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ABSTRACT

GEOMETRY OF SECOND ORDER DEGENERATE LAGRANGIANS

The goal of this thesis is to present the Hamiltonian formulations of the dynamical systems

generated by the second order Pais-Uhlenbeck, Sarioglu-Tekin and Clément Lagrangians.

Pais-Uhlenbeck Lagrangian is non-degenerate in the sense of Ostrogradsky whereas Sarioglu-
Tekin and Clément Lagrangians are degenerate. For the degenerate or/and constraint systems,
the Legendre transformation is not possible in a straight forward way. For the degenerate sys-
tems, one additionally needs to employ, for example, the Dirac-Bergmann algorithm in order

to arrive at the Hamiltonian picture.

We shall follow several alternative methods while arriving at the Hamiltonian represen-
tations of Pais-Uhlenbeck, Sarioglu-Tekin and Clément dynamics. At first, we first shall
identify the configuration spaces, the tangent and the cotangent bundles. We shall first use
Jacobi-Ostragradskii momenta to define the primary sets of constraints. Accordingly, the
total Hamiltonian will be written. The Dirac-Bergmann algorithm will be run in order to
identify the final constraint submanifold. In each step of the algorithm, we shall revise the
total Hamiltonian by adding the secondary constraints. Once the final constraint set is deter-
mined, it is immediate to write the Hamilton's equations governing the dynamics. This is the
first and most common way. An alternative way arriving at the Hamilton's equations is to
construct the Dirac bracket. To do this, we shall first classify the constraints, determining the
final constraint submanifold, into two classes, namely the first and the second. Then, using

this classification, we shall define the Dirac brackets associated with the physical systems.

There is an alternative way to arrive the Hamilton's equations. In this approach, instead of
studying directly with the second order Lagrangians, we shall reduce the second order Pais-
Uhlenbeck, Sarioglu-Tekin and Clément Lagrangians to first order Lagrangians by introduc-
ing new coordinates and Lagrange multipliers. In this case, the reductions will give degener-
ate first order Lagrangians even though the second order Lagrangian is non-degenerate. We
shall apply the Dirac-Bergmann algorithm for these first order formalisms in order to write

the Hamilton's equations.



Vi

OZET

IKiINCi DERECE DEJENERE LAGRANGIANLARININ GEOMETRISI

Bu tezin amaci ikinci derece Pais-Uhlenbeck, Sarioglu-Tekin and Clément Lagrange fonksiy-

onlart ile tiretilen dinamik sistemlerin Hamilton formiilasyonlarini elde etmektir.

Pais-Uhlenbeck, Ostrogradsky anlaminda yozlagsmamis, fakat Sarioglu-Tekin and Clément
yozlagmis Lagrange fonksiyonlaridir. Yozlasmis sistemler i¢in Legendre dontigiimleri direkt
olarak Hamilton resmini veremez. Bu tip durumlarda Dirac-Bergmann algoritmasi uygulan-

mas1 gerekmektedir.

Pais-Uhlenbeck, Sarioglu-Tekin ve Clément dinamik denklemlerine karsilik gelen Hamil-
ton temsilleri bir kag alternatif metod izlenerek elde edilcektir. Oncelikle, konfigiirasyon
uzaylari, tanjant ve kotanjant demetleri belirlenecektir. Jacobi-Ostragradskii momentum
degiskenleri araciliiyla onciil kisit altkatmani tanimlanacaktir. Toplam Hamilton fonksiy-
onu yazilacaktir. Dirac-Bergmann algoritmasi ¢alistirilacak ve bu sekilde son kisit altkat-
mani elde edilecektir. Algoritmanin her adiminda ikincil kisitlar eklenerek toplam Hamilton
fonksiyonu revize edilecektir. Son kisit katmani elde edildiginde, Hamilton denklemlerine
ulagmak artik kolaydir. Buraya kadar yapilan literatiirdeki en temel yaklasimdir. Hamilton
temsile ulasmak i¢in yapilan alternatif bir yaklasim ise Dirac ¢ergevelerini yazmaktir. Son
kisit altkatmanini belirleyen fonksiyonlar ilk ve ikinci sinif olmak {izere ayrilacak, bu sekilde

Dirac ¢ercevesi tanimlanacaktir.

Ikinci derece Lagrange fonksiyonlari ile galigmaktansa, yeni koordinatlar ve Lagrange ¢arpim-
lar1 araciligiyla, ikinci derece Lagrange fonksiyonlar1 birinci derece Lagrnage fonksiyon-
larma indiregenecektir. ikinci derece Lagrange fonsiyonu yozlagsmamis olsa bile, indirgen-
mis birici derece Lagrange fonksiyonu yozlagmis olacaktir. Bu durumda kag¢inilmaz olarak
Dirac-Bergmann algoritmasi kullanilacak ve Hamilton denklemleri bu sekilde elde edilecek-

tir.
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1. INTRODUCTION

There exist two different but equivalent representations of the Newton's classical dynamics,
namely the Lagrangian and the Hamiltonian dynamics. These theories offer two different

formulations of the Newton's second law

F(q,t) =mq (1.1)

governing the motion of a single particle under the conservative force field [1, 2, 3, 4]. The
passage between the Lagrangian and the Hamiltonian dynamics is available by means of the
Legendre transformations if some non-degeneracy conditions hold. For the degenerate cases,

constructing passage is not an easy task [5, 6].
1.1. THE LAGRANGIAN AND THE HAMILTONIAN DYNAMICS

If the configuration space is an n-dimensional manifold @, then the Lagrangian dynamics is
generated by a function(al) L on the tangent bundle 7°C) which, physically, corresponds the
velocity phase space [1, 2, 7]. The dynamics is governed by the Euler-Lagrange equations

d (0L oL
— - | — - = 1.2
dt <aqz) o7~ (-2

where (¢, ¢7) is a local chart on T'Q) those induced from (¢') on Q. Euler-Lagrange equations
are the second order differential equations in » numbers. If, particularly, the Lagrangian
function is chosen to be the difference of kinetic and potential energies L = K — V of a
single particle then the Euler-Lagrange equations (1.2) equal to the Newton's second law

(1.1) assuming that the force F' (g, t) is given by minus of the gradient of V.

A Poisson structure on a manifold P is a bilinear skew-symmetric binary operation {e, e} on

the space F (P) of smooth functions that satisfies
* Jacobi identity: {F1, {Fo, F5}} + {Fo, {F5, Fi}} + {F5, {F1, Fa}} = 0,

* Leibniz identity: {FlFQ, Fg} = F1 {FQ, Fg} + {Fl, Fg} FQ



for all Fy, Fy, F3 in F(P) [8, 9, 10]. The Hamilton's equations, governed by a Hamiltonian
function(al) H, is given by
2={z,H}. (1.3)

for a curve z = z(t) in P parameterized by the time variable ¢.

A manifold M is called symplectic if it is equipped with a non-degenerate closed two-form
Q[1, 11, 7, 12]. Cotangent bundle 7%() of a manifold (), which can be assumed to be the
momentum phase space of a physical system, carries a canonical symplectic two-form. In

the symplectic framework, Hamilton's equations are defined by
ix, = —dH, (1.4)

where ¢ is the interior derivative (contraction), d is the exterior derivative, and Xy is the
Hamiltonian vector field associated with the Hamiltonian function H, [13, 14]. The Hamil-

ton's equations (1.4) take the particular form

. OH OH

i = = —— 1.5
=5, VT g (1.5)

on the Darboux' coordinates (¢‘, p;).

A symplectic manifold is necessarily Poisson with the introduction of the non-degenerate

Poisson bracket

{H,K} = Q(Xy, Xk) . (1.6)

Using the identification presented in Eq.(1.6), one may show that the Hamilton's equations
in (1.3) and (1.4) are coinciding. Note that, inverse of this discussion is not true, that is a

Poisson manifold is not necessarily symplectic [10].

Starting with the Euler-Lagrange equations (1.2), to write the Hamilton's equations (1.5), one
needs to relate the velocities (¢*) with momenta (p;). This can be achieved by defining the

fiber derivative of the Lagrangian function, namely the Legendre transformation,

oL .
P e (¢, 9). (1.7)

It is evident that, in order to make the transformation (1.7) invertible, one needs to employ a



non-degeneracy condition, called the Hessian condition,

9L
040

det £ 0. (1.8)

If a Lagrangian function satisfies the Hessian condition, then it is called non-degenerate (reg-
ular). In this case, the velocities ¢ can be written as functions of position and momenta (g, p).

That is, we have an invertible (one to one) transformation between the tangent and cotangent

bundles
. . oL
FL:TQ—TQ:(q,q) — q,a—q . (1.9)

By defining the canonical Hamiltonian function

0L oL

the Hamilton's equations (1.5) become equal with Euler-Lagrange equations (1.2).

1.2. THE LEGENDRE TRANSFORMATION AND DIRAC-BERGMANN CONSTRAINT
ALGORITHM

If the Hessian condition (1.8) is not satisfied then the Lagrangian is called degenerate (sin-
gular) that is, one cannot solve the velocities in terms of momenta. Instead, one arrives an

immersed submanifold C' of T%() defined by the following constraint functions

oL

q)a (CLp) = Pa — aqa =0 (110)

where a ranging from 1 to the dimension of the kernel of FL. At 1950s, Dirac proposed an
algorithm to write the Hamilton's equations under the presence of such constraints [15]. This
method nowadays is called as the Dirac-Bergmann theory of constraints. The geometrization

of this algorithm was given by Gotay Nester and Hinds [16].

In the Dirac-Bergmann algorithm, the ultimate goal is arrive a final set of constraints, satis-
fying the consistency conditions, by starting from the primary set constraints (1.10). By this,

one obtains a well-defined Poisson submanifold C'y of 7*(). Using the constraints of the first



kind {xq, @ =1, ..., 7}, the Dirac-Poisson bracket is defined by

{F7H}Cf = {F7 H} - {Fv Xa}(c_l>aﬁ{Xﬁ’H} (1.11)

on the final constraint manifold in terms of the Poisson bracket on 7*(). Here,

Caﬁ - {XOL?X,B}? CY,B = 17 T

is an invertible » X r—matrix [17]. In the main body of the thesis, we shall present the

algorithm and the construction of the Dirac bracket more explicitly.
1.3. LAGRANGIANS DEPENDING ON ACCELERATIONS

Note that, Euler-Lagrange equations (1.2) are the second order differential equation. The
question may arrise that, is there a Lagrangian formalims for higher order differential sys-
tems? More concretely, is it possible to write a third (or fourth) order differential equation

as an Euler-Lagrange equation?

The answer is positive. The geometrical framework for the third and fourth order systems
is the iterated tangent bundle 72Q of (), which consists of accelerations addition to the
position and velocities, with coordinates (qi, q’, qk) In this case, a Lagrangian function

L = L(q,q,q) is defined on T?Q and generates the second order Euler-Lagrange equations

d> (0L d (0L oL
i (or) 7 (57 o = 412

which is, in general, a set of fourth order differential equations. If L is linear with respect

to the acceleration variable ¢', then OL/0q" is free from ¢, hence the second order Euler-

Lagrange equations (1.12) give a set of third order differential equations.

1.3.1. Ostrogradsky's Momenta

To write the second order Euler-Lagrange equations (1.12) as in the form of Hamilton's equa-

tions (1.5), one proceeds as follows. First, consider the dual bundle 7*7'() with local coor-



dinates (¢*, ¢/, p, p1). On T*TQ, the canonical Poisson bracket is defined by
{qi?pj} = {qz,p]} = 6;

and, all others are zero. A higher dimensional version the fiber derivative (1.7) was intro-

duced by Ostrogradsky around 1850's, and it is given by

oL, .. ddoL, .. . 9L, ..
Pi=ga (000 = 555 (0.0,0), Pi=55(06.9). (1.13)

A second order Lagrangian is called non-degenerate in the sense of Ostrogradsky if one can

solve g in terms of (g, ¢, p) using (1.13). This is possible if the second order Hessian condition

is satisfied, namely
0?L

det ——
oq'q’

£ 0.

In this case, the Hamiltonian formulation follows introduction of the canonical Hamiltonian

function
on the iterated cotangent bundle 7T*7°Q).

When there are degeneracies, the Legendre transformation is not immediate. The direct way
to solve this to apply Dirac-Bergmann constraint algorithm to the image space of (1.13). In
the literature, there are intensive studies on the Legendre transformation of singular or/and
constraint higher order Lagrangian systems, [18, 19, 20, 21, 22,23, 24,25,26,27, 28, 29, 30].
We cite [31, 32, 33] for the case of Ostrogradsky-Legendre transformation on Lie groups. We
additionally refer some recent studies on the second order Lagrangians whose dependence

on the acceleration are linearly and/or affine [34].
1.3.2. Reduction to a First Order System
It is possible to recast a second order Lagrangian function L as a first order Lagrangian func-

tion L by calling consecutive time derivatives of initial coordinates as new coordinates. Evi-

dently, this can be done in several different but equivalent ways. One option is to embed the



second order tangent bundle 7@ into the iterated tangent bundle given by
T°Q ~{Z € TTQ : 7rq (Z) = T (Z)},

where 77 is the tangent bundle projection 77'Q) — T'Q), and 1’7 is the tangent mapping of

the projection 7. In this case, a first order Lagrangian function can be written as
E <q17 q.la q'27 )‘) =L <Q17 q.lu CI2> + >\z (Qi - q;) )

where it is assumed that that ¢; = ¢ and ¢» = q.

Alternatively, by the definitions ¢; = ¢, ¢ = ¢ and q3 = ¢ being made, one may introduce

the following first order Lagrangian

L(q1,q2,q3 ) B) = L(q1,q2,43) + s (Qi - C];) + B (qé - qé) )

where both of \;'s and j3;'s are the Lagrange multiplies.

Note that, absence of the A manifests the degeneracy of both of the first order Lagrangians
derived in this subsection. Hence, to arrive the Hamiltonian picture, one has to employ Dirac-

Bergmann algorithm.
1.4. THE GOAL OF THIS THESIS

Our goal in this thesis is to obtain Hamiltonian formulations of some of the second order
Lagrangian formalisms arising in the theory of topological massive gravity, namely Clément,
Sarioglu-Tekin, and Pais-Uhlenbeck Lagrangians. We record here these Lagrangian densities

with some comments on the physical motivations.

The action for topologically massive gravity consists of the action for cosmologocal gravity
and the Chern-Simons term. Clément, in his search for particle like solutions for this theory,
reduced the action [35, 36, 37] to the second order degenerate Lagrangian density

™ 2mA &
2 ¢ 2um

X - (X x X) (1.14)



for three component vector function X of the independent variable ¢. The notation [X] repre-
sents three vectors consisting of X, its velocity X and acceleration X, that is [X] = (X, X, X).
Here, the inner product X? = T2 — X2 — Y2 is defined by the Lorentzian metric and the triple
product is X - (X x X) = €ijkX X7 X* where €k 1s the completely antisymmetric tensor of
rank three. Dot denotes the derivative with respect to the variable ¢t and { = ((¢) is a function
which allows arbitrary reparametrization of the variable ¢. A and 1/2m are cosmological and

Einstein gravitational constants, respectively.
In a more recent work [38], Sarioglu and Tekin considered an action consisting of Einstein-
Hilbert, Chern-Simons and Pauli-Fierz terms and, obtained the reduced Lagrangian density

7| A o .
LTX,Y] = 3 a(X*>+Y?) + Y- X —m?(Y? + X?) (1.15)
ol

by supressing the spatial part of the theory. Here, a, i, m are parameters and X, Y are three-
vectors. In the context of higher derivative theories, they also considered Pais-Uhlenbeck
oscillator as a nonrelativistic limit. This is described by the nondegenerate Lagrangian den-
sity

1. .
LX) = 5 [X2 — (P + p2)X2+p2Q2X2] (1.16)

where X is a real dynamical variable, p and q are positive real parameters [39]. Functionally,
Clément and Sarioglu-Tekin Lagrangians are significantly different than the Pais-Uhlenberg

Lagrangian since they involve degeneracies.
1.5. CONTENTS

This thesis is organised as follows: In the next chapter, the brief summery of the first or-
der Lagrangian and the Hamiltonian dynamics for non-degenerate and degenerate cases are
presented. For the first order degenerate theories, the Dirac-Poisson bracket and the Dirac-

Bergmann constraint algorithm are exhibited.

In the third chapter, the second order Lagrangian theory are reviewed. The Jacobi-Ostrogradsky
momenta are defined. In progress, the Hamiltonian formalisms of a second order degenerate
Lagrangian theory is analysed in two different but equivalent ways. At First, the Dirac-

Bergmann constraint algorithm is directly applied to the total Hamiltonian written for the



second order Lagrangian. Secondly, the second order Lagrangian is reduced to a first order
Lagrangian by defining new coordinates and encoding these new coordinates in to the theory
by addition of some Lagrange multipliers. Then, the total Hamiltonian is written for this re-
duced first order Lagrangian, and accordingly, the Dirac-Bergmann algorithm is applied. As
a particular and alternative way, the Legendre transformation is performed to an unconstraint

Lagrangian which is obtained by solving the Lagrange multipliers.

In the last chapter, we analyse some concrete second order degenerate Lagrangians, namely
Pais-Uhlenbeck [39], Sarioglu-Tekin [38] and Clément [37]. For each of them, the Jacobi-
Ostrogradsky momenta are defined and the Dirac-Bergmann constraint algorithm is applied.
At the end, the Hamilton's equations are written. Alternatively, the Dirac-Poisson brackets
are computed for each of the theories and the Hamilton's equations are rewritten using the
Dirac-Poisson bracket in order to make a cross check. The reductions of these second order
theories to the proper first order ones are also exhibited. Similar to the second order versions,
the Dirac-Bergmann algorithms are applied and the Hamilton's equations are written to these

reduced first order systems as well.



2. THE FIRST ORDER THEORY

2.1. LAGRANGIAN DYNAMICS

We start with an n—dimensional manifold (), assumed to be the configuration space of a

physical system, and a local coordinate chart

The tangent space to the manifold () at a point ¢ is denoted by 7,(). The union of the all
tangent spaces constitutes the tangent bundle 7°C), which corresponds to the velocity-phase
space of the physical system [1, 2, 7]. We equip the tangent bundle 7'() with the induced

local coordinate system

(q7Q) = (qu "”qn’q.17 "'7qn) 6 TQ

consisting of the positions and the velocities. The tangent bundle projection 7 : T'CQ) — @,

locally, maps the two-tuple (g, ¢) to its first components (¢) defining the position.

