

FULLY RANDOM ACCESS DIFFERENTIAL LOOKUP TABLES

by

Yılmaz Serhan Gener

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Engineering

Yeditepe University

2017

ii

FULLY RANDOM ACCESS DIFFERENTIAL LOOKUP TABLES

APPROVED BY:

Prof. Dr. Sezer Gören Uğurdağ .

(Thesis Supervisor)

Assoc. Prof. Dr. Gürhan Küçük .

Assist. Prof. Dr. Tankut Barış Aktemur .

DATE OF APPROVAL: /. . . . /2017

iii

 ACKNOWLEDGEMENTS

It is with immense gratitude that I acknowledge the support and help of my professors, Prof.

Dr. Sezer Gören Uğurdağ and Assoc. Prof. Dr. Hasan Fatih Uğurdağ. Pursuing my thesis

under their supervision has been an experience which broadens the mind and presents an

unlimited source of learning.

Finally, I would like to thank my family for their endless love and support, which makes

everything more beautiful.

iv

ABSTRACT

FULLY RANDOM ACCESS DIFFERENTIAL LOOKUP TABLES

Lookup Tables (LUTs) are often used to implement complex functions in hardware and

software design to achieve low latency in computation of complex functions compared to

algebraic implementations. However, the area of a LUT grows exponentially with the

bitwidth of the input. This thesis presents a novel area-efficient and parameterized logic

microarchitecture that behaves identical to a Conventional LUT (ConvLUT) implementing

a continuous function. Six different architectures are implemented, all architectures keep a

down-sampled version of the original LUT. Skipped LUT entries are replaced with one of

the following; differential LUT entries, encoded differential LUT entries, or a method we

called zone folding. These three architectures are also implemented by storing differences

of differential LUT entries. By employing some combinational logic circuitry, all

architectures can mimic a ConvLUT with a slight compromise in latency. The proposed

architectures are fully random access, and are named as “Fully Random Access Differential

LUT” (FR-dLUT). Later, multipartite tables method is combined and improved with the

proposed architectures. In order to evaluate area and performance of FR-dLUT, all its

variants for sine and 2x functions are coded in Verilog, verified, synthesized, and

implemented on FPGA. Results are compared to the state-of-the-art in terms of area and

performance.

v

ÖZET

TAM RASGELE ERİŞİMLİ DIFERANSİYEL ARAMA TABLOLARI

Arama Tabloları (AT), cebirsel uygulamalara kıyasla karmaşık işlevlerin hesaplanmasında

düşük gecikme sağlamak için, donanım ve yazılım tasarımında karmaşık işlevleri

uygulamak için sıklıkla kullanılır. Bununla birlikte, bir AT alanı, girişin bit genişliği ile

katlanarak büyür. Bu tezde, sürekli fonksiyonu uygulayan Konvansiyonel bir AT (KonvAT)

ile aynı davranan, yeni bir alan etkili ve parametreli mantık mikro mimarisi sunmaktadır.

Altı farklı mimari uygulanmakta, tüm mimariler orijinal AT'deki değerleri belli aralıklarla

atlayarak saklar. Atlanan AT girişleri, aşağıdakilerden biri ile değiştirilir; Diferansiyel AT

girişleri, kodlanmış diferansiyel AT girişleri veya zon katlama adı verilen bir yöntem. Bu üç

örnek aynı zamanda farkların farklarından oluşan AT girdileri ile saklama yoluyla da

uygulanmaktadır. Daha sonra bu yöntemlerden bazıları çok partili tablolar olan en son AT

boyut azaltma yönteminde kullanılır. Bazı kombinasyonel mantık devrelerini kullanarak,

tüm mimariler gecikme süresinde hafif bir uzlaşmayla bir KonvAT taklit edebilir. Önerilen

mimariler tamamen rastgele erişime sahip ve "Tam Rasgele Erişimli Diferansiyel AT" (TR-

dAT) olarak adlandırılmıştır. Daha sonra, çok partili tablolar yöntemi ile birleştirildi ve

önerilen mimariler ile geliştirildi. FR-dLUT'un alanını ve performansını değerlendirmek

için, sinüs ve 2x işlevleri için tüm olası mimariler Verilog'da kodlanmış, doğrulanmış,

sentezlenmiş ve FPGA üzerinde uygulanmıştır. Sonuçlar, alan ve performans bakımından

en son teknolojiyle karşılaştırılmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES .. viii

LIST OF TABLES .. xi

LIST OF SYMBOLS/ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

2. PREVIOUS WORK ... 4

2.1. SEMI-RANDOM ACCESS LOOKUP TABLE ... 4

2.2. BIPARTITE METHOD ... 7

2.3. MULTIPARTITE TABLE METHOD .. 9

2.4. FAITHFULLY ROUNDED LOOKUP TABLE ... 10

2.5. COLUMN COMPRESSION TREE .. 13

3. PROPOSED FULLY RANDOM ACCESS DIFFERENTIAL LOOKUP TABLES .. 15

3.1. FULLY RANDOM DIFFERENTIAL LUT .. 15

3.2. VARIABLE LENGTH DIFFERENTIAL LUT .. 21

3.3. VARIABLE LENGTH DIFFERENTIAL LUT WITH ZONE FOLDING 23

3.4. LUTS WITH DIFFERENCE OF DIFFERENCES ... 25

3.5. TIV SIZE REDUCTION ... 29

3.5.1. Partial Variable Length Differential LUT .. 30

4. RTL CODE GENERATORS AND VERIFICATION .. 32

4.1. FOR CONVENTIONAL LUTS .. 32

4.1.1. LUT Generation with MATLAB .. 33

4.1.2. Verilog Generation ... 34

4.1.3. Verification ... 36

4.2. FOR TIV SIZE REDUCTION .. 36

4.2.1. VHDL Code Generation of Multipartite Method ... 38

4.2.2. VHDL to Verilog Converter ... 39

vii

4.2.3. Implementation of Proposed Method for TIV .. 40

4.2.4. TIV Verification ... 40

5. RESULTS... 42

5.1. CONVENTIONAL LUT SIZE REDUCTION ... 42

5.2. TIV SIZE REDUCTION ... 44

6. CONCLUSION AND FUTURE WORK ... 51

REFERENCES .. 53

viii

LIST OF FIGURES

Figure 1.1. Sine function evaluation and lookup ... 1

Figure 1.2. Contribution of the thesis .. 3

Figure 2.1. Block diagram of SR-dLUT algorithm [4] .. 5

Figure 2.2. The way differences are stored in the memory array when delta is four 5

Figure 2.3. XORed output used for a single LUT in memory array [4] 6

Figure 2.4. Segmentation of a block for generation of TIV and TO [5] 7

Figure 2.5. STBM module [7] ... 8

Figure 2.6. Multipartite architecture [9] .. 9

Figure 2.7. Decomposition of two-table and three-table methods [16] 11

Figure 2.8. TIV decomposition into TIVnew and TIVdiff [16]... 11

Figure 2.9. TIVdiff decomposition into TIVdiff1 and TIVdiff2 [16] ... 12

Figure 3.1. Conceptual depiction of FR-dLUT .. 15

Figure 3.2. Top-level of FR-dLUT .. 16

Figure 3.3. Address generator module for FR-dLUT .. 17

Figure 3.4. Data selection module FR-dLUT .. 18

ix

Figure 3.5. Example for signed summation method .. 19

Figure 3.6. Signed summation module FR-dLUT ... 20

Figure 3.7. Conceptual depiction of the FR-dLUT-VL ... 21

Figure 3.8. Top-level of FR-dLUT-VL ... 22

Figure 3.9. Decoder example with range [-4, +4] .. 22

Figure 3.10. Address generator of FR-dLUT-ZF method ... 23

Figure 3.11. FR-dLUT-ZF decoder example with folding rate 2 .. 24

Figure 3.12. Conceptual depiction of the FR-ddLUT-VL ... 25

Figure 3.13. Top-level of FR-ddLUT-VL ... 26

Figure 3.14. Address generator for FR-ddLUT ... 27

Figure 3.15. Single dsel multiplication .. 28

Figure 3.16. Multiplication module for ddLUT when ∆ is 4 ... 29

Figure 3.17. Top module of FR-dLUT-PVL method .. 31

Figure 4.1. ConvLUT reduction flow diagram .. 32

Figure 4.2. MATLAB flow diagram .. 34

Figure 4.3. Huffman encoding tree example ... 35

Figure 4.4. ConvLUT verification flow diagram ... 36

x

Figure 4.5. TIV reduction flow diagram .. 37

Figure 4.6. Tool for generating multipartite tables [15] .. 38

Figure 4.7. Example setup of the multipartite methods tool [15] .. 39

Figure 4.8. TIV reduction verification flow diagram .. 41

Figure 5.1. Bar graph of best 16-bit sine function results for TIV reduction 46

Figure 5.2. Bar graph of best 16-bit 2x function results for TIV reduction 46

Figure 5.3. TIV size reduction for 24-bit precision sine function result bar graphs 48

Figure 5.4. TIV size reduction for 24-bit precision 2x functions result bar graphs 50

xi

LIST OF TABLES

Table 2.1. Partial TO entries for cosine function [7] ... 9

Table 3.1. Truth table for 𝑎 = 𝑎 + 1 ... 18

Table 5.1. Area and timing comparison for difference LUT methods for 16-bit sine 43

Table 5.2. Area and timing comparison for difference of differences LUT methods for 16-

bit sine function ... 44

Table 5.3. TIV size reduction results for 16-bit input precision sine and 2x functions 45

Table 5.4. TIV size reduction results with FR-dLUT method for 24-bit sine function 47

Table 5.5. TIV size reduction results with FR-dLUT method for 24-bit 2x function 49

xii

LIST OF SYMBOLS/ABBREVIATIONS

lg logarithm in base two

wi Input bitwidth

wo Output bitwidth

∆ Delta

π Pi value

3T Three table

ConvLUT Conventional lookup table

CCT Column compression tree

ddLUT Difference of differences lookup table

dLUT Differential lookup table

FPGA Field programmable gate array

FR Fully random access

LUT Lookup table

LSB Least significant bit

mLUT Main lookup table

MSB Most significant bit

NR Non-random access

PVL Partial variable length

RoCoCo Row and column compression

RTL Register transfer level

SBTM Symmetric bipartite table method

SR Semi-random access

TIV Table of initial values

TO Table of offsets

VHDL VHSIC hardware description language

VL Variable length

XOR Exclusive or

ZF Zone folding

1

1. INTRODUCTION

Functions like sine, cosine, logarithm, reciprocal, square-root, and exponent is very

important for digital signal processing, image processing, multimedia applications, and

digital communication systems. Due to the computation complexity of these functions,

Look-Up Tables (LUTs) are commonly used to achieve low latency in computation

compared to algebraic implementations. In Figure 1.1 shows an example for a sine function,

instead of computing the sine function, using a LUT will decrease the latency greatly.

