
GAMIFIED SELF-PACED E-LEARNING PLATFORM FOR COMPUTER SCIENCE

COURSES

by

Yusuf Türk

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Engineering

Yeditepe University

2017

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Prof.Dr. Sezer Gören Uğurdağ for her patience,

help, and advice.

I also would like to thank my parents and my brother for their support.

iv

ABSTRACT

GAMIFIED SELF-PACED E-LEARNING PLATFORM FOR COMPUTER

SCIENCE COURSES

Gamification is the use of game elements in non-game context to increase engagement.

One of the most important challenges in the last decade is to keep students engaged with

the content while modernizing the education tools. E-learning systems are suitable to apply

gamification techniques to increase student engagement. This work will introduce a self-

paced e-learning platform for entry level Computer Science courses. For implementation

purposes, Python is chosen since it is suitable for first year courses. Platform has modules

for self-paced learning, laboratory homework (labwork), assignment, and management. It

is implemented as a highly scalable web application with resources stored in the cloud.

Course was tested with group of students submitting assignments and studying for their

exam.

v

ÖZET

BİLGİSAYAR BİLİMİ DERSLERİ İÇİN OYUNLAŞTIRILMIŞ KENDİ-KENDİNE

İLERLEMELİ ELEKTRONİK-ÖĞRENME PLATFORMU

Oyunlaştırma, oyun elamanlarını oyun dışı durumlarda kullanıp bağlılığı arttırmaktır. Son

yılların en önemli sorunlarından bir tanesi de eğitim araçlarını modernize ederken bir

yandan öğrencilerin bağlılığının devamlılığını sağlamaktır. Elektronik öğrenme sistemleri

öğrenci bağlılığını arttırma amacıyla oyunlaştırmaya uygundur. Bu çalışma Bilgisayar

Bilimi dersleri için kendi kendine elektronik öğrenme platformu sunacaktır. Uygulamayı

geliştirme amacıyla ilk yıl derslerine uygun olan Python seçilmiştir. Platform kendi-

kendine öğrenme, lab ödevi, ödev teslimi, ve yönetim için ayrı modüllerden oluşmuştur.

Yüksek ölçeklenebilir ve verileri bulutta saklanan bir ağ programı olarak geliştirilmiştir.

Sistem ödev teslimi yapan ve sınava çalışan bir grup öğrenci ile test edilmiştir.

vi

TABLE OF CONTENTS	

ACKNOWLEDGEMENTS ... iii	

ABSTRACT .. iv	

ÖZET ... v	

LIST OF FIGURES .. ix	

LIST OF TABLES .. xiv	

LIST OF SYMBOLS/ABBREVIATIONS .. xv	

1.	 INTRODUCTION .. 1	

1.1.	 MOTIVATION ... 1	

1.2.	 GOALS ... 2	

1.3.	 ORGANIZATION OF THESIS .. 2	

2.	 BACKGROUND AND LITERATURE REVIEW ... 3	

2.1.	 E-LEARNING SYSTEM .. 3	

2.1.1.	 Self-Paced Learning ... 3	

2.1.2.	 E-Learning in Academia .. 4	

2.1.3.	 E-Learning in Industy .. 6	

2.1.4.	 Future of E-Learning .. 7	

2.1.5.	 Traditional Classroom Teaching and E-Learning .. 7	

2.2.	 GAMIFICATION .. 7	

2.2.1.	 Gamification Categories .. 9	

2.2.2.	 Gamification Design Rules .. 11	

2.2.3.	 Gamification Elements ... 11	

2.2.3.1.	 Points, Badges, Leaderboards ... 12	

2.2.4.	 Engagement .. 18	

2.2.5.	 Gamification Design Framework ... 19	

2.3.	 LITERATURE REVIEW .. 21	

3.	 ANALYSIS AND DESIGN ... 24	

3.1.	 PLATFORM OVERVIEW ... 24	

3.2.	 ARCHITECTURE DESIGN ... 28	

vii

3.3.	 COMPONENT DESIGN .. 30	

3.3.1.	 Self-Paced Learning Module ... 30	

3.3.2.	 Labwork Module .. 32	

3.3.3.	 Assignment and Project Submission Module .. 33	

3.3.4.	 Management Module ... 33	

4.	 IMPLEMENTATION .. 35	

4.1.	 WEB APPLICATION ... 36	

4.1.1.	 Ruby on Rails ... 37	

4.1.1.1.	 Ruby ... 40	

4.1.1.2.	 Model-View-Controller Pattern .. 41	

4.1.2.	 Session Management and Authentication .. 42	

4.1.3.	 Controllers .. 42	

4.1.4.	 Models.. 43	

4.1.5.	 User Profiles ... 44	

4.1.5.1.	 Badges .. 45	

4.1.5.2.	 Micro-posts ... 45	

4.1.6.	 User Interface ... 45	

4.1.6.1.	 Interface for Learning Module ... 46	

4.1.6.2.	 Interface for Labwork Module ... 48	

4.1.6.3.	 Interface for Exam Module ... 48	

4.1.6.4.	 Interface for Labwork Creator .. 50	

4.1.6.5.	 Interface for User Profiles .. 50	

4.1.7.	 Websockets .. 52	

4.1.8.	 jQuery .. 53	

4.2.	 SERVER ... 53	

4.2.1.	 Web Applications ... 55	

4.2.2.	 Go Language .. 55	

4.2.3.	 Docker Containers ... 56	

4.2.4.	 Unit Tests and Evaluation .. 59	

4.2.5.	 Main Server Script ... 60	

4.2.6.	 Passenger .. 62	

4.3.	 DATABASE ... 62	

viii

4.3.1.	 NoSQL Databases .. 62	

4.3.2.	 Traditional Databases and NoSQL .. 63	

4.3.3.	 DynamoDB .. 63	

5.	 RESULTS ... 65	

5.1.	 TESTING EXAM MODULE ... 65	

5.1.1.	 Class Performance ... 66	

5.2.	 TESTING LAB MODULE ... 68	

5.2.1.	 Questionnaire ... 69	

5.3.	 USAGE STATISTICS .. 73	

6.	 CONCLUSION AND FUTURE WORK ... 74	

REFERENCES .. 75	

ix

LIST OF FIGURES

Figure 2.1. E-Learning objectives .. 4

Figure 2.2. MOOC Engagement [13] .. 5

Figure 2.3. Mobile game users per country (millions) [25] ... 8

Figure 2.4. Gamification categories [27] ... 10

Figure 2.5. Pyramid of gamification elements ... 12

Figure 2.6. Elements of the Swarm application ... 13

Figure 2.7. Point system in Swarm application ... 14

Figure 2.8. Upgrading a badge in Swarm application ... 15

Figure 2.9. Swarm application stickers .. 16

Figure 2.10. Swarm application restaurant badge .. 17

Figure 2.11. Swarm application leaderboard ... 18

Figure 2.12. Engagement Loop .. 21

Figure 3.1. Modules of the platform .. 25

Figure 3.2. Use case diagram for learning module .. 25

Figure 3.3. Use case diagram for labwork module .. 26

x

Figure 3.4. Progress bar for assignment ... 27

Figure 3.5. Badges from the system ... 27

Figure 3.6. Platform architecture ... 28

Figure 3.7. Platform architecture with two servers .. 29

Figure 3.8. Platform architecture with two web application servers 30

Figure 3.9. Learning module components ... 31

Figure 3.10. Learning module user interface ... 31

Figure 3.11. Labwork module user interface ... 32

Figure 3.12. Class dashboard user interface mock up ... 34

Figure 4.1. Component diagram of the platform ... 35

Figure 4.2. Web application on Amazon Web Services .. 36

Figure 4.3. Rails application components .. 37

Figure 4.4. Rails application directory ... 39

Figure 4.5. App directory structure .. 40

Figure 4.6. Part of a Gemfile ... 40

Figure 4.7. Sequence diagram of MVC ... 41

Figure 4.8. Sequence diagram of authentication .. 42

xi

Figure 4.9. Controller diagram of the application .. 43

Figure 4.10. Models of the application .. 44

Figure 4.11. Badge in user profile ... 45

Figure 4.12. Learning module content interface .. 46

Figure 4.13. Learning module quiz interface ... 47

Figure 4.14. Learning module question interface .. 47

Figure 4.15. Labwork module interface ... 48

Figure 4.16. Exam module interface .. 49

Figure 4.17. Exam module menu ... 49

Figure 4.18. Exam creator module ... 50

Figure 4.19. User profile .. 51

Figure 4.20. Instructor profile .. 51

Figure 4.21. Websocket sequence diagram .. 52

Figure 4.22. Server component diagram .. 53

Figure 4.23. Activity diagram of the server ... 54

Figure 4.24. A simple Go program .. 56

Figure 4.25. Virtual machine and containers ... 57

xii

Figure 4.26. Adding containers to the system .. 58

Figure 4.27. Python container .. 58

Figure 4.28. Python execution with messaging ... 59

Figure 4.29. Tests for square function ... 60

Figure 4.30. Server and the filesystem components .. 61

Figure 4.31. Passenger server status .. 62

Figure 4.32. DynamoDB tables ... 64

Figure 5.1. Assignment participation ... 67

Figure 5.2. Completion rates .. 67

Figure 5.3. Participation rates of final module .. 68

Figure 5.4. Grade distribution of final module .. 68

Figure 5.5. Platform usage for submitting assignment .. 69

Figure 5.6. Platform usage for studying the finals ... 70

Figure 5.7. Immediate feedback for assignments .. 71

Figure 5.8. Trust on automated grading system ... 71

Figure 5.9. Students having difficulty finding exercises ... 72

xiii

Figure 5.10. Effect of class progress on motivation .. 72

xiv

LIST OF TABLES

Table 5.1. Functions of the assignment ... 66

xv

LIST OF SYMBOLS/ABBREVIATIONS

3D Three Dimensional

AWS Amazon Web Services

CPU Central Processing Unit

EBS Elastic Block Store

EC2 Elastic Compute Cloud

edX Education X

GB Gigabyte

HTML Hyper-Text Markup Language

JSON JavaScript Object Notation

MIT Massachusetts Institute of Technology

MOOC Massive Open Online Course

MVC Model-View-Controller

NoSQL Not only SQL

S3 Simple Storage Service

TCP Transmission Control Protocol

1

1. INTRODUCTION

Gamification is the use of game elements in non-game context to increase user

engagement. The rising popularity of gamification in the last decade introduced new

approaches for the studies in various fields. One of the fields that gamification proved to be

successful is learning. Gamification can increase the time students spend learning by using

the game elements. Aside from introducing competition, gamification can also be used to

form habits. Main elements used in gamified systems are rewards, badges, and

leaderboards. Swarm (Foursquare) [1], Khan Academy [2], Duolingo [3], and Whale [4]

are examples of popular platforms successfully implemented gamification.

