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ABSTRACT 

 

 

FAULT EMULATION TECHNIQUES FOR LOGIC LOCKING AND MULTI-

CYCLE TEST GENERATION 

 

The testing phase for testing the actual, post-manufactured chips is what is referred as test 

or testing in digital system design industry. Recently, multi-cycle tests that offer high test 

quality have been proposed. Multi-cycle tests are accomplished by feeding the input vector 

constantly and putting the circuit in functional mode for multiple cycles. Multi-cycle tests 

are often needed by partial-scan circuits and circuits with multiple clock-domains. In 

addition, the VLSI Test community is interested in multi-cycle tests because they can reduce 

the test time and cost by detecting more faults with the same test vector. However, the fault 

simulation of multi-cycle tests is computationally expensive. In literature, no fault emulat ion 

method for multi-cycle tests has been proposed yet. In this thesis, a new multi-cycle test 

generation algorithm is proposed and its fault emulation method is developed. With the help 

of our fault emulation method, we accelerate the process of multi-cycle test generation. In 

our multi-cycle test generation method, dynamic single fault activation technique has been 

used. Later, this method is modified to enable multiple fault activation, which is then applied 

to another computationally expensive problem. The process of determination of key gate 

locations in the logic locking problem in hardware security is accelerated by the second 

emulation method proposed in this thesis. The effectiveness of both emulation methods is 

evaluated on the ISCAS’89 benchmark circuits and results are presented.  
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ÖZET 

 

 

LOJİK KİLİTLEME VE ÇOKLU-DARBELİ TEST ÜRETİMİ İÇİN HATA 

EMÜLASYONU TEKNİKLERİ 

 

İmal sonrasındaki çiplerin test aşaması, dijital sistem tasarımı endüstrisinde kısaca test veya 

test yapmak olarak geçer. Son yıllarda, yüksek test kalitesi sunan çoklu-darbeli testler 

önerilmiştir. Çoklu-darbeli testler, devre fonksiyonel durumda iken giriş vektörünün devreye 

birden fazla saat darbesi süresince beslenmesiyle yapılır. Kısmi-tarama devreler ve çoklu 

saat alanı bulunan devreler için genellikle çoklu-darbeli testler gerekmektedir. Bunların yanı 

sıra, çoklu-darbeli testler, test süresini ve maliyetini düşürebileceklerinden ve aynı test 

vektörü ile daha fazla hata yakalamaya olanak sağladıklarından, sayısal entegre devre 

sektöründe ilgi uyandırmışlardır. Fakat, çoklu-darbeli testlerin oluşturulmasında kullanı lan 

hata benzetimi yüksek hesaplama gerektirmektedir. Literatürde, çoklu-darbeli testler için 

henüz bir hata emülasyonu yöntemi önerilmemiştir. Bu tezde, yeni bir çoklu-darbeli test seti 

üretim prosedürü ve bu prosedürü kullanan hata emülasyonu yöntemi geliştirilmişt ir. 

Geliştirilen hata emülasyonu yöntemi ile çoklu-darbeli test üretimini hızlandırmaktayız. 

Çoklu-darbeli test üretim yöntemimizde, dinamik tek hata aktivasyonu tekniği 

kullanılmıştır. Daha sonra, bu metod, modifiye edilerek çoklu hata aktivasyonuna olanak 

sağlayacak hale getirilmiş ve bir diğer yüksek hesaplama gerektiren problem için 

uygulanmıştır. Donanım güvenliğinde, lojik kilitleme için gereken anahtar kapılarının 

yerlerinin belirlenmesi, bu tezde geliştirilen ikinci emülasyon tekniği ile hızlandırılmışt ır. 

Geliştirilen emülasyon tekniklerinin etkinliği ISCAS’89 karşılaştırma devreleri üzerinde 

denenmiş ve sonuçları sunulmuştur.  
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1. INTRODUCTION 

 

Building large circuit structures or integrating billions of transistors at very small dimens ions 

raises its own set of challenges. The precise transfer of circuit layout on to a silicon wafer 

using lithography is difficult as dimensions of the transistors are becoming much smaller 

than the wavelength of the optical sources. Thus, faults manifest themselves as permanent 

defects in wires and transistors during the complex manufacturing steps. Therefore, the 

manufactured chips must be individually tested and verified against flaws before they are 

shipped to the customers. The testing phase for testing the actual, post-manufactured chips 

is what is referred as test or testing in digital system design industry. A test set is prepared 

ahead of time by the test-generation process. Test generation is done using a model of the 

circuit under test. After the manufacturing process, the test vectors are applied to the chips 

by means of a tester (automatic test equipment, ATE). A tester is basically a special computer 

on which a test program runs. Exhaustive testing requires exponential number of tests, which 

causes the test time to grow exponentially. A set of algorithms and methods have been 

proposed to help reduce of the number of test vectors by selecting them more wisely than 

just trying every combination. Fault Simulation is the most important test method where it 

is decided if a test vector is worth keeping and needed for test quality, however, it is 

computationally very complex. Many computationally expensive problems can be 

efficiently implemented on Field Programmable Gate Array (FPGA) platforms and run 

faster than it runs on a CPU. Fault Emulation can be done on such reconfigurable computing 

platforms so that fault simulation can be accelerated. 

The tests that will be applied to the chip are prepared before fabrication, when the design at 

gate-level. Gate-level design, must be designed to be testable. To do that, the circuit must be 

considered as a Finite State Machine (FSM). After the fabrication, state values of the chip in 

an unknown state. Therefore, when an input pattern applied to the chip, it is not possible to 

know beforehand what the outputs will be. For this reason, to test an FSM, state values must 

be controllable and observable. To do that, flip-flops (FF, i.e. state variables) of the circuit 

must be converted to scan flip-flops. In Figure 1.1, a simple FSM is shown with one register 

(FF). The flip-flop denoted by the block R is converted to a scan flip-flop. Combinationa l 

part of the circuit is represented by the block C. Scan flip-flops must also be connected as a 

chain to form a shift register. This shift register is called scan chain and when all state 
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variables are included in the scan chain(s) then the circuit can be called a full scan circuit. 

Beginning and end points of a scan chain (scan-in, scan-out) and the test-enable pin of the 

scan flip-flops, must be accessible from outside of the chip, so that the tester can change the 

state values. Test-enable input of the scan flip flops are all connected together. Thus, the 

chip can be switched to test mode from functional mode using a single input pin. 

 

 

Figure 1.1. An overview of a FSM. a) With a regular flip-flop, b) The flip-flop converted 

to a scan flip-flop to make the circuit testable. 

 

A test vector consists of primary inputs and state values of the FSM. Values of the state 

variables are set by using scan-in pin when the chip is in test mode. After initialization of 

the circuit (i.e. state values and primary inputs from the test vector is applied), primary 

outputs can be captured. In order to capture next-state values, FSM is set to functional mode 

from test mode using test-enable pin. After one clock cycle in functional mode, next-state 

values of the circuit can be captured through the scan-out pin of the chip. To obtain state 

values, the FSM is set back to test mode to shift out state values using scan-out pin. 

In order to have better fault coverage, number of test vectors can be increased. However, 

this will cause longer test application time. Testing millions of chips time consuming and 

therefore an expensive task. For this reason, significant percentage of the chip cost is due to 

testing. Recently, multi-cycle tests that offer high test quality have been proposed [23, 24]. 

Multi-cycle tests are accomplished by keeping the circuit in functional mode for mult ip le 

cycles. This can cause effects of some of the faults propagate to the outputs that previously 
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did not. Multi-cycle tests are often needed by partial-scan circuits and circuits with mult ip le 

clock-domains. In addition, the VLSI Test community is interested in multi-cycle tests 

because of the fact that they can increase fault coverage or reduce the test application time 

and cost by compaction or compression of the test set. However, the fault simulation of 

multi-cycle tests is computationally expensive. This thesis presents an efficient algorithm 

that generates a multi-cycle test set by optimizing a single-cycle test set for both the fault 

coverage and the test application time. In this work, stuck-at, bridging and transition faults 

are considered and a fault emulation technique for the proposed algorithm is developed. 

Additionally, Integrated Circuit (IC) industry is vulnerable to [9,17] serious threats. 

