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ABSTRACT

GEOMETRY OF SECOND ORDER DEGENERATE LAGRANGIANS

The goal of this thesis is to present the Hamiltonian formulations of the dynamical systems

generated by the second order Pais-Uhlenbeck, Sarıoğlu-Tekin and Clèment Lagrangians.

Pais-Uhlenbeck Lagrangian is non-degenerate in the sense ofOstrogradskywhereas Sarıoğlu-

Tekin and Clèment Lagrangians are degenerate. For the degenerate or/and constraint systems,

the Legendre transformation is not possible in a straight forward way. For the degenerate sys-

tems, one additionally needs to employ, for example, the Dirac-Bergmann algorithm in order

to arrive at the Hamiltonian picture.

We shall follow several alternative methods while arriving at the Hamiltonian represen-

tations of Pais-Uhlenbeck, Sarıoğlu-Tekin and Clèment dynamics. At first, we first shall

identify the configuration spaces, the tangent and the cotangent bundles. We shall first use

Jacobi-Ostragradskii momenta to define the primary sets of constraints. Accordingly, the

total Hamiltonian will be written. The Dirac-Bergmann algorithm will be run in order to

identify the final constraint submanifold. In each step of the algorithm, we shall revise the

total Hamiltonian by adding the secondary constraints. Once the final constraint set is deter-

mined, it is immediate to write the Hamilton's equations governing the dynamics. This is the

first and most common way. An alternative way arriving at the Hamilton's equations is to

construct the Dirac bracket. To do this, we shall first classify the constraints, determining the

final constraint submanifold, into two classes, namely the first and the second. Then, using

this classification, we shall define the Dirac brackets associated with the physical systems.

There is an alternative way to arrive the Hamilton's equations. In this approach, instead of

studying directly with the second order Lagrangians, we shall reduce the second order Pais-

Uhlenbeck, Sarıoğlu-Tekin and Clèment Lagrangians to first order Lagrangians by introduc-

ing new coordinates and Lagrange multipliers. In this case, the reductions will give degener-

ate first order Lagrangians even though the second order Lagrangian is non-degenerate. We

shall apply the Dirac-Bergmann algorithm for these first order formalisms in order to write

the Hamilton's equations.
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ÖZET

İKİNCİ DERECE DEJENERE LAGRANGİANLARININ GEOMETRİSİ

Bu tezin amacı ikinci derece Pais-Uhlenbeck, Sarıoğlu-Tekin and Clèment Lagrange fonksiy-

onları ile üretilen dinamik sistemlerin Hamilton formülasyonlarını elde etmektir.

Pais-Uhlenbeck, Ostrogradsky anlamında yozlaşmamış, fakat Sarıoğlu-Tekin and Clèment

yozlaşmış Lagrange fonksiyonlarıdır. Yozlaşmış sistemler için Legendre dönüşümleri direkt

olarak Hamilton resmini veremez. Bu tip durumlarda Dirac-Bergmann algoritması uygulan-

ması gerekmektedir.

Pais-Uhlenbeck, Sarıoğlu-Tekin ve Clèment dinamik denklemlerine karşılık gelen Hamil-

ton temsilleri bir kaç alternatif metod izlenerek elde edilcektir. Öncelikle, konfigürasyon

uzayları, tanjant ve kotanjant demetleri belirlenecektir. Jacobi-Ostragradskii momentum

değişkenleri aracılığıyla öncül kısıt altkatmanı tanımlanacaktır. Toplam Hamilton fonksiy-

onu yazılacaktır. Dirac-Bergmann algoritması çalıştırılacak ve bu şekilde son kısıt altkat-

manı elde edilecektir. Algoritmanın her adımında ikincil kısıtlar eklenerek toplam Hamilton

fonksiyonu revize edilecektir. Son kısıt katmanı elde edildiğinde, Hamilton denklemlerine

ulaşmak artık kolaydır. Buraya kadar yapılan literatürdeki en temel yaklaşımdır. Hamilton

temsile ulaşmak için yapılan alternatif bir yaklaşım ise Dirac çerçevelerini yazmaktır. Son

kısıt altkatmanını belirleyen fonksiyonlar ilk ve ikinci sınıf olmak üzere ayrılacak, bu şekilde

Dirac çerçevesi tanımlanacaktır.

İkinci derece Lagrange fonksiyonları ile çalışmaktansa, yeni koordinatlar ve Lagrange çarpım-

ları aracılığıyla, ikinci derece Lagrange fonksiyonları birinci derece Lagrnage fonksiyon-

larına indiregenecektir. İkinci derece Lagrange fonsiyonu yozlaşmamış olsa bile, indirgen-

miş birici derece Lagrange fonksiyonu yozlaşmış olacaktır. Bu durumda kaçınılmaz olarak

Dirac-Bergmann algoritması kullanılacak ve Hamilton denklemleri bu şekilde elde edilecek-

tir.



vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. THE LAGRANGIAN AND THE HAMILTONIAN DYNAMICS . . . . . . 1

1.2. THELEGENDRETRANSFORMATIONANDDIRAC-BERGMANNCON-

STRAINT ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. LAGRANGIANS DEPENDING ON ACCELERATIONS . . . . . . . . . . 4

1.3.1. Ostrogradsky's Momenta . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2. Reduction to a First Order System . . . . . . . . . . . . . . . . . . . . . 5

1.4. THE GOAL OF THIS THESIS . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5. CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. THE FIRST ORDER THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. LAGRANGIAN DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. SYMPLECTICANDPOISSONMANIFOLDS,HAMILTONIANDYNAM-

ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. THE LEGENDRE TRANSFORMATION . . . . . . . . . . . . . . . . . . . 13

2.4. DIRAC-BERGMANN ALGORITHM . . . . . . . . . . . . . . . . . . . . . 14

2.4.1. Consistency Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2. Dirac Bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. THE SECOND ORDER THEORY . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1. THE SECOND ORDER LAGRANGIAN DYNAMICS . . . . . . . . . . . . 19

3.2. JACOBI-OSTROGRADSKY MOMENTA . . . . . . . . . . . . . . . . . . 20

3.2.1. Second Order Degenerate Lagrangians . . . . . . . . . . . . . . . . . . . 21

3.2.2. Reduction to First Order Formalism . . . . . . . . . . . . . . . . . . . . 22

3.2.3. Hamiltonian Formalism for Reduced First Order Lagrangians . . . . . . 24



viii

3.2.4. Unconstraint Variational Formalism . . . . . . . . . . . . . . . . . . . . 27

4. APPLICATIONS: THE TOPOLOGICAL MASSIVE GRAVITY . . . . . . . . . . 29

4.1. PAIS-UHLENBECK OSCILLATOR . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1. General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2. Jacobi-Ostrogradsky Method . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.3. The First Order Formalisms (Constraint Canonical Formalism) . . . . . . 31

4.1.4. Unconstraint Variational Formalism . . . . . . . . . . . . . . . . . . . . 41

4.2. SARIOĞLU-TEKİN LAGRANGIAN . . . . . . . . . . . . . . . . . . . . . 42

4.2.1. General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2. Jacobi-Ostrogradsky Method . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3. First Order Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4. The First Order Formalism as LSTC0
. . . . . . . . . . . . . . . . . . . . . 51

4.2.5. Unconstraint Variational Formalism for LSTC0
. . . . . . . . . . . . . . . . 55

4.2.6. An Alternative Reduction to the First Order Formalism . . . . . . . . . . 61

4.2.7. Unconstraint Variational Formalism for LSTC1
. . . . . . . . . . . . . . . . 66

4.3. CLÈMENT LAGRANGIAN . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1. General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2. Jacobi-Ostrogradsky Method . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3. Dirac Bracket Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.4. The First Order Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.5. The First Order Formalism as LCC1
. . . . . . . . . . . . . . . . . . . . . 84

4.3.6. Dirac Bracket Formalism for First Order Lagrangian . . . . . . . . . . . 91

4.3.7. Unconstrained Variational Formalism . . . . . . . . . . . . . . . . . . . 96

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



1

1. INTRODUCTION

There exist two different but equivalent representations of the Newton's classical dynamics,

namely the Lagrangian and the Hamiltonian dynamics. These theories offer two different

formulations of the Newton's second law

F (q, t) = mq̈ (1.1)

governing the motion of a single particle under the conservative force field [1, 2, 3, 4]. The

passage between the Lagrangian and the Hamiltonian dynamics is available by means of the

Legendre transformations if some non-degeneracy conditions hold. For the degenerate cases,

constructing passage is not an easy task [5, 6].

