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ABSTRACT 

 

 

EFFICIENT REALTIME IMAGE SCALING AND WARPING IN HARDWARE 

 

Downscaling and warping are found in many image/video processing applications. This 

thesis offers an area-efficient downscaler hardware architecture and an implementation of a 

warping algorithm on hardware. The proposed downscaler is called “Output Domain 

Downscaler (ODD)”. Both warping and ODD are demonstrated based on the implementation 

of bilinear interpolation method. Same interpolation method used in a different setting 

caused the difference between downscaler and warping implementations. Memory read and 

write methods of both warping and downscaler are also implemented with a single general 

purpose FIFO. FIFO size calculation tool and a scheduler tool were used when implementing 

warping unit. Output domain downscaler is also combined with edge detection and 

sharpening spatial filter. This thesis compares ODD to a straight-forward implementation of 

the same combination of downscaling methods, which is called “Input Domain Downscaler 

(IDD)”. IDD tries to output a new pixel of the downscaled video frame every time a new 

pixel of the original video frame is received. However, every once in a while, there is no 

downscaled pixel to produce. IDD sometimes also skips a complete row of input pixels. 

ODD, on the other hand, spreads out the job of producing downscaled pixels almost 

uniformly over a frame. As a result of that, output domain downscaler is able to do more 

resource sharing, i.e., can do the same job with fewer arithmetic units, thus offers a more 

area-efficient solution than input domain downscaler. In this thesis, output domain 

downscaler architecture is implemented with a downscale ratio between 1 and 2 with no loss 

of generality. That is because it is best to achieve larger downscale ratios of bilinear 

interpolation by applying a downscale ratio between 1 and 2 multiple times. 
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ÖZET 

 

 

DONANIM ÜZERİNDE ETKİLİ GERÇEK ZAMANLI GÖRÜNTÜ ÖLÇEKLEME 

VE BÜKME 

 

Birçok görüntü/video işleme uygulamasında boyut küçültme ve bükme bulunur. Bu tez, alan 

etkili bir boyut küçültücü donanım mimarisi ve donanıma bükme algoritması uygulaması 

sunacak. Sunulan algoritmanın adı “ODD (Output Domain Dowscaler)” dır. Hem bükme 

hem de ODD çift doğrusal ara değerleme yöntemi uygulamasına dayanarak gösterilmiştir. 

Aynı ara değerleme metodunun farklı şekillerde gerçeklenmesi boyut küçültme ve bükme 

üniteleri arasındaki farkı oluşturur. bükme ve küçültme ünitelerinin hafızadan okuma ve 

yazma mantıkları benzer ve genel bir FIFO ile sağlanımştır.  Bükme ünitesi gerçeklenirken 

FIFO boyutu hesaplayıcı ve planlama oluşturucu araçlar kullanılmıştır. ODD, aynı zamanda 

ayrıt sezimi ve keskinleştirilmiş uzamsal süzgeç ile birleştirilmiştir. Bu tez, ODD ı aynı 

birleşme yöntemlerinin direk uygulayan ve adına “Input Domain Downscaler” dediğim, 

yöntem ile karşılaştıracak. İnput domain downscaler, orijinal video karesinin yeni bir pikseli 

her alındığında küçültülmüş video karesinin yeni bir pikselini çıkarmaya çalışır. Bununla 

birlikte, arada sırada, üretecek küçültülmüş piksel olmaz. İnput domain downscaler, ayrıca, 

bazen girdi piksellerinin bir satırının tamamını atlar. Öte yandan, ODD, küçüktülmüş 

pikselleri bulma işini bütün frame e yayar. Bunun bir sonucu olarak, ODD daha çok kaynak 

paylaşımı yapabilir, örneğin; aynı işi daha az aritmetik birim ile yapar, böylece İnput domain 

downscaler dan daha iyi alan etkili bir çözüm sunar. Bu tez, ODD mimarisini, genel özellik 

kaybı olmaksızın 1 ile 2 arasında bir oran ile uygulayacak. Bunun nedeni çift doğrusal ara 

değerlemenin daha büyük boyut küçültme oranları elde etmek için birçok kez 1 ve 2 arasında 

küçültme oranı uygulamak en iyi yöntemdir.  
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1. INTRODUCTION 

 

Image scaling and warping algorithms are widely used in various areas like computer vision 

[1], medical devices [2], online videos [3], and image zooming [4]. Due to extensive usage, 

efficient and low-cost implementations of image scaling and warping algorithms are crucial. 

Image scaling can be in the form of either downscale or upscale. This thesis will focus on 

downscaling and warping algorithms and their implementations. 

1.1. BILINEAR INTERPOLATION 

Bilinear interpolation is a low cost algorithm which makes interpolation calculations on 

functions of two variables on a rectilinear 2D grid [11]. The idea is to perform linear 

interpolation in x dimension, and then performing it in y dimension. Each step is linear but 

the overall interpolation is quadratic rather than linear.  