However, since these LUTs store precomputed values of the functions, the area of a LUT

grows exponentially with the given inputs bitwidth and expected outputs bitwidth. With the

increased area, overall systems latency can also increase. So, decreasing a LUTs size might

save both time and space for the design.

Figure 1.1. Sine function evaluation and lookup

The design proposed in this thesis can offer significant area reduction if the LUT stores a

continuous function. Significant area reduction is ensured if the differences between

neighboring LUT entries are significantly smaller than LUT entries themselves. LUTs can

be combined with some algebraic manipulations to lower the overall area of the design. The

algebraic manipulations may be function-specific [1] or may be general-purpose [2].

However, these techniques cannot guarantee that their outputs match the original LUT bit

by bit, especially when the output is wide. Our microarchitecture is complementary to

techniques with algebraic manipulation, as it can be used to reduce the area of LUTs internal

to these techniques.

The idea of storing the much smaller differences between neighboring LUT entries has been

previously proposed in logic design context [3]. However, the circuit allows sequential

access, i.e., location n+1 is output in each cycle if location n is output in the previous cycle.

Which can be called a “Non-Random Access” differential LUT (NR-dLUT). The work in

2

[4] proposes, a similar method to NR-dLUT but instead of accessing location n+1 it can

output any LUT location within the range [n-∆, n+∆] in each cycle if location n is output in

the previous cycle. Which can be called, a “Semi-Random Access” dLUT (SR-dLUT), while

[4] calls it “Compressed” LUT. In this thesis, our proposed idea is implementing “Fully

Random Access” dLUT (FR-dLUT). Just like a conventional LUT, there is no restriction on

which LUT location can be accessed in each cycle.

FR-dLUT consists of two type LUTs; one of them is the LUT where mid values are stored

which is called main LUT, others are the LUTs where the differences are stored.

Additionally, FR-dLUT is implemented with three additional methods. The first one uses

variable length in the difference LUTs which is accomplished by using Huffman encoding,

where each difference entry in the LUTs are encoded according to Huffman encoding

algorithm (Entries with higher frequency receives less bits when encoded.). The second one

uses a method which we called “Zone Folding”. In this method, more than one encoded entry

is stored in a single difference LUT by concatenating multiple encoded entries to a single

entry. The last method stores the difference of the differences. In this method, there is a

single main LUT like others, but there is also a single difference LUT, and other remaining

LUTs store the difference of the differences. Shaded blocks in the left of the Figure 1.2

shows the contributions of these methods on top of the ConvLUT.

There have been other methodologies despite using differences to decrease the LUT area,

such as using functional approximations and table driven methods. These methods include

bipartite method [5-8] and multipartite method [9-10]. These methods decrease the area of a

LUT greatly. Due to the large reduction in area, latency of the design also decreases. That is

why these methods are considered as win-win in term of time and space trade off.

Bipartite method uses approximation of a function using two LUTs, table of initial values

(TIV) and table of offsets (TO), and an adder. TIVs store the sampled function values which

is sampled uniformly. Where TOs stores the difference of the actual values of the function

and the initial values stored in TIVs. Due to the symmetry in offsets stored in TO, the size

can be reduced by half. Also for further reduction in TO size, TOs can be partitioned into

multiple smaller LUTs thus it is called the multipartite method. Each additional table

increases the combinational logic complexity.

3

Bipartite method can be used for low precision function, since the LUT size exponentially

increases with the function precision. Even, when multipartite method is used to decrease

the size of TOs, TIVs still occupies most of the total area. Faithfully Rounded LUT [16]

method has been proposed to decrease the TIV sizes. Which decomposes TIV into multiple

tables, a table named TIVnew with middle values of the every 2n value and two difference

tables which takes difference with respect to the value stored in TIVnew. In this thesis, for

further reduction in TIV size FR-dLUT method is implemented on the TIVs of the

multipartite method. Contributions on top of TIV’s are shown on the right side of the

Figure1.1’s shaded cells.

Like in every hardware design there are multiple steps in the design flow. First one is the

generation of the RTL code of the proposed methods, which is done generally by Perl scripts

during this thesis. Second part is the verification, for verification of the RTL code, a

testbench and set of test values are generated. If the verification fails, RTL code is fixed until

testbench is passed without an error. After the testbench, final step is synthesizing and

implementing the design on an FPGA board to measure the timing and the area of design.

Figure 1.2. Contribution of the thesis

4

2. PREVIOUS WORK

In this part, previous works that are related to LUT size reduction is examined in more detail.

There are four previous works closely related to the work done in this thesis and one work

that is done on caches. The first one is [4], where SR-dLUT idea is proposed. The second

one is [5-8], where bipartite method is proposed. The third one is [9-10], where multipartite

method is proposed. The forth one is [16], where the authors propose an idea to reduce the

TIV size of methods [5-10] by dividing TIV into three tables. Additionally, the column

compression tree (CCT) idea used in this thesis is proposed in [10]. CCT idea and how it is

being used in this thesis is explained. The work done on caches is the Base-Delta-Immediate

compression in [18] where inside the caches instead of real data, differences of data are store

in the caches. Method proposed in [18] is used for compressing data in on-chip caches.

2.1. SEMI-RANDOM ACCESS LOOKUP TABLE

In [4], the idea is achieving LUT size reduction with the loss of random access for a function.

Main idea in this work is to store the difference of two consecutive outputs of a function

instead of storing the actual value. This method is mostly ideal for transcendental functions,

since difference between two consecutive outputs are much smaller than non-transcendental

functions. Even though this method causes the loss of random access ability for a LUT, it

still has some semi-random access capability due to the way differences are stored.

Block diagram of the overall design of SR-dLUT is shown in Figure 2.1. Which shows that

the design is composed of three main modules. First one is the address generator, it takes the

initial input and generates an address for the LUTs inside memory array and generates

another output which indicates which outputs are selected for addition. Second module is

the memory array, where the difference values generated from the given functions

consecutive outputs are stored in delta (∆) LUTs. Last one is data select unit, where the

selection out of ∆ LUTs output are done which is used during the final addition. Additionally,

last received input and the last given output is stored in separate registers to be used on the

next request.

5

Memory array consist of ∆ parallel LUTs, where each LUT store the difference values.

Figure 2.2 shows how the differences are stored in these LUTs. Since there are ∆ parallel

LUTs using the last output of the design it can reach ∆ inputs above or below in a single

cycle, thus the semi-random access. For example, the given input is five units above the last

received input; if ∆ is eight output can be received in the current cycle, else if ∆ is four

requested output is shown in the next cycle.

Figure 2.1. Block diagram of SR-dLUT algorithm [4]

Figure 2.2. The way differences are stored in the memory array when delta is four

Address generator module is used to calculate which memory address should be read and

which LUTs outputs should be used in the final adder. Since there are ∆ LUTs in memory

6

array if previous input is α, thanks to address generators output it is possible to access

function values in range of [α-∆, α+∆].

Address generator initially subtracts previous input from the current input. Result of the

subtraction consists of magnitude and sign. Sign differs whether a smaller or greater value

input is requested with respect to previous input. Magnitude is used to determine the amount

of shifting to be applied to thermometer vector. Thermometer is the vector that is used to

decide which address to be read from LUTs inside the memory array by XORing

thermometer value and the shifted result.

Figure 2.3 shows how XORed output of address generator is used to determine the memory

location to be read for one of the LUTs inside memory array. Address to be read can be one

more, one less, or equal to the current address in any given time for a single LUT. For

example, if difference between current input and the previous input is any positive number

address register is incremented by one.

Figure 2.3. XORed output used for a single LUT in memory array [4]

Data selection unit is used to determine which values that has been read from ∆ LUTs are

used at the final addition. For example, if ∆ is four and difference between current input

(α+3) and previous input (α) is three (so that current input is three steps ahead), then three

7

values out of four values that came from memory array are added. Output of f (α+3) is

calculated by adding these three values and the previous output f (α) in the final adder.

In [4], as a test parameter sine function with 16-bit input and 16-bit output resolution is used.

With the expense of the random access ability with respect to conventional LUTs %75 area

reduction is achieved.