1.1. THE LAGRANGIAN AND THE HAMILTONIAN DYNAMICS

If the configuration space is an n-dimensional manifold Q, then the Lagrangian dynamics is

generated by a function(al) L on the tangent bundle TQ which, physically, corresponds the

velocity phase space [1, 2, 7]. The dynamics is governed by the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (1.2)

where (qi, q̇j) is a local chart on TQ those induced from (qi) onQ. Euler-Lagrange equations

are the second order differential equations in n numbers. If, particularly, the Lagrangian

function is chosen to be the difference of kinetic and potential energies L = K − V of a

single particle then the Euler-Lagrange equations (1.2) equal to the Newton's second law

(1.1) assuming that the force F (q, t) is given by minus of the gradient of V .

A Poisson structure on a manifold P is a bilinear skew-symmetric binary operation {•, •} on

the space F (P ) of smooth functions that satisfies

• Jacobi identity: {F1, {F2, F3}}+ {F2, {F3, F1}}+ {F3, {F1, F2}} = 0,

• Leibniz identity: {F1F2, F3} = F1 {F2, F3}+ {F1, F3}F2
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for all F1, F2, F3 in F(P ) [8, 9, 10]. The Hamilton's equations, governed by a Hamiltonian

function(al) H , is given by

ż = {z,H} . (1.3)

for a curve z = z(t) in P parameterized by the time variable t.

A manifoldM is called symplectic if it is equipped with a non-degenerate closed two-form

Ω [1, 11, 7, 12]. Cotangent bundle T ∗Q of a manifold Q, which can be assumed to be the

momentum phase space of a physical system, carries a canonical symplectic two-form. In

the symplectic framework, Hamilton's equations are defined by

iXH
Ω = −dH, (1.4)

where i is the interior derivative (contraction), d is the exterior derivative, and XH is the

Hamiltonian vector field associated with the Hamiltonian function H , [13, 14]. The Hamil-

ton's equations (1.4) take the particular form

q̇i =
∂H

∂pi
, ṗi =

∂H

∂qi
(1.5)

on the Darboux' coordinates (qi, pj).

A symplectic manifold is necessarily Poisson with the introduction of the non-degenerate

Poisson bracket

{H,K} := Ω (XH , XK) . (1.6)

Using the identification presented in Eq.(1.6), one may show that the Hamilton's equations

in (1.3) and (1.4) are coinciding. Note that, inverse of this discussion is not true, that is a

Poisson manifold is not necessarily symplectic [10].

Starting with the Euler-Lagrange equations (1.2), to write the Hamilton's equations (1.5), one

needs to relate the velocities (q̇i) with momenta (pi). This can be achieved by defining the

fiber derivative of the Lagrangian function, namely the Legendre transformation,

pi :=
∂L

∂q̇i
(q, q̇) . (1.7)

It is evident that, in order to make the transformation (1.7) invertible, one needs to employ a
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non-degeneracy condition, called the Hessian condition,

det
∂2L

∂q̇i∂q̇j
̸= 0. (1.8)

If a Lagrangian function satisfies the Hessian condition, then it is called non-degenerate (reg-

ular). In this case, the velocities q̇ can be written as functions of position and momenta (q, p).

That is, we have an invertible (one to one) transformation between the tangent and cotangent

bundles

FL : TQ→ T ∗Q : (q, q̇) →
(
q,
∂L

∂q̇

)
. (1.9)

By defining the canonical Hamiltonian function

H (q, p) = q̇i
∂L

∂q̇i
(q, p)− L

(
q,
∂L

∂q̇i
(q, p)

)
,

the Hamilton's equations (1.5) become equal with Euler-Lagrange equations (1.2).

1.2. THELEGENDRETRANSFORMATIONANDDIRAC-BERGMANNCONSTRAINT

ALGORITHM

If the Hessian condition (1.8) is not satisfied then the Lagrangian is called degenerate (sin-

gular) that is, one cannot solve the velocities in terms of momenta. Instead, one arrives an

immersed submanifold C of T ∗Q defined by the following constraint functions

Φa (q, p) = pa −
∂L

∂qa
= 0 (1.10)

where a ranging from 1 to the dimension of the kernel of FL. At 1950s, Dirac proposed an

algorithm to write the Hamilton's equations under the presence of such constraints [15]. This

method nowadays is called as the Dirac-Bergmann theory of constraints. The geometrization

of this algorithm was given by Gotay Nester and Hinds [16].

In the Dirac-Bergmann algorithm, the ultimate goal is arrive a final set of constraints, satis-

fying the consistency conditions, by starting from the primary set constraints (1.10). By this,

one obtains a well-defined Poisson submanifold Cf of T ∗Q. Using the constraints of the first
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kind {χα, α = 1, ..., r}, the Dirac-Poisson bracket is defined by

{F,H}Cf
= {F,H} − {F, χα}(C−1)αβ{χβ, H} (1.11)

on the final constraint manifold in terms of the Poisson bracket on T ∗Q. Here,

Cαβ = {χα, χβ} , α, β = 1, ..., r

is an invertible r × r−matrix [17]. In the main body of the thesis, we shall present the

algorithm and the construction of the Dirac bracket more explicitly.

1.3. LAGRANGIANS DEPENDING ON ACCELERATIONS

Note that, Euler-Lagrange equations (1.2) are the second order differential equation. The

question may arrise that, is there a Lagrangian formalims for higher order differential sys-

tems? More concretely, is it possible to write a third (or fourth) order differential equation

as an Euler-Lagrange equation?

The answer is positive. The geometrical framework for the third and fourth order systems

is the iterated tangent bundle T 2Q of Q, which consists of accelerations addition to the

position and velocities, with coordinates
(
qi, q̇j, q̈k

)
. In this case, a Lagrangian function

L = L (q, q̇, q̈) is defined on T 2Q and generates the second order Euler-Lagrange equations

d2

dt2

(
∂L

∂q̈i

)
− d

dt

(
∂L

∂q̇i

)
+
∂L

∂qi
= 0, (1.12)

which is, in general, a set of fourth order differential equations. If L is linear with respect

to the acceleration variable q̈i, then ∂L/∂q̈i is free from q̈i, hence the second order Euler-

Lagrange equations (1.12) give a set of third order differential equations.