A simple 2D grid example is shown in Figure 1 there are four pixels shown in Figure 1.1 

𝑃(𝑚, 𝑛), 𝑃(𝑚 + 1, 𝑛), 𝑃(𝑚 + 1, 𝑛),  and 𝑃(𝑚 + 1, 𝑛 + 1), two interpolated pixels on the 

sides 𝑃(𝑚, 𝑖) and 𝑃(𝑚 + 1, 𝑖), and one pixel between the two interpolated pixels 𝑃(𝑗, 𝑖), 

which is the downscaled pixel.  

Note m denotes the column, n denotes the row index in 2D grid. The interpolated pixels are 

calculated from Equation 1.1 and 1.2 (simplified to Equation 1.4 and 1.5), whereas the 

downscaled pixel is calculated from Equation 2.3 (simplified to Equation 1.6). In Figure 1.1, 

the distance between i and n (y dimension components of pixels) is shown as dy and the 

distance between m and j (x dimension components of pixels) is shown as dx. 
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Figure 1.1. Simple four pixel grid for bilinear interpolation 

 

 𝑃(𝑚, 𝑖) =
(𝑛 + 1) − 𝑖

(𝑛 + 1) − 𝑛
×  𝑃(𝑚, 𝑛) +  

𝑖 − 𝑛

(𝑛 + 1) − 𝑛
× 𝑃(𝑚, 𝑛 + 1) (1.1) 

 P(m + 1, i) =
(n + 1) − i

(n + 1) − n
×  P(m + 1, n) + 

i − n

(n + 1) − n
× P(m + 1, n + 1) (1.2) 

 

 𝑃(𝑗, 𝑖) =
(𝑚 + 1) − 𝑗

(𝑚 + 1) − 𝑚
×  𝑃(𝑚, 𝑖) +  

𝑗 − 𝑚

(𝑚 + 1) − 𝑚
× 𝑃(𝑚 + 1, 𝑖) (1.3) 

 

 𝑃(𝑚, 𝑖) = ((𝑛 + 1) − 𝑖) × 𝑃(𝑚, 𝑛) + (𝑖 − 𝑛) × 𝑃(𝑚, 𝑛 + 1) (1.4) 

 

 
𝑃(𝑚 + 1, 𝑖) = ((𝑛 + 1) − 𝑖) × 𝑃(𝑚 + 1, 𝑛) + (𝑖 − 𝑛)

× 𝑃(𝑚 + 1, 𝑛 + 1) 
(1.5) 

 

 𝑃(𝑗, 𝑖) = ((𝑚 + 1) − 𝑗) × 𝑃(𝑚, 𝑖) + (𝑗 − 𝑚) × 𝑃(𝑚 + 1, 𝑖) (1.6) 
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Eq. 1.6 also rearranged in order to minimize the arithmetic operations. The final formula was 

shown in Eq. 1.7. This rearrangement in addition to the simplification reduced the total 

arithmetic calculations from 18 down to 9. 

 

𝑃(𝑗, 𝑖) = (((((𝑃(𝑚 + 1, 𝑛 + 1) − 𝑃(𝑚 + 1, 𝑛)) × 𝑖) + 𝑃(𝑚 + 1, 𝑛))

− (((𝑃(𝑚, 𝑛 + 1) − 𝑃(𝑚, 𝑛)) × 𝑖) + 𝑃(𝑚, 𝑛))) × 𝑗)

+ 𝐴 

(1.7) 

where 𝐴 = ((𝑃(𝑚, 𝑛 + 1) − 𝑃(𝑚, 𝑛)) × 𝑖) + 𝑃(𝑚, 𝑛). 

 

1.2. RELATED WORK 

Downscaling is to find the downscaled pixels in an image or a frame according to the 

respected ratio. The simplest downscaler in the literature is the Nearest Neighbor method 

(NN) [5,6]. Nearest neighbor method is more area-efficient and easier to implement as 

compared to bicubic Interpolation (BcubI) [7] and Adaptable K-Nearest (AKN) [8] methods. 

However, the drawback of nearest neighbor method is that the resulting image/frame 

contains blocking and aliasing artifacts. Bilinear Interpolation method (BlinI) [9,10] is, on 

the other hand, has a lower image quality than bicubic interpolation, but can handle the 

blocking and aliasing artifacts. Bilinear interpolation is also simpler and easier to implement 

than bicubic interpolation. Although, bicubic interpolation can produce high quality images 

and handle the aliasing issues very well, because of its complexity and memory 

requirements, its implementation is difficult and costly. 

Chen [11] proposed the use of both an edge detection algorithm and Sharpening Spatial Filter 

(SSF) to prevent information loss caused by bilinear interpolation in order to realize a 

downscaler. Incorporating edge detection to bilinear interpolation enables the analysis of 

local characteristics of pixels such that it can be determined whether there is a non-

homogenous color distribution or not. If there is, with the help of sharpening spatial filter, 

the color characteristics of pixels is enhanced by considering three closest neighbor pixels, 
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acting like a high-pass filter [12]. This filter requires a three-line buffer to implement which 

is technically costly in terms of memory. This issue was circumvented by using a simple 

version of sharpening spatial filter [11].  

This thesis also includes an implementation of an image warping algorithm. Both 

downscaling and warping were used in an algorithm called optical flow in order to show the 

real world applications of both warping and downscaling. 