A first order Lagrangian density L = L(q, ) is a real valued function on 7'Q). The corre-
sponding action integral is

su= [ Lig.d @.1)

t1
for two fixed points ¢ (t1) and ¢ (t2) in @ [3, 7]. In order to derive the extremum values of

the functional S, we take variation of the action integral and equate it to the zero, that is

to
5S, = / (aL 5q" + 8—.Ll.5q'i> dt = 0. (2.2)
t1

aq’ dq

Using the commutation of the variation with the time derivative, applying the by parts tech-

nique for the second term in the integral (2.2), and employing the boundary conditions d¢(;) =

2oL d (0L ‘
IR seiar = o, 2.
[, (5= (57 = e

dq(t2) = 0, we arrive
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Note here that, the boundary terms define the Lagrangian one-form

, oL .
0rlq'] = o7 dq'. (2.4)

We assume that the variation ¢’ is arbitrary, then Eq.(2.3) gives the Euler-Lagrange equations

. d (0L oL

which constitute a system of second order differential equations

0L .. 0L 0?L

== - ¢’ 2.6
9903 . ~ 9  0gog” 26)

For the Lagrangians resulting in the same Euler-Lagrange equations (2.5), Lagrange one-form

01 in (2.4) is not unique. However, its functional exterior derivative
Qp =db, (2.7)

is a well-defined presymplectic two-form on 7°(Q).

If the determinant of the Hessian matrix

0*L
T 04t 0¢

(2.8)

is not zero or, equivalently, if the rank r of the Hessian matrix (2.8) is equal to the dimen-
sion n of (), then the Lagrangian L is called non-degenerate [40, 41, 42]. In this case, the
accelerations ¢'s are uniquely determined by the positions ¢ and the velocities ¢. If the rank
of the Hessian matrix (2.8) is smaller then n, the Lagrangian is called degenerate. In this
case, it is not possible to determine ¢'s uniquely in terms of ¢ and ¢. So that, a solution of the

Euler-Lagrange Eq.(2.5) may contain arbitrary functions.

2.2. SYMPLECTIC AND POISSON MANIFOLDS, HAMILTONIAN DYNAMICS

A manifold M equipped with a closed and non-degenerate 2-form w), is called a symplec-

tic manifold. A symplectic manifold is denoted by (M, wys). The non-degeneracy of the



11

symplectic two-form w); enables us to define a 1-1 correspondence between the gradients of
the functions and the vector fields on M. This isomorphism leads us to write the Hamilton's
equation of motion in a coordinate invariant form. Let  be a the Hamiltonian function on

M, then the Hamilton's equations are
ix, 0= —dH (2.9)

where ¢ is the interior derivative (contraction), d is the exterior derivative, and Xy is the
Hamiltonian vector field associated with H, [13, 14]. The triplet (M, wy;, X ) is called a

Hamiltonian system.

To see the Hamilton's equations (2.9) in coordinates, we first introduce the cotangent bun-
dle 7@ which is generic for all symplectic manifolds. Physically, one may regard 7@
as the momentum-phase space of the system. On 7@, there is a distinguished set of local

coordinates
(qap) = (ql> sty qnapla -"7pn)
called the Darboux' coordinates which enables us to write the symplectic structure in the form

of

wr+g = dp; N dq'.

In this local picture, for a Hamiltonian function H on 7™(), the Hamiltonian vector field is

computed to be

OH OH
X = - 2.10
u(¢,p) ( o, aq]) (2.10)
so that the Hamilton's equations (2.9) turn out to be
. OH OH
b= ) = ———. 2.11

Alternatively, one may represent the Hamilton's equations (2.11) in terms of a Poisson bracket.

To arrive this, start with a function F' = F'(q, p), and take the derivative of F’ with respect to
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time. This gives

dF  OF , OF

: 2.12
dt aq" apip 2.12)
OF OH OF 0H

= Siom oy ag = R (2.13)

Here, { F, H} is the canonical Poisson bracket of two functions. In this notation, the Hamil-

ton's equations (2.11) can be written as

z2={z,H}.

More general, a Poisson structure on a manifold P is a skew-symmetric bilinear map which

takes two differentiable functions H and F' to a new one

{,.}: F(P)x F(P)— F(P), (2.14)

satisfying both of the Jacobi identity

{F.{H,G}}+{H,{G,F}}+{G,{F,H}} (2.15)

and the Leibnitz identity

{Fi\Fy,G} = {F\,G} Fy + {Fs, G} F\. (2.16)

A manifold equipped with a Poisson bracket is called a Poisson manifold.

A symplectic manifold is necessarily a Poisson manifold with the introduction of the non-
degenerate Poisson bracket

{H, K} = Q (X, Xg). (2.17)

A Poisson manifold is not a symplectic manifold necessarily due to the non-degeneracy con-
dition on the two-form. Actually, a local picture of a Poisson manifold foliates into a product

space whose leafs are symplectic [10].
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2.3. THE LEGENDRE TRANSFORMATION

At least in a theoretical level, one expects that the Euler-Lagrange equations (2.5) and the
Hamilton's equations (2.11) be in relation. Unfortunately, in practice, constructing the pas-
sage between the Lagrangian and Hamiltonian formulations is not so straight forward. This

may be achieved by the Legendre transformation defined in terms of the fiber derivative

= 2.1
pi =5 (2.18)

q’L
Geometrically, the fibre derivative maps the tangent bundle 7°() into the cotangent bundle

T*(@, the phase space of Hamiltonian mechanics

i . 0L
FL:TQ — T°Q : (q’,qj) — (q’,m) : (2.19)

q
In equation (2.18), all velocities ¢' can be expressed uniquely in terms of momenta if the
non-degeneracy condition holds that is if the rank of the Hessian matrix (2.8) is full. In this

case, we arrive a Hamiltonian function
H(q',pi) = p;d’ (¢ pi) — L(¢". 4" (¢, py))- (2.20)

depending on (¢, p;). The Euler-Lagrange equations (2.5) and the The Hamilton's equations
(2.11) for the Hamiltonian function H presented in Eq.(2.20) coincide. To see this, take

exterior derivative of the right hand side of equation (2.20). That is

i i g 0L OL
d(pig' — L) = ¢'dp; + pidd’ — 5~dq" — 7--dq (2.21)
oq ¢’
using p; = g—é, the second and fourth term cancel so we have
i i oL . ;
d(pig" — L) = ¢'dpi — 97 dq'. (2.22)

On the other hand exterior derivative of left hand side of the equation (2.20)

0H . OH
dH = -dq*
aq* T Op;

dp; (2.23)
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Equivalence of differentials terms dp; and dq' in equations (2.22) and (2.23) give the Hamil-

ton equations (2.11).

Obviously, for degenerate cases, all these calculations can not be performed. In the following
section, we study Dirac-Bergmann constraint algorithm to arrive a Hamiltonian formulation

for degenerate Lagrangian systems.

2.4. DIRAC-BERGMANN ALGORITHM

A (generalized) Hamiltonian formulation of degenerate first order Lagrangian systems was
developed by Dirac [15], nowadays the method he proposed is called the Dirac-Bergmann
constraint algorithm [40, 42, 43, 44].

For a given Lagrangian L, if the rank r of the hessian matrix in Eq.(2.8) is less then dimension
n of (), then all of the velocities cannot be solved in terms of the momentum variables. So

that, the momentum variables are not all independent. Instead, there exists some relations
¢, (¢,p) =0, m=1,..,n—r, (2.24)

called as primary constraints, [43]. They define a n + r dimensional submanifold C, called

the primary constraint submanifold, of 2n dimensional phase space 7™*Q).

Hamiltonian H (q’, p;) for the degenerate cases is far from being unique. One may add arbi-
trary linear combinations of the primary constraints to the Hamiltonian function. This leads

to the total Hamiltonian

Hr(q,p) = H(q,p) +u"(q,p)Pm(q,p) (2.25)

for arbitrary functions u™ called the Lagrange multipliers [15, 40, 41]. Note that, on the
constraint submanifold C', the canonical Hamiltonian A and the total Hamiltonian H are

coinciding.

Thus, in dealing with dynamics of total Hamiltonian H we need to evaluate quantities at
®,,(q,p) = 0. Note that, as it is stated in [40], we don't use constraints before working out

Poisson brackets since primary constraints may have non-zero Poisson brackets with some
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canonical variables. To remind this, it is customary to use the weak equality symbol ~.

Accordingly, the Hamilton's equations of motion for H; become

= Op; -~ Op; B Op;
,_oHr  0H 0%,
b= g~ O qi

_OHy _OH .09,

(2.26)

(2.27)

where we set ¢,,, ~ 0 on right hand sides after taking derivatives. Using the canonical Poisson

bracket, we can rewrite the Hamilton equations (2.26) and (2.27) as

i ={¢' Hr} ~ {¢', H} + v™{¢’, D,,,} (2.28)

pi = {p", Hr} =~ {pi, H} +u"{pi, P, }. (2.29)

More generally, the evolution of an arbitrary function F'(¢', p;) on the phase space is

. 0Fdq¢® OF dp;
F~—
og dit | op, di
oF (0H iy 1 0P, N oF 0OH 1 0P,
N — u —u
d0q° \ Op; p; Ipi

B oq* oq’
~{F,H} +u"{F, ®,} (2.30)

using (2.26) and (2.27).

2.4.1. Consistency Conditions

In particular, taking £ in (2.30) to be a primary constraint ®,,,, we obtain a consistency con-
dition

®,, ~ {D,,, H} + v {®,,, ®;} ~ 0, (2.31)
see, for example, [15, 40, 41, 42]. By repeating this for m = 1,...,n — r, we arrive a set of

nonhomogeneous linear equations in the unknown u’'s. The following cases may arise from

these equations:
(i) They may be inconsistent 1 ~ 0 and do not possess any solution for u”.

(i) They may be a set of equations 0 ~ 0.
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(iii) They may be a set of equations independent of u’'s and ®@,,'s. In this case, we have that

det ({®,,,, ®,}) ~ 0 and {®,,,, H} # 0. Thus, Eq.(2.31) define new constraints

60(¢'pi) ~ 0 (232)

called the secondary constraints. Note that, by definition, the secondary constraints
are independent from the primary ones. Add these secondary constraints into the total

Hamiltonian Hr in (2.25), and define
HY = H+u"®,, + v ¢, (2.33)

with Lagrange multipliers v". The set of consistency conditions must be extended to

include secondary constraints. Consistency of secondary constraints leads to

{¢7“7 H%} = {¢T7 H} + um{¢T7 (I)TYL}JDUS{(b?"? ¢S} R 0 (234)

which may either imply new (tertiary) constraint or may restrict the multipliers u™'s
or v"'s. Repeating this process, one enlarges the primary constraint set with the new
(secondary, tertiary, ...) constraints, redefines Hr by introducing new Lagrange multi-
pliers for new constraints and by repeating the consistency computations. This process

ends when no more new constraint arises.
(iv) They may be a set of equations for the unknown multipliers u’'s.
(i) det({®,, P;}) # 0and {®,,,, H} # 0.

In this case «/'s are uniquely fixed to be
W~ — (MY ¢y, HY (2.35)
where M = {®,,, ®;}. The equations of motion become
F~{F H}—{F®,} (M) {®; H} (2.36)

for any function F'.
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(i) det ({®,,,®;}) ~ 0and {®,,, H} ~ 0.

In this case a homogeneous system of equations for 1/s are obtained and a non-

trivial solution exists.

At the end, we are faced with the whole set of constraints (primary, secondary etc...)
UV, =, U ~0 j=1,...n—r+k=J (2.37)

and total Hamiltonian with determined and undetermined Lagrange multipliers. Using this
final total Hamiltonian we can find equation of motion using (2.28) and (2.29). One has to
be careful about not to use constraints before evaluating the equations of motion, that means,

first, we have to evaluate equations of motion, then we can use the constraints.

2.4.2. Dirac Bracket

We may classify the set of all constraints (2.37) into two classes by evaluating the Poisson
bracket of the constraints. If the Poisson brackets of F'(¢*, p;) with all {\¥';} vanish modulo

the constraint

(FU}~0, j=1,..J (2.38)

then F'(¢*, p;) is a called first class constraint. Otherwise, it is called a second class constraint,

[15, 40]. Surely, this classification is possible only after all constraints have been found.
» Second Class Constraints

Assume that, there is no first class constraints, that is consider the case where all con-
straints are the second class. Let us denote them by (V). The Poisson bracket of these

constraints will form a nonsingular matrix M = [M] with
Mst = {\Ijsa \Ijt}
Accordingly, the Dirac bracket is defined by

{F.G}pp = {F,G} — {F, U} M*{¥,,G} (2.39)
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where M*" is components of the inverse matrix of [M]. In this formulation, one can
use the constraints before evaluating the bracket. This means that, the weak equality
becomes a strong equality, since {¥;, F'} p5 = 0. With the help of Dirac bracket (2.39)

the equations of motion can be written as

Z R {Z,H}DB (240)

First Class Constraints

Contrary, assume that, there is no second class constraint. In this case, we can divide
the whole first class constraints as primary first class ¥,, and the others V,. As it
is stated in [40], the first class constraints do not change the state. They just lead to
arbitrary functions in the general solution of the equations of motion. These unwanted
degrees of freedom can be eliminated by using the Dirac bracket and by redefining total

Hamiltonian Hg.
First and Second Class Constraints

Assume that the rank R of the Poisson bracket matrix of all constraints ¥; (primary
and secondary) in (2.37)
{W;,¥;} = Ny #0 (2.41)

1s less than J. That is, we have R number of second class and J — R number of first

class constraints. Due to Dirac [15, 40], try to make a transformations of second class
U~ S, s=1,.,R (2.42)

so as to bring as many second class constraints as possible into the first class. Let us
call second class constraints which cannot bring into first class as ¥, and their Poisson
bracket with each other leads to non singular matrix N,s ~ {V,, Uz}, thus we get
Euler-Lagrange equations of motion using inverse of this matrix and Dirac bracket as

it is done when all constraints are second class case.
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3. THE SECOND ORDER THEORY

3.1. THE SECOND ORDER LAGRANGIAN DYNAMICS

Let Q be an n-dimensional differentiable manifold with coordinates (¢*). The 2nd order
tangent bundle
20y _ (T2
7°Q =UT,Q

is 3n-dimensional manifold with induced coordinates consisting of positions, velocities

and accelerations. The induced local chart looks like

(Q7 q‘?d?) = (q17 "'7qn7q17 "'7qn7g17 "'7qn) E T2Q

There are projections given by

oo 1 T°Q = Q1 (q.d,4) — (q) 3.1)

ot T°Q—TQ: (q,4.4) — (g.4) - (3.2)

Note that 7@ can be embedded into the iterated tangent bundle T'(T'Q) with coordi-

nates (¢*, V?, ¢, V) through the identification V? = .

A second order Lagrangian density L[q] = L(q, ¢, ) is a function on the second order

tangent bundle T2(Q). The functional differential of L[q] with respect to ¢ is

L L, 0L

= e4(Llg))dg’ + %HL[Q] (3.3)

d(Llqldt) = i)

where the first term gives Euler-Lagrange equations

oL doL & oL _,
¢t dtdg  dt2 oG

e, (Llgldt) = (3.4)
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and the boundary term is the total derivative of the functional one-form

oL ., OL dOL

)q'- (3.5)

Similar to the first order theory, for the Lagrangians resulting in the Euler-Lagrange

equations (3.4), 0y, is not unique. However, its functional exterior derivative

QL[q] = d@L[q] (36)

is a well defined two-form on T2M. A second order Lagrangian L is called to be

degenerate if the extended or generalized Hessian matrix

0*L
7T 0G0

(3.7)

is a singular matrix, with rank » < n otherwise it is non-degenerate.
3.2. JACOBI-OSTROGRADSKY MOMENTA

On the dual picture, the momentum phase space 7*7'() is a canonical symplectic man-
ifold with coordinates (¢‘, ¢, p?, p}). Hence it is endowed with the canonical Poisson

bracket which results in the fundamental Poisson bracket relations
{¢.p}} = {d",p;} =0, (3.8)

and, all the others are zero.

The form of the Lagrangian one-form ¢, in (3.5) already suggests that we can introduce

the momenta for a second order Lagrangian as

0 = oL dOL
bildl = 3¢ ~ atog
L L . L .. 2L ...
= i— (9 -¢) — 8 —’ — 8 —q’ (3.9)
dq¢t  0G'0q¢7 0Gt0qI 0q 0gI
OL
1 = — 3.10
p;lq] i (3.10)

which are called the Jacobi-Ostrogradsky momenta [45]. Conjugated respectively to
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¢ and ¢'. Lagrangian one-form
OLlq] = pilalde’ + pjlgldd’ (3.11)
is the pull back of the canonical (Liouville) one-form 6r-7¢ by the Legendre map,
FL:T°Q — T*TQ (3.12)

where T3(Q) carries the local coordinates (¢, ¢, §', ¢*).

If the extended Hessian matrix (3.7) is non-singular, then we can express §' and " as

functions of the Ostrogradsky momenta given by

i = §(d,dp) (3.13)

i@ = q(q,d"\ P, p}) 3.14)

The canonical Hamiltonian H for a second order non-degenerate Lagrangian is given

by
H=p}q" +piq — L(d', 4", ). (3.15)
whereas the Hamilton's equations

=75, =+ (3.16)

P = - (3.17)

are equivalent to fourth order Lagrange equations of motion (3.4) [45]

3.2.1. Second Order Degenerate Lagrangians

Assume that rank of the extended Hessian matrix W;; is r < n, this means it is possible

to solve only r number of §''s, in other words, n — r number of the momenta are
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dependent according to the set of the primary constraints
O.(¢",q",p") =0, a=1,..n—r (3.18)

follow from (3.10). It is also possible to arrive some constraints 7(q’, ¢*, p{) =~ 0 from
equation (3.9) if they are independent of G. But all such constraints can also be derived
as secondary constraints [62]. We remark that, if p” depends additionally on ¢, then ¢

should be solved as a function of (g, ¢, p*).

Using primary constraints, total Hamiltonian is
Hpr = H +u®®, (3.19)

where u®'s are the Lagrange multipliers, and H is the canonical Hamiltonian in (3.15).
Procedure after this point is the same with first order singular theory, c.f. the section
2.4. Check the consistency of each primary constraint ¢, to get secondary constraint
or determine Lagrange multipliers. Once the Dirac-Bergmann algorithm is ended after
the substitution of the determined Lagrange multipliers «® into the total Hamiltonian

(3.19), equations of motion are written as

3

q {¢'.Hr}, ¢ ~{d' Hr} (3.20)

p) ~ {p),Hr}, p;~{p}, Hr} (3.21)

Q

on the final constraint submanifold. In this higher order case, it is also possible to
define Dirac Poisson bracket as well after the complete set of constraints is determined

c.f. section 2.4.2.