2.2. BIPARTITE METHOD

In [5-8] bipartite table method, and in [7] symmetric bipartite table method (SBTM) is

presented. For bipartite table approximation, f function is stored in two tables named TIV

and TO. To get the approximation f (x), input x is divided into three segments; x0, x1, and

x2, with bit lengths n0, n1, and n2, respectively. The value of x is equal to {x0, x1, x2} and

if the bitwidth of x is n then n is equal to n0 + n1 + n2.

To generate TIV and TO tables, function is initially divided to multiple blocks. There is one

entry in TIV for each block. Also, each block is divided into several segments. Figure 2.4

shows an example for a block, as shown in the Figure 2.4 a single block is segmented into

four parts. Overlay segment graph shows how each segment is drawn if they start from the

same point. The low and the high overlay segments, in this example segments 1 and 4, are

shifted up and down by b. Where dotted curve shows the average of segment 1 and 4 as the

result of shifting. This dotted curve is used for the values of that are going to be stored in

TO. TIV values are the middle points of these dotted curves, and TO values are the

differences between the middle one and the remaining ones.

Figure 2.4. Segmentation of a block for generation of TIV and TO [5]

8

Most significant n0 + n1 bits of x are used for TIV as TIV (x0, x1), and most significant n0

and least significant n2 bits are used for the TO as TO (x0, x2). Carry-save approximation

to f (x) is generated from the outputs for these two tables. Let output length of TIV and TO

be p0 and p1 respectively. Generally, p0 > p1 so when a signed addition is required in the

carry-propagate adder output of TO (x0, x2) is sign extended to p0 bits.

SBTM is using the symmetry and removal of leading zeros (ones if the number is negative)

in TO to decrease the size of it with only using additional XOR gates. Block diagram of this

method is shown in Figure 2.5. Since symmetry is used in TO, half of the entries in TOs are

removed, thus input bitwidth of TOs are reduced by one (n0 + n2 - 1). Due to the removal

of leading repeating bits, output bitwidth is reduced by one as well. The most significant bit

of x2 is used to XOR the remaining n2 – 1 bits of x2. Since after half of the original TO

values are read from the LUT, for the other half that is removed from the TO, input address

that is used read from LUT must be decremented. For example, if n2 is three for each

segment initially address 0, 1, 2, and 3 should be read from TO. For the next four values

addresses 3, 2, 1, and 0 should be read from TO. Finally, to obtain the removed half of the

original TO, most significant bit of x2 and the output of TO are XORed to get the ones

complement of the output. Table 2.1 shows an example for cosine function, bolded values

are stored in TO.

Figure 2.5. STBM module [7]

9

Table 2.1. Partial TO entries for cosine function [7]

x TO (x0, x2)

decimal binary decimal binary

0.500000 0.1000000 + 0.0166016 0.0000010001

0.507812 0.1000001 + 0.0107422 0.0000001011

0.515625 0.1000010 + 0.0068359 0.0000000111

0.523438 0.1000011 + 0.0029297 0.0000000011

0.531250 0.1000100 - 0.0029297 1.1111111101

0.539062 0.1000101 - 0.0068359 1.1111111001

0.546875 0.1000110 - 0.0107422 1.1111110101

0.554688 0.1000111 - 0.0166016 1.1111101111

2.3. MULTIPARTITE TABLE METHOD

Multipartite method in [9], contains the basic characteristics of SBTM. In this method TIV

still present in the design, but instead of having single TO there are m TOs. In case of m

equals to 1 in multipartite is same as using bipartite. In multipartite method symmetry in

TOs are still used for every m TO in the design. In multipartite method, same principal that

is used on original LUT for the creation of TIV and TO in bipartite method is used on the

created TO. In Figure 2.6 multipartite architecture is shown for m=3. Where wo is the output

bitwidth, wi is the input bitwidth of each TO, and g is the number of guard bits used for

faithful rounding.

Figure 2.6. Multipartite architecture [9]

10

Guard bit calculation can be done by using the formula (2.1). Where c denotes the minimum

output of the function, d denotes the maximum output of the function. For example, for a

sine function with range [0, π/4), c is 0 and d is 1. Є𝑎𝑝𝑝𝑟𝑜𝑥
𝐷 denotes the approximation error

for each TO.

 𝑔 = ⌈−𝑤𝑂 − 1 + log2

(𝑑 − 𝑐)𝑚

(𝑑 − 𝑐)2−𝑤0−1 − Є𝑎𝑝𝑝𝑟𝑜𝑥
𝐷

⌉ (2.1)

2.4. FAITHFULLY ROUNDED LOOKUP TABLE

As explained on the previous sections both SBTM and multipartite table method only

decreases the size of the TO that is created. Also, it is important to note that both bipartite

method and multipartite methods introduce an error due to the approximations that’s done

during the creation of tables. In [16], instead of decreasing TO sizes TIV size reduction is

aimed, without introducing additionally error, thus the faithfully rounded tables.

In [16], there are two ideas a two-table method and the three-table method. In both the main

aim is to decrease the TIV size by storing actual TIV values in one table named TIVnew, and

storing difference values in table named TIVdiff for two-table method and in TIVdiff1 and

TIVdiff2 for three-table method. Figure 2.7 show the decomposition of two-table and three-

table methods.

Figure 2.8 show an example decomposition for eight consecutive entries in TIV into TIVnew

and TIVdiff. Where TIV values are represented as Bi, i = 0, 1, …, 7. B4 is the middle entry

which is stored in TIVnew. Differences are denoted as Di, i = 0, 1, …, 7, also Di = Bi – B4.

Wordlength of Di is usually smaller than wordlength of Bi. Also, original TIV values Bi can

be recovered by adding Di and B4.

11

Figure 2.7. Decomposition of two-table and three-table methods [16]

Figure 2.8. TIV decomposition into TIVnew and TIVdiff [16]

In two-table method, if consecutive 2s entries are presented as a single entry in TIVnew, then

the size of the TIV decreases from 2α x ω to 2 α-s x ω in TIVnew. Where α is the number entries

12

and ω is the wordlength. Since TIVnew only stores the middle values, number of entries in

TIVnew is much less but wordlength of each entry is the same as original TIVs.

For the TIVdiff table, since there is a difference value to be stored for each entry in TIV,

number of entries in TIVdiff and TIV are the same. Due to storing the differences in TIVdiff,

wordlength of it is usually much smaller than TIV entries wordlength. Thus, the size of the

TIVdiff is 2α x ω´, where ω´ < ω.

For the three-table method (3T-TIV), TIVdiff is separated into TIVdiff1 and TIVdiff2. Again,

for eight consecutive entries in TIVdiff bottom half is stored directly in TIVdiff1. For TIVdiff2

values, first entry is always zero and for the remaining three entries (for the case of using

eight consecutive numbers in TIVdiff) differences of B4+i and B4-i are stored in TIVdiff2. An

example of decomposition for TIVdiff into TIVdiff1 and TIVdiff2 is shown in Figure 2.9.

Figure 2.9. TIVdiff decomposition into TIVdiff1 and TIVdiff2 [16]

Algorithm for the creation of TIVnew, TIVdiff, TIVdiff1, and TIVdiff2 from original TIV is

shown in Algorithm 2.1. Before the creation of the tables every possible s value is tested

from the range of 1 to α. And s is chosen, where the lowest total bit count is achieved from

the newly created tables. Note that α represents number of entries in TIV, and s represents

number of consecutive entries to be used for the creation of the tables as mentioned before.

13

Algorithm 2.1. Best decomposition of TIV in three-table method [16]

2.5. COLUMN COMPRESSION TREE

In this thesis, before of using normal adders, a much more speed-optimized and yet area-

efficient Column Compression Tree (CCT) is used. CCT is proposed in [11] (called

RoCoCo). RoCoCo handles only the summation of signed numbers. Main propose of this

idea is to speed up multiplication operations by decreasing number off addition in the final

adder. To do that both row and column compression is used. In RoCoCo instead of

14

propagating carry bits they are saved, thus the method is also called carry save tree. CCT

consist of full (3-bit input) and half (2-bit input) adders. Originally full adders and half adder

produces two outputs, one is the summation and the other is the carry. In CCT unless

different logic levels are connected, there are no carry bit all bits treated as summation

output. Thus, there is no longer a carry propagation delay. Until there is only two addend

signal remains, CCT compresses every generated partial product. Finally, remaining two

addends are added using a fast adder.

RoCoCo is compared with the Dadda Tree [12], Wallace Tree [13], and the Xilinx ISE’s

native multiplication operator. In [11], 22 cases are tested. 9 out of these 22 cases [11] is the

fastest one between the unsigned multipliers mentioned. In this thesis, every method at least

require addition of 3 (at most 21) numbers. Instead of using regular adders for the additions

RoCoCo’s CCT is used.

15

3. PROPOSED FULLY RANDOM ACCESS DIFFERENTIAL

LOOKUP TABLES

FR-dLUT proposed in this thesis is similar to the two-table method explained in the Section

2.4, it does not introduce any errors and uses the differences to decrease the size of a table.

However, in FR-dLUT instead of storing the differences between the middle entry and the

remaining entries, difference of every consecutive entry is stored. Additionally, instead of

having single difference LUT there are ∆ parallel LUTs to be accessed simultaneously.

3.1. FULLY RANDOM DIFFERENTIAL LUT

The main idea of FR-dLUT for sine function is depicted in Figure 3.1. For example, any

value between sin (8) to sin (15), are obtained directly from sin (12) by adding the differences

to sin (12) as the following:

 sin (11) = sin (12) + (sin (11) - sin (12))

 sin (14) = sin (12) + (sin (13) - sin (12)) + (sin (14) - sin (13))

Note that sin (8) is obtained from sin (12), not from sin (4), in our FR-dLUT implementation.