1.3. CONTRIBUTIONS OF THE THESIS 

In this Thesis, a low cost, low memory downscale method called ODD and an 

implementation of a warping algorithm was presented. Downscale method includes edge 

detection system and a sharpening spatial filter with it. ODD method is superior to traditional 

downscale methods in terms of register and LUT type areas. Presented method gains in the 

order of 48% register type area and 21% LUT type area. Warping unit was implemented by 

using a high level synthesis tool in order to reduce the design time and complexity. Usage 

of this tool reduced the complexity and increased the design speed. Reducing design 

compexity allowed the usage of floating point units instead of fixed point units, thus 

increasing precision. A general purpose FIFO was used for both downscaling and warping 

implementations. Another tool was used to calculate the FIFO size. 
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2. DOWNSCALING 

 

This thesis proposes a novel downscaler which also combines bilinear interpolation with an 

edge detection algorithm and sharpening spatial filter, but in a more area-efficient way. The 

proposed downscaler in this thesis is called as “ODD” (Output Domain Dowscaler) and the 

classical downscaler [11] called as “Input Domain Downscaler” (IDD). Proposed method 

reduces the arithmetic units by rearranging bilinear interpolation pixel equations. 

Furthermore, this thesis introduces a register bank which reduces the number of reads from 

the line buffers. 

For the evaluation purposes, a development kit which included a Virtex-7 FPGA was used 

to implement both ODD and input domain downscaler with a frame rate of 90 frame per 

second (FPS) and a resolution of 1920x1080. 

2.1. EDGE DETECTION 

Bilinear interpolation can cause information loss since it only takes the average weight of 

the four closest pixels. In order to prevent the loss, this thesis used a linear sigmoidal edge 

detecting technique [13,14]. The choice was made due to its relatively low cost. Using an 

edge detection technique enabled the evaluation of the local characteristic of any pixel just 

by looking at its four neighbor pixels. Edge detection technique permitted spotting edges in 

the interpolated pixels. Sharpening spatial filter allowed an enhancement so that there is a 

minimal information loss after the bilinear interpolation operation [15,16]. 

In order to find edges around a target interpolated pixel, 𝑃(𝑗, 𝑖), its four neighbor pixels 

𝑃(𝑚 − 1, 𝑖), 𝑃(𝑚, 𝑖),  𝑃(𝑚 + 1, 𝑖), and 𝑃(𝑚 + 2, 𝑖) should be taken into account. The 

asymmetry parameter, E, for linear sigmoidal edge detection technique is given in Equation 

2.8. 

 𝐸 = |𝑃(𝑚 + 1, 𝑖) − 𝑃(𝑚 − 1, 𝑖)| − |𝑃(𝑚 + 2, 𝑖) − 𝑃(𝑚, 𝑖)| (2.8) 
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If E is greater than 0, it means that the variation between pixels 𝑃(𝑚 + 1, 𝑖) and 𝑃(𝑚 − 1, 𝑖) 

is greater than the one between pixels 𝑃(𝑚 + 2, 𝑖) and 𝑃(𝑚, 𝑖). On the other hand, if E is 

less than 0, it can be concluded that the variation between 𝑃(𝑚 + 2, 𝑖) and 𝑃(𝑚, 𝑖) is greater 

than 𝑃(𝑚 + 1, 𝑖) and 𝑃(𝑚 − 1, 𝑖). Finally, if E is equal to zero, this means that edges are 

symmetric at both sides. After finding edges, the related pixels are sent to sharpening spatial 

filter in order to enhance the edges and eliminate low-frequency noises. Pixels that have to 

be used in order to calculate the edges location was shown in Figure 2.2. 

 

 

Figure 2.2. Pixel window for edge detection 

 

2.2. SHARPENING SPATIAL FILTER 

As previously asserted, sharpening spatial filter [12] acts like a high-pass filter. It can be 

both used to enhance the edges and to eliminate low-frequency noises. It increases the 

intensity of the center pixel by using its four neighbor pixels shown in Figure 2.3. 
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Figure 2.3. Four neighbor pixels 

 

Increasing the intensity of the central pixel by looking at its four neighbor pixels requires at 

least a three-line buffer memory. In order to reduce the memory requirement of sharpening 

spatial filter, This thesis uses a method proposed by Chen [11] which requires only a two-

line buffer memory (can be reduced to 1 by using register bank). The last form of the 

neighbor pixel requirement in a 2D pixel grid is shown in Figure 2.4, where only neighbors 

of the left pixels on the interpolation window are shown. Similarly, the same operation can 

be applied to all window pixels. Formulas for Chen’s method are shown in Equations 2.9, 

2.10, 2.11, and 2.12 where S denotes the filter sensitivity coefficient. 

 

 

 

Figure 2.4. Neighbor pixels. (a) Neighbor pixels of the bottom centre pixel, (b) Neighbor 

pixels of the top center pixel. 

