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ABSTRACT

2-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORY AND

FROBENIUS ALGEBRAS

In this project, we define two dimensional topological quantum field theories (TQFTs) and

show the relation between Frobenius algebras. More precisely, equivalence between the cate-

gory 2𝑑𝑇𝑄𝐹𝑇, of symmetricmonoidal functors from the category, 2𝐶𝑜𝑏, of two-dimensional

cobordisms to the category, 𝑉𝑒𝑐𝑡, of vector spaces over a field and the category of, 𝑐𝐹𝐴,
of commutative Frobenius algebras will be demonstrated.

The work begins with basic properties of category theory. Moreover, a symmetric monoidal

categories are explained. In the next three chapters, the category of cobordisms are construc-

ted to define Frobenius algebras clearly. The category of Frobenius algebras are shown by

the cobordism notation. At the end of the work, we use Atiyah axioms to explore TQFTs.

His comment makes a relation between cobordisms and Frobenius algebras.
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ÖZET

2-BOYUTLU TOPOLOJİK KUANTUM ALAN KURAMI VE FROBENIUS

CEBİRLERİ

Projenin amacı, iki boyutlu topolojik kuantum alan kuramı ile Frobenius cebirleri arasın-

daki bağlantıyı açıklamaktır. Daha kesin olarak, iki boyutlu topolojik kuantum alan kuramı

kategorisi ile Frobenius cebirlerinin kategorisi arasındaki kategorilerinin denk olduğu gös-

terilmiştir. Çalışmamıza kategori teorisinin özelliklerinden başlayarak simetrik monodial

kategorisi ile devam ediyoruz. Diğer üç bölümde, cobordism kategorisini oluşturarak Frobe-

nius cebirlerini tanımlıyoruz. Frobenis cebir kategorisini cobordism notasyonlarını kulla-

narak gösteriyoruz. Çalışmamızın sonunda, Atiyah aksiyomlarını kullanarak topolojik kuan-

tum alan kuramını ortaya çıkarıyoruz. Atiyah’ın yorumu cobordism ve Frobenius cebirleri

arasındaki ilişkiyi oluşturuyor.
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1. INTRODUCTION

The definition of topological quantum field theories (TQFTs) was explained by Michael

Atiyah in 1988. A topological quantum field theory is a symmetric monoidal functor; 𝑍 ∶
𝑛𝐶𝑜𝑏 → 𝑉𝑒𝑐𝑡. This means that, A TQFT is defined as a functor from the category of

cobordisms to the category of vector spaces. This project wants show the relation between

TQFTs and commutative Frobenius algebras (𝑐𝐹𝐴).

This work uses both algebra and topology. Also category theory, symmetric monoidal cate-

gory and functors take an important part in this thesis. The category of topological quantum

field theory is explained with functor. More precisely, there is an equivalence between cate-

gories of two dimensional topological quantum field theory and Frobenius algebra. We will

show; 2𝑇𝑄𝐹𝑇 ⋍ 𝑐𝐹𝐴 in the thesis.

This thesis consists of four chapters. In the first chapter, we explain general properties of

category theory. Moreover, a symmetric monoidal categories have an important role in other

chapters. The second chapter explains the properties of cobordism theory. The last two chap-

ters, Frobenius algebras are defined with cobordisms. In addition to this, Atiyah’s axioms

show their relations clearly. His axioms are the main part in this thesis. Frobenius algebras

and cobordisms are used to understand TQFT obviously.
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2. MONOIDAL CATEGORIES

In this first chapter we need the categorical concepts and tools for the definition of TQFTs.

First of all, we start with some basic concepts of Category Theory, such as categories, functors

and natural transformations. Next, we define monoidal categories with some specific pro-

perties, that have a very important place in the chapters. We use some structures such as

monoidal functors and a symmetric structure to explain it clearly.

2.1. BASIC CONCEPTS FROM CATEGORY THEORY

In this section we can give several properties of the Category Theory.

Definition 2.1.1. A category is the mathematical structure and arrows between them. A

category 𝒞 consist of

(i) a collection of objects, 𝑂𝑏(𝒞): 𝐴, 𝐵, 𝐶 …

(ii) a collection of morphisms, 𝐴𝑟(𝒞): 𝑓, 𝑔, ℎ … (sometimes it is called arrows)

If we work diagrammatically; an arrow 𝑓 ∈ 𝒞(𝐴, 𝐵) is shown as,
𝑓 ∶ 𝐴 → 𝐵 we call 𝐴; the domain (source) of 𝑓 and 𝐵; the co-domain (target) of 𝑓.

(iii) Given arrows 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 there exist morphism 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶 called the

“composition”

(iv) For each object 𝐴 there is identity morphism; 1 ∶ 𝐴 → 𝐴
These data should satisfy the associative and unit laws which are giving with diagram;

(v) Associative law: (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓) for every 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 and

ℎ ∶ 𝐶 → 𝐷 then we have
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𝐴  //

∘ ��?
??

??
??

𝐵

��

∘
��?

??
??

??

𝐶 
// 𝐷

(vi) Unit law: (𝑓 ∘ 1) = 𝑓 = (1 ∘ 𝑓) for all 𝑓 ∶ 𝐴 → 𝐵 then we have

Examples of Categories

(i) Set, the category that has sets as objects and set maps as morphisms,

(ii) Grp, the category that has groups as objects and group homomorphisms asmorphisms,

(iii) Ab, the category that has abelian groups as objects and group homomorphisms as

morphisms,

(iv) Rng, the category that has rings as objects and ring homomorphisms as morphisms,

(v) Vectk, the category that has 𝑘-vector spaces as objects and 𝑘-linear maps as mor-

phisms,

(vi) Top, the category that has topological spaces as objects and continuous maps as mor-

phisms,

(vii) Man, the category that has smooth manifolds as objects and smooth (infinitely diffe-

rentiable) maps as morphisms,

Remark 2.1.2. For each pair of categories 𝒞 and 𝒟, there is a category 𝒞 × 𝒟 defined

as fallows: its objects are pairs (𝐴, 𝐵) where; 𝐴 ∈ 𝑂𝑏(𝒞), 𝐵 ∈ 𝑂𝑏(𝒟). Also morphism

(𝐴, 𝐵) → (𝐴ᇱ, 𝐵ᇱ) of 𝒞 × 𝒟 is pair (𝑓, 𝑔) where 𝑓 ∶ 𝐴 → 𝐴ᇱ morphism of 𝒞, 𝑓 ∶ 𝐵 → 𝐵ᇱ

morphism of 𝒟.

Finite Categories

We begin by looking at some examples of simple finite categories such that;

(i) The category 0 looks like this: It has no objects and arrows.
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(ii) 1 looks like this:

∗

It has one object and its identity arrow, which we do not draw.

(iii) 2 looks like this:

∗ ⟶ ⋆

It has two objects,their required identity arrows and exactly one arrow between the

objects.

(iv) 3 looks like this: The diagonal arrow is the composite of the vertical and horizontal

ones.

• //

��?
??

??
??

∗

����
��
��
�

⋆

Definition 2.1.3. Functor is an assignment between two categories 𝒞 and 𝒟 such that, a

transformation F must take objects and morphisms of 𝒞 to objects and morphisms of 𝒟.
Functors are mappings between categories that preserve the structure. They take a category

and embedded it in another category or modelling a category inside an another category. They

are shown in the following diagram;

𝐹 ∶ 𝑜𝑏(𝒞) → 𝑜𝑏(𝒟)

𝐹 ∶ 𝑎𝑟(𝒞) → 𝑎𝑟(𝒟)

𝒞 థ //

ி
��

𝒟
ி
��

𝐹(𝒞) ி(థ)
// 𝐹(𝒟)

Definition 2.1.4. Given two categoriesℬ and 𝒞 a natural transformation 𝛼 ∶ 𝐹 ⟹ 𝐺 between

functors 𝐹, 𝐺 ∶ ℬ → 𝒞, consists;

(i) a function 𝛼 mapping each object 𝑋 ∈ 𝒞 to a morphism

𝛼 ∶ 𝐹(𝑋) → 𝐺(𝑋) in 𝒟 such that:
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(ii) for any morphism 𝑓 ∶ 𝑋 → 𝑌 in ℬ, this diagram commutes:

𝐹(𝑋) ி() //

ఈ
��

𝐹(𝑌)

𝐺(𝑋) ீ() // 𝐺(𝑌)
ఈೊ
OO

Natural transformations are defined as mapping between functors. They have to preserve

structure. Here, two categories ℬ and 𝒞 and we have two functors between these categories

that we want to compare. First, take a single object 𝑋 and one functor let’s call it F, maps this

object into 𝐹(𝑋). Second functor 𝐺 maps the same object into 𝐺(𝑋). If we want to map one

functor to another functor, we need to mapping these two 𝐹(𝑋) and 𝐺(𝑋).

2.2. MONOIDAL CATEGORY

The properties of monoidal categories with functors are studied to classify topological field

theories asmentioned in the beginning of the chapter. Some thematic definitions and concepts

are given in this section. In a monoidal category, we would like to define things that, what

does it mean to multiply two objects. We want to define multiplication of objects. When we

are talking about monoids, we talk about operation on elements of set or on morphisms. What

is a good name for the product that could be a co-product or bi-functor? The good name is

the tensor product. Hence monoidal category has a tensor product. We will see later. First

the definition of monoid is given by the following definition.

Definition 2.2.1. A monoid itself can be thought of as a category with one object just M

itself. We can represent monoid as a single object category. We also have a morphism. A

monoid M is a set equipped with an associative binary operation and a neutral element. More

precisely, a monoid is a triple (𝑀, 𝜇, 𝜂) where,

(i) M is a set,

(ii) 𝜇 ∶ 𝑀 ×𝑀 → 𝑀 is a map (the binary operation)

(iii) 𝜂 ∶ 1 → 𝑀 is a map, being 1 a set with one element (whose image by 𝜂 acts as neutral
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element),

such that the following diagrams commute:

𝑀 ×𝑀 ×𝑀ఓ×ௗಾ//

ௗಾ×ఓ
��

𝑀 ×𝑀
ఓ
��

𝑀 ×𝑀 ఓ
//𝑀

1 ×𝑀 𝑀 ×𝑀 𝑀 × 1

𝑀

ఎ×ௗಾ

ఓ

ௗಾ×ఎ

Definition 2.2.2. Monoidal category is also equivalent to categories with tensors so, a tensor

- ⊗ - on a category is; a way of combining two objects or arrows to make a new object or

arrows of the same category like;

(i) Objects: Given 𝑋, 𝑌 we can form a new object; 𝑋⊗ 𝑌.

(ii) Arrows: Given 𝑓, 𝑔 (morphisms) we can form new morphism 𝑓 ⊗ 𝑔.

Definition 2.2.3. A monoidal category is a sextuple (𝒞,⊗, 1, 𝛼, 𝜆, 𝜌) where:

(i) 𝒞 is a category

(ii) a functor⊗ ∶ 𝒞 × 𝒞 → 𝒞 called the tensor product.

(iii) an object called the identity object 1 ∈ 𝒞

(iv) a natural isomorphisms called the associator:

𝛼௫,௬,௭ ∶ (𝑥 ⊗ 𝑦)⊗ 𝑧 → 𝑥 ⊗ (𝑦 ⊗ 𝑧),
𝜆(𝑥) ∶ 1 ⊗ 𝑥 → 𝑥 left unit

𝜌(𝑥) ∶ 𝑥 ⊗ 1 → 𝑥 right unit

such that the following diagrams commute for all objects 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑂𝑏(𝒞):

(v) the pentagon equation:
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(𝑤 ⊗ 𝑥)⊗ (𝑦 ⊗ 𝑧)

𝑤 ⊗ (𝑥 ⊗ (𝑦 ⊗ 𝑧))

𝑤 ⊗ ((𝑥 ⊗ 𝑦)⊗ 𝑧)(𝑤 ⊗ (𝑥 ⊗ 𝑦)) ⊗ 𝑧

((𝑤 ⊗ 𝑥)⊗ 𝑦)⊗ 𝑧

ఈೢ,ೣ,⊗

''OO
OOO

OOO
OOO

OOO
OOO

OOO
O

ௗೢ⊗ఈೣ,,

CC������������ఈೢ,ೣ⊗,//

ఈೢ,ೣ,⊗ௗ
��7

77
77

77
77

77
7

ఈೢ⊗ೣ,,

77ooooooooooooooooooooo

(vi) And natural isomorphisms, 𝜌 and 𝜆, such that the following triangle diagram is com-

mutative,

(𝑥 ⊗ 1)⊗ 𝑦
ఈೣ,భ, //

ఘೣ⊗ௗ ''NN
NNN

NNN
NN

𝑥 ⊗ (1⊗ 𝑦)

ௗೣ⊗ఒwwppp
ppp

ppp
p

𝑥 ⊗ 𝑦
for all 𝑥, 𝑦 ∈ 𝑂𝑏(𝒞).
(Recall: 𝜌௫ ∶ 𝑥 ⊗ 𝐼 → 𝑥 and 𝜆௫ ∶ 𝐼 ⊗ 𝑥 → 𝑥)

Theorem 2.2.4 (Mac Lane’s Theorem). We define

𝐴ଵ⊗𝐴ଶ⊗…⊗𝐴 = (… (𝐴ଵ⊗𝐴ଶ) ⊗ …)⊗ 𝐴 (2.1)

The coherence theorem Mac Lane says that all diagrams whose morphisms are formed using

𝛼, 𝜆, 𝜌 identities, inverses, tensor products and compositions commute.

Example 2.2.5. The traditional definition of a monoid is in terms of sets, a monoid is just

a set of elements; for example set of numbers so set is a basic example for the monoidal

category. It admits a monoidal structure given by the Cartesian product ×, the unit object is
the singleton set ∗ and the natural isomorphisms are the obvious ones.

