

KNOWLEDGE GRAPH BASED VISUAL INTERPRETATION OF WEB CONTENT

by

Murat Kalender

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Engineering

Yeditepe University

2016

ii

KNOWLEDGE GRAPH BASED VISUAL INTERPRETATION OF WEB CONTENT

APPROVED BY:

Assoc. Prof. Dr. Emin Erkan Korkmaz

(Thesis Supervisor)

Prof. Dr. Semih Bilgen

Prof. Dr. Tunga Güngör

Assoc. Prof. Dr. Nafiz Arıca

Assist. Prof. Dr. Dionysis Goularas

DATE OF APPROVAL: /. . . . /2016

iii

ACKNOWLEDGEMENTS

I wish to express my gratitude to all the people who have given me encouragement and

helped me in the completion of this study. Especially, I would like to thank my thesis

supervisor, Emin Erkan Korkmaz, for his guidance, understanding, and support. He gave

me a free hand with my research, always had time for discussions, and asked all the right

questions that provided valuable focus for this thesis.

I would like to thank the members of my committee, Tunga Güngör and Nafiz Arıca for

their time and perceptive comments, which have improved the quality of this thesis.

My special thanks go to my colleagues, Ömer Ozan Sönmez, Çağlar Tırkaz, Mustafa Tolga

Eren, Özgün Çırakman, Sezer Kutluk and Günay Gültekin at Huawei whom worked

collaboratively with me for development of the Videolization project.

I would like to express my gratitude to the Scientific and Technical Research Council of

Turkey (TUBITAK) for supporting my research with TUBITAK 2211-C The Priority

Areas Related to Domestic Doctoral Scholarship.

Finally, I would like to thank my parents and family for their support and encouragement.

iv

ABSTRACT

KNOWLEDGE GRAPH BASED VISUAL INTERPRETATION OF WEB

CONTENT

Web content nowadays can also be accessed through new generation Internet Connected

TVs. However these products failed to change users' behavior for consuming online

content. Users still prefer their personal computers instead of their TVs when they access

Web content. Certainly, most of the online content is still designed to be presented with a

personal computer or mobile devices. In order to overcome usability problem of Web

content consumption on TVs, this thesis presents Videolization, a knowledge graph based

visual interpretation system that automatically interprets visually given Turkish or English

textual Web content by using Semantic Web based technologies. The system visualizes

textual Web content by utilizing visual representations of extracted entities from the

content. The generated visual interpretation of a given Web content could be automatically

converted into a video by using Computer Graphics based technologies. Therefore the

main focus of this study is entity linking, which is the most critical task in Content

Curation process. Entity linking is the generation of assignments from knowledge graph

entities to documents. In contrast to many successful applications for English, there is

currently no publicly available entity linking system for Turkish. In order to visualize

Turkish content, this thesis presents Thinker, a novel entity linking system for linking

Turkish text content with entities defined in the Turkish dictionary or Turkish Wikipedia.

The effectiveness of Videolization is validated empirically over opinion surveys and the

effectiveness of Thinker is validated empirically over generated data sets. The

experimental results show that Thinker greatly outperforms previous methods in terms of

disambiguation performance.

v

ÖZET

ANLAMSAL BİLGİ TABANLI INTERNET İÇERİKLERİNİN

GÖRSELLEŞTİRİLMESİ

İnternetin popülerleşmesi ile internet içeriğine yeni nesil televizyonlar üzerinden

erişilmektedir. Ancak internet içeriğinin geniş ekran televizyonlar için tasarlanmamış

olmalarından dolayı kullanıcılar internet içeriğine erişmek için televizyonlarını tercih

etmemektedir. Kullanıcıların büyük bölümü hala televizyon yerine internet içeriğine

erişmek için kişisel bilgisayarlarını kullanmaktadır. Bu tez kapsamında, TV'lerde internet

içerik tüketimi ve kullanılabilirlik sorunlarını aşmak için Videolization isimli

görselleştirme sistemi geliştirilmiştir. Videolization sistemi Türkçe veya İngilizce internet

içeriğinin Anlamsal Ağlar teknolojilerini kullanarak otomatik olarak görselleştirilmesini

hedeflemektedir. Sistem internet içeriğinden çıkarımı yapılan anlamsal varlıkların görsel

ve anlamsal bilgilerini kullanarak görsel sunum yapabilmektedir. Tez çıktısı internet

içeriğinin görsel yorumundan, Bilgisayar Grafiği teknolojilerini kullanarak otomatik video

üretilebilmektedir. Bu nedenle, bu çalışmanın ana odak noktası Videolization sisteminin

arkasındaki varlık bağlama (entity linking) sistemidir. İngilizce için birçok başarılı varlık

bağlama uygulamaları bulunmaktadır. Fakat Türkçe dili için kamuya açık kullanılabilir bir

varlık bağlama sistemi bulunmamaktadır. Türkçe içerikleri görselleştirmek için bu tez

kapsamında Thinker isimli Türkçe varlık bağlama sistemi geliştirilmiştir. Önerilen Thinker

sisteminin başarımını ölçmek için deneyler yapılmıştır. Deneylerde Thinker sistemi

belirsizlik giderme performansı açısından daha önceki yöntemlere göre çok daha iyi

performans göstermiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET .. v

LIST OF FIGURES .. viii

LIST OF TABLES ... xii

LIST OF SYMBOLS/ABBREVIATIONS ... xiv

1. INTRODUCTION .. 1

1.1. OUTLINE ... 6

2. BACKGROUND AND RELATED WORK .. 7

2.1. NATURAL LANGUAGE PROCESSING ... 7

2.1.1. Turkish NLP .. 10

2.2. DEEP LEARNING ... 14

2.2.1. Deep Learning for NLP ... 17

2.3. SEMANTIC WEB TECHNOLOGIES ... 22

2.4. ENTITY LINKING ... 23

2.5. FINE-GRAINED ENTITY RECOGNITION ... 31

2.6. TEXT VISUALIZATION ... 31

2.7. AUTOMATIC VIDEO GENERATION SOLUTIONS 34

3. VIDEOLIZATION - KNOWLEDGE GRAPH BASED VISUAL

INTERPRETATION SYSTEM ... 36

3.1. VIDEOLIZATION CHANNELS ... 37

3.2. REPOSITORY .. 37

3.3. CONTENT CURATION .. 41

3.3.1. Data Acquisition .. 42

3.3.2. Entity Linking .. 43

3.3.3. Information Presentation .. 43

3.3.4. Scene Types ... 45

3.3.5. VVDL Output .. 47

vii

4. THINKER - ENTITY LINKING SYSTEM FOR TURKISH LANGUAGE 50

4.1. LINKING USER INTERFACE .. 51

4.2. KNOWLEDGE BASE .. 52

4.3. ENTITY LINKING PIPELINE .. 56

4.3.1. Spotter (Entity Detector) .. 57

4.3.2. Entity Tagger ... 58

4.3.3. Entity Ranker ... 74

4.4. ENTITY DISCOVERY .. 74

5. EVALUATIONS AND EXPERIMENTS .. 77

5.1. VIDEOLIZATION EXPERIMENT AND USER STUDY 77

5.1.1. Experimental Setup .. 77

5.1.2. Experiment and User Study ... 78

5.1.3. Runtime Efficiency .. 79

5.1.4. Discussion .. 81

5.2. THINKER EVALUATIONS AND EXPERIMENTS .. 83

5.2.1. Evaluation Metrics ... 83

5.2.2. Entity Linking Experimental Setup ... 84

5.2.3. Entity Linking Results and Discussion .. 86

5.2.4. Entity Linking Runtime Efficiency .. 93

5.2.5. Entity Discovery Experimental Setup .. 94

5.2.6. Entity Discovery Results and Discussion .. 96

6. CONCLUSIONS AND FUTURE WORK ... 100

REFERENCES .. 102

APPENDIX A..113

APPENDIX B..117

viii

LIST OF FIGURES

Figure 1.1. Architecture of Videolization system .. 2

Figure 1.2. An example linking of a piece of textual content to entities defined in Vikipedi

 ... 3

Figure 1.3. Thumbnails from a video generated by analyzing Wikipedia article of the USA

are shown. The proposed system videolizes each sentence as a scene with one of the

following types: Entity Graph (Scenes 1and 4), Entity Video (Scenes 3 and 6), Entity

Image (Scene 7) and Text (Scene 5) .. 5

Figure 2.1. A simplified version of Zemberek root dictionary tree [1] 11

Figure 2.2. ITU Turkish NLP pipeline [2] ... 13

Figure 2.3. Each successive layer in a neural network uses features in the previous layer to

learn more complex features [3] .. 15

Figure 2.4. An Autoencoder architecture [4] ... 16

Figure 2.5. The CBOW and Skip-gram architectures [5] .. 19

Figure 2.6. The Freebase word vector entity distance calculation example 20

Figure 2.7. Visualization of vector representations of Wikipedia pages using t distributed

stochastic neighbor embedding (t-SNE) .. 21

Figure 2.8. RDF representation of the statement Turkey is a country 22

Figure 2.9. Description of the “apple (fruit)” using OWL in OpenCyc ontology 23

ix

Figure 2.10. An example mapping of a piece of textual content to semantic tags defined in

an ontology [6] ... 24

Figure 2.11. Average runtime (in log-scale) for dataset AIDA/CONLL and best achieved

F1 measures (metrics based on weak annotation match) [7] ... 27

Figure 2.12. The DSSM architecture for learning neural knowledge graph embeddings [8]

 ... 28

Figure 2.13. Word hashing with letter tri-grams [8] .. 29

Figure 2.14. A screenshot from U-Pav - TV-style Web watching [9] 32

Figure 2.15. Web2Animation Internal Pipeline [10] ... 33

Figure 2.16. The DT-RNN model to query images with a sentence and give sentence

descriptions to images [11] .. 34

Figure 2.17. Stupeflix presents a photo album .. 35

Figure 3.1. A screenshot of Encyclopedia Channel ... 37

Figure 3.2. Videolization class diagram .. 39

Figure 3.3. An illustration of the list of video records stored in the repository 40

Figure 3.4. Parsing illustration of a given Wikipedia article ... 43

Figure 3.5. Rule based scene selection algorithm for an input document 44

Figure 3.6. Visualization of a sentence, which is categorized as entity graph 45

Figure 3.7. Visualization of a Wikipedia sentence, which is categorized as text 47

x

Figure 3.8. An example of Videolization Video Description Language file for

Encyclopedia channel is listed. This example has two scenes; an Entity graph scene (9-16)

with three fields and an Entity Image scene (18-24) with one image. For some fields

abbreviated versions are used; "t" stands for "type"; "c" stands for "content" and "eg"

stands for "entity graph" .. 48

Figure 3.9. Sample scenes from a video produced through Adobe After Effects using a

template and a parser for VVDL format. Generalized nature of VVDL format allows

Content Curation output to be used in third party applications ... 49

Figure 4.1. Thinker architecture .. 51

Figure 4.2. Linking result of a Turkish news article is shown through Thinker User

Interface ... 52

Figure 4.3. An illustration of an example Lucene document and its properties 53

Figure 4.4. Fine-grained senses of "pas" word in the Turkish dictionary............................ 54

Figure 4.5. The Entity Linking Pipeline flow chart ... 57

Figure 4.6. Morphological analysis of Turkish word "kalemi" using Zemberek NLP library

 ... 58

Figure 4.7. The Type Classifier taxonomy used in this study with sample types 63

Figure 4.8. An illustration of feature vector extraction for the Vikipedi entity "Yeditepe

University" ... 64

Figure 4.9. Simple CBOW model with only one word in the context 67

Figure 4.10. Illustration of metadata hashing with letter two-grams 68

xi

Figure 4.11. The Autoencoder architecture for learning embeddings from metadata 71

Figure 4.12. Architecture of Turkish Entity Discovery system ... 75

Figure 5.1. Opinion survey results for the first six questions are shown with a stacked

histogram. Mean and standard deviation values per question are also reported. For these

questions the participants were asked to evaluate the quality of the respective aspect with

values from one to four .. 78

Figure 5.2. Opinion survey results for the last two questions are shown with a stacked

histogram. Mean and standard deviation values per question are also reported. For these

questions the participants were asked yes/no questions related to the general effectiveness

and appeal of the Videolization system ... 79

Figure 5.3. Content Curation and Video Generation phases are compared with respect to

output video duration. 1.0 value denotes real-time computation, any value lower than this

is slower than real-time and vice versa. Trial Values are sorted with respect to output video

duration .. 80

Figure 5.4. Visualization technique counts for the experiment are shown 81

Figure 5.5. Improvement of the F 1 score during the parameter optimization of Thinker by

using the NSGA-II algorithm .. 87

Figure 5.6. Evaluation of the entity linking algorithm with varying window sizes 90

Figure 5.7. Runtime performances of Thinker with varying input sizes 94

xii

LIST OF TABLES

Table 2.1. Morphological analysis of sample English words .. 9

Table 2.2. Co-occurrence probabilities constructed using Glove model for target words ice

and steam with selected context words from a six billion token corpus [12] 18

Table 3.1. List of curated 100 DBpedia properties used in this study 41

Table 4.1. Turkish entity linker knowledge base characteristics ... 55

Table 4.2. An illustration for the n-gram function of the spotter module 58

Table 4.3. Hashing statistics of Vikipedi articles' metadata information 70

Table 4.4. Three Vikipedi entities and their ten closest neighbors by cosine similarity of

their union of metadata and link embeddings .. 72

Table 5.1. Hurriyet news data set characteristics ... 85

Table 5.2. Comparison performance values of the Metadata Embedding algorithm with

varying hash vector sizes on the validation data set .. 86

Table 5.3. Comparison of the performance values of the entity linking algorithms on the

validation data set .. 88

Table 5.4. Weights of the Turkish entity linker algorithms, which are determined by using

the NSGA-II ... 89

Table 5.5. Comparison disambiguation performance values of the entity linking algorithms

on the test data set .. 91

xiii

Table 5.6. General entity linking performance result of Thinker for the each news article

 ... 92

Table 5.7. Performance values of the Thinker on the general test data set 93

Table 5.8. List of curated 200 tags curated from Vikipedi that is used in entity discovery

 ... 95

Table 5.9. Evaluation of the fine-grained entity recognizer algorithm with varying

classifiers and word vector sizes .. 96

Table 5.10. Fine-grained entity recognition sample results of Milliyet test data 98

xiv

LIST OF SYMBOLS/ABBREVIATIONS

AI Artificial Intelligence

BBS Bulletin Board System

BOW Bag-Of-Words

CBOW Continuous Bag-of-Words

CRF Conditional Random Field

DAWG Direct Acyclic Word Graph

DES Description Embedding Similarity

DSSM Deep Structured Semantic Modeling

DT−RNN Dependency Tree Recursive Neural Network

DW2VS Description Word2Vec Similarity

GLOVE Global Vectors for Word Representation

HCI Human Computer Interaction

LCS Letter Case Similarity

LESK Lesk

LS Link Similarity

LW2VS Link Word2Vec Similarity

MES Metadata Embedding Similarity

NER Named Entity Recognition

NGD Normalized Google Similarity Distance

NLP Natural Language Processing

NSGA−II Non-dominated Sorting Genetic Algorithm II

NSS Name String Similarity

OWL Web Ontology Language

POJO Plain Old Java Object

RDF Resource Description Framework

SAAS Software as a Service

SDW2VS Simple Description Word2Vec Similarity

SLESK Simplified Lesk

SS Suffix Similarity

SVM Support Vector Machine

xv

TC Type Classifier Similarity

TCS Type Content Similarity

TDK Türk Dil Kurumu

TLA Turkish Language Association

TS Type Similarity

T−SNE T-distributed Stochastic Neighbor Embedding

TTS Text to Speech

UI User Interface

VVDL Videolization Video Description Language

WSD Word Sense Disambiguation

1

1. INTRODUCTION

Web content nowadays can also be accessed through the new generation Internet

Connected TVs. These TV sets include a web browser and a virtual keyboard so that users

can browse and search online content using their TV sets. Consuming the Web on giant

screens is a promising utility of these TV sets.

 Although average American consumer spends five hours in front of the TV every day
1
, it

has been found out that only ten percent of the Internet Connected TV owners have ever

used their built-in browsers
2
. We believe there are two reasons behind this finding; (i)

built-in browsers are inferior to their Desktop or mobile counterparts, (ii) interaction

methods are not intuitive as users are accustomed to. In relation to these issues, the users

prefer their PCs or mobile devices for Web consumption. Furthermore, we argue that this

is inherently related to the design philosophy of the Web content.

Many of the most popular websites on the Web such as Facebook and Reddit feature

infinite scrolling style browsing. Additionally more static websites can come in varying

sizes. A Web content may be very tall or wide. In turn, it leads to an undesirable

experience to use a TV remote as an input device, causing the user to repeatedly scroll

down or across a Web page in order to read it. This study addresses problem of how to

effectively and intuitively consume Web content on Internet Connected TVs. We can

specify this problem further in selected domains as well; how to turn news websites into

news shows, how to turn e-commerce sites into shopping TV broadcasts and how to turn

Bulletin Board System (BBS) into a talk show or debate style broadcast. We believe that

with a change in design philosophy, it is possible to deconstruct the Web content and then

it can be reconstructed in a TV friendly format. This would allow the users to "surf the

Web" in completely different yet satisfying way.

In order to investigate this problem, it is imperative to comprehend the Web content first.

The Web content can be textual, visual or audial. These contents are encountered as a part

of the user experience on the Web. It is possible to have text, images, sounds, videos and

animations on a Web page, however a great portion of the Web content is predominantly

1
 http://www.nydailynews.com/life-style/average-american-watches-5-hours-tv-day-article-1.1711954

2
 https://www.npdgroupblog.com/internet-connected-tvs-are-used-to-watch-tv-and-thats-aboutall/

2

composed of text. Thus a workflow to convert textual information into multimedia format

is needed. Motivated by sayings like, "A picture is worth a thousand words", this thesis

presents the Videolization system. Videolization is a knowledge graph based visual

interpretation system that automatically interprets visually given Turkish or English textual

Web content by using Semantic Web based technologies. Figure 1.1 shows the system

architecture of Videolization system. It has three major modules: Content Curation,

Repository and Videolization Channels.

Figure 1.1. Architecture of Videolization system.

The Content Curation module of Videolization system visualizes text content by utilizing

visual representations of extracted entities. One of the main steps of this workflow is entity

linking which is the generation of assignments from knowledge graph entities to

documents. In contrast to many successful applications for English, there is currently no

3

publicly available entity linking system for Turkish. In order to visualize Turkish content,

this thesis presents Thinker, a novel entity linking system for linking Turkish text content

with entities defined in the Turkish dictionary (tdk.gov.tr) or Turkish Wikipedia

(tr.wikipedia.org). Key challenges in entity linking systems such as knowledge base

coverage, word sense disambiguation and weighting significant entities within a context

are addressed in this study.

Entity linking process has to handle the ambiguity of the natural language since an entity

mention in a text content might have more than one corresponding entity defined in the

utilized knowledge base. For example, Figure 1.2 shows an example mapping of a piece of

textual content to entities defined in Turkish Wikipedia (Vikipedi). A spotter (entity

detector) would detect the two entity mentions: "Arsenal" and "pas" in this sentence. Once

the entity mentions are detected, the main challenge is to cope with the ambiguous natural

language mentions. The Turkish entity mention "pas" refers to more than one entity, which

are passing in football and rust. In fact, it is quite easy to map the entity mention "pas" to

the correct entity "Pass (football)" in this case, since the other entity "Arsenal FC" has one

referring entity and it has a similar context with the entity "Pass (football)".

Figure 1.2. An example linking of a piece of textual content to entities defined in Vikipedi.

The success of an entity linking system clearly depends on the term coverage of the

knowledge base utilized. In order to effectively process domain-independent documents a

4

comprehensive, up-to-date, and evolving knowledge base is required. Wikipedia is one of

the popular knowledge bases that satisfies these requirements and therefore it is widely

used in entity linking systems. However, the long tail of entities is not popular enough to

have their own Wikipedia articles. For example, "Yetenek Sizsiniz Türkiye" (Turkish

version of the Got Talent series) television show exists in Vikipedi and it is typed as

television show, however "İbo Show", another famous Turkish television show, is not

defined as a Vikipedi article. In this study, an entity discovery system is also proposed that

semi-automatically detects entity mentions that are not defined in Vikipedi, in a given

Turkish text. The system also discovers the semantic typing of detected unlinkable entity

mentions. For informative knowledge, we aim to type new entities in a fine-grained

manner (e.g., basketball player, economist, airport, as opposed to generic types like person,

organization, event).

After the entity linking step, the visualized elements are displayed and animated by using

an external video visual effects and compositing application. The audio component of the

video can be produced with a Text to Speech (TTS) system. Combining this audio with

visual representations of most significant entities in the given sentence produces a video

segment. Stitching segments into each other with appropriate transitions yields the final

video. Figure 1.3 shows example of a generated video by analyzing Wikipedia article of

the USA.

5

Figure 1.3. Thumbnails from a video generated by analyzing Wikipedia article of the USA

are shown. The proposed system videolizes each sentence as a scene with one of the

following types: Entity Graph (Scenes 1 and 4), Entity Video (Scenes 3 and 6), Entity

Image (Scene 7) and Text (Scene 5).

Through our experiments and evaluations, we show that TV friendly videos could be

generated by semantic analysis of Web content in order to understand its context and

decide how to visualize in a video. We detail and demonstrate our system through a use

case based on Wikipedia
3
 articles. Furthermore, we evaluate the user friendliness and

effectiveness of the system with a qualitative user study. The survey results show that

majority of the users prefer using Videolization to consume Web content on their TVs.

Additionally, the effectiveness of Thinker is validated empirically over generated data sets.

The experimental results show that Thinker greatly outperforms previous methods in terms

of disambiguation performance.

The main contributions of this PhD study are summarized as follows:

 A novel visualization method to convert Web content into videos. Videolization

Video Description Language (VVDL) is proposed to describe videos in XML

format and provide interdependence between video content and its visualization.

3
 http://en.wikipedia.org/

6

 A novel Turkish entity linking system is proposed for linking Turkish text content

with entities defined in a generated Turkish knowledge base by integrating Turkish

Wikipedia and the Turkish dictionary.

 A novel Turkish entity discovery system is proposed that discovers semantic typing

of entities that are not defined in Turkish Wikipedia in order to overcome the

knowledge base coverage problem.

1.1. OUTLINE

The outline of this thesis is organized as follows. Chapter 2 gives background information

and related work about entity linking, entity discovery and text visualization. Chapter 3

and Chapter 4 present detailed models of the Videolization and Thinker systems,

respectively. Experimental results and evaluation of the proposed approaches are presented

in Chapter 5 and we conclude in Chapter 6.

7

2. BACKGROUND AND RELATED WORK

This chapter provides the background information regarding the thesis work. In order to

achieve the main purpose of this thesis, visual interpretation of Web content, Natural

Language Processing (NLP) and Deep Learning methods, and Semantic Web technologies

are utilized. Therefore, we first give a brief overview of these research areas. Then, we

introduce and review the related work on four specific tasks that we deal with in this study:

entity linking, fine-grained entity recognition, text visualization and video generation

approaches and solutions.