1.3.1. Ostrogradsky's Momenta

To write the second order Euler-Lagrange equations (1.12) as in the form of Hamilton's equa-

tions (1.5), one proceeds as follows. First, consider the dual bundle T ∗TQ with local coor-
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dinates (qi, q̇j, pk, ṗl). On T ∗TQ, the canonical Poisson bracket is defined by

{qi, pj} = {q̇i, ṗj} = δij

and, all others are zero. A higher dimensional version the fiber derivative (1.7) was intro-

duced by Ostrogradsky around 1850's, and it is given by

pi =
∂L

∂q̇i
(q, q̇, q̈)− d

dt

∂L

∂q̈i
(q, q̇, q̈) , ṗi =

∂L

∂q̈i
(q, q̇, q̈) . (1.13)

A second order Lagrangian is called non-degenerate in the sense of Ostrogradsky if one can

solve q̈ in terms of (q, q̇, ṗ) using (1.13). This is possible if the second order Hessian condition

is satisfied, namely

det
∂2L

∂q̈iq̈j
̸= 0.

In this case, the Hamiltonian formulation follows introduction of the canonical Hamiltonian

function

H (q, q̇, p, ṗ) = piq̇
i + ṗiq̈

i (q, q̇, ṗ)− L (q, q̇, q̈ (q, q̇, ṗ))

on the iterated cotangent bundle T ∗TQ.

When there are degeneracies, the Legendre transformation is not immediate. The direct way

to solve this to apply Dirac-Bergmann constraint algorithm to the image space of (1.13). In

the literature, there are intensive studies on the Legendre transformation of singular or/and

constraint higher order Lagrangian systems, [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

We cite [31, 32, 33] for the case of Ostrogradsky-Legendre transformation on Lie groups. We

additionally refer some recent studies on the second order Lagrangians whose dependence

on the acceleration are linearly and/or affine [34].

1.3.2. Reduction to a First Order System

It is possible to recast a second order Lagrangian function L as a first order Lagrangian func-

tion L̄ by calling consecutive time derivatives of initial coordinates as new coordinates. Evi-

dently, this can be done in several different but equivalent ways. One option is to embed the
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second order tangent bundle T 2Q into the iterated tangent bundle given by

T 2Q ≃ {Z ∈ TTQ : τTQ (Z) = TτQ (Z)},

where τTQ is the tangent bundle projection TTQ→ TQ, and TτQ is the tangent mapping of

the projection τQ. In this case, a first order Lagrangian function can be written as

L̄ (q1, q̇1, q̇2, λ) = L (q1, q̇1, q̇2) + λi
(
q̇i1 − qi2

)
,

where it is assumed that that q1 = q and q2 = q̇.

Alternatively, by the definitions q1 = q, q2 = q̇ and q3 = q̈ being made, one may introduce

the following first order Lagrangian

L̄ (q1, q2, q3, λ, β) = L (q1, q2, q3) + λi
(
q̇i1 − qi2

)
+ βi

(
q̇i2 − qi3

)
,

where both of λi's and βi's are the Lagrange multiplies.

Note that, absence of the λ̇ manifests the degeneracy of both of the first order Lagrangians

derived in this subsection. Hence, to arrive the Hamiltonian picture, one has to employ Dirac-

Bergmann algorithm.

1.4. THE GOAL OF THIS THESIS

Our goal in this thesis is to obtain Hamiltonian formulations of some of the second order

Lagrangian formalisms arising in the theory of topological massive gravity, namely Clément,

Sarıoğlu-Tekin, and Pais-Uhlenbeck Lagrangians. We record here these Lagrangian densities

with some comments on the physical motivations.

The action for topologically massive gravity consists of the action for cosmologocal gravity

and the Chern-Simons term. Clément, in his search for particle like solutions for this theory,

reduced the action [35, 36, 37] to the second order degenerate Lagrangian density

LC [X] = −m
2
ζẊ2 − 2mΛ

ζ
+

ζ2

2µm
X · (Ẋ× Ẍ) (1.14)
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for three component vector function X of the independent variable t. The notation [X] repre-

sents three vectors consisting of X, its velocity Ẋ and acceleration Ẍ, that is [X] = (X, Ẋ, Ẍ).

Here, the inner productX2 = T 2−X2−Y 2 is defined by the Lorentzian metric and the triple

product is X · (Ẋ× Ẍ) = ϵijkX
iẊjẌk where ϵijk is the completely antisymmetric tensor of

rank three. Dot denotes the derivative with respect to the variable t and ζ = ζ(t) is a function

which allows arbitrary reparametrization of the variable t. Λ and 1/2m are cosmological and

Einstein gravitational constants, respectively.

In a more recent work [38], Sarıoğlu and Tekin considered an action consisting of Einstein-

Hilbert, Chern-Simons and Pauli-Fierz terms and, obtained the reduced Lagrangian density

LST [X,Y] = 1

2

[
a(Ẋ2 + Ẏ2) +

2

µ
Ẏ · Ẍ−m2(Y2 + X2)

]
(1.15)

by supressing the spatial part of the theory. Here, a, µ,m are parameters and X,Y are three-

vectors. In the context of higher derivative theories, they also considered Pais-Uhlenbeck

oscillator as a nonrelativistic limit. This is described by the nondegenerate Lagrangian den-

sity

LPU [X] =
1

2

[
Ẍ2 − (q2 + p2)Ẋ2+p2Ω2X2

]
(1.16)

whereX is a real dynamical variable, p and q are positive real parameters [39]. Functionally,

Clèment and Sarıoğlu-Tekin Lagrangians are significantly different than the Pais-Uhlenberg

Lagrangian since they involve degeneracies.

1.5. CONTENTS

This thesis is organised as follows: In the next chapter, the brief summery of the first or-

der Lagrangian and the Hamiltonian dynamics for non-degenerate and degenerate cases are

presented. For the first order degenerate theories, the Dirac-Poisson bracket and the Dirac-

Bergmann constraint algorithm are exhibited.

In the third chapter, the second order Lagrangian theory are reviewed. The Jacobi-Ostrogradsky

momenta are defined. In progress, the Hamiltonian formalisms of a second order degenerate

Lagrangian theory is analysed in two different but equivalent ways. At First, the Dirac-

Bergmann constraint algorithm is directly applied to the total Hamiltonian written for the
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second order Lagrangian. Secondly, the second order Lagrangian is reduced to a first order

Lagrangian by defining new coordinates and encoding these new coordinates in to the theory

by addition of some Lagrange multipliers. Then, the total Hamiltonian is written for this re-

duced first order Lagrangian, and accordingly, the Dirac-Bergmann algorithm is applied. As

a particular and alternative way, the Legendre transformation is performed to an unconstraint

Lagrangian which is obtained by solving the Lagrange multipliers.

In the last chapter, we analyse some concrete second order degenerate Lagrangians, namely

Pais-Uhlenbeck [39], Sarıoğlu-Tekin [38] and Clèment [37]. For each of them, the Jacobi-

Ostrogradsky momenta are defined and the Dirac-Bergmann constraint algorithm is applied.

At the end, the Hamilton's equations are written. Alternatively, the Dirac-Poisson brackets

are computed for each of the theories and the Hamilton's equations are rewritten using the

Dirac-Poisson bracket in order to make a cross check. The reductions of these second order

theories to the proper first order ones are also exhibited. Similar to the second order versions,

the Dirac-Bergmann algorithms are applied and the Hamilton's equations are written to these

reduced first order systems as well.
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2. THE FIRST ORDER THEORY

2.1. LAGRANGIAN DYNAMICS

We start with an n−dimensional manifold Q, assumed to be the configuration space of a

physical system, and a local coordinate chart

q = (q1, ..., qn) ∈ Q.