That allows the last difference LUT (dLUT) to be half the size of the other dLUTs. That's

why they are shaded, hence not needed, entries for dLUT3 in Figure 3.1.

Figure 3.1. Conceptual depiction of FR-dLUT

16

The key difference between SR-dLUT and FR-dLUT is that FR-dLUT also contains a down-

sampled version of the ConvLUT. This LUT is called the main LUT (mLUT). Like in SR-

dLUT, differences are stored in ∆ parallel dLUTs.

Consider a conventional LUT for sine function with n-bit input resolution (i.e., there are 2n

points between the input range of 0 and 2π or π/4 if symmetry is used) and k-bit output

resolution. The number of bits required for the differences, m is equal to

max(⌈lg (−𝑚𝑜𝑠𝑡𝑛𝑒𝑔𝑑𝑖𝑓𝑓)⌉, ⌈lg (𝑚𝑜𝑠𝑡𝑝𝑜𝑠𝑑𝑖𝑓𝑓 + 1)⌉), where lg denotes log2,

“mostnegdiff” denotes the most negative difference and “mostposdiff” denotes the most

positive difference. Instead of k-bit output values of the implemented function, m-bit

differences are stored, where m<k.

The top-level of FR-dLUT is shown in Figure 3.2 for a function f, with n-bit input, k-bit

output resolution, and m-bit differences. The top module consists of five submodules,

namely “Address Generator”, “mLUT”, “dLUT array”, “Data Selection”, and “Signed

Summation”. There are ∆ number of dLUTs, where ∆ is a power of 2 to make sure that

address generation is simple.

Figure 3.2. Top-level of FR-dLUT

17

mLUT stores k-bit signed f (α) for α = ∆, 3∆, 5∆, 7∆, …, 2n - ∆. The number of entries in

mLUT is 2n - 1/∆. The data line of mLUT is mval. The width of the address line of mLUT,

named as direct_address, is n – 1 – lg∆. dLUTs store m-bit twos complement (signed)

differences. As shown in Figure 3.1, at an even dLUT address, f (αx) – f (αx + 1) is stored,

whereas at an odd dLUT address, f (αx + 1) – f (αx), is stored, where αx < αx + 1. The number

of locations in each dLUT, except the last dLUT, is twice the number of locations in mLUT,

which is 2n/∆. The last dLUT shares the address line of mLUT. The address width of the

address line of other dLUT, named as indirect_address, is n - lg∆. The data line of a dLUT

is named as dval.

Address generator module that is shown in Figure 3.3, part-selects n-bit input α and generates

direct_address signal for the address line of mLUT and indirect_address signal for the

address line of dLUTs. α’s most significant n - lg∆ bits represents indirect_address (α[n - 1

: lg∆]) signal. α’s most significant n - lg∆ + 1 bits represents direct_address (α[n – 1 : lg∆ +

1]) signal. Address generator has one more output, select. Signal select is generated by left-

shifting ∆ ones α[lg∆ - 1 : 0] positions and every bit of the result is XORed with α[lg∆].

Basically, select signal is used to decide which difference values (dvals) are to be added to

mval. For example, when ∆ = 4, if sin (11) is required, shift amount is 3, α[lg∆] is 0, and as

a result select signal is (1000)2 indicating that only dLUT3 is added to mval. If sin (14) is

required, shift amount is 2, α[lg∆] is 1, and as a result select signal is (0011)2 indicating that

dLUT0 and dLUT1 are added to mval.

Figure 3.3. Address generator module for FR-dLUT

Data selection module is shown in Figure 3.4. Every dval goes thru this module. According

to the select signal that comes from the address generator module dvals can be directly given

18

to the output of this module, which is dsel, or they can be removed by setting dsel to 0 for

the corresponding dval. Selection of dvals with the select signal is done by using AND gates.

For all ∆ dvals existing, there is select signal. If select signals ith bit is set than that means ith

dval is selected. Otherwise, if ith signal is not set, ith dval will not be selected and ith dsel is

reset. Where i is less than ∆. For example, if select signal is (0011)2, then first and second

dsel signals are equal to the corresponding dval signals and remaining dsels are zero.

Figure 3.4. Data selection module FR-dLUT

Table 3.1. Truth table for 𝑎 = 𝑎 + 1

𝑎 𝑎 + 1

0 0 + 1 = 1 + (−1) = 0

1 1 + 1 = 0 + (−1) = −1

Before the signed summation module, since the method that is being used in FR-dLUT

method consist of signed number and RoCoCo handles only the summation of unsigned

numbers some conversions are required so that RoCoCo can be enabled to add signed

numbers. The equality, 𝑎 = 𝑎 + 1, is shown as true in the Table 3.1, where 𝑎 denotes the

sign-bit and 𝑎 denotes the inverse of the sign-bit. Consider the following summation of mval

19

and dsels for m = 4, k = 16, and ∆ = 4 carried out using the equality in Table 3.1. Note that

𝑥 denotes a “don’t care” bit.

𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑏𝑥𝑥𝑥 + 𝑐𝑥𝑥𝑥 + 𝑑𝑥𝑥𝑥 + 𝑒𝑥𝑥𝑥

= 𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 10000000000000000 + 𝑏𝑥𝑥𝑥 + 1000

+ 𝑐𝑥𝑥𝑥 + 1000 + 𝑑𝑥𝑥𝑥 + 1000 + 𝑒𝑥𝑥𝑥 + 1000

= 𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑏𝑥𝑥𝑥 + 𝑐𝑥𝑥𝑥 + 𝑑𝑥𝑥𝑥 + 𝑒𝑥𝑥𝑥

+ 10111111111100000

= 𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑏𝑥𝑥𝑥 + 𝑐𝑥𝑥𝑥 + 𝑑𝑥𝑥𝑥

+ 1011111111110𝑒𝑥𝑥𝑥

Each signed number shown above is transformed into a summation of an unsigned number

(by reverting the MSB) and a signed constant. The sum of all signed constants

(10111111111100000) is then merged with one of the numbers, i.e.,

1011111111110𝑒𝑥𝑥𝑥. Generalizing the above example to k-bit mval and ∆ number of m-

bit dsel, the signed constant is an (k + 1)-bit signed number and equal to the concatenation

of bit chunks, 10, (k – m – lg∆)-bit ones, and (lg∆ + m – 1)-bit zeros. An example for the

method used is shown in Figure 3.5.

Figure 3.5. Example for signed summation method

Signed summation of FR-dLUT shown in Figure 3.6 is composed of CCT and Final Adder.

As it can be seen in Figure 3.6, k-bit mval and ∆ number of m-bit dsels are converted into

unsigned numbers, and the constant is merged with the first dsel (dsel[0]) based on the

summation technique explained above. Since the number of bits in the final sum cannot

exceed k bits the MSB of the signed constant is excluded before it is fed to CCT (shown in

20

Figure 3.6). Therefore, there are now ∆ – 1 number of m-bit and two k-bit numbers. One of

the k-bit number is the mval received from mLUT and the concatenation of bit chunks, 1-bit

zero, (k – m – lg∆)-bit ones, (lg∆ – 1)-bit zeros and the first dsel. Then, CCT in Figure 3.6

reduces the summation of (∆ – 1) numbers of m-bit numbers and two k-bit numbers to the

summation of two (k + 2)-bit numbers assuming (m + lg∆) ≤ k. These two CCT outputs are

named as cct1 and cct2. Similarly, since the number of bits in the final sum cannot exceed

k-bits, two MSBs of these (k +2)-bit numbers are not fed to the final adder. Then, the final

adder adds two k-bit numbers, and similarly, MSB is discarded from the final sum to obtain

the k-bit f (α).

Figure 3.6. Signed summation module FR-dLUT

21

3.2. VARIABLE LENGTH DIFFERENTIAL LUT

In variable length differential lookup table (FR-dLUT-VL) method same functionalities of

FR-dLUT is still present. There are ∆ dLUTs, fully random access still exists, mLUT

contains the same values in both methods, and before the final adder values go thru CCT.

The difference of FR-dLUT-VL from FR-dLUT is the values stored inside the dLUTs.

Figure 3.7 shows the conceptual depiction of the FR-dLUT-VL.

Figure 3.7. Conceptual depiction of the FR-dLUT-VL

For the values stored inside the dLUTs, any decompression method can be used. In this

thesis, Huffman coding is used. For each dLUT the values frequencies are calculated.

According to the frequency each value is assigned with a Huffman code. Although each

frequency of each value in a dLUT is calculated separately from the other dLUTs. Every

time the order of frequencies are the same for the all designs. Additionally, due to the

encoded values stored in the dLUTs, after each value is read from the dLUT it needs to go

through a decoder module. The top-level of FR-dLUT-VL is shown in Figure 3.8.

Decoder module in FR-dLUT-VL gets ∆ h-bit inputs. These h-bit inputs are the dvals. The

reason they are not m-bit anymore is that these dvals are the Huffman encoded values which

may differ in size. Usually smallest one is much less than m. dvals go through a decoder that

is generated during the calculation of frequencies. Output of this module is the decoded dvals

(d_dval), which is again m-bits. An example selection unit is shown in Figure 3.9, where

minimum difference value is -4 and maximum difference value is +4. It can be seen that

most frequent number in this case is +3 and the most infrequent numbers are +4 and -4.

22

Figure 3.8. Top-level of FR-dLUT-VL

Figure 3.9. Decoder example with range [-4, +4]

23

3.3. VARIABLE LENGTH DIFFERENTIAL LUT WITH ZONE FOLDING

In this method on top of FR-dLUT-VL, a method we called “Zone Folding” (FR-dLUT-ZF)

is applied, where a similar method in computer architecture is called “narrow-bitwidth”

operands [17]. The main idea is concatenating multiple encoded values to a single entry in

the dLUT. Real differences from these encoded and concatenated entries fed to an improved

decoder. Number of concatenated entries represents folding rate. For example, if two entries

in a dLUT concatenated in a single entry its folding rate is 2. Also, each dLUT might have

different folding rate.