Example 2.2.6. In monoidal category, we have categorical product and terminal objects.

Actually we can say co-product has the same property. It is also monoidal thing; it is asso-

ciative upto isomorphism. In general it has also unit; the empty set.

Example 2.2.7. Given two manifolds Σ and Σᇱ, we can form their disjoint union Σ ⨿ Σᇱ,



8

which is again a manifold. If Σ and Σᇱ are oriented, then there is an orientation on Σ ⨿ Σᇱ

and the maps should preserve orientation.We can say, ⨿ is the co-product in the category of

(oriented) manifolds. In general, we can have a monoidal category and only requirement for

a monoidal category is that, it has a tensor product, it takes one object with another object

and produces third object.

Definition 2.2.8. We say that a monodial category (𝒞,⊗, 𝛼, 1, 𝜆, 𝜌) is strict whenever the
natural isomorphisms 𝛼, 𝜆, 𝜌 are composed by identities morphisms. In the case, we represent

the monoidal category by (𝒞,⊗, 1).

In order to simplify our subject we will use strict monoidal categories in the next sections.

Hence, whenever we tell the concepts of monoidal category, we refer to strict versions.

Definition 2.2.9. A strict monoidal functor

𝐹 ∶ (ℬ,⊗, 𝛼, 1, 𝜌, 𝜆) → (𝒞,⊗
ᇲ
, 𝛼ᇲ , 1ᇲ , 𝜌ᇲ , 𝜆ᇲ)

between two monoidal categories, is a functor on the underlying categories 𝐹 ∶ 𝐵 → 𝐶 such

that:

(i) 𝐹(𝑥 ⊗ 𝑦) = 𝐹(𝑥)⊗
ᇲ
𝐹(𝑦), for any two objects 𝑥, 𝑦 ∈ ℬ;

(ii) 𝐹(𝑓 ⊗ 𝑔) = 𝐹(𝑓)⊗
ᇲ
𝐹(𝑔), for any two morphisms 𝑓, 𝑔 of ℬ;

(iii) 𝐹(1) = 1ᇲ ;

(iv) 𝐹(𝛼௫,௬,௭) = 𝛼ᇲ
ி(௫),ி(௬),ி(௭), for all 𝑥, 𝑦, 𝑧 ∈ 𝑂𝑏(ℬ);

(v) 𝐹(𝜌௫) = 𝜌ᇲி(௫), for all 𝑥 ∈ 𝑂𝑏(ℬ);

(vi) 𝐹(𝜆௫) = 𝜆ᇲி(௫), for all 𝑥 ∈ 𝑂𝑏(ℬ);

2.3. SYMMETRIC MONOIDAL CATEGORIES

Definition 2.3.1. A braided monoidal category consists of:
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(i) a monoidal category 𝒞.

(ii) a natural isomorphism called the braiding:

𝐵, ∶ 𝑋 ⊗ 𝑌 → 𝑌⊗𝑋

Definition 2.3.2. A symmetric monoidal category is a braided monoidal category 𝒞 for

which the braiding satisfies 𝐵, = 𝐵ିଵ, for all objects 𝑋 and 𝑌.

Definition 2.3.3. A strict monoidal category (𝒞,⊗, 1) is said to be symmetric if there exist

a natural isomorphism 𝜏, such that, for any pair of objects 𝑋, 𝑌, there is a twist map

𝜏, ∶ 𝑋 ⊗ 𝑌 ∼−→ 𝑌⊗𝑋

such that the following two conditions are satisfied:

For each pair of arrows 𝑓 ∶ 𝑋 → 𝑋ᇱ and 𝑔 ∶ 𝑌 → 𝑌ᇱ the following diagram commutes:

(i)

𝑋⊗ 𝑌 ఛ,ೊ //

⊗
��

𝑌 ⊗ 𝑋
⊗

��
𝑋ᇱ⊗𝑌ᇱ ఛᇲ,ೊᇲ

// 𝑌ᇱ⊗𝑋ᇱ

(ii)

𝑋⊗ 𝑌⊗ 𝑍 𝑌⊗ 𝑍⊗𝑋

𝑌⊗𝑋⊗ 𝑍

ఛ,ೊ⊗

ఛ,ೊ⊗ ௗೋ ௗೊ⊗ఛ,ೊ

for any objects 𝑋, 𝑌, 𝑍 ∈ 𝑂𝑏(𝒞).

Remark 2.3.4. It can be said that, every monoidal (braided monoidal, symmetric monoidal)

category is equivalent to strict one.

Note. The symmetric monoidal category in this thesis will be also related with the cobordism

category Cob(n).
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3. THE CATEGORY OF COBORDISMS

This chapter wants to tell the importance of the symmetric monoidal category of cobordisms.

After some basic informations from topology and differential geometry, we define the cate-

gory of cobordisms and we construct a symmetric monoidal structure on it. At the end of this

chapter, a monoidal category is given in terms of generators and relations in 2- dimensional

cobordisms. They are used to define functors from such a category to another symmetric

monoidal category. Cobordisms play a central role in this thesis. They can be used in the

formulation of topological quantum field theory. We are going to see that, cobordisms and

Frobenius algebras are closely related in 2 dimensions. We start by describing the notion of a

manifold with boundary and its properties of in-boundary and out-boundary in order to give

a definition of a cobordism.

3.1. TOPOLOGICAL PROPERTIES ON SMOOTHMANIFOLDS

Let us review some definitions of topological manifolds;

Definition 3.1.1. An 𝑛-dimensional manifold with boundary is a Hausdorff, second count-

able topological space equipped with an open covering such that each open set is homeomor-

phic to ℍ.

ℍ = {(𝑥ଵ, … , 𝑥) ∈ ℝ | 𝑥 > 0}

(i) The boundary of M denoted 𝜕𝑀 and consists of all points in M mapped to the points.

ℍ
 = {(𝑥ଵ, … , 𝑥ିଵ, 0)} ∈ ℍ through the coordinate functions.

(ii) A topological space𝑀 is called a d-dimensional topological manifold if that for every

point in the set, there exists an open set 𝒰 containing the point p such that there exists

a map 𝑥 from this region open set in the manifold into 𝑥(𝒰) ⊆ ℝௗ. It does not need to

be surjective. It goes the image of the domain under the chart x and it is supposed to

lie in ℝௗ such that 𝑥 is invertible and continuous. Also the inverse of 𝑥 is continuous.
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(iii) For each point 𝑝 ∈ 𝑀,we define the set 𝑇𝑀 is called the tangent space to M at the

point p. This is simply the connection of all possible tangent vectors to all possible

smooth curves through the point.

(iv) A closed manifold is a compact manifold with empty boundary. As an example of a

manifold with boundary, consider a cylinder; A product between the unit circle denoted

𝑆ଵ and the compact unit interval 𝐼 = [0, 1] is a cylinder C in 2 dimensions. 𝐶 = 𝑆ଵ×𝐼.
The boundary 𝜕𝐶 consists of 2 copies of the unit circle such that; 𝜕𝐶 = 𝑆ଵ × 0 and

𝜕𝐶ଵ = 𝑆ଵ × 1. Hence 𝑆ଵ is an example of a closed manifold.

3.1.1 Orientations on smooth manifolds

Since we start to tell about what is inwards and outwards of the boundary of a manifold. Then

the orientation plays an important role on the manifold.

Definition 3.1.2. Let V be a real vector space of dimension n. Some basis are chosen for the

vector space V. The basis {𝑒ଵ, … , 𝑒} should be ordered. The basis vectors are arranged with
an invertible matrix. Then a new basis is constructed for the vector space V. The determi-

nant of the matrix should be non-zero. Its signature determine the orientation. Hence there

are two possible orientations. If the sign is plus sign then a basis is positive. Then orienta-

tion preserving. If the basis is not positive the orientation reversing. Orientation should be

preserved.

The boundary of manifolds can be distinguished the connected components of the boundary

as in or out-boundaries. These distinctions can be defined on the following definition.

Definition 3.1.3. Let 𝑀 be an 𝑛-dimensional orientable manifold with boundary 𝜕𝑀 and 𝑁
be a closed orientable (𝑛−1)-dimensional sub-manifold of M. Then we take a tangent space

𝑇௫𝑁 at 𝑥 ∈ 𝑁. And a positive basis is chosen such that [𝑣ଵ, … , 𝑣ିଵ]. Also consider a basis
[𝑣ଵ, … , 𝑣ିଵ, 𝑣] of 𝑇௫𝑀 is also positive at the same point 𝑥 ∈ 𝑀. Moreover𝑁 is a connected

component of the boundary 𝑀. It can be thought that 𝑉 points either inward or outward
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with respect to M. If 𝑉 is inward; 𝑁 is in-boundary or if 𝑉 is outward; N is out-boundary.

Shortly the boundary 𝜕𝑀 of𝑀 consists of the union of different in and out- boundaries. 𝜕𝑀

and 𝜕𝑀௨௧ construct the boundary of𝑀.

Then we can show; in-boundaries can be drawn to the left and out boundaries to the right.

For example; a cylinder can be drawn according to this order.

(i) Cylinder has one in-boundary and one out-boundary components it can be drawn as;

Figure 3.1. The cylinder with boundaries

(ii) When the both boundary components are in-boundaries, then the cylinder can be drawn

as;

Figure 3.2. The cylinder with in-boundaries

(iii) With two out-boundaries cylinder is drawn as;

Figure 3.3. The cylinder with out-boundaries

From here on we are ready to give definition of a cobordism.

3.2. THE CATEGORY OF COBORDISMS: 𝑛𝐶𝑜𝑏

The goal of this section is to construct the symmetric monoidal category of 𝑛-cobordisms.
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3.2.1 Cobordisms

Cobordism theory is related to manifolds that in this category; objects are closed oriented (n-

1)-manifolds andmorphisms are oriented n-cobordism classes together with in- boundary and

out-boundary. In boundary; you are going into cobordism. It can be thought as a domain. For

out-boundary we can say it is co-domain. In this section, composition of cobordisms takes

an important part in this category which can be defined “gluing”. Moreover, the identity

morphism of an object 𝑂. 𝑊 is the cobordism class of cylinder𝑊 × 𝐼.

Definition 3.2.1. A cobordism between closed 𝑛-dimensional orientable manifolds 𝑀ଵ and

𝑀ଶ is an (𝑛 +1)-dimensional orientable manifold𝑊 with boundary 𝜕𝑊 = 𝑀ଵ⨿𝑀ଶ where

𝑀ଶ is the 𝑛-dimensional manifold𝑀ଶ whose orientation is reverse orientation of𝑀ଶ. So two

cobordant manifolds𝑀ଵ is cobordant to𝑀ଶ when their disjoint union forms the boundary of

a manifold boundary𝑊.

One property about cobordism is; oriented cobordism is an equivalence relation onmanifolds.

(i) Reflexive: Amanifold𝑀 is cobordant to itself and amanifold𝑀×[0, 1] can be defined.
So a cobordism between𝑀 and𝑀 for every manifold𝑀.

(ii) Symmetric: A disjoint union of operation is symmetric so if 𝜕𝑊 = 𝑀ଵ⨿𝑀ଶ boundary

of a manifold𝑊. We can also say, 𝜕𝑊 = 𝑀ଶ ⨿𝑀ଵ.

(iii) Transitive: If𝑀ଵ is cobordant to𝑀ଶ with𝑊ଵ and𝑀ଶ is cobordant to𝑀ଷ with𝑊ଶ then

𝑊ଵ and𝑊ଶ can be glued along𝑀ଶ to create a cobordism between𝑀ଵ and𝑀ଷ Transitive

condition is a glue for composition of cobordisms.

Note. One more important thing is; diffeomorphic manifolds are cobordant which represent

the same cobordism. The following definition is about this property.

Definition 3.2.2. Let Σଵ and Σଶ be two closed (𝑛−1)-dimensional orientable manifolds. An

oriented 𝑛-cobordism 𝑀 from Σଵ to Σଶ is an oriented 𝑛-manifold with boundary 𝑀 together
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with two smooth maps 𝑓ଵ ∶ Σଵ → 𝑀 and 𝑓ଶ ∶ Σଶ → 𝑀 mapping diffeomorphically Σଵ onto

the in-boundary of𝑀 and Σଶ onto the out-boundary of M and preserving orientations.

Σଵ
భ−→ 𝑀 మ←− Σଶ where 𝑓ଵ is an orientation preserving diffeomorphism of Σଵ onto 𝑓ଵ(Σଵ) ⊂

𝜕𝑀 and 𝑓ଶ is an orientation preserving diffeomorphism of Σଶ onto 𝑓ଶ(Σଶ) ⊂ 𝜕𝑀 such that

𝑓ଵ(Σଵ) and 𝑓ଶ(Σଶ) called the in-out boundaries respectively.

Let us look some important examples. A disc 𝐷ଶ is a two dimensional manifold with bound-

ary. According to a cobordism, the disc𝐷ଶ gives us two cases either the boundary component

𝑆ଵ is an in-boundary or out-boundary.

If 𝑆ଵ is an in-boundary, the disc becomes a cobordism from 𝑆ଵ to (𝑛−1)-dimensional empty

manifold 𝑆ଵ మ−→ ∅ିଵ.

In this case it is called right cap such that,

Figure 3.4. The right cap

In other case when 𝑆ଵ is out-boundary a disc becomes a cobordism from (𝑛−1)-dimensional

empty manifold to 𝑆ଵ; ∅ିଵ

మ

−→ 𝑆ଵ. It is called left cap

Figure 3.5. The left cap

Moreover, a cobordism M between two circles to one circle; this means that two circles are

mapped to the in-boundary and one circle to the out boundary of the cobordism such that

𝑆ଵ ⨿ 𝑆ଵ ெ−→ 𝑆ଵ it is called left pair of pants
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Figure 3.6. The left pair of pants

When two circles are mapped to the out-boundary and one circle to the in-boundary of the

cobordism such that 𝑆ଵ ெ−→ 𝑆ଵ ⨿ 𝑆ଵ it is called right pair of pants

Figure 3.7. The right pair of pants

There are several ways to construct cobordism. The following property shows us that, that

two cobordisms are equivalent.