The tangent space to the manifold Q at a point q is denoted by TqQ. The union of the all

tangent spaces constitutes the tangent bundle TQ, which corresponds to the velocity-phase

space of the physical system [1, 2, 7]. We equip the tangent bundle TQ with the induced

local coordinate system

(q, q̇) = (q1, ..., qn, q̇1, ..., q̇n) ∈ TQ

consisting of the positions and the velocities. The tangent bundle projection τQ : TQ → Q,

locally, maps the two-tuple (q, q̇) to its first components (q) defining the position.

A first order Lagrangian density L = L(q, q̇) is a real valued function on TQ. The corre-

sponding action integral is

SL =

∫ t2

t1

L(q, q̇)dt, (2.1)

for two fixed points q (t1) and q (t2) in Q [3, 7]. In order to derive the extremum values of

the functional SL, we take variation of the action integral and equate it to the zero, that is

δSL =

∫ t2

t1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)
dt = 0. (2.2)

Using the commutation of the variation with the time derivative, applying the by parts tech-

nique for the second term in the integral (2.2), and employing the boundary conditions δq(t1) =

δq(t2) = 0, we arrive ∫ t2

t1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqidt = 0. (2.3)
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Note here that, the boundary terms define the Lagrangian one-form

θL[q
i] ≡ ∂L

∂q̇i
dqi. (2.4)

We assume that the variation δqi is arbitrary, then Eq.(2.3) gives the Euler-Lagrange equations

[3]
d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, (2.5)

which constitute a system of second order differential equations

∂2L

∂q̇j∂q̇i
q̈j =

∂L

∂qi
− ∂2L

∂qj∂q̇i
q̇j. (2.6)

For the Lagrangians resulting in the same Euler-Lagrange equations (2.5), Lagrange one-form

θL in (2.4) is not unique. However, its functional exterior derivative

ΩL ≡ dθL (2.7)

is a well-defined presymplectic two-form on TQ.

If the determinant of the Hessian matrix

Aij =
∂2L

∂q̇i∂q̇j
(2.8)

is not zero or, equivalently, if the rank r of the Hessian matrix (2.8) is equal to the dimen-

sion n of Q, then the Lagrangian L is called non-degenerate [40, 41, 42]. In this case, the

accelerations q̈'s are uniquely determined by the positions q and the velocities q̇. If the rank

of the Hessian matrix (2.8) is smaller then n, the Lagrangian is called degenerate. In this

case, it is not possible to determine q̈'s uniquely in terms of q and q̇. So that, a solution of the

Euler-Lagrange Eq.(2.5) may contain arbitrary functions.

2.2. SYMPLECTIC AND POISSON MANIFOLDS, HAMILTONIAN DYNAMICS

A manifoldM equipped with a closed and non-degenerate 2-form ωM is called a symplec-

tic manifold. A symplectic manifold is denoted by (M,ωM). The non-degeneracy of the
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symplectic two-form ωM enables us to define a 1-1 correspondence between the gradients of

the functions and the vector fields onM . This isomorphism leads us to write the Hamilton's

equation of motion in a coordinate invariant form. Let H be a the Hamiltonian function on

M , then the Hamilton's equations are

iXH
Ω = −dH (2.9)

where i is the interior derivative (contraction), d is the exterior derivative, and XH is the

Hamiltonian vector field associated with H , [13, 14]. The triplet (M,ωM , XH) is called a

Hamiltonian system.

To see the Hamilton's equations (2.9) in coordinates, we first introduce the cotangent bun-

dle T ∗Q which is generic for all symplectic manifolds. Physically, one may regard T ∗Q

as the momentum-phase space of the system. On T ∗Q, there is a distinguished set of local

coordinates

(q, p) = (q1, ..., qn, p1, ..., pn)

called the Darboux' coordinates which enables us to write the symplectic structure in the form

of

ωT ∗Q = dpi ∧ dqi.

In this local picture, for a Hamiltonian function H on T ∗Q, the Hamiltonian vector field is

computed to be

XH(q, p) =

(
∂H

∂pi
,−∂H

∂qj

)
, (2.10)

so that the Hamilton's equations (2.9) turn out to be

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.11)

Alternatively, onemay represent theHamilton's equations (2.11) in terms of a Poisson bracket.

To arrive this, start with a function F = F (q, p), and take the derivative of F with respect to
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time. This gives

dF

dt
=

∂F

∂qi
q̇i +

∂F

∂pi
ṗi (2.12)

=
∂F

∂qi
∂H

∂pi
− ∂F

∂pi

∂H

∂qi
=: {F,H} . (2.13)

Here, {F,H} is the canonical Poisson bracket of two functions. In this notation, the Hamil-

ton's equations (2.11) can be written as

ż = {z,H}.

More general, a Poisson structure on a manifold P is a skew-symmetric bilinear map which

takes two differentiable functions H and F to a new one

{., .} : F (P)×F (P) → F (P) , (2.14)

satisfying both of the Jacobi identity

{F, {H,G}}+ {H, {G,F}}+ {G, {F,H}} (2.15)

and the Leibnitz identity

{F1F2, G} = {F1, G}F2 + {F2, G}F1. (2.16)

A manifold equipped with a Poisson bracket is called a Poisson manifold.

A symplectic manifold is necessarily a Poisson manifold with the introduction of the non-

degenerate Poisson bracket

{H,K} := Ω (XH , XK) . (2.17)

A Poisson manifold is not a symplectic manifold necessarily due to the non-degeneracy con-

dition on the two-form. Actually, a local picture of a Poisson manifold foliates into a product

space whose leafs are symplectic [10].
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2.3. THE LEGENDRE TRANSFORMATION

At least in a theoretical level, one expects that the Euler-Lagrange equations (2.5) and the

Hamilton's equations (2.11) be in relation. Unfortunately, in practice, constructing the pas-

sage between the Lagrangian and Hamiltonian formulations is not so straight forward. This

may be achieved by the Legendre transformation defined in terms of the fiber derivative

pi =
∂L

∂q̇i
. (2.18)

Geometrically, the fibre derivative maps the tangent bundle TQ into the cotangent bundle

T ∗Q, the phase space of Hamiltonian mechanics

FL : TQ→ T ∗Q :
(
qi, q̇j

)
→
(
qi,

∂L

∂q̇j

)
. (2.19)

In equation (2.18), all velocities q̇i can be expressed uniquely in terms of momenta if the

non-degeneracy condition holds that is if the rank of the Hessian matrix (2.8) is full. In this

case, we arrive a Hamiltonian function

H(qi, pi) = pj q̇
j(qi, pi)− L(qi, q̇i(qj, pj)). (2.20)

depending on (qi, pi). The Euler-Lagrange equations (2.5) and the The Hamilton's equations

(2.11) for the Hamiltonian function H presented in Eq.(2.20) coincide. To see this, take

exterior derivative of the right hand side of equation (2.20). That is

d(piq̇
i − L) = q̇idpi + pidq̇

i − ∂L

∂qi
dqi − ∂L

∂q̇i
dq̇i (2.21)

using pi = ∂L
∂q̇i
, the second and fourth term cancel so we have

d(piq̇
i − L) = q̇idpi −

∂L

∂qi
dqi. (2.22)

On the other hand exterior derivative of left hand side of the equation (2.20)

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi (2.23)
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Equivalence of differentials terms dpi and dqi in equations (2.22) and (2.23) give the Hamil-

ton equations (2.11).

Obviously, for degenerate cases, all these calculations can not be performed. In the following

section, we study Dirac-Bergmann constraint algorithm to arrive a Hamiltonian formulation

for degenerate Lagrangian systems.