Selecting between concatenated multiple entries is done by the fold_num signal that is

generated in the address generator module. New address generator module can be seen in

Figure 3.10. Let maximum folding in the design be max_fold. Signal fold_num is selected

from α’s bit range of lg∆ to lg∆ + lg(max_fold) (α[(lg∆ + lg(max_fold)):lg∆]). Value of

max_fold is calculated during generation of the RTL. Also, folding rate of each LUT is

selected as the maximum bit count reduction achieved for that dLUT. Finally, for the

addresses to be read for each dLUT changes due to the reduction in total address. For

indirect_address or direct_address signals, if the folding rate of a dLUT is n, first n bits of

the signals are skipped and the rest is given the dLUT’s address port.

Figure 3.10. Address generator of FR-dLUT-ZF method

Decoders of the ZF method gets the output of the dLUTs and the fold_num signal that comes

from the address generator. According to the fold_num first decoded entries are encoded and

the entry which is the fold_numth number in the dLUTs output is given as an output from

decoder. For example, if the folding rate of a dLUT is 2, which means each dLUT entry

24

consist of 2 encoded values concatenated together. When fold_num signal is 0, first decoded

number from the output of the dLUT is selected as output from the decoder module.

Otherwise, when the fold_num is 1, first encoded in the dval is decoded and the remaining

bits are decoded once more so the second value can be received and send as the output.

Figure 3.11 shows and example of the decoder with folding rate 2.

Figure 3.11. FR-dLUT-ZF decoder example with folding rate 2

25

3.4. LUTS WITH DIFFERENCE OF DIFFERENCES

LUTs with difference of differences method (FR-ddLUT) instead of storing difference of

two consecutive entry, difference between two consecutive difference is stored. Every LUT

except the first one (dLUT0) stores the differences of the differences, but the first LUT still

stores the original differences. Figure 3.12 shows an example for the values stored in dLUTs

with ddLUT method when applied on top of FR-dLUT-VL. FR-ddLUT can be applied on

top of original FR-dLUT, FR-dLUT-VL, or FR-dLUT-ZF.

Figure 3.12. Conceptual depiction of the FR-ddLUT-VL

Another difference between FR-ddLUT and FR-dLUT is that in FR-ddLUT values stored in

every odd address is reversed between LUTs. As shown in Figure 3.12 dLUT0’s first entry

is sin (3) - sin (4) where it is sin (0) - sin (1) in Figure 3.1. The reason these values are

reversed is, to store all the difference (not the difference of differences) values in a single

LUT.

Top-level view of FR-ddLUT-VL can be seen in Figure 3.13. As we are storing differences

of differences in the dLUT there is a need for a multiplication operation to produce a result.

For example, if α is 9 or 14, sin (9) or sin (14) is generated as the following:

 sin (9) = sin (12) + 3x(sin (11) - sin (12)) + 2x((sin (10) - 2sin (11) + sin (12)) + ((sin

(9) - 2sin (10) + sin (11))

 sin (14) = sin (12) + 2x(sin (13) - sin (12)) + (sin (14) - 2sin (13) + sin (12))

Due to the required multiplication, the address generator module has been changed and a

multiplication module has been added to the design. This introduced multiplication is

expected to increase the latency for the overall design.

26

Figure 3.13. Top-level of FR-ddLUT-VL

New address generator module is shown in Figure 3.14. Signals indirect_address and

direct_address are still the same as the FR-dLUT. Since the ordering of the values inside the

ddLUTs are changed, select signals generation is also changed. Instead of XORing the left

shifted ∆ ones and the α[lg∆], ∆ ones are right shifted by the amount of either α’s least

significant (lg∆ + 1)-bits (α[lg∆:0]) or the result of subtraction of ∆ minus α’s least

significant lg∆ bits. The selection between two is done by looking α[lg∆], in other words is

based on whether indirect address is even or odd. If the indirect address is odd (an odd entry

is read from the ddLUTs) results of subtraction is taken as shift amount, otherwise least

significant bits of α is taken. For example, if α is 9 and ∆ is 4, α[lg∆] is 0 indicating that an

even address is going to be read from ddLUTs, so the shift amount is (001)2 which is the

least significant (lg∆ + 1)-bits of α. Finally, select signal is (0111)2, which is what we wanted.

If we look at an example where the difference is used, like when α is 14. α[lg∆] is 1 indicating

27

an odd address is going to be read from ddLUT. Shift amount is 4 minus 2 (since least

significant lg∆ bits of α is (10)2), which is 2. So, the select signal is (0011)2, which is again

what we wanted.

Figure 3.14. Address generator for FR-ddLUT

The new output of FR-ddLUT’s address generator is multiplication amount

(MULT_amount) signal. What this signal represents is the maximum multiplication that is

required for a given input α. For the calculation of the signal, signal can be either least

significant lg∆ bits of α (α[lg∆-1:0]) or the subtraction result calculated during the generation

of the select signal. Selection between two is again done by the α’s lg∆ bit (α[lg∆]) and

correspond to memory address to be read from ddLUT is odd or even. If it is odd, α’s least

significant bits selected, else the subtraction result is selected. As an example, let’s look at

when ∆ is 4 and α is 9 first. Since α[lg∆] is 0 to generate the MULT_amount signal,

subtraction result is calculated by subtracting least significant lg∆ bits of α from the ∆, so it

is 4 minus 1 (since least significant lg∆ bits of α is (01)2), which is 3. So, the maximum

multiplication required when α = 9 is 3, which is correct. If α is 14, since α[lg∆] is 1

MULT_amount signal is equal to the least significant lg∆ bit of α, which is 2 and correct.

Multiplication is done by creating multiple new signals from a single signal. Figure 3.15

shows the block diagram of multiplication module. Each dsel signal that enter multiplication

module is ANDed with every bit of the multiplication amount that correspond to the signal.

There are ∆ dsel signal, so the maximum multiplication for a signal can be ∆. Since when all

28

∆ dsel signals are selected dsel that comes from the first ddLUT (ddLUT0) need to be

multiplied ∆ times. Maximum possible multiplications will decrease thru the last ddLUT,

second ddLUT’s dsel can be multiplied by ∆ - 1, and so on till the last ddLUT’s dsel which

can be multiplied by 1. Like the maximum possible multiplication of each dsel signal, for a

given input α signal MULT_amount represents the current maximum multiplication and

decreases starting from first ddLUT up to the last used ddLUT. Last used ddLUT’s dsel

signal is multiplied with the 1. Figure 3.16 shows an example of how single multiplication

is done for the first ddLUT’s dsel signals multiplication case where α is 9 and ∆ is 4. As

seen, by using AND gates and appending some 0’s to the left multiplication is achieved.

Finally all these signals are added. That’s why each dsel (except the last ddLUT’s dsel)

outputs multiple signals. Total number of outputs for multiplication module is calculated

with formula (3.1).

 ∑(1 + ⌊log2 𝑘⌋)

∆

𝑘=0

 (3.1)

Figure 3.15. Single dsel multiplication

29

Figure 3.16. Multiplication module for ddLUT when ∆ is 4

3.5. TIV SIZE REDUCTION

Multipartite methods are the current state of the art methods for LUT size reduction. Where

a LUT is partitioned into multiple tables called TIV and TOs. During the creation of the TIV

and TOs multipartite method introduces an error due to the approximation of the function.

Instead of applying the proposed methods for ConvLUTs, proposed methods can be applied

to TIV’s of these multipartite methods. Since the size of a TIV in a multipartite method is

much larger than the TOs or the rest of the design, aiming to decrease the size of TIVs are

much more applicable than trying to decrease the size of TOs. For the creation of dLUTs,

TIV entries are used. Methods implemented by TIVs are the FR-dLUT and the FR-dLUT-

VL. Also, as an addition the partial variable length differential lookup table (FR-dLUT-PVL)

method is implemented.

There are m TOs in a multipartite architecture, where each TO’s output and the output of the

TIV are added, every time an input is requested. Also, in the dLUT method there are ∆

dLUTs and a mLUT, where again their outputs are added each time an input (in this case

30

input is a TIV entry) is requested. Instead of adding these numbers separately, the TO values

are also fed to the CCT in the summation module of dLUT.

3.5.1. Partial Variable Length Differential LUT

In FR-dLUT-PVL method, instead of applying encoding methods to the whole entry, a part

of the entry is taken and then the encoding method is applied. Encoding is done by separating

part of each entry and using them as an input for the encoding method that is being used. For

example, if three MSBs are selected, each entries’ three MSBs are given to the encoding

method. For separation, starting from the two MSB of an entry to the all bits of entry, each

possible combination is tested. For each combination dLUT sizes and the decoder sizes are

calculated. Calculation of dLUT sizes are done by adding encoded values bit size and the bit

size of the remaining bits that are not used in the encoding. Among these combinations, the

one with the lesser bit count is selected for the implementation. Algorithm 3.1 also shows

how the selection is done.

In PVL values stored in the dLUTs can be categorized in two segments one is the encoded

part, the other is some of the LSBs of original value. Encoded part is sent to the decoder

same as the VL method. After the encoded value is decoded in the decoder, output bits and

the second segment of the stored value in dLUT (LSBs of the original value) is concatenated

and send to the data select module. Top module of PVL method is shown in Figure 3.17.

