach to a good estimation of the 

threshold value that later allows us to decide whether an application demands additional 

cache space or not. The calculation of SBPMDTA is done by adding a queue structure that 

keeps the value of dynamic miss rate difference values among cores of each period. In the 

next step, we can get SBPMDTA by summing all the values of the queue elements (Di) 

divided by the number of elements in the queue (n) see equation (3.4). If the queue size is 

chosen to be a power of two then the division may be calculated by simple shift operations.   

 

        
    

 

 
 

 

(3.4) 

 

3.3. HL2UC ACCESS PROTOCOL  

 

 In our design, cores access the HL2UC searching for a specific data block. Here, the 

search process is different than that of a second level shared cache. On each cache access, a 

core first searches its own private partition in the HL2UC, if the required data block is 

there. On a hit, the SL2UC hit time is returned. On a miss, the shared partition in the 

HL2UC is searched. When the data block is located on that partition, a hit time, which is 

equal to the sum of the hit time of the private partition and the hit time of the shared 

partition, is returned. The hit times for both partitions are equal. This is due to accessing 

the same physical resource twice. When the data block cannot be located in the shared 

partition, an access to the off-chip memory is carried out, and the data block is read to both 

shared and private partitions of the HL2UC. Figure 3.5 shows the HL2UC access protocol 

flowchart. 
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3.4. HARDWARE IMPLEMENTATION AND COMPLEXITY OVERHEAD  

 

The hardware implementation of SBP mechanism is shown in Figure 3.5. In order to 

estimate the complexity overhead, we calculate the approximated number of transistors for 

each hardware element that is used in our implementation. After, calculating the total 

number of transistors that used to build two MB shared cache, we find that the hardware 

implementation of our method requires negligible complexity increase of about 0.01 per 

cent. 

 

Transistor numbers of each element in the SBP method hardware implementation with the 

number of transistors of used cache space are shown in table 3.1 and 3.2. 

Table 3.1.  SBP mechanism elements cost 

 

SBP mechanism elements Bit numbers in 

each element 

Transistor numbers in 

each element 

Four miss and access counters 64 (4*64*6) =1536 

Two division units 64 6912 = (2*64*54) 

One division unit 7 378 = (7*54) 

One multiplication unit 20 1080 = (20*54) 

Two subtraction units 7 392 = (2*7*28) 

One adder unit 7 196 = (7*28) 

Three latches 7 126 = (3*7*6) 

Select inputs 5 30 = (5*6) 

Shift registers assuming D f/f 7 1260 = (7*5*36) 

One comparator unit 7 147 = (7*21) 

Total SBP mechanism cost: 12057 transistors 
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Table 3.2. HL2UC cost in the SBP mechanism 

 

HL2UC elements Bit numbers 

in each element 

Transistor numbers in 

each element 

2048 set 20 120 = (20*6) 

8 ways 3 18 = (3*6) 

Data block length 128 768 = (128*6) 

Tag bits 10 983040= (10*2048*8*6) 

Dirty bit 1 98304 = (2048*8*6) 

Valid bit 1 98304 = (2048*8*6) 

Total HL2UC cost: 1180554 transistors 
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Figure 3.5.  HL2UC search protocol flowchart 
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Figure 3.6. Hardware implementation of SBP cache 
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4. EXPERIMENTAL METHODOLOGY 

 

 

In order to evaluate our proposed design we used M-sim [14], a detailed multithreading 

simulation environment that also includes a CMP model. In our study, we simulated two 

cores with identical specifications. We only change the cache parameters throughout our 

experimental study and the rest of the parameters of the processors are kept at default. 

These parameters are shown in table 4.1.                       

Table 4.1.  Processor core specifications 

 

Maximum number of instructions to execute 200 Million 

Number of instructions skipped before timing starts 50 Million 

Number of contexts allowed per core 1 

Instruction decode B/W (instructions/cycle) 8 

Out of order instruction issue width B/W (instruction/cycle) 8 

Issue queue (IQ) size 64 

Instruction commit width B/W (instrs/cycle) 8 

Load/Store queue (LSQ) size 48 

Reorder buffer (ROB) size 256 

Physical register file (RF) size 256 

Total number of integer ALUs 8 

Total number of integer multiplier/dividers 3 

Total number of floating point ALUs 8 

Total number of floating point  multiplier/dividers 3 
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4.1. BASE LINE MEMORY CONFIGURATION  

 

Each processor core utilizes a first level private instruction cache and a data cache. Second 

level cache is shared between the cores. Detailed memory specifications are given in table 

4.2.   

