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ABSTRACT

EFFICIENT REALTIME IMAGE SCALING AND WARPING IN HARDWARE

Downscaling and warping are found in many image/video processing applications. This
thesis offers an area-efficient downscaler hardware architecture and an implementation of a
warping algorithm on hardware. The proposed downscaler is called “Output Domain
Downscaler (ODD)”. Both warping and ODD are demonstrated based on the implementation
of bilinear interpolation method. Same interpolation method used in a different setting
caused the difference between downscaler and warping implementations. Memory read and
write methods of both warping and downscaler are also implemented with a single general
purpose FIFO. FIFO size calculation tool and a scheduler tool were used when implementing
warping unit. Output domain downscaler is also combined with edge detection and
sharpening spatial filter. This thesis compares ODD to a straight-forward implementation of
the same combination of downscaling methods, which is called “Input Domain Downscaler
(IDD)”. IDD tries to output a new pixel of the downscaled video frame every time a new
pixel of the original video frame is received. However, every once in a while, there is no
downscaled pixel to produce. IDD sometimes also skips a complete row of input pixels.
ODD, on the other hand, spreads out the job of producing downscaled pixels almost
uniformly over a frame. As a result of that, output domain downscaler is able to do more
resource sharing, i.e., can do the same job with fewer arithmetic units, thus offers a more
area-efficient solution than input domain downscaler. In this thesis, output domain
downscaler architecture is implemented with a downscale ratio between 1 and 2 with no loss
of generality. That is because it is best to achieve larger downscale ratios of bilinear
interpolation by applying a downscale ratio between 1 and 2 multiple times.



OZET

DONANIM UZERINDE ETKILi GERCEK ZAMANLI GORUNTU OLCEKLEME
VE BUKME

Bir¢ok goriintii/video isleme uygulamasinda boyut kiiciiltme ve biikme bulunur. Bu tez, alan
etkili bir boyut kiigiiltiicii donanim mimarisi ve donanima biikme algoritmasi uygulamasi
sunacak. Sunulan algoritmanin ad1 “ODD (Output Domain Dowscaler)” dir. Hem biikme
hem de ODD gift dogrusal ara degerleme yontemi uygulamasina dayanarak gosterilmistir.
Ayni ara degerleme metodunun farkli sekillerde gerceklenmesi boyut kiigiiltme ve blikme
tiniteleri arasindaki farki olusturur. bilkkme ve kiigiiltme {initelerinin hafizadan okuma ve
yazma mantiklar1 benzer ve genel bir FIFO ile saglanimstir. Biikme iinitesi gergeklenirken
FIFO boyutu hesaplayici ve planlama olusturucu araglar kullanilmigtir. ODD, ayn1 zamanda
ayrit sezimi ve keskinlestirilmis uzamsal siizge¢ ile birlestirilmistir. Bu tez, ODD 1 ayni
birlesme yontemlerinin direk uygulayan ve adina “Input Domain Downscaler” dedigim,
yontem ile karsilagtiracak. Input domain downscaler, orijinal video karesinin yeni bir pikseli
her alindiginda kiigiiltiilmiis video karesinin yeni bir pikselini ¢ikarmaya ¢alisir. Bununla
birlikte, arada sirada, iiretecek kiigiiltiilmiis piksel olmaz. Input domain downscaler, ayrica,
bazen girdi piksellerinin bir satirmin tamamii atlar. Ote yandan, ODD, kiigiiktiilmiis
pikselleri bulma isini biitiin frame e yayar. Bunun bir sonucu olarak, ODD daha ¢ok kaynak
paylasimi yapabilir, rnegin; ayni isi daha az aritmetik birim ile yapar, bdylece Input domain
downscaler dan daha iyi alan etkili bir ¢6zliim sunar. Bu tez, ODD mimarisini, genel 6zellik
kayb1 olmaksizin 1 ile 2 arasinda bir oran ile uygulayacak. Bunun nedeni ¢ift dogrusal ara
degerlemenin daha biiyiik boyut kiiciiltme oranlari elde etmek i¢in bir¢ok kez 1 ve 2 arasinda

kiicliltme oran1 uygulamak en iyi yontemdir.
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1. INTRODUCTION

Image scaling and warping algorithms are widely used in various areas like computer vision
[1], medical devices [2], online videos [3], and image zooming [4]. Due to extensive usage,
efficient and low-cost implementations of image scaling and warping algorithms are crucial.
Image scaling can be in the form of either downscale or upscale. This thesis will focus on

downscaling and warping algorithms and their implementations.

1.1. BILINEAR INTERPOLATION

Bilinear interpolation is a low cost algorithm which makes interpolation calculations on
functions of two variables on a rectilinear 2D grid [11]. The idea is to perform linear
interpolation in x dimension, and then performing it in y dimension. Each step is linear but

the overall interpolation is quadratic rather than linear.

A simple 2D grid example is shown in Figure 1 there are four pixels shown in Figure 1.1
P(m,n), P(m+ 1,n), P(m+ 1,n), and P(m + 1,n + 1), two interpolated pixels on the
sides P(m,i) and P(m + 1,i), and one pixel between the two interpolated pixels P(j, i),

which is the downscaled pixel.

Note m denotes the column, n denotes the row index in 2D grid. The interpolated pixels are
calculated from Equation 1.1 and 1.2 (simplified to Equation 1.4 and 1.5), whereas the
downscaled pixel is calculated from Equation 2.3 (simplified to Equation 1.6). In Figure 1.1,
the distance between i and n (y dimension components of pixels) is shown as dy and the

distance between m and j (x dimension components of pixels) is shown as dx.
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Figure 1.1. Simple four pixel grid for bilinear interpolation
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Eq. 1.6 also rearranged in order to minimize the arithmetic operations. The final formula was
shown in Eq. 1.7. This rearrangement in addition to the simplification reduced the total

arithmetic calculations from 18 down to 9.