(b) (a) 
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 𝑃′(𝑚, 𝑛) =
(𝑆 × 𝑃(𝑚, 𝑛) − 𝑃(𝑚 + 1, 𝑛) − 𝑃(𝑚, 𝑛 + 1) − 𝑃(𝑚 − 1, 𝑛))

𝑆 − 3
 (2.9) 

 

 

𝑃′(𝑚, 𝑛 + 1)

=
(𝑆 × 𝑃(𝑚, 𝑛 + 1) − 𝑃(𝑚 + 1, 𝑛 + 1) − 𝑃(𝑚, 𝑛) − 𝑃(𝑚 − 1, 𝑛 + 1))

𝑆 − 3
 

(2.10) 

 

 

𝑃′(𝑚 + 1, 𝑛)

=
(𝑆 × 𝑃(𝑚 + 1, 𝑛) − 𝑃(𝑚 + 2, 𝑛) − 𝑃(𝑚 + 1, 𝑛 + 1) − 𝑃(𝑚, 𝑛))

𝑆 − 3
 

(2.11) 

 

 

𝑃′(𝑚 + 1, 𝑛 + 1)

=
𝑆 × 𝑃(𝑚 + 1, 𝑛 + 1) − 𝑃(𝑚 + 2, 𝑛 + 1) − 𝑃(𝑚 + 1, 𝑛) − 𝑃(𝑚, 𝑛 + 1)

𝑆 − 3
 

(2.12) 

 

2.3. REGISTER BANK 

In order to implement edge detection, sharpening spatial filter and bilinear interpolation 

operations, a total number of eight pixels are needed. Four of them are needed for bilinear 

interpolation, 𝑃(𝑚, 𝑛), 𝑃(𝑚 + 1, 𝑛), 𝑃(𝑚, 𝑛 + 1), and 𝑃(𝑚 + 1, 𝑛 + 1). Four more are 

needed for edge detection, 𝑃(𝑚, 𝑛), 𝑃(𝑚 − 1, 𝑛), 𝑃(𝑚 + 1, 𝑛), and 𝑃(𝑚 + 2, 𝑛), but two 

of them (𝑃(𝑚, 𝑛) and 𝑃(𝑚 + 1, 𝑛)) are the same ones with bilinear interpolation pixels. Still 

four more pixels are needed for sharpening spatial filter, which are (in case of top left center 

pixel) 𝑃(𝑚, 𝑛), 𝑃(𝑚 − 1, 𝑛), 𝑃(𝑚 + 1, 𝑛), and 𝑃(𝑚, 𝑛 + 1) but again 𝑃(𝑚, 𝑛) and 

𝑃(𝑚 + 1, 𝑛) are the same ones with bilinear interpolation pixels. 

In total, eight pixels are needed to be available at all times in order to make the necessary 

calculations. A register bank was used that includes eight registers in order to reduce the 

total number of pixels to be read from the line buffer. Reading all eight of these pixels from 

line buffers significantly increases the memory area requirement. To reduce this extra 

requirement, a register bank was implemented. 
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Register bank working mechanism is depicted in Figure 2.5. The address calculator module 

calculates all window pixels addresses for a specific area shown in the top level architecture 

given in Figure 1.8. After calculating the addresses, in order to obtain necessary pixels, four 

addresses are sent to the memory module. Note that instead of reading eight pixels from 

memory, with the help of the register bank, the total number of reads is reduced to four. Four 

pixels read from line buffers are written to R13, R14, R23, and R24, while the previous 

values are shifted to R11, R12, R21, and R22 as shown in Figure 2.5. Proceeding like this, 

all eight necessary pixels can be held in registers and start the module calculations with them 

by only reading four pixels at a time from line buffers. 

 

 

Figure 2.5. Reading from line buffers and register shifting operation 

 

2.4. ODD 

The pixel window shift in input domain downscaler [17] is shown in Figure 2.6, whereas the 

window shift in ODD is shown in Figure 2.7. Note that blue dots denote downscaled pixels 

in both Figure 2.6 and 2.7. In Figure 2.6, the window is sliding towards to the right with 

every cycle. This causes empty windows where no calculation can be made because there is 

no downscaled pixel (no blue dot in the window) in them. In addition, as shown in Figure 

2.6, when there is no downscaled pixel within a whole line, input domain downscaler still 
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goes through those lines with empty windows but again, without doing any calculation. On 

the other hand, ODD does not wait at empty pixel windows as opposed to input domain 

downscaler because it shifts the window directly to the downscaled pixel location. As it can 

be seen in Figure 2.7, ODD does not wait at empty windows and does not wait for a whole 

empty line. In order to achieve such efficiency, more than just one line buffer was used. 

 

 

Figure 2.6. Window shift in input domain downscaler 

 

 

 

 

 

Figure 2.7. Window shift in ODD 

 

 



11 

 

The square of downscale ratios has been taken to determine the output rate, because during 

empty lines, our window just skips the whole line and jumps directly to the next downscaled 

pixel location. However, this also means that there has to be pre-located pixels ready to be 

used when window makes the big line jump. In order to satisfy this new prerequisite, line 

buffer sizes are adjusted and stored enough input pixels before starting to do the window 

calculations. 

Finding the optimal size of the Block RAM (BRAM) required for the line buffers in ODD 

is very important for area-efficiency and for overcoming under and over flow issues. If the 

selected BRAM size is less than it is required, that will cause an overflow and the design 

will not operate properly.  If the operation is stalled when there are not enough number of 

pixels available, the overflow issue is resolved but this causes unnecessary waiting, thus 

slows down the downscaling process and induces inefficiency. If the selected BRAM size is 

greater than it is required, the functionality will not be affected, but it will cause unnecessary 

memory usage and thus more area will be consumed. A mathematical formula should be 

deployed in order to calculate optimum line buffer size, however making this calculation is 

very complex and costly.  
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Figure 2.8. Dataflow diagram of ODD with filters 

 

Therefore, a program that simulates the movement of each pixel window in Perl was 

implemented. This tool provides the exact size needed to use for line buffers in ODD. 