Table 4.2.  Memory specifications 

 

Private L1 Instruction-cache and  

Data-cache configuration 

32KB, 32B block size, 512 sets, 2-way 

with LRU replacement policy 

Unified shared level2 cache 

configuration 

2MB, 128B block size, 2048 sets, 8-way 

with LRU replacement policy 

L1 I-cache and D-cache hit time 1 cycle 

L2 shared cache hit time 20 cycles 

Memory access latency 300 cycles 

Memory access bus width (in bytes) 8 

Total number of memory system ports 

available 

 

2 

Number of sets added/removed 

(resizing amount) for resizing (s) 

 

2,4,8,128 

update interval (100k, 1M, 3M, 5M, 15M)cycles 

Number of SBPMDTA queue entries (n) 5, 10, 25  

 

The last three rows values in table 4.2 can be considered as the default values of SBP cache 

configuration, other values for these parameters are tested and the results will be briefly 

discussed in chapter five. 
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4.2. BENCHMARKS 

 

We use Spec2K benchmarks to evaluate our work [15]. Since the second level cache is 

shared between two cores, we need to use a mixture of two applications. To cover wide 

range of mixtures in our work, we classify the workloads into four categories in terms of 

their characteristics: 

 

 Computation-intensive workloads (C).  

 Memory-intensive workloads (M). 

 Hybrid workloads (H1) containing one computation-intensive and one memory-

intensive application. 

 Hybrid workloads (H2) containing one memory-intensive and one balanced 

application. In balanced applications, both computation- and memory-intensive 

behavior is observed in a single run.  

 

As a result, a collection of 20 application mixtures is composed. Table 4.3 gives the details 

of these mixtures.  

 

There are two types of Spec2K benchmarks table 4.4 and table 4.5 shows the details of the 

simulated spec2k benchmarks. Using the simulator, we ran each benchmark alone for 200 

million instructions, and we recorded the load/store instruction percentage, Figure 4.1 

shows these results in detail. Finally, we categorized these benchmarks based on the 

obtained percentages. We assumed that computational benchmarks have a load/store 

percentage of less than 40 per cent, memory-intensive benchmarks have a load/store 

percentage of more than 45 per cent, and hybrid workloads have a load/store percentage of 

between 40 per cent and 45 per cent. 
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Table 4.3. Workloads type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CATEGORY WORKLOAD 

BENCHMARK1,BENCHMARK2 

 

 

TYPE C (C,C) 

AMMP,SWIM 

FMA3D,PERLBMK 

WUPWISE,SIXTRACK 

WUPWISE,PERLBMK 

SWIM,FMA3D 

 

 

TYPE M (M,M) 

VPR,APSI 

TWOLF,BZIP2 

PARSER,TWOLF 

MGRID,APSI 

MESA,MGRID 

 

 

TYPE H1(C,M) 

FMA3D,MGRID 

PERLBMK,PARSER 

PARSER,FMA3D 

GZIP,PARSER 

SWIM,TWOLF 

TWOLF,AMMP 

 

TYPE H2(M,H) 

MGRID,ART 

ART,MESA 

APSI,ART 

PARSER,ART 
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Table 4.4. Integer benchmarks 

 

Benchmark name Benchmark general description 

Gzip Compression 

Vpr FPGA Circuit Placement and Routing 

 Parser Word Processing 

Perlbmk PERL Programming Language 

Compression Twolf Place and route simulator 

 

Table 4.5. Floating point benchmarks 

 

Benchmark name Benchmark general description 

Wupwise Physics / Quantum Chromo dynamics 

Swim Shallow Water Modeling 

Mgrid Multi-grid Solver: 3D Potential Field 

Mesa 3-D Graphics Library 

Art Image Recognition / Neural Networks 

Ammp Computational Chemistry 

Fma3d Finite-element Crash Simulation 

Sixtrack High Energy Nuclear /Physics Accelerator Design 

 
Apsi  Meteorology/ Pollutant Distribution 
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Figure 4.1.  Load/store percentages for simulated benchmarks 
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5. SBP CACHE SIMULATION RESULTS  

 

 

The performance results obtained from our design are compared to two different cache 

partitioning configurations. The first configuration is the baseline shared cache among 

competing applications and the second configuration is the static or fixed cache 

partitioning configuration which allocates fixed amount of cache sets to each application. 