Hardware Trojans, Intellectual Property (IP) piracy and IC overbuilding, reverse 

engineering, side-channel analysis, and counterfeiting are the possible hardware-based 

threats that can be encountered in anywhere of the IC supply chain. Currently, there is an 

ongoing research effort [11] on hardware security how to systematize the hardware security 

knowledge in terms of the hardware-based attacks, countermeasures, metrics for evaluat ion, 

and as well as terminology [13]. In order to prevent hardware Trojans, IP piracy and IC 

overbuilding, reverse engineering, and counterfeiting, hardware security techniques are 

proposed in the past. Based on the terminology given in [13], the related work in this thesis 

is classified as obfuscation and logic locking based techniques. Obfuscation approach can be 

found in the prior works [4,3,7,8]. In these approaches, obfuscation is realized in the design 

phase, basically the RTL. Physically Unclonable Functions (PUFs) [18] are used in [1,7,8] 

for key generation to make the obfuscation hard to reveal. Obfuscation hides the 

functionality, but renders the structure unintelligible [2,13]. Logic locking [15,14,13] on the 

other hand, preserves the structure by rendering the circuit temporarily unusable [13], until 

it is unlocked. As opposed to obfuscation, logic locking is realized in the implementa t ion 

phase by inserting key-gates into the original netlist. Upon applying a correct (wrong) key, 

a circuit is logic unlocked (locked). 

In this thesis, fault emulation techniques are developed and used in two different 

applications. The first application area is hardware security. Logic locking is an IC protection 

method done by inserting locks in various locations of the circuit. Determining these 

locations is computationally expensive process. For this reason, the fault emulat ion 

techniques that developed in this thesis is applied to accelerate this process. The other 

application area, multi-cycle test generation is accelerated using fault emulation. Also an 
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algorithm that produces a multi-cycle test set by optimizing a single-cycle test set for fault 

coverage and test application time while considering stuck-at, bridging and transition faults 

at the same time is developed. In Figure 1.2, contributions that are made are shown in yellow. 

 

 

Figure 1.2. Contributions of the thesis. 
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2. PREVIOUS WORK 
 

In this section, the state-of-the-art techniques developed for fault emulation, fault analysis 

based logic locking and multi-cycle test generation are explained. Also, the notations and 

definitions used in this thesis are given. 

In [14], instead of inserting key-gates at random locations in the design, an IC testing 

approach including fault-analysis techniques such as fault activation, fault propagation, and 

fault masking is used for stronger logic locking. A metric for logic locking is also proposed 

in [14] in order to enable a designer to have control over the corruption effects of a logic 

locking. Both XOR/XNOR gates and multiplexers (MUXs) are used for insertion during 

logic locking. The major drawback of this technique is that it uses fault simulation to assess 

the fault impacts. However, fault simulation is a very time-consuming task. Several tries 

have to be done to find out the best combination of fault locations and assess the corruption 

effects. 

Due to the time-consuming nature of fault simulation, fault emulation techniques were 

proposed in the past. Unlike a fault simulator, a hardware emulator performs gate evaluat ion 

in parallel, which can provide real-time logic operation. Usually, a typical hardware emulator 

includes several boards, each having several FPGAs. An FPGA offers reconfigurability 

through thousands of logic elements that are connected by programming the interconnec ts. 

Fault emulation requires usual FPGA design flow such as circuit synthesis, mapping, Place 

& Route (P&R), and bitstream generation for programming the emulator. 

Table 2.1. Comparison of fault emulation approaches. 

Technique Synthesis Map P&R Bitstream 

Generation 

Reconf. Memory 

CISFI for each fault for each fault for each fault for each fault 

(full) 

for each fault 

(full) 

for each fault 

(non-volatile) 

PRSFI once once once for each fault 

(partial) 

for each fault 

(partial) 

for each fault 

(volatile and 
non-volatile) 

CIDFI once once once once none none 
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Circuit Instrumentation (CI) and Partial Reconfiguration (PR) based techniques are the two 

common approaches for fault emulation of digital circuits on FPGAs. In CI-based 

techniques, the original netlist is modified such that extra logic gates that correspond to a 

fault are added to the circuit to be emulated. The efficiency of circuit instrumenta t ion 

techniques depends on the way how the fault injection is realized. Fault injection can be 

either static or dynamic. Wieler et al. [23] proposed CI with Static Fault Injection (SFI) 

(CISFI) where the netlist is modified statically such that every time a fault is injected, full 

FPGA flow (compilation plus full reconfiguration) is repeated. Because of the lengthy 

overheads of the FPGA flow, efficient fault injection techniques [5,10] are proposed. In CI 

with Dynamic Fault Injection (DFI) (CIDFI), the circuit is instrumented such that the circuit 

is compiled and configuration bitstream is generated only once. 

In CISFI, a full configuration bitstream has to be loaded on FPGA for each fault. Since the 

reconfiguration time is dependent on the size of the configuration bitstream, PR-based 

techniques are considered in order to decrease the reconfiguration time by decreasing the 

size of the configuration bitstream. Usually, the size of a partial bitstream is less than the 

size of a full configuration bitstream whereas the size of a full configuration bitstream is 

constant (independent of resource utilization), but vary from FPGA family to family. In PR-

based techniques [16], instead of netlist modification, the configuration bitstream is modified 

to inject faults and instead of a full configuration bitstream, a partial bitstream is loaded on 

the FPGA for each fault. Although PR avoids lengthy recompilation times, however, this 

technique requires additional partial reconfiguration times as well as memory to store the 

partial bitstreams. Another problem with the PR-based techniques is that the fault injection 

can only be realized statically, because a partial bitstream corresponding to a fault should be 

prepared in advance. The realization of multiple fault injection with PR-based techniques is 

also almost impossible due to the huge memory requirement to store the partial bitstreams 

for several fault combinations. 

The comparison of fault emulation techniques in terms of compilation, reconfiguration, and 

memory overhead is given in Table 2.1. In Table 2.1, three fault emulation techniques are 

compared in terms of time spent in different steps of FPGA flow as well as required memory. 

Due to the static fault injection nature in PR technique, this technique is denoted as PRSFI 

in Table 2.1. Both CISFI and PRSFI require configuration bitstream generation for each fault 

where full (partial) bitstream is generated for each fault in CISFI (PRSFI). Both CISFI and 
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PRSFI require reconfiguration where full (partial) reconfiguration is required for CISFI 

(PRSFI). In addition, there is memory overhead in both CISFI and PRSFI. In CISFI (PRSFI), 

full(partial) bitstreams generated for each fault require additional nonvolatile memory. In 

PRSFI, the partial bitstreams must be loaded on RAM in order to reconfigure the FPGA 

partially at runtime. Therefore, PRSFI requires additional volatile memory to store the partial 

bitstreams. Based on this comparison, time and memory overhead in CIDFI approach is 

remarkably less than the others. Unlike PRSFI, CIDFI also does not require additiona l 

memory. 

In this thesis, a fault emulation based logic locking technique to speed up the determina tion 

of the fault locations and fault impacts in real-time is proposed. First contribution of this 

thesis is Dynamic Multiple Fault Injection (DMFI) and Circuit Instrumentation with 

Dynamic Multiple Fault Injection (CIDMFI). DMFI extends dynamic single fault injection 

such that multiple faults can be dynamically injected at runtime. CIDMFI is the modifica t ion 

of a netlist such that multiple faults can be activated dynamically at runtime. Second 

contribution of this thesis is to apply CIDMFI to logic locking. A code generator is written 

such that for a given netlist, it automatically generates an emulation circuit which includes 

the instrumented netlist with a controller, fault impact calculator, and a serial interface to 

communicate a PC. An FPGA board is configured with the generated emulation circuit for 

each benchmark from ISCAS’89. During the emulation process, the emulation circuit checks 

different fault combinations using a set of test patterns, calculates fault impacts, determines 

the fault locations as well as the key to unlock the circuit, and outputs the key via serial 

interface. Based on the key obtained from the emulation, the final logic locked netlist is 

generated with the help of another code generator. 

2.1. FAULT EMULATION 

Fault emulation is emulating a circuit in the presence of a fault. Comparing the fault 

emulation results with those of the fault-free emulation of the same circuit emulated with the 

same applied test, the faults detected by that test can be determined. With the increasing 

performance of FPGAs and logic emulation technology, hardware fault emulation systems 

have become not only feasible but also very efficient as compared with the existing software-

based methods. 
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In order to do fault emulation, faults must be modeled and inserted to netlist of the circuit. 

In this thesis, three type of faults are implemented for fault emulation. 

 Stuck-at 0 and stuck-at 1 faults 

 Bridging fault 

 Transition fault 

 

 

Figure 2.1. Stuck-at fault model [10]. 