NLP is required to process input text content in human language format. In this study, in

order to process Internet content we have used commonly used NLP functions such as

sentence detection, morphological analysis, morphological disambiguation, etc.. The main

focus of this thesis is visual interpretation of Turkish text content. Therefore, the structure

of Turkish language and Turkish NLP studies are also covered in this chapter.

Deep learning has recently shown much promise for NLP with the state-of-the-art results

obtained in NLP applications. In this study, we also be nefited from deep learning

approaches in order to realize the proposed entity linking system.

We also give a brief overview of Semantic Web technologies in this chapter. We utilized

semantic databases to visualize given input text content. Metadata about identified entities

in the input text are shown visually in generated videos in order to create more informative

videos.

The proposed video generation system visualizes text content by utilizing visual

representations of extracted entities. Therefore, we introduce the underlying methods,

systems and algorithms on entity linking and fine-grained entity recognition. We also

present alternative visualization approaches in sections 2.6 and 2.7.

2.1. NATURAL LANGUAGE PROCESSING

The field of Natural Language Processing aims to convert human language into a formal

representation that can be processed by computers easily. Current end applications include

8

many information retrieval and extraction tasks such as semantic search, question

answering and summarization systems.

While complete natural language understanding is still a distant goal, researchers have

applied a divide and conquer approach and identified several sub-tasks useful for

application development and analysis. The tasks range from the syntactic, such as sentence

detection, tokenization and part-of-speech tagging, to the semantic, such as word sense

disambiguation, semantic-role labeling and named entity recognition [13]. Functionalities

of commonly used NLP functions are explained below in detail:

 Sentence detection function splits the given content into sentences. Sentence

detection is harder than it may appear. While sentences end with symbols like the

period and the question mark, these symbols do not necessarily terminate

sentences. The presence of abbreviations and numbers that include such characters

complicates the sentence detection process. For example, consider the following

sentence: Youtube.com is a video sharing website. The website name includes a

period which does not end the sentence.

 Tokenization function splits a sentence into tokens (words). Tokenizing cannot be

simply handled by detection of the space character. A tokenizer is required to split

words that consist of contractions (e.g. doesn't).

 Part-of-speech tagging function labels the tokens with the parts of speech such as

noun, verb, adverb, etc. Consecutive noun tokens, which form noun phrases, are

extracted with their occurrence frequency. For example, part-of-speech tagging of

"Istanbul is located in Turkey" sentence is "Istanbul/NNP is/VBZ located/VBN

in/IN Turkey/NNP". The words are tagged with the parts of speech: NNP (Proper

noun, singular), VBZ (Verb, 3rd person singular present) and VBN (Verb, past

participle). There are totally 36 different part-of-speech tags.
4

 Morphological analysis function identifies morphemes and other linguistic units,

such as root words, affixes, part-of-speech of the given input word. Table 2.1

shows morphological analysis of input English words.

Table 2.1. Morphological analysis of sample English words.

4
 https://cs.nyu.edu/grishman/jet/guide/PennPOS.html

9

Input Morphological Analysis

Dogs Dog + Noun + Plural

Dog Dog + Noun + Singular

Eating Eat + Verb + Present

Caught Catch + Verb + Past

 Morphological disambiguation function selects the correct morphological parse for

a given input word in a given context. There might be several different

morphological parses of a word. Especially in Turkish, almost half the words in

text are morphologically ambiguous [14]. For example, there are four different

analyses for the Turkish word "kalemi". Depending on the context, it might mean

one of the following meanings: “my Castle”, “my castle”, “his/her pencil” or “the

pencil”.

 Word Sense Disambiguation (WSD) is the process of automatically mapping a

polysemous word (a word having many meanings) to an appropriate sense

(meaning) according to the context in which it is used. In most cases, it is easy for

humans to disambiguate words. However, WSD is a complex problem that is

difficult to solve automatically. For example, the word “java” has different

meanings. The word “java” may refer to an island, a programming language or to a

coffee brand.

 Named-entity recognition (NER) is the task of identifying elements in text and

classifying them into pre-defined categories such as the names of persons,

companies, locations, expressions of times, quantities, monetary values,

percentages, etc. For example, named-entity recognition of "Istanbul is located in

Turkey" sentence is "<location>Istanbul</location> is located in

<location>Turkey</location>". As a result of this operation, the words Istanbul and

Turkey are identified as location entities.

10

2.1.1. Turkish NLP

Turkish is the official language of Turkey and it is the most widely spoken among the

Turkic languages, with around 75 million native speakers. The distinctive characteristics of

Turkish are vowel harmony, free word order and extensive agglutination [15].

 Vowel harmony is the principle by which a native Turkish word comprises either

exclusively front vowels (e, i, ö, and ü) or exclusively back vowels (a, ı, o, and u).

 Turkish language has free word order. The most common word order is Subject-

Object-Verb for Turkish language. However, other possible word orders are also

used frequently in Turkish.

 Turkish is an agglutinative language and Turkish words are generated by addition

of derivational and inflectional affixes to roots or stems. For example, the following

Turkish word "uygarlaştıramayabileceklerimizdenmişsinizcesine", which means

"(behaving) as if you were one of those whom we might not be able to civilize" in

English, is produced from the root "uygar (civilized)" and gets 11 affixes [16].

In contrast to many successful NLP applications and studies for English, there are currently

limited NLP applications and studies for Turkish, because its free word order and extensive

agglutination structure make processing of Turkish complex. Currently, NLP studies for

Turkish are more focused on morphological analysis [17–19], morphological

disambiguation [14, 20, 21], word sense disambiguation [22–24] and named entity

recognition [25,26]. The Turkish NLP studies on semantic tasks are very limited. There is

currently no publicly available fine-grained entity recognition, entity linking or semantic-

role labeling system for Turkish.

There are currently two publicly available popular NLP systems for Turkish, which are

Zemberek [1] and ITU Turkish NLP Web Service [2]. Zemberek is one of the popular open

source NLP libraries for Turkish. Zemberek provides the most common NLP tasks, such as

sentence detection, tokenization, morphological analysis and morphological

disambiguation. Zemberek uses rule based algorithms in order to find the possible root and

suffixes of a given word. Simply it handles morphological analysis in four steps [1]:

(i) Firstly, Zemberek preprocesses the input word. The pre-processing operation

includes removing accents, hyphens etc. and converting it to lowercase. If the pre-

11

processed word contains non Turkish characters, the morphological analysis

operation terminates.

(ii) Secondly, Zemberek finds root candidates for the preprocessed word by using an

appropriate root selector. There are three different root selectors in Zemberek. The

first one is used for normal strict root selection for a given word. For example, for

the Turkish word "elmaslar" the system determines three possibilities; el:noun,

elma:noun and elmas:noun. Second selector uses a string similarity algorithm in

order to apply a tolerance level when selecting candidate roots. As a result, it

generates more results compared to the strict selector. The third one has a tolerance

for letters which do not exist in the ASCII encoding. These root selectors use a

special Direct Acyclic Word Graph (DAWG) tree as root dictionary in order to find

candidate root words. The dictionary contains approximately 30.000 root words for

Turkish language. Figure 2.1 shows a simplified structure of such a tree. For

example, the Turkish word "balerin" is connected with the Turkish root words "bal"

and "bale".

Figure 2.1. A simplified version of Zemberek root dictionary tree [1].

(iii) Thirdly, Zemberek adds possible suffixes to the candidate root words until either

the input word is constructed, or there are no suffix alternatives left.

12

(iv) Finally, Zemberek post processes the parser results in order to check whether the

symbols, or uppercase letters are used correctly in the input word. This step is

necessary for parsing abbreviations and words containing special letters such as

"Ahmet'in" or "prof.e".

Zemberek morphological disambiguation function uses an exact implementation of the

model proposed by Hakkani-Tür et al. [21]. The authors propose a probabilistic model that

scores the probability of each distinct morphological parse of a word by considering

statistics over the individual inflectional groups and surface roots in 3-gram models.

ITU Turkish NLP Web Service is another publicly available Turkish NLP library which

operates as a SaaS (Software as a Service) and provides the state of the art NLP tools in

many layers: pre-processing, morphology, syntax and entity recognition. Figure 2.2 shows

functionalities and flow of the ITU Turkish NLP pipeline.

13

Figure 2.2. ITU Turkish NLP pipeline [2].

In this study, we have preferred to use the Zemberek library mainly due to performance

considerations. Making a web service request is much slower compared to native library

usage. The sentence detection, morphological parsing and disambiguation processes are

carried out by the utilization of Zemberek library functions.

14

2.2. DEEP LEARNING

The success of many current machine learning methods is based on human-designed

representations and input features. When machine learning is applied to the attentively

selected input features, it becomes merely about optimizing weights to make the best final

prediction. Deep learning can be seen as putting back together representation learning with

machine learning. It attempts to jointly learn good features, across multiple levels of

increasing complexity and abstraction and the final prediction [27].

Deep learning is part of a broader family of machine learning methods based on learning

representations of data. If machine learning could learn representations (features)

automatically, the entire learning process could be automated more easily and many more

tasks could be solved. Deep learning provides one way of automated feature learning. For

example, an observation of an image could be represented in different ways such as a

vector of pixels. However some representations make it easier to learn tasks of interest like

the image of a human face from example images. Research in this area tries to define what

makes better representations and how to create models in order to learn these

representations.

Deep learning algorithms are founded on distributed representations. The underlying

assumption behind distributed representations is that observed data is created by the

interactions of many different features on different levels. Deep learning adds the

assumption that these features are organized into multiple levels, corresponding to different

levels of abstraction or composition. Varying numbers of layers and layer sizes could be

used to provide different amounts of abstraction [28]. As shown in Figure 2.3, first layer of

a deep neural network learns simple edge filters, the second layer captures primitive shapes

and higher levels combine these to form objects.

15

Figure 2.3. Each successive layer in a neural network uses features in the previous layer to

learn more complex features [3].

Neural networks have been around for many decades [29]. However, until 2006, deep and

fully connected neural networks were commonly outperformed by shallow architectures

that used feature engineering. In that year, Hinton and Salakhutdinov [30] introduced a

novel way to pre-train deep neural networks. The idea was to use restricted Boltzmann

machines to initialize weights of one layer at a time. This greedy procedure can initialize

the weights of the full neural network step by step in basins of attraction and it becomes

possible to obtain better local optima [31]. Later, Vincent et al. [32] showed that similar

effects can be obtained by using autoencoders.

Autoencoders are simple learning circuits which aim to transform inputs into outputs with

the least possible amount of distortion in order to learn a compressed, distributed

representation (encoding) for a set of data. Typically, the purpose is dimensionality

reduction. As a concrete example, suppose the inputs are the pixel intensity values from a

20×20 image (400 pixels). So in layer L1, there would be 400 input units. If the unit size of

the hidden layer L2 is set to 100, the network would be forced to learn a "compressed"

16

representation of the input (encoding). Given only the 100 length vector of hidden unit

activations, the network tries to reconstruct the 400 − pixel input (decoding). When there is

structure in the data, for example, if some of the input features are correlated, then this

algorithm will be able to discover some of those correlations. In fact, this simple

autoencoder often ends up learning a low-dimensional representation very similar to PCAs

[4]. Figure 2.4 shows example of an autoencoder architecture where xi represents the input

given to the network and 𝑥 1 is the reconstructed input.

Figure 2.4. An Autoencoder architecture [4].

With advances in large datasets, faster, parallel computers and deep learning architectures

such as deep neural networks, convolutional deep neural networks and deep belief

networks, it has been possible to apply deep learning to fields like computer vision,

automatic speech recognition, natural language processing (NLP), and music/audio signal

recognition where they have been shown to produce state-of-the-art results on various tasks

[27].

17

2.2.1. Deep Learning for NLP

Deep learning has recently shown much promise for NLP with the state-of-the-art results

obtained in applications such as speech recognition [33], part-of-speech tagging [13],

named entity recognition [13] and neural network based language models [34,35].

Neural network based language models use distributed vector representations for words,

namely word embeddings, rather than discrete word counts. Word embedding is a

distributed representation of a word with a high dimensional vector, where each dimension

corresponds to a latent feature of the word [36]. Thus a word embedding can capture both

semantic and syntactic information of the word. The statistics of word occurrences in a

corpus constitute the primary source of information available to all unsupervised methods

for learning word embeddings [12]. Resulting distributed representation of words have

several advantages compared to traditional language models such as bag-of-words (BOW)

in terms of compactness and sparsity. Also semantically similar words are represented with

closer vectors. For example, if we consider two semantically similar words "capital" and

"city", it is expected to have similar values at least in some dimensions of their

corresponding vectors. There are various methods to generate word embeddings and this

study established word embeddings by using GloVe [12] and Word2Vec [5].

GloVe (Global Vectors for Word Representation) is a tool
5

recently released by Stanford

NLP Group researchers Jeffrey Pennington, Richard Socher, and Chris Manning for

learning continuous-space vector representations of words. It is an unsupervised learning

algorithm that is carried out in global word-word co-occurrence statistics counted from the

corpus. The GloVe model is trained on the non-zero entries of a global word-word co-

occurrence matrix X, where a cell Xij is a "strength" which represents how often the word i

appears in the context of the word j. The matrix is populated by a single pass through the

entire corpus to collect the statistics. For large corpora, this operation can be

computationally expensive, but it is a one-time up-front cost. Following training iterations

are much faster because the number of non-zero matrix entries is generally much smaller

than the total number of words in the corpus [12]. Table 2.2 shows the calculated co-

occurrence probabilities for target words ice and steam from a six billion word corpus.

5
 http://nlp.stanford.edu/projects/glove/

18

Table 2.2. Co-occurrence probabilities constructed using Glove model for target words ice

and steam with selected context words from a six billion token corpus [12].

Probability and Ratio k = solid k = gas k = water k = fashion

P(k|ice) 1.9 x 10
-4

 6.6 x 10
-5

 3.0 x 10
-3

 1.7 x 10
-5

P(k|steam) 2.2 x 10
-5

 7.8 x 10
-4

 2.2 x 10
-3

 1.8 x 10
-5

P(k|ice) / P(k|steam) 8.9 8.5 x 10
-2

 1.36 0.96

Once co-occurrence matrix X is constructed, the next step is to decide vector values in

continuous space for each word in the corpus such that their dot product equals the

logarithm of the words' probability of co-occurrence. The authors [12] derive the following

function J to train the model using a gradient descent algorithm:

J = 𝑓 𝑋𝑖𝑗 vwi ∙ 𝑢𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − log 𝑋𝑖𝑗

2
𝑉

𝑖,𝑗=0

(2.1)

where V is the word vocabulary, Xij is the number of times the word wj appears in the

context of word wi, bi and bj are bias terms, f is a weighting function that cuts low co-

occurrences, which are usually noisy, and also avoiding to overweight high co-

occurrences.

Word2Vec [5] is a linguistic model based on a neural network and the model provides an

alternative approach to produce word embeddings. Word2Vec learns a low dimensional

continuous vector for each word from their distributional properties observed in a given

corpus. Word2Vec uses a simple log-linear classification network, and provides skip-gram

and continuous bag-of-words (CBOW) architectures (see Figure 2.5).

19

Figure 2.5. The CBOW and Skip-gram architectures [5].

The CBOW network predicts each word based on neighbouring words. The input layer of

CBOW is projected in the hidden layer in a linear form and it is represented as a bag of

words. Input words get projected into the same position, that is, vectors are averaged. By

this way, order of words in the history does not influence the projection. CBOW can be

learned using extremely massive data that cannot be processed in another neural network

bag-of-words model [34].

Skip-gram is a practical word representation in predicting neighbouring words in a

document or a sentence. It predicts the neighbouring words or context when a single word

is provided. Skip-gram learns the averaged co-occurrence of two words in a training set.

Contrary most of the previously used neural network architectures for learning word

vectors, training of the skip-gram model does not involve dense matrix multiplications.

When given the sequence of words w1, w2, w3..., wn, the purpose of skip-gram is to

maximize the average log probability with the formula below [37]:

1

N
 logp(wn+j|wn)

−c<𝑗<𝑐,𝑗≠0

N

n=1
 (2.2)

20

where c is the size of the training context (which can be a function of the center word wn).

Higher c results in more training examples and thus can result to a better accuracy, at the

expense of the training time. The basic Skip-gram formulation defines p(wn+j|wn) using the

softmax function [37]:

 p(w0|w1) =
exp (𝑢𝑤0

𝑇 𝑣𝑤1)

 exp ⁡(𝑢𝑘
𝑇𝑣𝑤1)𝑉

𝑘=1

 (2.3)

where the input and output vector representations of the w are uw and vw and V is the size of

the vocabulary.

The authors [37] report that the Skip-gram model can be trained in a day from a corpus of

containing more than 100 billion words using a single machine. Implementation of the

Skip-gram model is publicly available.
6
 Also Google News and Freebase word vectors are

provided in this website. The Google News vectors are 300 dimensional vectors covering

three million words and phrases and the Freebase vectors are 1000 dimensional vectors

covering 1.4M entities. For example, Figure 2.6 shows the most similar ten entities with

their cosine distances to the input entity "/en/geoffrey hinton" within the provided Freebase

entity vectors.

Figure 2.6. The Freebase word vector entity distance calculation example.

6
 http://code.google.com/p/word2vec/

21

Recently, Le and Mikolov [38] have adapted the Skip-gram model for pieces of texts and

introduced the Paragraph Vectors. This model maps sentences and documents to high

dimensional vectors instead of single words. Dai et al. [39] used this model to learn vector

representations of Wikipedia articles. Figure 2.7 shows the visualization of vector

representations of Wikipedia articles using t-distributed stochastic neighbor embedding (t-

SNE) [40], which is a machine learning algorithm for dimensionality reduction. The

articles categorized with different categories (people, animals, plants, films, actors and

directors) are highlighted with various colors. We can observe that articles having common

categories are represented with similar vector representations. This figure is generated

using a publicly accessible web application.
7

Figure 2.7. Visualization of vector representations of Wikipedia pages using t-distributed

stochastic neighbor embedding (t-SNE).

Logically, CBOW must be superior since it includes more words that are right for the

situation, but skip-gram performs better in terms of accuracy [41]. Therefore, this study

generated word embedding using the skip-gram model of Word2Vec to learn vector

representations of Wikipedia articles and these vectors are utilized in the entity linking

process.

7
 http://colah.github.io/posts/2015-01-Visualizing-Representations/big_vis/wiki.html

22

2.3. SEMANTIC WEB TECHNOLOGIES

Semantic Web is an extension of the current Web, in which data is represented in a

standard format together with metadata that allows integration and processing of different

data sources automatically by computer programs [42]. Metadata (data about data) is a

structured information about the content and properties of documents in order to support

their automatic processing [43]. Semantic Web covers several standard languages for

metadata representation [44]. In this study, the Resource Description Framework (RDF)

[45] and the Web Ontology Language (OWL) are utilized for representing metadata. RDF

is an XML-based language which is essentially a data model for knowledge representation.

It represents attributes and relationships with a statement which consists of subject-

predicate-object [46]. Figure 2.8 shows how the information "Turkey is a country" could

be represented in the standard RDF/XML format (scr:Turkey is the subject, scr:isA is the

predicate, and Country is the object).

Figure 2.8. RDF representation of the statement Turkey is a country.

OWL [47] is an XML-based language used for describing ontologies. An ontology is a

knowledge source that consists of representational primitives, which is used to model a

domain. The representational primitives are usually concepts (classes), instances (objects),

relations, and properties [48]. Concepts are the basic elements of an ontology. A concept is

described with a definition and a set of properties [49]. Concepts are generally formed in a

hierarchical arrangement (taxonomy) by isA-relations (type). For example, the concept

"computer science" is a type of the concept "engineering" in WordNet [50]. Instances are

23

named entities of some of the concepts such as people, organizations, geographic locations,

books and songs. For example, “Istanbul” is defined as an instance of the concept “city” in

WordNet. OWL language is capable of describing concepts, instances, and relationships

among them. Figure 2.9 shows the description of the concept “apple (fruit)” in OpenCyc

ontology. The label property states the concept name, the prettyString properties state the

synonym names, the subClassOf property states the parent concept, and seeAlsoURI states

the corresponding WordNet entry of the apple concept, in Figure 2.9.

Figure 2.9. Description of the “apple (fruit)” using OWL in OpenCyc ontology.

2.4. ENTITY LINKING

Generating assignments of knowledge base entities to documents is called entity linking

process. The entity linking studies propose a variety of techniques ranging from hand-

coded rules to statistical machine learning techniques. The systems usually utilize NLP

methods and knowledge bases (mostly Wikipedia) to detect spots, perform disambiguation

24

and ranking. Figure 2.10 shows an example mapping of a piece of textual content to

semantic tags defined in an ontology [51]. The ontological concept classes are represented

as circles (i.e. City and Painter), while the concept instances are shown as rectangles (i.e.

Philadelphia and Thomas Eakins).

Figure 2.10. An example mapping of a piece of textual content to semantic tags defined in

an ontology [6].

Spotting (entity detection) is an important step that may effect the performance of the

whole system in terms of computational complexity and accuracy [52]. Thus, a good

spotting performance is crucial for an entity linking system. The common approach for

spotting is the extraction of noun phrases by using an NLP system and then searching for

matching entities in a dictionary generated from a knowledge base. Noun phrases are

extracted since entity mentions are typically nouns or noun phrases [53, 54].

Disambiguation is the most challenging step of entity linking. To handle ambiguous entity

mentions, context dependent (global) and independent (local) features are used. The

context independent features exploit the knowledge about that entity without considering

the coherence among other entities in a given text content. The popularity (commonness)

of a mention that refers to a particular entity in a utilized collection, is a widely used

25

context independent feature in existing studies [55, 56]. In contrast, the context dependent

features are extracted based on the context where the entity mention appears. The context

dependent features aim to minimize the semantic distance among entities and optimize the

coherence in a given text content. Most of the proposed context dependent features are

based on the Wikipedia entity link graph. Ceccarelli et al. [57] evaluate several techniques

to calculate relatedness of entities by leveraging the Wikipedia graph structure [58].

Ranking is the final step of entity linking where ranks are detected based on the popularity

of the entities and relevancy with the input text. The relevance value is beneficial for

especially information retrieval tasks, where the aim is to determine the ranking of the

search results for a given query that contains an entity. Ranking process is similar to the

problem of keyphrase extraction, which is the task of detecting significant terms that

briefly describe the document's content. Three main approaches are utilized for the

problem which are extraction based on statistics [59, 60], machine learning [61, 62] and

shallow semantic analysis [63]. These approaches can be applied on entity ranking process,

too. In this study, we used the statistical approaches such as term frequency to rank

entities.

Several entity linking systems were proposed mostly for English: namely, AIDA [64],

CMNS [65] and CSAW [66], Illinois Wikifier [67], DBpedia Spotlight [68], TagMe [55]

and Wikipedia-miner [56].

AIDA [64] searches for entities using the Stanford NER Tagger and adopts the YAGO2

knowledge base [69] as the catalog of entities, including their semantic distance.

Disambiguation comes in three variants: PriorOnly (each mention is bound to its most

commonly linked entity in the knowledge base), LocalDisambiguation (each mention is

disambiguated independently from others, according to a set of features which describe the

mention and the entities), CocktailParty (YAGO2 is used to perform a collective

disambiguation which aims maximizing the coherence among the selected annotations, via

an iterative graph based approach). AIDA has been designed to deal with English

documents of arbitrary length and it offers a publicly available API.