 

The disadvantage of shared cache compared to fixed partitioned cache the data pollution, 

since it is accessed by all cores. Additionally, shared cache configuration can be unfair to 

running threads, especially when one of the running applications is a computational-

intensive and the other is a memory-intensive application. In that case the memory-

intensive application can steal cache sets from the computational-intensive application. 

The fixed partitioned cache configuration; on the other hand provides dedicated area for 

each core to prevent data pollution. However, giving a fixed amount of space to each 

running application is not a good idea, since an application cannot request more cache 

resource. 

 

We need to implement the fixed cache partitioning method based on sets in order to 

compare its performance results with our SBP cache results, since the fixed cache partition 

based on sets not supported in the used simulator. The implementation steps for the fixed 

partitioning are as follows: 

 

 Divide the cache into three fixed-size region with each core having its own private 

area and a shared area for both cores.  

 Mapping all data references of a core is supported by the fixed address translation 

logic (FATL), which has a similar function of the (SBPATL). The main difference 

between FATL and SBPATL the partition size fixed (partitioned to be accessed by 

specified core id). Remember that in SBPATL the partition sizes are dynamically 

changed based on the miss rate of the running applications. 

 Accessing the new set number provided by the FATL results in either hit or a miss. 

In case of a data block hit the returned latency will be equal to the hit time of the 
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level two shared cache which is 20 cycles in our simulation; otherwise, a new set 

from the shared region will be provided by the FATL. 

 The given set will be accessed in the level two shared area and on a data block hit, 

the returned latency will be equal to 40 cycles (20 cycles in PL2+ 20 cycles in SL2) 

since, we are accessing the same physical resource twice. Finally on a data block 

miss in the SL2 area, an off-chip access is required and the returned latency will be 

300 cycles. 

 

5.1. SBP CACHE WITH DIFFERENT UPDATE INTERVALS  

 

The update interval parameter specifies the period that we run our partitioning algorithm to 

dynamically determine which application needs more private space in the SBP cache. We 

test different values of the update interval parameter and compare its effect on the 

performance results. Figure 5.1 shows these results, in detail. 

 

 

 

Figure 5.1. SBP cache performance with different update intervals 
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The performance results from Figure 5.1 shows that SBP cache with update interval of one 

and three million cycles performs 1.1 per cent on the average better than with small update 

interval value (100 Kcycles) such as (parser,art), (fma3d,mgrid) and (mgrid,art). These 

results show that when the partitioning algorithm is run too often, the performance 

degradation is expected. We can explain this phenomenon as follows: when the application 

behaviour is stable we should avoid cache flushes as much as possible. However, when the 

partitions are resized the cache partitions are mandatorily flushed resulting loss of precious 

data and cache hits in those partitions.  

 

Meanwhile, when large update intervals are considered, such as five and 15 Mcycles, 1.6 

per cent average performance reduction is also observed. In some mixtures, this 

performance degradation is quite severe. For example, in (ammp,swim) and (apsi,art), the 

performance drop is 5.7 per cent and 17 per cent, respectively. The main reason of this 

performance degradation can be explained as follows: with large update interval values the 

partitioning algorithm may not adapt to the rapid changes in applications’ behaviours.  

 

When an application’s behaviour is changed, but if the partition sizes are not adapted to the 

most recent needs of that application, the cache miss rate will increase resulting in 

performance reduction. In the extreme case when the update interval is chosen to be a 

higher value the performance of the SBP cache will be close to the performance of a fixed 

partition cache configuration. 