Skipping empty windows allows  to “share resources” so that a more area-efficient 

downscaler can be offered, ODD. In ODD, edge detection, sharpening spatial filter and 

bilinear interpolation calculations are carried out in more than a single cycle because of 

resource sharing. The dataflow diagram of the downscaler with filters is presented in Figure 

2.8. The difference between input domain downscaler and ODD in terms of resource sharing 

is shown in Figure 2.9 and 2.10 by explaining the resource schedules in input domain 

downscaler and ODD, respectively. 
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Figure 2.9. Schedule of IDD for 1 input pixel rate and 3 output pixel rate 
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Figure 2.10. Schedule of ODD for 1 input pixel rate and 3 output pixel rate 

 

In Figure 2.8, the edge detection, sharpening spatial filter, and bilinear interpolation regions 

of the downscaler are shown in blue contours. In input domain downscaler, sharpening 

spatial filter first calculates the enhanced values of all four window pixels and then chooses 

between them by looking at the information shown in the “ctr” (control) block sent as the 

output of the edge detection. However, instead of doing these calculations and choosing 

between four pixels, ODD puts multiplexers before sharpening spatial filter so that it 

calculates only the enhanced value of the pixels to be used in bilinear interpolation sub-

module. By doing like this, ODD eliminates two multiplications and six add/sub arithmetic 

units.  
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In input domain downscaler, total number of arithmetic units are thirteen add/sub (three from 

edge detection, six from sharpening spatial filter, six from bilinear interpolation) and four 

multipliers (two from sharpening spatial filter, two from bilinear interpolation) as shown in 

the resource schedule given in Figure 2.9. In ODD, total number of arithmetic units are only 

five add/sub (one from edge detection, two from sharpening spatial filter, two from bilinear 

interpolation) and two multipliers (one from sharpening spatial filter, one from bilinear 

interpolation) as shown in Figure 2.10. Having more than one cycle (in this case three cycles) 

to do the calculations made resource sharing possible and with resource sharing total number 

of arithmetic units was reduced to seven from thirteen. 

 

 

Figure 2.11. Top-level view of ODD 

 

Schedules of all calculations can be seen in Figure 2.9 and 2.10, all calculations are shown 

under calculations sections. Which arithmetic unit is doing these calculations and when, are 

shown under edge detector, sharpening spatial filter, and bilinear interpolation sections. Note 

that pipelining is also used in ODD. Note m denotes the column and n denotes the row 2-D 

pixel index. In Figure 2.9 and 2.10, k denotes the one-dimensional pixel index. For example, 
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x1k is x1 calculation on the kth pixel and x1k-1 is x1 calculation on the (k-1)th  pixel in one-

dimension. 

The top module view of ODD is presented in Figure 2.11. Input pixels come to the memory 

sub-module with write address and write enable flag. If incoming input pixels are valid, write 

enable signal becomes high and data is written into the indicated address. While reading 

pixels from the memory, address calculator sub-module comes into place. It calculates the 

current location of the window and sends necessary address information to the memory sub-

module so that correct window pixels can be read from the memory.  

When the pixels read from the memory sub-module they are written in the register bank in 

a way mentioned in Chapter 2. After all the window pixels are written into registers, 

sharpening spatial filter begins to make its calculations. Then, the edge detector sub-module 

looks at the 𝑃(𝑚 − 1, 𝑛), 𝑃(𝑚, 𝑛), 𝑃(𝑚 + 1, 𝑛) and 𝑃(𝑚 + 2, 𝑛) pixels and determines the 

location of the edge, then finally sends this information to multiplexers. With the information 

from the edge detector sub-module multiplexers choose which pixels should go through and 

which ones should not be used. For example, if the edge is on the right side, pixels to the 

interpolation sub-module will be 𝑃(𝑚, 𝑛),  𝑃(𝑚, 𝑛 + 1), 𝑃’(𝑚 + 1, 𝑛), and 𝑃’(𝑚 + 1, 𝑛 +

1). After obtaining chosen pixels from both SSF and register bank, the interpolation sub-

module starts its calculations and computes the final downscaled output pixel. 

2.5. SYNTHESIS RESULTS 

For testing, a development kit which included a Virtex-7 FPGA was used to implement both 

ODD and IDD.  The frame rate was 90 frame per second (FPS) and the resolution was 

1920x1080. As mentioned before, ODD gains from resource sharing by stretching the time 

to make calculations that the input domain method does not.  The latter shifts the window 

with every cycle and has to make all calculations in one cycle time. The total arithmetic units 

needed for both ODD and IDD are given in Table 2.1, 2.2, 2.3, and 2.4. 