CMNS [65] generates a ranked list of candidate entities for all n-grams in the input text.

The list is created through lexical matching and language modeling. The disambiguation is

done with a method based on supervised machine learning that takes as input a set of

26

(short) texts and, for each of them, a set of human annotations. CMNS has been designed

to deal with very short texts only (mainly tweets).

CSAW [66] searches the input text for entities extracted from Wikipedia anchors and titles.

It uses two scores for each annotation, one local and one global. The local score involves

12 features built upon the terms around the mention and the candidate entities. The global

score involves all the other annotations detected for the input text and averages the

relatedness among them. This was the first system that formulates the disambiguation

problem as a quadratic programming optimization problem aiming for a global coherence

among all mentions. CSAW has been designed to deal with English documents of arbitrary

length, but is quite slow because of the quadratic programming approach.

Illinois Wikifier [67] searches the input text for mentions extracted from Wikipedia

anchors and titles, using the Illinois NER system. Disambiguation is formulated as an

optimization problem which aims at global coherence among all mentions. It uses a novel

relatedness measure between Wikipedia pages. The relatedness measure is based on

Normalized Google Distance (NGD) and point-wise mutual information.

DBpedia Spotlight [68] searches the input text for mentions extracted from Wikipedia

anchors, titles and redirects. It then associates a set of candidate entities to each mention

using the DBpedia Lexicalization data set. Given a spotted mention and a set of candidate

entities, both the context of the mention and all contexts of each candidate entity are cast to

a Vector-Space Model (using a BOW approach) and the candidate whose context has the

highest cosine similarity is chosen. Note that no semantic coherence is estimated among

the chosen entities.

TagMe [55] searches the input text for mentions defined by the set of Wikipedia page

titles, anchors and redirects. Each mention is associated with a set of candidate entities.

Disambiguation exploits the structure of the Wikipedia graph, according to the relatedness

measure introduced in [70]. This measure takes into account the amount of common

incoming links between two pages. TagMe's disambiguation is enriched with a voting

scheme in which all possible meanings of mentions are scored. A proper mix of heuristics

is eventually adopted to select the best meaning for each mention. TagMe has been

designed to deal with short texts and it offers a publicly available API.

27

Wikipedia Miner [56] is one of the first approaches proposed to solve the entity annotation

problem. This system is based on a machine learning approach that is trained with links

and contents taken from Wikipedia pages. Three features are then used to train a classifier

that selects valid annotations discarding irrelevant ones: (i) the prior probability that a

mention refers to a specific entity, (ii) the relatedness with the context from which the

entity is extracted. This is obtained by the non-ambiguous spotted mentions, and (iii) the

context quality which takes into account the number of terms involved, the extent they

relate to each other, and how often they are used as Wikipedia links.

Cornolti et al. [7] propose a benchmarking framework to compare publicly available entity

annotation systems. Figure 2.11 shows performance results of the entity annotation

systems for AIDA/CONLL dataset introduced in [7]. Their experimental results show that

TagMe outperforms the other annotators in terms of F 1 score and run-time duration.

Figure 2.11. Average runtime (in log-scale) for dataset AIDA/CONLL and best achieved

F1 measures (metrics based on weak annotation match) [7].

28

Deep learning is also applied for the entity linking task. Recently, Heck et al. [8] proposed

a novel method to learn neural knowledge graph embeddings. The approach learns

embeddings directly from structured knowledge representations by using a deep neural

network model named Deep Structured Semantic Modeling (DSSM). The architecture for

the DSSM is shown in Figure 2.12.

Figure 2.12. The DSSM architecture for learning neural knowledge graph embeddings [8].

Knowledge graph entities often consist of multiple words (e.g., "Yeditepe University",

"Barack Obama", "Atlanta Hawks"). Previous extensions to word-based embeddings have

typically represented multi-word entities as algebraic combinations (addition) of word-

level embeddings. Even though this approach can work for some entities, it often

introduces noise into the representation. For example adding the vector "Atlanta" (the city)

to the vector "Hawks" (the bird) does not result in the vector for "Atlanta Hawks" (the

basketball team). Therefore, the authors [8] use only a portion of the Freebase (entities,

relations, and facts) as input features and generate an embedding for each entity. Entity

relations are represented with bag-of-words term vectors and entity names are represented

using a vector of letter n-grams where a hashing technique is utilized [8].

Word hashing aims to reduce the dimensionality of the bag-of-words term vectors. The

specific approach utilized by the authors is based on letter n-grams. As shown in Figure

29

2.13, given a word (cat), they first add start and end marks to the word (e.g., #cat#). Then,

they break the word into letter n-grams (e.g., letter tri-grams:#ca, cat, at#). Finally, the

word is represented using a vector of letter n-grams.

Figure 2.13. Word hashing with letter tri-grams [8].

By using word hashing, each entity could be represented by a 30K vector instead of a

vector with size 500K. One potential drawback of word hashing approach is collision, i.e.,

two different words could have the same letter n-gram vector representation. The authors

observe 22 collisions, which is a negligible collision rate of 0.0044.

After the word hashing step, a deep neural network is trained with semantically related (Ei

and Ej) and unrelated entities (E1, ...,En) in order to learn 300 dimensional embedding

vectors for entities defined in Freebase. The semantic relatedness of two concepts is given

by the knowledge graph as first-order related nodes (it can also be inferred from the co-

occurrence of entities on a given Wikipedia page). The semantic relevance score between

entities Ei and Ej is calculated as: R(Ei, Ej) = cos(yEi, yEj), where yEi and yEj are the neural

embeddings of the entities Ei and Ej, respectively. Given two semantically related concepts,

the training procedure computes the posterior probability of entities Ej given Ei using a

softmax function, as well as the probabilities for the unrelated concepts E1, ...,En. The

30

DSSM is trained to maximize the likelihood of the related entities given the features

created across the knowledge graph [8]. The generated embeddings are used for entity

linking task. The authors compared their linking method with the current state-of-the-art

TagMe system and observed better performance (23.6% error reduction).

In contrast to many successful applications for English, there is currently no publicly

available entity linking system for Turkish. Although there are some approaches proposed

to solve the disambiguation problem in entity linking, there is no complete system that can

be considered as a Turkish entity linker. Note that Turkish is a morphologically rich

language and it has free word order. Hence, standard approaches developed for English

might fail for the Turkish language. Such properties make the language processing task

more complex and difficult. Currently, studies for Turkish [22–24] are more focused on the

Word Sense Disambiguation (WSD), which is similar to the entity linking task.

One of the WSD studies for Turkish is proposed by Mert et al. [22], which handles

ambiguities such as polysemy, homonymy, categorical ambiguity and stemming

ambiguity. The authors propose the Lesk-like methods [71,72] for the Turkish language.

The methods are evaluated on a randomly selected set of 10 sentences from novels and

newspapers that include the ambiguous Turkish word "çay (tea)". The authors observe a

68.57% success rate with the Lesk-like method, which is low compared to state-of-the-art

results for English.

Our work can be distinguished from previous work in several ways. First of all, Thinker is

the first proposed system for Turkish entity linking process. Secondly, unlike previous

work for other languages, Thinker uses fusion of knowledge-based methods and supervised

machine learning algorithms that utilize a rich set of features in order to link Turkish

entities. Various methods and features that can handle the agglutinative and free word

structure of the Turkish language are also proposed in this study. Lastly, a comprehensive

Turkish knowledge base is generated by integrating Vikipedi and the Turkish dictionary in

order to cover the majority of the Turkish entities.

31

2.5. FINE-GRAINED ENTITY RECOGNITION

Fine-grained entity recognition is the task of identifying semantic types of entities in the

text. A key difference between named entity recognition (NER) is that more specific entity

types are used in the fine-grained entity recognition process. For example, basketball

player is one of the entity types that would be used for typing basketball players such as

"Michael Jordan", which is a more informative type than person.

In contrast to coarse-grained NER [73], there are less fine-grained entity recognition

studies [74–78] proposed in the literature. These studies utilize trained classifiers over a

variety of linguistic features (i.e. part-of-speech tags, uni-grams, bi-grams) and contextual

features (preceding and following words). Specifically, Ling et al. [75] propose FIGER

that classifies entity mentions with 112 unique tags curated from Freebase [79] types. They

trained a Conditional Random Field (CRF) by utilizing Wikipedia anchor links as training

data. Yosef et al. [78] propose HYENA, which is a multi-label classifier based on

hierarchical taxonomy of YAGO [80] knowledge base. In this study, a Support Vector

Machine (SVM) based classifier is utilized on Wikipedia anchor links likewise of the work

by Ling et al. [75].

Word embeddings approach is also applied on the fine-grained entity recognition task.

Recently, Yogatama et al. [81] proposed a novel method to learn an embedding for each

entity type and each feature. By this way, they can create feature vectors for entity

mentions in order to classify entities. They compare their entity recognition method with

FIGER and observe better performance (72.35% F1-score).

In contrast to many successful applications for English, there is currently no publicly

available fine-grained entity recognition system for Turkish. Whereas, there are some

studies [25, 26] proposed to solve the coarse-grained NER task.

2.6. TEXT VISUALIZATION

Web pages consist of textual and audio-visual content which designate the user experience

on websites. Although a Web page may include text, images, sounds, videos and

animations, the majority of Web content is predominantly composed of text. There are

32

Image Generation and Image Retrieval based approaches in the literature to mitigate this

situation by converting general text to visual representations.

Image generation based approaches create animations using Computer Graphics

technologies for a given text content. Several image generation based studies were

proposed mostly for English; namely, U-Pav [9], Web2Animation [10], e-Hon [82] and

WordsEye [83].

U-Pav [9] is proposed by Tanaka, where the system reads out the entire text in Web

content together with an image animation. The proposed system shows the title and Web

content through a ticker and the images in the web page are animated at the same time. The

tickers, the animations and the TTS output are synchronized. Figure 2.14 shows a screen-

shot from U-Pav.

Figure 2.14. A screenshot from U-Pav - TV-style Web watching [9].

33

Web2Animation [10] is a system that analyzes the semantics of recipes on the Web and

generates 3D animations for them. Figure 2.15 shows internal pipeline of Web2Animation.

The recipe instructions are mapped to set of animation clips using a semantic analyzer and

the clips are displayed.

Figure 2.15. Web2Animation Internal Pipeline [10].

E-Hon [82] is a system that converts Web content into a storybook with dialogues and

animation. It is especially designed to assist children to understand Web content by

animating them. The e-Hon system utilizes semantic tags that are associated with the text

on the web. To transform the web contents into dialogues, the system generates a list of

subjects, objects, predicates, and modifiers from the text and connects them in a colloquial

style. A subject is treated as a character and a predicate is treated as the action. An object is

also treated as a character, and an associated predicate is treated as a passive action. Many

characters and actions have been recorded in their database.

WordsEye [83] produces highly realistic 3D scenes by utilizing thousands of predefined

3D polyhedral object models with detailed manual tags and deep semantic representations

of the text. As a result, WordsEye works best with definite descriptive sentences, e.g., "The

cat is 20 feet front of John. The cat is 15 feet tall".

Image retrieval based approaches retrieve images by using image search techniques for a

given text content. Such studies generally [84–86] apply NLP techniques to extract

important words or phrases and Computer Vision techniques are used to find

34

corresponding images from image databases. Finally, they use Computer Graphics

techniques to render the retrieved images in a picture. With recent advancements in

computer vision and NLP, there has been significant work in relating images to their

sentence-based semantic descriptions [87]. Socher et al. [11] propose a model to map

sentences and images into a common embedding space to retrieve one from the other. They

introduce the dependency tree recursive neural network (DT-RNN) model which uses

dependency trees to embed sentences into a vector space. Then these embeddings can be

used in order to retrieve the images that are described by those sentences.

Figure 2.16. The DT-RNN model to query images with a sentence and give sentence

descriptions to images [11].

2.7. AUTOMATIC VIDEO GENERATION SOLUTIONS

There are several commercial automatic video generation solutions in the literature:

namely, Stupeflix
8
, SoMedia

9
, Winston

10
 and Wibbitz

11
.

Stupeflix is a video editing product which provides an environment for semi automatically

generating videos from photos, videos and music. Stupeflix uses a custom OpenGL
12

 stack

8
 http://studio.stupeflix.com

9
 https://www.somedia.net

10
 http://getwinston.com/project/apptour/

11
 http://www.wibbitz.com/

12
 https://www.opengl.org/

35

as the video generation technology. Users could connect their social media accounts and

Stupeflix generates automated videos from their photo albums. It also provides rich video

editing functionality and easy development environment for developers. Figure 2.17 shows

a screen-shot from a video, which is generated from a photo album.

Figure 2.17. Stupeflix presents a photo album.

SoMedia delivers compelling, personalized, and individually targeted video

communications. SoMedia has evolved automated video into a user driven video

production platform. Using this platform, users can select animation styles, customize

colors and music, choose scenes, and upload content. The platform allows users to create a

totally customizable motion graphics driven video. Winston is a mobile application that

turns social feeds and news interests into an audiovisual newscast. This product is only

available for iPhone smart-phone users. Wibbitz re-packages textual content into rich and

informative video summaries that can be watched conveniently on mobile screens. Wibbitz

converts Web content into video using Artificial Intelligence (AI) and NLP technologies.

36

3. VIDEOLIZATION - KNOWLEDGE GRAPH BASED VISUAL

INTERPRETATION SYSTEM

A notable difference between the contents of a Web page and a TV program is that the

former is a document-based information media whereas the latter is a time-based

continuous information media. This situation creates a difference for the information

accessing methods that can be utilized. Conventional "Web browsing" is an active process

for accessing information. On the other hand, conventional "TV watching" is a relatively

passive way of accessing information. In order to consume Web content effectively on a

TV, a media conversion product which enhances TV watching experience, is needed. This

problem of consuming Web on TV motivated us for the development of a Videolization

system.

Videolization is a knowledge graph based visual interpretation system that aims to

automatically create TV program contents in a video format from Web content and provide

passive consumption service for TV users. Via Videolization product, TV users can watch

their favorite Web content instead of having to read it. TV program contents are generated

in several categories based on the source and type of the Web content. Each category is

presented in a separate TV channel to the TV audience. For instance, Social Networks are

presented like TV channels and posts from those sources are played just like TV episodes.

A few possible channels of a Videolization product are listed below:

 Encyclopedia Channel: Information about entities are presented to the user. For

instance, when user asks for |Yeditepe University| entity, the channel would present

a video about Yeditepe University with important facts about it such as foundation

year, number of students, etc..

 News Channel: Online news documents are presented to the user. News documents

are categorized into several categories such as politics, sports, etc. allowing users to

watch news from different categories based on their preference.

 Social Network Channel: Posts from the Social Network platforms are presented to

the user. By watching this channel, the user can get a brief report about his or her

recent social media activities.

37

3.1. VIDEOLIZATION CHANNELS

TV program contents are generated in several categories based on the source and type of

the Web content. Each category is presented in a separate TV channel to the audience. As a

use case, Encyclopedia Channel is developed to present Wikipedia articles in video format.

It is a Web application that allows the users to search Wikipedia article titles and watch the

generated videos. User Interface of Encyclopedia Channel is developed by considering

Human Computer Interaction (HCI) studies [88] and design principles for the usability.

Figure 3.1 shows a screenshot of the Encyclopedia Channel.

Figure 3.1. A screenshot of Encyclopedia Channel.

3.2. REPOSITORY

Repository module stores generated video files and utilized knowledge graph. MongoDB
13

,

a NoSQL database, is used for this purpose. In order to access and store the video data,

13

 https://www.mongodb.com/

38

Spring Data
14

 is used for this. Key functional areas of Spring Data are a plain old Java

object (POJO) centric model for interacting with a MongoDB records and easily writing a

repository style data access layer. A POJO is an ordinary Java object, not bound by any

special restriction and not requiring any class path. By this way, there is no need for entity–

relationship model in order to store data in a database. Therefore modeling of only Java

classes is adequate. Figure 3.2 shows our class diagram for storing the data and Figure 3.3

shows the list of video records stored in the repository.

14

 http://projects.spring.io/spring-data-mongodb/

39

Figure 3.2. Videolization class diagram.

40

Figure 3.3. An illustration of the list of video records stored in the repository.

In the context of this module, we also carried out generation of a simplified version of

DBpedia knowledge graph. DBpedia contains metadata about entities. However, most of

the information consists of details or intermediate information not suitable to be presented

in the generated videos for the end users. Thus, we decided to identify most significant

properties of entities and filter out the rest. For example, for a company entity, founder,

foundation year, industry are most informative properties and worth to present in a video.

In order to achieve simplified version of DBpedia, we decided to manually determine the

significant properties, since DBpedia schema barely changes and there are not so many

defined property types. Firstly, we created histogram of DBpedia properties and this is

resulted with a list of 1367 distinct properties. Then most frequent and informative 100

properties are manually identified (listed in Table 3.1).

41

Table 3.1. List of curated 100 DBpedia properties used in this study.

Team City Maximum Elevation

(µ)

Ship Beam (µ)

Founder Film Director Religion Architectural Style

Type Language Minimum Elevation (µ) Year

Description Home Town Motto Location City

Birth Place Alma Mater Located In Area Series

Birth Year Nationality Department Creator

Country Founding Year Ground Number Of Episodes

Genre Population Density Headquarter Origin

Death Year Weight (g) Builder Number Of Pages

Location Length (µ) Opening Year Number Of

Employees

Family Party Known For Coached Team

Starring Publisher Cinematography Former Name

Population Total Birth Name Field Broadcast Area

Occupation Owner Combatant Affiliation

Death Place Music Composer Network Programme Format

Class Musical Artist Strength Family

Elevation (µ) Author Key Person Route Start

Runtime (s) Computing Platform Military Command Route End

Producer Album Band Member Manufacturer

Position Product Literary Genre River Mouth

Release Date Commander Spouse Engine

Area Total (m2) Industry Developer Batting Side

Height (µ) Order In Office Number Of Students Draft Year

Writer Year Of Construction County Country

Performer League Parent Population As Of

3.3. CONTENT CURATION

Content Curation is the core module that provides the main functionality of the system.

This module transforms acquired Web content such as social feeds, Web document, news

RSS, etc. into structured visual representation format using Semantic Web technologies. It

42

analyzes the collected Web content and firstly determines what to present to the individual

TV audience. Then the module decides about how to present the selected content. This

system is our main research focus and Semantic Web techniques are utilized for the design

and implementation of the system.

The final output of this module is an XML/JSON file, more specifically; a "Videolization

Video Description Language" (VVDL) file that defines the content of the video that would

be generated. By using a 3rd party video visual effects and compositing application such as

Adobe After Effects
15

, it is possible to generate videos from the VVDL file by using a

specialized template and a parser for the VVDL.

Our methodology for the Content Curation has three main processing steps: Data

Acquisition, Semantic Analysis and Information Presentation.

3.3.1. Data Acquisition

Data Acquisition deals with the Web data extraction and retrieval challenges. Various

kinds (social media, news, product) and types of (xml, html, image, video) Web resources

are collected in order to be presented on the Videolization channels. For this study, we

realized Encyclopedia Channel by parsing dump of Wikipedia
16

, which is provided in

wikitext format and then the data is converted into JSON format. Figure 3.4 illustrates

parsing of a given Wikipedia article. The left side of the figure shows the input wikitext

and the right side shows the parsing result in JSON format.

15

 http://www.adobe.com/products/aftereffects.html
16

 https://dumps.wikimedia.org/enwiki/

43

Figure 3.4. Parsing illustration of a given Wikipedia article.

3.3.2. Entity Linking

Acquired Web content is first semantically analyzed to understand the context by

performing entity linking (semantic annotation). In this study, we used TagMe for entity

annotation of English documents and Thinker for entity annotation of Turkish documents.

The details of TagMe system are introduced in Section 2.4 and the Thinker system is

presented in detail in Chapter 4. These entity linking systems provide list of entities for a

given text content with their significance values. Then we retrieve properties of these

entities from the Videolization Knowledge Graph to enrich the video content.

3.3.3. Information Presentation

A template based approach is utilized to render the analyzed text content into video format.

The template includes semantic and functional rules. In this study, we realized the

Encyclopedia Channel by using our template based visualization approach. In the

Encyclopedia Channel, first summarization function is utilized to create a more concise

representation which will still retain the most important sentences. The videolization

system utilizes an extraction based automatic text summarization sub-module [89]. After

summarization, each sentence is videolized separately by forming audio and video

44

components. For audio component, the TTS is generated and optionally background music

is added. For visual part, semantic analysis is performed to map each sentence into one of

the four videolization scene types; namely Entity Graph, Entity Video, Entity Image and

Text representations. Figure 3.5 demonstrates the decision process and Figure 1.2

illustrates these scene types for a given Wikipedia article.

Figure 3.5. Rule based scene selection algorithm for an input document

45

3.3.4. Scene Types

For all scene types we have two general rules related to entity selection:

(i) The entity must occur in the whole document at least twice.

(ii) If there are multiple candidates, the one with the highest TagMe or Thinker

significance weight is chosen.

We enforce these rules in order to select more coherent entities in the document.

Additional rules exist for each scene type and they are listed as follows:

Entity Graph: A sentence can be videolized as an Entity Graph scene if it has an entity

that fulfills the following conditions:

(i) The candidate entity must have at least two properties from Table 3.1.

(ii) It must not have been presented as an Entity Graph in the previous sentences.

The call has_entity_graph in Figure 3.5 refers to these conditions. The visual component of

the video is created using the selected entity's key properties and its image. Figure 3.6

shows our design for visualization of an entity graph type Wikipedia sentence ("London is

the capital city of both England and the United Kingdom").

Figure 3.6. Visualization of a sentence, which is categorized as entity graph.

46

Entity Video: Similar to the entity graph type of scenes, most significant entity of a

sentence is selected for visualization purposes. If the selected entity does not have any

significant property value, system may show a video that represents the entity, if the

following conditions are fulfilled:

(i) The candidate entity does not fulfill the conditions of Entity Graph.

(ii) It must not have been presented as an Entity Video in the previous sentences.

(iii) A video related to the entity can be found in available repositories.

The call has_entity_video in Figure 3.5 refers to these conditions. We utilize Shutterstock
17

website as a video repository. Along with Entity text, its type and document title are also

used as search terms to handle disambiguation (Apple company or fruit) and context

relevancy problems.

Additionally we filter the search results based on video duration. The minimum video

duration is determined based on the duration of TTS audio file. The maximum video

duration is fixed for 60 seconds. When the duration of the video found is longer than TTS

duration, we apply a greedy algorithm to resolve audio-video synchronization issues. As

long as total audio duration is shorter than the video duration, the following sentences in

the text are concatenated to the current scene and their TTS are read out over the video. If

all the remaining sentences are consumed and the video is still not finished, the video is cut

with a transition effect.

Entity Image: A sentence can be videolized as an Entity Image scene if it has an entity

that fulfills the following conditions:

(i) The candidate entity does not fulfill the conditions of Entity Graph or Video

(ii) It must not have been presented as an Entity Image in the previous sentences.