P(,i) = (((((P(m +1,n+1) - P(m+1,n)) x i) + P(m + 1,n))

_ (((P(m,n +1) = P(m,n)) x i) + P(m, n)>> x]_) (L.7)

+A

where 4 = ((P(m,n +1) — P(m,n)) X i) + P(m,n).

1.2. RELATED WORK

Downscaling is to find the downscaled pixels in an image or a frame according to the
respected ratio. The simplest downscaler in the literature is the Nearest Neighbor method
(NN) [5,6]. Nearest neighbor method is more area-efficient and easier to implement as
compared to bicubic Interpolation (Bcubl) [7] and Adaptable K-Nearest (AKN) [8] methods.
However, the drawback of nearest neighbor method is that the resulting image/frame
contains blocking and aliasing artifacts. Bilinear Interpolation method (Blinl) [9,10] is, on
the other hand, has a lower image quality than bicubic interpolation, but can handle the
blocking and aliasing artifacts. Bilinear interpolation is also simpler and easier to implement
than bicubic interpolation. Although, bicubic interpolation can produce high quality images
and handle the aliasing issues very well, because of its complexity and memory

requirements, its implementation is difficult and costly.

Chen [11] proposed the use of both an edge detection algorithm and Sharpening Spatial Filter
(SSF) to prevent information loss caused by bilinear interpolation in order to realize a
downscaler. Incorporating edge detection to bilinear interpolation enables the analysis of
local characteristics of pixels such that it can be determined whether there is a non-
homogenous color distribution or not. If there is, with the help of sharpening spatial filter,
the color characteristics of pixels is enhanced by considering three closest neighbor pixels,



acting like a high-pass filter [12]. This filter requires a three-line buffer to implement which
is technically costly in terms of memory. This issue was circumvented by using a simple

version of sharpening spatial filter [11].

This thesis also includes an implementation of an image warping algorithm. Both
downscaling and warping were used in an algorithm called optical flow in order to show the

real world applications of both warping and downscaling.

1.3. CONTRIBUTIONS OF THE THESIS

In this Thesis, a low cost, low memory downscale method called ODD and an
implementation of a warping algorithm was presented. Downscale method includes edge
detection system and a sharpening spatial filter with it. ODD method is superior to traditional
downscale methods in terms of register and LUT type areas. Presented method gains in the
order of 48% register type area and 21% LUT type area. Warping unit was implemented by
using a high level synthesis tool in order to reduce the design time and complexity. Usage
of this tool reduced the complexity and increased the design speed. Reducing design
compexity allowed the usage of floating point units instead of fixed point units, thus
increasing precision. A general purpose FIFO was used for both downscaling and warping

implementations. Another tool was used to calculate the FIFO size.



2. DOWNSCALING

This thesis proposes a novel downscaler which also combines bilinear interpolation with an
edge detection algorithm and sharpening spatial filter, but in a more area-efficient way. The
proposed downscaler in this thesis is called as “ODD” (Output Domain Dowscaler) and the
classical downscaler [11] called as “Input Domain Downscaler” (IDD). Proposed method
reduces the arithmetic units by rearranging bilinear interpolation pixel equations.
Furthermore, this thesis introduces a register bank which reduces the number of reads from
the line buffers.

For the evaluation purposes, a development kit which included a Virtex-7 FPGA was used
to implement both ODD and input domain downscaler with a frame rate of 90 frame per
second (FPS) and a resolution of 1920x1080.

2.1. EDGE DETECTION

Bilinear interpolation can cause information loss since it only takes the average weight of
the four closest pixels. In order to prevent the loss, this thesis used a linear sigmoidal edge
detecting technique [13,14]. The choice was made due to its relatively low cost. Using an
edge detection technique enabled the evaluation of the local characteristic of any pixel just
by looking at its four neighbor pixels. Edge detection technique permitted spotting edges in
the interpolated pixels. Sharpening spatial filter allowed an enhancement so that there is a

minimal information loss after the bilinear interpolation operation [15,16].

In order to find edges around a target interpolated pixel, P(j, i), its four neighbor pixels
P(m—1,i), P(m,i), P(m+ 1,i), and P(m + 2,i) should be taken into account. The
asymmetry parameter, E, for linear sigmoidal edge detection technique is given in Equation
2.8.

E=|P(m+1,0)—Pm—1,0)|—|P(m+2i) —P(m,i| (2.8)



If E is greater than 0, it means that the variation between pixels P(m + 1,i) and P(m — 1, i)
is greater than the one between pixels P(m + 2,i) and P(m,i). On the other hand, if E is
less than 0, it can be concluded that the variation between P(m + 2,i) and P(m, i) is greater
than P(m + 1,i) and P(m — 1,i). Finally, if E is equal to zero, this means that edges are
symmetric at both sides. After finding edges, the related pixels are sent to sharpening spatial
filter in order to enhance the edges and eliminate low-frequency noises. Pixels that have to
be used in order to calculate the edges location was shown in Figure 2.2,
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Figure 2.2. Pixel window for edge detection

2.2. SHARPENING SPATIAL FILTER

As previously asserted, sharpening spatial filter [12] acts like a high-pass filter. It can be
both used to enhance the edges and to eliminate low-frequency noises. It increases the

intensity of the center pixel by using its four neighbor pixels shown in Figure 2.3.