Definition 3.2.3. Two oriented cobordisms𝑀 and𝑀ᇱ from Σଵ to Σଶ are said to be equivalent
if there exist an orientation preserving diffeomorphism 𝜑 ∶ 𝑀 → 𝑀ᇱ such that the following

diagram commutes;

𝑀 Σଵ 𝑀ᇱ

Σଶ

≃

A cobordism𝑀 of smooth closed (𝑛−1)-dimensional manifolds Σଵ and Σଶ comes equipped

with given diffeomorphisms such that, 𝑓ଵ ∶ Σଵ → 𝜕𝑀 and 𝑓ଶ ∶ Σଶ → 𝜕𝑀 onto the parts of

the boundary. They are pointing into cobordism and pointing out of the cobordism. These
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notions are determined by the orientations of the boundary components that they are incoming

and outgoing parts of the boundary. Hence two cobordisms 𝑀 and 𝑀ᇱ represent the same

morphism in 𝐶𝑜𝑏 such that 𝜑 ∶ 𝑀 → 𝑀ᇱ.

Example 3.2.4. Given (orientable) (n-1)-manifolds Σ and Σଵ and a diffeomorphism 𝜑 ∶
Σ → Σଵ we can construct a cobordism from Σ to Σଵ. Take the cylinder Σଵ × 𝐼 with the

smooth maps 𝑓 ∶ Σ → Σଵ × 𝐼 and 𝑓ଵ ∶ Σଵ → Σଵ × 𝐼 defined by the following compositions:

𝑓 ∶ Σ
ఝ−→ Σଵ ≅ Σଵ × 0 ↦ Σଵ × 𝐼 (3.1)

𝑓ଵ ∶ Σଵ ≅ Σଵ × 1 ↦ Σଵ × 𝐼

3.2.2 Gluing cobordisms

An important property of cobordisms is that, they can be glued together. In order to ex-

plain the composition of cobordisms, first we just try to show how to glue simpler things for

example topological spaces and topological manifolds. These two things are fundamental

properties of gluing cobordisms. We start with gluing of topological spaces.This gluing is

explained in the following data step by step.

(i) Let 𝑀, 𝑀ଵ and Σ be topological spaces, and let 𝑓 ∶ Σ → 𝑀, 𝑓ଵ ∶ Σ → 𝑀ଵ be

continuous maps between these topological spaces.

(ii) Consider that𝑀, 𝑀ଵ are disjoint and the maps are injective.

(iii) Now there is an equivalence relation on 𝑀 ⨿ 𝑀ଵ defined as follows: two points are

taken such that, 𝑥 ∈ 𝑀 and 𝑥ଵ ∈ 𝑀ଵ are defined to be equivalent, denoted by 𝑥 ∼ 𝑥ଵ
if and only if there exists 𝑥 ∈ Σ such that 𝑓(𝑥) = 𝑥 and 𝑓ଵ(𝑥) = 𝑥ଵ

(iv) Then, the gluing of 𝑀 and 𝑀ଵ by Σ denoted by 𝑀 ⨿ஊ 𝑀ଵ is the quotient set by the

equivalence relation (∼) 𝑀 ⨿ஊ 𝑀ଵ)/ ∼

(v) Two natural maps are obtained;

𝑔 ∶ 𝑀 → 𝑀 ⨿ஊ 𝑀ଵ
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𝑔ଵ ∶ 𝑀ଵ → 𝑀 ⨿ஊ 𝑀ଵ

(vi) The topology of 𝑀 ⨿ஊ 𝑀ଵ is defined by saying a subset open if its inverse image in

𝑀 and𝑀ଵ are both open.

A subset 𝑈 ⊂ 𝑀 ⨿ஊ 𝑀ଵ is open if and only if 𝑔ିଵ (𝑈) ⊂ 𝑀 and 𝑔ିଵଵ (𝑈) ⊂ 𝑀ଵ are

both open.

Hence𝑀 ⨿ஊ 𝑀ଵ is obtained by gluing𝑀 and𝑀ଵ along Σ.

(vii) We have commutative diagram of continuous maps between topological spaces. It is

defined by “Universal Mapping Property” of gluing topological spaces.

𝑀 𝑀 ⨿ஊ 𝑀ଵ 𝑀ଵ

Σ

బ భ

బ భ

Gluing cobordisms: Every oriented cobordism has a source and target. Andwe can compose

cobordisms by gluing. First we take two cobordisms such that,

Σଵ → 𝑀 → Σଶ and Σଶ → 𝑀ᇱ → Σଷ

Σଵ
భ−→ 𝑀 మ←− Σଶ

Σଶ
ᇲమ−→ 𝑀ᇱ య←− Σଷ

where Σଶ is non-empty and composite cobordism is formed by gluing M and M’ along Σଶ
and then

Σଵ
భ−→ 𝑀 ∘𝑀ᇱ య←− Σଷ

by identifying their common boundary components using;

𝑓ଶ ∘ 𝑓ିଵଶ = 𝜕𝑀௨௧ → 𝜕𝑀ᇲ (3.2)

And the gluing can be pictured as;
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=

Figure 3.8. The gluing of cobordism

3.2.3 Morse Theory

Let𝑀 be a smoothmanifold, 𝑓 ∶ 𝑀 → ℝ be a smooth function, [𝑎, 𝑏] be an interval such that
𝑓ିଵ[𝑎, 𝑏] is compact. Morse theory tells us exactly, how to cut-up the manifold into pieces

with a single Morse critical point. We know what the manifold looks like locally around that

critical point. You can attach a k-handle around this critical point. Then some basic results

are obtained from Morse theory;

(i) The Regular Interval Theorem

(ii) The Morse Lemma and Existence of Morse functions

(iii) The fundamental theorem about one-handle attached

Definition 3.2.5. Morse theory shows that locally around only critical point 𝑥 and 𝑓 maybe

written as 𝑓(𝑋ଵ, … , 𝑋ାଵ) = −𝑋ଶଵ − ⋯ − 𝑋ଶ + 𝑋ଶାଵ + ⋯𝑋ଶାଵ according to appropriate

local coordinates for some integer 𝑘 calledMorse index of 𝑥.

Definition 3.2.6. Let 𝑓 ∶ 𝑀 → ℝ be a real-valued function on a manifold 𝑀. The notion

of critical point; that is point 𝑝 ∈ 𝑀 where డ
డభ (𝑝) = 0, డడమ (𝑝) = 0,⋯ , డ

డ (𝑝) = 0 with

respect to local coordinates (𝑋ଵ, … , 𝑋) about 𝑝. Let 𝐻(𝑝) be a Hessian matrix of f at p

with respect to local coordinates (𝑋ଵ, … , 𝑋) the critical point 𝑝 ∈ 𝑀 is called degenerate.

If det𝐻(𝑝) = 0 otherwise, that is 𝐻(𝑝) is invertible, 𝑝 ∈ 𝑀 is called non-degenerate.
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There some examples about functions whether if it is degenerate or not;

Example 3.2.7. 𝑓(𝑥) = 𝑥ଶ 𝑓ᇱ(𝑥) = 2𝑥 𝑓ᇱ(0) = 0 (critical point) 𝑓ᇳ(𝑥) = 2
𝑓ᇳ(0) = 2 (not degenerate)

Example 3.2.8. 𝑓(𝑥) = 𝑥ଷ 𝑓ᇱ(𝑥) = 3𝑥ଶ 𝑓ᇱ(0) = 0 𝑓ᇳ(𝑥) = 6𝑥 𝑓ᇳ(0) = 0
(degenerate)

Definition 3.2.9. We say that𝑋 is a gradient-like vector field for aMorse function 𝑓 ∶ 𝑀 → ℝ
if the following two conditions hold:

(i) 𝑋.𝑓 > 0 away from the critical points of 𝑓

(ii) If 𝑝 is critical point of f with index k, then 𝑝 has a neighbourhood V with a suitable

coordinate system (𝑋ଵ, … , 𝑋) such that f has the standard form

𝑓 = −𝑋ଶଵ −⋯− 𝑋ଶ + 𝑋ଶାଵ +⋯𝑋ଶ + 𝑓(𝑝) (3.3)

and X can be written as its gradient vector field:

𝑋 = −2𝑋ଵ
𝜕
𝜕𝑋ଵ

−⋯− 2𝑋
𝜕
𝜕𝑋

+ 2𝑋ାଵ
𝜕

𝜕𝑋ାଵ
+⋯+ 2𝑋

𝜕
𝜕𝑋

Remark 3.2.10. Almost all smooth functions on M are Morse functions. (All smooth func-

tions on𝑀 can not be Morse functions because of the measure. There is a measure on smooth

functions of𝑀. If the measure is not zero, the function is Morse function. Otherwise it is not.)

More precisely, taking𝑀 to be embedded in a Euclidean space 𝑉 it has two conditions such

that, almost all height functions on𝑀 are Morse and for almost all 𝑞 ∈ 𝑉 distance from 𝑞 is

a Morse function on𝑀.

Example 3.2.11. A cylinder can be given an example of degenerate critical points on its side

and f be the height function. Then we can say; 𝑓ିଵ(𝑎) is the bottom line and 𝑓ିଵ(𝑏) is the
top line of the cylinder. All points are degenerate critical points in 𝑓ିଵ(𝑎) and 𝑓ିଵ(𝑏).

Theorem 3.2.12 (Regular Interval Theorem). Let𝑊 ∶ 𝑀 → 𝑁 be a cobordism, and 𝑓 ∶ 𝑊 →
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[0, 1] be a smooth map without critical points, such that𝑀 = 𝑓ିଵ(0) and𝑁 = 𝑓ିଵ(1). Then
there exists a diffeomorphism between 𝑀 × [0, 1] and 𝑊 such that the following diagram

commutes:

𝑀 × [0, 1] ∼ //


%%LL

LLL
LLL

L
𝑊

��
[0, 1]

where 𝑝 ∶ 𝑀 × [0, 1] −→ [0, 1] is the natural projection, onto the second factor. This proof

is also explained in [3].

Proof. This theorem says that 𝑓ିଵ[𝑎, 𝑏] has no critical points, the level sets 𝑓ିଵ(𝑐) for 𝑐 ∈
[𝑎, 𝑏] are all diffeomorphic. To show this, we give an importance on the flow of a gradient

like vector field for 𝑓. The key step is construction a vector field on 𝑊. We have a real

number 𝑝 flowing along vector field 𝑣 for time 𝑡 we use Riemannian metric.

The gradient flow equation: Let 𝑀 be a manifold, 𝑔 be a Riemannian metric on M and

𝑓 ∶ 𝑀 → ℝ be a Morse function. A gradient flow line is a curve 𝜂 ∶ (𝑎, 𝑏) → 𝑀 that satisfies

the differential equation.

Since 𝑓 has no critical points and the vector field is defined, 𝑋(𝑥) = ௗ(௫)
หௗ(௫)หమ

and let 𝜂௫(𝑡)
be a solution curve. It starts at point p of 𝑓ିଵ(𝑎). The derivative of map

𝑑
𝑑𝑡𝜂௫(𝑡) = 𝑋(𝜂௫(𝑡)) and 𝑓(𝜂௫(𝑡)) = 𝑡 (3.4)

Let 𝐼 be a maximal interval on which 𝜂௫ is defined. Assume that 𝐼 = [𝑎, 𝑏]. First we

should need to show M is compact and 𝑓(𝜂௫(𝐼)) = 𝐼 is bounded. Let 𝑑 = 𝑠𝑢𝑝(𝐼) by the

compactness property of 𝑀 and there is a point 𝑥 ∈ 𝑀 that is a limit point of 𝜂௫ ቀௗିଵ ቁ.
Since from the equation 𝜂ᇱ௫(𝑡) = 𝑋(𝜂௫(𝑡)) is bounded. Limit point should be unique so

𝑙𝑖𝑚௧→ௗష𝜂௫(𝑡) = 𝑥 𝜂௫ can be extended to d by making 𝜂௫(𝑑) = 𝑥. Now 𝑙𝑖𝑚௧→ௗ𝜂ᇱ௫(𝑡) =
𝑙𝑖𝑚௧→ௗ𝑋(𝜂௫(𝑡)) → 𝑋(𝜂௫(𝑑)). And let 𝑣 be this limit so 𝜂ᇱ௫(𝑑) = 𝑣. To show this for every

𝜖 > 0 there exist a 𝛿 > 0 so that for all h with 0 < ℎ < 𝛿. Then we can say,

ቤ𝜂௫(𝑑) − 𝜂௫(𝑑 − ℎ)
ℎ − 𝑣ቤ < 𝜖

So let 𝜖 > 0 be given. From the definition of 𝑣 there exist a 𝛿ଵ so that for all 𝑤 with
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0 < ℎ < 𝛿ଵ. Then,

ห𝜂ᇱ௫(𝑑 − ℎ) − 𝑣ห < 𝜖 (3.5)

𝜂௫(𝑑 − ℎ) − 𝜂௫(𝑑) = න
ௗ

ௗି
𝜂ᇱ௫(𝑡)𝑑𝑡 (3.6)

𝜂௫(𝑑 − ℎ) − 𝜂௫(𝑑) + 𝑣ℎ = න
ௗ

ௗି
(𝜂ᇱ௫(𝑡) − 𝑣)𝑑𝑡 (3.7)

ห𝜂௫(𝑑 − ℎ) − 𝜂௫(𝑑) + 𝑣ℎห ≤ න
ௗ

ௗି
ห𝜂ᇱ௫(𝑡) − 𝑣ห 𝑑𝑡 (3.8)

≤ න
ௗ

ௗି
𝑡𝑑𝑡 (3.9)

≤ 𝜖ℎ (3.10)

ቤ𝜂௫(𝑑 − ℎ) − 𝜂௫(𝑑)
ℎ + 𝑣ቤ ≤ 𝜖 (3.11)

ቤ𝜂௫(𝑑 − ℎ) − 𝜂௫(𝑑)
−ℎ − 𝑣ቤ ≤ 𝜖 (3.12)

Hence 𝜂ᇱ௫(𝑑) = 𝑣 and since 𝑣 = 𝑋(𝜂௫(𝑑)) then the flow equation is satisfied by 𝜂௫ at 𝑑.
By maximality of 𝐼, 𝑑 ∈ 𝐼. Similarly with 𝑐 = 𝐼𝑛𝑓(𝐼) we see that 𝑐 ∈ 𝐼 so I is closed.