The call has_entity_image in Figure 3.5 refers to these conditions. We utilize images from

Entity's Wikipedia page and the results from Google Image search. Wikipedia articles

generally have at least one associated image and this representation is preferred by the

Videolization System. If the Entity's Wikipedia page does not have an image, we perform a

search using Entity text, its type and document title. The top result for this search query is

used as the Entity Image.

17

 https://http://www.shutterstock.com/

47

Text: This scene type can be considered as a fallback visualization option. It is the least

preferred option and it is only utilized when the other scene types' conditions are not

fulfilled. Generally, this alternative comes into play when no entity in the sentence can be

detected. The visual component of the video is created by simply depicting the sentence

text in a TV friendly way. Figure 3.7 shows our design for visualization of this type of

Wikipedia sentence.

Figure 3.7. Visualization of a Wikipedia sentence, which is categorized as text.

3.3.5. VVDL Output

The final output of the content curation module is an XML/JSON file, more specifically; a

"Videolization Video Description Language" (VVDL) file that defines the content of the

video that would be generated. A VVDL file includes scene elements and related

configuration. Figure 3.8 shows an example of a VVDL file.

48

Figure 3.8. An example of Videolization Video Description Language file for

Encyclopedia channel is listed. This example has two scenes; an Entity graph scene (9-16)

with three fields and an Entity Image scene (18-24) with one image. For some fields

abbreviated versions are used; "t" stands for "type"; "c" stands for "content" and "eg"

stands for "entity graph".

VVDL provides interdependence between content curation and video generation modules.

Same content could be visualized differently with different visual templates. Alternatively,

it is possible to generate videos using a 3rd party tool such as Adobe After Effects from the

VVDL file by using a specialized template and a parser for the VVDL. Figure 3.9 presents

different visualizations of same VVDL file.

49

Figure 3.9. Sample scenes from a video produced through Adobe After Effects using a

template and a parser for VVDL format. Generalized nature of VVDL format allows

Content Curation output to be used in third party applications.

50

4. THINKER - ENTITY LINKING SYSTEM FOR TURKISH

LANGUAGE

The amount of unstructured data has increased exponentially in recent years and Web

resources form the vast part of it, including tweets, blogs, online news, comments, etc.

Leveraging these resources by automatic processing is highly challenging due to the

ambiguity of natural language [90]. The data needs to be transformed into a standard

format that includes metadata in order to become beneficial for many information retrieval

and extraction tasks such as semantic search, question answering and summarization

systems.

Entity linking is one of the problems to be handled in order to process natural language and

to enrich the existing unstructured text with metadata. The generation of assignments

between knowledge base entities and lexical units is called entity linking. Entity linking

process has to handle the ambiguity of the natural language since an entity mention in a

text might have more than one corresponding entity defined in the utilized knowledge base.

Entity linking is similar to the problem of word sense disambiguation (WSD) [91]. WSD is

the process of automatically mapping a polysemous word (i.e., a word having many

meanings) to an appropriate sense (meaning) according to the context in which it is used.

However, entity linking is a more complex task compared to WSD. In WSD process, the

utilized lexical resource is complete by covering all senses. In contrast, there is no existing

knowledge base that covers all entities. Hence an entity linker system is required to mark

entity mentions without knowledge base entries as NIL (unknown entity). In addition,

entity linking has a higher variation compared to lexical mentions in WSD [52].

State-of-the-art approaches usually utilize three steps for entity linking [58]. (i) Spotting of

input text; that is finding mentions (fragments of text) and corresponding candidate entities

defined in a knowledge base; (ii) Disambiguation of mentions; where each mention is

linked to the correct entity (meaning) in that context; (iii) Ranking; where the detected

entities are sorted based on their popularity and relevancy with the input text.

In this chapter, first we introduce a high performance entity linking system - Thinker - for

Turkish that automatically maps entity mentions in a text with the corresponding real

51

world entities defined in Vikipedi or the Turkish dictionary published by Turkish

Language Association (TLA). A rich set of features for Turkish language have been

utilized in this study; including extraction of entity embeddings by using unsupervised

deep learning approaches. This approach forms the core part of the study. Then, we

introduce a high performance entity discovery system for Turkish language. The system

semi automatically detects entity mentions that are not defined in Vikipedi for a given

Turkish text corpus and discovers semantic typing of detected unlinkable entity mentions.

As shown in Figure 4.1, Turkish Entity Linker has been realized through the design and

implementation of three major modules: Linking User Interface, Knowledge Base and

Entity Linking Pipeline.

Figure 4.1. Thinker architecture.

4.1. LINKING USER INTERFACE

The Linking User Interface (UI) is used for presenting the identified entities. Turkish

Entity Linker UI is a web application that users can input Turkish text content and see the

52

linking results. Figure 4.2 shows an example of how a Turkish news article
18

 content is

mapped into corresponding entities defined in Vikipedi or the Turkish dictionary. Right

side of the image is the Thinker User Interface and shows the linking result. The identified

entities are represented in red color and the rest are in black. When a user places the mouse

over an entity, she can see the details of the linked entity.

Figure 4.2. Linking result of a Turkish news article is shown through Thinker User

Interface.

4.2. KNOWLEDGE BASE

The Knowledge Base module generates the knowledge base of Thinker by integrating the

Turkish dictionary and Vikipedi. The Turkish dictionary covers the vast majority of

Turkish concepts. On the other side, Vikipedi covers a large subset of these concepts.

Hence, the knowledge base formed by combining these knowledge sources would be high

quality, comprehensive, up-to-date and domain-independent. The knowledge base module

takes the Turkish dictionary and Vikipedi dumps
19

 in SQL and XML formats as its data

18

 http://www.trtspor.com.tr/haber/futbol/dunyadan-futbol/arsenalde-pas-krizi-83073.html
19

 https://dumps.wikimedia.org/trwiki/20150806/

53

sources and generates the knowledge base in Lucene
20

 index format in order to improve the

entity searching performance. Lucene is a powerful text search engine library, which

comprises a comprehensive set of scalable, efficient and cross-platform algorithms written

in Java. The index constructed in a way that every entity is represented as a Lucene

document and the properties of the entity form the fields of the document. An illustration

of an example Lucene document and its properties can be seen in Figure 4.3.

Figure 4.3. An illustration of an example Lucene document and its properties.

The Turkish dictionary contains about 70,000 words and 110,801 fine-grained senses. For

each sense, word id, title, short description (7 words in average), sense rank, part-of-speech

(verb, noun, adjective, etc.) information is provided. However the dictionary only contains

sample sentences for around 18,000 senses. Entities are either common nouns, which

20

 http://lucene.apache.org/

54

usually refer to a class of entities (person, company, city) or proper nouns, which are

unique instances of certain classes such as “Barack Obama”, “Huawei” and “Istanbul”.

Therefore, we filtered the Turkish dictionary and utilized only the senses, which have part-

of-speech with the noun type. We also filtered sub-meanings of senses by selecting only

the highest ranked coarse-grained meanings for each word. For example, "pas" word in the

Turkish dictionary has two coarse-grained meanings and totally seven fine-grained

meanings, which are listed in order by their rank in Figure 4.4. Besides, the highest ranked

meanings which are passing in sports and rust, other five meanings are excluded due to the

filtering utilized. As a result of the filtering, we obtained a dictionary with approximately

47,500 distinct words and 48,500 distinct senses.

Figure 4.4. Fine-grained senses of "pas" word in the Turkish dictionary.

Wikipedia is a popular and comprehensive online encyclopedia collaboratively created by

volunteers. Each Wikipedia article has a unique title, which can be treated as named

entities. Redirection links within an article can be considered as links to synonymous

articles. Some articles contain infoboxes, which summarize the key information, such as

“birth date” and “occupation of people”. Unlike in ontologies, Wikipedia articles do not

have formally defined hierarchical relationships with each other. An article may be

55

categorized in numerous ways. For example, the article on "Noam Chomsky" is

categorized as 1928 births, 20th-century American writers, American linguists, Lecturers,

etc. Such categories provide valuable information about the entity in the article. As

mentioned previously, the Turkish Wikipedia (Vikipedi) [92] is utilized as the second

knowledge source in this study. As of June 2016, Vikipedi contains approximately 274,000

articles
21

. Article titles, categories, links between pages are provided in relational tables

and article content and infobox information are provided in an XML file in wiki-text

format.

The Knowledge Base module queries the Turkish dictionary and Vikipedi tables and parses

wiki-text content then creates a Lucene document for each entity containing its properties.

The Knowledge Base module filters the disambiguation pages defined in Vikipedi during

the indexing step. A disambiguation page lists references to entities that share the same

name. For example, the disambiguation page for "pas"
22

 lists eight associated entities

having the same name "pas" including the rust and passing in football. These

disambiguation pages are not used by the system, therefore these pages are filtered. Table

4.1 shows the number of entities in our final knowledge base.

Table 4.1. Turkish entity linker knowledge base characteristics.

Total Entity # Vikipedi Entity # Turkish Dictionary

Entity

216,550 168,050 48,500

Specifically, generated index documents have the following six attributes:

 ID: This field stores the unique id number assigned to each article in Vikipedi or

each sense in the Turkish dictionary.

 Title: This field stores the title of an entity.

 Alias: This field stores titles of redirection links to a Vikipedi article. For example

"Beşiktaş JK (Beşiktaş Gymnastics Club)" article has 21 redirection links such as

21

 https://tr.wikipedia.org/wiki/Özel:İstatistikler
22

 https://tr.wikipedia.org/wiki/Pas

56

"BJK, Besiktas, Besiktas Jimnastik Kulubu, etc". This field is empty for the entities

extracted from the Turkish dictionary.

 Links: This field stores ids of outgoing links from a Vikipedi article. This field is

empty for the entities extracted from the Turkish dictionary.

 Type: This field stores the infobox type or the phrase given in between parentheses

in the title for Vikipedi entities. For example Java programming language article

has the title Java_(programming_language). This way, we can extract the type

value of this article as programming language. This field is empty for the entities

extracted from the Turkish dictionary.

 Description: This field stores the entity description. It is directly provided for the

Turkish dictionary. For the Vikipedi articles, first sentence of the article is used as

the entity description.

4.3. ENTITY LINKING PIPELINE

The final module of Thinker is the Entity Linking Pipeline. It is the core module that links

the entity mention in the input text with the knowledge base. Figure 4.5 shows flow chart

of the Entity Linking Pipeline. This module is composed of three sub-modules: Spotter,

Entity Tagger and Entity Ranker. In the following sections, these sub-modules will be

analyzed comprehensively.

Figure 4.5. The Entity Linking Pipeline flow chart.

57

4.3.1. Spotter (Entity Detector)

The Spotter produces a list of possible spots (entity mentions) in a given document. Spot

refers to small fragments of text, which may correspond to an entity in the knowledge base.

The spotter produces all possible n-grams of terms, where n ranges from one to six in this

study. Then spots are associated with a list of entity candidates (if any) by querying the

knowledge base. Specifically, this task consists of; (i) sentence detection where input text

content are split into sentences; (ii) morphological analysis and disambiguation where each

word is analyzed to find its root, suffixes and part-of-speech tag; (iii) determining the n-

grams where groups of successive words are identified; (iv) querying the knowledge base

with these n-grams and finding candidate entities.

Sentence detection, morphological analysis and disambiguation are functions provided in

Zemberek [1] NLP system. Zemberek is a popular open source NLP library for Turkish.

Zemberek provides the most common NLP tasks, such as sentence detection, tokenization,

morphological analysis and morphological disambiguation. The details of Zemberek NLP

system are introduced in Section 2.1.

Sentence detection function simply splits the text into sentences. Morphological analysis

function identifies morphemes and other linguistic units, such as root words, affixes, part-

of-speech of the given input word. The morphological parser may output more than one

possible analysis for a word due to ambiguity. For example, the parser returns four

analyses for the Turkish word "kalemi" as shown in Figure 4.6. Zemberek also provides

morphological disambiguation functionality to handle the morphological ambiguity.

Figure 4.6. Morphological analysis of Turkish word "kalemi" using Zemberek NLP library.

58

We utilize the root word that is given by the morphological disambiguation operation in

order to query the knowledge base. As noted above, N-gram function generates all possible

n-grams of the terms, where n ranges from one to six in this study. An n-gram is a

contiguous sequence of n items from a given sequence of text. The items can be phonemes,

syllables, letters, words or base pairs according to the application. In this study, the items

are words, n-grams may also be called shingles [93]. For example, Table 4.2 shows the

generated shingles for a given example sentence.

Table 4.2. An illustration for the n-gram function of the spotter module.

Text Candidate Spots

Arsenal'de pas

krizi

arsenal

arsenal pas

arsenal pas kriz

pas

pas kriz

kriz

The N-gram approach is computationally expensive compared to the common approach for

entity detection, which is the extraction of noun phrases by using an NLP system.

However, Turkish language has free word order, hence noun phrase detection performance

of Turkish NLP systems are not satisfactory. Therefore, we preferred to apply the N-gram

approach for entity detection.

4.3.2. Entity Tagger

The Entity Tagger is the key challenging component which accepts a list of spot matches

produced by the Spotter and selects the best entity match for each spot by performing

disambiguation whenever a spot has more than one candidate meaning. Disambiguation is

achieved by extending previous methods [5,8,55,71,94]; (i) leveraging knowledge-based

methods with context dependent and independent features [55], (ii) leveraging supervised

methods with entity type information [94], and (iii) leveraging entity features to learn

59

neural entity embeddings [5,8]. Using these methods, semantic relatedness between

mention-entity pairs are computed and highest scored entity for each spot is selected.

Specifically, each mention-entity pair is scored by weighting and combining score values

with the formula below:

tagger(m,e) = Wnss × nss(m,e) + Wlcs × lcs(e)

+ Wss × ss(e) + Wts × ts(e) + Wtcs × tcs(e)

+ Wtc × tc(e) + Wdw2vs × dw2vs(e) + Wsdw2vs × sdw2vs(e)

+ Wlw2vs × lw2vs(e) + Wmes × mes(e) + Wdes × des(e)

+ Wls × ls(e) + Wlesk × lesk(e) + Wslesk × slesk(e) (4.1)

Tagger is the function that returns the semantic relatedness value between a mention m

given by the spotter and an entity e in the knowledge base. Each W in the equation denotes

the weight associated with the corresponding metric and these weight values are set by

using NSGA-II (Non-dominated Sorting Genetic Algorithm II) [95]. Name String

Similarity (nss) and Letter Case Similarity (lcs) form the context independent and Suffix

Similarity (ss), Type Similarity (ts), Type Content Similarity (tcs), Type Classifier

Similarity (tc), Description Word2Vec Similarity (dw2vs), Simple Description Word2Vec

Similarity (sdw2vs), Link Word2Vec Similarity (lw2vs), Metadata Embedding Similarity

(mes), Description Embedding Similarity (des), Link Similarity (ls), Lesk (lesk) and

Simplified Lesk (slesk) forms the context dependent similarity metrics that are used for

entity disambiguation and scoring purposes, in this study.

Only a subset of the similarity metrics (nss, lcs, ss, dw2vs, sdw2vs, des, lesk and slesk)

proposed above can be calculated for the Turkish dictionary entities because of lack of

information (i.e. type, link and metadata). For the other similarity metrics, the Turkish

dictionary entities are scored as zero. We formulated the tagger function in this way in

order to favor the Vikipedi entities, since they provide richer information compared to the

Turkish dictionary entities. However, this does not prevent the selection of Turkish

60

dictionary. We have observed that the Turkish dictionary entities could also be linked by

the system, when they are relevant to the given context in contrast to the Vikipedi entities.

All of the similarity metric scores are normalized between zero and one by dividing the

scores with the highest scored entity given by the corresponding similarity metric. In the

following sub-sections, these similarity metrics are introduced.

4.3.2.1. Name String Similarity

String similarity between detected spot and candidate entity title is the most direct feature

that can be used for selecting the right entity for that spot [90]. We use Levenshtein

distance for calculating the string similarity between a spot m and an entity e. The

Levenshtein distance between two words is the minimum number of single character edits

(i.e. insertions, deletions or substitutions) required to change one word into the other.

Levenshtein distance is normalized with the length of the entity title. Since Turkish is an

agglutinative language, most of the time entity mention and entity 64 name differ and

necessity for nss occurs.

 nss(m, e) = 1 − levenshtein(m, e) (4.2)

4.3.2.2. Letter Case Similarity

Letter Case Similarity takes into account letter case match between detected spot and the

corresponding entity. When cases of the detected spot and entity match, the entity gets

letter case similarity score one.

There are three cases which are upper, lower and proper. If entity title occurs in all upper

case in its description, then it is considered as upper case entity. If entity title occurs in all

lower case, then it is considered as lower case entity. Otherwise the entity is considered as

proper case entity.

61

4.3.2.3. Suffix Similarity

Suffix Similarity takes into account suffix match between detected spot and the description

of the entity. Morphological analysis is done on the entity description and the list of

suffixes are determined. Similarly, morphological analysis is carried out on the input text

and the suffixes of the candidate entity mention are also identified. For each suffix match

between the list of suffixes extracted from entity description and the input text, entity gets

additional suffix similarity score one.

4.3.2.4. Type Similarity

Type Similarity takes into account the amount of common entity types (i.e. film, artist,

language) in the context where the entity mention appears. The formula is defined as

follows:

 𝑇𝑆 𝑒𝑗 =
𝑡𝑦𝑝𝑒(𝑒𝑗 , 𝑒𝑖)

𝑛 − 1

𝑛

𝑖=1,𝑖≠𝑗
 (4.3)

where type(ej, ei) returns 1, if types of entity ej and ei are same. N is again the number of

candidate entities in the context. With this formula, entities sharing the same type in the

input text, would have high scores and the entity having the most frequent type value

would be favored.

4.3.2.5. Type Content Similarity

Type Content Similarity (tcs) checks whether the type value of the entity occurs in the

context where the entity mention appears. If this is the case, the entity gets tcs score one,

otherwise it is scored as zero. For example, for the given sentence "The film Titanic is

directed by James Cameron", the mention Titanic would have two candidate entities;

Titanic movie and Titanic Ship. In this case, the film entity would be favored; since the

Titanic movie entity has a defined type value film and this entity exists separately in the

given context.

62

4.3.2.6. Type Classifier Similarity

Type Classifier Similarity is used to predict semantic typing of entities for a given

sentence. When predicted type of detected spot matches with the candidate entity type, the

entity gets type classifier score one. The type classifier is realized in three steps: selection

of the semantic types that will be utilized, creation of training data and development of a

fast and accurate multi-class classification algorithm.

The first step in entity type classifier is defining the set of semantic types. There is no

hierarchical relationship among Vikipedi types. Therefore, to achieve a high quality

classifier, entity types are manually analyzed by human experts. They are sorted according

to the number of Vikipedi entities, which are annotated with them. Most frequently

occurring two hundred types are manually annotated with higher level types. Figure 4.7

shows the type taxonomy and sample types. We have defined 10 first level types such as

person, organization, creative work, etc. and 200 second level types such as bird, kingdom,

book, etc..

Figure 4.7. The Type Classifier taxonomy used in this study with sample types.

The second step, creating a training set for these tags, is achieved by utilizing content of

Vikipedi articles, which are annotated with a type in our tag set. Eligible articles' contents

63

are given to the Feature Extractor function and a list of vectors is created for each article

(entity). Feature Extractor first detects the list of sentences in which the title of the entity

exists. Then, for each sentence a feature vector is created that can be used for training.

Feature Extractor extracts linguistic features (part-of-speech tags and suffixes) and

contextual features by utilizing morphological analysis and morphological disambiguation

functionalities of Zemberek.

Extracted part-of-speech tags are used to categorize and filter contextual information

(surrounding words) of the entity mentions. Contextual words besides nouns, verbs,

adverbs and adjectives are filtered since they are not discriminating features. As a result of

this step, a set of words and suffixes are created for each entity mention. We also use letter

case (upper, lower or proper) as a feature. The table in Figure 4.8 shows the generated

features for a sentence of given Vikipedi article. Then, extracted feature sets (title, letter

case, nouns, verbs, adverbs, adjectives and suffixes) are used for creating vectors that

represent the entity mention. In order to achieve this goal, Word2Vec word embedding [5]

and average pooling [96] algorithms are used.

64

Figure 4.8. An illustration of feature vector extraction for the Vikipedi entity "Yeditepe

University".

Word2Vec word embedding algorithm is used to construct vector representations of words.

Word2Vec was run using the skip-gram model with a window size of seven, hierarchical

softmax training, and a frequent word sub-sampling threshold of 0.001 to create 100

dimensional vectors. We have used Milliyet corpus [97] as input data in order to cover as

many words as possible. The corpus contains 408,305 documents; they are the news

articles and columns of five years, 2001 to 2005, collected from the Turkish newspaper

Milliyet
23

. The input data is also lemmatized to find root form of Turkish words before

training. Essentially by lemmatization we make the input space denser and we prevent

learning different vectors for inflectional forms of words. As a result, we constructed 100

length vectors for the words in the input corpus. After constructing word vectors, the

extracted feature set for a candidate entity is converted into a set of vectors by using the

corresponding word vectors obtained by Word2Vec algorithm. As a result, the feature set

contains list of word vectors Wei = w1, w2, ..., wn for each category which are: title, nouns,

verbs, adverbs and adjectives.

Certainly, the number of features extracted for an entity would differ based on the number

of words that exist in the context (Vikipedi article content) where this entity appears. The

average pooling algorithm is applied in order to convert the set of word vectors into a fixed

length vector that can be processed to classify entities by their types. Specifically, it is

applied for each extracted feature sets (title, letter case, nouns, verbs, adverbs, adjectives

and suffixes). The algorithm simply takes the average of the word vectors and computes a

fixed length vector. The average pooling can be computed as in the following formula

where ci denotes the word vector of the n-th element in feature set i:

 𝑣𝑖 =
1

𝑁
 × 𝑐𝑖 , 𝑛

𝑁

𝑛=1
 (4.4)

23

 www.milliyet.com.tr

65

In contrast to other features, letter case and suffixes are not composed of full words. In

order to represent suffixes in a vector format, bag of words method is utilized. As a result

of this method, suffixes could be represented with a 64 length vector. For the letter case,

we have represented lower case with zero, upper case with one and proper case with two.

To derive the final entity mention vector, all feature vectors are unified as shown in Figure

4.8. The length of unified vector is 565.

In the final step, we use this labeled data in order to train linear classifier models for the

entity type classifier. As linear classifiers, we build SVM, Logistic Regression and

Softmax classifiers. SVM and Logistic Regression classifiers are realized using the

software Liblinear [98] and Softmax classifier is realized using the software Encog [99].

We have set two parameters of Liblinear: cost of constraints violation = 2.0 and stopping

criteria = 0.05. We trained 11 classifiers in total. One for predicting the first layer (e.g.,

person, animal, etc.), the other ten classifiers are used for predicting the final type of the

input entity mention.