 

A simple XOR gate is used to model stuck-at faults in [10] and shown in Figure 2.1. When 

INJ input is 1, fault is injected and input is inverted. When IN is 0 and INJ is 1, the model 

behaves as if there is a stuck-at 1 fault is present. On the other hand, when IN is 1 and INJ 

is 1, a stuck-at 0 fault is injected to that net. Bridging fault model has been proposed in [22] 

and shown in Figure 2.2. Table 2.2 shows the behaviour of this fault model. Complete model 

of this fault type is implemented in Section 3.2.1. 

Bridging fault model has been proposed in [22] and shown in Figure 2.2. Table 2.2 shows 

the behaviour of this fault model. Complete model of this fault type is implemented in 

Section 3.2.1. 

There are a number of methods to use a logic emulation system for fault grading. Wieler et 

al. [23] proposed a serial fault emulation algorithm that emulates one faulty circuit at a time 

sequentially. In serial fault emulation, the implementation of each faulty circuit is 

constructed from the fault-free circuit before the emulation process through SFI which 

requires reconfiguration of the emulator. The major drawback in SFI lies in the large amount 

of time spent in reconfiguration. 
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Figure 2.2. Bridging fault and Diode-AND/OR fault models. 

 

Table 2.2. Truth table for Diode-AND/OR fault model. 

In Out 

Fault-free A dand B A dor B B dand A B dor A 

A_in, B_in A_out, B_out A_out, B_out A_out, B_out A_out, B_out A_out, B_out 

0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 1 0 1 1 1 

1 0 1 0 1 0 1 1 0 0 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 

 

Let the number of faults, the number of patterns, the time required for compilation of the 

circuit (including the full bitstream generation), the time required for full configuration, and 

the critical path delay be denoted as Nf, Np, Tcomp, Tconfig and Tpd respectively. Then the total 

fault emulation time, which is denoted as TCISFI considering CISFI is as Equation 2.1. 
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 𝑇𝐶𝐼𝑆𝐹𝐼 =  𝑁𝑓 × (𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑝 × 𝑇𝑝𝑑) (2.1) 

 

Then the total emulation time required for fault location selection phase of logic locking 

algorithm for Nk keysize using CISFI is denoted as TCISFI−LL and calculated by Equation 

2.2. 

 𝑇𝐶𝐼𝑆𝐹𝐼−𝐿𝐿 =  𝑁𝑘 × (𝑁𝑓 × (𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑝 × 𝑇𝑝𝑑)) (2.2) 

 

In PRSFI, although lengthy recompilation times are avoided, there is still an overhead of 

partial bitstream generation and reconfiguration time which is denoted as Treconfig. We 

conducted a simple experiment to compare Treconfig versus Tconfig. In this experiment, c17 

from ISCAS’85 combinational benchmarks is used. C17 is first synthesized and then the xdl 

(Xilinx Description Language) representation from the ncd (Native Circuit Description) of 

c17 is extracted using ncd2xdl command from Xilinx ISE. We modified a LUT content by 

editing the xdl file. With xdl2ncd command from Xilinx ISE, we generated back the ncd of 

the faulty circuit. By using the difference-based PR approach and using the bitgen of Xilinx 

ISE, we generated a partial bitstream of 9KB. Assuming 400MBytes/s configuration speed 

through the Internal Configuration Access Port (ICAP) which is the fastest reconfigura t ion 

interface, Treconfig is about 0.023ms, whereas a full reconfiguration Tconfig is about 2s, 

considering Xilinx Zynq-7000 (XC7Z020-CLG484). Therefore, PRSFI offers better 

emulation times than CISFI. The total fault emulation time considering PRSFI is denoted as 

TPRSFI in Equation 2.3. 

 

 𝑇𝑃𝑅𝑆𝐹𝐼 = 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑓 × (𝑇𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑝 × 𝑇𝑝𝑑) (2.3) 

 

The total emulation time required for fault location selection phase of logic locking 

algorithm, which is denoted as TPRSFI−LL, for Nk keysize using PISFI is given in Equation 2.4. 

 

 𝑇𝑃𝑅𝑆𝐹𝐼−𝐿𝐿 =  𝑁𝑘 × (𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑓 × (𝑇𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑝 × 𝑇𝑝𝑑)) (2.4) 
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Cheng et al. [5] proposed first DFI to reduce the reconfiguration time in fault emulation for 

fault grading whereas Lu et al. [10] later proposed DFI for fault diagnosis. Through the 

insertion of extra hardware to the circuit, DFI enables the emulation of multiple structural 

dependent faults within a single configuration. In this technique, a fault is activated every 

clock cycle. An example for dynamic single fault injection is shown in Figure 2.3b for 

ISCAS’89 sequential benchmark circuit s27 shown in Figure 2.3a. First step in CIDFI is to 

convert a sequential circuit into combinational circuit by removing the flip-flops (FFs), 

adding FF outputs as primary inputs (PIs), and FF inputs as primary outputs (POs). Second 

step in CIDFI is to add a single fault activation scan chain. In Figure 2.3b, a single fault 

activation scan chain is shown. The output of each FF in the single fault activation scan chain  

 

 

Figure 2.3. Dynamic fault injection. a. Original netlist of s27 b. Instrumented s27 with 

dynamic single fault injection. 
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is connected to the INJ terminal of its corresponding Fault Injection Element (FIE). The 

number of FFs in the single fault activation scan chain is same as with the number of FIEs. 

An FIE that was formerly proposed in [10] is shown in Figure 2.1 where a single XOR2 gate 

implements s-a-0, s-a-1, and fault free cases. Note that the functionality of an FIE can be 

changed. In [14], both XOR2 and MUX based FIEs are used for the logic locking. A pulse 

through the scan chain activates FIEs one by one. 

Once the instrumentation according to CIDFI is done, the instrumented netlist is compiled 

once and the FPGA is configured once. For every Np clock cycles, an FIE is activated. For 

every cycle, a test pattern is fed to the circuit. Therefore, the total fault emulation time 

considering CIDFI is given as TCIDFI in Equation 2.5. 

 

 𝑇𝐶𝐼𝐷𝐹𝐼 = 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑓 × 𝑁𝑝 × 𝑇𝑝𝑑  (2.5) 

 

In the case of fault location selection phase of the logic locking algorithm, when the netlist 

is instrumented with our CIDMFI, the netlist is compiled once and the emulator is 

configured only once. In Section 3.1, we will explain how our emulation technique based 

on CIDMFI works in order to speed up logic locking. 

2.2. FAULT ANALYSIS BASED LOGIC LOCKING 

In order to assess the impact of a fault, the same metric given in [14] is used. 

2.2.1. Logic Locking Metric 

Consider a digital circuit shown in Figure 2.4 with Ni-bit input, No-bit output locked with 

Nk-bit key bits. Let B = {0,1} and x ∈ BNi be a functional input. Let y ∈ BNo be the correct 

output, z ∈ BNk be a key, and c ∈ BNk be the correct key. 
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Figure 2.4. A logic locked circuit block 

 

(i) A circuit f locked with a key c should produce correct outputs for all input patterns 

when the correct key c is applied. 

 𝑓(𝑥, 𝑧)|𝑧=𝑐 = 𝑦     ∀𝑥 ∈ 𝐵𝑁𝑖 ,𝑦 ∈ 𝐵𝑁𝑜  (2.6) 

 

(ii) A circuit f locked with a key c should produce wrong outputs for all input patterns 

when a wrong key is applied. 

 

 

(iii) Let the Hamming Distance between y and y’ be denoted by HD(y, y’). Let P be the 

output bit combinations that an attacker is forced to consider corresponding to every 

input combination. If Nq-out-of-No output bits are wrong (i.e. HD(y, y’) = Nq), then P 

can be computed as (
𝑁𝑜

𝑁𝑞
). P is maximum when Nq = No/2 (i.e. when HD(y, y’) = No/2). 

Based on this metric [14], a logic locking technique should insert key-gates such that 50% 

of the output bits should be corrupted on applying a wrong key. An example key-gate is 

shown in Figure 2.1, originally proposed in [10]. In order to find out the best location to 

insert a key-gate, its fault impact must be calculated. Fault impact was defined in [14] as the 

total number of output bits that get affected by a fault for a given set of test patterns. In this 

thesis, we use the same definition in [14], but here we present its logical and arithmetic 

expression as follows. 