If 𝜂௫(𝑠) ∉ 𝜕𝑀, then by the existence of solution of ordinary differential equation there is

an interval (𝑠 − 𝜖, 𝑠 + 𝜖) around 𝑠 on which 𝜂௫ satisfies the differential equation 𝜂ᇱ௫(𝑡) =
𝑋(𝜂௫(𝑡)). Therefore, 𝜂௫(𝑐) and 𝜂௫(𝑑) are in 𝜕𝑀. Thus, 𝑐 = 𝑓(𝜂௫(𝑐)) and 𝑑 = 𝑓(𝜂௫(𝑑))
maybe either 𝑎 and 𝑏. Since, 𝜂௫ ∶ 𝐼 → 𝑀 and 𝑓 ∶ 𝑀 → [𝑎, 𝑏] the derivation of 𝑓 ∘ 𝜂௫ is 1.
𝑐 = 𝑎 and 𝑑 = 𝑏 so 𝐼 = [𝑎, 𝑏]. Since 𝑥 ∈ 𝑀 is arbitrary and 𝑎 ≤ 𝑓(𝑥) ≤ 𝑏 we can say that

𝑓(𝑀) = [𝑎, 𝑏] because there exists 𝑥ଵ, 𝑥ଶ ∈ 𝑀 such that 𝑓(𝑥ଵ) = 𝑎, 𝑓(𝑥ଶ) = 𝑏. Moreover

𝑥 ∉ 𝜕𝑀, 𝜂௫ is defined in a small neighbourhood of 𝑡 = 𝑓(𝑥) so 𝑎 < 𝑓(𝑥) < 𝑏. Hence,
𝑓ିଵ(𝑎) and 𝑓ିଵ(𝑏) are unions of the boundary components. Here 𝐹 ∶ 𝑓ିଵ(𝑎)× [𝑎, 𝑏] → 𝑀.

From the formula 𝐹(𝑥, 𝑡) = 𝜂௫. Now take 𝐺 ∶ 𝑀 → 𝑓ିଵ(𝑎) × [𝑎, 𝑏], 𝐺(𝑥) = (𝜂௫(𝑎), 𝑓(𝑥)).
Then 𝑓((𝜂௫(𝑡)) = 𝑡. We have 𝐹(𝐺(𝑥)) = 𝑥 and 𝐺(𝐹(𝑥, 𝑡)) = (𝑥, 𝑡) proves that 𝐹 is a

diffeomorphism.

Remark 3.2.13. We define a Morse function on cobordism 𝑀 with a smooth 𝑓 which has

only non-degenerate critical points. If 𝑀 is a cylinder then 𝑓 must have at least one points.

First we need to remember index to find its critical points.

We can compute the ”index” 𝑘 in another way. There is a local coordinate system (𝑦ଵ, … , 𝑦)
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in a neighbourhood 𝑈 of 𝑝 with 𝑦ᇱ(𝑝) = 0 for all 𝑖 ∈ {1, … , 𝑛} and 𝑞 ∈ 𝑈. Then,

𝑓(𝑞) = 𝑓(𝑝) − (𝑦ଵ(𝑞))ଶ −⋯− (𝑦(𝑞))ଶ + (𝑦ାଵ(𝑞))ଶ +⋯+ (𝑦(𝑞))ଶ. (3.13)

We can arrange index in local coordinates to understand the following theorem clearly. For

example, the index of torus can be find of each critical points 𝑎, 𝑏, 𝑐. Again torus is considered
as a height function such that; 𝑓 ∶ 𝕋 → ℝ by 𝑓((𝑥, 𝑦, 𝑧)) = 𝑧 and the in critical point 𝑐, the
function of 𝑓 in local coordinate is 𝑓 = 𝑐 + 𝑥ଶ − 𝑦ଶ and the index is 1.

Definition 3.2.14. Given 𝑓 ∶ 𝑀 → ℝ be a smooth function and 𝑝 be a non-degenerate

critical point with index 𝑘. If 𝑓(𝑝) = 𝑐 assume that 𝑓ିଵ ([𝑐 − 𝜖, 𝑐 + 𝜖]) is compact and does

not contain a critical point of 𝑓 other than 𝑝 for some 𝜖 > 0. Then for all small 𝜖 the set

𝑓ିଵ ([−∞, 𝑐 + 𝜖]) has the homotopy type of 𝑓ିଵ ([−∞, 𝑐 − 𝜖]) with a 𝑘-cell attached.

Because the index of 𝑐 is one, then the homotopy type of 𝑓ିଵ ([−∞, 𝑓(𝑐) + 𝜖]) is a disk with
a one-cell attached. And 𝑓ିଵ ([−∞, 𝑓(𝑐) + 𝜖]) is homeomorphic to a cylinder.

If we show this using the cobordism theory first we should knowwhat “ascending cobordism”

is?

Definition 3.2.15. Let 𝑓 be Morse function on (𝑊,𝑀,𝑀ᇱ) with 𝑓ିଵ(𝑎) = 𝑀 ,𝑓ିଵ(𝑏) =
𝑀ᇱ then we define the ascending cobordism to be 𝑊 = 𝑓ିଵ[𝑎, 𝑐] for 𝑐 ∈ [𝑎, 𝑏]. 𝑊 is a

cobordism between 𝑓ିଵ(𝑎) = 𝑀,𝑓ିଵ(𝑐) = 𝑀ᇱ

There is a connection betweenMorse theory and 𝑘-handle decomposition. Morse function on

your cobordism, you can construct an ascending cobordism. They can form open dense subset

of set of all smooth functions on cobordism. We can introduce an ascending cobordism so we

can take some point 𝑐 in a co-domain [0, 1]. Then we can look the pre-image of the closed

interval𝑊 = 𝑓ିଵ[0, 𝑐]. This gives us an ascending cobordism. There is no critical values

of 𝑓 in some closed interval [𝑐, 𝑐ᇱ]. We can say𝑊 and𝑊ᇲ are diffeomorphic to each other.

The critical point is index 𝑘 and you can attach 𝑘-handle. Assume, [0, 1] is regular values
for 𝑓. Otherwise, it has no critical points on boundary𝑊. We can find collar neighbourhood

inside𝑊. It is diffeomorphic to𝑀×[0, 𝜖]. Morse function can be used to attach a 𝑘-handle.



23

If we return to our example again;torus is a height function and some topological properties

can be given for an ascending cobordism;

(i) If there are no critical points in 𝑓ିଵ([𝑐, 𝑐ᇱ]) then𝑊 is diffeomorphic to𝑊ᇲ

(ii) If there is a single critical point of index k in 𝑓ିଵ([𝑐, 𝑐ᇱ]) then𝑊ᇲ is diffeomorphic to

𝑊 with 𝑘-cell 𝐷 × 𝐷(ାଵ)ି attached

We call this 𝑘-handle attached. 𝑊ᇲ is obtained from 𝑊 by attaching a 𝑘-handle. In torus,

again when we attached 0-cell 𝐷 × 𝐷ଶ and we obtain a disc. The ascending cobordism has

a first saddle point 𝑥ଵ where a 1-handle 𝐷ଵ ×𝐷ଵ is attached. Also second saddle point 𝑥ଶ is
found. This is another 1-handle attached.

Proposition 3.2.16. Given a cobordism𝑊 ∶ 𝑀 → 𝑁 and𝑊ଵ ∶ 𝑁 → 𝑃 and Morse functions

are 𝑓 ∶ 𝑊 → [0, 1] and 𝑓ଵ ∶ 𝑊ଵ → [1, 2] and we have a topological manifold 𝑊 ⨿ே 𝑊ଵ

with continuous map𝑊 ⨿ே 𝑊ଵ → [0, 2]. By regular interval theorem, choose 𝜖 > 0. Take
two intervals [1 − 𝜖, 1] and [1, 1 + 𝜖] are regular for 𝑓 and 𝑓ଵ. Then 𝑓ିଵ ([1 − 𝜖, 1]) and
𝑓ିଵଵ ([1, 1 + 𝜖]) are diffeomorphic to cylinder 𝐶ଵ and 𝐶ଶ. From gluing of cylinder we can

say that 𝑊𝑊ଵ of two cobordism 𝑊 ∶ 𝑀 → 𝑁 and 𝑊ଵ ∶ 𝑁 → 𝑃. Then we can define

homeomorphism 𝜙 ∶ 𝑓ିଵ ([1 − 𝜖, 1]) ⨿ 𝑓ିଵଵ ([1, 1 + 𝜖]) → 𝑁 × [0, 2]

3.2.4 Construction of 𝑛-Cobordism

Sincewe now know how to glue cobordisms. In this part, we can compose equivalence cobor-

dism classes. Two cobordisms are in the same equivalence class if they are homeomorphic

to each other. We only need to check that, this gluing extends to the diffeomorphism classes

of cobordisms. More precisely, the composition of two cobordisms does not only depend on

the cobordism which is chosen, but it is also depend on their equivalence classes. We want

to show that, the cobordism obtained by gluing 𝑊 and 𝑊ଵ by the following diagram. It is

diffeomorphic to𝑊ᇱ
 and𝑊ᇱ

ଵ which is also one obtained by gluing are in the same cobordism

class.
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𝑀 𝑊 𝑁

𝑊ᇱ


≃టబ

𝑁 𝑊ଵ 𝑃

𝑊ᇱ
ଵ

≃టభ

(i) 𝑊 and𝑊ᇱ
 are in the same cobordism class.

(ii) There exist a diffeomorphisms between cobordisms such that

𝜓 ∶ 𝑊
≅−→ 𝑊ᇱ



𝜓ଵ ∶ 𝑊ଵ
≅−→ 𝑊ᇱ

ଵ

(iii) 𝑊𝑊ଵ and𝑊ᇱ
𝑊ᇱ

ଵ can be glued as smooth manifold.

(iv) 𝜓 and 𝜓ଵ can be glued as continuous maps.

(v) 𝜓 is an homeomorphism between the gluing cobordisms

𝜓 ∶ 𝑊𝑊ଵ
≅−→ 𝑊ᇱ

𝑊ᇱ
ଵ

(vi) Now define a new smooth structure on𝑊ᇱ
𝑊ᇱ

ଵ with 𝜓 of the smooth structure of𝑊𝑊ଵ

such that,

𝑊 = 𝑊𝑊ଵ,𝑊ᇱ = 𝑊ᇱ
𝑊ᇱ

ଵ and 𝜓 = 𝜓 ⨿ 𝜓ଵ ∶ 𝑊
≅−→ 𝑊ᇱ

𝜓 ∶ 𝑊𝑊ଵ
≅−→ 𝑊ᇱ

𝑊ᇱ
ଵ

We can draw the following diagram.

𝑀 𝑊𝑊ଵ 𝑃

𝑊ᇱ
𝑊ᇱ

ଵ

ట ⇔
𝑀 𝑊 𝑃

𝑊ᇱ

ట

(vii) If these two smooth structures on𝑊ᇱ
𝑊ᇱ

ଵ are not same, they are at least diffeomorphic.

So𝑊𝑊ଵ and𝑊ᇱ
𝑊ᇱ

ଵ are equivalent.
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(viii) Two cobordism classes which are composed can be defined like this,

𝑊 ∶ 𝑀 → 𝑁 and𝑊ଵ ∶ 𝑁 → 𝑃 glue this cobordism class𝑊𝑊ଵ ∶ 𝑀 → 𝑃
𝑊 ∘ 𝑊ଵ ∶ 𝑀 → 𝑃 where𝑊 ⨿ே 𝑊ଵ ∶ 𝑀 → 𝑃

(ix) This composition is associative, then take 3 cobordism classes,

𝑀 ௐబ−−→ 𝑁,𝑁 ௐభ−−→ 𝑃, 𝑃 ௐమ−−→ 𝑅

(x) According to the associative rule,

𝑊ଶ ∘ (𝑊ଵ ∘ 𝑊) = (𝑊ଶ ∘ 𝑊ଵ) ∘ 𝑊 (3.14)

(xi) Universal property is used to have a canonical homeomorphism

(𝑊 ⨿ே 𝑊ଵ) ⨿ 𝑊ଶ
≅−→ 𝑊 ⨿ே (𝑊ଵ ⨿ 𝑊ଶ)

(xii) The smooth structure 𝑊 ⨿ே 𝑊ଵ ⨿ 𝑊ଶ is obtained by replacing the charts on the

neighbourhood of 𝑁 and 𝑃 by the ones “cylinder construction”

(xiii) Hence𝑊 ⨿ே 𝑊ଵ ⨿ 𝑊ଶ are diffeomorphic.

(xiv) Construction of the category of𝑛𝐶𝑜𝑏, the objects are closed oriented (𝑛−1)-dimensional

manifolds, arrows cobordism classes between them in this category.

(xv) Composition in this category consists of gluing identity arrows are “cylinders”. It is

constructed as the product of𝑊 × [0, 1].