Figure 2.3. Four neighbor pixels

Increasing the intensity of the central pixel by looking at its four neighbor pixels requires at
least a three-line buffer memory. In order to reduce the memory requirement of sharpening
spatial filter, This thesis uses a method proposed by Chen [11] which requires only a two-
line buffer memory (can be reduced to 1 by using register bank). The last form of the
neighbor pixel requirement in a 2D pixel grid is shown in Figure 2.4, where only neighbors
of the left pixels on the interpolation window are shown. Similarly, the same operation can
be applied to all window pixels. Formulas for Chen’s method are shown in Equations 2.9,

2.10, 2.11, and 2.12 where S denotes the filter sensitivity coefficient.

o [o] o o _- ¢« o o o

e e o o l_‘ ¢ o o o

e o & & e o o & e

e & & o o e o o &

e & e+ & @ * & e &
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Figure 2.4. Neighbor pixels. (a) Neighbor pixels of the bottom centre pixel, (b) Neighbor
pixels of the top center pixel.
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2.3. REGISTER BANK

In order to implement edge detection, sharpening spatial filter and bilinear interpolation
operations, a total number of eight pixels are needed. Four of them are needed for bilinear
interpolation, P(m, n), P(m + 1,n), P(m,n+ 1),and P(m + 1,n + 1). Four more are
needed for edge detection, P(m,n), P(m — 1,n), P(m + 1,n), and P(m + 2,n), but two
of them (P(m,n) and P(m + 1, n)) are the same ones with bilinear interpolation pixels. Still
four more pixels are needed for sharpening spatial filter, which are (in case of top left center
pixel) P(m,n), P(m—1,n), P(m+ 1,n), and P(m,n+ 1) but again P(m,n) and

P(m + 1, n) are the same ones with bilinear interpolation pixels.

In total, eight pixels are needed to be available at all times in order to make the necessary
calculations. A register bank was used that includes eight registers in order to reduce the
total number of pixels to be read from the line buffer. Reading all eight of these pixels from
line buffers significantly increases the memory area requirement. To reduce this extra

requirement, a register bank was implemented.



Register bank working mechanism is depicted in Figure 2.5. The address calculator module
calculates all window pixels addresses for a specific area shown in the top level architecture
given in Figure 1.8. After calculating the addresses, in order to obtain necessary pixels, four
addresses are sent to the memory module. Note that instead of reading eight pixels from
memory, with the help of the register bank, the total number of reads is reduced to four. Four
pixels read from line buffers are written to R13, R14, R23, and R24, while the previous
values are shifted to R11, R12, R21, and R22 as shown in Figure 2.5. Proceeding like this,
all eight necessary pixels can be held in registers and start the module calculations with them

by only reading four pixels at a time from line buffers.

A

v Y
R11 | 4—| mi2 |e—| R13 fa—| R12 Lineg Buffer
| @
R |«—| Rz2 |+—| R23 |*—| gRos Line Buffer

\_/

Figure 2.5. Reading from line buffers and register shifting operation

2.4. ODD

The pixel window shift in input domain downscaler [17] is shown in Figure 2.6, whereas the
window shift in ODD is shown in Figure 2.7. Note that blue dots denote downscaled pixels
in both Figure 2.6 and 2.7. In Figure 2.6, the window is sliding towards to the right with
every cycle. This causes empty windows where no calculation can be made because there is
no downscaled pixel (no blue dot in the window) in them. In addition, as shown in Figure

2.6, when there is no downscaled pixel within a whole line, input domain downscaler still
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goes through those lines with empty windows but again, without doing any calculation. On
the other hand, ODD does not wait at empty pixel windows as opposed to input domain
downscaler because it shifts the window directly to the downscaled pixel location. As it can
be seen in Figure 2.7, ODD does not wait at empty windows and does not wait for a whole
empty line. In order to achieve such efficiency, more than just one line buffer was used.

Figure 2.6. Window shift in input domain downscaler

Figure 2.7. Window shift in ODD
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The square of downscale ratios has been taken to determine the output rate, because during
empty lines, our window just skips the whole line and jumps directly to the next downscaled
pixel location. However, this also means that there has to be pre-located pixels ready to be
used when window makes the big line jump. In order to satisfy this new prerequisite, line
buffer sizes are adjusted and stored enough input pixels before starting to do the window

calculations.

Finding the optimal size of the Block RAM (BRAM) required for the line buffers in ODD
is very important for area-efficiency and for overcoming under and over flow issues. If the
selected BRAM size is less than it is required, that will cause an overflow and the design
will not operate properly. If the operation is stalled when there are not enough number of
pixels available, the overflow issue is resolved but this causes unnecessary waiting, thus
slows down the downscaling process and induces inefficiency. If the selected BRAM size is
greater than it is required, the functionality will not be affected, but it will cause unnecessary
memory usage and thus more area will be consumed. A mathematical formula should be
deployed in order to calculate optimum line buffer size, however making this calculation is

very complex and costly.
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Figure 2.8. Dataflow diagram of ODD with filters

Therefore, a program that simulates the movement of each pixel window in Perl was

implemented. This tool provides the exact size needed to use for line buffers in ODD.