 𝑓(𝑥, 𝑧)|𝑧≠𝑐 = 𝑦′     ∀𝑥 ∈ 𝐵𝑁𝑖 , 𝑧 ∈ 𝐵𝑁𝑘 ,𝑦′ ∈ 𝐵𝑁𝑜    𝑤ℎ𝑒𝑟𝑒 𝑦′ ≠ 𝑦 (2.7) 
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2.2.2. Fault Impact 

Let the No-bit output of the fault-free circuit f be denoted as 𝑦𝑁𝑜 −1
𝑝

𝑦𝑁𝑜 −2
𝑝

𝑦𝑁𝑜 −3
𝑝

…  𝑦2
𝑝

𝑦1
𝑝

𝑦0
𝑝
 

and the No-bit output of key-gate g injected circuit be denoted as 

𝑦′𝑁𝑜 −1
𝑝 𝑦′𝑁𝑜 −2

𝑝 𝑦′𝑁𝑜 −3
𝑝 …  𝑦′2

𝑝𝑦′1
𝑝 𝑦′0

𝑝
 for pattern p. The sum of corrupted bits for pattern p is 

∑ 𝑦′𝑜
𝑝 ∧ 𝑦𝑜

𝑝𝑁𝑜 −1
𝑜=0 . Then the fault impact of key-gate g for circuit f and Np patterns is given as 

the following: 

 𝐹𝑎𝑢𝑙𝑡 𝐼𝑚𝑝𝑎𝑐𝑡(𝑓,𝑔) =  ∑ ∑ 𝑦′𝑜
𝑝 ∧ 𝑦𝑜

𝑝

𝑁𝑜 −1

𝑜=0

𝑁𝑝

𝑝=1

 (2.8) 

 

2.2.3. Fault Simulation based Logic Locking 

The determination of location of the key-gates of the algorithm proposed in [14] is given as 

follows: 

Algorithm 2.1. Location Selection Phase of Logic Locking Algorithm [14]: 

 

 

There are two bottlenecks of this approach. The first one is the intensive usage of fault 

simulation for both fault impact computation as well as test pattern application. The second 

bottleneck is the modification of the netlist statically every time a key-gate is injected. We 

will present our solution in Section 3.1 and explain how our solution will speed up the 

location determination phase of logic locking algorithm given in [14]. 

for i = 1 to keysize do 
foreach gate in netlist do 

Compute FaultImpact; 

end 

Select the gate with the highest FaultImpact; 

Insert key-gate and update the netlist; 
Apply test patterns; 

end 
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2.3. MULTI-CYCLE TEST GENERATION 

In [23], two algorithms proposed to generate a multi-cycle test set, out of a single or two 

cycle test set. Algorithms increased functional clock cycles of the tests, while keeping 

primary inputs constant. Generated multi-cycle test sets achieved higher fault coverage at 

the cost of slight increase in the test application time. 

2.3.1. Pomeranz’s Algorithm 1 

First algorithm (Alg.#1) is given in Algorithm 2.2. The algorithm starts from compact one-

detection single-cycle test set. The goal of this algorithm is to increase fault coverage for 

stuck-at, bridging and transition faults. However, since the test set was initially for stuck-at 

faults, stuck-at fault coverage were already at their maximum. For this reason, the algorithm  

Algorithm 2.2. Defining an L-Cycle Test Set With a Target Fault Coverage [23]: 

 

 

1) Let T1 be a given test set. Let F be the set of target 
faults. Perform fault simulation with fault dropping of 
F under T1. Let D1 be the set of detected faults. For 

every f ∈ D1, let det1(f) be the index of the first test 
in T1 that detects it. 

2) Set TL = T1. For every test ti = < si, vi > ∈ TL, duplicate 

v i to form an L-cycle test. 
3) Perform fault simulation with fault dropping of F under 

TL. Let DL be the set of detected faults. For every f ∈ 

DL, let detL(f) be the index of the first test in TL that 

detects it. 
4) For every ti ∈ TL, if D1-DL contains a fault f such 

that det1(f) = i. 
a) Remove half of the clock cycles of ti by removing 

half of its primary input vectors. 
b) Move every fault f such that detL(f) = i from 

DL to F. 

c) Perform fault simulation with fault dropping of F 
under TL . Update DL and detL(f) for every fault 

f whose detection information changes. 
5) If D1-DL ≠ ∅ go to Step 4). 
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tries to increase overall fault coverage (i.e. combined fault coverage of stuck-at, bridging 

and transition faults), while keeping stuck-at fault coverage the same. The reason for this, 

changing number of functional cycles of the test can cause loss of detection of some faults. 

Since we can already get maximum fault coverage for stuck-at faults in single-cycle,  the 

algorithm starts from a high clock cycle amount, and it reduceses the cycles if the test looses 

detection of a stuck-at fault that already detected in single-cycle. 

In this algorithm and the next one, T represents a test set and subscript of T indicates number 

of functional clock cycles. Initially all tests in the test set is single-cycle, hence it is denoted 

as T1. The algorithm starts from a high functional clock cycle count L. In step 2, primary 

input vector (v) of each single-cycle test in T1 held constant for L functional clock cycles to 

form the test set TL. After that each test in TL becomes L-cycle. However, later in step 4, the 

algorithm may remove some cycles from some of the tests in TL. So, at the end of the 

algorithm, not all tests in the test set is L-cycle. 

2.3.2. Pomeranz’s Algorithm 2 

Second algorithm from [23] (Alg.#2) starts from a two cycle test set for transition faults. The 

goal of this algorithm is to increase overall fault coverage. The algorithm can be summerized 

as follows: 

For each test t in the test set, 

(i) Find all faults that are detected by other tests while recording first test that detects each 

of them. 

(ii) Find all faults that are detected by test t, and record that these faults are detected by 

test t. 

(iii) Set all faults that are detected by test t and faults that are not detected by any test as 

target faults. 

(iv) Find the best cycle for test t, such that number of detected faults is highest. Then record 

it as result. 
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Second algorithm from [23] is given as follows: 

Algorithm 2.3. Defining an L-Cycle Test Set With Increased Target Fault Coverage [23]: 

 

1) Let T be a given test set. Let F be the set of target 
faults. Set TL = T. Perform fault simulation with fault 

dropping of F under TL. Let DL be the set of detected 
faults. For every f ∈ DL, let detL(f) be the index of 

the first test in TL that detects it. 
2) For every ti = < si, v i, ..., vi > ∈ TL , apply the following 

steps. 

a) Duplicate vi until ti becomes an L-cycle test. 
b) Move every fault f such that detL(f) = i from 

DL to F. 

c) Perform fault simulation with fault dropping of 
F under TL - {ti} followed by fault simulation 

with fault dropping of F under ti. Update DL 
and detL(f) for every fault f whose detection 
information changes. 

d) Define Ftarg = {f ∈ DL : detL(f) = i} ∪ (F - DL). 

e) Perform fault simulation of Ftarg under ti in order 
to find, for every fault f ∈ Ftarg, the set of clock 

cycles DET(f) such that f can be detected by ti 
if it is turned into a (u + 1)-cycle test for every 
u ∈ DET(f). 

f) For u = 1, 2, ..., L - 1, if u ∈ DET(f) for every 

f such that detL(f) = i, compute ndet(u) as the 
number of faults in Ftarg such that u ∈ DET(f). 

g) Of all the values of u considered in Step 2f), select 

the smallest one for which ndet(u) is the highest. 
h) Remove clock cycles from ti to change it into a 

(u + 1)-cycle test. 

i) Perform fault simulation of Ftarg under ti to update 
DL and the values of detL(f) for f ∈ Ftarg. 
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3. PROPOSED METHODS 
 

3.1. PROPOSED METHODS FOR LOGIC LOCKING 

3.1.1. Dynamic Multiple Fault Activation 

First step in CIDMFI is to convert a sequential circuit into a combinational circuit by 

removing FFs, adding FF outputs as PIs, and FF inputs as POs. Second step in CIDMFI is 

to insert an FIE at the output of a gate. Then, the third step in CIDMFI is to insert a multiple 

fault activation scan chain. A multiple fault activation scan chain consists of a regular shift 

register and MUXs. Both the number of FFs and MUXs in the chain are equal to the number 

of inserted FIEs. Each FIE is activated or deactivated by the output of the corresponding 

MUX. The select input to a MUX is connected to the dedicated Chosen bit. When Chosen 

bit is a “1”, the corresponding FIE is activated. When Chosen bit is “0”, the corresponding 

FIE is either activated or deactivated depending on the value at the output of the 

corresponding FF in the scan chain. Chosen input activates the FIEs that are already picked 

according to the logic locking metric and fault impact given in Equation 2.8. Together with 

the FIEs activated by Chosen, a pulse through the scan chain activates other candidate FIEs 

one by one in order to determine the next chosen FIE to be. In this paper, the next FIE with 

FaultImpact closest to Np × No / 2 is selected as opposed to [14]. It was addressed in [14]  

Algorithm 3.1. Proposed Location Selection Phase: 

 

for i = 1 to keysize do 
foreach unchosen FIE do 

 Activate; 
 Apply test patterns; 

Compute FaultImpact; 

Deactivate; 
end 

Pick the FIE with FaultImpact closest to 
𝑁𝑝  × 𝑁𝑜

2
; 

Set the FIE chosen; 
end 



19 
 

 

that for larger benchmarks, fault masking affects the fault impact. Their solution was to pick 

a fault with the highest fault impact. Our proposed location selection phase of the logic 

locking algorithm is shown in Algorithm 3.1. 