(xvi) The cylinder is indeed the identity, choose a cobordism𝑀 ௐబ−−→ 𝑁 the cylinder 𝐶 over

𝑀.

(xvii) Decompose𝑊 in two parts;𝑊 = 𝑊[ఢ,ଵ] ∘ 𝑊[.ఢ]

𝑊 ∘ 𝐶 = [𝑊[ఢ,ଵ] ∘ 𝑊[.ఢ]] ∘ 𝐶 = [𝑊[ఢ,ଵ] ∘ (𝑊[.ఢ] ∘ 𝐶) = 𝑊[ఢ,ଵ] ∘ 𝑊[.ఢ] = 𝑊.

Hence𝑊𝐶 = 𝑊

(xviii) 𝑀 ௐబ−−→ 𝑁 is equivalent to 𝑁 ௐభ−−→ 𝑃 with 𝐶 over𝑀.

𝑊 = 𝑊ଵ ∘ 𝐶

𝑊 = 𝑊ଵ ∘ (𝑀 × 𝐼)
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𝑊 ∘ (𝑀 × 𝐼) = (𝑊ଵ ∘ (𝑀 × 𝐼)) = 𝑊ଵ ∘ ((𝑀 × 𝐼) ∘ (𝑀 × 𝐼))

𝑊ଵ ∘ (𝑀 × 𝐼)

Remark 3.2.17. What are the isomorphisms in 𝑛𝐶𝑜𝑏? This question can be answered with

invertible morphism. Because in cobordism category, every morphism is not invertible. For

example, the reverse pair of pants is not invertible. Because, if it is invertible, their com-

position should be equivalent to a cylinder. When any cobordism is glued with left pair of

pants their composition is not a cylinder. Any cobordism which is glued with it, a hole can

be appeared. They can not compose to each other.

Definition 3.2.18. Taken two differentiable manifolds X,Y, we say they are homotopy equiv-

alent if there exist smooth maps 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑋, such that 𝑓∘𝑔 ≃ 𝑖𝑑௬ and 𝑔∘𝑓 ≃ 𝑖𝑑௫.
Then we say that 𝑓 and 𝑔 are homotopy equivalences.

Definition 3.2.19. Let𝑊 ∶ 𝑀 → 𝑀ଵ be a cobordism between closed 𝑛 dimensional mani-

folds. We say that W is an h cobordism if the inclusion maps𝑀 ↪ 𝑊 ↩ 𝑀ଵ are homotopy

equivalences.

Cobordism category is also related with a monoidal structure. If Σ and Σᇱ are two (n-1)-

dimensional manifolds then the disjoint union is again (𝑛 − 1) manifold. Given two cobor-

dism 𝑀 ∶ Σଵ → Σଶ and 𝑀ᇱ ∶ Σᇱଵ → Σᇱଶ their disjoint union 𝑀 ⨿ 𝑀ᇱ is a cobordism from

Σଵ ⨿ Σᇱଵ → Σଶ ⨿ Σᇱଶ. Also the empty manifold is an (𝑛 − 1)-dimensional manifold, ∅ is

a cobordism ∅ିଵ → ∅ିଵ act as unit. Therefore, these conditions satisfy the axioms of

monoidal category.

3.2.5 The Twist Cobordism

The symmetry of the disjoint union is defined by twist cobordism. We can define the twist

diffeomorphism ; 𝜏 ∶ Σ ⨿ Σᇱ → Σᇱ ⨿ Σ. The canonical identification between Σ ⨿ Σᇱ and
Σᇱ ⨿ Σ and it maps 𝑥 ∈ Σ ⊂ Σ ⨿ Σᇱ to 𝑥 ∈ Σ ⊂ Σᇱ ⨿ Σ. Then the diffeomorphism 𝜏 defines a
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cobordism such that,

𝑇ஊ,ஊᇲ ∶ Σ ⨿ Σᇱ → Σᇱ ⨿ Σ.

Figure 3.9. The twist cobordism

We can take elements 𝑚,𝑚ᇱ and 𝑚 ∈ Σ, 𝑚ᇱ ∈ Σᇱ. Then 𝑚ଵ and 𝑚ᇱ
ଶ are found in Σ ⨿ Σᇱ.

Similarly,𝑚ଶ and𝑚ᇱ
ଵ are found in Σᇱ⨿Σ. Therefore,𝑚ଵ is mapped to𝑚ଶ and𝑚ᇱ

ଶ is mapped to

𝑚ᇱ
ଵ by the twist diffeomorphism 𝜏௫,௬. When this diffeomorphism is related with cobordism,

𝑇ஊ,ஊᇲ is called a twist cobordism. We can obtain a cylinder with the composition of 𝑇ஊ,ஊᇲ
and 𝑇ஊᇲ,ஊ. This new twist can be compared with the cylinder, first we should know that,

Σ ⨿ Σᇱ and Σᇱ ⨿ Σ are not same. Then the twist satisfies this condition such that, 𝑇ஊᇲ,ஊ ∘
𝑇ஊᇲ,ஊ = (Σ ⨿ Σᇱ) × [0, 1]. Then we obtain a manifold with their composition. Therefore,

in the symmetric monoidal category twist cobordism acts as a twist map. We can also say

for twist cobordism, two in-boundary components and two out-boundary components can be

permuted. The important thing is, when two twists are composed you can obtain an identity

cobordism by the following picture.

𝑇ஊ,ஊᇲ 𝑇ஊᇲ,ஊ 𝑇ஊᇲ,ஊ ∘ 𝑇ஊ,ஊᇲ

≅

𝑖𝑑ஊ⨿ஊᇲ

Figure 3.10. Composition of two twists
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3.2.6 The Geometry of Surfaces

Wewill in this section focus ourselves to two dimensions and we only study with 2Cobwhich

is the main theme of this text. The surfaces are compact and oriented. Classification theorem

says that, surfaces can be appeared in many different forms. According to this theorem,

every compact surface is equivalent to one representative surface. This surface is also called

normal form. Every surface can be transformed into a normal form. The objects in 2Cob

are closed oriented 1-manifolds. Every closed, oriented 1-manifold is diffeomorphic to a

finite disjoint union of circles. We should study the surface because cobordism is determined

by its genus and number of in-boundaries and out-boundaries. We can use four cobordisms

such that, left-right cap and left-right pair of pants to construct cobordism M with genus,

in-boundaries and out-boundaries.

Classification theorem says that every two connected closed oriented surface diffeomorphic

if and only if they have the same genus. In 2Cob the surfaces will have oriented boundaries

which are diffeomorphic to a finite disjoint union of circles. First, we should distinguish in

and out- boundaries. Then we can say the following theorem.

Theorem 3.2.20. Two connected, compact oriented surfaces with oriented boundary are dif-

feomorphic if and only if they have the same genus and same number of in-boundaries and

the number of out-boundaries.

Normal form of a connected surface: Normal form of connected surface can be constructed

with m in-boundaries and n out-boundaries with genus g. The surface can be decomposed

into a number of basic cobordisms. The normal form has three parts;

First part is called the in-part which consists of a cobordism from m circles to 1 circle (𝑚 →
1)
Middle part is called the topological part which consists of a cobordism from one circle to

one circle (1 → 1)
Third part is called the out-part which consists of a cobordism from one circle to n circle
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(1 → 𝑛)
Let us describe the in-part;

Suppose𝑚 > 0 take𝑚−1 copies of left pair of pants and glue them together with the number

of cylinders. Then, the output of one left pair of pants connects to the lower input hole of the

following left pair of pants in a same way. The involved cylinders always come on top of the

pair of pants in the disjoint union. Therefore, each out-boundary of pair of pants is glued to

the lower in-boundary of the next pair of pants. In the case 𝑚 = 0, the in-part only consists
of a left-cap instead of any pair of pants.

Figure 3.11. The in-part for the case𝑚 = 4

The topological part of the normal form consists of all the holes; the topological part can be

constructed from g left-pair of pants and g right-pair of pants so that a hole is created with

connection between in-boundaries of the left pair of pants and out-boundaries of the right

pair of pants.

Figure 3.12. The middle part for the case 𝑔 = 2
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For the out-part suppose that 𝑛 > 0; the composition of (𝑛 − 1) copies of right pair of pants
composed in a similar way; the lower output hole of each piece is connected to the input hole

of its sequel. The involved cylinders always come on the top of the right pair of pants. When

𝑛 = 0, the out-part consists of a single copy of right-cap.

Figure 3.13. The out-part for the case 𝑛 = 3

Figure 3.14. The case with in-boundaries, genus and out-boundaries

3.2.7 Generators and Relations of 2Cob

Generators and relations are known from the group theory. If we make a short summary;

we can say that groups can be described with using generators and relations. Every group
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𝐺 is isomorphic to a quotient of a free group. A set of generators and relations are used to

define 𝐺. The free group 𝐹 represents generators and 𝐺 ≅ 𝐹/𝐻 represents relations. It is

the normal subgroup of 𝐻 of 𝐹. There is a group homomorphism such that, 𝑓 ∶ 𝐺 → 𝐺ᇱ,
images are generators and satisfy relations. If generators and relations are explained on the

category theory, we define a functor 𝐹 ∶ 𝐴 → 𝐵; generating morphisms are in 𝐴 and relation

is preserved. But we interested in monoidal functors so we define 2Cob in terms of generators

and relations for a monoidal category. This section is explained in [1].

Proposition 3.2.21. The category 2-Cob is generated under composition and disjoint union

by the following morphisms;

𝑎 ∶ ∅ → 1 𝑚 ∶ 2 → 1 𝑖 ∶ 1 → 1 𝑑 ∶ 1 → 2 𝑒 ∶ 1 → ∅ 𝑠 ∶ 2 → 2

Figure 3.15. Generating morphisms with cobordisms

This theorem wants to prove that, every cobordism is diffeomorphic to the composition and

disjoint union of this generators with morphisms. We should define a normal form for con-

nected cobordisms with using number of in-boundaries, out-boundaries and genus.Our aim

is to find a connection between connected cobordism and normal form because, they are dif-

feomorphic to each other. Moreover, every cobordism can be defined in terms of the disjoint

union of connected components. According to the theorem of normal form, connected cobor-

disms can be explained with using number of in-boundaries and out-boundaries components.

Then we can give a new definition about connected cobordism.

Definition 3.2.22. Two connected two cobordisms are diffeomorphic if and only if they have

the same number of in-boundaries, out-boundaries and genus. We define normal form with

using m,n and g and it is explained in three parts. From the above pictures that is given

explains normal form.
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The first part can be defined as; (∐ିଶ 𝑖 ∐) ∘ (∐ିଷ 𝑖 ∐) ∘…∘(𝑖 ∐𝑚)∘𝑚 ∶ 𝑛 → 1. This
constructs 𝑛 in-boundaries.

The middle part we define as; (𝑚 ∘ 𝑑) ∘ (𝑚 ∘ 𝑑) ∘ … ∘ (𝑚 ∘ 𝑑) where we have g copies of

(𝑚 ∘ 𝑑) This gives us g holes.
The third part we define as; 𝑑 ∘ (𝑖 ∐𝑑) ∘ (𝑖 ∐ 𝑖 ∐𝑑) ∘ … (∐ିଶ 𝑖 ∐ௗ) ∶ 1 → 𝑚. This

constructs𝑚 out-boundaries.

Therefore, connected cobordism can be constructed with the composition of three parts with

𝑚, 𝑛 and 𝑔. Generating morphisms i,m,d are used to explain a diffeomorphism class of

a connected two cobordisms. Cobordisms are the disjoint union of connected cobordisms.

Hence, diffeomorphism class does not change according to the boundary components. Next

proposition shows that, 𝑀 becomes a disjoint union by composing it with the permutation

cobordisms.

Proposition 3.2.23. Every connected two cobordisms can be constructed from gluing and

the disjoint union of right, left cap with left and right pair of pants together with cylinder.

Proof. Given cobordism 𝑀 ∶ Σ → Σᇱ with the same number of 𝑚, 𝑛 and 𝑔. It can be shown
that Σ ∶ Σଵ ∪ ⋯ ∪ Σ and Σᇱ ∶ Σᇱଵ ∪ ⋯ ∪ Σᇱ. 𝑀ଵ and 𝑀ଶ are two connected components

of 𝑀. Let 𝜎ଵ ⊆ Σ be the collection of in-boundaries of 𝑀ଵ. Also 𝜎ଶ ⊆ Σ be the collection

of in-boundaries of 𝑀ଶ. Similarly let 𝜎ᇱଵ ⊆ Σᇱbe the collection of out-boundaries for 𝑀ଵ.

Also 𝜎ᇱଶ ⊆ Σᇱ be the collection of out-boundaries for 𝑀ଶ. The circles are permuted until the

cobordism is factorized into 𝑀 = 𝑇 ∘ 𝑀ᇱ ∘ 𝑆. Here, 𝑀ᇱ consists disjoint union of connected

components 𝑀ᇱ
ଵ and 𝑀ᇱ

ଶ. They are in-boundaries of 𝑀ᇱ. Out-boundary components and in-

boundary components of Σᇱ are permutation of the in and out boundary components of Σ. 𝑇
and 𝑆 are called permutation cobordisms which are gluing disjoint union of twist cobordism

and cylinders to the in-boundary and out-boundary of𝑀ᇱ. Hence every two cobordisms can

be constructed by a permutation cobordism.

Lemma 3.2.24. Some relations are also used to define a monoidal functors on 2𝐶𝑜𝑏. Then
a generating morphisms are used with cobordism notations to show the relations between

Frobenius algebras.
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Proof. Unit relations with generating morphisms can be drawn. Generating morphisms rep-

resent each caps and pair of pants in the following order.

= =

𝑚 ∘ (𝑖 ⨿ 𝑎) = 𝑖 = 𝑚 ∘ (𝑎 ⨿ 𝑖)

Co-unit relations with generating morphisms are also drawn like unit condition.