4.3.2.7. Description Word2Vec Similarity

Description Word2Vec Similarity (dw2vs) compares the possible descriptions of an

ambiguous mention with the non-ambiguous mentions in the same context. The

descriptions of entities are directly provided for the Turkish dictionary. For the Vikipedi

articles, first sentence of the article is used as the entity description. The context is

determined by sliding locality windows of a certain width. A candidate entity is compared

with its surrounding entities in the same locality window. Firstly, as described in Type

Classifier Similarity, description of entities are converted into vectors. The length of the

vector is 300. First 100 dimensions are the averages of the nouns, the second 100

dimensions are the averages of the verbs and last 100 dimensions are the averages of the

adverbs and adjectives in the same window. After the feature vector generation, the

similarity between candidate entity and the surrounding non ambiguous entities are

calculated by summing the cosine similarities of the generated vectors.

66

4.3.2.8. Simple Description Word2Vec Similarity

Simple Description Word2Vec Similarity (sdw2vs) compares the possible descriptions of

an ambiguous mention with the input text. Like dw2vs, description of an entity and input

text are converted into vectors. After the feature vector generation, the similarity between

entity description and input text is calculated by measuring the cosine similarity of the

generated vectors.

4.3.2.9. Link Word2Vec Similarity

Link Word2Vec Similarity (lw2vs) measures the link similarity of entities using the

Word2Vec word embedding algorithm. Link vectors of entities are created by using the

link information defined in the Vikipedi dump. For this, Continuous Bag-of-Words

(CBOW) model proposed by Mikolov et al. [5] is utilized. The CBOW model is similar to

the feed forward neural network language model, where the non-linear hidden layer is

removed and the projection layer is shared for all words. Figure 4.9 shows the CBOW

network model for our setting. Id values of entities that are linked to an entity are given as

input to the network and id value of the entity is expected to be seen as output. Hence, the

utilized framework is like a bi-gram model. As the dimension of output vectors increases,

the quality of the resulting vectors increases as well as the complexity. For our task, the

dimension is set to 150 and the model is trained with 11M entity pairs (Vikipedi links).

After the generation of link vectors, the link similarity between candidate entity and the

surrounding non ambiguous entities are calculated by summing the cosine similarities of

the generated link vectors.

67

Figure 4.9. Simple CBOW model with only one word in the context.

4.3.2.10. Metadata Embedding Similarity

Metadata Embedding Similarity (mes) aims to measure the semantic similarity between

entities. In order to achieve this goal, firstly the metadata (category, type, infobox) about

Vikipedi entities is encoded in a vector format using bag of words method and afterwards a

hashing technique is applied to reduce the dimensionality of vectors. Then, dense and

continuous-valued semantic vector representations are created from the hashing vectors by

using autoencoders. Finally, mes score of an ambiguous entity is calculated by summing

the cosine similarity of its metadata vector representation with the non ambiguous entities'

metadata vectors in the same context.

Figure 4.10 shows the illustration of our proposed entity hashing method. The aim is to

encode the metadata that exists in the Vikipedi pages in a vector format. The first table in

the figure lists the metadata for the entity "Yeditepe University". For all entities in

Vikipedi, the string values of these metadata entries are firstly split into lower case words

and the bag of words term vectors are generated (second table). After this step, hashing

algorithm is applied on each word using a similar approach developed by Heck et al. [8].

Hashing helps to reduce the dimensionality of the bag of words vectors. As shown in the

third table, for each word(e.g., university), start and end marks are added to the word (e.g.,

#university#). Then, the word is split into letter 2 − grams (e.g., #u, un,...,y#) and the total

word is represented as a vector of these letter 2 − grams. Finally, the union of the vectors

(bitwise or operation) created for all of the words that exist in the metadata entries is

formed. This final vector is the hashing vector of the corresponding entity (fourth table).

68

Figure 4.10. Illustration of metadata hashing with letter two-grams.

As shown in Table 4.3, by using bag of words vector representation, each Vikipedi entity

could be represented by a 170K vector. Whereas by using 2 – grams, 3 – grams and 4 -

grams word hashing, each Vikipedi entity could be represented by a 2.5K, 23K and 132K

vectors respectively, instead of a 170K vector. The Vikipedi corpus consists of 312 distinct

symbols, including the digits, alphabetical letters together with a large number of various

derivatives of Latin letters, such as letters with diacritics (e.g., “ç”, “ö”, “ü”, “ӓ”), and

various symbols (e.g., “%”, “$”, “&”, “#”). Certainly, not all possible n-grams of these

symbols exist in the corpus. For instance the number of different bigrams is 2.5K as noted

above.

One potential problem of hashing approach is the collision of different words or entities

that might have the same letter n-gram vector representation. 821 word and 61 entity

collisions have been detected (e.g., words “sicili / silici” and entities “tatlı / tatlım”), when

69

the 2 – grams hashing vectors are generated for the 168K Vikipedi entities defined in the

knowledge base.

In order to reduce the collision rate, multiple length hashing approach has also been

utilized. First, histogram of unique n – grams is calculated for the Vikipedi corpus. Then,

most frequent K unique n-grams are represented with a distinct dimension in the generated

vectors and the rest are split into 1 – grams and they are represented by using n

dimensions. For example, assume that “mur” 3 – gram is not frequently occurring in the

corpus, then it would be represented with “m”, “u” and “r” 1 – grams. By using this

approach, we created vector representation of Vikipedi entities with varying n – grams (2

and 3+1) and vector sizes (2.5K, 5K and 10K). We also considered to use 3 − grams word

hashing, which results 23K vectors. However, the computational complexity of the training

process with the autoencoders increases exponentially with such huge vectors and it was

not possible to couldn't train entity vectors with our hardware recourses. Then we

evaluated performances of the generated entity vectors with the entity linking experiments

and observed that n-gram length and collision rate do not have noticeable effect on

accuracy of the system. Since satisfactory results are obtained with 2−grams word hashing,

3 − grams and (3+1) – grams vectors are not utilized in the experiments.

70

Table 4.3. Hashing statistics of Vikipedi articles' metadata information.

Hashing Vector Size Number of

Word

Collision

Number of

Entity

Collison

Bag of words 171,556 0 N/A

2 - grams 2,439 821 61

3 - grams 23,251 N/A N/A

4 - grams 132,067 N/A N/A

3+1 - grams 5,000 654 136

3+1 - grams 10,000 221 14

3+1 - grams 15,000 149 12

4+1 - grams 10,000 9,895 2,389

Figure 4.11 presents the architecture used for learning the entity embeddings. An

autoencoder is a type of a neural network that is trained to reconstruct (decoding) its

inputs. It is possible to obtain compressed and distributed representation (encoding) of the

inputs with the training process in an autoencoder. The details of autoencoders are

introduced in Section 2.2. The proposed autoencoder model has two encoding and

decoding layers. The first layer is trained on the hashing vectors by encoding the input to

600 length vectors and then decoding these encoded vectors back to input hashing vectors.

Similarly, the second layer gets as input the encoded 600 length vectors of the first layer

and it is trained by encoding the input data to 300 length vectors. As a result, a 300 length

compressed and distributed representation of an entity is obtained. The embeddings learned

by using autoencoders carry category, type and infobox information of Vikipedi entities.

71

Figure 4.11. The Autoencoder architecture for learning embeddings from metadata.

The generated embedding vectors can be used for measuring entity similarities. Table 4.4

presents three Vikipedi entities and their ten closest neighbors by cosine similarity. The

vectors utilized are the union of metadata and link embeddings. The cosine similarity

values are also given in the table. The first words in columns one and two are the

corresponding entities of ambiguous word "pas", which are passing in football and rust.

We can observe that all of the 1st column entities are related with football and second one

is related with chemistry. This shows that our proposed embedding learning algorithm

distributes entities well. Finally, all of the entities in column three are universities in

Turkey. Certainly, they are also semantically similar entities.

Table 4.4. Three Vikipedi entities and their ten closest neighbors by cosine similarity of

their union of metadata and link embeddings.

72

Pas (futbol) / Passing Pas (kimya) / Rust Yeditepe Üniv. / University

Pas (futbol) /

Passing = 1.00

Pas (kimya) /

Rust = 1.00

Yeditepe Üniversitesi /

University = 1.00

Averaj /

Goal difference = 0.84

Ksenon tetraflorür /

Xenon tetrafluoride = 0.88

Mersin Üniversitesi /

University = 0.88

Jübile maçı /

Testimonial match = 0.83

Ksenik asit /

Xenic acid = 0.88

Kadir Has Üniversitesi /

University = 0.88

Taraftar /

Fan = 0.83

Ferrosen /

Ferrocene = 0.88

Koç Üniversitesi /

University = 0.88

Yaw Preko = 0.83 Klorit /

Chlorite = 0.88

Sakarya Üniversitesi /

University =0.88

Lesly Malouda = 0.82 Sülfit /

Sulfite = 0.87

Cumhuriyet Üniversitesi /

University = 0.87

Samuel Johnson = 0.82 Hidroflorik asit /

Hydrofluoric acid = 0.86

Erzincan Üniversitesi /

University = 0.87

Augustine Ahinful = 0.82 Sulfamik asit /

Sulfamic acid = 0.86

Akdeniz Üniversitesi /

University = 0.87

1958-59 İzmir P. Ligi /

Professional League = 0.82

Demir oksit /

Iron oxide = 0.86

Ege Üniversitesi /

University = 0.87

Fernand Coulibaly = 0.82 Hidrojen sülfür /

Hydrogen sulfide = 0.86

Trakya Üniversitesi /

University = 0.87

The proposed Metadata Embedding Similarity is one of the contributions of this study. It

differs in several directions from the method proposed in [8]. In this study, the hashing is

applied only on the entity title and bag of words representation of its properties. The

combination of these two vectors form the representation for an entity. In contrast, hashing

is applied on both the entity properties (e.g., founder) and all related entity titles (e.g.,

Istanbul) in our study. Also, the whole Vikipedi data including Vikipedi categories are

utilized. The generated Turkish entity embeddings are publicly accessible at the website
24

.

24

 http://cse.yeditepe.edu.tr/ARTI/Projeler/embedding.htm

73

4.3.2.11. Description Embedding Similarity

Description Embedding Similarity (des) compares the possible descriptions of an

ambiguous entity with the non ambiguous entities in the same context. Likewise mes,

description of entities are converted into vectors again by using hashing and autoencoder

algorithms. After the feature vector generation, des score of an entity is calculated by

summing the cosine similarities of the surrounding non ambiguous entities' vectors.

4.3.2.12. Link Similarity

Previous studies for English denote that a link based similarity measure between entities is

very effective for determining the coherence between entities [90]. A link based similarity

is utilized in this study, too. The similarity function takes into account the amount of

common outgoing links that exist in entities' content pages. Jaccard metric is utilized to

calculate the similarity of an entity ej with a group of other entities as defined in the

following formula:

 𝐿𝑆 𝑒𝑗 =
𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑠 𝑒𝑗 ∩ 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑠(𝑒𝑖)

𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑠 𝑒𝑗 ∪ 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑠(𝑒𝑖)

𝑛

𝑖=1,𝑖≠𝑗
 (4.5)

The link similarities are calculated only between an entity and the other non ambiguous

entities in the same context. The context is determined again by sliding locality windows

of a certain width. A candidate entity is compared with its surrounding entities in the same

locality window. Certainly n is the number of surrounding entities in the formula.

4.3.2.13. Lesk and Simplified Lesk

Lesk [71] algorithm compares the possible descriptions of an ambiguous entity with the

non ambiguous entities' definitions in the same context. It simply counts the amount of

common words between the descriptions of entities. Simplified Lesk [72] algorithm

compares the description of an ambiguous entity with the terms contained in the input text.

74

Thinker also utilizes Lesk and Simplified Lesk algorithms as similarity metrics. As in

previous similarity metrics, the Lesk and Simplified Lesk similarity scores are normalized

between zero and one.

4.3.3. Entity Ranker

Thinker uses two statistical features and a disambiguation score to rank and weigh the

significance of linked entities. The utilized statistical features are Term Frequency (tf) and

Web Popularity (wp). Tf feature favors entities with higher frequencies in a given context

and wp feature favors entities with higher frequencies in a global context. In this study, we

use entity frequencies in a collection of news articles published by one of the popular

Turkish online newspaper HaberTurk
25

 for calculating the global popularity of entities. The

formula of wp is defined as follows:

 𝑤𝑝(𝑒) =
log10 ℎ𝑖𝑡𝑠(𝑒) + 1

log10 𝑀
 (4.6)

where hits(e) is the number of HaberTurk hits for the entity e, M is the total number of

news articles published by HaberTurk. By weighting and combining score values of these

two features, Thinker weighs the significance of an entity by using the below formula:

 𝑟𝑎𝑛𝑘𝑒𝑟(𝑒) = 𝑊𝑡𝑎𝑔𝑔𝑒𝑟 × 𝑡𝑎𝑔𝑔𝑒𝑟(𝑒) + 𝑊𝑡𝑓 × 𝑡𝑓(𝑒) + 𝑊𝑤𝑝 × 𝑤𝑝(𝑒) (4.7)

4.4. ENTITY DISCOVERY

The success of an entity linking system clearly depends on the term coverage of the

knowledge base utilized. In order to effectively process domain-independent documents a

comprehensive, up-to-date, and evolving knowledge base is required. Wikipedia is one of

25

 http://www.haberturk.com/

75

the popular knowledge bases that satisfies these requirements and therefore it is widely

used in entity linking systems. However, the long tail of entities is not popular enough to

have their own Wikipedia articles. For example, "Yetenek Sizsiniz Türkiye" (Turkish

version of the Got Talent series) television show exists in Vikipedi and it is typed as

television show, however "İbo Show", another famous Turkish television show, is not

defined as a Vikipedi article. In this study, an entity discovery system is also proposed for

semi automatically detecting entity mentions that are not defined in Vikipedi. What is

more, the system can discover the semantic typing of detected unlinkable entity mentions,

too. For informative knowledge, we aim to type new entities in a fine-grained manner (e.g.,

basketball player, economist, airport, as opposed to generic types like person, organization,

event) [74].

There are two main challenges for an entity discovery system: the detection of candidate

entities and predicting their semantic types. We address the first challenge by an ngram

based approach that detects frequent noun phrases in a given corpus as candidate entities.

The second challenge is addressed with a fine-grained entity recognizer.

As shown in Figure 4.12, Turkish Entity Discovery system has been realized through the

design and implementation of three major modules: Candidate Entity Detector, Feature

Extractor and Fine-grained Entity Recognizer.

Figure 4.12. Architecture of Turkish Entity Discovery system.

76

The Candidate Entity Detector module produces a list of possible entity mentions for a

given corpus. Entity mention refers to small fragments of text, which may correspond to an

entity in a given knowledge base. This task is achieved in two steps. In the first step,

Candidate Entity Detector produces all possible n-grams (where n can be between one and

three) of successive nouns in a sentence. This task consists of (i) sentence detection where

each document in the corpus are split into sentences; (ii) lemmatization and parts of speech

detection where each word is analyzed to find its root and part-of-speech tag; and (iii)

finding noun phrases where groups of successive nouns are identified. The idea behind this

approach is that, multi-word entities, especially special names, location names etc. are

usually consist of noun phrases. In the second step, Candidate Entity Detector identifies

frequently occurring noun phrases as candidate entities and filters ones that are already

defined in utilized knowledge base and dictionary. In this study, all phrases that occur in

either Vikipedi or the Turkish Dictionary are filtered out since they are already known

entities for Turkish.

Feature Extractor module takes the list of entity mentions and the list of sentences where

the entities occur from Candidate Entity Detector module and produces an entity vector for

each entity mention. The details of the Feature Extractor function is described in Section

4.3.2.6. Then, Fine-grained Entity Recognizer is used for detecting semantic typing of

entities. We utilized the type classifier described in section 4.3.2.6 as fine-grained entity

recognizer. The type classifier is a two level linear classifier. The first level has 10 distinct

types such as person, organization, creative work, etc. and the second level has 200 distinct

types such as bird, kingdom, book, etc..

77

5. EVALUATIONS AND EXPERIMENTS

5.1. VIDEOLIZATION EXPERIMENT AND USER STUDY

This section presents evaluations of the Videolization system. The visual interpretation of

analyzed Web Content is converted into video by using video generation application of

Huawei Turkey R&D Center. We evaluate the overall system from two different aspects;

(i) we have assessed visual quality and effectiveness through a qualitative user study and

(ii) we have measured performance and run-time characteristics through simulated

experiment. Firstly, we will introduce our experimental setup.

5.1.1. Experimental Setup

Visualization of Web content has a subjective characteristics, that is why we have

preferred to evaluate the system by a user study. Thus, the effectiveness of the proposed

system is validated empirically over an opinion survey (questionnaire). A survey with eight

questions is prepared for this purpose. Then we requested from 30 participants (19 male,

11 female engineers) to use our system and respond the survey questions. The participants'

age average was 29.38 with a standard deviation of 2.83. The participants were given a

basic training to familiarize them with the system and a sample scenario using the Web UI

was illustrated to each participant. Then each participant were asked to use the system to

generate a video on a topic selected by the participant. After watching the video, they were

asked to evaluate the system by answering the given questionnaire.

The first six questions assess specific features of the system such as quality of video effects

and TTS. The participants were asked to make a judgment for each question using a scale

between one to four (four being the best). The latter two questions are yes/no questions

utilized to assess the impression the system left on the participants.

78

5.1.2. Experiment and User Study

Our results from this study are visualized in Figure 5.1 and Figure 5.2. Quality wise the

best performing aspect was "Audio-Visual synchronization" with µ = 3.40, std = 0.61. For

all the questions the performance was above average. The least performers were

"background music" (µ = 2.40, std = 0.76) and "visual quality" (animations, transition,

etc...) (µ = 2.57, std = 0.62) which are open to improvement.

Figure 5.1. Opinion survey results for the first six questions are shown with a stacked

histogram. Mean and standard deviation values per question are also reported. For these

questions the participants were asked to evaluate the quality of the respective aspect with

values from one to four.

The answers given to the last two questions show that 84% of participants indicate they

found generated videos enjoyable and 70% of them would like to use our system to

consume Web content on their TVs. These last two questions evaluate the system in terms

of general performance.

79

Figure 5.2. Opinion survey results for the last two questions are shown with a stacked

histogram. Mean and standard deviation values per question are also reported. For these

questions the participants were asked yes/no questions related to the general effectiveness

and appeal of the Videolization system.

5.1.3. Runtime Efficiency

Runtime efficiency is another key performance indicator of video generation systems. The

amount of Web data increases exponentially and a video generation system must be

scalable to process the increasing amount of data. In order to measure runtime efficiency

and scalability of our system, we experimented our system by creating videos for the most

popular Wikipedia articles
26

. The list of Wikipedia articles are provided in Table A.1. The

experiments resulted in 100 videos that were generated in a workstation with Intel Xeon E5

CPU @ 2.40 GHz and 16 GB of RAM. Figure 5.3 shows the performance results.

26

 https://goo.gl/c759nv

80

Figure 5.3. Content Curation and Video Generation phases are compared with respect to

output video duration. 1.0 value denotes real-time computation, any value lower than this

is slower than real-time and vice versa. Trial Values are sorted with respect to output video

duration.

We observed that on the average, one minute video could be generated in approximately

140 seconds, which shows that our system can generate videos from Wikipedia articles

almost in real-time. To further investigate our runtime efficiency we have analyzed the

time consumption of our main modules, namely Content Curation and Video Generation.

Although our Content Curation module is faster than realtime, the video generation task is

around %70 slower. Moreover, as can be seen in Figure 5.3, the performance of video

generation has a linear relation with respect to output video length. The longer the output

video, the more closer to real-time video generation becomes. Content Curation has a less

direct relation to output video length as it depends on the type and amount of content that

is acquired. However a basic trend line analysis shows that in general Content Curation has

a similar relation to video length as well.

81

We also analyzed scene type distributions in the 100 generated videos. Figure 5.4 shows

the numbers per each scene type. We observed that most of the scenes are entity based. A

small portion of the scenes are text based. Although we prioritize videos over images, there

are ten times more Entity Image representations compared to Entity Video representation.

We attribute this result to the lack of large enough video repository.

Figure 5.4. Visualization technique counts for the experiment are shown.

Samples videos produced by the Videolization system are publicly available
27

.

5.1.4. Discussion

In our experiments we have shown that Videolization system is capable of providing

videos in near real-time. Applying a distributed or parallel processing approach could

easily improve the system to real-time performance as well. The Videolization system was

designed to allow such improvements, since each sentence can be processed in parallel

with minimal changes to the scene type rules. Hence, inter-sentence dependency could

easily be removed. Then each of the videolized sentence could be stitched together to

output the final video.

27

 https://goo.gl/K18mw9

82

Video and image selection process utilized to represent a given entity is also open to

improvement. Currently we optimize this process by using the entity text, type and

document title in the search query in order to acquire a related image or video. An image

retrieval based approach [100] over an annotated video or image library can provide more

suitable visual representations. An image retrieval approach can also be utilized to judge

the quality of selected images and videos.

In the Videolization work-flow only one entity presentation is allowed per scene. This

design choice was made to represent the most salient information clearly. However, in

some cases allowing multiple entities can be desired. For instance consider the following

sentence:

[... It has 21 R&D institutes in countries including China, the United States, Canada, the

United Kingdom, Pakistan, France, Belgium, Germany, Colombia, Sweden, Ireland, India,

Russia, and Turkey ...].

None of the entities in this sentence should have more weight compared to others. An

additional scene type that allows multiple entities to be represented can be added to the

system. For instance country flags could be used for this example. Quantized information

can be found in many sentences with numeric values like ratios, counts and monetary

values. Although these values are not technically entities, they are suitable for TV friendly

visualization through specialized charts, scales and clip art style graphics. An NLP based

approach [101] that can convert for instance the following sentence;

[... it currently serves 45 of the world's 50 largest telecoms ...]

into a an animated pie chart style visualization requires further investigation.

In the current Videolization system the Entity Graph is always preferred over other scene

types. This is a design choice to maximize the amount of information presented to the user.

Depending on the application, it is possible to come up with other orderings between scene

types. Another approach to scene type selection is to utilize a global optimization that can

maximize the amount of entities visualized and that can minimize the amount of Text

representation types.

83

5.2. THINKER EVALUATIONS AND EXPERIMENTS

This section presents comparative evaluations of our entity linking and discovery

algorithms. We analyze Thinker from three different aspects; (i) evaluate entity linking

through a manually annotated news data set, (ii) measure the linking performance and

runtime characteristics through a simulated experiment and (iii) evaluate entity discovery

through a news corpus. Firstly, we will introduce our evaluation metrics.

5.2.1. Evaluation Metrics

The performances of the entity linking and discovery algorithms are calculated using the

widely used measures Precision, Recall and F-measure.

Precision gives information about the correctness of given answers by the system.