Next, we will explain the determination of fault locations based on the proposed fault 

injection mechanism on s27 example. A CIDMFI example is shown in Figure 3.1b for 

ISCAS’89 benchmark circuit s27 shown in Figure 3.1a. In Figure 3.1b, six FIEs are inserted. 

The benchmark s27 has originally 4 PIs, 1 PO, and 3 FFs. After converting s27 into a 

combinational circuit, the instrumented circuit has now 7 PIs and 4 POs. The exhaustive 

 

 

Figure 3.1. CIDMFI for s27 benchmark circuit. a. Original netlist of s27, b. Instrumented 

s27 with dynamic multiple fault injection. 
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number of test patterns is then 27 = 128. The maximum total number of wrong output bits is 

4 × 128 = 512. In order to achieve the maximum output-bit combinations, 50% HD is 

required, which is the half of the maximum total number of wrong output bits (512/2 = 256). 

Therefore, for each candidate fault, its fault impact should be compared to 256. 

In Figure 3.2, three snapshots of the circuit operation are shown. In Figure 3.2a, Chosen 

input is set to “000000” which means that no FIE is chosen yet. The fault activation scan 

chain is in “100000” state that activates the 0th FIE. The state of the circuit is kept at this 

state for 128 clock cycles and all 128 test patterns are applied. Four outputs are compared to 

the fault-free output values. The sum of the mismatch outputs for all the test patterns is 

obtained. This value is the fault impact of the 0th FIE. Then, fault activation scan chain is 

shifted right in order to activate the next FIE (1st) and so on. Similarly, each of the FIEs are 

activated one by one and fault impacts are obtained. Once all FIEs are tried, the one whose 

fault impact is close to 50% HD (256) is selected. The 4th FIE is chosen since the fault impact 

is 63%. In the next snapshot, Figure 3.2b, Chosen input is set to “000010” in order to activate 

the 4th FIE. In Figure 3.2 the other FIEs are activated one by one by shifting the scan chain. 

The fault impact of the 4th and 2nd FIEs together is 50% so then, the 2nd FIE is chosen. Chosen 

input is set to “001010” shown as in Figure 3.2c. In the third round, the 0th FIE together with 

the 4th and 2nd FIEs is found to be the next chosen FIE due to 53% HD. The final Chosen 

input is then set to “101010”. These steps can be repeated to inject and emulate more faults 

together until the number of “1”s in Chosen is reached to the keysize. Figure 3.3 presents 

the logic locked s27 having 3-bit key input after determination of three fault locations. 
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Figure 3.2. Determination of fault locations process (three snapshots are given for s27). 
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Figure 3.3. Logic locked s27. 

 

Based on the above explanation, the total emulation time required for fault location selection 

phase of logic locking algorithm for Nk keysize using CIDMFI is calculated by Equation 3.1 

and given as TCIDMFI−LL. The total emulation time given in Equation 3.1 is remarkably less 

than the total emulation times of CISFI and PRSFI methods given in Equation 2.2 and 

Equation 2.4, respectively. 

 

 𝑇𝐶𝐼𝐷𝑀𝐹𝐼−𝐿𝐿 = 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑁𝑘 × 𝑁𝑓 × 𝑁𝑝 × 𝑇𝑝𝑑  (3.1) 

    

3.1.2. Design & Implementation of Emulation Circuit 

Up to here, we present how to instrument a netlist using CIDMFI and how to choose FIEs. 

Now, we will present the top level fault emulation circuit that consists of a Circuit Under 

Instrumentation (CUI), ROM, BRAM, XOR, Carry Save Adder (CSA), Controller, and 

UART units shown in Figure 3.4. CUI corresponds to the instrumented circuit based on 

CIDMFI. ROM is used to store the test patterns. BRAM is used to store expected output 

values. XOR compares the CUI output with the expected value from BRAM for a test pattern 

every cycle. Controller has a state machine that is responsible of: 
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(i) Initializing the BRAM unit with the golden expected values for the fault-free CUI 

which correspond to the test patterns that are stored in the ROM unit, 

(ii) Generating the fault activation clock (CK_FA) and the fault activation pulse (FA_IN), 

(iii) Keeping the current maximum fault impact value and comparing the maximum fault 

value with the current fault impact which is the sum of CSA output for all test patterns, 

(iv) Deciding the next FIE to activate and setting the corresponding bit of the Chosen input 

based on the fault impact comparison, and 

(v) Serializing and sending the final Chosen value through the UART unit. 

 

 

Figure 3.4. Proposed emulation circuit for logic locking. 

 

The period of CK_FA is Np × Tpd whereas Tpd is the period of the main clock. Every bit of 

Chosen and FA_IN are set to “0” for the fault-free CUI in order to obtain golden expected 

output values. In the fault activation process, a new test pattern and the corresponding 

expected output value are read from the ROM and BRAM units every clock cycle. For every 

Np × Tpd period, the fault activation chain is shifted. Chosen is a Nf-bit signal and it should 

be constant for Nf × Np × Tpd. Every Nf × Np × Tpd period, Controller picks the best FIE 

candidate based on the fault impact comparison with the maximum and repeats the process 

for Nk times. Final Chosen signal having Nk bits set to “1” out of Nf bits is then serialized 

and sent out. 
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One of the important units of the fault emulator circuit is CSA. CSA adds up the output of 

XOR to determine the fault impact of a key-gate for a given pattern based on Equation 2.8. 

In other words, CSA implements the inner summation of Equation 2.8. CSA in the emulat ion 

circuit adds up No bits. The idea of CSA is that saving carry bits instead of propagating [12]. 

Full adders and half adders can be used as CSAs, they receive three and two input bits 

respectively, then both output two bits as usual, but none of the inputs is carry-out bit of an 

other adder except the connections between different logic levels. Since carry propagation 

chains are eliminated, CSA trees provide a higher speed for multipliers and the other circuits 

that include multiple-operand summation. In CSA trees, partial products are compressed  

until two rows remain. Then the two rows are summed by a fast adder. The study in [19] 

proposes a new CSA tree called RoCoCo. It is the fastest unsigned multiplier 9 out of 22 

cases compared to Wallace Tree [20], Dadda Tree [6], and native implementation of 

multiplication operator in Xilinx ISE. Here, we implemented the inner summation of 

Equation 2.8 with CSA based on RoCoCo. We used a fast parallel adder to implement the 

outer summation shown in Equation 2.8. 

The final module in the top level emulation circuit is the UART module that serializes the 

Nf-bit Chosen signal and transmits the emulation result. The “1”s in Chosen indicates the 

selected FIEs. Based on this information, the netlist modification phase of the logic locking 

algorithm can be executed. In this phase, the original netlist is modified by adding chosen 

Nk FIEs and Nk-bit input in order to activate them. 

3.1.3. Effect of Number of Test patterns to Hamming Distance 

In this experiment, we devised five sets of randomly generated test sets with 10, 100, 1000, 

10000, and 20000 test patterns. We applied all tests to s510 with 211 FIEs and s1423 with 

657 FIEs and key-size of 128. After these simulations, we obtained Chosen register setting 

for each key-size from 1 to 128 for all tests and for each benchmark. In order to observe the 

effect of number of test patterns, we calculated HDs by applying 100000 test patterns for 

each Chosen register setting. In Figure 3.5 and Figure 3.6, we present the corresponding 

plots of five simulation runs. It can be clearly seen in Figure 3.5 and Figure 3.6 that more 

test patterns yield closer HD to 50%. However, after 1000 test patterns, we did not observed 

noticeable improvement for both benchmarks. 
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Figure 3.5. Effect of number of test patterns on HD for s510 (TP10, TP100, TP1000, 

TP10000, and TP20000 are sets of 10, 100, 1000, 10000, and 20000 test patterns). 