= =

(𝑖 ⨿ 𝑒) ∘ 𝑑 = 𝑖 = (𝑒 ⨿ 𝑖) ∘ 𝑑

Associativity relation with generating morphisms

=
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𝑚 ∘ (𝑖 ⨿ 𝑚) = 𝑚 ∘ (𝑚 ⨿ 𝑖)

Co-associativity relation is similar with associativity.

=

(𝑑 ⨿ 𝑖) ∘ 𝑑 = (𝑖 ⨿ 𝑑) ∘ 𝑑

Commutativity relation also can be drawn with generating morphisms.

=

𝑚 = (𝑚 ∘ 𝑠)

Co-commutativity relation is used like commutativity.
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=

𝑑 = (𝑠 ∘ 𝑑)

Then we get Frobenius condition with these generating morphisms.

= =

(𝑖 ⨿ 𝑚) ∘ (𝑑 ⨿ 𝑖) = (𝑑 ⨿ 𝑚) = (𝑚 ⨿ 𝑖) ∘ (𝑖 ⨿ 𝑑)



36

4. FROBENIUS ALGEBRAS

This chapter interests on the study of commutative Frobenius algebras to understand their

relation with topological quantum field theory in last chapter. Before giving the relation

between Frobenius algebras and TQFT first we start with some basic definitions on vector

spaces and then some important definitions of Frobenius algebras with examples. Graphical

notation for linear maps leads to understand relation between TQFTs and Frobenius algebras

easily. Moreover, we define a symmetric monoidal structure on Frobenius algebras. More

details about this chapter can be found in [1] and [6].

4.1. BASIC DEFINITIONS

Some basic algebraic informations on vector spaces and linear maps are given.

Definition 4.1.1. The category of vector spaces over a field 𝑘, called 𝑉𝑒𝑐𝑡 has vector spaces
over 𝑘 as objects and 𝑘-linear maps between them as morphisms.

Definition 4.1.2. Apairing between two vector spaces𝑉 and𝑊, is a linear map 𝛽 ∶ 𝑉⊗𝑊 →
𝑘. The elements can be written 𝑣⊗𝑤 ↦ ⟨𝑣,𝑤⟩. Co-pairing is a linear map 𝛾 ∶ 𝑘 → 𝑉⊗𝑊.

Definition 4.1.3. Let 𝐴 be a 𝑘-vector space.

(i) A linear form in 𝐴 is a linear map 𝐴 → 𝑘

(ii) A pairing in 𝐴 is a linear map 𝐴⊗𝐴 → 𝑘, and a co-pairing is a linear map 𝑘 → 𝐴⊗𝐴.

(iii) A pairing 𝛽 ∶ 𝐴⊗𝐴 → 𝑘 is called right non-degenerate if there exists a right co-pairing
𝛾 ∶ 𝑘 → 𝐴⊗ 𝐴 such that the composition

𝐴 ≅ 𝑘 ⊗ 𝐴 ఊೝ⊗ௗಲ−−−−→ 𝐴⊗𝐴⊗𝐴 ௗಲ⊗ఉ−−−−→ 𝐴⊗ 𝑘 ≅ 𝐴 (4.1)
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is the identity on 𝐴.

(iv) A pairing 𝛽 ∶ 𝐴 ⊗ 𝐴 → 𝑘 is called left non-degenerate if there exists a left co-pairing

𝛾 ∶ 𝑘 → 𝐴⊗ 𝐴 such that the composition

𝐴 ≅ 𝐴⊗ 𝑘 ௗಲ⊗ఊ−−−−→ 𝐴⊗𝐴⊗𝐴 ఉ⊗ௗಲ−−−−→ 𝑘 ⊗ 𝐴 ≅ 𝐴 (4.2)

is the identity on 𝐴.

(v) A pairing is called non-degenerate if it is both right and left non-degenerate.

If we summarize the definitions briefly;

A linear map 𝛽 ∶ 𝑉 ⊗ 𝑊 → 𝑘 is said to be non degenerate pairing with respect to 𝑉 if

(𝛽 ⊗ 𝑖𝑑) ∘ (𝑖𝑑 ⊗ 𝛾) = 𝑖𝑑 and if there exists a linear map 𝛾 ∶ 𝑘 → 𝑊 ⊗ 𝑉, called
copairing, such that:

𝑉 ∼−→ 𝑉⊗ 𝑘 ௗೇ⊗ఊ−−−−→ 𝑉⊗ (𝑊⊗𝑉) ∼−→ (𝑉 ⊗𝑊)⊗ 𝑉 ఉ⊗ௗೇ−−−−→ 𝑘 ⊗ 𝑉 ∼−→ 𝑉

We can also define non degenerate pairing with respect to W such that:

𝑊 ఊ⊗ௗೈ−−−−→ 𝑊⊗𝑉⊗𝑊 ௗೈ⊗ఉ−−−−→ 𝑊

is the identity on𝑊.

We use these maps in terms of cobordism notation. It is showed in the following picture.

𝜖

𝛽 𝛾

linear form pairing co-pairing identity

𝜖 ∶ 𝐴 → 𝑘 𝛽 ∶ 𝐴 ⊗ 𝐴 → 𝑘 𝛾 ∶ 𝑘 → 𝐴⊗ 𝐴 𝑖𝑑 ∶ 𝐴 → 𝐴

Figure 4.1. Linear maps with cobordism notation

In the picture, the circles represent domain and co-domain in the right and left side. Each

circle represents of 𝐴, and a column of 𝑛 circles represents the 𝑛௧ tensor product of 𝐴. We
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showed that composition of two maps such that 𝑔 ∘ 𝑓 represents two cobordisms. Some

circles for the domain of 𝑔 and the co-domain of 𝑓 are used to glue cobordisms. We can

draw a map for example; (𝜖 ⊗ 𝑖𝑑) ∘ 𝛾 represented by the following cobordism notation:

𝛾

𝜖

Figure 4.2. Composition of co-pairing,linear form and identity

Definition 4.1.4 (Associative pairing). A pairing, 𝛽 ∶ 𝑀 ⊗ 𝑁 → 𝑘 is called associative if

⟨𝑥𝑎|𝑦⟩ = ⟨𝑥|𝑎𝑦⟩, for all 𝑥 ∈ 𝑀, 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑁. all 𝑘 algebras.

Lemma 4.1.5. If 𝛽 is a non-degenerate pairing, then left and right co-pairings are equal.

Also in this case, 𝛽 admits a unique associated co-pairing.

Proof. It is known that,

𝐴 ≅ 𝐴⊗ 𝑘 ௗಲ⊗ఊ−−−−→ 𝐴⊗𝐴⊗𝐴 ఉ⊗ௗಲ−−−−→ 𝑘 ⊗ 𝐴 ≅ 𝐴 (4.3)

𝐴 ≅ 𝑘 ⊗ 𝐴 ఊ⊗ௗಲ−−−−→ 𝐴⊗𝐴⊗𝐴 ௗಲ⊗ఉ−−−−→ 𝐴⊗ 𝑘 ≅ 𝐴 (4.4)

𝑘 ఊೝ //

ఊೝ⊗ఊ ''NN
NNN

NNN
NNN

N 𝐴⊗ 𝐴
ௗಲ⊗ಲ⊗ఊ
��

𝐴⊗ 𝐴⊗𝐴⊗𝐴

𝑘 ఊ //

ఊೝ⊗ఊ ''NN
NNN

NNN
NNN

N 𝐴⊗ 𝐴
ఊೝ⊗ ௗಲ⊗ಲ
��

𝐴⊗ 𝐴⊗𝐴⊗𝐴

𝐴⊗ 𝐴 ఊೝ⊗ௗಲ⊗ಲ //

ௗಲ⊗ಲ %%KK
KKK

KKK
K 𝐴⊗ 𝐴⊗𝐴⊗𝐴

ௗಲ⊗ఉ⊗ௗಲvvmmm
mmm

mmm
mmm

𝐴⊗ 𝐴

𝐴⊗ 𝐴 ௗಲ⊗ಲ⊗ఊ //

ௗಲ⊗ಲ %%KK
KKK

KKK
K 𝐴⊗ 𝐴⊗𝐴⊗𝐴

ௗಲ⊗ఉ⊗ௗಲvvmmm
mmm

mmm
mmm

𝐴⊗ 𝐴
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First and second diagram commute. Right and left non-degeneracy conditions satisfy the

commutativity. Then third and forth commute. Hence the diagrams are commutative so;

𝛾 = 𝛾.

Definition 4.1.6. A 𝑘-algebra is a 𝑘-vector space 𝐴 equipped with a linear maps 𝜇 ∶ 𝐴⊗𝐴 →
𝐴, (𝑎, 𝑏) ↦ 𝑎 ⋅ 𝑏 called multiplication, and a linear map 𝜂 ∶ 𝑘 → 𝐴, called the unit, such that
the following diagrams commute:

𝐴⊗ 𝐴⊗𝐴 idಲ⊗ఓ
//

ఓ⊗idಲ
��

𝐴⊗ 𝐴
ఓ
��

𝐴⊗ 𝐴 ఓ
// 𝐴

𝑘 ⊗ 𝐴ఎ⊗idಲ//

%%KK
KKK

KKK
KK

𝐴⊗ 𝐴
ఓ
��
𝐴

𝐴⊗ 𝐴
ఓ
��

𝐴⊗ 𝑘idಲ⊗ఎ
oo

yysss
sss

sss
s

𝐴

These diagrams tell us that the multiplication is associative and 𝜂(1) acts as a unit for the
multiplication. 𝜇 sends 𝑎 ⊗ 𝑏 → 𝑎𝑏 and unit 𝜂 sends 1 → 1. These conditions satisfy as
follows:

(𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝐴

1 ⋅ 𝑎 = 𝑎 = 𝑎 ⋅ 1

The morphism of the 𝑘-algebra unit 𝜂 and multiplication 𝜇 are represented with cobordism

notation.

𝜇

𝜂

multiplication unit

𝜇 ∶ 𝐴 ⊗ 𝐴 → 𝐴 𝜂 ∶ 𝑘 → 𝐴

Figure 4.3. Multiplication and unit
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Associative and unit condition can be drawn in terms of cobordism notation such that,

𝜇𝜇 = 𝜇𝜇

Figure 4.4. Associativity axiom

𝜂

𝜇 = =

𝜂

𝜇

Figure 4.5. Unit axiom

Definition 4.1.7. Let 𝐴 be a 𝑘-algebra with multiplication 𝜇. A pairing 𝛽 ∶ 𝐴 ⊗ 𝐴 → 𝑘 is

associative if the following diagram commutes:

𝐴⊗ 𝐴 𝐴⊗ 𝐴⊗𝐴 𝐴⊗ 𝐴

𝑘
ఉ

ఓ⊗ௗಲௗಲ⊗ఓ

ఉ

Then, we can write in cobordism notation.
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𝛽
𝜇

=
𝛽

𝜇

Figure 4.6. Pairing with multiplication

A linear form 𝜖 ∶ 𝐴 → 𝑘 determines a pairing 𝛽 in the following order;

𝛽 ∶ 𝐴 ⊗ 𝐴 ఓ−→ 𝐴 ఢ−→ 𝑘.

These can be drawn in cobordism notation such that;

𝜖

𝛽

𝜖 ∶ 𝐴 → 𝑘 𝛽 ∶ 𝐴 ⊗ 𝐴 → 𝑘

Figure 4.7. Linear form and pairing

Definition 4.1.8. If 𝑉 is a vector space over a field 𝐾, then the dual space denoted 𝑉∗ is the
set of 𝑘-linear maps 𝑉∗ → 𝐾

Definition 4.1.9. A right A-module is a vector space𝑀 over 𝑘 with a map 𝛼 ∶ 𝑀⊗𝐴 → 𝑀
such that 𝛼 represents multiplication in 𝐴. We can write an action 𝑥⊗𝑎 ↦ 𝑥 ⋅ 𝑎. Then these
properties make the following diagram commute:

𝑀⊗𝐴⊗𝐴idಾ⊗ఓ
//

ఈ⊗idಲ
��

𝑀⊗𝐴
ఈ
��

𝐴⊗ 𝐴 ఈ
// 𝐴

Definition 4.1.10. A left A- module is defined similarly with a map 𝛼 ∶ 𝐴 ⊗ 𝑀 → 𝑀 that
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commutes with the unit and the multiplication maps. It can be written 𝑎⊗𝑥 ↦ 𝑎 ⋅𝑥 satisfied
axioms similar those of right A-modules,

𝑎 ⋅ (𝑏 ⋅ 𝑥) = (𝑎𝑏) ⋅ 𝑥 and 1 ⋅ 𝑥 = 𝑥. It can be also said that 𝐴 is both left and right 𝐴-module

by replacing𝑀.

𝑀⊗𝐴 ఈ //𝑀

𝑀⊗ 𝑘
ௗಾ⊗ఎ

OO ;;wwwwwwwww

Definition 4.1.11 (Associative Non-degenerate Pairing). Let 𝐴 be a 𝑘-algebra, 𝑀 be a right

𝐴-module and 𝑁 be a left 𝐴-module. An associative pairing 𝛽 ∶ 𝑀⊗𝑁 → 𝑘 is such that the

following diagram commutes:

That is, the pairing is associative whenever 𝑥 ⊗ 𝑦 ↦ ⟨𝑥𝑎|𝑦⟩ = ⟨𝑥|𝑎𝑦⟩, for all 𝑥 ∈ 𝑀, 𝑎 ∈
𝐴, 𝑦 ∈ 𝑁.