3.2.2. Reduction to First Order Formalism

A second order Lagrangian on 72() may be treated as a constraint first order Lagrangian

on the iterated tangent bundle 7'7'() equipped with a local frame

¢=Q) i=Qy=Q, (Q),Q)eTQ=M. (3.22)
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Tangent and cotangent bundles are 7'M = TT'(Q) and T*M = T*T(Q with local coor-

dinates

( f)v 21762676221) = (ql7qz,ql,ql)€TM
(QB? ilapz'O?Pil) = (Q,P)ET*M

The Lagrangian L on T2 will become one of the first order degenerate Lagrangians

L(Q0, @1, @b, Q1. A) = LQ, Q3 Q1) + A(Qp — Q1) (3.23)
Le(Qp, Q1 Q5 @1, A) = LN(Qp, @1, Q1) + M (€ — Q1) (3.24)
on T'M with the same constraint Q% — QE = ( and with different Lagrange multipliers
A% or \! depending on the variables () or @Q; adapted for the second order Lagrangian

L. [21, 23, 26, 30]. Variations of both of the Lagrangian densities L° and L! with

respect to Q) give Euler-Lagrange equations (3.4)

§L° oL®  d oL® d\)

— e T A 3.25
50 0Q, diod,  di (3-25)
Lt LY d)\!
oL _ oL Ak _ (3.26)
oG 0Qy  dt
in the variable ¢° = Q}, upon the use of constraint Q% = Q} and Lagrange multipliers
PNIDY:

(2R

oo _doL ., oL doL
TodtpQit Tt 0Qy  dtoQy

obtained from variation with respect to @}. Note that the equations (3.25) and (3.26)

(3.27)

give Euler-Lagrange equations of motion (3.4) but the definitions of the Lagrange mul-
tiplier \Y and \} are changing. Finally variations of L2 and L} with respect to \? and
A give constraint Q) — Q. Both L? and L} are degenerate since derivative of \ is not

included. So for the Hamiltonian formalism, we have to apply Dirac analysis.
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3.2.3. Hamiltonian Formalism for Reduced First Order Lagrangians

Hamiltonian Formalisms for L!: Canonical momenta for L are defined as

HU _ aLi

0 Ok _\1 (3.28)
oQq
! = OL. _ oL (3.29)
0@ 00
. It
I, = ij =0. (3.30)

These are identical to Jacobi-Ostrogradsky momenta (3.9) and (3.10) using definition
of Al in (3.27) and ¢' = Q}, Qi = Q'. The Lagrangian phase space is transformed to
Hamiltonian phase space 7*(7'Q) x R™) with canonical coordinates (Q}, @, A}, I19, TT} TI})

and satisfy the canonical Poisson bracket relations

{117} = 6858, (AL TE} =l (3.31)

a”y)

T*(TQ x R™) is canonical symplectic with the symplectic two form

Qreroxrn) = dQy AdIL +dQ] AdIT} + dA} A dIT

— dQT*(TQXR”) (332)

where 07+ (gxrn) = H?dQ‘é + HjldQ{ + Hid/\; is the canonical one form.

Definition of momenta leads to primary constraints

<I>? = H?—)\}: (3.33)
O} (Qh, Q1Y) = 0 (3.34)
P! = I =0 (3.35)

since neither of momenta is invertible as a function of canonical coordinates and mo-
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menta. The canonical Hamiltonian function for L! is

H o= 1005+ QL+ I - L}

= Q! +1°Q: — L (3.36)

using primary constraints. This canonical Hamiltonian function is also independent

from Q' (For the proof see [62]). Then the total Hamiltonian is
Hr = H +upd] +ui¢; + u; d) (3.37)

where uf, ui and v} are Lagrange multipliers. After this point, there is no differ much
from first order singular theory. Apply Dirac procedure: first check the consistency
condition for each primary constraint ¢?, ¢! and ¢}, to find new constraints or to deter-

mine Lagrange multipliers u; as it is explained in section 2.4 .

As an another interpretation, stated in the ref [30], consistency condition of ¢! implies
ul = 0. Constraints ¢4 = II} only effects the equation of motion for A}, that means
we don't need to add this constraint to canonical Hamiltonian function H. Hence we

are faced with the Hamiltonian

Hp = H +ul¢y;. (3.38)
This Hr is completely equivalent to the Hamiltonian (3.19). So consistency of primary
constraint will give same secondary constraint.

Hamiltonian Formalisms for L?: For the alternative first order Hamiltonian formalism,

Canonical momenta for L? are

. oL oL,

=0 = 4 )\ (3.39)
0Qy  0Qq
0 0
T = aL.? = 8L., (3.40)
0@y 0
,_ OL
T = o0 = 0. (3.41)

When we compare momenta II and T, it is easy to see I} = 7}, 1T} = 7, IIY = 70

i
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using definitions of \?, \! and constraint Qi = Q.

)

The canonical Hamiltonian for L°
H = mQy+mQi+mA) — L (3.42)

is equivalent to the Hamiltonian (3.36) using Q) = Q.

After this point, we have to discuss whether there exit any primary constraint or not
from the definitions of momenta. It is exact to get constraint ), since Lg 1S not a
function of \° it is not possible to solve A% But on the other hand, if it is possible to

solve the velocities Q) and (% from 7° and 7! then the total Hamiltonian is
Hp = H + u)¢). (3.43)

Otherwise, if the momenta 70, 7!, 7% can not be solved for velocities @}, Q% and \!

R

there exist primary constraints

oL°
¢} = m————A=0 (3.44)
0Qy
¢21<Q67 i’)‘?’ﬂ-z(']’ﬂ-zl) =0 (345)
¢, = m =0. (3.46)
Then total Hamiltonian is
Hpr = H +ui¢? +uio} + uldh. (3.47)

Using the total Hamiltonian (3.43) or (3.47) and the primary constraints we have to

apply Dirac-Bergmann algorithm as it is given in the section 2.4.
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3.2.4. Unconstraint Variational Formalism

It is also possible to express first order Lagrangians L and L. in (3.23) — (3.24) in X free
form on TTQ

S d oL° ;
L = 1@, Qo Q1) = (G 500)(@0 — Q1) (3.48)
1 1
I = 1'(@Q0, Q1. 01) + (5 — 592 )(Ch - Q) (3.49)

Qt  dt Q'
substituting \° and A\! in (3.27) into L2 and L! in (3.23) — (3.24). Note that, the constraint
Qé — @' = 0 must not be used in LOU or Lj;, if it is done, unconstraint Lagrangian does not
give consistent Euler-Lagrange equations. If second order Lagrangian L is nondegenerate,

unconstraint LY, and L}, contains (), thus reduction to first order does not mean anything.

On the other hand if L is degenerate Lagrangian, L, and L}, will be of the first order.

Thus, the second order degenerate Lagrangian L with the third order Euler-Lagrange equa-
tions (3.4) for ¢’ is reduced to a first order Lagrangian LY, and L}, with two second order
Euler-Lagrange equations obtained from variational derivative of LY and L}, for Qf = ¢’
and Q7 = Q}. Note that variational derivative with respect to Q! is satisfied identically

and variational derivative with respect to Qf gives the Euler-Lagrange equations (3.4) for
Qo =d"
We can apply Hamiltonian theory for first order unconstraint Lagrangians LY, and L}, as it is

given in Section 2.3 and 2.4. Canonical momenta for LY, and L}; are defined as

o OLY, , OLY

=200 ph="20 (3.50)
Qg Q1
OL} OL}
=Y sl=_U (3.51)
9Q Q1
On the Hamiltonian phase space, canonical coordinates (Q}, Q%, p?, p!) and (Qf, Qi Y, s}!)

satisfy canonical Poisson bracket relations

{Q07p]} = {Ql)p]} = {Q07 0} = {Qh ] = 5; (352)
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The canonical Hamiltonian function for LY, and L}, can be written as
H=plQy +p;Qy — Ly, H = sQq +5;Q1 — Lyy. (3.53)

After this point, we have discuss if it is possible to solve velocities from definition of mo-
menta p’ and s’. Using these velocities we can write the Hamiltonian function and then the
Hamilton equations of motion. Otherwise there exit primary constraints, we have to apply

Dirac-Bergmann constraint algorithm to find the Hamilton equations of motion.
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4. APPLICATIONS: THE TOPOLOGICAL MASSIVE GRAVITY

As an application of second order nondegenerate and degenerate theory, we will first study
Pais-Uhlenbeck oscillator whose dynamics is described by the nondegenerate Lagrangians.

We will then analyse degenerate Sarioglu-Tekin and Clement Lagrangians
4.1. PAIS-UHLENBECK OSCILLATOR
4.1.1. General Setting

To construct the geometric framework for the Pais-Uhlenbeck Oscillator (PUO) [39], we start

with a one-dimensional manifold M and the introduction of the following local coordinates

X e M,
(X,X)eTM
(X,X,X)eT?’M
(X, X, X, X)eT*M

P

(X,X,P°, PY) e T*TM.

The dynamics of classical PUO can be obtained from the second order Lagrangian,
17 )
LPY = 3 X2 — (2 + w0 X2+ WX (4.1)

where w and () are positive real parameters. This is a second order non-degenerate Lagrangian

PU .
88§(2 1s 1.

since the rank of

The Euler-Lagrange equations of motion (3.4)
X+ (2 + )X + X =0 (4.2)

are obtained by varying L*V with respect to X.
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4.1.2. Jacobi-Ostrogradsky Method

Proposition 4.1.1. For the second order Lagrangian (4.1), Jacobi-Ostrogradsky momenta
(3.9) and (3.10) become

oLrY d (OLFY .

PY = — — | = —(0? X — 4.3
L dt(aX) (@ )X — ¥ 43)
PU .

po9f % (4.4)
0X

Note that, the Legendre map is invertible in order to express fiber coordinates (X, X) in

terms of Jacobi-Ostrogradsky momenta from the equations (4.4) and (4.3).

The Lagrangian one-form (3.11) turns out to be
0,[X] = — ((92 +uw?)X + X> dX + XdX (4.5)
and the exterior derivative of 0, is
Qp = —(Q* + w?)dX ANdX + dXANdX + dXNdX. (4.6)
Proposition 4.1.2. The canonical Hamiltonian function for (PUO) on T*T M is

o1 1 o 1
HPY = P°X + 5(Pl)2 - 5(92 + w?) X2 — §w292x2. (4.7)

The canonical Hamilton's equations are

P° = w?Q%X (4.8)

Pl = —P° — (0% +W?)X. (4.9)
Proof. Let us recall the Hamiltonian function defined in (3.15) and calculate

HPU:POX+P1X_LPU

. 1 .. 1 . 1
= P°X + P'X — 5X2 + 5(92 +whHX? - 5&)292){2.
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By substituting X (?) = P!, we have

1 1

) ) 1
HPY = P'X + 5(131)2 + 5(92 +whHX? — §w2QzX2.
The Hamilton equations of motion are
X ={X,HY} =X (4.10)
X ={X ,H'"}Y=P! (4.11)
P’ = {P° HPY} = Q%X (4.12)
Pl ={P' HY} = —P" — (0 + W)X (4.13)

From these equations first, second and last one are satisfied identically but equation (4.12)

gives Euler-Lagrange equation (4.14)

P’ = Q%X

— (P + W)X - ¥ =*02X (4.14)

using the definition of P°. O
4.1.3. The First Order Formalisms (Constraint Canonical Formalism)

It is possible to reduce the second-order non-degenerate Lagrangian L7V in into two first-

order degenerate Lagrangian functions (c.f. (3.23) and (3.24)) as follows

LEV = 5| @3 — (@2 + W) @R + W 0%QE| + X(Qo — Q1) (4.15)

[Q% — (P + QT + wZQZQg] + Qo — Q1) (4.16)

N — DN —

PU _
Ll h—

after the introduction of the coordinates X = Qo, X = Qo = Q; with the Lagrange multi-

pliers A\° and \'. Variations of L[’V and LIV with respect to Qg
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SLEY oLfY  d aLyY .

= — 0 — 20200 + (W2 + 0Oy — \° 4.17
PU PU PU .
OL” _ 0L iaL? = W202Qp — \! (4.18)
8Qo 0Qo  dt 9Qy

result with the equations of motion (4.14) using

N = —Q (4.19)
AN =—(*+Q)Q1 — (4.20)
determined from the variations of LI’V and LIV with respect to Q.

Hamiltonian Formalism for LJ'V: On the Hamiltonian phase space canonical coordinates

(Qo, Q1, \°, ¥, !, my) satisfy the canonical Poisson bracket relations
(Qi, My =6/, {\\m}=1 (4.21)

For the first order Lagrangian L'V in Eq.(4.15), the conjugate momenta to the coordinates

(Qo, Q1, \°) are defined by

= 220 N (2 4+ W) 4.22
5@0 ( w )Qo ( )
aLPU .

120 4.23
20, o (4.23)

oLPY
™= = 0. (4.24)

Proposition 4.1.3. The total Hamiltonian function for the first order Lagrangian LYY in

Eq.(4.15) is given by

7T0 _ )\0 2 w292
- 2((92 _|_w)2) - 9 (Q0)2 + AOQI
A0 — 70

(22 4+ w?)

Hyo' = 5(771)2

+om[0RRQy — AP + W) + | —Q* (4.25)
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Proof. From the conjugate momenta 7° and 7 it possible to solve the velocities Q and Q;

) N0 — 70 )
Qo = m, Ql = (4-26)

and the remaining momenta leads to a primary constraint &, = 7,. The canonical Hamilto-
nian function (3.15) for L'V is
HEY = 71°Q0 + 7' Q1 + my\° — LYY
: : . 17 .- : :
= m'Qo + ™ Q1+ mA” = 5 QF — (O +w)Q) + W QG| — A(Qo — @)

substituting Qo and Q)+, the Hamiltonian function equals to

1 1 (7r0 - )\0)2 w?)?
PU 1\2 2 0
Define the total Hamiltonian
HIY = HEY +utdy, (4.28)

by adding primary constraint ®, with undetermined multiplier u*. The conservation

Q

Oy = {@,, HEY {®y, HPVY 4 uM{ Dy, D)}

)\0 _ 7T0
@ (4.29)

Q

of the primary constraint ® leads to a secondary constraint

)\0 _ 7T0

using canonical Poisson bracket relations (4.21) and {®,, ®,} = 0. By adding the secondary

constraint ¢ with a Lagrange multiplier u, we revise the total Hamiltonian as
HEY = HPY + 0@y + ud. (4.31)

The conservation

Q

o = {®, HEY {®, HPVY 4 uM®, D)} + u{D, d}
02w? L u?
L AR o e (4.32)

Q
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of the secondary constraint makes it possible to determine u*, and the conservation

dy = {®y, HEV

Q

{@)\, HéjU} + u)\{q))\a ®)\} + ’LL{(I))\, q)}

~ & —u. (4.33)

of ® detemines u. The proof will be ended by the substitutions of the determined Lagrange

multipliers u and u” into the Hamiltonian function (4.31). O

Proposition 4.1.4. The Hamilton's equations generated by the total Hamiltonian (4.25) are

. A0 — ;0 ) .
Qo ~ 02 + w?’ Q1 ~ 771, N~ Q2W2QO + (QZ + W2)7Tl (4.34)
AP Q2w2Q07 il —>\O, 7 0. (4.35)
Proof. We compute
. A0 — 70 AV — 70
QO_{QOJHTO —_Qg+w2 _(I)N_92+w2 (4'36)
Q1 = {Q, HJIfOU = b (4.37)
X0 = (A0 HEVY = Q%2Qq — (9% + w?)r! (4.38)
0 = {n° Hyl'} = Q%*Qo — PP Qomy = 2°w?Qy (4.39)
il ={n HEV = — X0 4+ &~ —X° (4.40)
it = {r* HEV} = 0. (4.41)

From these equations A% and 7° give the Euler- Lagrange equations of motion whereas all

the others are satisfied identically. [

Dirac Bracket Formalism for LE'V: All the constraints

CI)A:TF, q):m_cx?l (442)

are second class since their poisson bracket {®,, @} = —m is nonzero.
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Proposition 4.1.5. Dirac brackets of coordinates are

{Qo, \°}pp = 1 (4.43)
{Qo,7%}pp = 1 (4.44)
{Qu.7'}pp = 1 (4.45)
o = 02+ WP (4.46)

and all the others zero.
Proof. By recalling the general form of the Dirac bracket presented in (2.39), we compute
{F7 G}DB = {F7 G} - (QQ + w2) [{F, CI)A}{(Pv G} 7 {Fv @}{(I))\a G}] (4.47)

after the substitution of the inverse of

{q))\aq))\} {q))\aq)} r 1 0 _1

(9,0,} {00} | @+ |1 o

To find the Dirac brackets of the coordinates, we evaluate the Poisson brackets of the coor-

dinates

{Qo, @} = {Q1, 0} ={Q, 0} = {\°, @} =0
(r°,0,} = {n°®} = {3} = {m\, Dy} =0
(@0} = {m®) = s

N0, @\ = {7, ®} =1.

Using these relations and the Dirac bracket (4.47), we evaluate, for instance, the Dirac bracket

of Qg and Qg

{Qo, Qolps = {Qo,Qo} — (% + w?) [{Qo, PAH P, Qo} — {Qo, P}H{Pr, Qo}]
=0
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where we employ {Qo, Qo} = {Qo, »} = 0. The Dirac bracket of Qo and @ is

{Qo,@1}pp = {Qo, 01} — (92 + w2) {Qo, AH{P,Q1} — {Qo, PH DA, Q1 }]
=0

since {Qo, Q1} = {Qo, P2} = {Q1,P,} = 0. The Dirac bracket of Qy and \° is

{Qo. A" e = {Qo, A"} — (@ +w?) [{Qo, 2AHP, A"} — {Qo, PHPa, A"}
=1

since {Qo, \°} = {Qo, 2} = 0 and {Qo, P} = 557z, {Px, A’} = 1. In a similar fashion,

one may continue to determine the Dirac brackets of the coordinates. 0

Proposition 4.1.6. By employing the Dirac bracket presented in the proposition (4.1.5), the

Hamilton's equations of motion for the canonical Hamiltonian function (4.27) are

Qo = Q1, Q=7 N =(Q+uw)r! + Q%W Q (4.48)

7 = Q%PQy, 7= — (P +wH)Q, 7w =0. (4.49)

Proof. A direct calculation results with

0 0

) 0 1O
Qo = {Qo, HépU}DB = <u + Ql) {Qo, )\O}DB - ;;QTC);Q{QO;WO}DB

02 + w2

70— )0 70— )0
a <Q2+w2+Q1) 02 w?
= Ql

since Dirac bracket of y only with A\° and 7 is nonzero. Similarly, the equation of motion
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for other coordinates can be computed as

Q1 = {QH"Ypp =n"{Q, 7" }pp ="

N = D HPYY b = 7\ 1 o — Q%02Qo{ N, Qo b
= (Q* + )71 + Q2?Qy

7%0 = {707 H(I)DU} = _Qz"‘)ZQO{WO,Qo}DB = Q2w2QO

. -1
o= {Wla HéDU}DB = (W + Ql) {Wla )\O}DB + )\0{7?17 Q1}pp

+w
= -1 — (P + )R = -\

O

Note that the equations of motion presented in the proposition (4.1.6) are the same with

(4.10) — (4.13) after the substitutions X = Qg, X = Q.