 

5.2. SBP CACHE AND THE RESIZING AMOUNT  

 

At this point we want to emphasize that, our main goal in this thesis is to logically and 

dynamically partition the cache based on sets. So instead of giving cache ways to the 

required application and sacrificing the fine-grain of control, we give specific number of 

sets to the application with higher miss rate. Here we study the impact of resizing amount, 

the number of sets that are added or removed to each cache partition. Figure 5.2 shows the 

performance results of SBP cache with two, four, eight and 128 sets of resizing amounts 

with one million cycles update interval. 
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Figure 5.2.  SBP cache performance with various resizing amounts 

 

The results shown in Figure 5.2 imply the power of the set based cache partitioning. Here 

when the resizing amount of 128 sets is considered, that amount is equal to the minimum 

resizing amount of a way partitioning configuration with 16 cache ways. As a result, we 

can compare our SBP cache with a way partitioning cache.  

 

In hybrid workloads, the SBP cache partitioning algorithm performs better than the way 

partitioning algorithm by two per cent on the average and by 0.7 per cent in the all 

simulated benchmarks. Here, clear performance drops in the way partitioning algorithm by 

10 per cent in (parser,art) and 4.2 per cent in (mgrid,art) mixtures are observed. The 

performance reduction is related to granting an application more space than its need which 

later causes an oscillation in the partitioning control mechanism. The oscillation depends 

on the given resizing amount to the demanding application. In this case, giving large 

amount of space to an application with little space requirements, such as art, will result in 

increasing the corresponding miss rate for a memory-intensive application like parser. 

Later, this increase in the cache miss rate will badly affect the decision process of the 

partitioning algorithm for the next update interval.  
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As a result, the given cache resource will be taken from art and be dedicated to parser. 

These oscillations in the control mechanisms will continue for many update intervals, 

resulting performance degradation on the processor.     

 

In contrast, way partitioning algorithm performs better than SBP cache in some memory-

intensive workloads. For example, performance drops in the SBP cache by 1.1 per cent in 

(vpr,apsi) and 0.4 per cent in (mesa,mgrid) mixtures are observed. When memory-

intensive application momentarily needs large number of additional cache data blocks, then 

the SBP cache with 128 set resizing amount (or the way partitioning mechanism, since 

they supply nearly the same amount of cache resource) may perform better than other 

configurations with smaller set resizing amounts, since they can supply the required 

amount of cache resources, instantly.  

 

5.3. SBPMDTA QUEUE ENTRIES EFFECT ON SBP CACHE 

 

In chapter three, we explained SBPMDTA parameter and its role in the SBP cache. Then 

we showed that it can be implemented by a queue structure that keeps the miss rate 

difference between the running applications (see equation (3.4)). Here, we study the 

influence of the queue size (the number of the queue entries (n)) on the performance results 

of the SBP cache.  

 

In Figure 5.3 the performance results of the SBP cache with SBPMDTA queue entries 

equal to five, 10 and 25 elements are shown. Relative to SBP cache performance with five 

SBPMDTA queue entries, a performance reduction by 3.3 per cent in the hybrid workloads 

and by 1.5 per cent in the all simulated benchmarks are observed, when 25 SBPMDTA 

queue entries are considered. 

 

We believe this reduction in the performance results for hybrid workloads when the 

number of queue entries are equal to 25 elements is due to applications which contain 

multiple active working sets, since each application references certain data blocks in the 

cache, the active working set may be changed throughout the life time of an application 

which later results in different values for the cache miss rate in different periods. 

 



39 
 

 In addition, this change in the miss rate will reflect its impact on the determined value of 

SBPMDTA. Using large queue sizes will results in keeping long history of the miss rate 

difference.  

 

Later, the obtained SBPMDTA value will not reflect the periodic changes in the 

application behaviour. This cumulative SBPMDTA value will prevent the application with 

moderate cache space requirement to satisfy its momentary resource requirements, and, as 

a result, performance degradation will occur. In Figure 5.4, we see an example of such 

degradation in (parser,art) mixture. When the simulation time is equal to 20 and 67 

Mcycles, the application art cannot get all the resource it requires from the cache space 

when the number of queue entries is equal to 25 elements. Since, the obtained SBPMDTA 

value is greater than dynamic miss rate of art, and as a consequence, the SBP cache control 

mechanism refuses to satisfy art’s request.  Meanwhile, art’s request is satisfied when the 

queue size of five entries is utilize, since the SBPMDTA value reflects a portion of art’s 

working set history.  