𝑀⊗𝐴⊗𝑁

𝑀⊗𝑁 𝑀⊗𝑁

𝑘

ఈ⊗ௗಿ
ௗಾ⊗ఈ

ఉ
ఉ

4.2. FROBENIUS ALGEBRAS

Definition 4.2.1. A Frobenius algebra 𝐴 is a 𝑘-algebra with a linear functional 𝜖 ∶ 𝐴 → 𝑘,
such that the associative pairing, 𝛽 ∶ 𝐴 ⊗ 𝐴 → 𝑘, is non degenerate. The map 𝜖 is called a

Frobenius form or a trace form (A, 𝜖) such that 𝜖(𝑎𝑏) = 0 for all 𝑎 ∈ 𝐴 implies 𝑏 = 0

Definition 4.2.2. The category of commutative Frobenius algebras is denoted by, 𝑐𝐹𝐴, has
objects; commutative Frobenius algebras over a field 𝑘 and morphisms; Frobenius algebra

homomorphisms between them.

Examples of Frobenius Algebras
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Example 4.2.3. The field ℂ is a Frobenius algebra over ℝ, by considering the Frobenius

form

ℂ ఢ−→ ℝ

𝜖(𝑎 + 𝑖𝑏) = 19𝑎 − 𝑏
5 (4.5)

Here, the field of complex numbers together with unit map; 𝜂 ∶ ℝ → ℂ is a Frobenius form

and it is defined by with linear functional like 𝜖 above. The multiplication 𝜇 ∶ ℂ ⊗ ℂ is

finite dimensional algebra. To prove this Frobenius form; first a canonical basis is taken

for ℂ like 𝑒ଵ = 1 and 𝑒ଶ = 𝑖. These basis are determined for 𝐻𝑜𝑚(ℂ,ℝ) there are two

conditions; 𝜂(𝑒ଵ) = 𝑒ଵ(𝜂) = 𝑖𝑑ோ and 𝜂(𝑒ଶ) = 𝑒ଶ(𝜂) = 0. For example; 𝜖(2 + 3𝑖) = 7
and 𝜖(1 − 𝑖) = 4. Let 𝜆(2 + 3𝑖) + 𝜇(1 − 𝑖) = 𝑎 + 𝑖𝑏. Then, solve this equations to

find 𝜇 and 𝜆 in terms of 𝑎 and 𝑏. We can obtain;𝜆 = ା
ହ and 𝜇 = ଷି

ହ . We know that,

𝜖 is linear. Therefore we can say; 𝜖(𝑎 + 𝑖𝑏) = 𝜖 ൫ାହ (2 + 3𝑖) + ଷିଶ
ହ (1 − 𝑖)൯. Then,

𝜖(𝑎 + 𝑖𝑏) = ቀାହ ቁ 7 + ቀଷିଶହ ቁ 4. Hence, we get 𝜖(𝑎 + 𝑖𝑏) = ଵଽି
ହ . Then we get the

Frobenius form.

Example 4.2.4. The ring 𝑀𝑎𝑡(𝑘) of 𝑛 × 𝑛 matrices over a field 𝑘, satisfies a Frobenius

algebra structure. Trace can be written, 𝜖 ∶ 𝑋 = (𝑋) ⟶ 𝑡𝑟(𝑋) = ∑ୀଵ 𝑋. Moreover

the pairing 𝛽 ∶ 𝑀𝑎𝑡(𝑘) ⊗ 𝑀𝑎𝑡(𝑘) ⟶ 𝑘. Then we put it into Frobenius form and get;

𝛽(𝑥 ⊗ 𝑦) = 𝑡𝑟(𝑥 ⋅ 𝑦). It is a non-degenerate bilinear pairing which is a well known fact.

Therefore, it satisfies Frobenius algebra axioms.

Example 4.2.5. Let 𝐺 = 𝑔, 𝑔ଵ, … , 𝑔 be a finite group with identity element 𝑔 and 𝑘[𝐺]
be the vector space over 𝑘 with basis elements, 𝑔, … , 𝑔 of 𝐺. Then we can choose 𝛾
which is one of the elements of these basis. Then, 𝑔, … , 𝑔 ⟶ 𝛾𝑔, … , 𝛾𝑔 by the k-

linear transformation. Hence, we can write matrix of this transformation with respect to basis

𝑔, … 𝑔 ∶ 𝑀ఊ. Then, 𝑘[𝐺] ⟶ 𝑘 is defined by 𝛾 ⟶ 𝑡𝑟(𝑀ఊ). Therefore, 𝜖(𝛾⋅𝛾ᇱ) = 𝑡𝑟(𝑀ఊఊᇲ)
In addition to this, we can choose any 𝛽 ∈ 𝑘[𝐺]. Then, 𝛽 = 𝑐𝑔 + … + 𝑐𝑔 𝑐 ∈ 𝑘.
Similarly by the k-linear transformation we can say, 𝑔, … , 𝑔 ⟶ 𝛽𝑔, … , 𝛽𝑔 ∶ 𝑀ఉ. Then

𝑘[𝐺] ⟶ 𝑘 is defined by 𝛽 → 𝑡𝑟(𝑀ఉ). Therefore, 𝜖(𝛽 ⋅ 𝛽ᇱ) = 𝑡𝑟(𝑀ఉఉᇲ). Hence these

conditions satisfy Frobenius axioms.
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Definition 4.2.6. A Frobenius algebra (𝐴, 𝜖) with the non degenerate pairing 𝛽 and also co-

pairing 𝛾 are defined by commutativity property such that the following both diagrams are

called snake relation.If the snake relation is showed by cobordism notation;

𝛾

𝛽

= =

𝛽

𝛾

Figure 4.8. The snake relation

Another definition of non-degenerate is; 𝛽 ∶ 𝐴 ⊗ 𝐴 → 𝑘 if there exists 𝛾 ∶ 𝑘 → 𝐴⊗ 𝐴 such

that;

𝐴ௗಲ⊗ఊ//

ௗಲ %%KK
KKK

KKK
KKK

K 𝐴⊗ 𝐴⊗𝐴
ఉ⊗ௗಲ
��
𝐴

𝐴ఊ⊗ௗ//

ௗಲ %%KK
KKK

KKK
KKK

K 𝐴⊗ 𝐴⊗𝐴
ௗಲ⊗ఉ
��
𝐴

Definition 4.2.7. The three point functions 𝜑 is defined by 𝜑 = 𝛽 ∘ (𝜇 ⊗ 𝑖𝑑)

𝛽

𝜇

= 𝛽

𝜇

=

Figure 4.9. The three point functions
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𝐴⊗ 𝐴⊗𝐴ఓ⊗ௗಲ//

ఝ
''OO

OOO
OOO

OOO
O 𝐴⊗ 𝐴

ఉ
��
𝑘

Definition 4.2.8. A vector space has multiplication and co-multiplication property with units

and it satisfies the multiplication and co-multiplication commutes called Frobenius relation.

4.2.1 Coalgebra structure

Graphical representation can be constructed with these algebraic definitions to see the struc-

tures of the Frobenius algebras. It should be known that it has co-algebra structure. Co-unit

is formed with Frobenius algebra. The definition of co-algebra is given in the following

definition.

Definition 4.2.9. A co-algebra over a field 𝑘 is a 𝑘-vector space 𝐴 with a linear map 𝛿 ∶
𝐴 → 𝐴⊗ 𝐴 called co-multiplication and a linear map 𝜖 ∶ 𝐴 → 𝑘 called co-unit such that the

following diagrams commute:

𝐴⊗ 𝐴⊗𝐴 𝐴⊗ 𝐴idಲ⊗ఋ
oo

𝐴⊗ 𝐴
ఋ⊗idಲ

OO

𝐴ఋ
oo

ఋ
OO

𝑘 ⊗ 𝐴 𝐴⊗ 𝐴ఌ⊗idಲoo

𝐴

eeKKKKKKKKKK
ఋ
OO 𝐴⊗ 𝐴 idಲ⊗ఌ

// 𝐴⊗ 𝑘

𝐴
ఋ
OO 99ssssssssss

We will show co-multiplication and co-unit in terms of cobordism notation as follows:
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𝛿

𝜖

co-multiplication co-unit

𝐴 → 𝐴⊗ 𝐴 𝐴 → 𝑘

Figure 4.10. Co-multiplication and co-unit

Co-associativity and co-unit axioms are drawn in terms of cobordism such that,

=

Figure 4.11. Co-associativity axiom

= =

Figure 4.12. Co-unit axiom

Definition 4.2.10. A Frobenius algebra 𝐴 is a finite dimensional vector space together with

linear maps such that 𝜇 ∶ 𝐴 ⊗ 𝐴 → 𝐴, 𝛿 ∶ 𝐴 → 𝐴⊗ 𝐴, 𝜂 ∶ 𝑘 → 𝐴 and 𝜖 ∶ 𝐴 → 𝑘

(i) 𝜇(𝜂 ⊗ 𝑖𝑑) = 𝑖𝑑 = 𝜇(𝑖𝑑 ⊗𝜂) (Unit)
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(ii) (𝜖 ⊗ 𝑖𝑑)(𝛿) = 𝑖𝑑 = (𝑖𝑑 ⊗ 𝜖)(𝛿) (Co-unit)

(iii) (𝑖𝑑 ⊗𝜇)(𝛿 ⊗ 𝑖𝑑) = (𝜇 ⊗ 𝑖𝑑)(𝑖𝑑 ⊗𝛿) (Frobenius Condition)

The map left pair of pants is a map 𝜇 ∶ 𝐴 ⊗ 𝐴 → 𝐴. In other words, it is represented as a

pair of pants. If 𝐴 tensored with itself 𝑛 times say 𝐴. It can be showed that 𝐴 → 𝐴 for

𝑛,𝑚 ≥ 0. A linear map 𝜙 ∶ 𝐴 → 𝐴 can be showed by a cobordism withm (in-boundaries)

and n (out-boundaries). The composition of two maps refer to gluing of cobordisms.

Proposition 4.2.11. Given a Frobenius algebra 𝐴, there exists a unique co-associative co-

multiplication, 𝛿, whose co-unit if 𝜖, satisfying the Frobenius condition.

Proof. We know that 𝛿 is defined as the composition of co-pairing and multiplication. It

should be co-associative. Moreover, co-multiplication should satisfy co-associativity. Co-

multiplication can be defined in terms of co-pairing andmultiplication. From the definition of

𝜖 is co-unit for 𝛿 Frobenius form and pairing are used with the definition of co-multiplication

and unit condition. From this definition, we only need to show that co-multiplication 𝛿 is

unique. Hence we can take another co-associative co-multiplication 𝜉 which has co-unit

such that 𝜖 and also satisfies Frobenius condition. The first step is 𝜉’s Frobenius relation is

composed with unit and co-unit. Then we obtain the following picture.

𝜉
𝜇 ച

ആ

=
𝜉ആ

ఉ = 𝜇 𝜉
ആ

ച
=

The second equality shows the Frobenius relation. Unit and co-unit relation are shown in the

last equality. Then co-pairing 𝛾 is unique. Due to the snake relation, we obtain 𝜉 ∘ 𝜂 = 𝛾. 𝜉
can be written in the following picture to get the last equality.
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𝜉 = 𝜇 𝜉
ആ

= 𝜇
ആ

=
ఊ

𝜇

It is clear that 𝜉 is true for the definition of co-multiplication since it can be said that 𝜉 = 𝛿.

Proposition 4.2.12. Given a Frobenius algebra 𝐴, there exist a unique co-associative co-

multiplication 𝛿, whose co-unit if 𝜖 satisfying the Frobenius condition.

Proof.

𝛿
𝜇 ച

ആ

=
𝛿ആ

ఉ = 𝜇 𝛿
ആ

ച
=

𝜉 = 𝜇 𝜉
ആ

= 𝜇
ആ

=
𝛾

𝜇

Proposition 4.2.13. Let 𝐴 be a vector space with a multiplication 𝜇 ∶ 𝐴 ⊗ 𝐴 → 𝐴, a unit

map 𝜂 ∶ 𝑘 → 𝐴, a co-multiplication 𝛿 ∶ 𝑘 → 𝐴 ⊗ 𝐴 and a counit 𝜖 ∶ 𝐴 → 𝑘 such that the

Frobenius condition holds. Then:

(i) 𝐴 is a finite dimensional vector space:

(ii) The multiplication 𝜇 is associative, i.e., 𝐴 is a finite dimensional 𝑘-algebra;

(iii) The co-multiplication is co-associative;
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(iv) The co-unit 𝜖 is a Frobenius form, which means that 𝐴 is a Frobenius algebra.

Proof. Assume that (i) holds. The unit condition is satisfied. Co-unit condition is proved

with using non-degeneracy condition.

=
ఉ

ఊ =
𝜇 ച

ఊ = 𝛿
ച

The left hand side of 𝜖 is co-unit is constructed with using non-degeneracy condition of left
hand side. In the second equality, we use 𝛽(𝑎⊗𝛽) = 𝜖(𝑎𝑏). From the co-multiplication in

the third equality, we get last picture. We use co-multiplication for the first equality and use

associativity for the second equality to prove Frobenius condition.

𝛿𝜇 = 𝜇
ఊ

𝜇
= 𝜇

ఊ

𝜇
=

𝛿
𝜇

Therefore Frobenius relation of left hand side is proven, for the right hand side co-multiplication

is used. Assume (ii) holds. Frobenius condition is used to show associativity ofmultiplication

with caps together. In the picture last equality, we use unit-condition.
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𝛿

𝜇

𝜂

=

𝜂

𝜇 𝛿 = 𝛿

Then we obtain

𝛿

𝜇 𝜖

= 𝜇

We have

𝜇
𝜇

=

𝜇

𝛿
𝜇 ച

=
𝜇 𝛿

𝜇 ച
= 𝜇

𝜇

Define pairing

𝛽 = 𝜇 𝜖

There exist a co-pairing to show non-degeneracy of snake relation. Co-pairing is defined as;
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𝛾 = 𝛿𝜂

Frobenius condition is used to solve the problem. In the picture Frobenius condition is satis-

fied by co-multiplication in the second equality. When we look at last equality unit condition

and multiplication is satisfied to obtain the right hand side of non-degeneracy condition.