 

3.1.4. Effect of Number of FIEs to Hamming Distance 

In this experiment, we devised five of instrumented s1423 with 128, 256, 384, 512, and 640 

FIEs. FIEs are inserted randomly in the circuit instrumentation. We simulated these five 

cases with 1000 patterns for a key-size of 128 with our DMFI testbench. We obtained Chosen 

register setting for each key-size from 1 to 128 for all cases. Then we calculated HDs by 

applying 100000 test patterns for each Chosen register setting, as we did in the previous 

experiment. In the case with only 128 FIEs, all FIEs were chosen at the end of the simulat ion. 

In Figure 3.7, five plots of HD versus the number of chosen key-bits are shown. From this 

experiment, we observed that increasing the number of FIEs used in the circuit 

instrumentation helps to reach overall 50% corruption of the output bits. However, if it 

reaches 50% at smaller key-sizes than the target key-size, instrumentation with more FIEs  
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Figure 3.6. Effect of number of test patterns on HD for s1423 (TP10, TP100, TP1000, 

TP10000, and TP20000 are sets of 10, 100, 1000, 10000, and 20000 test patterns). 

 

does not improve the result much, since 50% HD is already reached. For this reason, more 

FIEs do not always mean better quality results. Since emulation times are very small 

compared to compilation time for less number of FIEs, it is advisable that starting with less 

number of FIEs and checking whether or not it can reach to 50% HD, and instrumenting 

with more FIEs, only if it is necessary. 
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Figure 3.7. Effect of number of FIEs on HD for s1423. 
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3.2. PROPOSED METHODS FOR MULTI-CYCLE TEST GENERATION 

3.2.1. Fault Models Used for Fault Emulation  

 

 

Figure 3.8. Fault models for three types of faults. a. Stuck-at, b. Bridging, c. Transition. 

 

Three types of fault models used for fault emulation of proposed algorithm. First one shown 

in Figure 3.8a is stuck-at fault model from [10]. Four-way Diode-AND/OR bridging fault 

models that introduced in Section 2.1 is combined into a single module in Figure 3.8b. In 

Figure 3.8c, a simple transition fault model that contains a FF and MUX is shown. All three 

faults models can be activated/deactivated using inj input. 

3.2.2. Proposed Multi-Cycle Test Generation algorithm 

In the algorithms from [23], target faults are either stuck-at faults or transition faults. This 

approach in [23] yields optimized fault coverage for only one fault type. However, overall 
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fault coverage can be better, if more fault types are targeted. The proposed algorithm in this 

thesis, which is shown in Algorithm 3.2, considers stuck-at, bridging, and transition faults 

while selecting tests and their number of clock cycles for multi-cycle testing. 

Algorithm 3.2. Proposed algorithm for multi-cycle test generation 

 

 

In the algorithms of [23], test sets are fixed. Algorithms find a number of clock cycles 

information for each test, so that when the tests are applied for that number of clock cycles, 

in the hope of obtaining better fault coverage. On the other hand, our algorithm shown in 

Algorithm 3.2, may reduce number of tests or it can select same test more than once for 

different number of clock cycles. 

In [25], in order to detect more faults in a multi-cycle test, present state values and primary 

outputs are observed on every functional clock cycle of the test and compared with expected 

values. Since this method requires scan-out and scan-in operation for each functional cycle 

1. Obtain expected values for each input vector and for each clock cycle from 1 to 32. 

2. Let F be the set of target faults. For every f ∈ F, let incF be the set of included faults. 

Initially, set incF to F. 

3. Let V be the set of input vectors. For every v ∈ V, let cLim(v) be the set of clock 

cycles that the circuit must run in functional mode to detect most faults after (or 

while) v is applied. 

4. For every v ∈ V, let numDet(v) show the number of faults detected with v. Initially 

numDet(v) is set to zeros. 

5. For each fault type t, 

For each input vector v, 

For each fault f such that f is a t type fault and f ∈ incF, 

Activate fault f and deactivate other injected faults. 

Apply input vector v. 

For each clock cycle c from 1 to 32, 

(i) Run the circuit for one clock cycle in functional mode. 

(ii) If c is 1 and t is a transition fault type, skip this iteration. 

(iii) If fault f is detected at primary outputs, mark fault f as detected 

for clock cycles ≥ c, then break the loop. 

(iv) If fault f is detected after scan-out operation, mark fault f as 

detected for clock cycle = c. 

Find the number of clock cycles c that most faults detected (if equal number 

of faults detected for more than one c’s, select the lowest one), then set 

cLim(v) to c and add number of detected faults when the circuit is run c 

clock cycles to numDet(v). 

6. For every v ∈ V, find the vector v that gives highest numDet(v), then set bestV to v. 

Record bestV and cLim(bestV) as result. 

7. Remove detected faults from incF when bestV is applied for cLim(bestV) clock 

cycles, as they are detected at step 5. 

8. If incF ≠ ∅ and the number of recorded result vectors is less than the number of input 

vectors in V, then reset numDet(v) and cLim(v) for every v ∈ V and go to step 5. 
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of the test, test time is dramatically increased. In the proposed algorithm only primary 

outputs are observed in each clock cycle of a multi-cycle test and the present state values 

and primary outputs are observed at every scan-out and scan-in operation, therefore the test 

application time is not affected. 

3.2.3. Circuit Instrumentation and ATPG 

In order to evaluate the performance of our algorithm, ISCAS’89 sequential benchmarks are 

used. Dynamic single-fault activation scan chain and faults models are added to the netlist 

as shown previously in Figure 2.3b. However, circuits did not converted to combinationa l, 

like we did for logic locking. Also, bridging faults added in such way that no feedback occurs 

when the fault is activated. 

In Pomeranz’s Algorithm #1, a compact one-detection single-cycle test set for single stuck-

at faults was used. Stuck-at test patterns were generated via Synopsys Tetramax. In order to 

obtain a compact test set for single stuck-at faults, reducing the number of tests that obtained 

from Tetramax was needed. We ran our algorithm for single-cycle, only stuck-at faults as 

target faults. Then we kept the tests that are selected by our algorithm, and removed the 

others. In order to compare algorithms, this resulting test set was used for all three 

algorithms. 

3.2.4. Comparison of Multi-Cycle Test Generation Algorithms 

Note that we use the same notation given in [23]. Column Avg. shows average clock cycle 

of a test in resulting multi-cycle test set. Column C(TL) is a metric used in [23] to show total 

number of clock cycles required to apply resulting multi-cycle test set. Column m̂, shows the 

number of single-cycle tests that takes same number of cycles to apply as resulting mult i-

cycle test set. 

Then, the resulting test sets are used in the following algorithms shown in Table 3.1: 

(i) In “All 1 cyc.”, tests are applied for one cycle when the circuit is in functional mode.  

(ii) In “All 2 cyc.”, tests are applied for two cycles when the circuit is in functional mode.  
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(iii) In “Algorithm #1” we run the first algorithm [23]. This algorithm is for stuck-at faults, 

but after running the algorithm for stuck-at faults, resulting multi-cycle test set is 

applied to detect bridging and transition faults to obtain their fault coverage. The 

algorithm starts from L = 32. 

(iv) In “Algorithm #2” we run the second algorithm [23]. This algorithm is for transition 

faults and it uses two cycle test set for transition faults as target faults. After running 

the algorithm for transition faults as target faults, the resulting multi-cycle test set is 

applied to detect stuck-at and bridging faults in order to obtain their fault coverage. 

The algorithm is applied until L = 32. 

(v) In “Proposed”, we run our proposed algorithm shown in Algorithm 3.2. All three fault 

types were considered during our algorithm. 

When all tests applied for one cycle, maximum stuck-at coverage was reached. Since there 

is no transition fault coverage for single cycle tests, overall coverage is the lowest. Test 

application time is usually the lowest. 

When all tests applied for two cycles, tests detect more transition and bridging faults, but 

stuck-at fault coverage decreases. 

Algorithm #1 cannot have less stuck-at fault coverage than single cycle tests. Therefore, 

stuck-at fault coverage is high. However overall coverage is low and test application time is 

the highest. 

Algorithm #2 has the lowest stuck-at fault coverage, since target fault type is transition 

faults. Overall coverage and test time is better than Algorithm #1. 

The proposed algorithm has the best overall fault coverage. Stuck-at fault coverage obtained 

from multi-cycle tests can be lower than the fault coverage obtained from the single-cyc le 

tests. In some benchmarks, the algorithm reduced the number of tests. However only in 

s35932 test time is lower than single cycle tests. If allowed, the algorithm can be changed to 

add more tests in order to reach the maximum coverage for all fault types. However, this 

would cause higher test application time. 
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Table 3.1. Comparison of the algorithms 

(The number of clock cycles required for applying test set TL is C(TL) [23].) 