2.4. DIRAC-BERGMANN ALGORITHM

A (generalized) Hamiltonian formulation of degenerate first order Lagrangian systems was

developed by Dirac [15], nowadays the method he proposed is called the Dirac-Bergmann

constraint algorithm [40, 42, 43, 44].

For a given LagrangianL, if the rank r of the hessian matrix in Eq.(2.8) is less then dimension

n of Q, then all of the velocities cannot be solved in terms of the momentum variables. So

that, the momentum variables are not all independent. Instead, there exists some relations

Φm(q, p) = 0, m = 1, ..., n− r, (2.24)

called as primary constraints, [43]. They define a n + r dimensional submanifold C, called

the primary constraint submanifold, of 2n dimensional phase space T ∗Q.

Hamiltonian H(qi, pi) for the degenerate cases is far from being unique. One may add arbi-

trary linear combinations of the primary constraints to the Hamiltonian function. This leads

to the total Hamiltonian

HT (q, p) = H(q, p) + um(q, p)Φm(q, p) (2.25)

for arbitrary functions um called the Lagrange multipliers [15, 40, 41]. Note that, on the

constraint submanifold C, the canonical Hamiltonian H and the total Hamiltonian HT are

coinciding.

Thus, in dealing with dynamics of total Hamiltonian HT we need to evaluate quantities at

Φm(q, p) = 0. Note that, as it is stated in [40], we don't use constraints before working out

Poisson brackets since primary constraints may have non-zero Poisson brackets with some
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canonical variables. To remind this, it is customary to use the weak equality symbol ≈.

Accordingly, the Hamilton's equations of motion for HT become

q̇i =
∂HT

∂pi
≈ ∂H

∂pi
+ um

∂Φm

∂pi
(2.26)

ṗi =
∂HT

∂qi
≈ −∂H

∂qi
− um

∂Φm

∂qi
(2.27)

where we set ϕm ≈ 0 on right hand sides after taking derivatives. Using the canonical Poisson

bracket, we can rewrite the Hamilton equations (2.26) and (2.27) as

q̇i = {qi, HT} ≈ {qi, H}+ um{qi,Φm} (2.28)

ṗi = {pi, HT} ≈ {pi, H}+ um{pi,Φm}. (2.29)

More generally, the evolution of an arbitrary function F (qi, pi) on the phase space is

Ḟ ≈ ∂F

∂qi
dqi

dt
+
∂F

∂pi

dpi
dt

≈ ∂F

∂qi

(
∂H

∂pi
+ um

∂Φm

∂pi

)
+
∂F

∂pi

(
−∂H
∂qi

− um
∂Φm

∂qi

)
≈ {F,H}+ um{F,Φm} (2.30)

using (2.26) and (2.27).

2.4.1. Consistency Conditions

In particular, taking F in (2.30) to be a primary constraint Φm, we obtain a consistency con-

dition

Φ̇m ≈ {Φm, H}+ uj{Φm,Φj} ≈ 0, (2.31)

see, for example, [15, 40, 41, 42]. By repeating this for m = 1, ..., n − r, we arrive a set of

nonhomogeneous linear equations in the unknown uj 's. The following cases may arise from

these equations:

(i) They may be inconsistent 1 ≈ 0 and do not possess any solution for uj .

(ii) They may be a set of equations 0 ≈ 0.
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(iii) They may be a set of equations independent of uj 's andΦm's. In this case, we have that

det ({Φm,Φj}) ≈ 0 and {Φm, H} ̸= 0. Thus, Eq.(2.31) define new constraints

ϕr(q
i, pi) ≈ 0 (2.32)

called the secondary constraints. Note that, by definition, the secondary constraints

are independent from the primary ones. Add these secondary constraints into the total

Hamiltonian HT in (2.25), and define

H1
T = H + umΦm + vrϕr (2.33)

with Lagrange multipliers vr. The set of consistency conditions must be extended to

include secondary constraints. Consistency of secondary constraints leads to

{ϕr, H1
T} = {ϕr, H}+ um{ϕr,Φm}+vs{ϕr, ϕs} ≈ 0 (2.34)

which may either imply new (tertiary) constraint or may restrict the multipliers um's

or vr 's. Repeating this process, one enlarges the primary constraint set with the new

(secondary, tertiary, ...) constraints, redefinesHT by introducing new Lagrange multi-

pliers for new constraints and by repeating the consistency computations. This process

ends when no more new constraint arises.

(iv) They may be a set of equations for the unknown multipliers uj 's.

(i) det ({Φm,Φj}) ̸= 0 and {Φm, H} ̸= 0.

In this case uj 's are uniquely fixed to be

uj ≈ −
(
M−1

)jm {ϕm, H} (2.35)

whereM = {Φm,Φj}. The equations of motion become

Ḟ ≈ {F,H} − {F,Φm}
(
M−1

)mj {Φj, H} (2.36)

for any function F .
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(ii) det ({Φm,Φj}) ≈ 0 and {Φm, H} ≈ 0.

In this case a homogeneous system of equations for ujs are obtained and a non-

trivial solution exists.

At the end, we are faced with the whole set of constraints (primary, secondary etc...)

Ψj = Φm ∪ ϕl ≈ 0 j = 1, ..., n− r + k = J (2.37)

and total Hamiltonian with determined and undetermined Lagrange multipliers. Using this

final total Hamiltonian we can find equation of motion using (2.28) and (2.29). One has to

be careful about not to use constraints before evaluating the equations of motion, that means,

first, we have to evaluate equations of motion, then we can use the constraints.

2.4.2. Dirac Bracket

We may classify the set of all constraints (2.37) into two classes by evaluating the Poisson

bracket of the constraints. If the Poisson brackets of F (qi, pi) with all {Ψj} vanish modulo

the constraint

{F,Ψj} ≈ 0, j = 1, ..., J (2.38)

thenF (qi, pi) is a called first class constraint. Otherwise, it is called a second class constraint,

[15, 40]. Surely, this classification is possible only after all constraints have been found.

• Second Class Constraints

Assume that, there is no first class constraints, that is consider the case where all con-

straints are the second class. Let us denote them by (Ψs). The Poisson bracket of these

constraints will form a nonsingular matrixM = [Mst] with

Mst = {Ψs,Ψt}.

Accordingly, the Dirac bracket is defined by

{F,G}DB = {F,G} − {F,Ψs}M st{Ψt, G} (2.39)
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whereM st is components of the inverse matrix of [Mst]. In this formulation, one can

use the constraints before evaluating the bracket. This means that, the weak equality

becomes a strong equality, since {Ψj, F}DB = 0. With the help of Dirac bracket (2.39)

the equations of motion can be written as

ż ≈ {z,H}DB (2.40)

• First Class Constraints

Contrary, assume that, there is no second class constraint. In this case, we can divide

the whole first class constraints as primary first class Ψm and the others Ψa. As it

is stated in [40], the first class constraints do not change the state. They just lead to

arbitrary functions in the general solution of the equations of motion. These unwanted

degrees of freedom can be eliminated by using the Dirac bracket and by redefining total

Hamiltonian HE .