ఊ

ఉ
=

ആ 𝛿
𝜇 ച

=
ആ
𝜇 𝛿

ച
=

More details about proof can be found in [6].
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5. TOPOLOGICAL QUANTUM FIELD THEORIES

In this final chapter, we start with giving a general definition of some properties of topological

quantum field theories. We want to prove that there is an equivalence of categories between

the category 2𝑇𝑄𝐹𝑇 and the category 𝑐𝐹𝐴. Finally, we show some examples to support our

result of this thesis. Moreover, some important conclusion remarks are given to understand

the summary of thesis. More details can be found in [5] and [1].

Definition 5.0.1. A Topological Quantum Field Theory (TQFT), of dimension 𝑛 over a field

k, is a symmetric monoidal functor

𝐹 ∶ 𝑛𝐶𝑜𝑏 ⟶ 𝑉𝑒𝑐𝑡 .

5.1. SOME PROPERTIES OF TQFT (ATIYAH’S AXIOMS)

• A compact (𝑛 − 1)-oriented manifold Σ with a complex vector space 𝑍(Σ) for every
(𝑛 − 1) manifold Σ.

• A compact n- oriented manifoldMwith boundary 𝜕𝑀, signed a vector 𝑍(𝑀) ∈ 𝑍(𝜕𝑀)

(i) Z is functorial with respect to orientation preserving diffeomorphisms of Σ and M.

(ii) Z is involutory such that 𝑍(Σ∗) = 𝑍(Σ)∗ where Σ∗ is Σ with orientation and 𝑍(Σ)∗ is
the dual vector space of 𝑍(Σ)

(iii) Z is multiplicative; 𝑍(Σଵ ⨿ Σଶ) = 𝑍(Σଵ) ⊗ 𝑍(Σଶ)

(iv) 𝑍(∅ିଵ) = ℂ

(v) (Σ × 𝐼) = 𝑖𝑑(ஊ) such that I is an interval.

Proof. (i) An orientation preserving diffeomorphism 𝑓 ∶ Σ → Σᇱ induces as an isomor-
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phism 𝑍(𝑓) ∶ 𝑍(Σ) → 𝑍(Σᇱ) and it can be say 𝑍(𝑔𝑓) = 𝑍(𝑔) ⋅ 𝑍(𝑓) for 𝑔 ∶ Σ → Σᇳ

and if 𝑓 extends to an orientation preserving diffeomorphism 𝑀 → 𝑀ᇱ with 𝜕𝑀 = Σ
and 𝜕𝑀ᇱ = Σᇱ then 𝑍(𝑓) takes the element 𝑍(𝑀) to 𝑍(𝑀ᇱ)

(ii) Suppose ∧ is a field, 𝑍(Σ) and 𝑍(Σ)∗ are dual vector spaces. For example, ℂ or ℝ is

field. Relation between 𝑍(Σ) and 𝑍(Σ∗) is like a integer homology and cohomology

relation.

(iii) We gave a Atiyah’ s definition of a topological quantum field theory in the beginning

of this chapter. 𝑍 is a tensor functor between the category of Cob(d) and the category

of complex vector spaces. Tensor functor preserves tensor product so the third axiom

says that, the tensor product of the right hand side is the usual tensor product of vector

spaces. The tensor product of the left hand side is given by disjoint union of manifolds.

Therefore, more concerently tensor functor means that if we take disjoint union in of

two manifolds Σଵ and Σଶ then applies 𝑍 result to be suppose tensor product of 𝑍 of Σଵ
and 𝑍 of Σଶ.

(iv) Not only both tensor product is preserved but also zero unit is preserved. The functor is

from the empty manifold is supposed to be identify with the unit to the tensor product

of complex vector spaces which is just the complex numbers.

(v) 𝑍(Σ × 𝐼) ∈ 𝐸𝑛𝑑(𝑍(Σ)) is an invariant 𝜎 and more generally it acts as the identity on

the subspace of 𝑍(Σ) spanned by all elements 𝑍(𝑀) with 𝜕𝑀 = Σ if we replace 𝑍(Σ)
by its image under the invariant 𝜎. It is easy to see that the axioms are still satisfied.

Atiyah’s definition explains that, cobordism is related with TQFT axioms;

Definition 5.1.1. Themap𝑍 assigns an element𝑍(𝑀) ∈ 𝑍(Σଶ)∗⊗Σଵ = 𝐻𝑜𝑚(𝑍(Σଵ, 𝑍(Σଶ)).
A functor 𝑍 can be obtained from this way. Therefore, 𝑍 ∶ 𝑛𝐶𝑜𝑏 → 𝑉𝑒𝑐𝑡 and all axioms

satisfy that 𝑍 is a symmetric monoidal functor. Conversely, from the symmetric monoidal

functor 𝑍 ∶ 𝑛𝐶𝑜𝑏 → 𝑉𝑒𝑐𝑡 we use cobordisms to get Atiyah’s comment of TQFT. Let

𝑀 ∶ Σଵ → Σଶ cobordisms𝑀 ∶ 𝜙 → Σ∗ଵ ⨿ Σଶ and hence obtaining a map 𝑍 ∶ ℂ → 𝑍(Σଵ ⨿ Σଶ)
which is the same as the giving a vector 𝑍(1) ∈ 𝑍(Σଵ ⨿ Σଶ)
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Question:What is the 𝑑-dimensional topological quantum field theory?

Definition 5.1.2. First of all, we have a tensor functor which we can evaluate on the objects

on 𝐶𝑜𝑏(𝑑). If 𝑑 = 2; so the objects of manifolds on dimension one and there is one manifold

namely the circle. If Z is a two-dimensional TQFT then we can evaluate Z of circle and get

some vector space which are call A; 𝑍(𝑆ଵ) = 𝐴. Here, A is a complex vector space and we

can show what Z does on all objects because, every closed one manifold is just the disjoint

union of finitely many circles. Also, Z is a tensor functor to take a disjoint unions of tensor

products. For example; if we evaluate Z on three circles, then we just get tensor product of

three caps of A. It is called the “pair of pants” 𝑍 ( ) = 𝐴⊗𝐴 → 𝐴. It is a cobordism from

two circle to one circle. Hence, this gives us a linear map which is called “multiplication”.

It is denoted as 𝜇. We should know, 𝜇 is associative and commutative because there is a

diffeomorphism on pair of pants which swaps in-coming circles.

In addition to this, there is also unit with respect to this multiplication. A disc can be drawn

by the following way; 𝑍 ( ): This disc is a cobordism from the empty set to one circle, that

supposed to give me a linear map from Z of the empty set which we said over there was the

complex numbers into Z of circle which is A;𝑍(∅) ≃ ℂ → 𝐴. Moreover, such a linear map

we can distinct of as given elements of A Let take an element which are called 1 and inside

of A; 1 ∈ 𝐴. We can say that, 1 is unit with respect to this multiplication.

Also, we can read the disc in the other way. We can take of the disc as a cobordism from

one circle to the empty set; 𝑍 ( ) .𝑍 of the disc is going to be a linear map from 𝐴 into the

complex numbers. A linear map can be written 𝐴 ௧−→ ℂ. It is called a trace. What is the trace

pairing?

A trace pairing by linear linear form on A which is given by taking two elements of A , first

multiplying them and taking a trace. This linear map can be written; 𝐴⊗ 𝐴 ఓ−→ 𝐴 ௧−→ ℂ. If
we evaluate on this cobordism two circles to the empty set given by a cylinder; 𝑍 ( ).
Hence, we have a trace pairing which is not generate pairing. Then A is finite dimensional.

• What happens when you apply TQFT to manifolds?

We have a disjoint union when you apply TQFT and you get a tensor product. We can take

(𝑛 − 1)-dimensional manifold to the (𝑛 − 1)-dimensional manifold. For example, take a
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cobordism from the empty (𝑛 − 1)-dimensional manifold to empty (𝑛 − 1)-dimensional

manifold like; 𝑀 ∶ ∅ିଵ → ∅ିଵ when we apply TQFT to this, we map this manifold to

category of vector spaces.

𝑍(𝑀) ∶ 𝑍(∅ିଵ) → 𝑍(∅ିଵ)

Then, 𝑍(𝑀) ∶ 𝔽 → 𝔽. This map is taken from field to the field. It is scalar. Therefore 𝑍(𝑀)
is a topological constant.

Theorem 5.1.3. There is a natural equivalence of categories 2𝑇𝑄𝐹𝑇 ⋍ 𝑐𝐹𝐴.

Proof. First we will show that;

𝐶𝑎𝑡௦௬⊗ (2𝐶𝑜𝑏ௌ , 𝑉𝑒𝑐𝑡) ⋍ 𝑐𝐹𝐴 (5.1)

and also

𝐶𝑎𝑡௦௬⊗ (2𝐶𝑜𝑏, 𝑉𝑒𝑐𝑡) ⋍ 𝐶𝑎𝑡௦௬⊗ (2𝐶𝑜𝑏ௌ , 𝑉𝑒𝑐𝑡). (5.2)

If we have a three monoidal categories and if 2𝑇𝑄𝐹𝑇 ⋍ 2𝐶𝑜𝑏ௌ and 2𝐶𝑜𝑏ௌ ⋍ 2𝐶𝑜𝑏 and

we can say 2𝑇𝑄𝐹𝑇 ⋍ 2𝐶𝑜𝑏 Then we can prove

2𝑇𝑄𝐹𝑇 = 𝐶𝑎𝑡௦௬⊗ (2𝐶𝑜𝑏, 𝑉𝑒𝑐𝑡) ⋍ 𝑐𝐹𝐴 . (5.3)

A skeleton of 2𝐶𝑜𝑏 is obtained as follows; In general, we denote n; the disjoint union of 𝑛
circles, we denote1; the circle and 0;the empty one manifold as an object of 2𝐶𝑜𝑏. There is a
symmetricmonoidal natural transformation such as𝛼 between two 2-dimensional topological

quantum field theories. This transformation is determined by its components {𝛼ଵ, … 𝛼}ஹ.
Then, 𝛼ଵ can determine these components. A and B are strict monoidal functors and a

monoidal natural transformation says, 𝑢 is morphism between two strict monoidal functors

that, 𝑢⊗ = 𝑢 ⊗
ᇲ 𝑢. This means that, 𝛼ା = 𝛼⨿ = 𝛼 ⊗𝛼. Hence, the compo-

nent 𝛼 is the 𝑛௧ tensor product of 𝛼ଵ. Now we will find a functor 𝐹 ∶ 2𝑇𝑄𝐹𝑇 → 𝑐𝐹𝐴 .
which is a category equivalence and (also 𝐶𝑎𝑡௦௬⊗ (2𝐶𝑜𝑏ௌ , 𝑉𝑒𝑐𝑡) → 𝑐𝐹𝐴). Then A be a

2-dimensional TQFT and we can define;

𝐹(𝐴) = (𝐴(1), 𝐴 ( ) ,A ( ) ,A ( ) ,A ( )) . (5.4)

First, take a symmetric monoidal natural transformation between two 2-dimensional TQFT
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as,𝛼 ∶ 𝐴 → 𝐵 with 𝛼 ∶ 𝐴(𝑛) → (𝑛). Then, we can say

𝐹(𝛼) = 𝛼ଵ ∶ 𝐴(1) → 𝐵(1)

𝐹(𝛼) is a Frobenius algebra morphism so we will show that 𝐹(𝐴) is a commutative Frobe-

nius algebra. Then we can say, the composition of natural transformations is composition

of morphisms. 𝐴 is a monoidal functor that respects the relations of 2𝐶𝑜𝑏. The unit, co-

unit,commutativity and co-commutativity satisfy that, 𝐹(𝐴) is a Frobenius algebra. Also the
component 𝛼 is just the 𝑛௧ tensor product of 𝛼ଵ. Hence 𝛼 represents the commutativity of

algebra or co-algebra morphisms. Then 𝛼ଵ is a Frobenius algebra morphism. The functor F

is an equivalence of categories, we prove this with its inverse functor. 𝐺 ∶ 𝑐𝐹𝐴 → 2𝑇𝑄𝐹𝑇.
Let (𝐴, 𝜇, 𝛿, 𝜂, 𝜖) be a commutative Frobenius algebra and 𝐺(𝐴, 𝜇, 𝛿, 𝜂, 𝜖) be the symmetric

monoidal functor shown as follows:

𝐺(𝐴, 𝜇, 𝛿, 𝜂, 𝜖) ∶ 2𝐶𝑜𝑏 → 𝑉𝑒𝑐𝑡. We know that 2𝐶𝑜𝑏 has generators and carries Frobenius

structures so generators can be shown in terms of Frobenius algebras. Then we can show;

↦ 𝜇
↦ 𝛿
↦ 𝜂
↦ 𝜖

which also maps 1 ↦ 𝐴, n ↦ 𝐴⊗, 0 ↦ 𝑘, ↦ 𝑖𝑑, ↦ 𝜏,. Now there is a Frobenius

algebra morphism between two commutative Frobenius algebras A and B; 𝜙 ∶ 𝐴 → 𝐵 and

𝐺(𝜙) is the monoidal natural transformation. It has components;𝐺(𝜙) = 𝜙⊗ = 𝜙 ⊗
⋯(𝑛)⋯⊗ 𝜙 then, 𝐺(𝜙)ଵ = 𝜙 and 𝐺(𝜙) = 𝑖𝑑. Now 𝐴 is a functor 𝐴 ∶ 2𝐶𝑜𝑏 → 𝑉𝑒𝑐𝑡
and we use the generators of 2𝐶𝑜𝑏: , , , and We can say that TQFTs are

symmetric monoidal functors. is the linear twist map between the vector spaces. The

component 𝛼 is the 𝑛௧ tensor product of 𝛼ଵ.
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