Self-paced learning platforms allow students to interact with the system at their own speed.

Popular e-learning platforms such as edX [5] and Coursera [6] are designed to emulate a

classroom learning experience. In the case of Coursera, students are given lecture videos

and resources and expected to complete the assignments before the deadline. Other

platforms such as Code School [7], Code Avengers [8], and Hacker Rank [9] allow users to

follow a curriculum at their own pace and does not have deadlines for projects. They also

offer an online IDE which students can use to write and execute code. Programs are

checked for correctness by the platform.

A platform to teach Python programming language is developed for this thesis. Python is

chosen because it is easy to learn for people with little or no programming experience. It is

also offered as the first programming language in many universities. The platform has a

learning curriculum that students can follow at their own pace. In addition to that, there is

also an exam module that students can work on assignments and submit them.

Gamification is applied to the platform so that students can earn badges according to their

accomplishments.

1.1. MOTIVATION

This research is providing a companion application that will improve the in-class

performance of the students. The motivation for this research is the need to replace the

traditional teaching methods for programming languages. By doing so, instructors can be

2

more involved with the students by tracking their progress and act accordingly.

1.2. GOALS

The goal of this research is to increase engagement of students in learning and coursework.

Although the platform is designed for the Python language, it can be easily applied to the

other programming languages such as C, C++, and Java. By using the same application for

different classes and programming languages this platform can become a standard for lab

environment in universities. Also, having using the same platforms allows learners to start

from the same experience level.

1.3. ORGANIZATION OF THESIS

Chapter 2 includes the background and literature review of the problem. Chapter 3 presents

the methodology used to design the platform. Chapter 4 includes the implementation

details of the platform. Chapter 5 includes the results and thesis is concluded in Chapter 6.

3

2. BACKGROUND AND LITERATURE REVIEW

This chapter describes e-learning systems, gamification, and user experience. Section 2.4.

consists of the literature review of the projects using gamification.

2.1. E-LEARNING SYSTEM

E-learning is learning using technology to access educational material outside of the

traditional classroom. There are two types of e-learning: synchronous and asynchronous

[10].

Synchronous learning is the real-time learning that is mimicking a classroom environment

using various tools such as video conferencing, webinars, and virtual classrooms. In

synchronous learning, teacher and learners are in different locations but all participants are

online at the same time. Coursera and edX are examples of this kind of learning.

Asynchronous learning is e-learning type that participants are following the same

curriculum but they follow it according to their own schedule. Learners need not to be

online at the same time. Self-paced online courses, forums, and message boards are

examples of this kind of e-learning category. Khan Academy is an example of

asynchronous learning.

2.1.1. Self-Paced Learning

Self-paced learning is an example of asynchronous e-learning platform in which the

students are participating in classes or the given curriculum at their own speed. Learners

can stop and continue studying independent of each other. Most of the self-paced learning

platforms do not give a deadline to its students. Learners can complete their learning

anywhere in the world and any time of the day. Self-paced learning can be a replacement

for the traditional classroom for some cases. While being not appropriate for every learning

scenario, self-paced learners can outperform the traditional learners. A study by Tullis and

Benjamin [11] states that self-paced learners was more successful if they allocate their time

according to the difficultly of learning material.

4

Learning paths can be customized according to each student. If students are not on the

same level, students can take as much time as they want until they learned the curriculum

[12]. They can also go back to previously covered topics if they need to. Khan Academy

[2] also offers a self-paced programming module which teaches JavaScript. Students

continue projects at their own pace.

2.1.2. E-Learning in Academia

E-learning is widely adapted in academia from blended and online learning to MOOCs.

According to a survey study by European University Association [13], among the 249

participated institutions, 49 per cent of them have a institutional e-learning policies and

strategies. Also, 53 per cent stated that the e-learning is widely used throughout their

institutions. For the 27 per cent of the participant institutions give their objective of the e-

learning as to provide more flexible learning, and 20 per cent wanted to increase the

effectiveness of classroom time as seen on Figure 2.1.

Figure 2.1. E-Learning objectives [13]

5

In addition to offering online learning systems, MOOCs are also popular among the

universities. MOOCs offer learning for various topics including business, computer

science, humanities, social sciences, psychology, and language learning. A MOOC is an

online course often offered by universities which the students are given video lectures,

reading materials, quizzes, exercises, assignments, and online exams. While some courses

offer a certificate from the university, others choose to only award a certificate of

participation. Each course has a syllabus that states the requirements of successful

completion of the course. There are two types of timelines for these courses. First one is

the self-paced approach that course is always available and students can take and finish the

course any time they want. In the second model, course if only offered for a limited

amount of time such as six weeks and the enrollment is closed after the first week. Most of

the MOOCs are offered by timed basis, but some platforms are testing a self-paced model

for the courses that previously offered on a timeline basis. While some universities offer

their own platform such as MIT Open Courseware [14] and Stanford Online [15], others

use a platform providing MOOC services such as Coursera and edX. Also according to the

survey [13], only 12 per cent of the institutions are currently offering MOOCs. But, 46 per

cent stated that they are planning to introduce them as seen on Figure 2.2. This shows that

many institutions are trying to catch up and aware of the current trends.

Figure 2.2. MOOC Engagement

6

2.1.3. E-Learning in Industy

Learning does not stop after the university education. Today, companies are also

continuously educate their employees with corporate training. While some corporations get

help from companies specialized in corporate training, others prepare their own materials

since some information that will be thought to employees might be sensitive for the

company. There are companies offering corporate training for every skill level from

absolute beginner to expert. Platforms like Lynda [16] offer learning materials for

thousands of subjects focused on the needs of the businesses, allowing employees to

improve themselves on the specific subject. According to a study by Roland Berger [17],

77 per cent of the United States companies offered e-learning for their employees as

professional development programs. In addition to that, MOOCs are also popular among

the companies. MOOC providers partner up with the corporations to create courses

specialized for their needs. According to an another industry report [18] for the corporate

training professionals, 44 per cent of the companies intent to purchase online learning tools

and systems for their employees.

Corporate training is now more important than ever. When a new technology comes out

and it is evident that the old technology will be replaced, companies do not have a chance

but the educate their employees to adapt to changes. This is where the e-learning shows its

importance. When Google announced that the HTML 5 will replace the old HTML

versions and Flash, employees needed to learn the new HTML 5 that has significant

changes over the old versions. Google partnered with the Udacity [19] to create a new

course on HTML 5 and enrolled 80,000 employees [20].

Companies also use e-learning to educate their customers on their products. SAP offers a

training website [21] for their customers where they can attend to virtual live classrooms,

e-learning materials, e-academy materials, and self-paced classroom. Training also

includes study modules for the various certification programs for people wanting to

specialized in their software applications.

7

2.1.4. Future of E-Learning

E-learning systems are replacing the traditional methods in some areas as mentioned in the

previous sections. While replacing the traditional methods, it also creates completely new

ways of using learning. For example, Udacity partnered with some companies such as

Google, Amazon, IBM, Didi, Bosch, and Mercedes-Benz [22], to create a curriculum that

responded to their needs from future employees. Some of the partnered companies agreed

to have an interview with the students successfully completed the coursework and projects

to hire them for the positions that respond to the technology learned in the class. There are

also courses offered with contents that is not covered in universities. For example self-

driving car engineering curriculum is not offered by universities. But, it is offered by the

MOOC provider Udacity with industry partner Uber and Nvidia.

2.1.5. Traditional Classroom Teaching and E-Learning

E-learning is not replacing the traditional classroom teaching soon. Current university

system is designed to teach students in classrooms and laboratories. And, the institutions

are struggling to keep students in class. In some cases, attendance is mandatory to keep

students in class. Universities are combining traditional and e-learning teaching rather than

replacing them with each other. When e-learning is combined with the traditional system it

is called blended learning. For example, the teaching is still conducted in classroom, but

the assignments are submitted online or the lectures can also be followed from an e-

learning platform. E-learning in this sense is not the same as distance learning. Distance

learning is a learning method for the off-campus students so that

2.2. GAMIFICATION

Gamification: the process of adding games or gamelike elements to something to

encourage participation. Gamification has become popular in the last decade. There are

reasons that it is not considered as a simple tool and studied beyond the implementation.

8

First, it is an emerging business practice in various fields. From collecting airline miles for

each flight to earning reward points for each cup of coffee, gamification is used to increase

customer engagement and loyalty. Airline miles is an example of gamification focused on

customer loyalty. In recent years, the sign up for loyalty programs become easier with

mobile-enabled sign up. According to a study by 3Cinteractive [23], 59 per cent of

customers made more store visits and purchases because of mobile-enabled loyalty

programs. The reward might not be useful for the customer. According to a customer study

by IBM [24], among the loyalty program offering brands, 70 per cent do not permit

customers to choose their reward. For example, a coffee shop is only offering a small cup

of coffee for a reward.