31

Figure 3.17. Top module of FR-dLUT-PVL method

32

4. RTL CODE GENERATORS AND VERIFICATION

In this thesis, generation of the RTL code has been done with the help of scripts. After the

generation of the RTL codes, before the synthesis, these codes are verified using simulation

tool of Xilinx ISE (ISim). For the verification, for each input in the given range of the

function, expected outputs are generated and compared with the output of the proposed

methods design. There is a different flow for creation of the dLUT’s from ConvLUT and

creation of dLUT’s from the TIV’s of multipartite method.

4.1. FOR CONVENTIONAL LUTS

There are two stages for the creation of dLUT’s from ConvLUT’s. First stage is the

generation of dLUTs or ddLUT depending on the design in “coe” file format using

MATLAB. Second stage is the generation of Verilog files using Perl scripts. Depending on

the design second stage may include additional Perl scripts for the generation of the new or

changed modules. Flow diagram is shown in Figure 4.1.

Figure 4.1. ConvLUT reduction flow diagram

33

4.1.1. LUT Generation with MATLAB

For FR-dLUT, FR-dLUT-VL, FR-dLUT-ZF, FR-ddLUT, FR-ddLUT-VL, and FR-ddLUT-

ZF methods LUT generation starts from the MATLAB. MATLAB’s flow diagram is shown

in Figure 4.2. Where sine function with range [0,2π) is mapped into 216 input points and

output of the sine function is mapped to 216 points. The mapped values are stored in an array

to be used later. Depending on the ∆ every middle entry is stored for the mLUT. For example,

if ∆ is 4, sine values for inputs 4, 12, 20, … are stored for mLUT. Then for methods that

uses dLUT’s every two-consecutive difference is stored in an array called “diff”. For VL

methods every entries count should be known for each LUT, and since for the last dLUT

there are some skipped entries another array called “diff2” is used to store values without

last LUTs skipped entries. For the ddLUT methods difference of every two-consecutive

entry in “diff” array is stored in a separate array called “diff3”. Where the first entry in every

∆ entry is the original difference and not the difference of differences, since the method

requires them. Before file generations “diff2” and “diff3” arrays values counted according

given ∆ so the frequencies of the dLUTs and ddLUTs can be known to be used for VL

methods. Then, again according to the ∆ and the method used “diff” array or the “diff3”

array separately written to “coe” files, and array that holds mLUT’s values also written to a

“coe” file. Finally, a file is created that contains mapped sine value outputs to be used during

the verification.

34

Figure 4.2. MATLAB flow diagram

4.1.2. Verilog Generation

A shell script calls multiple Perl scripts according to the method that is going to be used. For

the generation of LUTs from the “coe” files generated from the MATLAB, every method

calls the Perl script “LUT_Generator.perl” where the “coe” files are parsed and Verilog files

generated with case statements. In case of the VL methods, before the LUT generation script

is called the “cpp” program for Huffman encoding is called. Which is the encoding method

used for the VL methods for this thesis.

Huffman encoding is done by taking the file that stores the frequencies of the LUTs which

is generated using MATLAB. Taken values and their frequencies are used to generate a

binary tree for the Huffman coding where each leaf represents a value. The values with the

35

highest frequency is placed in a lower depth where the value with the lowest frequency is

stored in a higher depth. Starting from the root and going to a leaf, for each down left move

0 is added to the code and for each down right move 1 added to the code. When reached to

a leaf, generated value is the encoded value that leaf node. Figure 4.3 shows an example for

the Huffman encoding. After each value is assigned with its encoded representation a Perl

script is generated to be used for the creation of the LUTs and the decoder modules for VL

methods.

Figure 4.3. Huffman encoding tree example

After the creation of the LUTs top module, CCT, address generator module, and a wrapper

module (needed for calculation of latency) is generated for all methods depending on the ∆.

During the creation CCT’s instance constant that is mentioned in Section 3.1 is concatenated

to one of the values. For the generation of the CCT, RoCoCo’s generator script is used.

Output of the RoCoCo’s generator script is changed a little to discard unnecessary bits

(explained in Section 3.1) from the summation. For VL methods decoder generator script is

called from the shell script, which uses the output Perl script generated by Huffman encoding

program. At the end, for ZF methods to create changed decoders its own decoder generation

module is called where the method explained in Section 3.4 is applied, and multiplication

module generation script is called. Before calling the multiplication module generation script

number of outputs the multiplication module should have is calculated using formula (3.1).

36

4.1.3. Verification

Verification of the created module is done by traversing each 216 values stored in the LUT

with the implemented method and comparing each of them with the output generated from

MATLAB which stores the output of each possible case. Generated testbench first reads

every value of MATLAB’s output file and stores them in a memory array. Then, every α

value starting from 0 to 216 - 1 is given as input to one of the proposed methods and given

as an address to created memory array. If there is mismatch between the output of the

proposed method and the memory array, then error is displayed and verification stopped. If

there are no errors, generated Verilog files are taken to synthesize and implementation

processes. Flow diagram of the verification process is shown in Figure 4.4.

Figure 4.4. ConvLUT verification flow diagram

4.2. FOR TIV SIZE REDUCTION

For TIV size reduction methods there are three stages for the generation of the RTL codes.

First stage is using the tool for generation of multipartite method proposed in [9] which

generated VHDL code. Second stage is converting the VHDL code generated from the first

37

stage to a Verilog code. Final stage is the implementation of the proposed methods to the

TIV’s using generator script. Flow diagram of the whole design is shown in Figure 4.5.

Figure 4.5. TIV reduction flow diagram

38

4.2.1. VHDL Code Generation of Multipartite Method

Multipartite method proposed in [9], has a java file to generate required tables for some

functions. Outline of the program and possible function that can be generated from the

program is shown in Figure 4.6. “wI” number represents the intended number of bits in the

input (input precision of the given function), “wO” number represents the intended number

of bits in the output (output precision of the given function), and “m” number represents the

number of TO’s. For this thesis, as function sin (x) on [0, π/4) and 2x-1 on [0, 1) is selected.

Both, wI = 16, wO = 16 and wI = 24, wO = 24 pairs for sine function and wI = 16, wO = 15

and wI = 24, wO = 23 pairs for 2x-1function. For 16-bit input precisions m values 1, 2, and

3 are selected where, for 24-bit input precisions m values 1, 2, 3, and 4 are selected.

After pressing the “START” button shown in Figure 4.6, window shown in Figure 4.7

appears. This window shows Alpha, Beta, Gamma i, Beta i, number of guard bits, and the

error calculation results, which is explained in [9] in detail. The “VHDL” button in the

bottom generates the VHDL code of the given setup.

Figure 4.6. Tool for generating multipartite tables [15]

39

Figure 4.7. Example setup of the multipartite methods tool [15]

4.2.2. VHDL to Verilog Converter

Using a Perl script generated VHDL codes are translated to Verilog. For each module, the

first thing is gathering bitwidth of the inputs, outputs, and the inner signals. Then, for the

TIV and TO modules tables created with the “when” statements are read and change to

“case” statements in Verilog. For the XOR modules where addresses of TIV and TOs are

generated, Verilog representation of the module is written using the gathered bitwidth

information (no real transformation, modules are recreated). Then, for the transformation of

the top module, all gathered bitwidth information again used to create Verilog equivalent.

Finally, in top module, input for XOR modules and the instantiation of modules transformed

from VHDL representation to Verilog equivalent.

40

4.2.3. Implementation of Proposed Method for TIV

Initially, from the top module, design’s input, output, and guard bitwidths gathered. Then,

from the TIV module, TIV’s input and output bitwidth is parsed and the TIV values are

stored in an array. Then using the gathered values, difference values are produced, for mLUT

and dLUTs. According to the difference values produced for dLUTs output bitwidth is also

calculated. For each ∆ value of 2, 4, 8, and 16, mLUT and dLUTs are created. While dLUTs

are created, for each dLUT, count of each value in the dLUT is recorded to create histogram

of the values to use in VL method. After mLUT and dLUTs created, address generator

module is created using the gathered bitwidth information. Then, top module of the design

is generated, which will replace the TIV module in the original top module. During the

generation of new TIV top module instance of the CCT module and the data selection

module are added. Again, while the instance of CCT is created constant mentioned in Section

3.1 is concatenated to one of the values. Additionally, as mentioned before to decrease the

total number of additions every TOs output are given to the CCT. For the creation of CCT

module again scripts from RoCoCo project used, and edited to discard unnecessary bits

generated from CCT and discard the guard bits, since TO’s addition is also done in this

module. Since TO’s output is send to the new TIV module, top module is also updated to

direct these outputs to new TIV module. Finally, a wrapper is created to measure the latency.

For VL method Huffman codes are generated for each value using the histograms generated

during the dLUT creation. According to the Huffman encoding, decoder modules are

generated. Since for VL there are minor changes, like creating instance of decoders, top

module of the TIV is updated. For the case of PVL method everything is same but instead

of generating Huffman codes from the whole values in dLUTs, Huffman codes for every

possible MSB selection combination is generated and the one with the least bit count is

selected to be implemented.

4.2.4. TIV Verification

The verification of TIVs has two parts where the verification of the VHDL to Verilog

transformation is done, and the verification of the newly created method. For each

verification, first the VHDL codes generated from [15] is used to generate output values for

41

every input in input bit range. Then these values are first tested on the VHDL to Verilog

transformed files. If the outputs received from the VHDL code matches the outputs of the

transformed files, the Verilog files are used to create the proposed methods. Later, the

generated methods are tested with the same values that are received from VHDL files. If the

output of the generated new methods design matches the output of the VHDL files, new

methods is used for synthesis and implementation. Figure 4.8 shows verifications flow

diagram.