  Cycles Fault Coverage 

Algorithm Circuit Avg C(TL) m̂ s.a. Bridg Trans Overall 

All 1 cyc. s298 1 104 6 100 58.75 0 52.2 

All 2 cyc. s298 2 110 6.4 99.16 61.25 46.22 69.81 

Alg.#1 (32) s298 17.33 202 12.53 100 75 63.03 79.87 

Alg.#2 s298 14.33 184 11.33 99.16 73.75 75.63 83.96 

Proposed s298 15.33 190 11.73 100 88.75 81.51 90.25 

All 1 cyc. s344 1 95 5 100 64.58 0 51.9 

All 2 cyc. s344 2 100 5.31 99.38 70.83 58.13 77.72 

Alg.#1 (32) s344 21 195 11.25 100 77.08 63.13 80.98 

Alg.#2 s344 4 110 5.94 99.38 75 78.13 86.96 

Proposed s344 3.8 109 5.88 100 79.17 80 88.59 

All 1 cyc. s382 1 131 5 100 51.04 0 50.24 

All 2 cyc. s382 2 136 5.23 98.73 56.25 53.16 71.36 

Alg.#1 (32) s382 15.2 202 8.23 100 59.38 50 71.36 

Alg.#2 s382 11.8 185 7.45 98.73 64.58 74.05 81.31 

Proposed s382 16.4 208 8.5 100 73.96 80.38 86.41 

All 1 cyc. s510 1 76 10 100 38.79 0 47.58 

All 2 cyc. s510 2 86 11.43 100 46.55 55.45 71 

Alg.#1 (32) s510 29.2 358 50.29 100 47.41 59.24 72.68 

Alg.#2 s510 3.6 102 13.71 100 52.59 70.14 78.07 

Proposed s510 4.13 87 11.57 100 56.9 74.41 80.67 

All 1 cyc. s1423 1 824 10 100 59.25 0 51.68 

All 2 cyc. s1423 2 834 10.13 97.72 64.38 53.42 73.54 

Alg.#1 (32) s1423 17.1 985 12.15 100 64.38 51.75 73.79 

Alg.#2 s1423 9.1 905 11.08 100 65.75 61.64 78.08 

Proposed s1423 12.1 935 11.48 100 67.12 63.32 79.02 

All 1 cyc. s9234 1 5935 27 94.24 63.5 0 49.8 

All 2 cyc. s9234 2 5962 27.13 78.03 58 38.28 58.13 

Alg.#1 (32) s9234 4.78 6037 27.48 94.24 65.5 27.25 61.52 

Alg.#2 s9234 7.56 6112 27.83 81.35 58.25 43.07 61.56 

Proposed s9234 9.15 6155 28.04 89.55 61.75 40.72 64.58 

All 1 cyc. s35932 1 13831 7 92.58 63.5 0 49.1 

All 2 cyc. s35932 2 13838 7 92.58 75.5 71.88 81.13 

Alg.#1 (32) s35932 29.71 14032 7.12 92.58 86.5 81.05 86.76 

Alg.#2 s35932 9.71 13892 7.04 92.58 86 81.05 86.68 

Proposed s35932 11.83 12167 6.04 92.58 87.25 81.35 87.01 

All 1 cyc. s38417 1 26191 15 100 78.75 0 54.7 

All 2 cyc. s38417 2 26206 15.01 99.02 81.75 75.29 86.27 

Alg.#1 (32) s38417 13.73 26382 15.12 100 80.25 65.23 82.23 

Alg.#2 s38417 7.6 26290 15.06 97.75 82.75 82.26 88.81 

Proposed s38417 9.27 26315 15.08 98.93 84.25 81.15 89.09 

All 1 cyc. s38584 1 39955 27 98.63 72.25 0 53.06 

All 2 cyc. s38584 2 39982 27.02 93.85 74.75 55.86 74.84 

Alg.#1 (32) s38584 8.44 40156 27.14 98.63 75.75 44.43 72.22 

Alg.#2 s38584 10.96 40224 27.19 93.75 77 63.28 78.27 

Proposed s38584 14.37 40316 27.25 98.34 82 65.33 81.86 
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3.2.5. Hardware-Software Co-Design 

In this section, implementation of proposed algorithm from Section 3.2.2. will be explained. 

ISCAS’89 benchmark circuits emulated using an Xilinx Zynq-7000 All Programmable SoC 

shown in Figure 3.9. 

  

 

Figure 3.9. Digilent Zedboard with Xilinx Zynq-7000. 

 

In order to realize fault analysis, circuits instrumented as explained in Section 3.2.3. For each 

benchmark circuit, three copies of the circuit is instantiated in Programmable Logic (PL) 

part of the Zynq. Each instance of the circuit injected with a different fault model. Proposed 

algorithm is implemented in Processing System (PS) part of the SoC. To reduce runtime of 

the algorithm, 5th step of the algoritm is seperated for each fault type and executed in parallel 

for all three instances of the circuit. 
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Table 3.2. Utilization of three instrumented s510 benchmark circuits 

Site Type Used Fixed Available Util% 

Slice LUTs 1295 0 53200 2.43 

LUT as Logic 1225 0 53200 2.30 

LUT as Memory 70 0 17400 0.40 

LUT as Distributed RAM 0 0   

LUT as Shift Register 70 0   

Slice Registers 1515 0 106400 1.42 

Register as Flip Flop 1515 0 106400 1.42 

Register as Latch 0 0 106400 0.00 

F7 Muxes 5 0 26600 0.02 

F8 Muxes 0 0 13300 0.00 

 

Table 3.2 shows utilization information for three instrumented s510 benchmark circuits. In 

Table 3.3, 3.4 and 3.5, synthesis results are shown for circuits instrumented with stuck-at, 

bridging and transition faults respectively. Results of emulation times and their comparison 

with simulation times are given in Section 4.2. 

Table 3.3. Synthesis results for circuits with stuck-at faults 

Circuit Slice 

Registers 

Utilization of 

Slice Regs (%) 

Slice 

LUTs 

Utilization of 

Slice LUTs (%) 

Maximum Clock 

Frequency (MHz) 
s1423 734 0.69 600 1.13 171.29 

s27 13 0.01 19 0.04 636.54 
s298 133 0.13 93 0.18 336.02 

s344 175 0.16 125 0.24 268.82 
s35932 17793 16.72 10389 19.53 288.02 

s382 179 0.17 155 0.29 364.96 
s38417 23830 22.40 12362 23.24 150.06 

s38584 20681 19.44 11073 20.81 160.00 

s510 220 0.21 164 0.31 249.27 
s9234 5809 5.46 2625 4.93 133.23 
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Table 3.4. Synthesis results for circuits with bridging faults 

Circuit Slice 

Registers 

Utilization of 

Slice Regs (%) 

Slice 

LUTs 

Utilization of 

Slice LUTs (%) 

Maximum Clock 

Frequency (MHz) 
s1423 147 0.14 410 0.77 186.15 

s27 3 0.00 12 0.02 751.32 
s298 35 0.03 104 0.20 381.24 

s344 27 0.03 93 0.18 346.62 
s35932 1826 1.72 3021 5.68 382.55 

s382 45 0.04 132 0.25 301.11 

s38417 1750 1.64 3367 6.33 210.17 
s38584 1530 1.44 3864 7.26 230.20 

s510 41 0.04 181 0.34 318.00 
s9234 313 0.29 973 1.83 233.32 

 

Table 3.5. Synthesis results for circuits with transition faults 

Circuit Slice 

Registers 

Utilization of 

Slice Regs (%) 

Slice 

LUTs 

Utilization of 

Slice LUTs (%) 

Maximum Clock 

Frequency (MHz) 

s1423 1392 1.31 1437 2.70 125.27 
s27 23 0.02 29 0.06 421.23 

s298 253 0.24 187 0.35 257.33 
s344 335 0.32 347 0.65 223.86 

s35932 33858 31.82 30063 56.51 149.08 
s382 337 0.32 275 0.52 235.52 

s38417 45996 43.23 32090 60.32 103.09 
s38584 39932 37.53 20924 39.33 90.31 

s510 435 0.41 444 0.84 265.68 
s9234 11405 10.72 8891 16.71 92.69 
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4. RESULTS 
 

4.1. LOGIC LOCKING 

In order to evaluate our emulation technique, we wrote a Verilog code generator in Perl that 

can generate emulation circuit for a given netlist based on parameters such as the number of 

PIs, POs, FFs, FIEs, and patterns. ISCAS’89 sequential benchmark circuits are used for this 

purpose. In Table 4.1, we present the synthesis results of the automatically generated 

emulation circuits. These results are obtained on a PC with Intel Core i7-950 Processor and 

6GB RAM running Xilinx ISE 14.7. For all the benchmarks, Np is set to 1000 and the test 

patterns are generated randomly. In addition, Nk is set to 128. Nf values are determined based 

on the size of the benchmarks as well as limitations of Xilinx ISE. For example, in the case 

of s15850, s35932, s38417, and s38584, with FIEs inserted at every gate output, during the 

FPGA flow of the emulation circuit, although the synthesis runs were completed, P&R 

failed. Therefore, we had to drop the number of FIEs to 3072 for s15850 and 4096 for 

s35932, s38417, and s38584 as shown in Table 4.1, whereas the rest of the benchmarks are 

instrumented by inserting FIEs at every gate output. In Table 4.1, the number of registers, 

LUTs, and BRAMs as well as FPGA resource utilization percentages are given in the 5 th, 

6th, and 7th columns. 