Hamiltonian formalism for L'V: Similar to L'V, it is also possible to derive Hamilton equa-
tions of motion for LY. The canonical coordinates (Qq, @1, A, II°, TI*, 1T, ) on the Hamil-

tonian phase space satisfy the canonical Poisson bracket relations
{(QT} =45!, {\ I} =1. (4.50)

For the first order Lagrangian L'V in equation (4.16) , the conjugate momenta to the coor-

dinates o, 1 and \! are defined by

OLPY

I =—— =2\ (4.51)
Qo
PU .
It = 8L.1 =0 (4.52)
Q1
8LPU
I, = —— =0. 4.53
Yoy (4.53)

Proposition 4.1.7. Total Hamiltonian function for the first order Lagrangian in equation

(4.16) is defined by

1
HEY = 5 |(I0)? 4 210Q1 + (9F + 1) Qs® — 0 Q2Q3 ] + w02 QuIl™

Proof. Only II!' can be solved for velocity (; from the conjugate momenta, the other mo-
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menta lead to the primary constraints
o’ =T11° — A1, ¢\ =11, (4.54)

The canonical Hamiltonian function (3.15) for LIV is

HPY = LA 4+ 11'Q, + 11°Q, — L3T (4.55)
. . . 1r.
= ILA +I'Qy +11°Q — 3 Q7 — (9% + W) QT + W Q*Qf
— Qo - Q) (4:56)

replacing @ and 7° = A! = II, = 0, the canonical Hamiltonian equals to

HIPU . [(H1)2 1 211°Q, + (Q2 + w2)Q12 r w2QQQ(2J]‘ (4.57)

N[ —

the total Hamiltonian is defined as
HIY = HYY + v0¢” + vy (4.58)

by adding the primary constraints with undetermined multipliers v, and v*. The requirement

that primary constraints are preserved in time lead to

" ={¢°, HE'Y ~ {¢°, HIY} +vo{, ¢°} + v*{¢%, 6}

~ wQPQy— v (4.59)
= {oN Hi'} =~ {oN HIYY +vo{0?, 0"} + M, 60}
~ g (4.60)

for consistency, thus the multiplier vy and v* become determined. Substituting these deter-

mined Lagrange multipliers into (4.58) the proof will be completed. [

Proposition 4.1.8. Hamilton equations generated by the total Hamiltonian HEY given in the

proposition 4.1.7 are

Qo=0Q1, Qi=1II", \'=wQ*Q,, 1II,={Il\,Hr} =0 (4.61)
10 ~ —w?Q%Q,, II'=—II° — (0 + w?)Qs. (4.62)
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Proof. Hamilton equations for coordinates are

Qo = {Qo, Hr} = Q: (4.63)
Q1 = {Q1, Hy} = 1T (4.64)
A= {\ Hr) = w?Q%Q, (4.65)
I1° = {I1°, Hy} = —w?Q*(IT) — Qo) ~ —w?Q%Q (4.66)
It = {II', Hy} = —11° — (9% + w?)Q, (4.67)
I, = {II,,Hr} = 0. (4.68)

From these equations (4.66) and (4.67) give the equations of motion, all the others satisfied

identically. L
Dirac Bracket Formalism for LI’V All constraints are second class
o =110 =\, ¢y =1I, (4.69)

since the Poisson bracket {¢°, ¢y} = —1 is nonzero.

Proposition 4.1.9. Nonzero Dirac brackets of the coordinates and the momenta are

{Qo,N'}pp = 1 (4.70)
{Qo. 1% pp = 1 (4.71)
{Q1,I'}pp = 1. (4.72)

Proof. To prove these, we use the Dirac bracket (2.39)

{F,GYypp = {F.G} = {F,¢"Hor, G} + {F, px}{¢", G} (4.73)
substuting inverse of

0 0 0 —

{02,0°} {0a, 00} L0

To get Dirac brackets of the coordinates, we evaluate the Poisson brackets of coordinates
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with the constraints

{Qo. ¢’} = P\ on} = {mn, 0"} = 1

and all others are zero. Using these relations and the Dirac bracket (4.73) we can write Dirac

bracket of coordinates starting with ()

{Qo,Qo}ps = {Q0, Qo} — {Qo, " }{dr, Qo} + {Qo, 22 }{¢", Qo} =0

since {Qo, Qo} = {Qo, ®»} = 0. Dirac bracket of Qo with \! is

{Qo,N'}pp = {Qo, A"} —{Qo, 9" Hox, A} — {Qo, 3 H{e", A} =1

since {Qo, \'} = {Qo, ¢a} = 0 and {Qo, ¢°} = {\!,¢»} = 1. Similarly we can find the

other Dirac brackets of coordinates with each other. L]

Proposition 4.1.10. Using the Dirac brackets of the coordinates in the proposition (4.1.9),

Hamilton's equations generated by the Hamiltonian function (4.57) are

Qo = @, Ql = H17 A= QzWQQo (4.74)
% = Q%°Q,, M'=-I"— (P +w?)Qy, 1I,=0 (4.75)

Proof. Let us derive these equations. Using Dirac brackets of the coordinates and the Hamil-

tonian (4.57), equations of motion for @y is

QO:{QO>H1PU}DB = Q1{Q07HO}DB
= Ql

since the Dirac bracket of Qg only with ! and I1° is nonzero. Similarly, equation of motion
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for other coordinates are

Q1 = {QH"}pp =T'{Q,,I'}pp =1T"

A= (AL HPYY b = —Q%02Q0{ N, QoY ps = Q2w Qo

I° = {I° H{"} = —~Q°w*Qo{Il°, Qo} ps = V*w’Qy

' = (" H " pp = (I1° + (2 + w?)Q1) {II', Qi }p5
=~ = (@ + W)

I, = {IL,H{"}pp =0.

4.1.4. Unconstraint Variational Formalism

Unconstraint Lagrangians for L{'Y and L'V are obtained by replacing determined \° and \!

from (4.19) and (4.20)

Q= (22 + )03 + w028 - Gi(Qo - @) (4.76)
QF = (2 + )0 + WP QR] — (WP + Q1 + Q) (Q - Q) (7D

PU __
LUO -

PU __
LUl -

N — DO =

these unconstraint Lagrangians are second order. It is not possible to express first order L*Y

LPU

in a unconstraint first order form. Since is nondegenerate.
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4.2. SARIOGLU-TEKIN LAGRANGIAN
4.2.1. General Setting

Consider the local coordinates for the six dimensional manifold N

(XY

eT*N

) €
(XY, X' YY) eTN
(Xi’Yi’Xi’Yi>X7’ . )

)

(X1 Y, XY R, SY R, SY) € T*TN,

(% (3 (2 K3

where i runs from 1 to 3. Consider also Sarioglu-Tekin Lagrangian on T>N given by

LSTX Y] = 73 a(X'XT + YY)+ 2V XT —m?(Y'Y + X' XY) (4.78)
ol

LST

here, a, j1, m are parameters [38]. is an example of second order degenerate Lagrangian

since the determinant of extended Hessian matrix W; is zero.

LST

For the Sarioglu-Tekin Lagrangian , the second order Euler-Lagrange equations (3.4)

take the particular form
2 v TR g 2170 g 1z,
m°X"+aX'=-Y", mY' 4+aY'=-——X", (4.79)
1 1
whereas the Lagrangian one-form (3.11) becomes

» 1. ; . 1 ... . 1
QL = 5ij(CLXZ - —YZ)dXJ + 6i]~(aY’ + —Xz)dyj + —5inZdXJ.
I I I

The exterior derivative of the one-form results in the pre-symplectic two-form

Qp = ad; (dX* A dX7 +dY* AdY?) + % gy p dx + %(d)'éi AdY? —dY'* A dXY).
iz It
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4.2.2. Jacobi-Ostrogradsky Method

On the Hamiltonian phase space 7*T'N, we have the canonical Poisson bracket relations
defined as

{X' R} = {Y", S} = {X',R}} = {Y", 5]} = & (4.80)
and all others are zero.

Proposition 4.2.1. For the second order Lagrangian L°T in (4.78) the Jacobi-Ostrogradsky

momenta (3.9) and (3.10) are computed as

ST ST o s
R) = oL — — 4 aL.., = adip X7 — l(sij,w (4.81)
oxi dt \ X! I
" A
Rl = %Xi = ﬁ@jw (4.82)
oLST d [(oL5T N
SO = 5 - — < e ) = a(5i Y7 + —6i v X7 4.83
Loy dt \ oY ’ p (489
LST
S a@w =0 (4.84)

respectively for X', XY and Y.

Proposition 4.2.2. Total Hamiltonian function for L°T in (4.78) is given by

.. . . .« .. . 2 . . . .
YT = =26, (XX = V¥) 4+ Z-6,(VY7 + XX)

+ ROXT + ap(X7S} — YIR)) + pd% (S)R) — RYS)). (4.85)

Proof. Since we cannot solve X’ and Y from equations (4.82) or (4.84), there exist primary

constraints

1 ..
¥ =R} — ;(Sijw =0 (4.86)

Y = 5! = 0. (4.87)

The canonical Hamiltonian function (3.15) for the second order Lagrangian L°7 takes the
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particular form

HS" = ROX7 4+ RIX7 4+ SVY7 4 S}Y7 — 57

G e i i
= R)X7 4+ RIX7 + S)V7 — SiY7 — Sl [a(X'XY 4 YY)

__%bww_wwwwxwm. (4.88)

The substitutions of R} = %Y and S} = 0 result with the Hamiltonian function

HZ' = RGX7+ S3y7 = a(XXT + YY) —m? (VY + XIX7)] (4.89)

According to (3.19), define the total Hamiltonian function
HY" = HT +U'T) + VIY (4.90)

by adding the primary constraints I' and I'Y with the Lagrange multipliers U Jand V7. In

order to guarantee the consistency of the primary constraints I'Y, we compute

0 = {17, BT} = {17, HSTY 4 U9 (13,15} + V(TS T

1) g R

-y . 1
~ adiy X7 — R) + VI (= =6&;;) (4.91)
L
and for I'Y we compute

Uy = {1V, Hp"} = {TY, HJT) + U{TY, T} + VT T

] i g

- 1

From the consistency checks, no more constraint has been arisen, and the Lagrange multipli-

ers are determined as

U7 = p(—ad% Y7 + 67755 (4.93)

VI & p(ad’, X7 — 697 RY). (4.94)

By substituting U* and V* into the total Hamiltonian function (4.90) the proof is completed.
O]
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Remark 4.2.3. It is possible to solve X' and Y from the equations (4.81) and (4.83) as
X' = (1(6959 — aY?), Y'=p(aX® - 6 RY) (4.95)

and the substitution of the velocities into the canonical Hamiltonian (4.88) gives the total

Hamiltonian (4.85) directly without any constraint analysis.

Proposition 4.2.4. Hamilton equations generated by total Hamiltonian (4.85) are

X'=X'—ps"S}, X'=—apY" + psv sy
Y= muéinjl-, YVi=auX® — /MWR?
R? = —m25inj, Rll = CLéinj — R? 2 CL,U/SZ1

SZO = —m2(5,-ij, Sll = —(Z(Sinj + (Z/LRll

Proof. We compute the Hamilton equations acoording to the total Hamiltonian function (4.85)
and the canonical Poisson bracket relations (4.320). The first set of equations related with

the base components

X' ={X" Hi"} = X' — 08} ~ X' (4.96)
X' ={X",Hi"} = —apY" + p6" 59 (4.97)
YVi={Y" Hi"} = ué" R} (4.98)
YVi={Y" H{"} = apX' — p6" RY (4.99)

are satisfied identically using definitions of momenta (4.81) — (4.84), whereas the set related

with the momenta are

R} = {R}, H}"} = —m*6;; X7 (4.100)
R! = {R!,H{"} = ab; X7 — R® — apuS} ~ a; X’ — R’ 4.101)
SY = {80, HiT} = —m?6,;Y7 (4.102)
S} ={S}, Hy"} = —ad;;Y7 + apR;. (4.103)

The equations defining R? and S? give the Euler-Lagrange equations (4.79). To see this we
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perform the following calculation

R? = —mzéinj

. 1 ceui! .
a5ij/XJ — ;61]/}/] = —m25in]
6 V" = adiy X7 +m26,; X7 (4.104)
W

using (4.81), and perform

SZO = —m25inj
. 1 vend! .
CL(SU/YJ -+ ;&j’Xj == —m25in‘7

1 oo . )
— 0 X7 = abiy YT + m26,;Y7 (4.105)
"

using (4.83). O
Dirac Bracket Formalism for L°T: The set of constraints
T 1 1 Vol Y 1
I'Y =R, — =Y, IV =05 (4.106)
1

consists of the second class constraints since their Poisson brackets are nonzero.

Proposition 4.2.5. The Dirac bracket for the second order degenerate Sarioglu-Tekin La-

grangian L°7 is defined by

{X', R}}pp = 0 (4.107)
(XY} pp = puo? (4.108)
{X',R}}pp =] (4.109)
(Y, 8% pp = 6. (4.110)

and, all the others are zero.
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Proof. General form of the Dirac bracket is given in (2.39), using this we compute

{Fa CTY}DB = {F> G} - {F> F;}M;rm{l—\%’ G} - {Fa F%}Mﬁzn{rﬁ> G}

Y

by replacing inverse

an an 0 « 677’”7,
ML= | e e TP (4.112)

where M is

re re) {Te 1Y 1] Oses —Gpm
- |t A Pl 1 Oses : (4.113)

{Fgl’Fer} {F%,F%n} H 5mn 03><3

To derive Dirac bracket relations of the coordinates, we also need to compute the Poisson

brackets of the coordinates with the primary constraints

{X',T7,} = {X" R}, - lcwl'”"} =5 (4.114)
1

{Yi, 1y} ={y", 5} =4, (4.115)
|

{SLINY = 8] Ry = 20wy Y7} = i (4.116)

and all others are zero. Let us derive some of Dirac brackets of the coordinates. For example

Dirac bracket of X* and Y

{Xi’ Yj}DB = {Xi> Yj} - M(Smn({Xi? F%}{F% Yj} + {Xi7 F%}{Ffw Y]})
_0 4.117)

since {X?, Y7} = {X* I'*} = {Y?,T¥} = 0. Dirac bracket of X’ and Y

(X0 V) pp = (X, Y7} — ™ ({X T3 1Y Y9} 4 (X7, T I3, V7))

= —pd™0! (—67) = v (4.118)

since { X, Y7} = {X*,T¥%} = Oand {X?, T2} = {Y",T¥} = § . Dirac brackets of the

other coordinates can be proved in a similar way. [
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Proposition 4.2.6. Using the Dirac bracket defined in the Proposition 4.2.5, the Hamilton
equations of motion for the canonical Hamiltonian function (4.89) are
i o s oo i i i i vo -
X=X X'=p"S; —auy*, Y'=Y', Y'=-—-p"R;+auX
R? = —m2(5inj, Rll = —R? + a(Sinj, S? = —m25inj, Sll = O

Proof. Let us derive these equations one by one. The equations of motion for X*'s are satis-

fied identically
X' ={X" H"}pp = {X', R0} ppX’ = 6;X7 = X (4.119)
since Dirac bracket of X* only with RY is nonzero. The equations of motion for Xi's
X' = {X" H"}pp = {X",Y"}ppS] — S X" 05 Y Y }ps
= pd"S) —apY’ = pé? (adp Y7 + =65 X7) — apY”
U
= X! (4.120)

are identically satisfied replacing the definition of S?. Equations of motion for Y's are sat-

isfied identically
Y =Y H Y pp = {Y", S} ppY! =6V = V" (4.121)
since Dirac bracket of Y only with SJQ is nonzero. The equations of motion for Y are

V= {YLH Y pp = {Y', X7} ppRY — g{Yiéjijij’}DB
. . .y a1 .
= —,u(WR? +apX' = —pé (ad;p X7 — Eéjj/Y] )+ apX

=Y (4.122)

using RY. The equations of motion for RY's are

m2

R} = (R} H Yop = AR, =0, X)X b o = =m0, X7 (4.123)
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since Dirac bracket of R? only with X7 is nonzero. Using the definition of R?, we compute

R? = —m2(5ij/Xj,
. 1 cerj! .
G(Sij/X] — ;5UIY = —m25ij/X7

V' =aX'+m?X?
1

(4.124)

we get one of the Euler-Lagrange equations of motion (4.79). The equations of motion for

R!'s are

. . a ey
R; = {R;, H"}pp = {R}, X"} ppR] + {R;, _§5jj’X]XJ }pp

- —R? + (l(sij/X] = —(G(Sij/Xj r E(SZJIY] ) + a(5,-j/XJ
. ¥ A9
== —(Sij/Y] - Rz
w
using the definition of RY and R}. The equations of motion for S)'s are
ST 0 m 2 j
= {80, H }pp = {S), -0, YY" }pp = —m?0,;Y?
since Dirac bracket of S is nonzero only with Y7 . Using definition of S}

S? = —mzéij/Yj/
() 1 eeeq! .
a(Sij/YJ + ﬁfslej = —m25ij/Y]

—=X =aY'+m?Y?
0

(4.125)

(4.126)

(4.127)

we get other one of the Euler- Lagrange equations of motion (4.79). Equations of motion for

St

(2

= {5}, H"}pp = 0.

(4.128)

]
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4.2.3. First Order Formalisms

We can write the second order Sarioglu-Tekin Lagrangian (4.78) as a degenerate first order

Lagrangian functions (c.f. (3.23) and (3.24)) in two different ways given by

Ly =~ {a(wgwg + YY) + ;Ylw{ —m?* (Y'Y + wéwé)} + 200 —w))  (4.129)

L = 79 {a(wgw{ + YY) + ;Y’w{ —m?(Y'Y7 + wéwé)} + A (i) —wi)  (4.130)
Here, we use the coordinate transformations X' = wi, X’ = ), = wi, X’ = !, with
Lagrange multipliers )\2 and \!. These two first order Lagrangian give Euler-Lagrange equa-
tions of motion (4.79). The variations of Lg! and LT with respect to w}, give one of the

Euler-Lagrange equations of motion (4.79)

SLET 5 . 0
_5%0 = —m’wj — awh — 67N} = 0 (4.131)
5L3T :
&Ucél = —m2w — 523/\} —0 (4.132)
substituting \? and A}
1. 1.
f u
T

obtained from variation of Lg{ and LT with respect wi. The other Euler-Lagrange equations

1

of motion (4.79)

OLgr  oLg" ST
D= = Y eV — ] (4.134)
U

& oY
are obtained from the variations of Lg! and L2 with respect to Y.

In the next part we will discuss Hamiltonian formalism for reduced first order Sarioglu-Tekin
Lagrangians ng“ and Lgff in (4.129) — (4.130) and unconstraint Sarioglu-Tekin Lagrangians

obtained by substituting \Y and )} in (4.133) into (4.129) — (4.130)
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4.2.4. The First Order Formalism as ng

Hamiltonian Formalism for L2!: In order to write the Hamiltonian formulation of the reduced
first order systems, we introduce the conjugate momenta (wj, wi, A2, Y 7% 7l 7% = j ¥) on

the dual space. The canonical Poisson bracket relations are defined as
{wh, 79} ={wi, 7} ={Y", 7} } = {A),m}} = & (4.135)

and all the others are zero.

For the reduced first order Lagrangian LgOT presented in the equation (4.129), the conjugate

momenta corresponding to coordinates (w, wi, \?, Y?) are defined by

8LST

w0 = aU(}Jo _ aaing + X0 (4.136)
0
oLgr 1
. _ L5y (4.137)
7 8 J
i H
; GLST
iV — 0 (4.138)
8)\0
aLST S| -

Proposition 4.2.7. The total Hamiltonian for the first order Lagrangian LgOT in (4.129) is

given by

) 25
Hy = pén! (v} — %ﬂl) 4 % (Y'Y 4 wiw)) + Nw!