Precision is defined as follows:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑

𝑎𝑛𝑠𝑤𝑒𝑟 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑
 (5.1)

Recall is another important measure that gives information about the coverage and the

performance of a system. Recall is defined as follows:

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑

𝑎𝑙𝑙 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠
 (5.2)

F-measure is helpful to evaluate systems that have coverage lower than 100%. A system

can achieve 100% precision without answering any queries. To asses overall performance

of a system, F-measure is widely used. F-measure values can be calculated giving varying

weights to precision and recall. The traditional F-measure (F1 score) which gives equal

weighs to precision and recall (harmonic mean) is used in this study. F1 score is defined as

follows:

84

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.3)

5.2.2. Entity Linking Experimental Setup

To evaluate disambiguation performance of the proposed entity linking algorithm, a

Turkish news data set is created with ambiguous Turkish phrases. Firstly, ambiguous

phrases are detected and categorized by their types (e.g., film, singer, newspaper) in the

data set. Then, 50 phrases with the highest frequency (number of incoming links to an

article) in Vikipedi are selected manually for the experiments to cover most of the popular

ambiguous phrases. Then distinct meanings of each phrase is determined. The meaning of

a phrase could be defined both in Vikipedi and the Turkish dictionary. In such cases, the

news articles are annotated with both of the entities. As a result, we have identified 112

different entities for the 50 ambiguous phrases. Table 5.1 shows the lists of the senses that

exist in the experiment set, which are defined in the Turkish dictionary, Vikipedi or in both

of the sources. Thirdly, for each meaning of the ambiguous phrases, three news articles are

collected from Hurriyet
28

 online news paper and the experimental disambiguation data set

is formed. Finally, the data set is split into two as validation and test sets. One of the three

articles is used as validation set in order to tune the parameters of Thinker and the other

two articles are used as the test set to evaluate the final disambiguation performance. A

sample from the news articles data set is provided in Table B.1.

28

 http://www.hurriyet.com.tr/

85

Table 5.1. Hurriyet news disambiguation data set characteristics.

Turkish Dictionary (11)

Akrep (hour hand), Al (red), Gözcü (watchman), Hortum (hose), Mali (financial), Pike

(quilt), Pike (nose dive), Soket (socks), Tekir(fish), Ton (tone), Yaş (wet)

Vikipedi (50)

Alabanda (ancient city), Ateş (newspaper), Ayna (film), Ayna (music band), Ayna (TV

show), Babil (film), Babil (newspaper), Babil (city), Bar (ballet), Ceylan (singer), Ceza

(singer), Duvar (film), Fare (computer), Gözcü (newspaper), Gözcü (airplane), Güneş

(newspaper), Havale (money order), Havale (illness), Hortum (proboscis), Hortum

(tornado), Kafes (Ottoman), Kafes (game), Kale (chess), Kale (sport), Kanun (science),

Kemer (arch), Klavye (computer), Mali (country), Milliyet (newspaper), Mısır

(country), Nike (mythology), Nike (company), Nota (diplomatic note), Ordu (city),

Pascal (unit), Pascal (programming language), Pas (illness), Penguen (magazine),

Penguen (character), Petrol (song), Pul (flake), Sunucu (server), Tango (software),

Tekir (cat), Tekir (software), Top (software), Türk (mechanical Turk), Ülker

(company), Yumurta (film), Zaman (newspaper)

Both (51)

Akrep (scorpion), Akrep (horoscope), Alabanda (marine), Ateş (fire), Ateş (fever),

Ayna (mirror), Bar (unit), Bar (folk), Bar (pub), Çay (stream), Çay (tea), Ceylan

(gazelle), Ceza (penalty), Dil (language), Dil (tongue), Duvar (wall), Fare (mouse), Far

(eyeshadow), Far (headlight), Güneş (sun), Kafes (cage), Kale (castle), Kanun (law),

Kanun (music), Kemer (belt), Kivi (kiwi), Kivi (bird), Klavye (music), Lüks (unit),

Lüks (luxury), Milliyet (nationality), Mısır (corn), Nota (music), Ordu (army), Pas

(pass), Pas (rust), Penguen (penguin), Petrol (oil), Pul (stamp), Somun (nut), Somun

ekmek (bread), Sunucu (presenter), Tango (dance), Ton (fish), Ton (tonne), Top (ball),

Türk (Turk), Ülker (Pleiades), Yaş (age), Yumurta (egg), Zaman (time)

In order to evaluate general performance of the Entity Linking system, another Turkish

news data set is created by collecting 20 news articles from latest news section
29

 of

Hurriyet online news paper. We collected five news articles from four different categories,

which are Turkey, world, economy and sports. Then each article is automatically annotated

with Thinker. Afterwards, each mapping is evaluated manually whether it is a correct

29

 http://www.hurriyet.com.tr/son-dakika/

86

mapping or not. If an entity is not detected by the system, it is marked as an undetected

entity mention.

On the other side, in order to measure runtime efficiency and scalability of Thinker, we

also experimented the efficiency of the system with randomly selected 500 news articles

from the Milliyet corpus [97]. The selected news articles contain between 30 to 2000

words and the average document size is 400 words. The performance experiments were

carried out on a laptop with Intel Core i7 − 3537U CPU @ 2.50 GHz and 8 GB of RAM.

5.2.3. Entity Linking Results and Discussion

Thinker depends on several parameters therefore before evaluating the system

performance, the system parameters are tuned on the evaluation data set. Firstly, hashing

methodology of Metadata Embedding algorithm is determined. Table 5.2 shows the

performance values for these experiments. The highest performance (47.71% F1 score) is

observed with the 2 - grams 2,500 length and 3+1 - grams 5,000 length vectors. We also

observed that there is no significant disambiguation performance effect of hash vector

sizes. However, length of vectors would effect the runtime performance. Therefore, the

shortest length vectors which are generated with 2 - grams hashing is used for further

experiments.

Table 5.2. Comparison performance values of the Metadata Embedding algorithm with

varying hash vector sizes on the validation data set.

Hashing

Methodology

Vector

Size

Precision

(%)

Recall

(%)

F1

(%)

2 - grams 2,500 49.06 46.43 47.71

3+1 - grams 5,000 49.06 46.43 47.71

3+1 - grams 10,000 48.15 46.43 47.27

Then, the weight values of the similarity metrics and minimum confidence values are

determined. The minimum confidence value is a threshold value that a candidate entity

87

must have in order to be linked by the system. There are totally 15 parameters that need to

be optimized. We have used NSGA-II in order to solve this parameter optimization

problem by using the software MOEA Framework
30

. Although NSGA-II is widely used for

multiobjective optimization problems, it is possible to run the software with a single

objective, too. The objective function used in our experiments is the F1 score of the system

on the validation set. We used default parameters of the framework such as population size

100, crossover rate 0.1 and mutation rate 1/N, where N is 15 that is the number of decision

variables for our problem. Then, the algorithm is run by using 20 randomly chosen seeds

with 1.800 iterations. Figure 5.5 shows the change of the maximum F1 score and the

iteration number in the best run.

Figure 5.5. Improvement of the F1 score during the parameter optimization of Thinker by

using the NSGA-II algorithm.

We also evaluated each similarity metric individually and their combination with equal

weights. Table 5.3 shows the performance values for these experiments. The highest

30

 http://moeaframework.org/

88

performance (85.71% F1 score) is observed with the weights determined by using the

NSGA-II. The second highest performance is achieved with the Simplified Lesk algorithm

(73.73% F1 score) and the third is when all the metrics have equal weights (71.17% F1

score).

Table 5.3. Comparison disambiguation performance values of the entity linking

algorithms on the validation data set.

Algorithm Precision

(%)

Recall

(%)

F1

(%)

Thinker 85.71 85.71 85.71

Simplified Lesk 76.19 71.43 73.73

All One 71.82 70.54 71.17

Link 75.00 66.96 70.75

Lesk 66.67 64.29 65.45

Link Word2Vec 58.65 54.46 56.48

Description Word2Vec 54.55 53.57 54.05

Description Embedding 53.64 52.68 53.15

Simple Description Word2Vec 51.82 50.89 51.35

Metadata Embedding 49.06 46.43 47.71

Type Content 93.75 26.79 41.67

Type 63.27 27.68 38.51

Letter Case 65.79 22.32 33.33

Suffix 72.00 16.07 26.28

Name String 83.33 8.93 16.13

Type Classifier 50.00 7.14 12.50

Precision values are also important indicators for individual performances of the similarity

metrics. We observed that some of the similarity metrics (e.g., type content, suffix)

performed well in terms of precision but performed poor in terms of F1 score. Precision

and F1 scores differ because; (i) system does not link any entity to a mention when there is

more than one highest scored entity; (ii) when an entity is scored lower than the minimum

confidence value again it is not linked to the entity mention. The threshold is zero for the

89

individual metrics and 1.35 for the whole system Thinker, which is determined using the

NSGA-II with the optimum similarity weight values.

Table 5.4 presents the weight values obtained by using the NSGA-II. Description,

word2vec and name string similarity metrics have the highest weights. We observed that

most of the similarity features contributes to asses candidate entities; except suffix, type

classifier and simple description word2vec metrics. The suffix similarity has low weight

because most of the target entities in the experiment set probably do not have a suffix. The

type classifier got lower weight because its precision is low and most of the entities (all of

the Turkish dictionary) do not have predefined type values. Simple description word2vec

also got lower weight since description word2vec, its modified version, performed better

compared to this metric. On the other side, these weights are the output of a single GA run.

There exists a number of alternative solutions that has similar performance with the

solution provided above and it has been observed that even though the general picture does

not change considerably, ranking of the weights might vary slightly in different solutions.

Table 5.4. Weights of the Turkish entity linker algorithms, which are determined by using

the NSGA-II.

Description Word2Vec 0.99

Name String 0.98

Letter Case 0.82

Type 0.8

Link 0.73

Type Content 0.71

Simple Lesk 0.63

Link Word2Vec 0.56

Metadata Embedding 0.29

Description Embedding 0.28

Lesk 0.15

Suffix 0.04

Type Classifier 0.01

Simple Description Word2Vec 0

90

Thinker is also evaluated based on the width of the sliding locality windows. In the

experiments, different sizes from 5 to 15 have been tested. Figure 5.6 shows the

experiment results. Best result is obtained with the window size of 10 on the validation

data set.

Figure 5.6. Evaluation of the entity linking algorithm with varying window sizes.

After tuning the parameters of Thinker, we used the testing data set to evaluate the

disambiguation performance and perform comparative evaluation. Since, there is no

Turkish entity linking system proposed in the literature, we compared Thinker with the

Simplified Lesk algorithm and also individual algorithms utilized in Thinker. Table 5.5

shows the performance values on this data set. The experiment results show that our

algorithm outperforms the Link and Simplified Lesk algorithms with approximately %4

and 5% better F1 score, respectively. We observed 68.98% F1 score for the Simplified Lesk

algorithm. It is a very close to the result with the score (68.57%) reported by Mert et al.

[22] using the Simplified Lesk algorithm for the Turkish WSD problem. We also observed

that performance of Thinker is improved approximately 5% by using the NSGA-II

compared to using equal weights (all one).

91

Table 5.5. Comparison disambiguation performance values of the entity linking

algorithms on the test data set.

Algorithm Precision

(%)

Recall

(%)

F1

(%)

Thinker 73.99 73.66 73.83

Link 73.53 66.96 70.09

Simplified Lesk 71.63 66.52 68.98

All One 68.92 68.30 68.61

Link Word2Vec 62.20 58.04 60.05

Description Embedding 58.10 54.46 56.22

Lesk 59.69 52.23 55.71

Description Word2Vec 51.80 51.34 51.57

Type Content 95.00 33.93 50.00

Simple Description Word2Vec 47.66 45.54 46.58

Metadata Embedding 47.17 44.64 45.87

Type 59.32 31.25 40.94

Letter Case 68.54 27.23 38.98

Type Classifier 57.14 17.86 27.21

Suffix 60.00 10.71 18.18

Name String 80.00 5.36 10.04

The general entity linking performance of Thinker is evaluated manually by annotating the

20 news articles. Table 5.6 shows number of correct, wrong and undetected mappings for

the each news article. Table 5.7 shows the general entity linking performance of Thinker,

which has 71.79% F1 score. There is no such a entity linking study for Turkish language to

perform comparative evaluation. For English language, Cornolti et al. [7] compare publicly

available entity annotation systems. They observe best entity linking performance with

TagMe, which is 65.6% F1 score on AIDA/CONLL dataset. The experimental results show

that our system has a competitive performance in terms of accuracy, compared to the

previous methods in the literature.

92

Table 5.6. General entity linking performance result of Thinker for the each news article.

Category Article URL Correct

Mapping

Wrong

Mapping

Undetected

Turkey http://www.hurriyet.com.tr/yuksek-yargiya-

yeni-duzen-geliyor-40116960

30 7 4

http://www.hurriyet.com.tr/trtdeki-tepki-

ceken-sozler-icin-bakanlar-kurulu-sonrasi-

aciklama-40116953

37 7 4

http://www.hurriyet.com.tr/derme-catma-

sal-2-cana-mal-oldu-40116951

31 9 2

http://www.hurriyet.com.tr/incirlik-

ussundeki-feci-olumun-nedeni-belli-oldu-

40116950

37 9 1

http://www.hurriyet.com.tr/halk-otobusuyle-

servis-minibusu-carpisti-21-yarali-40116940

25 15 1

World http://www.hurriyet.com.tr/almanyadaki-

turk-vekillerden-sert-aciklamalar-40116941

36 9 5

http://www.hurriyet.com.tr/kahraman-

cankurtaran-kucuk-kizin-hayatini-kurtardi-

40116840

19 7 0

http://www.hurriyet.com.tr/ab-turkiye-vize-

muafiyetine-giderek-yaklasiyor-40116824

29 9 0

http://www.hurriyet.com.tr/turkiye-dahil-

tum-dunya-orlando-saldirisini-kinadi-

40116822

36 11 0

http://www.hurriyet.com.tr/ingiltere-

kralicesi-dogum-gununu-sokak-partisiyle-

kutladi-40116769

24 15 2

Economy http://www.hurriyet.com.tr/gen-takside-

sahte-plakayla-kiralama-40116963

28 7 0

http://www.hurriyet.com.tr/52-yillik-

uygulama-kalkiyor-tek-nushada-damga-

vergisi-alinacak-40116942

18 9 1

Category Article URL Correct

Mapping

Wrong

Mapping

Undetected

93

Economy http://www.hurriyet.com.tr/brent-petrol-50-

dolarin-altina-geriledi-40116866

18 10 1

http://www.hurriyet.com.tr/safiport-

derinceye-deprem-raporu-40116888

17 6 0

http://www.hurriyet.com.tr/bin-320-nufuslu-

koyun-kiraz-ihracati-basladi-40116925

21 4 1

Sports http://www.hurriyet.com.tr/riise-futbolu-

birakti-40116959

28 16 3

http://www.hurriyet.com.tr/wesley-

sneijderin-kardesinden-ilginc-ozan-tufan-

paylasimi-40116955

21 8 1

http://www.hurriyet.com.tr/irlanda-1-1-

isvec-macin-ozeti-40116933

19 8 4

http://www.hurriyet.com.tr/potanin-

perilerinin-ilk-rakibi-arjantin-40116914

15 5 1

http://www.hurriyet.com.tr/8-metreden-

dusen-taraftar-oldu-40116910

34 18 2

Table 5.7. Performance values of the Thinker on the general test data set.

Precision

(%)

Recall

(%)

F1

(%)

73.46 70.20 71.79

5.2.4. Entity Linking Runtime Efficiency

Runtime efficiency is one of the key features of entity linking systems. The amount of

unstructured data increases exponentially and an entity linking system must be scalable to

process the increasing amount of data. In order to measure runtime efficiency and

scalability of Thinker, we experimented Thinker with the data set introduced in Section

5.2.2. Figure 5.8 shows the performance values for this experiment. We observed that

entity linking is performed appropriately in 5.5 milliseconds for per word. The average

94

word size of the news data set is approximately 400 words that means linking of a news

article takes approximately two seconds. We also observed that entity linking duration is

incremented linearly with increasing input sizes. We could fit a line to the experiment

results as seen in Figure 5.7.

Figure 5.7. Runtime performances of Thinker with varying input sizes.

5.2.5. Entity Discovery Experimental Setup

In order to tune the parameters of the proposed Entity Discovery algorithm, content of

Vikipedi articles are used. As described in Section 4.3.2.6, a set of labeled data with

36,245 instances is created by using Vikipedi articles. The labels (tags) are listed in Table

5.8. The most popular three labels are: “yerleşim (location)” with 2,917 instances, “film

(film)” with 2,649 instances and “müzik sanatçısı (singer)” with 2,376 instances. The data

set is split into two parts: 70 for training the classifiers, 30 for testing the classifiers.

95

Table 5.8. List of curated 200 tags curated from Vikipedi that is used in entity discovery.

abd eyalet, ada, albüm, almanya yerleşim yeri, amfibi, anatomi, antlaşma, arma, asker, askeri birim,

askeri yapı, ateşli silah, avrupa yakası karakteri, azerbaycan rayon, bakteri, balık, baraj, basketbol,

basketbol kulübü, basketbol ligi, basketbolcu, bayrak, bayram, bilim adamı, bisikletçi, bitki,

biyoloji, bm, böcek, bulgaristan il, buz patencisi, cadde, cep telefonu, çin eyalet, çizgi roman

karakteri, dağ, deprem, dergi, dil, dil ailesi, dini yapı, dizi, doctor who bölüm, doctor who

karakteri, edebiyat, eski idari bölüm, eski ülke, etnik grup, eurovision, fakülte, festival, film,

filozof, fizik, futbol kulübü, futbol kulübü sezonu, futbol ligi, futbol ligi sezonu, futbol maçı, futbol

turnuvası, futbolcu, galaksi, gazete, gemi, göl, güneşdışı gezegen, güreşçi, hakem, hanedan, harf,

harry potter karakteri, hastalık, havalimanı, havayolları, hazır gıda, hükümdar, hükümet kurumu, il,

ilçe, insan, iran köy, islam, işletim sistemi, italya belde, italya il, italya komün, kanton, karakter,

kimya, kişi, kitap, konser turnesi, köpek ırkı, köprü, koruma alanı, kral tv vmö, kraliyet, kurgusal

karakter, kuruluş, kuş, lost, lost karakteri, makam sahibi, manken, marş, matematik, memeli, milli

futbol cemiyeti, millî futbol takımı, mimar, mitoloji, müze, müzik, müzik grubu, müzik sanatçısı,

müzik türü, nba draft, nba takımı, nehir, ödül, okul, olimpiyatlar, olimpiyatlarda etkinlik, opera,

örümcek, otomobil, öykü, oyun, oyuncu, para, parlamento, plak şirketi, porno yıldızı, portekiz

belediye, portekiz bucak, primat, prison break bölümü, programlama dili, radyo istasyonu, renk,

roman, rusya federasyonu idari birimi, sanat eseri, sanatçı, sanatçı diskografisi, şarkı, savaş, sayı,

seçim, şehir, seri, silahlı kuvvet, simpsonlar bölümü, single, şirket, sivil toplum kuruluşu, sivillere

karşı saldırı, siyasi makam, siyasi parti, spor derbisi, spor ligi, sporcu, stadyum, sunucu, sure,

sürüngen, takımyıldız, tekli, telekomünikasyon şirketi, televizyon, televizyon sezonu, tenis sporcu,

tiyatro oyunu, türkiye, türkiye belde, türkiye il, türkiye ilçe, türkiye köy, türkiye mahalle, tv bölüm,

tv kanalı, uçak, ukrayna idari birimi, ülke, uluslararası futbol turnuvası, üniversite, uydu, uzay

aracı, video oyunu, voleybol kulübü, voleybolcu, website, yapı, yazar, yazılım, yerleşim, yılan,

yıldız savaşları karakteri, yol, yüksek yapı

To evaluate performance of the proposed Entity Discovery algorithm, the corpus [97]

created by Bilkent Information Retrieval Group
31

 from Milliyet online newspaper is used.

The corpus contains 408,305 documents; they are the news articles and columns of five

years, 2001 to 2005, collected from the Turkish newspaper Milliyet. The experimental data

set is created from Milliyet corpus in two steps.

31

 www.cs.bilkent.edu.tr/˜canf/bilir_web/

96

Firstly, Milliyet corpus is given as input to the Candidate Entity Detector module and a list

of candidate entities are extracted. This process produces hundreds of 1-grams, 2-grams, 3-

grams and 4-grams as candidate entities. However, these identified candidate entity

mentions are noisy; not all of them are real entities. Concurrent entity mentions, typos and

HTML tables are the main causes for this problem. Therefore, a human intervention is

needed to finalize the candidate entity detection process. In the end, we manually selected

and annotated 150 candidate entities as the test data. A sample from the data set is

provided in Table 5.10.

5.2.6. Entity Discovery Results and Discussion

Turkish Entity Discovery system depends on several parameters therefore before

evaluating the system performance, the system parameters are tuned on the evaluation data

set. Therefore firstly, fine-grained entity recognizer is evaluated with different classifier

algorithms and with varying word vector sizes on the Vikipedi data set. In the experiments,

the linear classifiers SVM, Logistic Regression and Softmax have been utilized and the

vector sizes (from 50 to 200) have been tested. Table 5.9 shows the performance values for

this experiment. We observed better performance values with SVM classier and when

larger vector sizes are used. Hence, the best performance result (78.69%) is obtained with

SVM classifier and a vector size of 200. This setting is used for further experiments to

assess the final performance of the system.

Table 5.9. Evaluation of the fine-grained entity recognizer algorithm with varying

classifiers and word vector sizes.

Vector size SVM

(%)

Logistic regression

(%)

Softmax

(%)

50 74.16 73.15 73.30

100 77.08 75.90 74.28

200 78.69 77.51 74.75

97

We also evaluated our fine-grained entity recognition algorithm for the English language in

order to prove that our approach is language independent. In a similar way, English

Wikipedia articles are processed and again the most frequently occurring 100 entity types

are determined and the experimental data set is formed. By using an English NLP tool
32

and the Glove [12] word vectors for English, the entity vectors are created for English

Wikipedia articles, too. We observed 77.14% accuracy for English, which is a very close

performance compared to the experimental results on Turkish.

In our last experiment, manually created Milliyet dataset is evaluated by using our fine-

grained named entity recognizer. The experiment is resulted with 61.95% accuracy for

strict typing of entities and 73.45% for relaxed typing of entities. In contrast to strict

typing, classifying entities with a more general type is evaluated as a correct assignment in

relaxed typing such as sportsman instead of footballer. Sample results are listed in Table

5.10; Column one contains entity titles and column 3 contains the manually assigned type

information.

32

 https://opennlp.apache.org/

98

Table 5.10. Fine-grained entity recognition sample results of Milliyet test data.

Candidate Entity Prediction Correct

Albert Einstein Bilim adamı (scientist) Bilim adamı (scientist)

Arı (bee) Böcek (bug) Böcek (bug)

Avrupa Şampiyonlar

Ligi

Futbol ligi (football league) Futbol ligi (football league)

Dallas Mavericks Nba takımı (NBA team) Nba takımı (NBA team)

Doberman Köpek ırkı (dog) Köpek ırkı (dog)

Elma (apple) Bitki (plant) Bitki (plant)

Facebook Websitesi (website) Websitesi (website)

Financial Times Albüm (album) Gazete (newspaper)

Florya Metin Oktay

Tesis

Futbolcu (footballer) Yapı (construction)

Hamsi Balık (fish) Balık (fish)

Harun Doğan Person Sporcu (sportsman)

Hristiyan Eski ülke (former country) Din (religion)

İbo Show Televizyon (TV) Televizyon (TV)

İngilizce Dil (language) Dil (language)

Michael Schumacher Oyuncu (actor) Sürücü (driver)

Pablo Montoya Otomobil (automobile) Sürücü (driver)

Polat Renaissance Otel Yapı (construction) Yapı (construction)

Portakal (orange) Bitki (plant) Bitki (plant)

Real Madrid Yerleşim (location) Futbol kulübü (football club)

Robert Pearson Makam sahibi (officeholder) Makam sahibi (officeholder)

Sezen Aksu Müzik sanatçısı (singer) Müzik sanatçısı (singer)

Sunday Times Gazete (newspaper) Gazete (newspaper)

Suudi Arabistan Ülke (country) Ülke (country)

Tansiyon Hastalık (disease) Hastalık (disease)

Türk Hava Yolları Havayolları (airlines) Havayolları (airlines)

Van Gölü Göl (lake) Göl (lake)

Van Hooijdonk Futbolcu (footballer) Futbolcu (footballer)

99

Note that the accuracy of this second experiment is lower compared to the first one. In fact

this is an expected result, since the classifier is trained by using Vikipedi pages and it is

tested with different entities but again collected from Vikipedi in the first experiment.