Table 4.1. Synthesis results for emulation circuits 

Circuit #PI/#PO/#FF #FIE Max. Freq. 

(MHz) 

#Reg. #LUT orig./instr. #BRAM Tcomp (s) 

s510 19/7/6 211 227 535 (1%) 31/751 (0/1%) 1 (1%) 159 

s838 31/1/32 446 151 1011(1%) 60/1517(0/2%) 3 (2%) 180 

s1423 17/5/74 657 89 1437 (1%) 138/2021(0/3%) 5 (3%) 240 

s5378 35/49/179 2779 116 5687 (5%) 330/7972 (0/14%) 12 (8%) 540 

s9234 36/39/211 5597 93 11325 (10%) 385/14857 (0/27%) 14 (10%) 1980 

s13207 62/152/638 7951 80 16037 (15%) 657/21372 (1/40%) 41 (29%) 3660 

s15850 77/150/534 3072 90 6277 (5%) 828/10046 (1/18%) 36 (25%) 1440 

s35932 35/320/1728 4096 111 8331 (7%) 2272/16289 (4/30%) 106 (75%) 3000 

s38417 28/106/1636 4096 105 8329 (7%) 2218/16995 (4/31%) 94 (67%) 5220 

s38584 38/304/1426 4096 103 8301 (7%) 2248/17470 (4/32%) 89 (63%) 10200 
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The maximum clock frequencies of the emulation circuits are listed in the 4 th column. The 

final column in Table 4.1 is the sum of both the recorded compilation and bitstream 

generation times, Tcomp. Since the benchmarks are first converted into combinational circuits, 

the number of registers and the corresponding FPGA resource utilization percentages shown 

in the 5th column are obtained from the synthesis of the emulation circuits. As it can be seen 

from the 5th column, the number of FFs is about the twice of the number of FIEs because of 

the fault activation scan chain and Chosen register. In the 6th column, the required number 

of LUTs and LUT utilization percentages for both the original and emulation circuit are 

given. As the number of FIEs increases, the number of required LUTs increases. In the 

emulation circuit, we allocate BRAM to store the expected output values. The origina l 

circuits do not consume BRAM, hence the 7th columns refers to the number of BRAMs and 

FPGA utilization of the emulation circuits. Instead of storing the expected output values 

corresponding to the test patterns, we could have implemented a replica of the circuit itself 

to generate them on the fly. However, a replica also consumes LUTs so that BRAMs are 

utilized to save more LUTs. 

Table 4.2. Performance comparison 

Circuit Emu. Time Sim. Time 

s510 0.38 s 1 min  57 s 

s838 0.99 s 12 min 18 s 

s1423 1.53 s 44 min 57 s 

s5378 7.01 s 13 hrs 27 min 

s9234 14.29 s 2.36 days 

s13207 20.37 s 5.90 days 

s15850 7.77 s 1.65 days 

s35932 10.41 s 6.23 days 

s38417 10.41 s 5.12 days 

s38584 10.41 s 6.02 days 

Total Time 83.57 s 28 days 

 

Table 4.2 presents the simulation and emulation times for the fault location selection phase 

of the logic locking algorithm. In our emulation experiments, Zedboard with Xilinx Zynq -

7000 (XC7Z020-CLG484) is used as the target FPGA platform. The clock frequency in all 

of the emulation experiments is 50MHz. Note that shorter emulation times can also be 

achieved with the maximum clock frequencies given in Table 4.1. The full bitstream size 
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and full Zynq configuration (Tconfig) are about 4MB and 2s, respectively. Note that Tcomp and 

Tconfig are excluded from the emulation times, but the time of the serial transmission of 

Chosen bits is included. In addition, our emulation circuit activates only unchosen FIEs. This 

also decreases the measured emulation time compared to Equation 3.1. The total emulat ion 

time, TCIDMFI−LL, is dependent on Tcomp, Tconfig, Nk, Nf, Np, and Tpd whereas Nk is 128, Np is 

1000, and Tpd is 20ns in our emulation experiments. Hence, the emulation times are found 

to be the same for the benchmarks (s35932, s38417, and s38584) with the same number of 

FIEs, Nf, in our emulation experiments. In the simulation experiments, automatica l ly 

generated DMFI based emulation circuit and its testbench, and Synopsys VCS are used. Note 

that Tcomp is also excluded from the simulation times shown in Table 4.2. The simula t ion 

results are obtained on an Ubuntu 10.04.4 LTS running PC with Intel Xeon 64-bit CPU and 

8GB RAM. It takes about 28 days to simulate all the benchmarks shown in Table 4.2, 

whereas 84 seconds to emulate all of them. Therefore, the speed-up is 27806. The quality of 

a key (Chosen register setting) is related to the number of test patterns and FIEs. More test 

patterns and FIEs can yield a better Chosen register setting that causes closer HD to 50% 

overall. However, we have to limit their quantity, since we don’t have unlimited area for 

them. In order to determine the effect of number of test patterns or FIEs on HD, we 

conducted two DMFI simulation experiments that mentioned in Section 3.1.3 and 3.1.4. 
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4.2. MULTI-CYCLE TEST GENERATION 

In Table 4.3 the simulation and emulation times are shown for proposed algorithm for mult i-

cycle test generation. In the simulation experiments, automatically generated DFI based 

emulation circuit and its testbench, and Synopsys VCS are used. The simulation results are 

obtained on an Ubuntu 10.04.4 LTS running PC with Intel Xeon 64-bit CPU and 8GB RAM. 

In small benchmarks, simulation times were better. However overal speed-up of 6 is reached 

with emulation. With same amount of tests and FIEs, higher speed-up is achieved for s38584 

compared to s9234. This indicates that as circuit complexity increases, speed-up of the 

emulation technique also increases. 

Table 4.3. Performance comparison 

Circuit #Tests #FIE (stuck-at or 

transition) 

#FIE 

(bridging) 

Simulation 

Time (s) 

Emulation 

Time (s) 

s510 10 211 29 1 8 

s1423 10 657 73 18 40 

s9234 27 1024 100 720 570 

s35932 7 1024 100 360 30 

s38417 15 1024 100 1080 120 

s38584 27 1024 100 3840 300 

Total Time (s) 6019 1068 
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5. CONCLUSIONS AND FUTURE WORK 
 

In this thesis, DMFI technique is proposed in order to emulate more than one fault within a 

single FPGA configuration. Secondly, we propose an emulation technique based on DMFI 

to speed up the fault location determination phase of the logic locking algorithm. As opposed 

to simulation-based techniques, our technique enables real-time assessment of fault impacts 

and determination of the locations of the faults to be inserted. We have fully automated the 

process by developing a code generator in Perl which dumps out the top-level Verilog netlist 

of the emulation circuit for a given Verilog netlist of a sequential circuit. The performance 

of fault location determination of the logic locking algorithm based on DMFI emulation is 

evaluated with ISCAS’89 sequential benchmark circuits and compared with DMFI 

simulation. Based on the experimental results, a remarkable speed-up is observed. Our 

proposed technique can be easily adapted to other types of FIEs. 

For the multi-cycle test generation, an efficient algorithm that generates a multi-cycle test 

set from a single-cycle test set and improves both the fault coverage and the test application 

time by considering stuck-at, bridging, and transition faults is proposed. Emulation of this 

algorithm is implemented using an all programmable SoC. To take full advantage of mult i-

cycle tests, both test quality and test compaction should be considered at the same time.  

Two publications [26, 27] have been made as a result of the work carried out in this thesis. 

As a future work, in order to improve security of logic locking, other types of faults such as 

bridging and transition faults as well as FIE combinations and also sequential logic locking 

will be considered. 
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