As shown in Tables 2.1, 2.2, 2.3, and 2.4, ODD always uses less arithmetic units than IDD 

because of resource sharing. Total register and LUT numbers used by each arithmetic unit 

for Virtex-7 FPGA are given in Table 2.5. By using these numbers and adding the area 

occupied by line buffers, total area for each method was calculated. For 1920x1080 
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resolution frames with 90 FPS, the total LUT number of line buffers was 2192 for ODD and 

total LUT number of line buffers was 1092 for IDD. After adding these numbers to the total 

area, total register and LUT numbers used by each method are given in Table 2.6. 

As seen in Tables 2.6 and 2.7, register gains are not changing when line buffer sizes are 

changed. This is because line buffers are only using LUT type area and not register type 

area. Thus only LUT type area is changing when line buffer size changes. When input rate 

increases, IDD can also start to make resource sharing. That is why in input rate: 2 output 

rate: 6 case output domain method starts to fall back in terms of LUT type area although it 

is still ahead in terms of register type area. Another reason is that ODD requires more line 

buffer memory area than does input domain method, but there can be some cases where input 

pixel method uses the same line buffer size as output pixel method, as in the case seen in 

table VII. ODD has a significant lead against input domain method in terms of both LUT 

and register type areas. 

 

 

Figure 2.12. General comparison of ODD and IDD 
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Table 2.1. Total arithmetic units of ODD 

for input rate: 1 output rate: 3 ratio: 1.8 

 

 Edge Detector SSF BlinI 

Floating Point (FP) Adder None None 2 

FP Multiplier None None 2 

Integer Point (IP) Adder 1 2 None 

IP Multiplier None 2 None 

 

 

Table 2.2. Total arithmetic units of input domain downscaler 

 for input rate: 1 output rate: 3 ratio: 1.8 

 

 Edge Detector SSF BlinI 

FP Adder None None 4 

FP Multiplier None None 2 

IP Adder 3 6 None 

IP Multiplier None 2 None 
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Table 2.3. Total arithmetic units of ODD 

for input rate: 2 output rate: 6 ratio: 1.8 

 

 Edge Detector SSF BlinI 

FP Adder None None 1 

FP Multiplier None None 1 

IP Adder 1 1 None 

IP Multiplier None 1 None 

 

 

Table 2.4. Total arithmetic units of input domain downscaler  

for input rate: 2 output rate: 6 ratio 1.8 

 

 Edge Detector SSF BlinI 

FP Adder None None 2 

FP Multiplier None None 1 

IP Adder 2 3 None 

IP Multiplier None 1 None 
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Table 2.5. Resource requirement of arithmetic units  

for Virtex-7 FPGA 

 

 

IP 

Adder 

IP 

Multiplier 

FP 

Adder 

FP 

Multiplier 

Register 27 42 610 615 

LUT 37 104 582 807 

 

 

Table 2.6. Area results of input domain downscaler and ODD 

at 1920x1080 resolution and 90 FPS when input domain uses less line buffer 

 

 

IR: 1 OR: 3 

Ratio: 1.8 

IR: 2 OR: 6 

Ratio: 1.8 

IDD 

Total Registers:  3797 

Total LUTs:        5575 

Total Registers:  2012 

Total LUTs:        3352 

ODD 

Total Registers:  1958 

Total LUTs:        4387 

Total Registers:  1294 

Total LUTs:        3722 

Total Gain 

ODD 

Register Gain: 48% 

LUT Gain:       21% 

Register Gain: 35% 

LUT Gain:       -9% 
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Table 2.7. Area results of input domain downscaler and ODD 

 at 1920x1080 resolution and 90FPS same line buffer 

 

 

IR: 1 OR: 3 

Ratio: 1.8 

IR: 2 OR: 6 

Ratio: 1.8 

IDD 

Total Registers:  3797 

Total LUTs:        6671 

Total Registers:  2012 

Total LUTs:        4448 

ODD 

Total Registers:  1958 

Total LUTs:        4387 

Total Registers:  1294 

Total LUTs:        3722 

Total Gain ODD 

Register Gain:  48% 

LUT Gain:        34% 

Register Gain:  35% 

LUT Gain:       16% 
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3. WARPING 

 

Warping module is one of the biggest modules in optical flow. It takes the next frame 

prediction input sent from iteration module (iteration module was explained in the “Iteration 

Module” section) and creates a new image by using this input. After creating this next frame 

prediction, it compares this images pixels one by one with the original next frame and finds 

out differences (errors made by prediction). After finding out the differences, warping 

module sends this information to iteration module so that the next prediction made by 

iteration module will be more accurate. 

In order to find differences between frames, warping module requires two frames to work 

with. First one is called current frame or image 1 which was stored in the FPGA’s local 

RAM. Second one is called next frame or image 2 which is the upcoming frame, the frame 

after the current frame. By using this two frames and the pixel movement prediction gained 

from iteration module warping module finds out the differences and sends this data to 

iteration module. How warping module works was explained step by step below: 

i) Current frame and upcoming frame was taken in pixel by pixel. 

ii) U (X vector of pixel movement prediction) and V (Y vector of pixel movement 

prediction) vector predictions made by iteration was taken in. 

iii) Module starts applying pixel movement prediction vectors to upcoming frame in 

order to find out where those pixels were came from. 

iv) First checks if those pixels were came from outside of the images boundaries, 

boundary check process can be seen in Figure 3.1-2. If pixels came from outside of 

the boundaries module will act like they came from the edge of the image. 

v) After finding out where the pixels from upcoming frame came, warping module 

finds out four neighbouring pixels around that area to calculate that pixels RGB 

value. 

vi) After finding out surrounding four pixels bilinear interpolation process begins and 

calculates the RGB value of the pixel. 
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vii) After the pixels value was calculated warping module compares that predicted 

pixels value to its actual value which is already known since current frame was 

stored in the RAM. 

viii) Warping module sends the difference between predicted pixel and actual pixel to 

iteration module so that it can make its next prediction more accurate. 