• First and Second Class Constraints

Assume that the rank R of the Poisson bracket matrix of all constraints Ψj (primary

and secondary) in (2.37)

{Ψi,Ψj} ≈ Nmn ̸= 0 (2.41)

is less than J . That is, we have R number of second class and J − R number of first

class constraints. Due to Dirac [15, 40], try to make a transformations of second class

Ψ∗
s ≈ νs

′

s Ψs′ , s = 1, ..., R (2.42)

so as to bring as many second class constraints as possible into the first class. Let us

call second class constraints which cannot bring into first class asΨα and their Poisson

bracket with each other leads to non singular matrix Nαβ ≈ {Ψα,Ψβ}, thus we get

Euler-Lagrange equations of motion using inverse of this matrix and Dirac bracket as

it is done when all constraints are second class case.
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3. THE SECOND ORDER THEORY

3.1. THE SECOND ORDER LAGRANGIAN DYNAMICS

LetQ be ann-dimensional differentiablemanifold with coordinates (qi). The 2nd order

tangent bundle

T 2Q = ∪T 2
qQ

is 3n-dimensional manifold with induced coordinates consisting of positions, velocities

and accelerations. The induced local chart looks like

(q, q̇, q̈, ) = (q1, ..., qn, q̇1, ..., q̇n, q̈1, ..., q̈n) ∈ T 2Q.

There are projections given by

2
0τQ : T 2Q→ Q : (q, q̇, q̈) → (q) (3.1)
2
1τQ : T 2Q→ TQ : (q, q̇, q̈) → (q, q̇) . (3.2)

Note that T 2Q can be embedded into the iterated tangent bundle T (TQ) with coordi-

nates (qi, V i, q̇i, V̇ i) through the identification V i = q̇i.

A second order Lagrangian density L[q] = L(q, q̇, q̈) is a function on the second order

tangent bundle T 2Q. The functional differential of L[q] with respect to q is

d(L[q]dt) = (
∂L

∂qi
qi +

∂L

∂q̇i
q̇i +

∂L

∂q̈i
q̈i)

= εqi(L[q])dq
i +

d

dt
θL[q] (3.3)

where the first term gives Euler-Lagrange equations

εqi(L[q]dt) ≡
∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
= 0 (3.4)
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and the boundary term is the total derivative of the functional one-form

θL[q
i] ≡ ∂L

∂q̈i
dq̇i + (

∂L

∂qi
− d

dt

∂L

∂q̇i
)qi. (3.5)

Similar to the first order theory, for the Lagrangians resulting in the Euler-Lagrange

equations (3.4), θL is not unique. However, its functional exterior derivative

ΩL[q] ≡ dθL[q] (3.6)

is a well defined two-form on T 2M . A second order Lagrangian L is called to be

degenerate if the extended or generalized Hessian matrix

Wij ≡
∂2L

∂q̈i∂q̈j
(3.7)

is a singular matrix, with rank r < n otherwise it is non-degenerate.

3.2. JACOBI-OSTROGRADSKY MOMENTA

On the dual picture, the momentum phase space T ∗TQ is a canonical symplectic man-

ifold with coordinates (qi, q̇i, p0i , p1i ). Hence it is endowed with the canonical Poisson

bracket which results in the fundamental Poisson bracket relations

{qi, p0j} = {q̇i, p1j} = δij (3.8)

and, all the others are zero.

The form of the Lagrangian one-form θL in (3.5) already suggests that we can introduce

the momenta for a second order Lagrangian as

p0i [q] =
∂L

∂q̇i
− d

dt

∂L

∂q̈i

=
∂L

∂q̇i
− ∂2L

∂q̈i∂qj
q̇j − ∂2L

∂q̈i∂q̇j
q̈j − ∂2L

∂q̈i∂q̈j
...
q j (3.9)

p1i [q] =
∂L

∂q̈i
, (3.10)

which are called the Jacobi-Ostrogradsky momenta [45]. Conjugated respectively to
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qi and q̇i. Lagrangian one-form

θL[q] ≡ p0j [q]dq
j + p1j [q]dq̇

j (3.11)

is the pull back of the canonical (Liouville) one-form θT ∗TQ by the Legendre map,

FL : T 3Q −→ T ∗TQ (3.12)

where T 3Q carries the local coordinates (qi, q̇i, q̈i,
...
q i).

If the extended Hessian matrix (3.7) is non-singular, then we can express q̈i and
...
q i as

functions of the Ostrogradsky momenta given by

q̈i = q̈i(qi, q̇i, p1i ) (3.13)
...
q i =

...
q i(qi, q̇i, p0i , p

1
i ) (3.14)

The canonical Hamiltonian H for a second order non-degenerate Lagrangian is given

by

H ≡ p0i q̇
i + p1i q̈

i − L(qi, q̇i, q̈i). (3.15)

whereas the Hamilton's equations

q̇i =
∂H

∂p0i
, q̈i =

∂H

∂p1i
(3.16)

ṗ0i = −∂H
∂qi

, ṗ1i = −∂H
∂q̇i

. (3.17)

are equivalent to fourth order Lagrange equations of motion (3.4) [45]

3.2.1. Second Order Degenerate Lagrangians

Assume that rank of the extended Hessian matrixWij is r < n, this means it is possible

to solve only r number of q̈i's, in other words, n − r number of the momenta are
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dependent according to the set of the primary constraints

Φα(q
i, q̇i, p1) ≈ 0, α = 1, ..., n− r (3.18)

follow from (3.10). It is also possible to arrive some constraints η(qi, q̇i, p0i ) ≈ 0 from

equation (3.9) if they are independent of q̈i. But all such constraints can also be derived

as secondary constraints [62]. We remark that, if p0 depends additionally on q̈, then q̈

should be solved as a function of (q, q̇, p0).

Using primary constraints, total Hamiltonian is

HT = H + uαΦα (3.19)

where uα's are the Lagrange multipliers, andH is the canonical Hamiltonian in (3.15).

Procedure after this point is the same with first order singular theory, c.f. the section

2.4. Check the consistency of each primary constraint Φα to get secondary constraint

or determine Lagrange multipliers. Once the Dirac-Bergmann algorithm is ended after

the substitution of the determined Lagrange multipliers uα into the total Hamiltonian

(3.19), equations of motion are written as

q̇i ≈ {qi, HT}, q̈i ≈ {q̇i, HT} (3.20)

ṗ0i ≈ {p0i , HT}, ṗ1i ≈ {p1i , HT} (3.21)

on the final constraint submanifold. In this higher order case, it is also possible to

define Dirac Poisson bracket as well after the complete set of constraints is determined

c.f. section 2.4.2.

3.2.2. Reduction to First Order Formalism

A second order Lagrangian onT 2Qmay be treated as a constraint first order Lagrangian

on the iterated tangent bundle TTQ equipped with a local frame

qi ≡ Qi
0, q̇i ≡ Q̇i

0 ≡ Qi
1, (Qi

0, Q
i
1) ∈ TQ ≡M. (3.22)
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Tangent and cotangent bundles are TM = TTQ and T ∗M = T ∗TQ with local coor-

dinates

(Qi
0, Q

i
1, Q̇

i
0, Q̇

i
1) = (qi, q̇i, q̇i, q̈i) ∈ TM

(Qi
0, Q

i
1, P

0
i , P

1
i ) = (Q,P ) ∈ T ∗M.