However, in the second experiment a general corpus collected from an online newspaper is

utilized. Moreover, missing types and types from the same domain reduce the

performance. For example, "Pablo Montoya" is classified as an automobile rather than a

driver in the experiments. The reasons behind this wrong assignment is driver and

automobile entities are related entities that share similar contextual features (words).

Hence, such misclassifications occur in the system. In order to handle this kind of wrong

assignments, more sophisticated features and algorithms are needed.

100

6. CONCLUSIONS AND FUTURE WORK

This study has presented Videolization, a knowledge graph based visual interpretation

system that automatically interprets visually given Turkish or English textual Web content

by using Semantic Web based technologies. As a use case of Videolization system,

Wikipedia articles are automatically converted into videos. Visualization of text content is

the key challenge in the proposed system. To address this problem, a template based

visualization algorithm is proposed in this study, which leverages DBpedia as a knowledge

graph.

This study has also presented the Thinker system that can be used for linking Turkish

documents with Turkish Wikipedia and the Turkish dictionary. Entity Disambiguation is

the key challenge in the proposed Turkish entity linking system. To address this problem, a

fusion of knowledge-based methods and supervised machine learning algorithms is

proposed, which leverages Turkish linguistic features, the deep learning models and

Wikipedia graph structure. Moreover, a series of experiments is conducted to evaluate the

performance of the system. Evaluations show that the proposed system has a satisfactory

performance for the task. Turkish Entity Linker system outperformed the Simplified Lesk

algorithm, which is a well-known and commonly used disambiguation method.

The effectiveness of Videolization is validated empirically over opinion surveys.

Evaluations show that the proposed system has a satisfactory video generation

performance. 70% of survey users indicated that they would like to use our system to

consume Web content on their TVs.

Our research on Web content visualization differs from the previous studies mainly in two

points. Firstly, we used Semantic Web technologies to visualize Web content. Secondly,

our approach is domain independent and it can also be applied to most of the Web content

such as news articles, blog posts, etc..

Our work on entity linking can be distinguished from previous work in several ways. First

of all, Thinker is the first proposed system for Turkish entity linking process. Secondly,

unlike previous work for other languages, Thinker uses fusion of knowledge based

methods and supervised machine learning algorithms that utilize a rich set of features in

101

order to link Turkish entities. Various methods and features that can handle the

agglutinative and free word structure of the Turkish language are also proposed in this

study. Lastly, a comprehensive Turkish knowledge base is generated by integrating

Vikipedi and the Turkish dictionary in order to cover the majority of the Turkish entities.

In conclusion, this study has demonstrated the potential and promise of the knowledge

graphs for the text visualization task and deep learning approaches for Turkish entity

linking task. We believe that Videolization system would allow the users to “surf the Web”

in completely different yet satisfying way. They would be able to "play Internet" rather

than "browsing" the content. Integrating the system with a digital assistant and realizing

dynamic video generation in real-time based on user interactions would be a breakthrough

technology.

As future work, the proposed Videolization and Thinker systems could be improved in

several directions.

 Text visualization algorithm can be improved in several directions. An image

retrieval based approach over an annotated video or image library can provide more

suitable visual representations to represent a given entity. Moreover, a sentence

could be visualized better with the combination of multiple entities instead of using

visual representation for only the most significant entity.

 Entity detection performance of Thinker can be improved by realization of a

Turkish chunker (Shallow parsing) system that identifies constituent parts of

sentences (nouns, verbs, adjectives, etc.) and then that links them to higher order

units with discrete grammatical meanings (noun groups or phrases, verb groups,

etc.).

 Entity disambiguation performance of Thinker can be improved by removing

duplicate definitions of entities. Note that some entities are both defined in Turkish

Wikipedia and the Turkish dictionary.

102

REFERENCES

1. A. A. Akin and M. D. Akin. Zemberek, An Open Source NLP Framework for Turkic

Languages. Structure, 10:1-5, 2007.

2. G. Eryigit. Itu Turkish Nlp Web Service. The Association for Computer Linguistics, 1-4,

2014.

3. Y. B. Goodfellow and A. Courville. Deep Learning. MIT Press, 2015.

4. Stanford University, “Ufdl Tutorial - Autoencoders”, http://deeplearning.stanford.edu/

wiki/index.php/ ufldl_tutorial [retrieved 07 February 2016].

5. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word

Representations in Vector Space. Arxiv, 1301.3781, 2013.

6. M. Kalender and J. Dang. Skmt: A Semantic Knowledge Management Tool for Content

Tagging, Search and Management. International Conference on Semantics, Knowledge

and Grids, 112-119, 2012.

7. M. Cornolti, P. Ferragina, and M. Ciaramita. A Framework for Benchmarking Entity-

Annotation Systems. Proceedings of The 22nd International Conference on World Wide

Web, 249-260, 2013.

8. L. Heck and H. Huang. Deep Learning of Knowledge Graph Embeddings for Semantic

Parsing of Twitter Dialogs. Signal and Information Processing (GlobalSIP), 597-601,

2014.

9. K. Tanaka. Research on Fusion of the Web and TV Broadcasting. Informatics Research

for Development of Knowledge Society Infrastructure, 129-136, 2007.

10. H. Shim, B. Kang, and K. Kwag. Web2Animation - Automatic Generation of 3D

Animation from the Web Text. Proceedings of the 2009 IEEE/WIC/ACM International

103

Joint Conference on Web Intelligence and Intelligent Agent Technology, 01:596-601, 2009.

11. R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. Grounded

Compositional Semantics for Finding and Describing Images with Sentences. Transactions

of the Association for Computational Linguistics, 2:207-218, 2014.

12. J. Pennington, R. Socher, and C. D. Manning. Glove: Global Vectors for Word

Representation. Empirical Methods in Natural Language Processing, 1532-1543, 2014.

13. R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing:

Deep Neural Networks with Multitask Learning. Proceedings of the 25th International

Conference on Machine Learning,160-167, 2008.

14. D. Yuret and F. Türe. Learning Morphological Disambiguation Rules for Turkish.

Proceedings of the Main Conference on Human Language Technology Conference of the

North American Chapter of the Association of Computational Linguistics, 328-334,

Association for Computational Linguistics, 2006.

15. Wikipedia, The Free Encyclopedia, “Turkish Language”, https://en.wikipedia.org/

wiki/Turkish_Language [retrieved 07 February 2016].

16. K. Oflazer. Error-Tolerant Finite-State Recognition with Applications to

Morphological Analysis and Spelling Correction. Computational Linguistics, 22:73-89,

1996.

17. M. Şahin, U. Sulubacak, and G. Eryiğit. Redefinition of Turkish Morphology Using

Flag Diacritics. Proceedings of the Tenth Symposium on Natural Language Processing,

2013.

18. H. Sak, T. Güngör, and M. Saraçlar. Turkish Language Resources: Morphological

Parser, Morphological Disambiguator and Web Corpus. Advances in Natural Language

Processing, 417-427, Springer Berlin Heidelberg, 2008.

104

19. C. Coltekin. A Freely Available Morphological Analyzer for Turkish. Language

Resources and Evaluation Conference, European Language Resources Association, 2010.

20. H. Sak, T. Güngör, and M. Saraçlar. Computational Linguistics and Intelligent Text

Processing, 107-118, Springer Berlin Heidelberg, 2007.

21. D. Z. Hakkani-Tür, K. Oflazer, and G. Tür. Statistical Morphological Disambiguation

for Agglutinative Languages. Computers and the Humanities, 36:381-410, 2002.

22. E. Mert and G. Dalkiliç. Word Sense Disambiguation for Turkish. Computer and

Information Sciences, 205-210, IEEE, 2009.

23. B. Ilgen, E. Adali, and A. C. Tantug. A Comparative Study To Determine the Effective

Window Size of Turkish Word Sense Disambiguation Systems Information Sciences and

Systems, 169-176, Springer, 2013.

24. Z. Orhan and Z. Altan. Word Sense Disambiguation for Semantic Applications. GI,

94:321-328, 2006.

25. G. A. Seker and G. Eryigit. Initial Explorations on Using CRFS for Turkish Named

Entity Recognition. 24th International Conference on Computational Linguistics, 2459-

2474, 2012.

26. D. Küçük. Named Entity Recognition Experiments on Turkish Texts. Flexible Query

Answering Systems, 524-535, Springer, 2009.

27. R. Socher. Recursive Deep Learning for Natural Language Processing and Computer

Vision. Doctoral Dissertation, Stanford University, 2014.

28. Y. Bengio, A. C. Courville, and P. Vincent. Representation Learning: A Review and

New Perspectives Pattern Analysis and Machine Intelligence, 35:1798-1828, 2013.

29. D. E. Rumelhart, G. E. Hinton, and R. J. Wilson. Learning Representations by Back-

105

Propagating Errors. Cognitive Modeling, 323:533-536, 1988.

30. G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with

Neural Networks. Science, 313:504-7, 2006.

31. D. Erhan, Y. Bengio, A. C. Courville, P.A. Manzagol, P. Vincent, and S. Bengio. Why

Does Unsupervised Pre-Training Help Deep Learning? The Journal of Machine Learning

Research, 11:625-660, 2010.

32. P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting and Composing

Robust Features with Denoising Autoencoders. Proceedings of the 25th International

Conference on Machine Learning, 1096-1103, ACM, 2008.

33. G. E. Dahl, M. Ranzato, A. Rahman Mohamed, and G. E. Hinton. Phone Recognition

with the Mean-Covariance Restricted Boltzmann Machine. Advances in Neural

Information Processing Systems, 469-477, Curran Associates, Inc., 2010.

34. Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A Neural Probabilistic Language

Model. Innovations in Machine Learning, 3:1137-1155, 2003.

35. T. Mikolov and G. Zweig. Context Dependent Recurrent Neural Network Language

Model. Spoken Language Technology Workshop, 234-239, IEEE, 2012.

36. T. Luong, R. Socher, and C. D. Manning. Better Word Representations with Recursive

Neural Networks for Morphology. The Conference on Natural Language Learning, 104-

113, ACL, 2013.

37. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Advances in Neural

Information Processing Systems, 3111-3119, 2013.

38. Q. V. Le and T. Mikolov. Distributed Representations of Sentences and Documents.

Arxiv, Preprint Arxiv:1405.4053, 2014.

106

39. A. M. Dai, C. Olah, Q. V. Le, and G. S. Corrado. Document Embedding with

Paragraph Vectors, Arxiv, Preprint Arxiv:1507.07998, 2015.

40. L. Van Der Maaten and G. Hinton. Visualizing High-Dimensional Data using TSNE.

Journal of Machine Learning Research, 1:2579-2605, 2008.

41. L. F. Rau. Extracting Company Names from Text. Artificial Intelligence Applications,

29-32, IEEE, 1991.

42. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. The Scientific

American, 17:28-37, 2001.

43. A. Mathes. Folksonomies - Cooperative Classification and Communication Through

Shared Metadata, http://www.adammathes.com/academic/computer-mediated-

communication/folksonomies.html [retrieved 07 February 2016].

44. M. Obitko. Semantic Web Architecture, http://www.obitko.com/tutorials/ontologies-

semantic-web/semantic-web-architecture.html [retrieved 07 February 2016].

45. W3c. “Rdf - Semantic Web Standards”, https://www.w3.org/rdf/ [retrieved 07

February 2016].

46. F. V. H. Grigoris Antoniou. A Semantic Web Primer. MIT Press, 2004.

47. W3c. “Owl Web Ontology Language”, https://www.w3.org/tr/owl-features/ [retrieved

07 February 2016].

48. T. Gruber. Ontology (Computer Science) - Definition in Encyclopedia of Database

Systems, http://tomgruber.org/writing/ontology-definition-2007.htm [retrieved 07 February

2016].

49. W3c. “Web Service Modeling Ontology (WSMO)”, https://www.w3.org/submission/

wsmo/ [retrieved 07 February 2016].

107

50. G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Introduction To

Wordnet: An On-Line Lexical Database. International Journal of Lexicography, 21:235-

44, 1990.

51. L. Reeve and H. Han. Semantic Annotation for Semantic Social Networks using

Community Resources. The Sigmas Conference and Event Center, 2:52-6, 2005.

52. B. Hachey, W. Radford, J. Nothman, M. Honnibal, and J. R. Curran. Evaluating Entity

Linking with Wikipedia. Artificial Intelligence, 194:130-150, 2013.

53. A. Gattani, D. S. Lamba, N. Garera, M. Tiwari, X. Chai, S. Das, S. Subramaniam, A.

Rajaraman, V. Harinarayan, and A. Doan. Entity Extraction, Linking, Classification, and

Tagging for Social Media: A Wikipedia-Based Approach. The VLDB Conference, 6:1126-

1137, 2013.

54. M. Kalender, J. Dang, and S. Üsküdarli. Semantic Tagprint - Tagging and Indexing

Content for Semantic Search and Content Management. Semantic Computing, 260-267,

IEEE, 2010.

55. P. Ferragina and U. Scaiella. Tagme: On-The-Fly Annotation of Short Text Fragments

(By Wikipedia Entities). International Conference on Information and Knowledge

Management, 1625-1628, ACM, 2010.

56. D. Milne and I. H. Witten. Learning To Link with Wikipedia. Information and

Knowledge Management, 509-518, ACM, 2008.

57. D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani. Learning Relatedness

Measures for Entity Linking. Conference on Information and Knowledge Management,

139-148, ACM, 2013.

58. D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani. Dexter: An Open

Source Framework for Entity Linking. Proceedings of the Sixth International Workshop on

Exploiting Semantic Annotations in Information Retrieval, 17-20, ACM, 2013.

108

59. X. Hu and B. Wu. Automatic Keyword Extraction Using Linguistic Features. The

IEEE International Conference on Data Mining Series, 19-23, IEEE Computer Society,

2006.

60. Y. Matsuo and M. Ishizuka. Keyword Extraction from A Single Document Using

Word Co-Occurrence Statistical Information. International Journal on Artificial

Intelligence Tools, 13:157-169, 2004.

61. P. D. Turney. Learning Algorithms for Keyphrase Extraction. Information Retrieval,

2:303-36, 2000.

62. J. Wang and H. Peng. Keyphrases Extraction from Web Document by the Least

Squares Support Vector Machine. Proceedings of the 2005 IEEE/WIC/ACM International

Conference on Web Intelligence, 293-296, IEEE Computer Society, 2005.

63. X. Li, X. Wu, X. Hu, F. Xie, and Z. Jiang. Keyword Extraction Based on Lexical

Chains and Word Co-Occurrence for Chinese News Web Pages. Data Mining Workshops,

744-751, IEEE Computer Society, 2008.

64. J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, B. Taneva, S.

Thater, and G. Weikum. Robust Disambiguation of Named Entities in Text. Proceedings of

the Conference on Empirical Methods in Natural Language Processing, 782-792,

Association for Computational Linguistics, 2011.

65. E. Meij, W. Weerkamp, and M. De Rijke. Adding Semantics To Microblog Posts.

Proceedings of the Fifth ACM International Conference on Web Search and Data Mining,

563-572, ACM, 2012.

66. S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti. Collective Annotation of

Wikipedia Entities in Web Text. Proceedings of the 15th ACM Sigkdd International

Conference on Knowledge Discovery and Data Mining, 457-466, ACM, 2009.

67. L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and Global Algorithms for

109

Disambiguation To Wikipedia. Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies, 1:1375-1384, Association

for Computational Linguistics, 2011.

68. P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer. Dbpedia Spotlight: Shedding

Light on the Web of Documents. Proceedings of the 7th International Conference on

Semantic Systems, 1-8, ACM, 2011.

69. J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. De Melo, and G.

Weikum. Yago2: Exploring and Querying World Knowledge in Time, Space, Context, and

many Languages. Proceedings of the 20th International Conference Companion on World

Wide Web, 229-232, ACM, 2011.

70. I. H. Witten and D. Milne. An Effective, Low-Cost Measure of Semantic Relatedness

Obtained from Wikipedia Links. Proceeding of AAAI Workshop on Wikipedia and

Artificial Intelligence: An Evolving Synergy, 25-30, AAAI Press, 2008.

71. M. Lesk. Automatic Sense Disambiguation Using Machine Readable Dictionaries:

How to Tell A Pine Cone from an Ice Cream Cone. Proceedings of the 5th Annual

International Conference on Systems Documentation, 24-26, ACM, 1986.

72. E. Agirre and P. G. Edmonds, Word Sense Disambiguation: Algorithms and

Applications. Springer Science and Business Media, Springer, 33, 2006.

73. D. Nadeau and S. Sekine. A Survey of Named Entity Recognition and Classification.

Linguisticae Investigationes, 30:3-26, 2007.

74. N. Nakashole, T. Tylenda, and G. Weikum. Fine-Grained Semantic Typing of

Emerging Entities. Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics, 1:1488-1497, ACL, 2013.

75. X. Ling and D. S. Weld. Fine-Grained Entity Recognition. Proceedings of the 26th

AAAI Conference on Artificial Intelligence, 2012.

110

76. T. Lin and O. Etzioni. No Noun Phrase Left Behind: Detecting and Typing Unlinkable

Entities. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning, 893-903, ACL,

2012.

77. M. A. Ur Rahman and V. Ng. Inducing Fine-Grained Semantic Classes Via

Hierarchical and Collective Classification. Proceedings of the 23rd International

Conference on Computational Linguistics, 931-939, Tsinghua University Press, 2010.

78. M. A. Yosef, S. Bauer, J. Hoffart, M. Spaniol, and G. Weikum. Hyena: Hierarchical

Type Classification for Entity Names. 2012.

79. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A

Collaboratively Created Graph Database for Structuring Human Knowledge. Proceedings

of the 2008 ACM Sigmod International Conference on Management of Data, 1247-1250,

ACM, 2008.

80. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowledge.

Proceedings of the 16th International Conference on World Wide Web, 697-706 ACM

Press, 2007.

81. D. Yogatama, D. Gillick, and N. Lazic. Embedding Methods for Fine Grained Entity

Type Classification. Proceedings of the 53rd Annual Meeting of The Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing of the Asian Federation of Natural Language Processing, 2:291-296,

ACL, 2015.

82. K. Sumi and K. Tanaka. Transforming Web Contents Into a Storybook with Dialogues

and Animations. Special Interest Tracks and Posters of the 14th International Conference

on World Wide Web, 1076-1077, ACM, 2005.

83. B. Coyne and R. Sproat. Wordseye: An Automatic Text-To-Scene Conversion System.

Proceedings of the 28th Annual Conference on Computer Graphics and Interactive

111

Techniques, 487-496, ACM, 2001.

84. X. Zhu, A. B. Goldberg, M. Eldawy, C. R. Dyer, and B. Strock. A Text-To-Picture

Synthesis System for Augmenting Communication. Proceedings of the 22nd National

Conference on Artificial Intelligence, 2:1590-1595, AAAI Press, 2007.

85. R. Mihalcea and C. W. Leong. Toward Communicating Simple Sentences using

Pictorial Representations. Machine Translation, 22:153-173, 2008.

86. A. Borman, R. Mihalcea, and P. Tarau. Picnet: Augmenting Semantic Resources with

Pictorial Representations. AAAI Spring Symposium: Knowledge Collection from Volunteer

Contributors, 1-7, AAAI, 2005.

87. C. L. Zitnick, D. Parikh, and L. Vanderwende. Proceedings of the IEEE International

Conference on Computer Vision, 1681-1688, IEEE, 2013.

88. V. Hansen. Interactive Television Design - Designing for Interactive Television V 1.0

Bbci and Interactive TV Programmes, http://www.bbc.co.uk/guidelines/futuremedia/desed

/itv/ itv_design_v1_2006.pdf [retrieved 07 February 2016].

89. A. Nenkova and K. Mckeown. A Survey of Text Summarization Techniques. Mining

Text Data, 43-76, Springer, 2012.

90. W. Shen, J. Wang, and J. Han. Entity Linking with A Knowledge Base: Issues,

Techniques, and Solutions. Knowledge and Data Engineering, IEEE Transactions on

1:443-60, 2015.

91. R. Navigli. Word Sense Disambiguation: A Survey. ACM Computing Surveys, 2, 2009.

92. Vikipedi, “The Turkish Wikipedia homepage”, https://tr.wikipedia.org/ [retrieved 07

February 2016].

93. A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic Clustering of

112

the Web. Computer Networks and ISDN Systems, 29:1157-1166, 1997.

94. M. A. Yosef, S. Bauer, J. Hoffart, M. Spaniol, and G. Weikum. Hyena: Hierarchical

Type Classification for Entity Names. Conference on Computational Linguistics, 2012.

95. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective

Genetic Algorithm: Nsga-II. Evolutionary Computation. IEEE Transactions, 6:182-9,

2002.

96. C. Xing, D. Wang, X. Zhang, and C. Liu. Document Classification with Distributions

of Word Vectors. Asia-Pacific Signal and Information Processing Association, 1-5, IEEE,

2014.

97. F. Can, S. Kocberber, E. Balcik, C. Kaynak, H. C. Ocalan, and O. M. Vursavas.

Information Retrieval on Turkish Texts. Journal of the American Society for Information

Science and Technology, 1:407-21, 2008.

98. R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C. J. Lin. Liblinear: A Library for

Large Linear Classification. Journal of Machine Learning Research, 9:1871-1874, 2008.

99. J. Heaton. Encog: Library of Interchangeable Machine Learning Models for Java and

C#. Arxiv, Preprint Arxiv:1506.04776, 2015.

100. Y. Liu, D. Zhang, G. Lu, and W.Y. Ma. A Survey of Content-Based Image Retrieval

with High-Level Semantics. Pattern Recognition, 40:262-82, 2007.

101. N. Uzzaman, J. P. Bigham, and J. F. Allen. Multimodal Summarization of Complex

Sentences. Proceedings of the 16th International Conference on Intelligent User

Interfaces, 43-52, ACM, 2011.

113

APPENDIX A: VIDEOLIZATION TEST DATA SET

This section provides the details of the test data used in evaluating runtime performance of

Videolization. Table A.1 shows the most accessed Wikipedia article titles and number of

views respectively.

Table A.1. The most accessed 100 English Wikipedia articles between 20 December 2015

and 27 December 2015, which are used for measuring runtime efficiency and scalability of

Videolization system.