J 2 2
1 ...
+ %5”(73? —A))(m) = A)) — (m?6;w)) — a*p*ni + apm) )
J

éé” () = A0) = Gw}) (79 — A9) = Gpw?). (4.140)

Proof. From the conjugate momenta 77, 7} and 7r it is possible to solve velocities for

Vi = usiin! (4.141)
3 1 17 0 0
wh = 553 (m) = X0) (4.142)

Wt = pd (7TY — a,u7r1-) (4.143)
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and the other momenta 7% leads to a primary constraint

For LET, after the substitution of 1), @}, Y and the primary constraint, the canonical Hamil-

tonian function (2.20) turns out to be

HZT = mg + myby +mA) + 1Y = La)

2 2
ij ap™ ;s m=o;; v i g i
= pdmiT) — 7(5%@7@1 + TJ(Y Y7+ whw}) + Nwt

I
+%wm%AMﬁ—$y (4.145)
The total Hamiltonian is defined as
HYT = HST + Ui, (4.146)

by adding the primary constraint with a Lagrange multiplier U;. Consistency of the primary

constraint ¢}

1 ... .
zawm}mﬁ—m (4.147)

leads us to a secondary constraint
i Leij o 0 i
VRS 55 (75 — Aj) — wy. (4.148)

Note that (4.147) will vanish weakly when we use 1y = wy in the definition of 7). In this
case, it is not possible to find the Lagrange multiplier U, thus equation of motion for \!
remains arbitrary. To solve this, we consider )¢ as a secondary constraint. Revised total

Hamiltonian is
ol = H3" + U + Vi (4.149)

by adding secondary constraint with arbitrary functions V;'s. The consistency of the sec-
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ondary constraint ¢ can be checked through

O = {0 HiT Y ~ {0, HTY + U (o', o) + Vi{w' o7}
2
~ "+ g — Y 4 U oY) (@.150)

which leads us to determine the Lagrange multiplier U; as
U; ~ —m2(5,-ng + a2u27rz~1 — a/mZY. (4.151)
On the other hand, the consistency of 1}

P = {05, HIT} = {05, H3TY + U{s, 3} + Vi{ws, o7}
~ )+ ‘/J(ééy) (4.152)

leads to us to determine V; as V; ~ —aéijzbj . Substitution of U; and V; into the total Hamil-

tonian function H;7 in (4.149) completes the proof. O

Proposition 4.2.8. Hamilton equations of motion using the total Hamiltonian function in the

proposition 4.2.7 are

wy = ~09(m) = X)), i pd? () —ap’m), Y sV (4.153)

N = —mPoug + aPptn) — apm), A & —0mPwg (4.154)

7‘Ti1 = _)‘?’ T = _52](71-]0‘ - )‘2) — wy, 7:fiY = —m25inZ (4.155)
a

Proof. Using the total Hamiltonian in the proposition 4.2.7 and the Poisson brackets in (4.135),

the equations

iy = {wp, Hp'} = 25”(779 —\9) (4.156)
wi = {wy, Hi'} = 67'x} — ap’m) + api*my ~ pé" (nf — ap’mj) (4.157)
Y = {Y' BT} = péin} — apmh & pd ) (4.158)
;= {m}, Hp' } = =X (4.159)

. . 1 ... .
w5 = {m, Hp'} = 207 (7] = ) — . (4.160)



are satisfied identically from definition of momenta (4.136) and (4.139). The rest

)‘? = {)‘?7 HZSJT} == 251]w0 + a2M27T1 ;MTlY
ﬂ-? = {W?a H]*?T} = 5zj( m? wo + m? ) —5l~jm2w6

= {n H'} = —m*5,;Y"

give the equations of motion using the definition of momenta (4.136) and (4.139).

Dirac Bracket Formalism: The constraints

. 1 ... . . .
Y= acsw(yr;? — Ag?) —wl, =7

LST

for the first order Lagrangian L_" are of second class since the Poisson brackets

A 1 ..
(0} = =0

are nonzero.
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(4.161)
(4.162)
(4.163)

]

(4.164)

(4.165)

Proposition 4.2.9. Under the existence of the constraints (4.164), the Dirac bracket is defined

by

{wo, A}y pp = 0]
{wh, 7 Yo = 0
{wi, 7 }pB = 0
(N7} pp = —ady;
{Yl,ﬂ'j Yop =10

and all others are zero.

(4.166)
(4.167)
(4.168)
(4.169)
(4.170)

Proof. Recall the definition of the Dirac bracket presented in (2.39). In particular, for the

constraints (4.164), we arrive

{F7 G}DB = {F7 G} + CZ{F, wk}ékn{wsa G} - G{F, ¢§}5kn{¢n7 G}

(4.171)
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after the substitution of the inverse matrix of

k ,/n k ,/n kn
M= {7/} 777D } {7/’ 7¢)\} :1 03><3 d . (4172)

{8 v} {uR, o3} @1 =" O3

Note that, the Poisson brackets of the coordinates and the constraints are

{wp, '} = ééj (4.173)
A\l =df (4.174)
{ml i} =) (4.175)
{m}, '} = —%5"7 (4.176)

and all others are zero. Using the Dirac bracket (4.171) and the equations (4.173) — (4.176),

we find

{wé? wi}DB = {wéa wi} + a{wlila wk}ékn{¢§7 wi} i a{wév wi}ékn{¢n> wi}
=0 (4.177)

since {w}, wi} = {w(, ¥§} = {w},¢}}. Dirac bracket of w with \ is

=0 (4.178)

employing {wj, A%} = {w, Y5} = 0and {w, v} = 161, {\?, ¢} = &7. One may continue

a’J’

to the proof in a similar manner. [
4.2.5. Unconstraint Variational Formalism for L*g:{

To get the unconstraint Sarioglu-Tekin Lagrangians, we substitute the Lagrange multiplier
A? obtained in (4.133) into the first order Lagrangian density LT
L = %ﬂ a(uyiy +Y'Y7) + %Yiw{ —m (Y'Y + wiw)) | — %(wg — wi)Y.
(4.179)
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Note that, this is a second order Lagrangian. At this point it is possible to define the Jacobi-
Ostrogradsky momenta for LgOT and then apply Dirac analysis. Alternatively, one may reduce

LEOT into a first order Lagrangian by introducing a coordinate transformation
Vieg Vizg=d, ¥i=d (4.180)

In this case, we arrive the following first order constraint Lagrangians

LY, = Lk (ab, db, 4, wh, wh, w}) + x5 (dh — df) (4.181)
ST ST 7 Y ) T 1 .1 -7 7
LN01 = LUlo(qm 41,41, Wo, U)val) =+ X%(QO - 91) (4.182)

where x? and x| are the Lagrange multipliers depending on ¢ or ¢} in the first order La-

grangian Ll (4.179). In this case Ly and L7’ become
ST 51’]’ i g .G g 22] 20 4 g i 9 2 .q i <J
Ly, = > la(dodd + wiip) + p%“ﬁ — m*(qoqy + wowp) — ;(wo — w})gl]
ST 5@7‘ i J Q] Qi-j 20 i j i, 2-i i\ -J
Ly, = b} [a(qlql + i) + ﬁqlwl — m*(qoqp + wowp) — ;(wo - wl)%]-

We can apply Dirac analysis directly for first order Lagrangians L%TCO and L%TCl in (4.181)
and (4.182), or we write them as in unconstraint form substituting x" and ! into (4.181) —
(4.182) and then apply the Dirac analysis. Variations of L%, and LR, with respect to ¢

give x¥ and x} as
Xi = —(Wy — i) =0, x; = 0s(aq] + ﬁwl) (4.183)

since W) = w!. Substitutions of these Lagrange multipliers ! and x? into (4.181) and

(4.182) give first order unconstraint Lagrangians respectively

L, = L, (4.184)
oL i
Ly, = Ly, + 0i(aq] + ;w{)(qo —qp)- (4.185)

Note that variations of these Lagrangians with respect to ¢f and w{ give Euler-Lagrange
equations (4.79). We will continue with Hamiltonian analysis of unconstraint Lagrangians

L%, and L3, in (4.184) — (4.185).
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Hamiltonian Formalism for L%TUO: For the unconstraint Lagrangian LfVTUo in (4.184) the con-

jugate momenta are

R} = ag?gjo = CL%’Q% + %(ij{ (4.186)
R; = % = %%(w{ ) (4.187)
5?==?§§%ﬁ::&xaa%——%qb (4.188)
$=85§“=%%% (4.189)

Proposition 4.2.10. The canonical Hamiltonian function corresponding to the unconstraint

Lagrangian L;f,%o is

2
Hil = _g5ij(5ikwlf — uR))(Gw) — pRj) — %5”5}15; + 167 R} S}
2

+ 87 (wy — oY R}) + =615 (d0q6 + wouy) (4.190)

Proof. From conjugate momenta RY, R}, S? and S} it is possible to solve the velocities as

7

b = po*S; (4.191)
4y = ap(wi — p6"” R;) — pd” Sy (4.192)
W = wi — pd” R} (4.193)
W) = pé” (R — apsS;). (4.194)

Using the definition of the canonical Hamiltonian function we have

HST = Ry + Rl + Py + 51— L3,
= R}y + Rig + Sy + Sji — L)
:$%+E%+$%+$%—§h%%+%%%jﬁﬂ
— m?(gogq) + wowy) — /;(wo - wl)Qﬂ- (4.195)
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After the substitutions of the velocities, we arrive

2
a ;s apl™ ij
H' = —55](511@101 pRY) (6w — pRj) — 5 ——0698}S; + nd R)S;
2

+ L5 (i + wiwd). (4.196)

+ 80wt — o RY) +

]

Proposition 4.2.11. Hamilton equations of motion using the Hamiltonian function in propo-

sition 4.2.10 are

= S, = —apl + pIaR) - 89, 0 = ul — bR
= uR® — apSy, R? = —m25iqu, Rll =0 (4.197)

50 2 i 51 0 J
S’ = —m 5Z~jw0, S = _Sz —|—a(5@-jw1.

K3 (2

Proof. Governing by the canonical Hamiltonian, the equations

Gy = {qb, H2'} = oV s} (4.198)
¢ ={d, H)'y = —ap (wy — R") — puS° (4.199)
wh = {wp, HJ'} = wi — pd R} (4.200)
W) = {w}, H3"} = 167 (RY — apS;) (4.201)

are satisfied identically. Equations of motion for momenta are

= (R}, HT} = —m?0q], (4.202)
={RI,H"} =0 (4.203)
S? = {S°, H"} = —m?6;w] (4.204)
= {S} HT} = =80 + ad;jw. (4.205)

The first and third of these equations give the Euler-Lagrange equations, and the rest two are

satisfied identically. [

Hamiltonian Formalism for L%TUlz For the Lagrangian L3T Xv, in (4.185), the conjugate mo-
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menta are
oLST 1
r) = —20 = ag) + —} (4.206)
A4y I
OL3Y 1 . .
r = —a{ViUl = —(w' — i) (4.207)
q1 H
OLST 1
0 NU; . g -q
0 _ —_NU - 4.208
sz awé CL’lUO ,U(h ( )
OLST 1 .
sth= M — —gi (4.209)

Cooup

Proposition 4.2.12. The canonical Hamiltonian function corresponding to the Lagrangian

L%%l is
2
HEE = si(wy = pd?rj) + s (0975 — agy) + 50" i + =-0" (a0t + wpwy)
a . . g .
— 0wy — pdr) (wy — pd'ry). (4.210)

Proof. From the definitions of the conjugate momenta, it is possible to solve velocities as

follows

i = M(Sijs; (4.211)
it = o — sV — ) 4212
wh = wi — 67 pr (4.213)
Wi = M5§j7“0 — apg. (4.214)

Using these, we write the canonical Hamiltonian function as

H' =0+ rldh + sih + s — LT,
= T?QO + Tz'l(h + s?wo + Silwo - (Lng + 5@‘3‘(@‘]{ + ;w{)(% —q1))

=105+ rid + shil + sjih — TJ laldiq] + i) + ﬁqlw{
2/ i j i, 2 X APV
—m”(qyqp + wowp) — ;(wo - w1)611}
0/, i ij. 1 1/5ij..0 i Qi i g mzijij i g
= s; (wy — po Tj) + ps; (6 Ty — aqy) + 55 G191 + 75 (2090 + wowy)

a . . . .
— 5% (wi = pud™ry) (wi — pd’'r)). (4.215)
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]

Proposition 4.2.13. Using the Hamiltonian function given in the proposition 4.2.12, the

Hamilton equations are

= sl = =) ank — ), = — )

5050 i -0 __ 2¢ 2l s 1
= pudr; —apqy, 17 =—myqy, 1, = —adiq + aps;

§) = —m*Ywy),  § = —s) + adw] — pr}.

(4.216)

Proof. The Hamilton's equations for the variables ¢, ¢}, w{, and w} generated by H>” given

in the proposition 4.2.12 are

do = {ap. H3'} = pé"s;
6i = {41, H2'} = —p6"s] + ap(wi — pér})
wh = {wh, HS'} = wi — pér;

wy = {wi, H3'} = pd"r§ — apqg

(4.217)
(4.218)
(4.219)
(4.220)

which are identically satisfied after the substitutions of momenta. Equations of motion for

momenta are

0 _ .0 77STY _ 25 g
ry = {Ti’H01 = —m"0;;qp
1 STV j 1
T, = {r H } = —adijqi + aps;
0 _ ST 2 ¢ij.
Si—{Sl,H } = —m6Yw}

-1 g1 ST\ _ 0 J 1
§; =1{s;, H."} = —s; + adjjwi — pr;.

(4.221)
(4.222)
(4.223)

(4.224)

From these equations, the ones in (4.221) and (4.223) give the Euler-Lagrange equations of

motion whereas the other two are identically satisfied.

]
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4.2.6. An Alternative Reduction to the First Order Formalism

Hamiltonian Formalism for Lng: Consider the momentum phase space with coordinates

(wh, wi, A, Y, 117, I1;, T15, ITY) and the canonical Poisson bracket defined as
{wi, 10} = {w], I} = {Y*, 1)} = 65, {\), 1B} = ¢ (4.225)

and all others are zero. The fiber derivatives of Lg! establish the relationship between the

velocities and the momenta as follows

ST
M0 = 22 _ )1 (4.226)
p owt d
0
OLET 1 .
I} = 2L = —§,;Y7 (4.227)
i H
- oLeT
OLZF .
m = a—;} = ad; Y7 + =i (4.229)
i iz

Proposition 4.2.14. The total Hamiltonian function corresponding to the Lagrangian density

LT in (4.130) is given by

2
a a. ; . om . .
#ll%ll}) - §§ijwiw{ + W} + 7%-(% Y7+ wywy)

— §yymPwiIE,. (4.230)

HYT = pé” (IGIL) —

Proof. From the conjugate momenta in equations (4.227) and (4.229), it is possible to solve

Y and w0, as functions of coordinates and momenta given by

Y= psvIn (4.231)

iy = pé? (I — apll}) (4.232)
but, unfortunately, the others lead to primary constraints

U =119 — A} (4.233)

Ul =TI, (4.234)
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The canonical Hamiltonian function (3.15) turns out to be
HT =T + T} + A, + 1Y — 127
= Ty + iy + A + Y — 2 a(wiw] + YY) 4 =Yy
I
—m (Y'Y + wiw))] — A () — wi). (4.235)
After the substitution of Y, w! and the primary constraints, the Hamiltonian function be-
comes

HST = § (uII'nY — a—’ﬁnlnl) — s wied + 0wt + m—g(s--(ww’ Fwiwl). (4.236)
c1 plly 1y 5 i 5 i1t i W o Vi oWp /- 5.

We define the total Hamiltonian as
Hy' = HYT + uf U) 4 u} U (4.237)
where ), u} arbitrary function. The consistency checks for W9

7 7

W0 = {00 Hp} o~ {00, HSTY 4+ uf {00, U0} + {00, W}

~ —m26,~jw6 —u) (4.238)

and for W}
Wy = {04, Hr} ~ {04, BT} + af {93, W9} + u) {05, W)} (4.239)
~ U (4.240)

allow us to determine u{ and ;. The substitutions of u}, and u? lead to write the total Hamil-

tonian H;T in an explicit form. O

Proposition 4.2.15. Hamilton equations of motion using the total Hamiltonian function in



proposition 4.2.14 are

=k, = (L — L), V= s

— J 0 TA T0 2,,J - 2 J

0 — —5,»jm2wf) /\zl = —5,»jm2w6 Hzf = —m25in].

I;
I;
Proof. The Hamilton's equations for wy determine one of the constraints
i i ST i
Wy = {wy, Hy" } = wy.

The equations governing w?, Y II} and I3

W) = {wl, H3T} = 69 (ull} — apII})
Yi={Y" H{T} = péVII;
1} = {11}, H?"} = adjjw] — 17

Hz)\ — {H1>\7H7€T} =0
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(4.241)

(4.242)

(4.243)
(4.244)
(4.245)
(4.246)

are satisfied identically using the definitions of momenta. The equations governing IT{ and

by

()

0 __ 0 ST\ __ 2,7 2170 ~ 2,7
Hi _{Hi7HT }—5lj—m wo—i—m H/\N—(Sijm wy

A=\ HE Y = —mP600)

give one half of the Euler-Lagrange equations (4.79). To see this, we compute

0 _ 20,y
)\Zl = —5Z~jm2w]
al — ~Y' = —§;m*w))

aX'+m?’X' = -Y"
Ju

(4.247)
(4.248)

(4.249)
(4.250)

(4.251)

(4.252)
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using \!. The equations governing the other momenta 1T}
I = {117, H™Y = —m26,;Y7. (4.253)

give the rest half of the Euler-Lagrange equations. See that,

aY'+m?Yi= —=X* (4.254)
using definition of IT} . O

Dirac Bracket Formalism: Now we are going to arrive the Hamilton's equations by defining

the Dirac bracket for the constraint space given by

U =11 — A} (4.255)

\IﬂA == Hg. (4.256)
See that, Poisson brackets of constraints

{h, U} = {03, 03} =0 (4.257)
{w), Uy} = —op (4.258)
are non vanishing. So that they are of the second class.

Proposition 4.2.16. For the constraint space defined by (4.255) and (4.256), Dirac brackets

of the coordinates are

{wp: Aj}pp =0 (4.259)
{w, 119} pp = 0} (4.260)
{w}, 11} pp = 6} (4.261)
{Y', I }pp = 0}, (4.262)

and the rest is zero.
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Proof. The Dirac bracket presented in (2.39) turns out to be
[F,GYpp = {F.G} — {F, )35 (W5, G} + {F, Wh}ap {90, G}, (4.263)

where we substitute the inverse of

0O ol (P07 0 _on
M — {k n} {: ,\} _ 3:3 k . (4.264)
{\P];?\p%} {\D)\:\IJK} 5 O3><3

n

To derive the Dirac bracket of the coordinates, we also need to the Poisson brackets of the

coordinates with constraints i.e.
{wh, U} = {N, W} =65, {11}, ¥R} = b (4.265)

and all the others are zero. The rest simply results of a direct calculation. To demonstrate

this, let us prove some of the Dirac brackets
{wp, witps = {wy, wi} — {ws, VIO, {05, wi} + {wp, WR}op{ Ty, wi} =0
since {w), w]} = {¥%, w]} = {¥° w!} = 0. See also that,

{wo, AjYpp = {wp, Aj} — {wp, Ty {08, Aj} + {wp, UR}op{ Ty, A} = 4

ny g

using {w), A\}} = 0and {w, ¥9} = {A\!, ¥4} = &/. Similarly one can calculate the remain-

ing Dirac brackets. [

Proposition 4.2.17. Hamilton's equation of motion using the canonical Hamiltonian in (4.236)

are

Wy =wi, W) = peVIlY — ap?dUIIL, Y= pe1I;

(]

Hzf = —m25z~ij, HZA = U.