Skipping empty windows allows to ‘“share resources” so that a more area-efficient
downscaler can be offered, ODD. In ODD, edge detection, sharpening spatial filter and
bilinear interpolation calculations are carried out in more than a single cycle because of
resource sharing. The dataflow diagram of the downscaler with filters is presented in Figure
2.8. The difference between input domain downscaler and ODD in terms of resource sharing
is shown in Figure 2.9 and 2.10 by explaining the resource schedules in input domain

downscaler and ODD, respectively.
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mQ0 =s0
ml=sl

* yCurrent
* yCurrent

a0 =P(m,n) + mO
al=P(m+ln)+ml

s2=al-

m2=s2

a0
* uCurrent

az=al0+m2
Qut=a2

x1 =P(m+1,n) - P(m-1,n)
x2 = P(m+2,n) - P(m,n)

x3=x1-x2

x4 = S*P(m,

n)

X5 = -P(m+1,n) - P(m,n+1)
X6 = -P(m-1,n) + x5

X7 = x4 + x6
X8 = S*P(m,

n+1)

X9 = -P(m+1,n+1) - P(m,n)

x10 = -P(m-

1,n+1) + x9

x11=x8 + x10

Figure 2.9. Schedule of IDD for 1 input pixel rate and 3 output pixel rate
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Edge Detector

Edge Detector & SFF Calculations

Cycle|Add/Sub0 x1 =P(m+1,n) - P(m-1,n)
0[x1; x2 = P(m+2,n) - P(m,n)
1|X2¢ x3 =x1 - x2
2|x3¢ x4 = S*P(m,n)

SFF x5 =-P(m+1,n) - P(m,n+1)

Cycle|Add/Sub1/Add/Sub2 |Mult0 X6 =-P(m-1,n) + x5
0[x5¢_1 X9_1 X4e_q X7 = X4 + X6
1|X6¢_1 x10¢_q X8¢_1 X8 = S*P(m,n+1)
2(X7 1 x11¢_4 X9 = -P(m+1,n+1) - P(m,n)

Blinl x10 =-P(m-1,n+1) +x9

Cycle|Add/Sub3|Add/Sub4 |Multl x11 =x8 +x10
0[S0¢ s1¢ mle_s | Blinl Calculations |
1@0—  |S2t-10 |MZ¢_14 sO = P(m,n+1) - P(m,n)
2|ali_s a2t_16  |MO0¢_4 s1=P(m+1,n+1) - P(m+1,n)

mO =s0 * vCurrent
m1 =s1 * vCurrent
a0 =P(m,n) + mO
al=P(m+1,n) +m1l
s2=al-a0

m2 =s2 * uCurrent
az=al0+m2
Out=a2

Figure 2.10. Schedule of ODD for 1 input pixel rate and 3 output pixel rate

In Figure 2.8, the edge detection, sharpening spatial filter, and bilinear interpolation regions

of the downscaler are shown in blue contours. In input domain downscaler, sharpening

spatial filter first calculates the enhanced values of all four window pixels and then chooses

between them by looking at the information shown in the “ctr” (control) block sent as the

output of the edge detection. However, instead of doing these calculations and choosing

between four pixels, ODD puts multiplexers before sharpening spatial filter so that it

calculates only the enhanced value of the pixels to be used in bilinear interpolation sub-

module. By doing like this, ODD eliminates two multiplications and six add/sub arithmetic

units.
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In input domain downscaler, total number of arithmetic units are thirteen add/sub (three from
edge detection, six from sharpening spatial filter, six from bilinear interpolation) and four
multipliers (two from sharpening spatial filter, two from bilinear interpolation) as shown in
the resource schedule given in Figure 2.9. In ODD, total number of arithmetic units are only
five add/sub (one from edge detection, two from sharpening spatial filter, two from bilinear
interpolation) and two multipliers (one from sharpening spatial filter, one from bilinear
interpolation) as shown in Figure 2.10. Having more than one cycle (in this case three cycles)
to do the calculations made resource sharing possible and with resource sharing total number

of arithmetic units was reduced to seven from thirteen.

Original
Witnd oy
Input Pixels Window Pixek \
— Pixels | Final Window Pixels
Write Enable " Recier ———
% Memory Bank
Write Address - » —
—_— Pixel
— Enabie "
:%3 -
Original
= E Wiﬂm Edge
-] o i Control
il = Pixels Sional
[#5 [+ 18
Address Spatial Edge ) Ot
Calculator Filter Detector Interpolation |—w

Filtered

Wndow Edge

Pixels Control
\—F Sigm] rF 3 rF 3

Final Window Pixels

Figure 2.11. Top-level view of ODD

Schedules of all calculations can be seen in Figure 2.9 and 2.10, all calculations are shown
under calculations sections. Which arithmetic unit is doing these calculations and when, are
shown under edge detector, sharpening spatial filter, and bilinear interpolation sections. Note
that pipelining is also used in ODD. Note m denotes the column and n denotes the row 2-D
pixel index. In Figure 2.9 and 2.10, k denotes the one-dimensional pixel index. For example,
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x1k is x1 calculation on the k™ pixel and x1x.1 is x1 calculation on the (k-1)" pixel in one-

dimension.

The top module view of ODD is presented in Figure 2.11. Input pixels come to the memory
sub-module with write address and write enable flag. If incoming input pixels are valid, write
enable signal becomes high and data is written into the indicated address. While reading
pixels from the memory, address calculator sub-module comes into place. It calculates the
current location of the window and sends necessary address information to the memory sub-

module so that correct window pixels can be read from the memory.

When the pixels read from the memory sub-module they are written in the register bank in
a way mentioned in Chapter 2. After all the window pixels are written into registers,
sharpening spatial filter begins to make its calculations. Then, the edge detector sub-module
looks at the P(m — 1,n), P(m,n), P(m + 1,n) and P(m + 2,n) pixels and determines the
location of the edge, then finally sends this information to multiplexers. With the information
from the edge detector sub-module multiplexers choose which pixels should go through and
which ones should not be used. For example, if the edge is on the right side, pixels to the
interpolation sub-module will be P(m,n), P(m,n+ 1), P’(m+ 1,n), and P’(m + 1,n +
1). After obtaining chosen pixels from both SSF and register bank, the interpolation sub-

module starts its calculations and computes the final downscaled output pixel.