Rank Article Title Views

1 Main Page 118,989,073

2 Star Wars: The Force Awakens 4,905,073

3 Star Wars 2,703,355

4 Augusto Pinochet 1,380,919

5 Dilwale (2015 film) 1,241,440

6 Daisy Ridley 1,227,591

7 Pia Wurtzbach 1,224,259

8 'Tis the Season 1,220,089

9 Miss Universe 2015 1,123,111

10 Bajirao I 1,036,734

11 Bajirao Mastani (film) 1,008,736

12 Web scraping 991,645

13 Java (programming language) 914,861

14 Mastani 880,929

15 Göran Kropp 874,143

16 The Revenant (2015 film) 850,458

17 Star Wars (film) 808,903

18 Boxing Day 806,356

19 Kylo Ren 776,676

20 Adam Driver 775,776

21 Carrie Fisher 745,081

22 Miss Universe 731,473

114

Rank Article Title Views

23 Harrison Ford 693,925

24 Christmas 677,216

25 Mark Hamill 676,622

26 Star Wars sequel trilogy 669,203

27 Steven Avery 662,435

28 Steve Harvey 660,099

29 Joy (film) 620,980

30 Rogue One: A Star Wars Story 594,168

31 Book of the Dead 593,062

32 The Hateful Eight 588,492

33 Macaulay Culkin 580,647

34 Justin Berfield 570,016

35 {[}compensation{]} 564,480

36 Return of the Jedi 543,815

37 Deaths in 2015 543,599

38 Star Wars Episode I: The Phantom Menace 541,764

39 List of Miss Universe titleholders 526,445

40 USS Enterprise (CVN-65) 525,253

41 Joy Mangano 509,112

42 Darth Vader 505,264

43 'Tis the Season (Vince Gill and Olivia Newton-John album) 484,781

44 John Boyega 484,403

45 Donald Trump 465,532

46 Adele 463,874

47 The Empire Strikes Back 453,489

48 Star Wars Episode III: Revenge of the Sith 448,752

49 List of highest-grossing films 446,750

50 Santa Claus 445,770

51 Oscar Isaac 445,739

52 Charles Woodson 430,634

53 Festivus 430,274

54 Kim Peek 423,323

55 One-Punch Man 409,690

56 Han Solo 405,909

115

Rank Article Title Views

57 Queen Sonja of Norway 403,053

58 Frodo Baggins 374,067

59 .rss 373,829

60 Hugh Glass 373,678

61 Star Wars Episode II: Attack of the Clones 365,766

62 The Twelve Days of Christmas (song) 357,127

63 Santa Claus's reindeer 354,057

64 Krampus 354,010

65 Elon Musk 353,882

66 J. J. Abrams 346,514

67 Luke Skywalker 338,516

68 George Lucas 338,191

69 A Christmas Story 333,259

70 Jessica Jones 326,276

71 Jessica Jones (TV series) 319,691

72 Pablo Escobar 316,274

73 Princess Leia 307,110

74 List of Bollywood films of 2015 306,412

75 Grand Moff Tarkin 304,574

76 Ddd 298,602

77 Bob, Agent of Hydra 291,870

78 2015 in film 289,672

79 Winter solstice 289,415

80 Hayden Christensen 289,120

81 Ariadna Gutiérrez 286,992

82 Olivia Jordan 286,487

83 2012 Delhi gang rape 281,580

84 Facebook 277,111

85 Creed (film) 269,647

86 Kwanzaa 264,970

87 Bing Crosby 264,653

88 It's a Wonderful Life 263,717

89 UFC on Fox: dos Anjos vs. Cerrone 2 262,190

90 Jon Jones 259,530

116

Rank Article Title Views

91 Rian Johnson 259,066

92 American Horror Story: Hotel 255,135

93 The Danish Girl (film) 249,787

94 DJ Khaled 248,293

95 United States 247,760

96 Odell Beckham Jr. 247,276

97 Lupita Nyong'o 244,112

98 Sicario (2015 film) 243,970

99 Jennifer Lawrence 243,793

100 Solo family 243,342

117

APPENDIX B: THINKER TEST DATA SET

This section provides a sample from our news articles data set, which are collected from

Hurriyet online news paper in order to evaluate performance of the proposed entity linking

algorithm. Table B.1 shows the target entity title, the addresses and content of the news

articles, which are used for evaluating the entity disambiguation performance. Table B.2

shows a sample from general performance evaluation result of Thinker system.

Table B.1. A sample from the Hurriyet news articles data set with target entities, addresses

and content.

Akrep(scorpion)

www.hurriyet.com.tr/gundem/23338821.asp

Mugla'nin Bodrum ilçesi Turgutreis beldesinde okulun bahçesinde akrep sokan ögrenci

öldü. Turgutreis Anadolu Otelcilik ve Turizm Meslek Lisesi'nde okuyan ve staj yaptigi için

okulda kalan Samet Çetin'i geçtigimiz cuma günü okul bahçesinde otururken akrep soktu.

Okulda yapilan müdahalenin ardindan dinlenmeye çekilen Çetin, gece rahatsizlanmasi

üzerine Bodrum Devlet Hastanesi'ne kaldirildi. Yapilan müdahalenin ardindan Bodrum

Özel Hastanesi'ne sevk edilen ögrenci, durumunun agirlasmasi üzerine Ege Üniversitesi

Hastanesi'ne sevk edildi. Çetin, burada yapilan tüm müdahalelere ragmen kurtarilamadi.

Çetin'in cenazesi, ögle namazina müteakip kilinan cenaze namazinin ardindan Ortakent

Mezarligi'nda topraga verildi. Jandarma akrep sokmasinin ardindan Samet Çetin'i bir an

önce donanimli bir saglik kurulusuna ulastirmayan okul yöneticileriyle ilgili sorusturma

baslatirken, Çetin'in ailesi de ogullarinin ölümünde okulun ihmali bulundugunu söyledi.

Akrep (horoscope)

www.hurriyet.com.tr/magazin/astroloji/burc.asp?cinsiyet=erkek&burc=akrep

118

Eğer bir Akrep erkeğine aşıksanız ve ihtiras sözcüğü sizi korkutuyorsa, ayakkabılarınızı

ayağınıza geçirdiğiniz gibi kaçın. Listenin başında o olmasına karşın, ben romantik

ihtirastan söz etmiyorum. Aynı zamanda politikaya, çalışmaya, dostluğa, dine, yiyeceğe,

akrabalara, çocuklara, giyim kuşama, yaşama, ölüme ve düşünebileceğiniz herşeye karşı

duyulan şiddetli ihtirastan söz ediyorum. Eğer duygusal aşırılıkları kabul etmeyen bir

insansanız. Akrep erkeği kesinlikle sizin ruhunuzun ihtiyaç duyduğu biri değildir.Sakın

arkanıza bakmayın. Hemen kaçın. Eğer Akrep erkeği ile yeni tanıştıysanız, onun ne kadar

sakin ve dengeli bir insan olduğunu düşünebilirsiniz. Böylesine açıkça kendini kontrol

edebilen bir insan nasıl ihtiraslı, hem de tehlikeli şekilde ihtiraslı olabilir. Çünkü o,

yüzeydeki serin görünüşüyle sadece blöf yapmaktadır. O, aldatıcı şekilde konrollü

davranışlarının altında cızır cızır yanmaktadır. Sakın dokunmayın. Onunla oynarken

dikkatli olun. Nereye ve kiminle gittiğinizden emin olun. Akrep erkeği ile kurduğu ilişkide

kendini güvende sanan hanımlara gelince; bakalım şu hipnotik, delip geçici Akrep

gözlerinin arkasında neyin gizli olduğunu görebilecek misiniz? Şurası kesin ki, o sizin

üstünüzde nötr bir izlenim bırakmadı. Ya onun çocuksu ve tatlı olduğunu düşündünüz ya da

yaramaz ve ihtiraslı. Ama o bunların hiçbiri değil ve asıl sorun da bu . Veya belki, her ikisi

de olduğu söylenmeli. Tek kelimeyle, bu adam yenilmek, yılmak nedir bilmeyen biridir. O

buz gibi sessizliğin arkasında sürekli olarak fıkır fıkır kaynayan kocaman bir kap vardır.

Şansınız varsa, kapağını ömür boyu sımsıkı kapalı tutar ama derin bir yara onu korkunç bir

patlamayla havaya uçurabilir. Eğer tehlike çizgisi içinde değilseniz, seyretmek bayağı

heyecan verici olabilir. Patlamanın yaklaştığını hissediyorsanız kenara çekilin ve sakın

patlamaya neden olacak bir şeyi kendiniz yapmayın. Akrep, ikiz huyları olan ihtiras ve

mantıkla sizi şaşkına çevirecektir. O, bunların ikisinin de uzmanıdır. Zeka ve duygular onu

eşit şekilde yönetir. Akrep zeki olmanın da ötesindedir. Eğer çok gelişmiş biriyse, o aynı

zamanda varoluşun sırlarıyla ilgilenen ve yanıtlarını bulmaya çok yaklaşan derin filozofça

bilgiye sahip bir insandır.

Akrep (hour hand)

www.hurriyet.com.tr/akrep-ve-yelkovan-neden-saga-doner-28251059

Akrep ve Yelkovan neden sağa döner?Dünya'nın bir ülkesi hariç her yerinde saatler sağa

doğru döner. Peki hangi ülke o? Akrep ve yelkovan neden sağa döner? İlk olarak eski

Mısırlılar, güneşin her gün düzenli bir hareketle doğup, belirli zamanlarda gökyüzünün aynı

noktalarında bulunup battığını gözlemlediler ve bunun bir günü zaman parçalarına ayırmada

kullanılabileceğini keşfettiler.

Çay (stream)

www.hurriyet.com.tr/gundem/25860021.asp

119

İSTANBUL'a su sağlayan Melen Çayı'nda kuraklığa bağlı olarak su seviyesinde düşme

yaşanmaya başladı. Geçen yıllarda şubat ayı ile kıyaslandığında çaydaki su seviyesinde

yaklaşık 80 santimlik düşüş olduğu belirtildi. Sakarya'nın Kocaali İlçesi'ne bağlı Ortaköy

Beldesi'nde bulunan regülatör ile Melen Çayı'ndan İstanbul'a geçen yıl 159 milyon 170 bin

metreküp su sağlandı. Bu yıl ise Melen Çayı'nın yüzde 80'inin bulunduğu Düzce'de kuraklık

etkilerini göstermeye başladı. Melen Çayı'nda ve besleyen derelerde su seviyesi düştü.

Geçen yıl şubat ayı ile kıyaslandığında çaydaki su seviyesinde yaklaşık 80 santimlik düşüş

olduğu belirlendi. Düzce'nin Cumayeri İlçesi Dokuzdeğirmen Köyü'ndeki köprünün

ayaklarında ve çay yatağında su seviyesindeki düşüşün izleri belli oluyor. Geçen yıllarda

mayıs ayına kadar karların bulunduğu Kardüz Yaylası'nda ise çok az kar bulunması

kuraklığın boyutunu da gösteriyor.

Çay (tea)

www.hurriyet.com.tr/saglik/20067686.asp

Trakya Üniversitesi Tıp Fakültesi Hastanesi Nefroloji Bilim Dalı öğretim üyesi Doç. Dr.

Sedat Üstündağ, milli içecek haline gelen çayın kanser riskini azaltmasına karşın, sıcak

içildiğinde mide hasarına ve kansızlığa neden olabileceğini söyledi. Koyu çayların demiri

bağlayarak kansızlık yarattığını kaydeden Doç. Dr. Üstündağ, Sıcak çayın içerisinde demiri

bağlayan bir takım maddeler var. Koyu çay çok içilirse, mide ve bağırsak sistemindeki

demiri bağlar. Dolayısıyla anemi dediğimiz kansızlık hastalığının gelişmesini kolaylaştırır

dedi. Türk Nefroloji Derneği Trakya sorumlusu da olan Doç. Dr. Sedat Üstündağ ve bazı

dernek üyeleri, 8 Mart Dünya Böbrek Günü nedeniyle Trakya Birlik İlköğretim Okulu'ndaki

öğrencileri ziyaret etti. Sınıfları gezerek bilgi veren Doç. Dr. Üstündağ, böbrek hastalarının

her geçen gün arttığını belirterek, öğrencilere fazla tuz kullanmamalarını öğütledi. Tuzun

adeta bir zehir olduğunu belirten Doç. Dr. Üstündağ şunları söyledi: Marketlerde alışveriş

yaparken alacağınız ürünlerin sodyum (Na) oranına bakın. Sodyum oranı yüksek ürünler

vücuda zarar verir. Tuz aslında zehir gibidir. Günlük tükettiğimiz besin maddelerinde tuz

oranı var. Vücut, ihtiyacı olan tuz oranını bu besin maddelerinden alıyor. Üstüne bir de biz

tuz kullandığımızda, başta böbreklerimiz olmak üzere birçok organımız hasara uğruyor.

Dünya Sağlık Örgütü'ne göre bir insan günde 6 gram miktarında tuz tüketmeli, ancak

ülkemizde bu oran 3 katı yüksekliğinde.

Ceylan (gazelle)

www.hurriyet.com.tr/seyahat/13179756.asp

120

Safari turlari için uçak hariç 2000-8000 Euro arasinda ücret ödeniyor. Tabii çok ultra lüks

ve kisiye özel turlarla bu fiyatlar çok artiyor. Biz bu skalanin ortasinda, ancak epeyce

konforlu bir tur seçtik. Ahsap çadirlarin bazilari 5 yildizli otelleri aratmiyordu. Lüks

sayilabilecek kamp alanlarina lodge deniliyor. Bazi yemekler gurme restoranlarla yarisir.

Kamp alanlarinda turistlerin kaldigi bölümler çok iyi aydinlatiliyor. Turumuzu özellikle

çocuklu arkadaslarima anlata anlata bitiremedim. Ellerinde dürbünlerle hayvanlari izleyen

çocuklari gördükçe içim gitti. Bu dünyanin bizden baska canlilarla ve hayatlarla dolu

oldugunu anlatmanin daha iyi bir yolu olamaz. Safari boyunca kendinizi maceraperest

saniyorsunuz. Zaman zaman kendimi bir belgeselin içinde buldum. Belgeselleri çekmek ve

özel anlar yakalamak için ne kadar büyük bir çaba harcadiklarini daha iyi anladim.

Turumuza Mayara Gölü'nden basladik. Burasi sodali bir göl, 400 kus türü yasiyor. Suyu çok

yakici oldugu için insanlar giremiyor ama suaygirlarinin nesesine diyecek yok. Daha sonra

sik sik karsilacagimiz bufalo, çita, antilop, benekli kirpi, akbaba, yabandomuzu, kertenkele,

çakal, ceylan, zürafa, fil ve impalalari ilk kez burada gördük.

Ceylan (singer)

www.hurriyet.com.tr/ceylan-in-melodi-si-19207553

Türkücü Ceylan'ın ilk evliliğinden olan kızı Melodi Bozkurt, kendisine annesinden farklı bir

kariyer yolu çizerek ‘iktisatçı' olmayı tercih etti. İlk sahne deneyimini 7 yaşındayken

yaşayan ve sanat dünyasına çocuk yaşta girdiği için ‘Küçük Ceylan' olarak adlandırılan

türkücü Ceylan'ın (37) ilk evliliğinden olan kızı Melodi Bozkurt'un fotoğrafları yıllar sonra

ilk kez medyaya yansıdı. Vatan gazetesinden Zehra Çengil'in haberine göre Ceylan'ın ilk

eşi Erhan Bozkurt'tan olan 21 yaşındaki Melodi'nin annesinden farklı bir yol izlediği ve

"iktisatçı" olmaya karar verdiği öğrenildi. Samsun'da bulunan 19 Mayıs Üniversitesi

İktisadi ve İdari Bilimler Fakültesi'nde okuyan Bozkurt, sosyal paylaşım sitesi twitter'daki

hesabına ‘Geleceğin İktisatçısı' yazdı. Ceylan, ise kızıyla gurur duyduğunu belirterek

"Kızım 19 Mayıs Üniversitesi İktisat bölümünü kazandığında çok sevindim. Devlet

üniversitesi okumasından çok memnunum. Kendi hakkıyla ayaklarının üstünde durmaya

çalışması bir anne olarak beni çok mutlu ediyor. Bu sene 1. sınıf öğrencisi. Müzisyen

olmasından ziyade okumasını istedim. Her genç kız gibi altın bileziğinin elinde olması

benim için önemliydi. Gelecekte borsayla ilgilenmeyi düşünüyor. Ekonomiyi yakından

takip ediyor. Bölümüyle ilgili yüksek lisans hedefleri arasında. Onun büyüyüp bir iş kadını

olmasını seyretmek heyecan verici" diye konuştu.

Duvar (wall)

www.hurriyet.com.tr/gundem/28194015.asp

121

Niğde Kalesi'ndeki mesire alanında kavga eden 2 genç, kale duvarından düşerek ağır

yaralandı. Mesire alanına gelen bir grup genç henüz belirlenemeyen bir nedenle tartıştı.

Tartışmanın büyümesi üzerine grupta bulunan Mustafa E. (19) ile Erkan D. (18) kavga

etmeye başladı. Kale etrafını çevreleyen yaklaşık 10 metre yükseklikteki duvar üzerinde

kavga eden gençler, dengelerini kaybedip önce park halindeki midibüsün üzerine ardından

beton zemine düştü. 112 Acil Servis ekiplerince Niğde Devlet Hastanesine kaldırılan

Mustafa E. ve Erkan D'nin sağlık durumlarının ciddiyetini koruduğu öğrenildi. Polis

ekipleri olayla ilgili soruşturma başlattı. Görgü tanığı Yusuf Efe Er, İki kişi kucaklaşarak,

birbirlerine vurarak, duvar kenarına geldi. Önce arabanın üzerine, sonra aşağı düştülerdedi.

Duvar (film)

www.hurriyet.com.tr/gundem/18460961.asp

Kültür ve Turizm Bakanı Ertuğrul Günay'ın talimatıyla hayata geçirilen çalışmada,

Güney'in senaryosunu yazıp yönettiği Arkadaş, Umut, Aç Kurtlar, Duvar, Seyyithan, Ağıt

ve Zavallılar ile senaryosunu yazdığı Yol, Düşman, Sürü ve Endişe DVD ortamına aktarıldı.

Projeyle, bakanlık arşivinde bulunmayan 11 Güney filmi, bakanlık kayıtlarına girdi.

Yaklaşık 1 yıldır proje üzerinde çalıştıklarını belirten Telif Hakları ve Sinema Genel

Müdürü Çelik, şunları anlattı: Devletle barıştırma Bakanlık filmlerin DVD'ye

aktarılmasında maddi ve manevi anlamda katkıda bulundu. Ayrıca filmler Bakanımız

Ertuğrul Günay tarafından, yabancı heyetlere verilmek üzere Cumhurbaşkanlığı,

Başbakanlık ve TBMM'ye de gönderildi. Yunus Emre Vakfı'nın yurtdışındaki bütün

şubelerine de dağıtıldı. Çalışmanın Yılmaz Güney gibi bir sinemacıyla devleti barıştırma

öyküsü olsun istedik.

Mısır (country)

www.hurriyet.com.tr/dunya/28343442.asp

122

BM Ortadoğu Barış Süreci Özel Koordinatörü Robert Serry, başta İsrail ve Mısır olmak

üzere tüm taraflara başarısız olan Gazze politikalarını değiştirme çağrısı yaptı. Serry,

Ortadoğu Barış Süreci Özel Koordinatörü sıfatıyla Gazze'ye son ziyaretini gerçekleştirdi.

Serry, ziyaretin ardından yaptığı yazılı açıklamada, son yedi yılda Gazze'de 3 savaş

yaşandığını ve sonuncusunun bölgeyi mahvettiğini kaydetti. Yıkımın ardından Gazze'nin

yeniden inşası sürecinin başladığını dile getiren Serry, bunun için gerekli fonun

sağlanamadığını ve Kahire Konferansı'nda söz verilen 5.4 milyar doların ancak küçük bir

kısmının yerine getirildiğini belirterek bu durumun kabul edilemez olduğunu vurguladı.

Gazze her zamankinden daha izole edilmiş bir durumda ifadelerini kullanan Serry, İsrail'den

Gazze'ye geçişlerde halen büyük kısıtlamalar yaşandığını, Refah kapısının ise pratik olarak

kapalı olduğunu bildirdi. BM olarak, Gazze'de sürdürülebilir bir yönetim, ekonomi ve

istikrar için kuşatmanın kalkmasını hep savunduklarına işaret eden Serry, son ziyaretinde

Gazze'deki muhataplarından da yer altında ve üstünde tüm askeri aktiviteleri bir kaç yıl

dondurmalarını istediğini ve olumlu yanıtlar aldığını kaydetti.

Mısır (corn)

www.hurriyet.com.tr/ege/27354000.asp

MUĞLA'da, Gıda Tarım ve Hayvancılık İl Müdürlüğü tarafından 2014 yılında alternatif

yem bitkisi üretim çalışmaları aralıksız sürüyor. Çalışmalar kapsamında dane sorgum,

tirinova, caramba, caramba mix, yem bezelyesi, lenox, silajlık mısır, sorgum sudan otu

melezi, yonca, hayvan pancarı, şalgam, fiğ, triticale, yulaf çeşitleri ve silaj kalitesinin

arttırılması hedeflendi. Muğla Gıda Tarım ve Hayvancılık İl Müdürlüğü'nce Silaj

Kalitesinin İyileştirilmesi Projesi kapsamında Menteşe İlçesi Doğanköy ve Yeniköy

Mahalleleri'nde, topraksız mısır silajı yapımının gösterildiği Tarla Günü'ne ilçelerden ve

çevre mahallelerden katılım büyük oldu. Üretici Şaban Başoğlan ile Saim Tezcan ın

tarlalarında yapılan çalışmalar sonucunda, yüksek verimli mısır çeşitlerinin, silaj katkısı ve

topraksız silaj örtüsü kullanımı ile silaj kalitesinin arttırılması ve bozulmalarının önüne

geçilmesi için çiftçilere tanıtımı yapıldı. Tarla Günü'nde İl Müdürü Nazif Ekici, müdür

yardımcısı Muhammed Sevinç, Bitkisel Üretim ve Bitki Sağlığı Şube Müdürü Resül Çoban,

ilçe müdürleri, Ziraat Odası Başkanları, muhtarlar, teknik personel ile üreticiler katıldı.

123

Table B.2. A sample from general performance evaluation result of Thinker system.

Article URL

http://www.hurriyet.com.tr/yuksek-yargiya-yeni-duzen-geliyor-40116960

Entity Linking Result

Correct Mappings Wrong Mappings Undetected Entities

Birinci Başkan Başkanlık Kurulu

Bulunma Daire Danıştay Kanunu

Çözebilme Düşme Kanun

Danıştay_(Türkiye) Geçme Yüksek Yargı

Değişiklik Içinde

Devam Mevcut

Dosya Üyelik

Düşürülme

Etme

Gerekçe

Getirme

Görev

Hükûmet

Içermek

Isteme

Kademe

124

Correct Mappings Wrong Mappings Undetected Entities

Kanun Tasarısı

Kanun_(Hukuk)

Kapatılma

Kısa

Sayı

Seviye

Tasarı

Tbmm

Uhde

Üye

Yargı

Yargıtay_(Türkiye)

Yüksek

Zaman