Proof. Recall the canonical Hamiltonian in (4.236), and the Dirac bracket presented in Propo-
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sition 4.2.16, the Hamilton's equation of motion are

o = {wy, H: Y pp = {wj, M} ppwi = Sjw] = w’i

W) = {wl, HS Y pp = pé T {w!, 11} pp — —5” {wi, 1L}
= uéinY — a,uzéijﬂl

YVi={Y" H }ypp = {Y', po" TUI } pp = o1}

A= H s = (N, —- m —-0gpwhwd Ypp = —m*6;w}

2 .
1) = {119, H"} pp = {117, 5 —pwihw) Ypp = —mé;0}

I = {11}, B} pp = {11, %w‘fw{w{’}pg + {11}, w] 19 = adjw] — 117

)
2

Hf = {H HST} DB = {H 9 — 0 Y’ % }pp=-—m 5UYJ

Iy = {11}, H:"} o = 0.

4.2.7. Unconstraint Variational Formalism for Lg{

By substituting the Lagrange multiplier A} in (4.133) into the Lagrangian function Lgf in

(4.130), we define an unconstraint Lagrangian

0ij 2y Y9 4 wiw]
Ly = 3 [aV'Y + wiwd) + MYZw —m* (Y'Y + wywp)]

, . 1.
+ 0;5(wy — wi) (aw] — ;Y]). (4.267)

This is a second order Lagrangian with respect to Y. We will apply similar analysis as it has

been done for LgOT in Section 4.2.5, first reduce it into first order Lagrangian and express it

LST

in an unconstraint form. To reduce Ly, we define the following transformations

Yieqg) Y=g =q, Y =4g. (4.268)
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As aresult, we define two first order Lagrangian functions

Lo = Libo (g, b, i, wh, i, wi, ) + v9(@ — af) (4.269)

LNC1 LU10 (46, 91 G W, W, wh, WY) + v (q - 91) (4.270)
where y and 1/ are Lagrange multipliers depending on ¢! or ¢} used in LST Thus, LUO0 and
L5, are

0; i g 2. . i g i g
LU00 = 7][ (QOQO + wlw{) + /_LCIow{ - m2<%Qé + wowé)}

i i 1
+ 035 (wy — wh) (aw] — ;q{)

0i i g 2 . i g i g
Lo = 7][ a(qiql +wiw]) + ;qlw{ — m*(qoq) + wywy)]
v ) 1
+ 045 (wg — wy) (aw] — ;q{) (4.271)

Now we have to write L3, and L%, given in (4.269) and (4.270) in an unconstraint form.

The variation of LT Yo and L Cl with respect to ¢¢ give the Lagrange multipliers respectively

1 . .

0 = —0(ud — i) = 0 (4.272)
1.

v; = 0yaq] + L) (4.273)

Substitutions of v/ and 1/} into L%, and L3Y,, lead to first order unconstraint Lagrangians

L3 = L%, (4.274)

R
Lt = Lo + i (aq] + ;w{)(Qé —q1), (4.275)

respectively.

Hamiltonian Formalism for L3 Jpo: Recalling the Lagrangian density LT Yo in (4.274), the
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conjugate momenta ¢}, ¢&, wi, wi are defined as

OLST 1
RY = 2N — g + —ai} (4.276)
Ady I
OLST 1 .
R} = % — Z (b — i (4.277)
aqi M( 1 O)
OL3T 1.
SV = M — i — g 4.278
7 aw6 a’wl ,Uql ( )
OLRE 1.
Sl = M _ —gi (4.279)

0wy

The only difference between conjugate momenta for L3, and L3L, is the presence of w!

in S? instead of w0y as expected.

Proposition 4.2.18. The canonical Hamiltonian function for the unconstraint Lagrangian
LSE. is
@ oij i, J ij i ij
Hil= —5(53(”25}5]1 + wiw]) + péVR)S; + 5P (w) — pd” R;)
2

m i g i g i
+ 75ij(q0q3 + wiwy) + apRjw}. (4.280)

Proof. From the definitions of the conjugate momenta R?, R}, S? and S}, it is possible to

(]

solve velocities as

Gy = po” S} (4.281)
¢ = plaw] — 0757) (4.282)
il = w) — pd R} (4.283)
Wi = pd (R — apsSy). (4.284)

The canonical Hamiltonian function is computed by
H3' = R4y + Rjgy + S)iy + Siy — Lo
= Ry + R} g} + S{ih + St — L2E
= Rido + Ridi + 5Py + Siab — 52 aldod + wiwd) + iy

— m?(qhaqg + whwy)] — 0 (i — wh) (aw] — ;q{) (4.285)
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By substituting the velocities, we have

HS' = =269 (425} S} + wiw]) + s RIS} + SP(w} — 6" R)
2

+ 500 (dhah + wiwh) + apRiw. (4.286)

]

Proposition 4.2.19. Hamilton's equation of motion using the canonical Hamiltonian in the

proposition 4.2.18 are

gy =pS" @ =apwi — pdvSY, g =wi — pR', by = pR —ap’S,  (4.287)

R = —m?q, R'=0, S°=—-m?w, S'=—-S°+aw, —auR’. (4.288)

Proof. The Hamilton's equations are

dh = {qo. HI" } = pS* (4.289)
g = {q, HA'} = apwy — po? S} (4.290)
wo = {wo, HY'} = w — pR* (4.291)
iy = {wy, H3'} = pR° — ap®S, (4.292)
RO = (" 03T} = —mPq (4.293)
R'={' 0"} =0 (4.294)
SO = {s°, HJTY = —m*w; (4.295)
St={s", H3"} = —S° + aw, — auR}. (4.296)

generated by the canonical Hamiltonian H CSOT in the proposition 4.2.18. The equations (4.293)
and (4.295) give the Euler-Lagrange equations whereas the others are satisfied identically.

]

Hamiltonian Formalism for L%}l: For the Lagrangian L%ﬂ given in (4.275), canonical



momenta are defined as

Proposition 4.2.20. Canonical Hamiltonian function for L%TUI is

Hg?w%%—Mwﬁ—ﬁ%hkﬁﬁ+ﬂwfﬂﬁ%%+wwm

- agZN;Ul = 6;;(aq] + %w{)
r = 8;—?? = L6y (w] — i)
si = %—Eﬂ = 5y (aw] — i)
gzﬂﬁ&:_%%.

foowp

+ap(riwy = siqy) + po”s;rj

Proof. From conjugate momenta it is possible to solve the velocities as

is = s
it = nlaw] - 5759)
wh = wh — (5ijw’j1-

i = (8919~ agf)

and the canonical Hamiltonian function (3.15) is

ST __ .01 13 0,:1 1,:1 ST
Hcl =T,q +Tiq1 —I—Sin—FSiwl —LNUI

= o0+ kg + s+ s — LT —
Substitution of the velocities give canonical Hamiltonian function

HT = ) (w — po 37’]1'> N 5517' [a(_‘hQ{ +wiwl) —m*(goqh + wow])]

+ap(riw; = siqy) + po”s;r3.

1 . 4
d;j(agy + o )@ — a1)-
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(4.297)

(4.298)

(4.299)

(4.300)

(4.301)

(4.302)
(4.303)
(4.304)

(4.305)

(4.306)

(4.307)

]

Proposition 4.2.21. Hamilton equations of motion using the Hamiltonian function given in
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the proposition 4.2.20 are

@b = posy, G = —pdvs) + apwi, gy = wi — pdr;
wl1 = MCWT? - a#qlia 7"? = —mz@qu, 7}1 = —aéijq{ + a,us% (4.308)
§) = —m?6w),  $f = —s! + adyw] — apr} (4.309)

Proof. Using Hamiltonian function in the proposition 4.2.20, equations of motion for canon-

ical coordinates are

do = {ap, Ho1} = ué”s; (4.310)
di = {q1, HAT} = —p6" 5] + ap} 4.311)
wh = {wh, Hod } = wi — péVr} 4.312)
Wi = {wl, H3Y } = pd"r) — apq (4.313)

which are satisfied identically using definitions of momenta. Equations of motion for mo-

menta are

= (), Hol Y = —m?6i43 (4.314)
it = {rt, H3TY = —adi;q] + aps] (4.315)
80 = {s}, HETY = —m?6,5u) (4.316)
st ={s}, HA} = —s? + aéijw{ — apr}. (4.317)

The equations (4.314) and (4.316) give the Euler-Lagrange equations (4.79) and the remain-

ing are satisfied identically using the definition of momenta. U
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4.3. CLEMENT LAGRANGIAN
4.3.1. General Setting

Consider a three dimensional space M with local coordinates X = (X*). We introduce the

following coordinates on the bundles

X e M,

(X, X)eTM

X)

(X, X,X)eT’M
(X, X, X, X)eT*M
Y

(X,X,P° PY) e T*TM.

Let us consider the following second order degenerate Lagrangian

2
—mTCdinin 2m¢ A + i e X' XIXF (4.318)

LO[X") =
introduced by Clément [37]. Here, the inner product X? = 7% — X? — Y2 is defined by the
Lorentzian metric and the triple product is €;;, X IXIXE C=¢ (t) is a function which allows
arbitrary reparametrization of the variable ¢ whereas A and 1/2m are the cosmological and
Einstein gravitational constants, respectively. The second order Euler-Lagrange equations

(3.4) governed by the Clément Lagrangian are computed to be

i CQ ) l 3C 7, kvl
—mCX 4 2 XX + 50 W XEXT = 0. (4.319)
Hm

4.3.2. Jacobi-Ostrogradsky Method

On the Hamiltonian phase space 7*1'M, the canonical Poisson bracket relations are defined
as

(X', P} ={X", P/} =0 (4.320)
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and all others are zero. Legendre transformations (3.9) and (3.10) are introduced through the

definition of Jacobi-Ostrogradsky momenta as

IS d (OLC e
PO gXi - ((27) — (o X + i—mfinanXk 4.321)
¢ 2 .
Pl ZXi _ 2im€i,d XEX! (4.322)

conjugated respectively to X and X*.

Proposition 4.3.1. Total Hamiltonian function for the Clement Lagrangian is

1. 3 . wm
c _ 7 0 1 7 ik pl l
Hp = §X P’ — ImCX? (XP)(X'B;) — —CQXQGJ P; B;ou X
—(B; X" (0;; X' X7) — X'B;)2. 4.323
oz (BiX) 0 X0X0) = s (X)) (4323)

Here, we used the abbreviations B; = m(6;; X7 + PP and X? = §; X' X.

Proof. Tt is not possible to solve any component of X’ from (4.322), instead we have to

define 3 primary constraints

2

®; =P — < e XX
2um

from equation (4.322). The canonical Hamiltonian function (3.15) turns out to be

HY = P)X7 + P! X7 — L°

- %gdﬁ/xi)’(ﬂ" +2m¢ A 4 XI P (4.324)
using (4.321) and (4.322) whereas the total Hamiltonian (3.19) becomes

HE = HY + U/,
2
X X"). (4.325)

m e . o P ¢
= Egajj,XJXJ +2m( A+ XTP) + U/ (P} — 2

Here, U’'s are arbitrary functions of the canonical variables. Consistency of the primary
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constraint ®;

®;, = {®;, HS} ~ {®;, HC} + U {®;, d;}
2
nm

leads to a secondary constraint
®d = X' (mCo; X7 + P). (4.327)

Note that this secondary constraint ® also follows from equation (4.321). This is not suprising
as we have explained in section (3.2.1). We revise the total Hamiltonian presented in (4.325)

as

HE = HS +U®

=H+ U0, +UD (4.328)
J

with the introduction of a Lagrange multiplier U. The consistency condition of secondary

constraint ¢ gives that

&= {d,HS Y ~ {®, HO} + U{D,®;} + U{D, d}

2

~ (m(6i; X7 + POX" + U7 [5;m¢ X" + 25

wm

euX"X'] = 0. (4.329)
whereas the consistencies of the primary constraints ¢ give

b; = {®;, Hi } ~ {0, HO} + U{®;, @} + U{D;, ©}

. 2 - - 2
= —mgészj — Pio + —Eiijij + U[ — mC(SZ'ij — g
um 2um

Eiijij] =0.

(4.330)

No further constraint arises, instead we can solve the Lagrange multipliers U® and U using
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(4.329) and (4.330). Accordingly, we have

U' ~ € d; X B, — = 21X 4.331
1 : 1
Ur——XB = ————0. (4.332)

m{X? ! m¢X?

Here, we used the abbreviations B; = m(6;; X7 + P? and X? = §;; X’ X’. Substitutions of
the constraints ®;, ® and Lagrange multipliers U, U in (4.331), (4.332) into the total Hamil-

tonian function HS, in (4.328) prove the proposition. O

Proposition 4.3.2. Hamilton equations of motion for the total Hamiltonian function Hr1 in

the proposition 4.3.1 are

Xi~ 1XZ‘ n C’;ZEQ €746, PLX! + %X@(a,ﬂj){k}'{j) (4.333)
X~ C/;;?? %5, X' By, — %(Bjxj)xi (4.334)
P’ ~ 45;2 5, PLB, + 2m2’ 5 (B;X7)P} = %(@k}'{jx’f)a

)?4 “CT( € 61 PL B, X6, X (4.335)
Pl _Lpo prn €0 PLXF — me oy X0 X7 X"). (4.336)

i 270 (X2 2X2

Proof. Using the total Hamiltonian HS, in the proposition 4.3.1, equation of motion for X*
is identically satisfied. To have this, consider the following calculation
. 1. pm
i % C ~ i z ik l k
X' ={X" Hn}~ §X CQXQ T 01k P X +ﬁ(5’”X X7 X!

1 1 iy .

~ X — [ X (0 XX — X (6 X XE

9 2X2 |: ( Jk ) ( Jk ):| 2X2

~ Xt (4.337)

—— (6 XX X
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Likewise equation of motion for X is identically satisfied

. ) 3 .
i 7 ~ 2 ik I
X' ={X" HS} ~ <2X2 k50 X'By, — 2m§X2<BjX])X
~ 3 — [XT (0 X7 X*) — X' (X7 X7)] — %(eijJX’le)Xz
i 1 j k 3§2 vi vk vl vi
~ X' — X [m¢s XX mejle XXX (4.338)

since the term in the parenthesis is zero, it is the dot product of Euler-Lagrange equations of

motion (4.319) with X"

Equation of motion for P? gives Euler-Lagrange equations of motion (4.319). To show this

we perform the following computation

F)@O = {P()?H’Ic“’l}
3

~ C’;;a”eJ“PlB + oz (BIXP! — 55 (05 X7 XM) B
)?4 ’“‘CT( €61 PL B, X165 X
((5,]XJ(Bka) — 0, X7 (BpX®)) + i(B,Xl)ez-ijj)'df
~oxz Apum? X2
-5 )1(2 (0; X X*)B; + %(XQ(Bka) (X*By) (61, X'XT)) 63, X7

using definition of P!. After Substituting the constraint ® = B; X" = 0 if we use definition
of Bl

3¢ 1

Pz'o 2X2523XJ(B Xk) 44 m2X2 <B1Xl)€iijij 2X2(5JkXJXk>B
-1 § \ 3¢ ) .
oEve €k X7 ("6, B X") + Timix? ——— (BIX") e X7 X"
C XX S XIXR[ X R 5 XX
R o€ — o5 i r €irs
2um i 2umX? i : 2um? :
(4.339)

the term in the parenthesis is zero since it is the dot product of Euler-Lagrange equations of
motion (4.319) with X and the remaining term leads to Euler-Lagrange equations of motion

(4.319) using the definition of P_.
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The equation of motion for P! is identically satisfied

pm?

mg

1 _ rpl 0 il pl yk k
B ={F,H 1}~—§PZ Csz'jka]PzX 2xz 0 5 X7 XF) X
——PO + —C[X’(é- XIXP) — X6 XTX9)] — me X6, X X")
2 2x2 7 W " ox2 " Wk
1
~ 5P - m?ga”xa ~ P! (4.340)
using the definition of P and P!. O
4.3.3. Dirac Bracket Formalism
In this part, we will construct the Dirac brackets using the constraints
p
2 o
®;, = P! — 2Wneikk/xk}(’c (4.341)
X=X (mc o X+ P{’) (4.342)
which are of second class.
Proposition 4.3.3. Dirac brackets of canonical coordinates are
(X" X7} pp =0
(X', X7} pp = C3_X2 €k Ay
L —1
X' X/ = X' X7
% 0 vV C i k yvn
{X 7Pj }DB = (S] — WX Ejan X
{X",P/}pp =0
y 1 iy 1 P 1
X' Pypp = —— A X+ —— (A4 X" — ——= X'B;
(X5 Fitos omex2 it T 2m§X2( #X0); m(X?
. , 1 1 1
i 1 Y k\ St l
{X" P/}pp =0} — ImCX? (ApX")d; + v CXQAJX — ﬁX 0, X
{P?, P)}pp = mﬁjile(Aka) - m(GiankX"Bj — i XFX"B))
{20 Blkos = m;—lemmlxl) * ﬁf‘X R

{P117P]‘1}DB — EjkiXk(Ale).

i
Am2uX?
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where we used the abbreviations A; = m(6; X7 + P!, B; = m(6;; X7 + PP and X? =
5, XX,

Proof. To derive these relations, we use the Dirac bracket (2.39)

{F,GYpp = {F,GY —{F,®,} M"™ {®,,, G} — {F, &, M"{x, G}
—{F,xYM™ {®,,, G} (4.343)

with the substitution of the inverse matrix

nn'k s 1
nn’ 7‘177,1 —HE (mC(Sst +Pk) X"
M-l = M _ ¢3Xx2 m¢X?2
7
in’ 11 _ X"
MY M e 0

of the matrix

{(I)na (Dn’} {(I)nv X}
{x.2} {oxt

/f_;enn’ka _mcdanl - ijﬂenlk’Xle/
mC(Sn/le + 2;3_2m6”/lk/Xle, 0

First, we define the Poisson brackets of coordinates X, X* and P?, P! with the set of con-

straints as follows

(X' x} = {X", X! (mCow X" + P)} = X (4.344)
2
X'} = {X" P — o XEXFY = gt 4.345
{ ) } { 4 n 2Nm€ kk } n ( )
{P°,®,} ={P°, P! - ¢ Enpi XEXFY = ¢ Enir X* (4.346)
i TN 2um 2um
(P x} = {P", X'(mCow X" + P)} = —m(op X" — P? (4.347)
2 2
Pl o) ={pP' p!— < o XEXFY — < e XE 4.348
{'L? } {'L? n 2,um€kk } 2um€k ( )
{P! x} = {P", X (mCouy X" + P*)} = —m(ou X! (4.349)

and all the others are zero. Substitution of these into the bracket (4.343) lead to the proof of
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the theorem. For example, the Dirac bracket of X? and X" is computed by

(X', X9 pp = {X", X7} — {X*, 0, }M™ {D,,, X7} — {X*, &, M {y, X7}
—{X P {2, X7

i

i X" j
=—(X )(—W)(—%)
_ mz)l@ XX (4.350)

since { X, X7} = {X?, ®,} = 0. Dirac brackets for the other coordinates can be derived in

a similar way. [

Proposition 4.3.4. Hamilton equations using the Dirac algebra of the constraints in the

proposition 4.3.3 are

Xi= mCXQX 'XIB; 4+ X* (4.351)
Xi= L itp A, — X gy (4.352)
§3X2 <X2 J
. -1 . .
PO = Bi(A; X7) + ——=Ay(BiX*) + ——=Bi(X'B;
LT omi X2 Bi( )+ 2m( X2 (BrXT) + m( X2 (X7B;)
~ Spm <2 gt X X (B XY) (4.353)
: 1 . 1 .
P! = —B, Bi(ALX*) — ———— A:(B: X7 + — 6. X"(X' B, 4.354
7 + 2m€X2 ( k ) 2mCX2 ( J ) + X2 k ( J) ( )

where we used the abbreviations A; = m((%ij + Pl B, = m(éz-ij + PP and X? =
5UX1XJ

Proof. Using the Dirac brackets of the coordinates in the proposition 4.3.3 and the Hamilto-
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nian function (4.324), equations of motion for X*'s

X' ={X" Hpp

= {Xi,Xj}DB(mC(Sjj/Xj/ + E)JO) + {Xi, PjO}DBXj

¢ ‘ o o
= XX 8.0 X7 PO g — — = Xl X X)X
(mCXQ )(m(’ Ji +Pj) + ( I 2m2uX? €k )
-1
= m<X2X X7 (m(8; X7 + P)) + X
-1 N g
= T XZX](M—mejle X+ X (4.355)

after cancellation of X*, the remaining gives secondary constraint ® since X" is nonzero.