Second reason why the gamification is studied is that games are powerful things. In terms

of the addiction, games and especially the mobile games became a subject of study.

According to a study by Big Fish Games [25], 104 million people played mobile games in

the United States only. Figure 2.3 shows the mobile game player statistics in several

countries and estimations for 2020.

Figure 2.3. Mobile game users per country (millions) [25]

9

Increasing number of players shows that the mobile games have a decent following and the

reasons why people keep playing them is a popular research subject. While not applicable

for all cases, the main reason people keep playing them is because the games are addictive.

An average user launches apps ten times a day, whereas a mobile addict launches more

than 60 times a day [26].

Final reason gamification is studied is that there are lessons from psychology, design,

strategy, and technology. Gamification systems are designed and optimized by analyzing

multiple fields. For the psychological part, systems are designed to allow users to form a

habit similar to addiction that allows the continual usage of the product. Systems are

designed in a way that it should feel native to the user and this is a major design problem.

After the product is designed, a strategy should be implemented so that the main goal is

followed properly. This can increase the daily engagement of users.

Gamification is often misunderstood and compared to incorrect systems. It is important to

know that what is not considered as gamification. Making everything a game or creating a

3D virtual world is not gamification because it does not create an experience that benefits

an organization or individual. Use of games in workplace or business is not considered

gamification if it is not intended to increase engagement. Also, simulations are not systems

that is designed to increase individual engagement.

There are systems that include points and leaderboards, but they cannot be considered as

gamified systems unless they provide a purpose to benefit an organization or an individual.

There is also game theory that should not be mistaken with the gamification. Game theory

is the study of human cooperation and conflict in competitive situations. It offers a

mathematical model for competition. Game theory is not related to game design, whereas

gamification uses game design elements.

2.2.1. Gamification Categories

There are three categories of gamification according to the book by Werbach and Hunter

[27]. These are external, internal, and behavior change.

Figure 2.4 shows how the categories are formed. Internal is the type where organizations

are benefitted from the gamification and users are either employees or the members of the

10

community. External is the category where the organizational benefit is sourced from the

individuals that are regular users of the system. Last category, behavior change is where

the product is used to form a habit.

Figure 2.4. Gamification categories [27]

External category includes the systems that are prepared for the individual users which can

be customers of the retail shop or users of the app. It is intended to increase marketing,

sales, or customer engagement. .

Internal category includes the systems which provides value for the organization. The users

are employees in the case of a company or a community in other cases. It could be an

application for human resources or productivity enhancement for the company. .

Gamification is also used to form habits. The last category is behavior change which have

the applications that are designed to either change the behavior of the community or

individuals. Health, wellness, and personal finance applications are designed for

individuals wanting to form a new habit.

11

2.2.2. Gamification Design Rules

The Gamification Toolkit [27] suggests that design rules should be followed to create a

gamified system. There rules are gathered around three topics: experience, balance, and

journey.

First, the system should offer the user an experience which can be something that user do

to show their friends. For example, check-in application Swarm offers the experience of

virtual check-ins for users to show it to their friends.

Second, the system should be balanced so that the each user can get some experience from

the system. For example, if the system requires the user to use the application for a long

time in order to get to a certain level, it would not be balanced for all users. If the Swarm

application required users to use the app for a certain period after they checked-in to a

place, some users would not get the same experience as other. Thus, the application is not

balanced in the given cases.

Third, the user should be offered a journey or a path starting from beginner level to a

mastery. It starts with creating a journey that all users starts with no experience. It should

have a learning or experience curve that increase in knowledge of the system. When user

masters everything in the system, the system will offer a different experience than someone

who have just started. For example, in the case of the Swarm application, a user can master

all the skills by going to different places and have different experiences. The mastery level

is indicated with the number of badges.

2.2.3. Gamification Elements

Gamified systems have three elements: dynamics, mechanics, and components as seen on

Figure 2.5.

12

Figure 2.5. Pyramid of gamification elements

The dynamics of the gamification pyramid consists of constraints, emotions, narrative,

progression, and relationships. Dynamics are at the top level of the design and they define

the big-picture aspects. Mechanics level of the pyramid has the processes that drive the

action forward. It consists of challenges, chance, competition, cooperation, feedback,

resource acquisition, rewards, transactions, turns, and win states.

Finally, the components of the pyramid are specific instantiations of mechanics and

dynamics. It consists of achievements, avatars, badges, boss fights, collections, combat,

gifting, leaderboards, levels, points, quests, teams, and virtual goods. The most important

elements of the system are points, badges, and leaderboards.

2.2.3.1.Points, Badges, Leaderboards

Elements points, badges, and leaderboards are the most important elements of the

gamification systems. It is because they are the most visible elements to the users. The

balance between them can completely change the user experience. In many cases users

only see this elements, whereas other elements are implemented but not visible to the user.

Figure 2.6 shows the elements of the Swarm application from the webpage.

13

Figure 2.6. Elements of the Swarm application

Points help to keep score when users are more active in the application. Each action has a

point value that is designed to offer a balanced experience for all users. For example, in the

case of the Swarm application, players earn points only when they check-in to a place as

seen on the Figure 2.7. The amount of points determined based on the location and

frequency.

Khan Academy [2] also offers a point based system where students earn points according

to the length of the watched video.

14

Figure 2.7. Point system in Swarm application

When users earn points, they also have a change to earn bonus points or badges. System

determines if they are in the win state which is a state of earning extra points or badges.

Win states are determined by the designer of the gamification system. Users earn points to

exchange them with the rewards. For example, Swarm application has a system where

users spend points to upgrade the badges in the application as seen on the Figure 2.8. The

points are both for exchanging for rewards and leaderboards.

15

Figure 2.8. Upgrading a badge in Swarm application

Letting users earn rewards with their points increases the engagement with the product. For

example, airlines offer miles with their own loyalty programs. For each flight, passengers

earn miles according to their ticket group and distance they flown in the particular flight.

The reason why airline passengers are signing up in the loyalty programs is because when

they have earned enough miles, it can be exchanged with a ticket. Passengers use the same

airline to collect more miles for rewards.

Point based system offer so much for the system designer. For example, designer can

analyze how users earn and spend points to get a better understanding of their users. If this

is a location based application, designers can learn which cities, neighborhoods, and type

of places users use their system. If the users are using the system to get deals on hotel

accommodation, it will be wise to promote the application for hotels.

Badge is an another important element of gamification. Badges are acquired when users

complete a predefined achievement in the system. Badges can be visible to other users as a

16

showcase for achievements of the user or it can only be visible for the current user. Badges

are used to represent achievements that user is earned by continuously using the same

system. They also give a sense of personalization. Figure 2.9 shows the badges offered by

the application Swarm. Application offers stickers for frequent check-ins. For example, if

user is frequently visiting airports, user receives a badge with a plane icon.

Figure 2.9. Swarm application stickers

Badges play an important role in keeping users constantly engaged with the application.

Badges create an emotion bond between application and the user. Sense of ownership is

the most important point of user loyalty. It is harder to switch applications because users

feel that they will lose progress if they switch to another application. Badges are earned

and showcased in a separate menu or in the user profile. Some applications offer

engagement with the badge after they are earned. For example, in the application Swarm,

when a badge is earned, it is not only used for showcasing. Users engage with the badge in

17

two ways. First, the badge is used to increase points earned for each action. For example, if

user uses a food related badge at a restaurant, it increases the points earned in that action.

Second, badges can be upgraded with points to higher levels, so that they can give more

points for each action. Figure 2.10 shows a badge in Swarm application used at restaurants.

Figure 2.10. Swarm application restaurant badge

Leaderboard is an another element of the gamification components. A leaderboard is

simply a point based list showing points earned by each user as seen on Figure 2.11.

Leaderboards are visible for all users. This allows competition among all users. While

some platforms make the leaderboard the main element in the system, others do not use it.

It depends of how the system is designed. If this is a system focused on personal

development and habit forming, there is no need to include a leaderboard. The progress of

the user can be visualized by different tools such as graphs, charts, and progress bars. The

leaderboard ranking can be global, localized, or personalized. Global leaderboard includes

18

all users from around the world. This is a useful case for highly competitive systems.

Localized leaderboard consists of users from a certain country, city, or institution. For

example, the career oriented social network LinkedIn [28] uses a separate leaderboard for

the people in users institution. Users can see the most active users from their institutions.

Personalized leaderboards consist of the users pre-approved by the user. This can be small

community or a friend list. This can be used if the user is sharing personal information

with the system. For example, in Swarm application users share their location and

leaderboard in application consists of only the friends of the user which are pre-

approved.Figure 2.11 shows a sample leaderboard from the application.

Figure 2.11. Swarm application leaderboard

2.2.4. Engagement

Increase in engagement is the main goal of the gamification. Engagement is maintained

through two subjects which are rewards and motivation. They are the reason why gamified

systems are successful.

19

Rewards are everything earned by the users interacting with the system and gaining more

achievements. Rewards can be in different forms. According to Zichermann [29], rewards

can be status, access, power, or stuff. Status is a position of a player in the system. For

example, Swarm application is awarding a status called ‘mayor’ for the most frequent user

in a place. Access is allowing users to have information or objects that is not available for

other users. For example, the hotel booking website Booking.com [30] lets users to see

special offers after users booked rooms using their website five times or more. Giving

power over other players and information is an another reward. For example, more

frequent users can earn more points for each action. Last type of reward is stuff which are

the things only few or no other users can get.

Rewards are given on schedule to keep the system balanced. Also, if not balanced, system

can be vulnerable to abuse. Common reward schedules are continuous, fixed ratio, fixed

interval, and variable. .

There are two types of motivation in gamification. These are intrinsic motivation and

extrinsic motivation. Intrinsic motivation is the self-desire to seek out new things and new

challenges, to analyze one’s capacity, to observe and to gain knowledge. Extrinsic

motivation is performance of an activity in order to attain a desired outcome.