3.1. BOUNDARY CONDITIONS 

 

 

Figure 3.1. Predicted pixel came from inside of the image boundaries 

 

As seen in Figure 3.1 iteration module predicted that pixel came from (𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =

𝑋𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑈 = 1 + 1.78 = 2.78) and (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑌𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑉 = 1 + 1.56 = 2.56). So it 

can be seen that predicted pixel came from inside of the image boundaries. 
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Figure 3.2. Predicted pixel came from outside of the image boundaries 

 

As seen in Figure 3.2 iteration module predicted that pixel came from (𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =

𝑋𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑈 = 1 + 1.78 = 2.78) and (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑌𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑉 = 1 − 1.56 = −0.44). So 

it can be seen that predicted pixel came from outside of the image boundaries. In this 

situation warping module changes the coordinates of the pixel as if it came from the edge of 

the image. So pixels new coordinates will be X = 2.78 and Y = 0. 

Another key point about warping modules boundary conditions is, it has a limited memory 

support. Cost holding a full frame in a block ram would be very high, because of that, 

warping module implemented in a way so that it could support different memory sizes. As 

mentioned before, both warping and downscaling uses a very similar generic FIFO structure, 

warping unit currently supports total of nine full frame rows in its FIFO. Holding nine row 

means warping unit can support and accurately calculate motion vectors between plus and 

minus four. Increasing the number of frame rows supported would mean increasing the total 

block ram usage, likewise decreasing the number of frame rows supported would mean 

decreasing the total block ram usage. 
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3.2. MODULE CONNECTIONS 

After checking the boundary conditions, warping module calculates the predicted pixels 

value since its value is unknown because it was predicted as coming not from a legit pixel 

location but from a location in between pixels. There are several methods available to 

calculate such unknown pixel values as mentioned before in downscaler module section of 

the thesis. Best solution is to use bilinear interpolation algorithm to use unknown pixels four 

neighbouring pixels to calculate its value. All the references and explanations about bilinear 

interpolation method can be found in the bilinear interpolation section of the thesis. 

 

 

Figure 3.3. Block diagram of the warping module 

 

Top module diagram of the warping module can be seen in Figure 3.3. As shown in the 

figure, after the bilinear interpolation operation completed and value of the predicted pixels 

was calculated warping module starts comparing the predicted pixels value with actual pixels 

value so that prediction error can be determined and sent to the iteration module. 

Warping module compares the values of the actual pixel and predicted pixel in three ways. 

First way is to directly subtract the value of the predicted pixel from actual pixel, if the result 
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is higher or smaller than zero that means there is an error. But if the result is equals to zero 

that means prediction was correct and there is no error. Second way is increasing the 

predicted pixel’s x coordinate value by zero point five, calculating the value of the pixel by 

using bilinear interpolation. Then decreasing the pixels x coordinate value by the same value 

zero point five and calculating its new value again by using bilinear interpolation and 

calculating the deviation between them. Third way is to do exactly same thing in second 

way, but this time increasing and decreasing the y coordinate instead of the x coordinate and 

calculating the deviation. After all the calculations are completed, warping module sends 

error information to iteration module. Connection between the warping module and the 

iteration module can be seen in Figure 3.4. 

 

 

Figure 3.4. Connection diagram of warping and iteration modules 

 

Warping module and iteration modules are connected to each other by using FIFO (first in 

first out). Reason behind this is because they can be work in different speeds. For example 

if warping module gives output data in every ten cycles but iteration module takes input data 

in twenty cycles, connecting them to each other without using fifos causes information loss. 
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A mathematical formula should be deployed in order to calculate optimum line buffer size, 

however making this calculation is very complex and costly. Therefore, a program that 

simulates the movement of each pixel window in Perl was implemented. This tool provides 

the exact size needed to use for line buffers in ODD. Working principle of a FIFO was shown 

in Figure 3.5. 

3.3. FIFO 

 

 

Figure 3.5. FIFO connections 

 

In Figure 3.5 input data port is the port which transmits input data to fifo, data enable port 

tells the FIFO if the incoming data is legit or not, FIFO full port tells the user of the FIFO if 

the FIFO is full or not. Output data port is the exit port of the FIFO, FIFO empty port tell the 

user if the FIFO is empty or not, thus if the data user reading was legit or not, finally read 

enable port tells the FIFO if any data has been read from FIFO. 