2.5. SYNTHESIS RESULTS

For testing, a development kit which included a Virtex-7 FPGA was used to implement both
ODD and IDD. The frame rate was 90 frame per second (FPS) and the resolution was
1920x1080. As mentioned before, ODD gains from resource sharing by stretching the time
to make calculations that the input domain method does not. The latter shifts the window
with every cycle and has to make all calculations in one cycle time. The total arithmetic units
needed for both ODD and IDD are given in Table 2.1, 2.2, 2.3, and 2.4.

As shown in Tables 2.1, 2.2, 2.3, and 2.4, ODD always uses less arithmetic units than IDD
because of resource sharing. Total register and LUT numbers used by each arithmetic unit
for Virtex-7 FPGA are given in Table 2.5. By using these numbers and adding the area

occupied by line buffers, total area for each method was calculated. For 1920x1080
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resolution frames with 90 FPS, the total LUT number of line buffers was 2192 for ODD and
total LUT number of line buffers was 1092 for IDD. After adding these numbers to the total

area, total register and LUT numbers used by each method are given in Table 2.6.

As seen in Tables 2.6 and 2.7, register gains are not changing when line buffer sizes are
changed. This is because line buffers are only using LUT type area and not register type
area. Thus only LUT type area is changing when line buffer size changes. When input rate
increases, IDD can also start to make resource sharing. That is why in input rate: 2 output
rate: 6 case output domain method starts to fall back in terms of LUT type area although it
is still ahead in terms of register type area. Another reason is that ODD requires more line
buffer memory area than does input domain method, but there can be some cases where input
pixel method uses the same line buffer size as output pixel method, as in the case seen in
table VII. ODD has a significant lead against input domain method in terms of both LUT

and register type areas.

|| IDD || ODD
ICT/OCT I 1/3 I 2/6 I 1/3 I 2/6

||ED \ SSF|BlinI|T0t. ||ED|SSF|BlinI|T0t.||ED|SSF|BIinI|T0t. ||ED|SSF|BlinI|T0t.
FP Adders -l -4 4 -] - 2 12 - - 2 2 -1 - 1 1
FP Multipliers || - | - [ 2 | 2 || - | - 1 -1 - 2 12 -1 - 1 1
Int. Adders 316 - 1923 -S|ty 2 - 1311 -] 2
Int. Multipliers || - | 2 - 21 -1 1 - 1 - 2 - 2| - - 1
Datapath LUTs 4499 2276 2215 1550
Datapath Flops 3797 2012 1958 1294
Linebuf Mem. || 15392 bits
FIFO Mem. || 37952 bits || 17072 bits
Memory LUTs 3569 2172
Memory Flops 182 98
Total LUTs 8068 5845 4387 3722
Total Flops 3979 2194 2056 1392

Figure 2.12. General comparison of ODD and IDD



Table 2.1. Total arithmetic units of ODD
for input rate: 1 output rate: 3 ratio: 1.8

Edge Detector | SSF | Blinl
Floating Point (FP) Adder None None | 2
FP Multiplier None None | 2
Integer Point (IP) Adder 1 2 | None
IP Multiplier None 2 | None

Table 2.2. Total arithmetic units of input domain downscaler
for input rate: 1 output rate: 3 ratio: 1.8

Edge Detector | SSF | Blinl

FP Adder None None 4
FP Multiplier None None | 2
IP Adder 3 6 None

IP Multiplier None 2 | None




Table 2.3. Total arithmetic units of ODD
for input rate: 2 output rate: 6 ratio: 1.8

Edge Detector | SSF | Blinl
FP Adder None None | 1
FP Multiplier None None | 1
IP Adder 1 1 | None
IP Multiplier None 1 | None

Table 2.4. Total arithmetic units of input domain downscaler
for input rate: 2 output rate: 6 ratio 1.8

Edge Detector | SSF | Blinl

FP Adder None None 2
FP Multiplier None None | 1
IP Adder 2 3 None

IP Multiplier None 1 | None




Table 2.5. Resource requirement of arithmetic units
for Virtex-7 FPGA

IP IP

Adder | Multiplier

FP FP

Adder | Multiplier

Register

27 42

610 615

LUT

37 104

582 807

Table 2.6. Area results of input domain downscaler and ODD

at 1920x1080 resolution and 90 FPS when input domain uses less line buffer

IR:10R: 3

Ratio: 1.8

IR:20R: 6

Ratio: 1.8

IDD

Total Registers: 3797

Total LUTSs: 5575

Total Registers: 2012

Total LUTSs: 3352

ODD

Total Registers: 1958

Total LUTSs: 4387

Total Registers: 1294

Total LUTSs: 3722

Total Gain

ODD

Register Gain: 48%

LUT Gain: 21%

Register Gain: 35%

LUT Gain: -9%

20



Table 2.7. Area results of input domain downscaler and ODD
at 1920x1080 resolution and 90FPS same line buffer

IR:10R: 3

Ratio: 1.8

IR:20R: 6

Ratio: 1.8

IDD

Total Registers: 3797

Total LUTSs: 6671

Total Registers:

Total LUTSs:

2012

4448

ODD

Total Registers: 1958

Total LUTSs: 4387

Total Registers:

Total LUTSs:

1294

3722

Total Gain ODD

Register Gain: 48%

LUT Gain: 34%

Register Gain:

LUT Gain:

35%

16%

21
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3. WARPING

Warping module is one of the biggest modules in optical flow. It takes the next frame
prediction input sent from iteration module (iteration module was explained in the “Iteration
Module” section) and creates a new image by using this input. After creating this next frame
prediction, it compares this images pixels one by one with the original next frame and finds
out differences (errors made by prediction). After finding out the differences, warping
module sends this information to iteration module so that the next prediction made by

iteration module will be more accurate.