2.2.5. Gamification Design Framework

Systems using gamification follow various design rules. One of the frameworks is the 6D

framework [31]. The steps of the framework are given below.

 i. Define business objectives

 ii. Delineate target behaviors

 iii. Describe your players

 iv. Devise activity loops

 v. Don’t forget the fun

 vi. Deploy the appropriate tools

20

First step of the framework is defining business objectives. Every system must have an

objective so that the gamified system to be designed accordingly. For example, objective

can be improving sales or increase the time people spend in an application.

Second step is describing target behaviors. It should be as specific as possible. Targets are

the specific actions players should take while using the system. Each target has a success

metric such as a win state that shows if it has been successful or not. Most important

analytics metrics of the target are virality and volume of activity.

Third step is based on the Bartle model of player types [32]. According to Bartle, there are

four types of players which are killers, achievers, socialites, and explorers. Each platform

should respond to needs of the multiple player types. Since gamification design is based on

game design, player types are very similar to the user behavior in gamified systems.

Killer player type consists of users focused on winning, rank, and direct peer-to-peer

competition. Achiever player type focuses on attaining status and completing all

achievements. Socialite player type focuses on socializing rather than focusing on

competition. They develop a network of friends and contacts while playing. Last player

type explorer has a desire to explore and discover.

Fourth step is the defining the activity loops. An activity loop consists of action,

motivation, and feedback. Figure 2.12 shows how the loop elements are related to each

other. Motivation triggers the action. For example, if it is a weight loss application, action

is defined by the motivation which is users desire to lose weight. Result of the action is

analyzed and motivation is updated accordingly.

Figure 2.12. Engagement Loop

21

Fifth step is about not forgetting the fun. This might not look like a real step but it is

important. Gamified systems are supposed to be fun and entertaining. The process of

gamification is about making the non-game topic feel like a game.

Last step of gamification design framework is deploying the appropriate tools. When the

design of the system is finished, designer should choose with tools to use for

implementation.

2.3. LITERATURE REVIEW

Main goal of the gamification is to increase engagement of users using the system.

Regalado et al. [33] prepared a virtual learning environment for teaching programming.

Gamification is applied to their system by giving points to each video play, introducing

leaderboards, and challenges. The study resulted in higher number of video plays, higher

frequency of learning environment visits, and more competitive environment.

Ibanez et al. [34] prepared a gamified system that targets to teach C-programming

language to students. It included work activities which students earned points, planning

activities with exercise questions, and social activities with micro-blogging. Achievements

of students are displayed in leaderboard, phrase showcase, and badge showcase. The study

resulted in most students continue working even after they earned the maximum grade. It

was because the students wanted to earn all badges.

A virtual 3D environment is created in a concept study by Lückemeyer [35] to decrease the

drop out rates in university classes. A virtual classroom is created and students can take

live lessons without going to a physical classroom. Aside from taking live lessions,

students can also interact through their profiles. Although, the concept is not tested in

classroom, study is planned to be used by advanced students for feedback sessions. By

doing so, students can work on the same task to be completed in single session.

E-learning is combined with game learning in some cases. In a study by Maia and Graeml

[36], a game called factory game is created for classwork. Authors stated that although the

new generation is more familiar with the technology, the teaching methods are not using a

language with the same technology familiarity. And, games and competitions can provide a

long-term learning experience. In the designed game, students use distributed

22

programming and concurrency to organize threads and teams complete each other for best

production line. According to the study, students developed skills such as teamwork,

communication, and problem solving. A survey conducted with students showed that their

negative thoughts on this learning type is decreased.

Another example of learning with games is a work by Tsalikidis and Pavlidis [37]. An

online multiplayer platform game is developed to teach JavaScript. The purpose of the

project is to use role-playing game methods and apply them to programming language

education. Platform offers three modes such as single player, multi player, and player

versus player. The goal of the project is to engage learners with different problems and

make them continue playing by solving problems. In role-playing games, despite being

similar to each other, each encounter is unique. Thus, each problem students encounter is

also unique.

Gamification could be unsuccessful even if it is designed properly. In the study by

Berkling and Thomas [38], a platform is developed to increase engagement and motivation

of students. Aside from confusing the users with gamers and assuming that there is a

relation between playing games regularly and gamification, a system is designed by using

gamification elements. According to their survey, students were motivated by relevancy,

clear path, and grades. In the study evaluation, they found out that students are not gamers

and also, students are not ready for their idea. Not all classroom environments and

curriculums are suitable for gamification. In this case, it was viewed irrelevant towards

exam study.

Jayasinghe and Dharmaratne [39] studied both game-based learning and gamification. In

their study, they applied both techniques to a Computer Science course teaching

algorithms. As a result, it was shown that when offered a gamified system, students follow

a learning process known as Bloom’s taxonomy. But in the game based learning system,

students did not follow each step which resulted in poorer learning experience. Gamified

system proved to be better for the difficult academic subjects.

Gamified and non-gamified versions of the same are compared to each other in a study by

Barata et al. [40]. The study applied gamification elements such as points, badges, levels,

leaderboards, and challenges to a graduate level course. The results were compared to non-

gamified version of the same course. Results showed that students were motivated while

23

using the gamified version. Also, using challenges allowed more engagement such as

forum participation and reading more slides.

Thesis work by Uzun [41] introduced a system to create gamified lessons. The work

focused on dividing the lessons in small gamified elements. It offered an index to help the

process of gamification. Aside from the lessons, system can also be used to gamifiy

lectures, exams, grading, and assignments.

24

3. ANALYSIS AND DESIGN

The goal of this thesis is to create a self-paced e-learning platform that students will use to

learn programming languages. In order to keep students engaged, gamification elements

are applied to the system such as badges, and progress bars. The platform is a web

application so that it is available for students regardless of their location. Python

programming language is thaught using the application through self-paced learning

module, assignment module, and labwork module. Following sections cover how the

platform, architecture, and components are designed.

Python is selected because it is one of the most popular programming languages and many

institutions teach Python in their first year curriculum. According to a research [42] to rank

programming languages by popularity, Python ranked third among all languages. The

popularity rankings were determined by amount of public repositories, number of

questions asked on question and answer websites, and number of forked repositories.

3.1. PLATFORM OVERVIEW

The e-learning platform have the modules for self-paced learning, labwork, assignment,

and management as seen on Figure 3.1. The self-paced learning module is the part where

the learning curriculum of the Python programming language is offered. Learning module

consists of sections. Each section has short explanations with examples, a quiz, and

exercises. Labwork module is the part where students are offered exercises of the subject

covered in class that week. Assignment module is the module where weekly or timed

assignments are offered to students. This module can also be used as an exam module.

Management module offers a dashboard and a labwork creator to the instructor.

The management module is only visible to the instructor. Self-paced learning module is

always accessible to the students. Labwork module can be visible or not visible depending

on the creation parameters. Exam or assignment module is only visible for the duration of

the assignment. If instructor decides to close the submissions, this module becomes

inaccessible.

25

Figure 3.1. Modules of the platform

Self-paced learning module allows students to learn at their own speed. Figure 3.2 shows

the use case diagram. Student logs into the module, follows instructions and complete the

content, quiz, and exercises whose result updates the user progress. Instructor can access

the user progress.

Figure 3.2. Use case diagram for learning module

26

Labwork module consists of a set of questions on subjects covered recently on class.

Labwork questions can be changed by the instructor using the labwork creator. Figure 3.3

shows the use case for labwork module.

Figure 3.3. Use case diagram for labwork module

Gamification is implemented in the platform by using badges, and progress bars. Since this

platform is emulating a classroom environment that will be used by the students of the

same classroom, points and leaderboards were not used. Point based system is replaced

with a progress bar that shows the completed percentage of the assignment. Also, a

leaderboard is not used because in classroom setting, competition might discourage other

students that are left behind. Self-paced learning systems are successful among the students

because it is not discouraging for the slow learners, students falling behind of the class

schedule, and introverted students. In the end, all classroom based learning systems have

grading in effect which is the same as a leaderboard.

Progress bar is a replacement of a point based system that shows how far student is

completed an assignment. For example, Figure 3.4 shows a progress bar for an assignment.

27

Figure 3.4. Progress bar for assignment

Badges are similar to physical tokens that users earn after completing certain

achievements. For example, completing an assignment completely can have a

corresponding achievement. Figure 3.5 shows example badges from the system. ‘Uno

Master x1’ badge is awarded for completion of part one of the assignment. ‘Hello, World!’

badge is awarded when a student print their first ‘hello, world’ statement.

Figure 3.5. Badges from the system

28

3.2. ARCHITECTURE DESIGN

The platform designed in this thesis is a web application that uses a cloud database. So that

students will use the system independent of their location. This is useful for two reasons.

First, since the system is used to teach Python to first year students with little or no

experience in programming, it is easier to skip the installation part for each student. By

doing so, students have a chance to start learning immediately. Also, some students might

have problems with installation or could not have a proper computer. Second, every code

submitted by student is saved by the system. Students do not have to save their code

manually.

Platform consists of a web-application framework, server scripts, and cloud database.

Figure 3.6 shows the components of the platform. Application is used to serve website

data, create and store profiles, and provide an online integrated development environment.

Server scripts check the code written by the students for correctness and apply other tests.

Also, scripts create containers in server. Cloud database is used to store content and user

information.

Figure 3.6. Platform architecture

Web applications must be designed to be scalable when needed. This is why the

components of the platform is designed to be scaled as much as needed. Since the content

29

and user information is stored in a cloud database, underlying architecture can be scaled as

much as needed. For example if the server cannot handle the user load with its current

containers, an another server can be added to the system without any problem as seen on

Figure 3.7.