3.4. ITERATION MODULE 

Iteration module predicts the movement of the pixels between video frames. It uses two 

frames to compare with each other and makes a prediction about how fast pixels changed 

their locations and in which direction. This thesis focuses mainly on downscaler, warping 

and image fusion algorithms, iteration algorithm will be explained shortly in order to clarify 

how optical flow algorithm works. The module called iteration because the calculations in 



28 

 

this module iteratively repeat themselves in order to obtain more accurate pixel movement 

predictions. More iterations means more accurate predictions.  

Iteration module takes u, v, w and p vectors as input 

 U: Optical flow vector of the related pixel in x coordinate 

 V: Optical flow vector of the related pixel in y coordinate 

 W: Auxiliary optical flow vector of the related pixel 

 P: Gradients of u,v and w 
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Figure 4.6. Iteration module block diagram 

 

As seen on Figure 3.6 iteration module constantly updates its u, v, w and p coefficients at 

the same time sends u and v vectors to warping module so that warping module can calculate 

the estimate error made by iteration module. All calculations in iteration module was made 

by using floating point units. Area and performance results of the iteration module can be 

seen in Table 3.1. 
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Table 3.1. Area and performance results of iteration module 

 

Total logic elements 300.595 

Total memory requirement 18.356 

Maximum frequency 215 MHz 

 

3.5. SYNTHESIS RESULTS 

All calculations in warping module was done with fixed point calculation units. Total 

number of adder/subtractor and multiplier was shown in Table 3.2. Total area and 

performance results of warping module was shown in Table 3.3. 

Table 3.2. Total number of adder/subtractors and multipliers used in warping module 

 

Calculation unit Total Number 

Adder/Subtractor 9 

Multiplier 2 
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Table 3.3. Total area and performance results of warping module 

 

Total logic elements 8,840 / 149,760 ( < 7 % ) 

Total register number 15,488 

Total memory requirement 262,274 / 6,635,520 ( < 7 % ) 

Total 9-bit multipliers 42 / 720 ( < 8 % ) 

Maximum frequency 183 MHz 
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4. TEST AND VERIFICATION ENVIRONMENT 

 

In this thesis, for each of the proposed methods (downscaler, warping and iteration) a 

dedicated test and verification environment was used in order to check whether the 

algorithms were working as desired or not. All algorithms was implemented in MATLAB 

environment first, to check if they are working and to obtain a correct data for later 

comparison with FPGA output. First step of testing was to write random numbers in the 

input FIFOs of all algorithm modules and to check if calculations inside the modules was 

made correctly. Second step of testing was sending an image (single frame) data to module 

input FIFOs and check if there was a meaningful image (frame) at the output. Finally the 

third step was to sending continuous video and check if the output frames was correct. 

All the random data, image and video comparisons was made with the data provided by 

MATLAB implementation of the algorithms. Input data of the module FIFOs was sent from 

a computer with peripheral component interconnect express (PCIe) bus. After modules made 

their calculations and generated the manipulated frames, output data was sent to the 

computer, again by using PCIe bus. 

In computer, all the comparisons between MATLAB data and the FPGA data was made in 

a verification environment written with java. This environments duty was to compare the 

results from MATLAB and FPGA and to create a report summary file so that the differences 

between MATLAB data and FPGA data can be seen clearly. Flow chart of the verification 

flow can be seen in Figure 4.1. 
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Figure 4.1. Test and verification environment flow chart 
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Test cases for both warping and downscaler module can be seen in Figures 4.2-3. In case of 

downscaler, in first step, data taken from video frame was written into the input FIFOs of 

the downscaler module by using PCIe bus. In second step downscaler module makes its 

calculations and starts to generate its output data. In third step output data was written into 

the output FIFOs of the downscaler module and sent to computer by using PCIe. In last step 

verification environment starts to compare the data came from FPGA with the data came 

from MATLAB and generates a result summary report. The same steps and the same 

verification environment was also used on warping and iteration modules. Only the inputs 

and outputs were different. 

 

 

Figure 4.2. Block diagram of downscaler verification process 

 

 

 

 

Figure 4.3. Block diagram of warping verification process 
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5. CONCLUSION 

 

In this thesis, a low cost, low memory downscale method called ODD and an implementation 

of a warping algorithm was presented. Downscale method includes edge detection system 

and a sharpening spatial filter with it. I have shown that output domain method is superior 

to traditional downscale methods in terms of register and LUT type areas. Presented method 

gains in the order of 48% register type area and 21% LUT type area. These values were 

obtained for 1920x1080 resolution, 90 FPS and 1-3 input output ratio.  Warping unit was 

implemented by using a high level synthesis tool called MAFURES [18]. Usage of this tool 

reduced the complexity and increased the design speed. Also another tool was used to 

calculate the fifo sizes between the warping and the iteration modules. Both downscaling 

and warping units shared the bilinear interpolation method as their core pixel value 

calculator. And both downscaler and warping units shared the similar general FIFO structure 

for memory read and write operations. Resource sharing, loop unrolling and pipelining 

design methods was used for both downslcaing and warping units in order to reduce the total 

arithmetic unit usage and costs. 

In the future, further optimizations can be made to both downscaling and warping 

implementations in order to reduce the total area required and increase the maximum 

frequency. By changing the total pixel movement coverage, total area requirement of the 

warping unit can be reduced. And by modifying the window skip method, total area 

requirement of the ODD can be also reduced. 
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