The Lagrangian L on T 2Q will become one of the first order degenerate Lagrangians

L0
c(Q

i
0, Q

i
1, Q̇

i
0, Q̇

i
1, λ) ≡ L0(Qi

0, Q̇
i
0, Q̇

i
1) + λ0i (Q̇

i
0 −Qi

1) (3.23)

L1
c(Q

i
0, Q

i
1, Q̇

i
0, Q̇

i
1, λ) ≡ L1(Qi

0, Q
i
1, Q̇

i
1) + λ1i (Q̇

i
0 −Qi

1) (3.24)

on TM with the same constraintQi
1 − Q̇i

0 = 0 and with different Lagrange multipliers

λ0 or λ1 depending on the variables Q̇0 orQ1 adapted for the second order Lagrangian

L. [21, 23, 26, 30]. Variations of both of the Lagrangian densities L0
c and L1

c with

respect to Qi
0 give Euler-Lagrange equations (3.4)

δL0

δQ0

=
∂L0

∂Qi
0

− d

dt

∂L0

∂Q̇i
0

− dλ0i
dt

= 0 (3.25)

δL1

δQ1

=
∂L1

∂Qi
0

− dλ1i
dt

= 0 (3.26)

in the variable qi = Qi
0, upon the use of constraint Qi

1 = Q̇i
0 and Lagrange multipliers

λ0i , λ
1
i

λ0i = − d

dt

∂L0

∂Q̇i
1

, λ1i =
∂L1

∂Qi
1

− d

dt

∂L1

∂Q̇i
1

. (3.27)

obtained from variation with respect to Qi
1. Note that the equations (3.25) and (3.26)

give Euler-Lagrange equations of motion (3.4) but the definitions of the Lagrange mul-

tiplier λ0i and λ1i are changing. Finally variations of L0
c and L1

c with respect to λ0i and

λ1i give constraint Q̇i
0−Qi

1. Both L0
c and L1

c are degenerate since derivative of λ is not

included. So for the Hamiltonian formalism, we have to apply Dirac analysis.
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3.2.3. Hamiltonian Formalism for Reduced First Order Lagrangians

Hamiltonian Formalisms for L1
c : Canonical momenta for L1

c are defined as

Π0
i =

∂L1
c

∂Q̇i
0

= λ1i (3.28)

Π1
i =

∂L1
c

∂Q̇i
1

=
∂L1

∂Q̇i
1

(3.29)

Πi
λ =

∂L1
c

∂λ̇1i
= 0. (3.30)

These are identical to Jacobi-Ostrogradsky momenta (3.9) and (3.10) using definition

of λ1i in (3.27) and qi = Qi
0, Q̇

i
0 = Qi

1. The Lagrangian phase space is transformed to

Hamiltonian phase spaceT ∗(TQ×Rn)with canonical coordinates (Qi
0, Q

i
1, λ

1
i ,Π

0
i ,Π

1
i ,Π

i
λ)

and satisfy the canonical Poisson bracket relations

{Qi
α,Π

β
j } = δβαδ

i
j, {λ1i ,Π

j
λ} = δji . (3.31)

T ∗(TQ× Rn) is canonical symplectic with the symplectic two form

ΩT ∗(TQ×Rn) = dQj
0 ∧ dΠ0

j + dQj
1 ∧ dΠ1

j + dλ1j ∧ dΠ
j
λ

= dθT ∗(TQ×Rn) (3.32)

where θT ∗(Q×Rn) = Π0
jdQ

j
0 +Π1

jdQ
j
1 +Πj

λdλ
1
j is the canonical one form.

Definition of momenta leads to primary constraints

Φ0
i = Π0

i − λ1i = 0 (3.33)

Φ1
i (Q

i
0, Q

i
1,Π

1
i ) = 0 (3.34)

Φi
λ = Πi

λ = 0 (3.35)

since neither of momenta is invertible as a function of canonical coordinates and mo-
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menta. The canonical Hamiltonian function for L1
c is

H = Π0
i Q̇

i
0 +Π1

i Q̇
i
1 +Πi

λλ̇
1
i − L1

c

= Π1
i Q̇

i
1 +Π0

iQ
i
1 − L1 (3.36)

using primary constraints. This canonical Hamiltonian function is also independent

from Q̇i
1(For the proof see [62]). Then the total Hamiltonian is

HT = H + ui0ϕ
0
i + ui1ϕ

1
i + uλi ϕ

i
λ (3.37)

where ui0, ui1 and uλi are Lagrange multipliers. After this point, there is no differ much

from first order singular theory. Apply Dirac procedure: first check the consistency

condition for each primary constraint ϕ0
i , ϕ

1
i and ϕiλ to find new constraints or to deter-

mine Lagrange multipliers ui as it is explained in section 2.4 .

As an another interpretation, stated in the ref [30], consistency condition of ϕ0
i implies

ui0 = 0. Constraints ϕiλ = Πi
λ only effects the equation of motion for λ1i , that means

we don't need to add this constraint to canonical Hamiltonian function H . Hence we

are faced with the Hamiltonian

HT = H + ui1ϕ
1
i . (3.38)

ThisHT is completely equivalent to the Hamiltonian (3.19). So consistency of primary

constraint will give same secondary constraint.

Hamiltonian Formalisms for L0
c : For the alternative first order Hamiltonian formalism,

Canonical momenta for L0
c are

π0
i =

∂L0
c

∂Q̇i
0

=
∂L0

∂Q̇i
0

+ λ0i (3.39)

π1
i =

∂L0
c

∂Q̇i
1

=
∂L0

∂Q̇i
1

(3.40)

πiλ =
∂L0

c

∂λ̇0i
= 0. (3.41)

When we compare momenta Π and π, it is easy to see Π1
i = π1

i ,Π
i
λ = πiλ,Π

0
i = π0

i
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using definitions of λ0i , λ1i and constraint Q̇i
0 = Qi

1.

The canonical Hamiltonian for L0
c

H = π0
i Q̇

i
0 + π1

i Q̇
i
1 + πiλλ̇

0
i − L0

c (3.42)

is equivalent to the Hamiltonian (3.36) using Q̇i
0 = Qi

1.

After this point, we have to discuss whether there exit any primary constraint or not

from the definitions of momenta. It is exact to get constraint πλ, since L0
c is not a

function of λ̇0 it is not possible to solve λ̇0. But on the other hand, if it is possible to

solve the velocities Q̇i
0 and Q̇i

1 from π0 and π1
i then the total Hamiltonian is

HT = H + uλi ϕ
i
λ. (3.43)

Otherwise, if the momenta π0
i , π

1
i , π

i
λ can not be solved for velocities Q̇i

0, Q̇
i
1 and λ̇1i

there exist primary constraints

ϕ0
i = π0

i −
∂L0

∂Q̇i
0

− λ0i = 0 (3.44)

ϕ1
i (Q

i
0, Q

i
1, λ

0
i , π

0
i , π

1
i ) = 0 (3.45)

ϕiλ = πiλ = 0. (3.46)

Then total Hamiltonian is

HT = H + ui0ϕ
0
i + ui1ϕ

1
i + uλi ϕ

i
λ. (3.47)

Using the total Hamiltonian (3.43) or (3.47) and the primary constraints we have to

apply Dirac-Bergmann algorithm as it is given in the section 2.4.
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3.2.4. Unconstraint Variational Formalism

It is also possible to express first order Lagrangians L0
c and L1

c in (3.23) − (3.24) in λ free

form on TTQ

L0
U ≡ L0(Q0, Q̇0, Q̇1)− (

d

dt

∂L0

∂Q̇i
1

)(Q̇i
0 −Qi

1) (3.48)

L1
U ≡ L1(Q0, Q1, Q̇1) + (

∂L1

∂Qi
1

− d

dt

∂L1

∂Q̇i
1

)(Q̇i
0 −Qi

1) (3.49)

substituting λ0 and λ1 in (3.27) into L0
c and L1

c in (3.23) − (3.24). Note that, the constraint

Q̇i
0 − Qi

1 = 0 must not be used in L0
U or L1

U , if it is done, unconstraint Lagrangian does not

give consistent Euler-Lagrange equations. If second order Lagrangian L is nondegenerate,

unconstraint L0
U and L1

U contains Q̈1, thus reduction to first order does not mean anything.

On the other hand if L is degenerate Lagrangian, L0
U and L1

U will be of the first order.