Figure 3.7. Platform architecture with two servers

Aside from scaling the server, the server storing the web application can also be duplicated

to serve more users as seen on the Figure 3.8.

30

Figure 3.8. Platform architecture with two web application servers

3.3. COMPONENT DESIGN

The components visible to the user are self-paced learning, labwork, assignment, and

management module. Aside from that there are user profiles, class dashboard, and labwork

creator.

3.3.1. Self-Paced Learning Module

Self-Paced learning module is the module where students will follow a curriculum to learn

Python programming language. The module consists of sections such as introduction,

variables, lists, and operators. Sections have micro contents, quizzes, and exercises as seen

on Figure 3.9. Micro contents have a detail about the current section and offers an example

for student to try it out in the terminal.

31

Figure 3.9. Learning module components

The user interface of the module consists of an instruction panel, code editor, console, and

buttons for running code and continuing. Figure 3.10 shows the user interface mock up.

Figure 3.10. Learning module user interface

32

3.3.2. Labwork Module

The labwork module is used for labwork and exams. They are both timed events which

means after some time, the submission is closed for all users. Also, the work submitted by

students are graded and can be seen by the instructor in class dashboard. The exam module

has three types of questions:

 i. Python exercise questions

 ii. Multiple choice questions

 iii. True/false questions.

The user interface for this module consists of code editor, console, instruction panel, and

help panel as seen on Figure 3.11. Help panel offers hints about questions.

Figure 3.11. Labwork module user interface

33

Code editor is replaced with a multiple choice view when question type is multiple choice

or true-false. Each labwork is created with grades for each question so that the grade can

be calculated.

3.3.3. Assignment and Project Submission Module

User interface for assignment module is the same as the exam module. The difference

between these two modules is that assignment module do not let student to skip questions.

Because each assignment is prepared incrementally, students should find a correct solution

to the current question in order to continue. For example, if an assignment to write a

Python program that allows students to play blackjack card game were given, assignment

module makes students write each function and continue incrementally. Student cannot

play the game before creating a deck of cards and implementing the game logic.

3.3.4. Management Module

The management module is only visible to instructor. In this module two major interfaces

are included: class dashboard and labwork creator. Class dashboard is the interface where

instructor can see progress and grades of each student as shown in Figure 3.12. And,

labwork creator allows instructor to create a labwork or an exam.

Instructor adds new content by using the content creator that takes instuction, help text,

placeholder text, and unit tests as input. Content creator is used for each question

separately.

34

Figure 3.12. Class dashboard user interface mock up

35

4. IMPLEMENTATION

This chapter will cover the implementation of the platform. Contents are divided in three

parts: web application, server side scripts, and database. First section will cover how the

web application is implemented. Second section covers server side scripts and containers.

Third section covers the database.

Figure 4.1 shows how components are related to each other and what technology is used

for each component. Web application is implemented using an application framework

Ruby on Rails [43]. Server script is implemented with the language Go [44]. The cloud

database serving content and user data is NoSQL database DynamoDB [45]. The

containers running in server are using docker [46].

Since testing groups will have less users than the production version, server scripts and

web application are put inside the same server which is hosted on Amazon EC2 [47]. This

is also done to reduce server costs.

Figure 4.1. Component diagram of the platform

36

4.1. WEB APPLICATION

Web application is a client-server application where the client uses a web browser to

access. Making a web application allows the service to be accessible from various devices.

Because even if the device has a different architecture, almost all consumer devices have

browsers.

The application is developed using Ruby on Rails which is a web application framework

developed using Ruby programming language. Following chapters will describe how Rails,

Bootstrap [48], and other components are used. The web application is designed to be as

close as possible to the workspace of the students. Every code submitted to the server is

saved.

Figure 4.2. Web application on Amazon Web Services

Amazon Web Services (AWS) [49] is used for various parts of the application. AWS offers

services for various fields such as web, cloud, and IoT. Figure 4.2 shows how the

application is implemented using AWS components. Elastic Compute (EC2) modules are

37

web servers with various customization options for CPU, memory, and storage. EBS

(Elastic Block Store) is where the physical volume for instances are stored. S3 (Simple

Storage Service) is where the static assets of the website is stored. EBS volumes are

backed up using snapshots. DynamoDB tables store content and user data.

4.1.1. Ruby on Rails

Ruby on Rails is a web application framework developed using Ruby programming

language which follows Model-View-Controller (MVC) pattern. In this pattern, model is

the object that stores data. View is the visual representation of the model. Controller keeps

the connection between models and views. Figure 4.3 shows how components of Rails are

connected to each other.

Figure 4.3. Rails application components

38

Rails applications consist of four parts which are router, controller, model, and view.

Requests first received by the Rails router. Rails router recognizes requests and redirects

them to the appropriate controller. Each route responds to a different request. Some of the

route commands are get, post, patch, and resource. Command ‘get’ responds to the

corresponding HTML request. Similarly, ‘post’ command sends the correct HTML

response. The command ‘resource’ is used for models if all controller actions are needed.

For example, if there is a separate page for each user, it is sufficient to type ‘resources

:user’ and rails create the routes automatically. An example routes file generates the

following text given below if ‘resources’ command is used with ‘users’ model.

 resources :users

 get ‘/users’ => (controller#index)

 get ‘/users/:id’ => (controller#show)

 get ‘/users/new’ => (controller#new)

 post ‘/users’ => (controller#create)

 get ‘/users/:id/edit’ => (controller#edit)

 put ‘/users/:id’ => (controller#update)

 patch ‘/users/:id’ => (controller#update)

 delete ‘/users/:id’ => (controller#destroy)

Controllers coordinate the interaction between model and view.Preparing correct values of

models and querying them and then serving them to the view and creating the view serves

time and resources. For example, if only one user profile is requested, there is no need to

query all models containing users. Controllers have function for each corresponding route.

Before the view is created, controller actions are called. Also, variables in views are

created in controllers.

39

A model is a representation of data bind to a database. Each model creates a separate table

in the database and model instances are the rows of this table. Despite using a simple

database such as sqlite as a default, Rails support many database such as PostgreSQL,

MySQL, Oracle, MongoDB, and SQL Server. In Rails, if a model attribute is changed and

saved, it is automatically queried to the database. A migration is used when database needs

an update. Migration files contain what changes needs to be done. The changes can be

adding a new field to the table to adding a new foreign key. Then, ‘rake’ command is

called to apply changes. Default model architecture is called ActiveRecord. For the

purposes of this thesis work, a custom model class will be used.

Views are similar to a template that shows what will be created as an HTML file at

runtime. Not all elements are rendered to each response of the same view. For example,

some elements could only be visible to logged in users. View files end with extension ‘erb’

which means Embedded Ruby.

The directory structure of a rails application is given in Figure 4.4. The folder ‘app’

contains MVC files, ‘config’ folder contains routes.rb file, and ‘db’ folder contains

migration files.

Figure 4.4. Rails application directory

The directory ‘app’ contains folders such as model, view, controller, helpers, job, and

assets as seen on Figure 4.5.

40

Figure 4.5. App directory structure

Rails applications use a package manager called RubyGems. In Ruby, a package is called a

gem. Each rails application has a file called ‘Gemfile’ that contains the name and version

of gems that will be used in the application. When a new gem is added to the file, ‘bundle

install’ command is called and the new gem is installed. Figure 4.6 shows a portion of an

example Gemfile which uses rails gem with version 5.0.1 and coffee-rails gem with

version 4.2.

Figure 4.6. Part of a Gemfile

4.1.1.1.Ruby

Ruby [50] is an interpreted, dynamic and object oriented language that was designed with

simplicity and productivity in mind. It has a easy to write syntax similar to Python. Ruby

on Rails uses Ruby language. The purpose of the framework is to create powerful web

41

applications using the simple and natural language Ruby. It also makes it simple to write

repetitive tasks.

4.1.1.2.Model-View-Controller Pattern

The MVC is a pattern used in web frameworks that simplifies the process for developers. It

is important to understand sequence of events before developing an application using this

pattern. The process starts with a request from the browser and ends with a view rendered

as a response. Figure 4.7 shows the sequence of events.

Figure 4.7. Sequence diagram of MVC

42

4.1.2. Session Management and Authentication

A session is an information that is available through the user’s interaction with the website.

After user enters the login information, a session is created if the information is correct.

Sequence diagram of the authentication is given in Figure 4.8.

Figure 4.8. Sequence diagram of authentication

4.1.3. Controllers

Learning module, content, labwork, assignment, user, session, and static page controllers

created for this application. Each controller creates the view of the module of the same

name. Figure 4.9 shows the controller diagram of the application.

Learning module controller prepares the learning module by fetching user and learning

content models. Content controller handles the creation of new content. Labwork controller

fetches the user and content models and creates labwork view. Assignment controller is the

same as the labwork controller except the progress iteration. User module handles create,

43

edit, destroy, and update actions of user model. Session controller handles the session

creation and authentication. Static page controller serves the information pages of the

application such as contact and help.

Figure 4.9. Controller diagram of the application

4.1.4. Models

There are four modules created for the application: user, exam, content, and learning

content as seen on Figure 4.10.

44

User model contains information about the user such as name, email, password token,

progress, and badges. Exam model contains information about exam and labwork types. It

stores the exam id, grades of questions, and questions. Content model contains name,

instructions, and test names that will be applied to the user code. Learning module does not

have the unit test name because answers are not graded.

Figure 4.10. Models of the application

4.1.5. User Profiles

User profile shows the progress and achievements of the current user. Badges and micro-

posts are also shown in the profile page of each user.

45

4.1.5.1.Badges

Badges are earned after completing pre-defined achievements. A badge consists of an

image, a name, and a description as seen on Figure 4.11.