Figure 4.8. TIV reduction verification flow diagram

42

5. RESULTS

To evaluate our proposed methods several different FPGA devices are used for

implementation. For a regular function, LUT size reduction methods (FR-dLUT, FR-dLUT-

VL, FR-dLUT-ZF, FR-ddLUT, FR-ddLUT-VL, and FR-ddLUT-ZF), are synthesized using

Xilinx Vivado, on the board Xilinx Virtex-7 (more specifically XC7V2000T-FLG1925).

Where for TIV size reduction methods Xilinx ISE tool is used. For functions with 16-bit

precision, syntheses are done with the board Xilinx Spartan-6 (more specifically

XC6SLX45-3CSG324), but the functions with 24-bit precisions are synthesized using the

board Xilinx Artix-7 (more specifically XC7A100T-3CSG324) since designs do not fit the

previous board. All cases are synthesized for four ∆ values (2, 4, 8, and 16). In addition, all

used functions are synthesized with the ConvLUT method (without any alteration to LUT),

which is shown as ∆ = 0. Note that the LUTs (mLUT and dLUTs) are logic-synthesized

instead of instantiating memory blocks. This yield designs with smaller area for all methods

including ConvLUT.

For the implementation of the methods in the Vivado, synthesis options

Flow_AreaOptimized_High and Flow_PerfOptimized_High are selected for high area

optimization and high performance optimization, respectively. Since Vivado does not

provide latency of the implemented design a timing constraint is required as an input. For

every implementation timing constraint is changed multiple times. After every change,

implementation is repeated until the timing constraint is met with the minimum possible

point. On the other hand, for ISE only area optimization with high effort is selected, and

since ISE implementation provides the latency of the design only one implementation is

enough.

5.1. CONVENTIONAL LUT SIZE REDUCTION

Results presented in Table 5.1 are for sine function with 16-bit input and 16-bit output

precision. There are area and timing results for FR-dLUT, FR-dLUT-VL, and FR-dLUT-ZF

methods. With Flow_AreaOptimized_High and Flow_PerfOptimized_High Vivado

synthesis options, both area and timing optimization strategies are applied during synthesis.

Since for ConvLUT (where ∆ = 0) only one result is generated it is been placed under FR-

43

dLUT column. Between the proposed methods, FR-dLUT is better than others except for the

case ∆ is 4, where FR-dLUT-VLs area is the best. As compared to ConvLUT case, best area

of proposed methods is better by 58%, 61%, 68%, and 69%, but corresponding latency is

worse by 0%, 30%, 23%, and 30%, respectively for ∆ values 2, 4, 8, and 16 with

Flow_AreaOptimized_High setting. With Flow_PerfOptimized_High setting, best latency

of proposed methods is 60%, 67%, and 70% better in area and corresponding latencies are

9%, 19%, and 21% worse with respect to ConvLUT for ∆ values, 4, 8, and 16. When ∆ is 2

area is 60% better and timing is 2% better with respect to ConvLUT, in case of performance

optimization.

Table 5.1. Area and timing comparison for difference LUT methods for 16-bit sine

FR-dLUT FR-dLUT-VL FR-dLUT-ZF

Area-

optimized

Performance-

optimized

Area-

optimized

Performance-

optimized

Area-

optimized

Performance-

optimized

∆
of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

0 6949 4.4 7524 4.3

2 2921 4.4 3044 4.2 3210 5 3390 4.6 3193 6.1 3378 5.5

4 2731 5 3039 4.7 2712 5.7 2927 5.2 3703 10.5 3893 9.4

8 2235 5.4 2481 5.1 2330 6.2 2599 5.7 8359 21.6 8754 18.2

16 2182 5.7 2257 5.2 2593 6.4 2939 5.8 12315 22.1 13389 19.5

Results presented in Table 5.2 are again for sine function with 16-bit input and 16-bit output

precision. Implementation results of FR-ddLUT, FR-ddLUT-VL, and FR-ddLUT-ZF

methods are presented for both area and timing. During synthesis

Flow_AreaOptimized_High and Flow_PerfOptimized_High Vivado strategies applied

again. Case of ∆ = 0 is not included in the Table 5.2 since it is the same as in Table 5.1.

When compared between each other FR-ddLUT-VL is the best for area and FR-ddLUT is

the best for timing for all ∆ values. Compared to ConvLUT, FR-ddLUT-VL’s area is better

by 56%, 57%, 62%, and 63%, where its latency is worse by 18%, 36%, 55%, and 73%, for

∆ values 2, 4, 8, and 16 respectively (when synthesis setting is Flow_AreaOptimized_High).

FR-ddLUT has best latency and when compared with the ConvLUT it is 56%, 58%, 63%,

and 62% better in area while worse in latency by 2%, 19%, 37%, and 61% for ∆ values, 2,

4, 8, and 16 (when synthesis setting is Flow_PerfOptimized_High). For most of the case FR-

dLUT method is better than the VL and ZF methods due to logic used in these methods

occupies larger area in the design then the reduction done on the bit sizes of the LUTs.

44

Table 5.2. Area and timing comparison for difference of differences LUT methods for 16-

bit sine function

FR-ddLUT FR-ddLUT-VL FR-ddLUT-ZF

Area-

optimized

Performance-

optimized

Area-

optimized

Performance-

optimized

Area-

optimized

Performance-

optimized

∆
of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

of

LUTs

Latency

(ns)

2 3118 5.3 3309 4.4 3035 5.2 3200 4.9 3099 6.3 3284 6

4 3125 5.4 3146 5.1 3022 6 3106 5.6 3137 6.3 3269 6.2

8 2634 6.3 2748 5.9 2609 6.8 2652 6 2679 7.1 2822 6.7

16 2650 7.5 2864 6.9 2538 7.6 2837 7 2594 7.8 2772 7.1

When best results of dLUT methods and the best results of ddLUT methods are compared

in terms of area and timing with both Flow_AreaOptimized_High and

Flow_PerfOptimized_High Vivado strategies, it is seen that dLUT methods are better than

ddLUT. Since in area with Flow_AreaOptimized_High option, dLUT is better by 4%, 10%,

14%, and 14% with respect to ddLUT, where also the timing is better by 15%, 5%, 21%,

and 25% for ∆ values 2, 4, 8, and 16. Also in timing with Flow_PerfOptimized_High option

dLUT is better by 8%, 3%, 10%, and 21% than ddLUT, and with 5%, 8%, 14%, and 25%

better in terms of area respectively for ∆ values 2, 4, 8, and 16.

5.2. TIV SIZE REDUCTION

For TIV reduction of the multipartite method, Table 5.3 presents results for sine function

implementation results with 16-bit input and 16-bit output precision and 2x function

implementation results with 16-input and 15-bit output precision. For both functions three

m values 1, 2, and 3 are used. For each m value five ∆ values 0, 2, 4, 8, and 16 are

implemented where, ∆ = 0 is the case with no alterations. There are area and timing results

for FR-dLUT, FR-dLUT-VL, and FR-dLUT-PVL methods. During synthesis, high area

optimization is selected from ISE strategies. For each m value, ∆ = 0 case is reported in the

FR-dLUT column. As compared to original case, only for m = 1 case FR-dLUT is better for

both functions. For other m values, none of the proposed methods beats the area of the

original case for all ∆ values 2, 4, 8, and 16. Shaded cells are the best area or timing between

the three methods implemented for each m value. Cells with “-“ in FR-dLUT-PVL column

45

represents that best case of encoding is done when entries are not split which is the case of

FR-dLUT-VL.

Bar graphs in Figure 5.1 and Figure 5.2 show the results of ∆ = 0 case, best result of the FR-

dLUT, FR-dLUT-VL, and FR-dLUT-PVL. Best results of FR-dLUT, FR-dLUT-VL, and

FR-dLUT-PVL are compared with the ∆ = 0 case, improvements in areas are 27%, -12%,

and -24% for the sine function and 25%, -12%, and -24% for the 2x function, respectively.

Table 5.3. TIV size reduction results for 16-bit input precision sine and 2x functions

Function m ∆
FR-dLUT FR-dLUT-VL FR-dLUT-PVL

Area Time (ns) Area Time (ns) Area Time (ns)

Sine

wi:16

wo:16

1

0 346 9.20

2 254 10.72 308 12.61 282 11.48

4 248 11.35 398 14.24 270 12.29

8 310 12.56 553 15.30 339 14.46

16 435 13.90 486 15.77 463 15.61

2

0 188 9.97

2 210 10.35 231 11.15 219 10.87

4 245 12.45 247 11.67 245 11.23

8 320 12.84 317 13.34 320 12.84

16 449 12.60 448 12.83 - -

3

0 147 9.74

2 182 10.95 202 12.48 188 10.70

4 218 11.16 219 11.49 221 11.52

8 278 12.83 281 12.94 279 13.22

16 404 13.91 406 13.49 - -

2x

wi:16

wo:15

1

0 341 8.95

2 255 10.24 355 12.57 264 10.86

4 265 11.53 448 13.74 285 11.89

8 323 12.59 492 14.43 320 12.64

16 438 13.75 451 13.86 438 13.95

2

0 196 9.86

2 219 10.38 239 11.57 216 10.67

4 249 11.43 253 11.83 243 12.40

8 324 13.03 320 12.92 - -

16 446 13.75 442 16.13 - -

3

0 156 9.62

2 193 11.08 209 11.62 189 11.31

4 231 11.36 233 10.93 227 11.94

8 287 13.35 288 12.36 - -

16 422 13.84 416 13.61 - -

46

Figure 5.1. Bar graph of best 16-bit sine function results for TIV reduction

Figure 5.2. Bar graph of best 16-bit 2x function results for TIV reduction

During the testing of methods in higher precision functions, FR-dLUT method is

implemented on the TIVs of multipartite tables of sine with 24-bit input and 24-bit output

precision, and 2x function with 24-bit input and 23-bit output precision. Table 5.4 shows the

implementation results of sine function and Table 5.5 shows the implementation results for

2x function. Again ∆ = 0 case shown in the tables is the result of the original multipartite

methods implementation. Additionally, there is a ∆ = 1 row for each m value, which

represents the implementation results of 3T-TIV method in [16]. All syntheses are done with

ISE’s high area and high effort optimization selected during the synthesis stage. Last column

of the table shows the area saving percent of each method with respect to original

implementation. Shaded cells represent the best area and the best timing for each m values.