In order to find differences between frames, warping module requires two frames to work
with. First one is called current frame or image 1 which was stored in the FPGA’s local
RAM. Second one is called next frame or image 2 which is the upcoming frame, the frame
after the current frame. By using this two frames and the pixel movement prediction gained
from iteration module warping module finds out the differences and sends this data to
iteration module. How warping module works was explained step by step below:

i)  Current frame and upcoming frame was taken in pixel by pixel.

i) U (X vector of pixel movement prediction) and V (Y vector of pixel movement

prediction) vector predictions made by iteration was taken in.

iii) Module starts applying pixel movement prediction vectors to upcoming frame in

order to find out where those pixels were came from.

iv) First checks if those pixels were came from outside of the images boundaries,
boundary check process can be seen in Figure 3.1-2. If pixels came from outside of

the boundaries module will act like they came from the edge of the image.

v) After finding out where the pixels from upcoming frame came, warping module
finds out four neighbouring pixels around that area to calculate that pixels RGB

value.

vi) After finding out surrounding four pixels bilinear interpolation process begins and

calculates the RGB value of the pixel.
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vii) After the pixels value was calculated warping module compares that predicted
pixels value to its actual value which is already known since current frame was
stored in the RAM.

viii) Warping module sends the difference between predicted pixel and actual pixel to

iteration module so that it can make its next prediction more accurate.

3.1. BOUNDARY CONDITIONS

X=1
Y=1
e o o o o
U=1.78
e o e e e o _.5¢
&3
® o o o o o

Figure 3.1. Predicted pixel came from inside of the image boundaries

As seen in Figure 3.1 iteration module predicted that pixel came from (Xpredicted =

Xactuar + U =1+ 1.78 = 2.78) and (Ypreaictea = Yactua +V = 1 + 1.56 = 2.56). So it

can be seen that predicted pixel came from inside of the image boundaries.
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Figure 3.2. Predicted pixel came from outside of the image boundaries

As seen in Figure 3.2 iteration module predicted that pixel came from (Xpredicted =

Xactuar + U =1+ 1.78 = 2.78) and (Yyreqictea = Yactuar +V =1 — 1.56 = —0.44). So
it can be seen that predicted pixel came from outside of the image boundaries. In this
situation warping module changes the coordinates of the pixel as if it came from the edge of

the image. So pixels new coordinates will be X =2.78 and Y = 0.

Another key point about warping modules boundary conditions is, it has a limited memory
support. Cost holding a full frame in a block ram would be very high, because of that,
warping module implemented in a way so that it could support different memory sizes. As
mentioned before, both warping and downscaling uses a very similar generic FIFO structure,
warping unit currently supports total of nine full frame rows in its FIFO. Holding nine row
means warping unit can support and accurately calculate motion vectors between plus and
minus four. Increasing the number of frame rows supported would mean increasing the total
block ram usage, likewise decreasing the number of frame rows supported would mean

decreasing the total block ram usage.
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3.2. MODULE CONNECTIONS

After checking the boundary conditions, warping module calculates the predicted pixels
value since its value is unknown because it was predicted as coming not from a legit pixel
location but from a location in between pixels. There are several methods available to
calculate such unknown pixel values as mentioned before in downscaler module section of
the thesis. Best solution is to use bilinear interpolation algorithm to use unknown pixels four
neighbouring pixels to calculate its value. All the references and explanations about bilinear

interpolation method can be found in the bilinear interpolation section of the thesis.

—_—
_.. .
— Interpolation |[—*
’ E Tt
rame
Frame 1 Comparator
i - 5
U Pixe_l Frame 2
—*| Location |_
Vv Finder
1 Iy
L ) —
* | Interpolation |[—* . Y .
Dimension
Error |
. ) Calculator
rame 2
—_— [
Isqrt Isqrt
Boundary —_— | Calculator
Condition — )
—__,| Interpolation [~ X .
Checker —_— Dimension |=—
Error
Calculator
2 —_—
Frame 2 -

Figure 3.3. Block diagram of the warping module

Top module diagram of the warping module can be seen in Figure 3.3. As shown in the
figure, after the bilinear interpolation operation completed and value of the predicted pixels
was calculated warping module starts comparing the predicted pixels value with actual pixels

value so that prediction error can be determined and sent to the iteration module.

Warping module compares the values of the actual pixel and predicted pixel in three ways.

First way is to directly subtract the value of the predicted pixel from actual pixel, if the result
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Is higher or smaller than zero that means there is an error. But if the result is equals to zero
that means prediction was correct and there is no error. Second way is increasing the
predicted pixel’s x coordinate value by zero point five, calculating the value of the pixel by
using bilinear interpolation. Then decreasing the pixels x coordinate value by the same value
zero point five and calculating its new value again by using bilinear interpolation and
calculating the deviation between them. Third way is to do exactly same thing in second
way, but this time increasing and decreasing the y coordinate instead of the x coordinate and
calculating the deviation. After all the calculations are completed, warping module sends
error information to iteration module. Connection between the warping module and the
iteration module can be seen in Figure 3.4.

Read, Empty, Data Write, Full, Data
Signals Signals

FIFO
Image 1

FIFO ]
RAM N 1 W
. FIFO —
Image 2 Other
FIFO > . ITERATION Iter
W Iter
Warging | — [ I Fros
) FIFO )
[ FIFO
Igradsqrt
FFO | — —
H v
T mro .