The equation of motion for X's are

Xt ={X', H }pp
= {X', X7} pp(m(b; X7 + P)) + {X', P} pp X7
Xi

u g
= axat e/FAeB; — — CX2BJ-XJ. (4.356)

Substitutions of A, = m(du X' + Pl and By = m(6u X' + P into equation (4.356) give

S —M i s )
X' = e mCou X + B)(mGayy X + )
Xl 0

and with the help of P? and P} the last equation can be written as

.o —1 s i < 3¢ i ;
X' = (0 XXX+ X' — A2 ——— (X X" X ") X, (4.358)
After cancellation we get
—_X¢ . 3¢ ik

since X is nonzero the term in the parenthesis must be zero. This is not a contradiction since

it is the dot product of the Euler-Lagrange equation (4.319) with X
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Hamilton equations of motion for P's are

P ={P’ H pp
= {P), X7} pp(m(6;5 X7 + PPy + {P?, P} pp X’

-1 o . 1 ;
= _Bi(AX Ai(BLX") + —— Bi(X’B,
2m<-X2 ( J )+2m<-X2 ( k )+mCX2 ( J)

First line in the equation (4.360) can be written explicitly as

1
m¢X?

(m¢oa X* + P X" 6!

1
2m(X?

—1
2m(X?
1 iy
) (2m¢X2 (M0 X* + P)X7 +
X7
T omCX?

Bi(A; X7) + A; (B XF) + Bi(X’B,)

2m(X?

(mC&il/Xl/ T PZO)) (mC(Sjj/Xj/ I -Pjo)
—gQ . . ,
= W(éstst)Ginn/Xan

¢ A S
—— i X X" X" is X ar X' X 4.361
+ 2[[,Lm2X2 6] (mC + 2/,Lm€ U ) ( )

by substituting the A, and By, in terms of P? and P! in X coordinates. Second line in the

equation (4.360) can be written as

C K on oy O\ <
= —Wﬁik/nX X (mCéﬂ/X -+ P] )XJ
3 . 12 . L e 7
- _2m3—M2X2€““’"Xk X" XIX'X! (4.362)

using definition of P?. Hence summation of (4.361) and (4.362) in equation (4.360) give
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Hamilton equations of motion for P2,

. 2 . . 12 2 o . e 12
PO QMmCQXQ (5SszXk>€inn’Xan + m(ejnn’X]Xan )(SisXS

3¢3
T 22
4prms X

2
. . ,
EiijJEklr(Ell/le Xm)XT 5rr’

Eill/Xle/(Gjnn/XanXn/)
- 2umX?
3 3
+ 2 C3
4p2m3 X2

2
e XY (Xk(a X'X7) - X (0, X'XT))

Elele, (Ejnn/XanXn/)

2,u mX?

3 3
L0
412m3 X2

2 2)
. .. 3 - ,
b C—meiijJXk QEmeUkXJXk (6, X' X" + QWCnQ (6 X' X"X™)).  (4.363)

EZ'”/Xlel (Ejnn/XanXn/)

The term in the parenthesis vanish since it is the dot product of the Euler-Lagrange with X*
and the remaining term gives the Euler-Lagrange equations (4.319) substituting the definition

of P?.

Finally Hamilton equation of motion for P!'s are identically satisfied

Pil = {PilvHC}DB
= {RI7X]}DB(m§5N/XJ’ + P]O) + {-PZI O}DBX]

1 .
= —B;i + —— Bi(A X") — ——— A(B; X7 —ZX X'B; 4364
substituting A; and B;
. _CQ .
P! = — € X" X" (4.365)
2um

]
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4.3.4. The First Order Formalism

In this section, we will analyze first order constraint Clement Lagrangians

mg C2

LG, = =5 0500 + 5 —enQu@Qt + N)(Q5 — Q) (4.366)
C i C o :
LG, = — 5 04QiQ1 + 5 —ein Q@ QY + A} (Q) — @) (4.367)
using coordinate transformations X’ = Q}, X’ = Q%, X’ = )\ and Lagrange multipliers \)

and \!.

Both of the variations of Lgo and L& . with respect to A and \! give the constraint equation

Qi — Q' = 0. Variation with respect to @’ implies the expression

2 e
X = —Qi—meiijéQ’S (4.368)
C ’ C ’
mC(Sl]Q] Ez]kQJQl Ez]kQJ Qo (4369)

for the Lagrange multipliers respectively. Finally, the equation from the variation of Q) is

C2 C2
= _mCQO ekaj Ql Ez]kQJ Qo (4370)
. 2 P
A= i—meiij{Q’f 4.371)

which give the Euler-Lagrange equations (4.319) for X when the identification (4.368) and
(4.369) of A2, A and the constraints Q) — Q% = 0 are used.

177"



4.3.5. The First Order Formalism as Lgl

Hamiltonian Formalism for LY, : To pass the Hamiltonian formalism for the L,

the conjugate momenta are defined by

I = 8LCl )\
OLS, 2
I = —t = LGileéQé
0Q;  2um
. OLE
V=—=0
DAl
Proposition 4.3.5. Total Hamiltonian function is
Hry = ST0Q] + — (5,0000) (DiQh) + 2 kg 11 Qb D
T1_2j1 2Q0 ij 0 C2Q gt ok
3 7 klr s
- W(DJQ{)(QOHD QQoﬁwkH Q1€ 0,Q5D
3¢ (DiQp)*
_ H J D l 0
4um2Q2€”k Q QO( ZQ ) mCQ(Z)

where we used abbreviations D; = m(6;;Q) + 112 and 6,;Qi Q) = Qo>

Proof. Recall the definition of momenta (4.372) —

84

in (4.367),

(4.372)
(4.373)

(4.374)

(4.375)

(4.374). Neither of the momenta can be

written as explicit functions of the Q¢ . Q¢ and }\1, instead we introduce the primary constraints
p 0 &1 i p ry

¢; =107 — A}
CQ
¢% = Hz'l - Q/L_meilengll

(4.376)

(4.377)

(4.378)
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For the Lagrangian LCI, the canonical Hamiltonian function is defined by

H. = I5Q} + TQ] + I5A] — LE,
.. CQ .. . m( Ly
=15Q} + (2—63'1@1@’5@[1)@{ + 10X + 753'3‘/@]1@]1
pwm
2
a 2um

m . . .
= %%f@i@i +I5Q (4.379)

enQEQLQT — AHQ) — Q1)

using the primary constraints. Then, the total Hamiltonian becomes

Hy = He + V{6 + Vi 6 + V;&}
m( y . .
= 753'1'@{@{ + Q1 + Vi (I — X))
2

Vi@ - =>—
_'_1(3 2/””

emQeQt) + VI (4.380)

where V{, V{ and V}A are arbitrary functions of canonical variables.

Now we check the consistency condition for each of the primary constraint ¢, ¢} and ¢}.

The Poisson brackets of constraints are

{00, 05} = {11 = X}, 10 — ejszle} = MQ’ (4.381)
{80, ¢3) = {119 — \} H”}——5” (4.382)
2
{061} = {11~ 5@l 1) — Q5 Q1)
2
= C—meiij’é (4.383)

and all the others are zero. The brackets of constraints and the canonical Hamiltonian are

(60 H,} = {110 — \l m_C(g,‘/Qan +I0Q]} =0 (4.384)
{6}, H.} = {IT! — C QL 5, O] + TG
it (4389
me

{¢}, H.} = {11}, 75]-]-@{@{’ +19Q7) = 0. (4.386)
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Using these, we write the consistency conditions for each the primary constraints as follows,

for ¢¥'s,
&) = {0, Hr} =~ {¢?, H.} + Vi {e), 69} + VP {e), o1} + V!, ¢4}
¢? :
~ w—mﬁilellvf -V,
for ¢!'s

ol = {0}, Hry = {0}, Hoy + Vi {0}, 8%} + Vi{ol, 01} + VMol o))

2 <2

~ m@ij@{ —1I) — —ﬁiszonll & ,u_meijk‘/lelga

2um

and for ¢}'s

&4 = {dh, Hr} =~ {¢4, He} + Vi {oh, 60} + Vi {dh, 61} + Vg4, ¢4}

~ 1/
N‘/b,

Since V' ~ 0, from the equation (4.387) we arrive

V/\N CQ jvk
s QM_mEiijl i

By taking the dot product of Q) and Eq.(4.388), we have a new constraint
= (mC(Su"QZ; +117) Q5.

We revise the total Hamiltonian as

Hry = Ho+ Vi) + V7ot + VI + Vi

(4.387)

(4.388)

(4.389)

(4.390)

(4.391)

(4.392)

by adding the secondary constraint ) by multiplying it with a Lagrange multiplier V.

The Poisson bracket of the secondary constraint ) with the canonical Hamilton function is

mg

{0, He} = {(m¢0uwQf +110)Qh, —20, Q] + 11907}

2
= (M@ + ) QY.

(4.393)
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The Poisson bracket of the secondary constraint ) with the primary constraints are

{0, 80} = {(m(8;» QY +TD)QH, T — \;} = (mC0;# QY +119) (4.394)
2
(003} = {(mG8uQY + QR TT - 5 QCA)
2
= m§5wQ0 C eﬂlQ QO (4.395)
{w¢ﬁ={@m@@1+H%@uﬁ}=o (4.396)

The consistency condition for 1) is

1/'1 = {Q/J,HTl}
= {0, H.} + Vi{y, 0} + VI {v, 83} + VM, 84} + V{w, v}
= (MC0w QY + N1)Q% + Vi (mCo,;Q + C%@@@ (4.397)

The consistency of the secondary constraint 1) is not giving a tertiary constraint but it defines

V3 using Vi1 (V) and V2(V}?) from the equations (4.388). Hence, we have

4 3 3 o

Vlz _ CgbggewkdleéDk _ QmCQg (D]Q{)QB (4.398)
¢ BN s o 3 :

VA = o €@’ (€2Q02 g, QLD — m(ij{)Q’S) (4.399)

where we used abbreviations D; = m(d;Q + 119 and 6;;Q3Q) = Qo*. On the other hand,

consistency of the primary constraints ¢ and ¢} are

2

— (o) = 5

¢ = {¢%, Hr} = 0 (4.401)

e QLVY — V} = V(m(6,;Q) + 1) (4.400)

whereas consistency of the primary constraints ¢ are

= {(bll, HT1} = mCéwQ{ —I1¢ + g_mGijkvlelg (mC%Q] C Ezlej QO)
(4.402)
These leads to determine V' = — The substitutions of Vi, Vi, V* and V into the total

CQO
Hamiltonian (4.392) complete the proof. H
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Proposition 4.3.6. The Hamilton's equations generated by the total Hamiltonian in the propo-

sition 4.3.5 are

1 . um

Qo ~ Q) + 2Q0( 5N Q) + % Q%e”"“éklﬂ;Qg (4.403)
Qi ~ %6Z]k5leoDk - %CQ%(DJ‘Q{)Q% (4.404)
M~ 2@0 — @6, QL Dy — 3C2Q0 QI QE(DIQY) (4.405)
11 % 5o (n@IQDD: ~ SEadud DIl + 521l (D,01)
?fQO(eJ’“fS ALQY D) Q) (4.406)
I} ~ —%H? ;Z;O( 5N Q) — CQO GUW’H Qk (4.407)
I, ~ 0 (4.408)

where we used abbreviations D; = m(8;;Q)} + 112 and 6,;Qi Q) = Qo>
Proof. The equations of motion for Q}'s are

Q6 = {Q67 HTI}

~ 5+ 5 QIR + e i) (4.409)
identically satisfied
0~ 500+ 50 Gu @R} + CQQO 5 QU
~ 50+ 5 QIRNQ — 5 QRN — QL0AQQ5)
~ Q. (4.410)

The Hamilton's equations governing Q% generated by the total Hamiltonian function are

3
2m(Q5

Q) ={Q\. Hr} = €7*6,Q4 Dy, — (D;Q1)Q% (4.411)

CZQO
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using D;, definition of TI?, we compute

Qll ~ ﬂeljk‘SﬂQé(Hg +m(oQ}) — k ((HD + m(6;Q} )Q])Qo

o3 2l G

zg’jgof' 5@ — 5o (S AN RA)Q)

~— QO(%( MQ’“) Q1(6xQ0Q5)) + 3§Q2(<6JMQOQ )QDQs

~ Q)+ g (— 040 + 3§Q0em@f fonlo (4.412)

Note that, the term in the parenthesis is the dot product of Euler-Lagrange equation with Q},

so that it is zero.

The equations of motion for A!'s

= {A},Hn}

3
GzﬂcQ krsélrQéD C

1m2Q2 eka]Q0<DlQ1) (4.413)
0

2@0

substitution of I1° in D;, and some cross product property

3C

e S
QQQ

i QM_mijleQlf + - 6le’ngl EJTSQJQOQ ) (4414)

Cm(

which is exactly true since the term in the parenthesis is zero since it is the dot product of the

Euler-Lagrange equation with Q) .

The equations of motion for IT%'s are

H? = {H?, HTl}

M 1k 1 3 1.0
2Q0( e Q ) — Q2 ou€”" DilT), + 2m€Q(2)Hi<D]Q1)
?%2( MIT;Q5 Di) Q- (4.415)

If we impose D;Q} = IT4 = 0 and use the definition of IT}, and we arrive

. / 3
H? 2@ ez]ij (Eklréll’ f)Dr - 2—7§”L2Q’8(DZQ11)> . (4416)
0
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After imposing the definition of D; in terms of Q{ and @}, we get

C
me

. 2 . g
I} ~ € @QQF +
0

P~ W Oez]kQ QO ( 5leOQ1

Elerl QOQ’”) - (4.417)

These give the Euler-Lagrange equations (4.319).
The equations of motion for IT}'s are

m2
1 m &

= (T} Hpq b~ —T10 — J L0 QF. 4418
{IL;, Hr1 } o i QQO( k@ Q )Qo CQOG;k 1 Qo ( )

After substitution of the definitions I19 and IT}, we get
0~ =S e 0l0 4.419
i~ Q;L_m%onQl' (4.419)

Finally, the equations of motion for IT}'s are

115 = {11}, Hry } = 0 (4.420)
since 1§ = 0. O

As it is pointed out in [30] that, the constraints ¢} = II} effect only the equation of motion
for \;. So that, we may omit to add them to the total Hamiltonian function Hy. In this case,
Vg = 0 from the consistency condition hence we may additionally omit the constraint ¢?. So

that, the total Hamiltonian function reduces to

Hr = He + Vljgbjl. (4.421)
with the constraints
1 S Ak
0 =TI} — 5 e QiQ (4.422)
b = (Mo Qy +119)Q} (4.423)

identical to ® and y given in terms of the X coordinates (4.341) and (4.342).
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We shall write the Hamilton's equations using the Dirac bracket. To this end, we record here

the set of second class constraints

2

¢ ,
@1 = H} - mﬂkk/@lgcﬁ

¥ = (mCowQy +11)Q%.
Proposition 4.3.7. The Dirac brackets of the coordinates are

{Qb, QY b5 = gQQQZ Q%

{Qoy }DB 5 CQQ Qo n]QO
{Qéy H?}DB = 5;- - mﬁjk’n'QSIQll

{Q}, Q1}ps = —43/223 e* By

{Q1 N} = A}

. 1, Q;
1 HO — irk . lE 0 D
{Qh g}DB QmCQ%E €5 lQl k — CQO
‘ ‘ 1 Q:
Ql,Hl- =5 — Eznkﬁ‘n/ /QkE 05 Ql
{ 1 ]}DB 7 ZmCQ(Q) Jgn'k' Mk T QO U0
(M A g = 0l C™
{)\1 HO} o (2 5 Bnr _'_ C Q Q
DB = _Q,um inD " €jprQk m2 QOGWS 01
¢* i, ¢

{>\z17 H;}DB - W(smBnTEjero ezrsQOQ1< JIQO)
0

muQj

Ceanr; QY EQX Cei,m@’f@o ; +C€jk'n/Q’f/Q6L’D

I, 1

{1 hos = == 502 2um2Q3 2um2Q3
-0 D.OF o OFOrE

{HO Hl}DB _ Cezk ]Q12 ;Qo + C€ik nQ;Q;) j
4pm?Qg 4pm>Qg

{Hl Hl}DB ¢ Eink'QIS/EmkEkEjrlQé

1302
4pum3Qg

(4.424)

(4.425)

(4.426)
(4.427)

(4.428)
(4.429)
(4.430)
(4.431)

(4.432)

(4.433)

(4.434)

(4.435)

(4.436)

(4.437)

(4.438)
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and all the others are zero. Here we used abbreviations D; = m(0;; Q{ +119, E; = m(d;; Qé—l—
1T} and 6;;Qy Q% = Qu*.