Figure 4.11. Badge in user profile

Badges are earned when milestones in assignments are completed. For example, students

were offered an assignment to implement a game which was divided in three parts. For this

assignment, there are three badges created for completion of each part. For the learning

module, badges can be earned at random events such as first print statement containing

‘Hello, World!’.

4.1.5.2.Micro-posts

User actions are documented in profiles using micro-posts. Micro-posts are short updates

that contains information about the actions taken by the user. For example, completion of a

quiz is an update. Updates are similar to Tweets which are also short and placed in profile

in similar design. Users only see their own post updates.

4.1.6. User Interface

This section describes screenshots of the user interface used in the system and how they

are implemented. The interface elements include a code editor, a console showing output,

instruction panels, and help panel. Interface is developed using a framework called

Bootstrap. Bootstrap is a front-end framework that offers commonly used elements and

grid layout system. It also has templates for typography, forms, buttons, interface

components such as forms, and headers. Bootstrap is an open source project.

46

4.1.6.1.Interface for Learning Module

Learning module has three different interfaces that are content, quiz, and exercise. Content

module is shown in Figure 4.12. It includes a instruction that explains the contents and an

example command that can be run and user is expected to try it out.

Figure 4.12. Learning module content interface

Quiz module offers a multiple choice question about the current section. Figure 4.13 shows

an example quiz from the learning interface.

47

Figure 4.13. Learning module quiz interface

Exercise module has a question and a placeholder code that will be fixed by the student to

output the expected result as seen on Figure 4.14.

Figure 4.14. Learning module question interface

48

4.1.6.2.Interface for Labwork Module

Labwork module is where the questions offered to the student for them to answer in a

limited amount of time. It has a help and instruction panel in addition to the code editor

and console. Figure 4.15 shows en example labwork module.

Figure 4.15. Labwork module interface

4.1.6.3.Interface for Exam Module

Exam module is also used for assignments. The difference between labwork and

assignment is student cannot continue to next question before completing the current

question. The questions are prepared to be incremental and continues from the last

completed one. Figure 4.16 shows an example assignment module.

49

Figure 4.16. Exam module interface

Since the students cannot continue to the next question until the current one is answered

correctly, header menu shows what questions are answered and what is not as seen on

Figure 4.17.

Figure 4.17. Exam module menu

50

4.1.6.4.Interface for Labwork Creator

Exam or labwork creation interface is only usable for instructor. Instructor select the

questions that will be included in the next labwork and when a student starts a new

labwork, new questions are served. Figure 4.18 shows the exam creator interface.

Figure 4.18. Exam creator module

4.1.6.5.Interface for User Profiles

The user profile is different for students and instructors. Students have a profile similar to

Figure 4.19. It shows badges, progress of current work, and links to materials.

51

Figure 4.19. User profile

The instructor accounts are different from the student profiles. It includes a link to class

dashboard which shows student grades and progress. Also, it includes a link to exam

creator as seen in Figure 4.20.

Figure 4.20. Instructor profile

52

4.1.7. Websockets

Websocket [51] is a full-duplex communication protocol that uses a single TCP

connection. It works similar to TCP sockets. A socket is opened on the server for browsers

to connect using sockets. It is the main technology used in push-notifications that allows

asynchronous updates from the server. Websockets are used in this project to allow

communication between Rails application and server scripts.

The code written by user is send to server using a websocket. Server runs the appropriate

scripts and then the result is send back to the browser from the same socket. User gets a

response according to correctness of the submitted code.

For easier reading and parsing JSON format is used in messages between browser and

server. Code submitted by the user is retrieved as a string and combined with user and

session information to create the message formatted as JSON. Figure 4.21 shows the

sequence of events.

Figure 4.21. Websocket sequence diagram

53

4.1.8. jQuery

jQuery [52] is a JavaScript library that makes event handling and animations easier. jQuery

functions are called in case of an event. In the case of this work, functions are called on

websocket events. Some of the events and functions are given below.

 websocket.onOpen => fillCodeEditor()

 websocket.onClose => serverConnectionChecker()

websocket.onMessage => updateConsole()

4.2. SERVER

There is one main script running on the server which was implemented in Go programming

language. The server scripts are also connected with the database to update and retrieve the

user progress. Figure 4.22 shows the components of the server.

Figure 4.22. Server component diagram

54

Main server is the server that is always listening to connections from browsers. If the

received code is valid according to the pre-check result, it is send to a user container. User

container has two modules to execute. First, the unit tests are applied to the Python

program. If the program passes tests, it is executed in user container. Then, database is

updated according to the result from the container. Activity diagram can be seen on Figure

4.23.

Figure 4.23. Activity diagram of the server

55

4.2.1. Web Applications

Web applications are designed to listen the same port continuously. The scripts written for

this work are starting up at the same time as the hosting machine. The hosting machine

uses Ubuntu Linux [53] with version 16.04. Scripts are gathered together as a linux service

controlled by the ‘systemctl’ command. This allows administrator to only use reboot on the

management console without logging in to the machine. Despite simple design, it allows

administrator to write startup and reboot scripts on a separate master machine to control all

machines in the architecture without any problem. For the purposes of cost cutting and

simplicity, web framework Rails and server scripts are running on the same machine.

4.2.2. Go Language

The server program is implemented using Go programming language. Go is an open source

and free programming language. It was created at Google in 2007. Despite being a new

language, Go has become popular among developers. Most powerful applications written

in Go are network and web servers. Go has a native support for concurrency using

goroutines and channels. Goroutines are functions that can run concurrently with other

functions.

Go language offers solutions to new problems that did not exist years ago. For example, in

cloud computing, usage of virtual machines has become a standard. New machines are

constantly added to the platform to meet the increasing demands. Since Go is an

interpreted language, applications launch faster than traditional scripts.

In addition to developer popularity, many cloud based systems such as Google Cloud

Platform [54], Heroku [55], and Amazon Web Services are supporting Go natively.

Go has a simple syntax similar to Python and Ruby. Figure 4.24 shows a simple ‘Hello,

World!’ program in Go. Package name is stated with the ‘package’ command and

dependencies are imported using ‘import’ command. One of the reasons why Go is used in

the server is because the compiled binary can be used in another server easily. The binary

contains the dependencies and other packages.

56

Figure 4.24. A simple Go program

4.2.3. Docker Containers

Docker is an open source project that automates software deployment by using containers.

It is a platform for running, developing, and shipping applications. Containers are similar

to old chroot based systems but they are much more enhanced and customizable.

Containers have become standard for many developers shipping applications [56]. It eases

process by minimizing the dependencies and libraries. A container is a closed box that

contains libraries needed to run the application. A use case story is where multiple versions

of the same library is tested with the new application and they can run in separate

containers in the same system.

There is a difference between running an app in a virtual machine and a Docker container.

A virtual machine is an emulated hardware running a guest operating system on a host

operating system. Virtual machines use allocated resources of the host machine. The main

difference is that even though the containers are isolated, they share the same operating

system whereas virtual machines need their own guest operating systems. If appropriate,

containers also share binary and libraries which is not possible in virtual machines. The

size comparison between two systems are shown in Figure 4.25. For example, a guest

operating system Ubuntu is as small as 1 GB, whereas a Ubuntu Linux image of docker

container is only 188 MB [57]. There are even small docker operating systems for cloud

computing less than 10 MB.

57

Figure 4.25. Virtual machine and containers

Another difference between virtual machines and containers is the startup time. It takes

minutes to start a virtual machine whereas it takes seconds to start a container. Since the

code from users will be executed in containers, startup time is important for performance.

Containers use images similar to virtual machines. An image is a file system that includes

meta data on running the container. Image configuration file is called a ‘docker file’. The

user containers used in this work contains Python version three for execution of scripts

inside a container. The reason why user programs are executed in containers is they offer

complete isolation from the host operating system. Each container is created whenever user

is active. Aside from that, containers are lightweight and used for a set of defined tasks.

This allows scalability for the e-learning platform. It is possible to use separate machines

to run containers without mixing up the user code because each machine is isolated from

each other. In order to scale the system to serve any amount of users, it is enough to add

more machines to run containers as seen on Figure 4.26. For cloud and new generation

web applications, being scalable is more important than performance. Because, in the long

run, system performance will decrease by being not scalable. In addition to mentioned

points, containers are easy to deploy. Many web services offer simple deployment options

for docker containers.

58

Figure 4.26. Adding containers to the system

Containers used in this work only consists of Python and libraries to run it. The program

copies the user code into a container and runs it inside the container as seen on Figure 4.27.

The main advantage of this system is isolation. For example, even though this is a learning

platform, malicious code could be send to the server for execution and isolated containers

are deleted with such code. The malicious code never runs on the host machine. In an

another example, Python offers a library called ‘os’ that allows users to use system

commands with functions similar to ‘exec’. Since the code is executed inside a container,

user code cannot use the libraries like ‘os’. Finally, containers give more details on

execution time, resources allocated for the program which provides analytics for the

developers.

Figure 4.27. Python container

59

Containers are not kept alive to save machine resources since the startup time is under

seconds. If the containers did not used in the system, one of the options was to create a

service to execute Python programs separately as seen on Figure 4.28. If this method was

used, there could be delays between message queue for starting the execution, and

retrieving the results. Instead, docker containers give immediate control over execution.

Figure 4.28. Python execution with messaging

4.2.4. Unit Tests and Evaluation

Unit test is a type of software test where each unit of the software is tested separately to

check whether they work as expected or not. A common use of unit tests is writing tests for

each function and class. Tests are applied whenever there is a change in source code. If

tests are written at the same time as development, this is called test-driven development.

Test result is determined by the test type and the expected output. The test could be written

to see if the unexpected value is received when a wrong parameter is given as input. For

example, if there is a test written for the square function, it can be true if the result is 25

when the input is 5. Also, an another test can be true if the result is not 25 when the input is

not 5. Function passes the tests in either case as seen on Figure 4.29.