Figure 3.4. Connection diagram of warping and iteration modules

Warping module and iteration modules are connected to each other by using FIFO (first in
first out). Reason behind this is because they can be work in different speeds. For example
if warping module gives output data in every ten cycles but iteration module takes input data

in twenty cycles, connecting them to each other without using fifos causes information loss.
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A mathematical formula should be deployed in order to calculate optimum line buffer size,
however making this calculation is very complex and costly. Therefore, a program that
simulates the movement of each pixel window in Perl was implemented. This tool provides
the exact size needed to use for line buffers in ODD. Working principle of a FIFO was shown

in Figure 3.5.

3.3. FIFO

Input Data Output Data
—_— —_—

Data Enable FIFO Empty
—_— —_—

FIFO Full FIFO Read Enable
+—— S ]

Figure 3.5. FIFO connections

In Figure 3.5 input data port is the port which transmits input data to fifo, data enable port
tells the FIFO if the incoming data is legit or not, FIFO full port tells the user of the FIFO if
the FIFO is full or not. Output data port is the exit port of the FIFO, FIFO empty port tell the
user if the FIFO is empty or not, thus if the data user reading was legit or not, finally read

enable port tells the FIFO if any data has been read from FIFO.

3.4. ITERATION MODULE

Iteration module predicts the movement of the pixels between video frames. It uses two
frames to compare with each other and makes a prediction about how fast pixels changed
their locations and in which direction. This thesis focuses mainly on downscaler, warping
and image fusion algorithms, iteration algorithm will be explained shortly in order to clarify

how optical flow algorithm works. The module called iteration because the calculations in
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this module iteratively repeat themselves in order to obtain more accurate pixel movement
predictions. More iterations means more accurate predictions.

Iteration module takes u, v, w and p vectors as input
e U: Optical flow vector of the related pixel in x coordinate
e V: Optical flow vector of the related pixel in y coordinate
e W: Auxiliary optical flow vector of the related pixel

e P: Gradients of u,v and w
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Update P
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Normalise P
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|

Thresholding
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U, v, w.p
Warping
Module

Figure 4.6. Iteration module block diagram

As seen on Figure 3.6 iteration module constantly updates its u, v, w and p coefficients at
the same time sends u and v vectors to warping module so that warping module can calculate
the estimate error made by iteration module. All calculations in iteration module was made
by using floating point units. Area and performance results of the iteration module can be

seen in Table 3.1.



30

Table 3.1. Area and performance results of iteration module

Total logic elements 300.595

Total memory requirement | 18.356

Maximum frequency 215 MHz

3.5. SYNTHESIS RESULTS

All calculations in warping module was done with fixed point calculation units. Total
number of adder/subtractor and multiplier was shown in Table 3.2. Total area and

performance results of warping module was shown in Table 3.3.

Table 3.2. Total number of adder/subtractors and multipliers used in warping module

Calculation unit | Total Number

Adder/Subtractor 9

Multiplier 2




Table 3.3. Total area and performance results of warping module

Total logic elements 8,840/ 149,760 (<7 %)

Total register number 15,488

Total memory requirement | 262,274 / 6,635,520 (<7 %)

Total 9-bit multipliers 421720 (<8%)

Maximum frequency 183 MHz
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4. TEST AND VERIFICATION ENVIRONMENT

In this thesis, for each of the proposed methods (downscaler, warping and iteration) a
dedicated test and verification environment was used in order to check whether the
algorithms were working as desired or not. All algorithms was implemented in MATLAB
environment first, to check if they are working and to obtain a correct data for later
comparison with FPGA output. First step of testing was to write random numbers in the
input FIFOs of all algorithm modules and to check if calculations inside the modules was
made correctly. Second step of testing was sending an image (single frame) data to module
input FIFOs and check if there was a meaningful image (frame) at the output. Finally the

third step was to sending continuous video and check if the output frames was correct.

All the random data, image and video comparisons was made with the data provided by
MATLAB implementation of the algorithms. Input data of the module FIFOs was sent from
a computer with peripheral component interconnect express (PCle) bus. After modules made
their calculations and generated the manipulated frames, output data was sent to the

computer, again by using PCle bus.

In computer, all the comparisons between MATLAB data and the FPGA data was made in
a verification environment written with java. This environments duty was to compare the
results from MATLAB and FPGA and to create a report summary file so that the differences
between MATLAB data and FPGA data can be seen clearly. Flow chart of the verification

flow can be seen in Figure 4.1.
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Generate test data
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lNo
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output data with
matlab data

Finish

Figure 4.1. Test and verification environment flow chart
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Test cases for both warping and downscaler module can be seen in Figures 4.2-3. In case of
downscaler, in first step, data taken from video frame was written into the input FIFOs of
the downscaler module by using PCle bus. In second step downscaler module makes its
calculations and starts to generate its output data. In third step output data was written into
the output FIFOs of the downscaler module and sent to computer by using PCle. In last step
verification environment starts to compare the data came from FPGA with the data came
from MATLAB and generates a result summary report. The same steps and the same
verification environment was also used on warping and iteration modules. Only the inputs

and outputs were different.