 

 

 

Figure 5.3.  SBP cache performance with different queue size 
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Figure 5.4.  SBPMDTA with 5 and 25 queue entries 

 

5.4. SBP CACHE RESULTS FOR DIFFERENT WORKLOADS 

 

5.4.1. SBP cache and C-type workloads 
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to each other in all c-type workloads. This is an expected result, since these workloads do 

not heavily depend on memory accesses, and the given cache space is enough for these 

applications to achieve good performance. Figure 5.5 shows the performance results for the 

simulated configurations. 
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Figure 5.5.  Performance of SL2, fixed partition and SBP 

For C-type workloads 

 

5.4.2. SBP cache and M-type workloads 

 

In contrast to C-type workloads; M-type workloads require an efficient cache configuration 

tailored to their needs. Here, our partitioning algorithm and fixed cache partitioning have 

closer performance results, since they both reduce the effect of data pollution by dedicating 

a private area for each running application. The SBP cache performance gain in M-type 

workloads is nine per cent. 

 

In some workloads such as (vpr,apsi) and (mgrid,apsi) mixtures, we notice a performance 

improvement by 8.3 per cent and 24 per cent respectively compared to the fixed 

partitioning case, since our algorithm provides additional cache sets to the applications 

with higher memory demands. Figure 5.6 shows the performance results for all three cache 

configurations. 

 

0 

1 

2 

3 

4 

5 

6 

7 

in
st

ru
ct

io
n

 p
er

 c
yc

le
 

shared_2MB 

fixed partition 

SBP 



42 
 

 

 

Figure 5.6.  Performance of SL2, fixed partition and SBP 

For M-type workloads 

 

5.4.3. SBP cache with H1-type workloads 

 

Figure 5.7 shows the results of H1-type workloads. In these workloads the SBP cache 

performs better than the shared cache configuration by 2.4 per cent. However, the 

performance results of the fixed cache partitioning are the best for both (perlbmk,parser) 

and (fma3d,mgrid) mixtures. 

 

Lower performance of SBP cache for these workloads can be explained with the cache 

invalidation problem. When assigning additional sets to the required cores, the whole data 

blocks in the private and shared partitions are invalidated. The impacts of these 

invalidations are further studied in section 5.5.  
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Figure 5.7. Performance of SL2, fixed partitioned and SBP 

For H1-Type workloads 

 

5.4.4. SBP cache with H2-type workloads 

 

In Figure 5.8, H2-type workload results are shown. Here, the SBP cache outperforms better 

than other configurations in all simulated workloads. The (apsi,art) mixture in that graph 

shows that the fixed partitioning performs worse than the shared configuration. This is 

quite possible especially when one of the workloads starts experiencing capacity misses. 

Again, our SBP cache supplies the right amount of partition size to each core, and achieves 

the best performance results. 29.4 per cent performance gain is achieved by SBP cache for 

H2-type workloads. 
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Figure 5.8.  Performance of SL2, fixed partition and SBP  

For H2-Type workloads 

 

5.5. IMPACT OF CACHE INVALIDATIONS ON SBP CACHE 

 

We studied the performance impact of cache invalidations due to resizing of the cache 

partitions. In our study, we assume write-back write policy is used in the baseline and the 

SBP cache. As a result, when a partition size is to be changed, all the dirty data blocks in 

that cache partition (or partitions since other partition sizes may also be affected from that 

change) must be moved to lower memory structures in the memory hierarchy.  

 

Figure 5.9 shows the performance difference between the standard SBP cache with write-

back policy and the SBP cache with write-through policy (SBPWT) which does not incur 

any invalidation penalty. After running all mixtures, the obtained results show that if the 

cache invalidation problem is solved, the performance of the SBP cache will improve by 

only 0.3 per cent, which can be considered negligible. Also note that this performance 

improvement comes with an additional power cost due to write-through cache policy, and 

therefore, we show that SBPWT configuration is not very feasible.  
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Figure 5.9.  Impact of cache invalidations on SBP performance 

 

5.6. EFFECT OF SHARED PARTITION SIZE ON SBP CACHE  

 

The performance results for various initial sizes of the shared partition were examined. 