60

Figure 4.29. Tests for square function

4.2.5. Main Server Script

Main purpose of the server is to return the output of the received code. There are three

stages of the server scripts. First, code goes through a pre-check. Then, unit tests are run

with program. Finally, code is run if it passes the tests. Server code is written in Go

programming language. The following code makes server start listening on the desired

port.

 http.ListenAndServe(:8080, nil)

Server controls the start and stop operations of containers. If a container belonging to the

same user is still running and new code is submitted, container is forcefully stopped before

running new code. Server also creates and calls unit tests. Test files are created separately

for each program because each file name is different and contains the identification

number of the owner. Tests are written as templates that are combined with the current user

61

program information to create the test file. Unit tests are written when a new content is

added to the system. For example, when instructor adds a new question, unit tests should

also be added. Alternatively, platform also supports output comparison for simpler

programs.

Tests are stored in the machine after creation. If user never attempts to a questions, tests

are not created to reduce storage usage. Server also fills the code in the user interface if

user was submitted code for the question. When user first connects to the server,

previously written code is returned to the browser to fill the code editor. Results are also

stored in the filesystem for instructor to see the results of the programs written by students.

It also helps to gather analytics data such as most common mistakes and error types. Server

interacts with the database if the user progress needs updating. Figure 4.30 shows the

interaction between the server and other components.

Figure 4.30. Server and the filesystem components

62

4.2.6. Passenger

Server machine also contains a service called Passenger [58] to manage the Rails

application. The service allows application to start and stop at startup and handle traffic.

Figure 4.31 shows status of an example Passenger server.

Figure 4.31. Passenger server status

4.3. DATABASE

A database is a structured set of data that can be easily managed, accessed, and stored. In

this project, a cloud database developed by Amazon called DynamoDB was used. Since

the application is prioritizing scalability, cloud database is an appropriate solution.

DynamoDB is a NoSQL database which will be summarized in the following sections.

4.3.1. NoSQL Databases

NoSQL (’non-SQL’ or ‘not only SQL’) database is a data store where the data storage and

retrieval is different from the relational databases. NoSQL databases are non-relational,

horizontally scalable, and open source. Some of the most popular ones are MongoDB,

Cassandra, Couchbase, and DynamoDB. NoSQL databases are created for responding to

63

demands of the new technologies. For example, new applications are dealing with massive

amount of data that can be structured or unstructured. They both can be stored in the same

table. There are four types of NoSQL databases. These are document databases, graph

stores, key-value stores, and wide-column stores.

Database used in this work is used to store user data, code, tests, and content. Since they

have different types, NoSQL was suitable to store them.

4.3.2. Traditional Databases and NoSQL

There are differences between traditional relational databases and NoSQL databases. First

of all, NoSQL databases support sharding whereas relational databases does not. Sharding

is separating data between servers or locations to balance the server load. Theoretically

relational databases can also be sharded, but the NoSQL databases support auto-sharding

that allows to move data between locations and servers.

Second, relational databases only store data defined in their schema whereas NoSQL uses

dynamic schemas. It is not possible to push an item to a relational database that is not

included in the schema. But, NoSQL databases accept an item with a column that is not in

the table which will be automatically added to the table.

Lastly, NoSQL allows document store. Data in JSON, XML, or any other format can easily

be stored and retrieved. These are the most popular data storage methods. They are

especially useful for IoT applications.

4.3.3. DynamoDB

DynamoDB is a NoSQL database developed by Amazon and it is the database used in this

work. It is an automatic scalable database based on SSDs and multiple availability zones. It

is offered as part of Amazon Web Services. Since all services work with each other, it

offers a backup option to Amazon S3 which is a storage service. DynamoDB is a key-value

store type database.

64

Rails application and server both use the same database. While server only updates certain

fields in the tables, Rails models are based on the database tables. There are four tables

which are lab content, learning content, user data, and exam as seen on Figure 4.32.

Figure 4.32. DynamoDB tables

65

5. RESULTS

This section will cover the results of the tests done in class and statistics gathered by

following user behavior. There were 34 students in the classroom.

5.1. TESTING EXAM MODULE

The platform has been tested in class after the development is finished. It was used by the

first year Computer Engineering students taking a class where Python is thought as their

first programming language. First, students were given an assignment that could be

submitted through the platform. The assignment was prepared using the exam module

which can also be used for assignments. In this module, students cannot continue to the

next question before completing the current one. It is because the most of the questions of

the assignment require student to use the functions written in the previous questions.

Assignment given to students was to develop the game Uno so that the computer can play

with itself and give the result after the game is finished. Uno is a card game where each

player gets cards from the deck and plays them until one of them exhaust cards. The

assignment is a simplified version of the real game.

The assignment has three parts. In first section, student implements the UnoCard class.

Then, it is followed by implementation of CollectionOfUnoCards class which uses

UnoCard class. Lastly, student implements the Uno class which implements the gameplay

mechanics using UnoCard and CollectionOfUnoCards classes.

Each function of the given classes presented as a question to the student. Question contains

the name of the function, instructions about the function input and expected output, and

help text that offer hints about implementation. After student submits code, tests are

applied in the server and students get a feedback on correctness. Student is allowed to

continue to the next assignment after a successful response. Function names, sections, and

definitions are given in Table 5.1.

66

Table 5.1. Functions of the assignment

Section Function Name Definition

1

def __init__(self, c, n) Crates a card with color c, and number n

def __str__ (self) Returns the string that represents the UnoCard

def canPlay(self, other) Return true if other UnoCard is playable with the card

2

def __init__(self) Creates an empty list

def addCard(self, c) Add card c to the end of the list

def makeDeck(self) Creates a deck with all cards

def shuffle(self) Shuffles the cards in the deck

def __str__(self) Return the string that represents the deck

def getNumCards(self) Return the number of cards in the deck

def getTopCard(self) Return the top card

def canPlay(self, c) Return true if there is a playable card with c in collection

def getCard(self, index) Return the card in location index

3

def __init__(self) Creates a new game

def playGame(self) Plays the game

def playTurn(self, player) Executes one player turn

def printResult(self) Prints the game result

5.1.1. Class Performance

Students submitted their code by using the platform. Fifteen out of thirty-four students

choose to submit their work through the platform as seen on Figure 5.1. It is typical to see

fifty percent participation in this classroom as it is close to the number of regular

participants in laboratory sessions.

67

Figure 5.1. Assignment participation

In addition to the participation, completion rates were also calculated. 53 percent of the

class completed more than half of the questions as seen on the Figure 5.2.

Figure 5.2. Completion rates

68

5.2. TESTING LAB MODULE

Lab module is prepared with a curriculum consisting of old exam questions for students to

prepare for the final exam. There are twenty questions prepared with corresponding tests.

The participation rates were fifty percent as given in Figure 5.3.

Figure 5.3. Participation rates of final module.

The results are grouped together by their grade. Grades between 0, 30, 70, and 100 created

three groups as given in Figure 5.4.

Figure 5.4. Grade distribution of final module

69

5.2.1. Questionnaire

Students were given questionnaires at the end of the semester. Aside from their

participation, students were asked about their views on e-learning and gamification. The

questions given to students were given below.

i. Did you use the platform for submitting Uno assignment?

ii. Did you use the platform while studying for the final exam?

iii. Did you aware of the badges you earned during the Uno assignment?

iv. Do you prefer to get immediate feedback for your assignment?

v. Do you trust an automated exam grading system?

vi. Do you prefer to work at your own pace instead of a group study or in-class

learning?

vii. Is it hard to find exercises for studying programming exams?

viii. Does knowing the progress of your classmates motivates you to work more?

The answers students could give were definitely agree, mostly agree, neither agree or

disagree, mostly disagree, and definitely disagree. Figure 5.5 shows the results of platform

usage for assignment submission.

Figure 5.5. Platform usage for submitting assignment

Figure 5.6 shows results of the question regarding platform usage for studying the finals.

Most of the students used the system for studying final exam.

70

Figure 5.6. Platform usage for studying the finals

Most of the students did not acknowledge that they are earning badges while completing

the Uno assignment. But, the number of students that completed more than half of the

assignment were aware that badges were awarded for their progress. Some students

answered that they did not acknowledge the badges were not using the platform for

submitting the assignment.

According to Figure 5.7, students answered that they preferred to get immediate feedback

for their assignments. The platform helps to achieve this by immediately showing the

progress of the student and giving feedback on correctness of the student code. Usually,

students do not know their grade and have to wait until they are graded by an instructor. By

the time they receive the grades, it is already late for learning and correcting mistakes.

Also, new material is introduced in class and students who are falling behind of the

schedule have no change to catch up with the rest of the class.

71

Figure 5.7. Immediate feedback for assignments

Another question in the questionnaire was about whether or not students trust an automated

grading system. Most of the students answered that they do not trust an automated grading

system as seen on Figure 5.8.

Figure 5.8. Trust on automated grading system

E-learning programs used in classes allow instructors to prepare a study curriculum that

students can use for studying exams. While it can have disadvantages such as memorizing

all answers to questions, it can also help to standardize exam studying. In this case,

according to answers given by the students, they were having difficulties for studying

72

exams. By using a platform similar to one designed in this work, students can access to

study materials along with learning materials. Figure 5.9 shows number of answers to the

question.

Figure 5.9. Students having difficulty finding exercises

Finally, a question about how knowing the progress of the classmates effect motivation

were asked. Most of the students answered that it is more motivating when they know

about the progress of others as seen on Figure 5.10.

Figure 5.10. Effect of class progress on motivation

73

5.3. USAGE STATISTICS

Lab Student participation were also measured by using a statistics library called Google

Analytics [59]. It was embedded to the website by adding a tracking script. The script

tracks user location, system, duration of visits, frequency of visits, and visit source. It is

one of the industry standard applications that used to measure user retention of websites.