Video [Video Video DS DS DS
frame PCle [frame | Input |frame | Downscaler |frame| Output [frame| PCle |frame| Verification
bus | FIFOs module "| FIFOs "] bus *| environment

Figure 4.2. Block diagram of downscaler verification process

Frame 1 Frame 2

U U Error Error Error
Iteration | Input Warping ivector| Output |vector] PCle |vector| WVerification
module V | FIFOs | V module "| FIFOs "| bus *| environment

Figure 4.3. Block diagram of warping verification process
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5. CONCLUSION

In this thesis, a low cost, low memory downscale method called ODD and an implementation
of a warping algorithm was presented. Downscale method includes edge detection system
and a sharpening spatial filter with it. |1 have shown that output domain method is superior
to traditional downscale methods in terms of register and LUT type areas. Presented method
gains in the order of 48% register type area and 21% LUT type area. These values were
obtained for 1920x1080 resolution, 90 FPS and 1-3 input output ratio. Warping unit was
implemented by using a high level synthesis tool called MAFURES [18]. Usage of this tool
reduced the complexity and increased the design speed. Also another tool was used to
calculate the fifo sizes between the warping and the iteration modules. Both downscaling
and warping units shared the bilinear interpolation method as their core pixel value
calculator. And both downscaler and warping units shared the similar general FIFO structure
for memory read and write operations. Resource sharing, loop unrolling and pipelining
design methods was used for both downslcaing and warping units in order to reduce the total

arithmetic unit usage and costs.

In the future, further optimizations can be made to both downscaling and warping
implementations in order to reduce the total area required and increase the maximum
frequency. By changing the total pixel movement coverage, total area requirement of the
warping unit can be reduced. And by modifying the window skip method, total area

requirement of the ODD can be also reduced.



36

REFERENCES

1. H. Kim, Y. Cha, and S. Kim. Curvature Interpolation Method for Image Zooming. IEEE
Transactions on Image Processing, 7: 1895-1903, 2011.

2. T. M. Lehmann, C. Gonner, and K. Spitzer. Survey: Interpolation Methods in Medical
Image Processing. IEEE Transactions on Medical Imaging, 11: 1049-1075, 1999.

3. S. Tao, J. Apostolopoulos, and R. Guerin. Real-Time Monitoring of Video Quality in IP
Networks. IEEE Transactions on Networking, 5: 1052—-1065, 2008.

4. R. Lukac, K. N. Plataniotis, and D. Hatzinakos. Color Image Zooming on the Bayer
Pattern. IEEE Transactions on Circuits and Systems for Video Technology, 11: 1475-1492,
2005.

5. V. Caselles, J. M. Morel, and C. Sbert. An Axiomatic Approach to Image Interpolation.
IEEE Transactions on Image Processing, 3: 376-386, 1998.

6. E. Meijering, K. J. Zuiderveld, and M. A. Viergever. Image Reconstruction by
Convolution with Symmetrical Piecewise nth-Order Polynomial Kernels. IEEE

Transactions on Image Processing, 2: 192-201,1999.

7. M. A. Nuno-Maganda and M. O. Arias-Estrada. Real-Time FPGA-Based Architecture for
Bicubic Interpolation: An Application for Digital Image Scaling. 2005 International
Conference on Reconfigurable Computing and FPGAs (ReConFig'05), Puebla City, 2005.

8. K. S. Niand T. Q. Nguyen. Adaptable k-Nearest Neighbor for Image Interpolation. IEEE

International Conference on Acoustics, Speech and Signal Processing, 1297-1300, 2008.

9. K. Jensen and D. Anastassiou. Subpixel Edge Localization and the Interpolation of Still

Images. IEEE Transactions on Image Processing, 3: 285-295, 1995.



37

10. W. Y. V. Leung, P. J. Bones and R. G. Lane. Statistical Interpolation of Sampled Images,
Optical Engineering, 8: 547-553, 2001.

11. S. L. Chen. VLSI Implementation of an Adaptive Edge-Enhanced Image Scalar for Real-
Time Multimedia Applications. IEEE Transactions on Circuits and Systems for Video
Technology. 9: 1510-1522, 2013.

12. S. Schaller, J. E. Wildberger, R. Raupach, M. Niethammer, and K. Klingenbeck-Regn.
Spatial Domain Fltering for Fast Modification of the Tradeoff Between Image Sharpness
and Pixel Noise in Computed Tomography. IEEE Transactions on Medical Imaging, 7: 846—
853, 2003.

13. P. Y. Chen, C. Y. Lien, and C. P. Lu. VLSI Implementation of an Edgeoriented Image
Scaling Processor. IEEE Transactions on Very Large Scale Integrated Systems, 9: 1275—
1284, 2009.

14. G. Ramponi. Warped Distance for Space-Variant Linear Image Interpolation. IEEE
Transactions on Image Processing, 5: 629-639, 1999.

15. G. Priyaand G. Vairavel. VLSI Implementation of Image Scaling processor. Electronics
and Communication Systems (ICECS), 2014 International Conference on, Coimbatore,
2014.

16. S. L. Chen, H. Y. Huang and C. H. Luo. A Low-Cost High-Quality Adaptive Scalar for
Real-Time Multimedia Applications. IEEE Transactions on Circuits and Systems for Video
Technology, 11: 1600-1611, 2011.

17. M. Biiylikmihei, V. E. Levent, A. E. Guzel, O. Ates, M. Tosun, T. Akgiin, C. Erbas,
S. G. Ugurdag, H. F. Ugurdag. Output Domain Downscaler. In: Czachorski T., Gelenbe
E., Grochla K., Lent R. (eds) Computer and Information Sciences. ISCIS 2016.

Communications in Computer and Information Science, vol 659. Springer, Cham, 2016



38

18. A. E. Guzel, V. E. Levent, M. Tosun, M. A. Ozkan, T. Akgun, D. Biiyiikaydin, H. F.
Ugurdag. Using high-level synthesis for rapid design of video processing pipes. In East-
West Design and Test Symposium (EWDTS) IEEE, 10: 1-4, 2016.