Due to large decrease in the area best timing is also achieved in the method implemented.

47

Figure 5.3 shows the bar graph of the Table 5.4 where Figure 5.4 shows the bar graph of the

Table 5.5.

Table 5.4. TIV size reduction results with FR-dLUT method for 24-bit sine function

m ∆ Area (# of LUTs) Time (ns) Area Saving %

1

0 54045 Can't Route 0

1 30472 16.49 43.62

2 30907 14.77 42.81

4 29402 15.62 45.60

8 28755 16.39 46.79

16 28461 17.51 47.34

2

0 4922 12.44 0

1 3817 12.18 22.45

2 3468 10.70 29.54

4 3291 10.45 33.14

8 3172 11.01 35.55

16 3575 12.27 27.37

3

0 3015 11.71 0

1 2572 11.59 14.69

2 2468 10.01 18.14

4 2379 9.80 21.09

8 2525 11.16 16.25

16 2797 11.21 7.23

4

0 2583 12.49 0

1 2156 10.87 16.53

2 2083 10.11 19.36

4 1934 11.29 25.13

8 2073 10.89 19.74

16 2345 11.51 9.21

48

Figure 5.3. TIV size reduction for 24-bit precision sine function result bar graphs

∆

∆

49

Table 5.5. TIV size reduction results with FR-dLUT method for 24-bit 2x function

m ∆ Area (# of LUTs) Time (ns) Area Saving %

1

0 57511 Can't Route 0

1 48156 17.92 16.27

2 45849 16.14 20.28

4 44484 16.95 22.65

8 43910 17.43 23.65

16 43765 18.45 23.90

2

0 5845 10.86 0

1 4970 12.15 14.97

2 4594 11.13 21.40

4 4283 10.98 26.72

8 4234 12.42 27.56

16 4545 12.37 22.24

3

0 3512 11.06 0

1 3235 12.21 7.89

2 3071 10.38 12.56

4 3004 10.71 14.46

8 3117 11.35 11.25

16 3267 11.59 6.98

4

0 2844 12.15 0

1 2515 11.42 11.57

2 2390 9.72 15.96

4 2325 10.27 18.25

8 2441 11.58 14.17

16 2345 11.51 17.55

As seen from the results of both 24-bit’s and 16-bit’s, sine and 2x functions, for higher

bitwidths FR-dLUT method has much more impact on the area and timing. For 16-bit results

there is only improvement when m = 1, however for 24-bit results there is more improvement

in m = 1 case then 16-bit results and there are improvements for every m values 1, 2, 3, and

4. Additionally, in 24-bit results timing is also improved where there is no such case in 16-

bit. Also, improvements in 24-bit results are better than the 3T-TIV methods improvement

for both functions.

50

Figure 5.4. TIV size reduction for 24-bit precision 2x functions result bar graphs

∆

∆

51

6. CONCLUSION AND FUTURE WORK

In this thesis, multiple novel microarchitectures are presented, called FR-dLUT, FR-dLUT-

VL, FR-dLUT-ZF, FR-ddLUT, FR-ddLUT-VL, FR-ddLUT-ZF, and FR-dLUT-PVL. Some

implemented on top the ConvLUT’s and some implanted on the TIV’s of multipartite tables

of functions. It is seen that these methods can replace a ConvLUT if the LUT corresponds

to a continuous function, i.e., a smooth function that has no sudden jumps. On the other hand,

these methods can replace the TIV’s of multipartite methods when high precision input or

output is required.

When methods applied on a ConvLUT; the results show that methods implemented with

ddLUT’s are worse than the methods implemented with dLUT’s. Due to the increased logic

in the circuits of ddLUT, decrease in the bit size of the tables are not observed on the overall

design. In the case of a sine function with 16-bit input and 16-bit output, for the best-case

scenario in terms of area FR-dLUT with ∆ = 16, reduces area by 69% with 28% penalty in

the latency compared to ConvLUT. Where for the lowest latency penalty, FR-dLUT with ∆

= 2, can reduce the area by 52% without any penalty in latency.

When the methods proposed in this thesis applied on the most state of the art methods for

LUT size reduction, which is using multipartite table method; results show that with smaller

bit precision there is not much improvement but for high bit precisions there is significant

improvements. For 16-bit input resolutions, results show that only for the case where m is 1

there is an improvement in the area with some loss in latency. Which is viable for the cases

where higher m values cannot be used (cannot tolerate the extra errors). For 24-bit input

resolutions, for all m values 1, 2, 3, and 4 proposed method improves area significantly.

Also, due to the improvement in the area latency of the overall design decreases despite the

extra logic used for the implementation. Finally, method used in 24-bit precision is compared

with the latest TIV size reduction method proposed in [16] and the improvement of the

method proposed in this thesis is better than the method proposed in [16].

As a future work, instead of testing two functions with the multipartite method, more

functions can be added to the test. Also, some methods used for ConvLUT is not

implemented for the TIV’s they can be tested with high precision TIV’s where they can yield

better results. Finally, instead of making everything fully random access, methods proposed

52

can be implemented for a semi-random access. Since most real-life applications requires

sequential access to functions, like inverted pendulum implementation, where there are no

sudden leaps between requested trigonometric function angles. Also, semi random access

method will be implemented on the TIV’s of the multipartite method, due to the existence

of TOs, the design will provide some semi random access to function values.

53

REFERENCES

1. P. Suganth, N. Jayakumar, and S. P. Khatri. A Fast Hardware Approach for Approximate,

Efficient Logarithm and Antilogarithm Computations. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 17.2:269-277, 2009.

2. L. J. Y. Lih, and C. C. Jong. A Memory-Efficient Tables-and-Additions Method for

Accurate Computation of Elementary Functions. IEEE Transactions on Computers, 62.5:

858-872, 2013.

3. P. D. Hyun, H.S. Ko, J. G. Kim, and J. D. Cho. Real Time Tectification Using

Differentially Encoded Lookup Table. Proceedings of the 5th International Conference on

Ubiquitous Information Management and Communication (ICUIMC), 47, 2011.

4. H. Unlu, M. A. Ozkan, H. F. Ugurdag, and E. Adali. Area-Efficient Look-Up Tables for

Semi-Randomly Accessible Functions, Proceedings of WSEAS Recent Advances in

Electrical Engineering, 171-174 2014.

5. D. D. Sarma, and D. W. Matula. Faithful Bipartite ROM Reciprocal Tables. Computer

Arithmetic, 1995, Proceedings of the 12th Symposium on. IEEE, 1995.

6. H. Hassler, and N. Takagi. Function Evaluation by Table Look-up and Addition.

Computer Arithmetic, 1995, Proceedings of the 12th Symposium on. IEEE, 1995.

7. M. J. Schulte, and J. E. Stine. Approximating Elementary Functions with Symmetric

Bipartite Tables. IEEE Transactions on Computers, 48.8: 842-847, 1999.

8. J. E. Stine, and M. J. Schulte. The Symmetric Table Addition Method for Accurate

Function Approximation. The Journal of VLSI Signal Processing, 21.2:167-177, 1999.

9. F. D. Dinechin, and A. Tisserand. Multipartite Table Methods. IEEE Transactions on

Computers, 54.3:319-330, 2005.

54

10. J. Detrey, and F. D. Dinechin. Multipartite Tables in JBits for the Evaluation of

Functions on FPGA. Diss. INRIA, 2001.

11. H. F. Ugurdag, O. Keskin, C. Tunc, F. Temizkan, G. Fici, and S. Dedeoglu. RoCoCo:

Row and Column Compression for High-Performance Multiplication on FPGAs. East-West

Design and Test Symposium (EWDTS), 98-101, 2011.

12. L. Dadda. Some Schemes for Parallel Multipliers. Alta Frequenza, 34:349–356, 1965.

13. C. Wallace. A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic

Computers, 1:14-17, 1964.

15. F. D. Dinechin, and A. Tisserand. The Multipartite Method for Function Evaluation,

http://www.ens-lyon.fr/LIP/Arenaire/Ware/Multipartite/ [retrieved 30 May 2017].

16. S. F. Hsio, P. H. Wu, C. S. Wen, and P. K. Meher. Table Size Reduction Methods for

Faithfully Rounded Lookup-Table-Based Multiplierless Function Evaluation. IEEE

Transactions on Circuits and Systems II: Express Briefs, 62.5:466-470, 2015.

17. D. Brooks, and M. Martonosi. Dynamically Exploiting Narrow Width Operands to

Improve Processor Power and Performance. High-Performance Computer Architecture,

1999. Proceedings. Fifth International Symposium on. IEEE, 13-22, 1999.

18. G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry.

Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches. In

Proceedings of the 21st international conference on Parallel architectures and compilation

techniques, ACM, 377-388, 2012.