Users visiting the website were almost 70 percent returning users and the remaining users

were new visitors. A returning user means that same user has visited the website before,

whereas a new visitor is a user that visited the website only once.

Session duration is the time spend on website for each visit. Average session duration for

users was 12 minutes. Since the questions were short, students were using the system for

answering couple of questions and then coming back to the system. Also, assignments

were divided into sections and sections were divided into functions that allowed students to

spend less time in the website while still continuing the learning progress. It was known

that average page visits per session was 7 pages.

74

6. CONCLUSION AND FUTURE WORK

E-learning systems can be useful if used in classroom to teach programming languages. It

helps to improve the teaching progress in many cases such as studying exams, submitting

assignments, and learning the material. Even though the systems need time for adaptation

by instructors and students, they are easy to adapt.

Gamified systems try to motivate and engage students by applying the known methods.

But, each learning environment is different and gamification elements should be adapted

accordingly. Preliminary results showed that students enjoyed earning badges. Also, they

were motivated by knowing their progress and getting immediate feedback for their work.

A suggested use case of this work is where an instructor using the system to support the in-

class learning. By doing so, instructor will know how the students are doing in real time.

For example, if most of the students were having trouble at the certain part of an

assignment, it will be wise to do a review session in class.

For the future work, the work will be improved to support exam taking. It is already

grading the assignments and labworks, but the system can be used by students to take

actual midterms and finals. Also, a similarity detection system to detect similar codes from

the codes submitted by students will be useful for instructors. In addition to that, social

sharing could be added to the system to make it more interactive for students.

75

REFERENCES

1. Swarm Application, https://www.swarmapp.com [retrieved 22 May 2017].

2. Khan Academy, https://www.khanacademy.org [retrieved 16 February 2017].

3. Duolingo, https://www.duolingo.com [retrieved 16 February 2017].

4. Whale, https://askwhale.com [retrieved 16 February 2017].

5. edX, https://www.edx.org [retrieved 22 March 2017].

6. Coursera, http://coursera.org [retrieved 22 March 2017].

7. Code School, http://codeschool.com [retrieved 22 March 2017].

8. Code Avengers, https://www.codeavengers.com [retrieved 22 March 2017].

9. Hacker Rank, https://www.hackerrank.com [retrieved 22 March 2017].

10. EduCause, “Asynchronous and Synchronous E-Learning”,

http://er.educause.edu/articles/2008/11/asynchronous-and-synchronous-elearning

[retrieved 22 March 2017].

11. J.G. Tullis, and A.S. Benjamin. On the Effectiveness of Self-Paced Learning,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079256/ [retrieved 22 March 2017].

12. The Knowledge Network for Innovations in Learning and Teaching at University of

Albany, “Why Should I Use Self-Paced Learning?”.

http://tccl.rit.albany.edu/knilt/index.php/Why_Should_I_Use_Self-Paced_Learning%3F

[retrieved 20 May 2017].

76

13. European University Association, “E-learning in European Higher Education

Institutions”, http://www.eua.be/Libraries/publication/e-learning_survey.pdf [retrieved 20

May 2017].

14. MIT Open Courseware, https://ocw.mit.edu/index.htm [retrieved 20 May 2017].

15. Stanford Online, http://online.stanford.edu [retrieved 20 May 2017].

16. Lynda, https://www.lynda.com [retrieved 20 May 2017].

17. Roland and Berger Corporation, “Corporate Learning Goes Digital”,

https://www.rolandberger.com/publications/publication_pdf/roland_berger_tab_corporate_

learning_e_20140602.pdf [retrieved 20 May 2017].

18. Training Magazine, “2014 Training Industry Report”,

https://trainingmag.com/sites/default/files/magazines/2014_11/2014-Industry-Report.pdf

[retrieved 20 May 2017].

19. Udacity, http://udacity.com [retrieved 20 May 2017].

20. Extension Engine, “Putting Moocs to Work”, http://extensionengine.com/putting-

moocs-to-work-recap-infographic/ [retrieved 20 May 2017].

21. SAP, “SAP Training”, https://training.sap.com/tr/tk/ [retrieved 20 May 2017].

22. Udacity, “Nanodegree Programs”, https://www.udacity.com/nanodegree [retrieved 20

May 2017].

23. 3C Interactive, “2017 Mobile Loyalty Report”,

https://www.3cinteractive.com/resources/mobile-loyalty-report-2017/ [retrieved 20 May

2017].

77

24. IBM, “2017 Customer Experience Index (CEI) Study”,

https://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03818usen/GBE03818USEN.PDF

[retrieved 20 May 2017].

25. Big Fish Games, “2016 Video Game Statistics and Trends”,

http://www.bigfishgames.com/blog/2016-video-game-statistics-and-trends/ [retrieved 22

May 2017].

26. CNBC, “Mobile Addiction Growing at an Alarming Rate”,

http://www.cnbc.com/2014/04/24/mobile-addiction-growing-at-an-alarming-rate.html

[retrieved 22 May 2017].

27. Kevin Werbach, and Dan Hunter. The Gamification Toolkit, Wharton Digital Press,

2015.

28. LinkedIn, https://www.linkedin.com [retrieved 22 May 2017].

29. Enterprise Gamification, “SAPS”,

http://www.enterprise-gamification.com/mediawiki/index.php?title=SAPS [retrieved 22

May 2017].

30. Booking.com, http://booking.com [retrieved 22 May 2017].

31. Coursera, “Gamification”, https://www.coursera.org/learn/gamification [retrieved 12

May 2017].

32. Richard Bartle. Hearts, Clubs, Diamonds, Spades: Players Who Suit Muds.

http://mud.co.uk/richard/hcds.htm [retrieved 12 May 2017].

33. M.R. Regalado, E. Aranha, and T.R. da Silva. Gamifying an Online Approach for

Promoting Game Development Learning and Contest: An Experience Report. Frontiers in

Education Conference (FIE), 2016 IEEE, Eire, PA, USA. 1-8, 2016.

78

34. M. B. Ibáñez, Á. Di-Serio, and C. Delgado-Kloos. Gamification for Engaging

Computer Science Students in Learning Activities: A Case Study. IEEE Transactions on

Learning Technologies. 7.3:291-301, July-Sept. 1 2014.

35. G. Lückemeyer. Virtual Blended Learning Enriched by Gamification and Social

Aspects in Programming Rducation. 2015 10th International Conference on Computer

Science and Education (ICCSE), Cambridge. 438-444, 2015.

36. R. F. Maia, and F. R. Graeml. Playing and Learning with Gamification: An In-Class

Concurrent and Distributed Programming Activity. 2015 IEEE Frontiers in Education

Conference (FIE), El Paso, TX. 1-5, 2015.

37. K. Tsalikidis, and G. Pavlidis. jLegends: Online Game to Train Programming Skills.

2016 7th International Conference on Information, Intelligence, Systems and Applications

(IISA), Chalkidiki. 1-6, 2016.

38. K. Berkling, and C. Thomas. Gamification of a Software Engineering Course and a

Detailed Analysis of the Factors That Lead to It's Failure. 2013 International Conference

on Interactive Collaborative Learning (ICL), Kazan. 525-530, 2013.

39. U. Jayasinghe, and A. Dharmaratne. Game Based Learning vs. Gamification from the

Higher Education Students' Perspective. Proceedings of 2013 IEEE International

Conference on Teaching, Assessment and Learning for Engineering (TALE), Bali. 683-

688, 2013.

40. G. Barata, S. Gama, J. Jorge, and D. Goncalves. Engaging Engineering Students with

Gamification. 2013 5th International Conference on Games and Virtual Worlds for Serious

Applications (VS-GAMES), Poole. 1-8, 2013. .

41. N.O. Uzun. A Gamified Lesson Preparation System. Master’s Thesis, Ozyegin

University, Turkey, 2017.

79

42. Redmonk, “The RedMonk Programming Language Rankings: January 2017”,

http://redmonk.com/sogrady/2017/03/17/language-rankings-1-17/ [retrieved 12 May 2017].

43. Ruby on Rails, http://rubyonrails.org [retrieved 12 May 2017].

44. Go Programming Language, https://golang.org [retrieved 12 May 2017].

45. Amazon, “What Is Amazon DynamoDB”,

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

[retrieved 12 May 2017].

46. Docker, “Docker for Developers”, https://www.docker.com/what-docker#/developers

[retrieved 12 May 2017].

47. Amazon EC2, “Amazon Elastic Compute Cloud Documentation”,

https://aws.amazon.com/documentation/ec2/ [retrieved 12 May 2017].

48. Bootstrap, http://getbootstrap.com [retrieved 12 May 2017].

49. Amazon AWS, “What is AWS”, https://aws.amazon.com/what-is-aws/ [retrieved 12

May 2017].

50. Ruby, https://www.ruby-lang.org/en/ [retrieved 12 May 2017].

51. WebSocket, https://en.wikipedia.org/wiki/WebSocket [retrieved 12 May 2017].

52. jQuery, “jQuery API Documentation”, http://api.jquery.com [retrieved 12 May 2017].

53. Ubuntu, https://www.ubuntu.com [retrieved 20 May 2017].

54. Google Cloud Platform, https://cloud.google.com/products/ [retrieved 20 May 2017].

55. Heroku, https://www.heroku.com [retrieved 20 May 2017].

80

56. ZDNet Magazine, “What is Docker and Why is it so Darn Popular?”,

http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/ [retrieved 20

May 2017].

57. Brian Christner. Docker Base Image OS Size Comparison.

https://www.brianchristner.io/docker-image-base-os-size-comparison/ [retrieved 20 May

2017].

58. Phusion Passenger, “Ruby Deployment Tutorial”,

https://www.phusionpassenger.com/library/walkthroughs/deploy/ruby/ [retrieved 20 May

2017].

59. Google Analytics, https://www.google.com/analytics [retrieved 20 May 2017].