Proof. Recall that the Dirac bracket (2.39) can be written as

{F.GYpp = {F,G} = {F, 60} Mg {;¢h, G} — {F, ¢, Y M1 {6y, G}
— {F, oL} M {60, G} = {F, 63} M7y {0, G}
— {F, 0udh} M5 {60, G} — {F, 6ud\} MY {01y, G}
— {F, 6\ I ME {08y, G} = {F, 6uh Y MR, {0, G}
— {F0IME {6y, G — {F, 0} M {69, G} (4.439)

substituting the inverse of M given by

{05, 9%} {0, 00} {oh. 0%} {04}
{o%, %} {on. o0} {on. 0%} {on. ¢}
{08, o0} {ohon) {808} {0}, 4}
{000} {von) {w.o}}y {v,0}

2 / /
0 Qi_mEn’nk’Qlf _52 _Dn
¢ o Lo Ok -
_ 2,um€”" k Ql umGTm on 0 E, (4440)
o, 0 0 0
D, B, 0 0
whose determinant is szQ(Z)' The inverse of M is
Mg Mgy Mg Mg,
e | M M Mt
Mg My MG M3,
MIZO ijl MzZ/\ Mww
0 0 5’ 0
nn'k / n
0 *Nfr Ey Ann QO
_ ¢*Q3 mes (4.441)
_5nn’ Bnn’ Cnn’ _ Cerrs0TQUQT
2m? Q3
0 o Qg Ceprsd™ kQSQf O

m¢Qg 2m?pQg
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where

1
AZ’ nrk€n’rlQéEk =+

B ) 1 e QR B, DrQy
2m(Q§

nDn/ , Bnn —
mcOR 2mCOR 02

To arrive at the Hamilton's equations using the Dirac bracket, we first evaluate the Poisson

brackets of the coordinates and the constraints as follows

{Qb, o0} = {Q0, 11, = A} =4, (4.442)
{Qb. v} = {@, (m¢ow @y +TN)QL} = Q) (4.443)
{@o} = {Q110, - 5 M;enkk@é@‘f’} =5 (4.444)
(AL oy} = (ALY = 67 (4.445)
{117, 1.} = {117, 1T, - QZ;enkk/Q’gQ;} = Mimc%mk@’f’ (4.446)
{10, ¢} = {117, (mCow QY + 1) Qp} = —mGou Q) — 117 (4.447)
{10}, ¢} = {I1, 11, — QE;enkk/QéQ’f’} = Mimc%nw’s (4.448)
{11}, 4} = {11}, (m¢ow QY + 1) Q4} = —m(ouQy, (4.449)
and all others are zero.
Dirac bracket of Q) and Q? is
{Q6, Q4}pp =0 (4.450)

since {Q), @3} = {Q, 3} = {Q}, ¢}} = 0. Dirac bracket of Q) with @ is

{Qb. Q1Y pp = —{Qh, YIMI{6L, Q1)

= Qi ) (-

eGP Qo0 (4451)

1
)= e
since {Q), Q1} = {Q), #\} = {Qh. 01} = {Q1, 0} = {Qi. ¢!} = {Qi,%} = 0. Dirac
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bracket of Qf) with \; is

{QB? )\;}DB _{Qm ¢O}M {5 /l¢)\7 } - {Qaaw}Mgi{(Sn’l¢l)\> )\]l}

i nn’ i Qg/
_(5n)(5 )(_571'J) _QO(_mCQ2)(_5n/j)
= 5;’. CQ2 —Q MQO (4.452)
since {Qh, AL} = (@b, 61} = {Qh. 01} = (AL&)} = (@161} = (ALg!} = 0. Ina
similar way one can derive the remaining Dirac brackets of coordinates. [l

Proposition 4.3.8. Hamilton equations of motion using the Dirac bracket of coordinates in

the Proposition 4.3.7 and the Hamiltonian function in (4.379) are

Q= — (D) + @ 4453
CQO

g : |

Q) = C3Q0 €*D;Ey — Qh—— —ToT (QiD;) (4.454)
: 1 .

H(Z) om CQO Ez]kejerlE Q1 CQ% DZ(D]Q{)) C2Q2 EUkQ]QO(DlQZ) (4456)
W=-Dit o gQO smcgr e @oe DiE; (4.457)
I, =0 (4.458)

here Dl = m§5”Q{ + H?, EJZ = mC@]Qf) + Hzl, AZ/ = mGnrken’rlQéEk + #Q%QSDW
Cll’ld 513626626 = Q()Q.

Proof. The equations of motion for Q}'s

Qb = {Q} Hoypp = (mCo;Q1 + TIN{Qh, @} pp + QI{Q4, %) s
wa)%_Q% CeirmQE QY

me0? () ) (4.459)

= (mG6;;Qf +11))(~
give the secondary constraint

QbQ}(m¢s;; Q) +112) = 0 (4.460)



95

since QO Q' . The equations of motion for Q}'s are

Qi = {Q1, Heypp = (mC0;Q1 +TN{Q}, Q1}ps + QI{Q1, T} ps

.. 1 .
- <323 MG QY+ T) B~ Q- (D,20)
= (M€ QY + ) (— L €% (6, Q5 + 1))
Q2
i OV 0
- Q{(Q0<mcéjl Ql + H])) (4461)

meQ3

and using the definition of IT} and combining similar terms in the last equation, we compute

Q== g’éfgo 50 Q(mC8y Qf +115) — CQonQ”(mC Qf +119)
*om CQzQJQ’ LMo Q] +110). (1:462)

This is the same with the first line of (4.412) since Q% (m (6, Q)" + I19) = 0. So the equation

of motion for Q) are identically satisfied. The equations of motion for \}'s are

N = L s = (mCo,Qf +112) 0L Q1Y os + QAL i

—(mq¢d,j Q] + HO)AJ C emQOQS(mQ(Sﬂ/Ql + HO)Q] (4.463)

Substitution of A?, = me"rken,rlQllEk + #Q(%Q{}Dn/ results with
3 = o DUBQ) + o EADIQY + —— Di(@4D))
2m¢@d Y 2me@3 Y om0
C
TR ———— e QiQh(D;Q)) (4.464)

which is the same with the equation presented in (4.360) derived for P? with D; = B;, E; =
Ai) Q6 =

The equations of motion for ITV's are

me o .
= {1}, H.}pp = {117, — 011 + 1501} b

= (mCoy @Y +119) {110, @1} s + QI T} . (4.465)

After substituting the Dirac brackets {II?, @]} p5 and {119, 11} 5, using the definition of
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19, T}, and applying some cross product properties, we write

: ¢? ¥ ¢? 3C r
IT; = %—meiij{Q'f Q2 — k@1 Q8 | 0Q5QN — 6zerl Q5 Q' (4.460)
which equivalent to the Euler-Lagrange equations (4.319).
The equation of motion for I1}'s are
I = {1, Ho}pn = (mCoiy@f +19) {11, Q1Yo + QUL W0 pp.  (4467)

Substitution of the Dirac brackets {II!, @7} 5 and {II!, 119} p g lead to simplified expression

I = —m8,Q) — 10+ —— s en Q4™ (mCouw Q) + 1) (s, Qy +11}).  (4.468)

2m CQO

Imposing the definition of II} and applying some cross product properties, we get

{1 = — Loy Qf +T9) + oL (G300} + QIS

2Q0

¢ : .
" oum? e QHQ4 (mCo;; Q7 + 11)Q%5. (4.469)

Finally, the equation of motion for IT}'s are
I, = {1}, H.} pp
= (m@jy"Q{/ + H?) {115, Q1) ps + Q{14 119} b
—0 (4.470)

since {H’S\, le DB — 0 and {Hf\, H? DB = 0. OJ
4.3.7. Unconstrained Variational Formalism

Unconstraint variational formalism corresponding to the first order Clément Lagrangian (4.367)

is

9 2
L&:%g&;j@i@] mC(SUQle C EkaijQl C

Q@ (4471)



97

by substituting A' in (4.369) into LE, in (4.367).
To arrive at Hamiltonian formalism for unconstraint Lagrangian (4.471), we introduce the

momenta

oL, g2

0= 71— Q) s b 4.472
=20, mGo;Qy — p— QRS ( )
aLC CZ <2
1 U J
= anl 2/J, ezij Ql 6zjlcQoQo (4-473)

conjugated to Q) and Q.

Proposition 4.3.9. Total Hamiltonian function for the first order unconstraint Lagrangian

(4.471) is

m 1 ; ; 1 .
Hy = — Lo e D QI + 575 (DiQ)) (6 Q3Q1) + 5 Di2;

R 205
y 2 €0k 5, Qb Dy, — 1D, Q8
- Qe+ () (4474)

where D; = 19 + m(6;; Q).

Proof. Equations (4.472) and (4.473) lead to solve two components of ) and @’

) = — 1T 5 Ol 4+ = QYY) + 5 QS L) (4.475)
0 CQQ(Q) Jjlo\ "k 2um klrigo'1 (2) 0\Yjk'<¥0'%0 .
Q= ~ fagee " 0aQb(a] + MG QD) + o Q340 (4476)
0 0

and for the remaining one, there exist primary constraints
¢ =mQy ¢ = (m +m5;Q7)Q. (4.477)

Then the canonical Hamiltonian function for the first order unconstraint Lagrangian (4.471)

1S

S0 c
Hy, = Qim; + 17T — Ly,

:um 'ij 17l
_ D6, QLI
g e

1 ; 1 . o
507 (D@ B:Q40h) + 5DQ} — "L8,Q1Q] (4478)



98

using Q} and @, where D; = 0 +m(6,;Q}, Q2 = 6, Qé@;. The total Hamiltonian function

is

Hp = Hy, +U®+ Vo

where U and V' arbitrary function. Consistency of the primary constraints ¢ and ¢

d={®, Hp} ~ {®, Hy,} + U{D, D} + V{D, ¢}

and

(é = {(I) HT1} ~ {(ba HUI} + U{¢7 (D} + V{¢> ¢}

2um 1
;Q €484 Q) Di + 5 D,Q1 + U(ms,Q524)
0

give no more constraint, instead we can solve U and V'

gﬁg@ €'k, Qéﬂjl-Dk — %Dz‘Qli
U=~ 5
mCQo
V 51'3‘@6@{‘
Q3

(4.479)

(4.480)

(4.481)

(4.482)

(4.483)

Substitutions of U and V' into total Hamiltonian function (4.479) complete the proof. O]

Proposition 4.3.10. Hamilton equations of motion for the total Hamiltonian function in

(4.474) are
i nme s 1
Q= ~ e ™0l + 2Q2Q0< orQHQN) + 5
N M ciik l 1 2pm l 1 i\ i
Q] ~ CQQO D01 Qq + T%(CQQ%E J (5rl(>207rj1.D,yg — §Dij1)QO
- 0 ~ 7l o s, 7k
T~ C2Q061J’f§ 1_[l Dy QQO z(5aonQ1>
22;1m Ewk5le ﬂ.le 1D1QZ
_ Cﬁ 0 1)77_3 2#”515”@3( zyk(sle le)
mCQo CZQ
) m 1
7Ti CQO Ezngj 6kl 2Q0 ZJQJ (&leOQ ) §7T?

(4.484)

(4.485)

(4.486)

(4.487)
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Proof. 7 gives the Euler-Lagrange equations and the remaining satisfied identically. The

Hamilton equation of motion for Q's are satisfied identically

QE) = {Q67 HTI}

~ _C/;gbz Eijkéleéﬂl}: 2@2 QO( JkQOQk) + QZ

2Q0 — (Q( 5r@QQY) + Q3 (@7) + QQQQO( SkQIQT) + = Qz

~ Q! (4.488)
using definition of 7r}. The Hamilton equation of motion for Q}'s are satisfied identically

QZI = {QZ 15 HT1}

' 1 2 . 1 ) )
C’jg D0 + - Cﬁgﬁ e76.1Q) Di — 5 D,Q1) Qb
0 0 0
~Qi- 2 (5,000 — C 2 Qi) @) (4.489)
0

using definition of ¥ and 7}. Equation of motion for 7's are

ﬂ-o = {71'(.)’ HTl}
~ C2Qo P ekt Dy — 2Q0 Di(8xQ4Q7)
2um z]k;5 Q 7T1D lDQz
Q2 7€ A E— 2 S 2um ” 1
. rh = 5 Qi (75, Qhrt D 4.490
m¢Q; = gy oy D). (4490

Substitutions of D;, 7{ and m} give same equation with first line of (4.339) with Q) =

X', Qy = X'. Equation of motion for 7!'s are

7'ril - {ﬂ-il’ HT1}

m2
1
J oM} <5 (0 —? 4.491
CQO GijQ 2Q0 sz ( leOQ ) 27Tz ( )
this is also same with the first line of the equation (4.340) with Qi = X’ Q; = X". N

Dirac Bracket Formalism: Let us find the Hamilton equations of motion using the Dirac
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algebra. All constraints are second class since their Poisson bracket

{®, 0} = —m((6;Q4Q0) (4.492)

is nonzero when 6,;Q4Q) # 0.

Proposition 4.3.11. Dirac brackets of the coordinates are

{Qh. QY s = CQ2 — Qi) (4.493)
{Q0, 7]} B = CQQQ by + 6 (4.494)
{Q1. 75} s = CQQ Qo (7§ +m¢oQF) (4.495)
{Qi,7j}pp = 6} — —2626@% (4.496)
{m. 75} = CQO[ (5 +mCow@Qy) — () +mConQy)m;] (4.497)
{m}, 7 pp = 273; 1 Qh (4.498)

0

and all the others are zero.

Proof. Recall that the Dirac bracket is given in (2.39), using this we compute

{F,G}pp ={F.G} — CQO — = {F, 2, G} — {F,¢}{2,G}) (4.499)
by replacing inverse of M
YO I AR = m(Q? N (4.500)
{9, @} {9,9} 10

To prove Dirac brackets of coordinates we also need to compute Poisson brackets of the



101

coordinates with the constraints, they are

{Q6, 0} = {Q0, (7] + mCoQ7)Qp} = Qf (4.501)
{Q1, @} ={Q, Q) = Q) (4.502)
{x), @} = {x), 7} Q} = -} (4.503)
{70, 0} = {7}, (7] + m¢oQNQY} = —7) — m(ou QY (4.504)
{m}, ¢} = {m}, (7] + mCouQ)Q4} = —m(5,; Q% (4.505)

and all others are zero. Substitution of these relations in Dirac bracket (4.499) complete the

proof. For instance Dirac bracket of Q) with Q7 is

{Qb, Q1}ps = {QO,QJ} {Qb, ®}Ho, Q1) — {Q5, 0} {2, 01})

C Q% QR
Q) (4.506)

<Q2 TR

since {Q}, ¢} and {Q?, @} is nonzero. One can derive the other Dirac brackets of the coor-

dinates similar to this. O]

Proposition 4.3.12. The Hamilton equations using the Dirac brackets of the coordinates in

the proposition 4.3.11 are

Qo ™~ g Qo + 50 4.507)
i 2:“ TSk(S D 1l i Ql J (.0 5 k
Ql mC3Q4( sl rﬂkQO)QO om CQQQ ( T, +m( jsz1)
m
- CZLQQ €340, Qg (4.508)
0
i & C2Q2€%J’f5 I Dy, — T%Di(5ijéQlf)
2pum Ezgké" Ql ,/TlD _ lDQz
CQQQ i/t Mk 5 i1 1 Qlum o iik
; D 4.
mCQ% )ﬂ-z CQQO(SUQ ( 511@077 k) (4.509)
m2
) s 1
iy & CQO e Qbs*! — 7T0+TQ2( mQ})8:4.Qf. (4.510)

Proof. Using the Dirac brackets of the coordinates in the proposition 4.3.11 and the Hamil-
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tonian function 4.478, equations of motion for @}, are satisfied identically

Qo = {Qb, H}DB

= ( CQ EjstOWk W?){Q?)?QJI}DB
0
2
+ ( CQO 6] kéSlQéﬂ.]}: + 5@{){@07 H?}DB
Mm is 1 7
_CQQ%E *5.4Qom, + 5@1 (4.511)

using definition of 7r}. Equations of motion for Q)% are

Qll = {th H}DB

—pm o 1 Zum s
= (CQQO k(ss]DTﬂ-k + - (2Q45]j Q] k(sler'ﬂ'kQO){Qo, Q]}DB
(CQQO & 6qQ4my + 5@%){620, 19} pp
m .
+ (2’“22 95400 D){QL, T by
0
o~ 2” rsk 1l T Q6 7/ 0 ) k
~ mC?’Q% (6 5ler7rk;Q0) QO QmCQng(W] + mC(sijl)
m .
— C’;Qge““sészDrQé- (4.512)
0

Substituting definitions of D;, 79 and 7} the last equation

C

~ Qzl ( JijQl EjlejQ1Q1)Qo (4.513)

Q3

gives QZ since the term in the parenthesis is zero. Equation of motion for 7!'s are

7 ={m, H}pp

2um
= (2 Qlen, QL™ ! D, — e DI {72, Q) s

CZ QQQO ]S
1 .
+( CQ Ealeoéskﬂl _WJO‘){W?’Q{}DB
0
+(—€gg(z)€”k5ﬂﬁ? + QJ){W“ ™} o5 (4.514)
s €D, Q) 7 Y . (4.515)

Q3
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Using the Dirac brackets in the Proposition 4.3.11 we get

~ CzQOEUké lH[ Dk 2@0 Z<5JkQéQlf)
2um Uk(s Q 71_11) 1DQ1
Cﬂﬁ il k— i1y 2um Jo ik 1
- T, — 570 kg, T Dy). 4516
m(Q3 )7~ gyl 0uQm D 10

which is the same with equation (4.490) where D; = TI? + m(8;; Q.

Equation of motion for 7}'s are identically satisfied

) ={r},H}pp

— 2 .
- (%eﬂkcggaskw; + 5w, @os
0
—I—( CQ Ejleo(;Skﬂ'l o Q]){ﬂ'z, J}DB
0
m? 1
CQO —~ 2 Cilk QoéSk ;_ > 0 2Q2( OQJ) zk’QO
> _1(7@ + mgijQ{) =7} (4.517)

2

using the definitions of 70 and 7. O
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5. CONCLUSIONS

In this thesis, the Hamiltonian formulations of the second order Pais-Uhlenbeck [39], Sarioglu-
Tekin [38] and Clément [37] Lagrangians have been presented. We note that, Pais-Uhlenbeck
Lagrangian is non-degenerate whereas Sarioglu-Tekin and Clément Lagrangians are degen-
erate. For the nondegenerate cases, the Legendre transformation is immediate after the intro-
duction of the Jacobi-Ostrogradsky momenta. For degenerate ones, one needs to employ the

Dirac-Bergmann algorithm.

In each of these cases, first we have studied directly the second order Lagrangians. We de-
fined related Jacobi-Ostrogradsky momenta, and the canonical Hamiltonian functions. At
this step, the Legendre transforation has been achieved for Pais-Uhlenbeck Lagrangian. For
Sarioglu-Tekin and Clément Lagrangians, further investigations have been needed. The
Dirac-Bergmann constraint algorithm have been run and the Dirac-Poisson brackets have

been constructed for these degenerate theories.

The reductions of Pais-Uhlenbeck, Sarioglu-Tekin and Clément Lagrangians to the first or-
der theories have been presented. The fiber derivatives have been computed and the Dirac-
Bergmann algorithms have been performed for the reduced Lagrangians. It has been shown
the possibility of arriving a reduced Lagrangian in a variational free form. Dirac analysis for

this is quite similar to the reduced first order Lagrangian.
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