Figure 5.10 shows the collected performance results of SBP cache for 1024, 24 and four 

sets of shared partition sizes.  
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of the SBP cache for type H2 workloads decreases as in (mgrid,art) and (parser,art) 
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computation-intensive) application in the mixture. After a short execution period, the 
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sets from the private partition of the hybrid application resulting in degradation in the 

overall performance.  
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When we consider the H1-type workloads similar to (fma3d,mgrid), the memory-intensive 

application may still steal cache sets from the private partition of the computation-intensive 

application but, as we expected, this does not affect the performance degradation in that 

application. The results shows three per cent performance improvement in the memory-

intensive application and stable performance in the computation-intensive application 

compared to the configuration with initial shared partition size of 1024 sets.   

 

Furthermore, when the initial size of the shared partition is set to 24 sets, we measured a 

performance increase by four per cent in hybrid type workloads such as (mesa,art). This is 

because the memory-intensive application steals cache sets from the shared partition but 

not from the other private partition.  

 

Additionally, we measured performance improvement compared to the configuration with 

initial shared partition size of 1024 sets in memory-intensive mixtures such as 

(mesa,mgrid). Here, both applications start with large private partitions, and then compete 

to get more sets from the shared partition without stealing cache sets from each other. As a 

result, performance of each application can be improved in such workloads. 
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Figure 5.10. SBP performance with different shared partition size 
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6.  CONCLUSIONS AND FUTURE WORK 

 

 

The traditional configurations of the second level cache as either shared or private do not 

help optimizing the cache performance of CMPs. We believe that using a dynamically 

partitioned hybrid cache configuration gives better performance results in CMPs by 

reducing the number of misses for each core.  

 

The SBP cache, proposed in this study, is a fine-grain adaptive method for partitioning L2 

cache based on sets. This method is suitable for workloads with or without sharing. 

Moreover, the hardware implementation requires negligible complexity increase, which is 

as much as 0.01 per cent.  

 

The SBP cache improves the overall performance of memory-intensive application 

mixtures by nine per cent and of hybrid workloads by more than 15 per cent, on the 

average across all simulated benchmarks. Since the SBP cache changes the physical 

addresses to set address mappings, after each cache resize operation the old cache entries 

become no longer accessible. However, the performance penalty resulting from those 

invalidations is negligible.  

 

The update interval parameter in the SBP cache must not be chosen very large or very 

small. Since choosing it very large makes SBP cache similar to a fixed cache 

configuration, in contrast, choosing the update interval very small results in continuous 

precious data flushing. Moreover, by assigning 128 set resizing amount value, we actually 

get a chance to compare the SBP cache with the way partitioning method. An average 

performance reduction of a way partitioning method by 0.4 per cent and two per cent are 

observed in the all simulated benchmarks and in the hybrid workloads, respectively. On the 

other hand, for some of the memory-intensive workloads, performance degradation in the 

SBP cache is observed ((vpr,apsi) 1.1 per cent and (mesa,mgrid) 0.4 per cent), since the 

SBP cache cannot supply the required amount of cache resources, instantly.  
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Furthermore, we study the effect of various SBPMDTA queue sizes on the SBP cache 

performance. We found that by assigning large queue sizes will not improve the SBP cache 

performance. In contrast, a performance reduction by 3.3 per cent in the hybrid workloads 

and 1.5 per cent in the all simulated benchmarks are observed.  

 

The shared partition size also affects the SBP cache performance. Here, choosing small 

shared partition may lead to performance degradation especially in the memory-intensive 

workloads. Since these workloads need large cache space to improve their performance, 

and reducing the shared partition size increases the cache steals among running 

applications which results in a larger number of cache flushes.  

 

The SBP cache in CMPs with two cores gives promising results in term of performance 

gains for private workloads. As future work there are additional requirements needed to 

test the effective of SBP cache in CMPs which are as follows:  

 

 Test SBP cache on shared workloads. 

 Introduce other metrics like IPC (for fairness) combined with the miss rate to 

dynamically allocate partitions to cores.  

 Mechanism for deciding workload type (shared, private). 

 Design and test the SBP cache on more than two cores. 

 Mechanism to dynamically decide the number of queue elements that stores the 

SBPMDTA values. 
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