Thus, the second order degenerate Lagrangian L with the third order Euler-Lagrange equa-

tions (3.4) for qi is reduced to a first order Lagrangian L0
U and L1

U with two second order

Euler-Lagrange equations obtained from variational derivative of L0
U and L1

U for Qi
0 = qi

and Qi
1 = Q̇i

0. Note that variational derivative with respect to Qi
1 is satisfied identically

and variational derivative with respect to Qi
0 gives the Euler-Lagrange equations (3.4) for

Qi
0 = qi.

We can apply Hamiltonian theory for first order unconstraint Lagrangians L0
U and L1

U as it is

given in Section 2.3 and 2.4. Canonical momenta for L0
U and L1

U are defined as

p0i =
∂L0

U

∂Q̇i
0

, p1i =
∂L0

U

∂Q̇i
1

(3.50)

s0i =
∂L1

U

∂Q̇i
0

, s1i =
∂L1

U

∂Q̇i
1

. (3.51)

On the Hamiltonian phase space, canonical coordinates (Qi
0, Q

i
1, p

0
i , p

1
i ) and (Qi

0, Q
i
1, s

0
i , s

1
i )

satisfy canonical Poisson bracket relations

{Qi
0, p

0
j} = {Qi

1, p
1
j} = {Qi

0, s
0
j} = {Qi

1, s
1
j} = δij. (3.52)
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The canonical Hamiltonian function for L0
U and L1

U can be written as

H = p0i Q̇
i
0 + p1i Q̇

i
1 − L0

U , H = s0i Q̇
i
0 + s1i Q̇

i
1 − L1

U . (3.53)

After this point, we have discuss if it is possible to solve velocities from definition of mo-

menta pi and si. Using these velocities we can write the Hamiltonian function and then the

Hamilton equations of motion. Otherwise there exit primary constraints, we have to apply

Dirac-Bergmann constraint algorithm to find the Hamilton equations of motion.



29

4. APPLICATIONS: THE TOPOLOGICAL MASSIVE GRAVITY

As an application of second order nondegenerate and degenerate theory, we will first study

Pais-Uhlenbeck oscillator whose dynamics is described by the nondegenerate Lagrangians.

We will then analyse degenerate Sarıoğlu-Tekin and Clement Lagrangians

4.1. PAIS-UHLENBECK OSCILLATOR

4.1.1. General Setting

To construct the geometric framework for the Pais-UhlenbeckOscillator (PUO) [39] , we start

with a one-dimensional manifoldM and the introduction of the following local coordinates

X ∈M,

(X, Ẋ) ∈ TM

(X, Ẋ, Ẍ) ∈ T 2M

(X, Ẋ, Ẍ,
...
X) ∈ T 3M

(X, Ẋ, P 0, P 1) ∈ T ∗TM.

The dynamics of classical PUO can be obtained from the second order Lagrangian,

LPU =
1

2

[
Ẍ2 − (Ω2 + ω2)Ẋ2 + ω2Ω2X2

]
(4.1)

whereω andΩ are positive real parameters. This is a second order non-degenerate Lagrangian

since the rank of ∂2LPU

∂Ẍ2 is 1.

The Euler-Lagrange equations of motion (3.4)

....
X + (Ω2 + ω2)Ẍ + w2Ω2X = 0 (4.2)

are obtained by varying LPU with respect to X .
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4.1.2. Jacobi-Ostrogradsky Method

Proposition 4.1.1. For the second order Lagrangian (4.1), Jacobi-Ostrogradsky momenta

(3.9) and (3.10) become

P 0 =
∂LPU

∂Ẋ
− d

dt

(
∂LPU

∂Ẍ

)
= −(Ω2 + ω2)Ẋ −

...
X (4.3)

P 1 =
∂LPU

∂Ẍ
= Ẍ. (4.4)

Note that, the Legendre map is invertible in order to express fiber coordinates (Ẍ,
...
X) in

terms of Jacobi-Ostrogradsky momenta from the equations (4.4) and (4.3).

The Lagrangian one-form (3.11) turns out to be

θL[X] ≡ −
(
(Ω2 + w2)Ẋ +

...
X
)
dX + ẌdẊ (4.5)

and the exterior derivative of θL is

ΩL = −(Ω2 + w2)dẊ ∧ dX + d
...
X∧dX + dẌ∧dẊ. (4.6)

Proposition 4.1.2. The canonical Hamiltonian function for (PUO) on T ∗TM is

HPU = P 0Ẋ +
1

2
(P 1)2 +

1

2
(Ω2 + ω2)Ẋ2 − 1

2
ω2Ω2X2. (4.7)

The canonical Hamilton's equations are

Ṗ 0 = ω2Ω2X (4.8)

Ṗ 1 = −P 0 − (Ω2 + ω2)Ẋ. (4.9)

Proof. Let us recall the Hamiltonian function defined in (3.15) and calculate

HPU = P 0Ẋ + P 1Ẍ − LPU

= P 0Ẋ + P 1Ẍ − 1

2
Ẍ2 +

1

2
(Ω2 + ω2)Ẋ2 − 1

2
ω2Ω2X2.
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By substituting X(2) = P 1, we have

HPU = P 0Ẋ +
1

2
(P 1)2 +

1

2
(Ω2 + ω2)Ẋ2 − 1

2
ω2Ω2X2.

The Hamilton equations of motion are

Ẋ = {X,HPU} = Ẋ (4.10)

Ẍ = {Ẋ,HPU} = P 1 (4.11)

Ṗ 0 = {P 0, HPU} = ω2Ω2X (4.12)

Ṗ 1 = {P 1, HPU} = −P 0 − (Ω2 + ω2)Ẋ (4.13)

From these equations first, second and last one are satisfied identically but equation (4.12)

gives Euler-Lagrange equation (4.14)

Ṗ 0 = ω2Ω2X

−(Ω2 + ω2)Ẍ −
....
X = ω2Ω2X (4.14)

using the definition of P 0.

4.1.3. The First Order Formalisms (Constraint Canonical Formalism)

It is possible to reduce the second-order non-degenerate Lagrangian LPU in into two first-

order degenerate Lagrangian functions (c.f. (3.23) and (3.24)) as follows

LPU0 =
1

2

[
Q̇2

1 − (Ω2 + ω2)Q̇2
0 + ω2Ω2Q2

0

]
+ λ0(Q̇0 −Q1) (4.15)

LPU1 =
1

2

[
Q̇2

1 − (Ω2 + ω2)Q2
1 + ω2Ω2Q2

0

]
+ λ1(Q̇0 −Q1) (4.16)

after the introduction of the coordinates X = Q0, Ẋ = Q̇0 = Q1 with the Lagrange multi-

pliers λ0 and λ1. Variations of LPU0 and LPU1 with respect to Q0
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δLPU0

δQ0

=
∂LPU0

∂Q0

− d

dt

∂LPU0

∂Q̇0

= ω2Ω2Q0 + (ω2 + Ω2)Q̈0 − λ̇0 (4.17)

δLPU1

δQ0

=
∂LPU1

∂Q0

− d

dt

∂LPU1

∂Q̇0

= ω2Ω2Q0 − λ̇1 (4.18)

result with the equations of motion (4.14) using

λ0 = −Q̈1 (4.19)

λ1 = −(ω2 + Ω2)Q1 − Q̈1 (4.20)

determined from the variations of LPU0 and LPU1 with respect to Q1.

Hamiltonian Formalism for LPU0 : On the Hamiltonian phase space canonical coordinates

(Q0, Q1, λ
0, π0, π1, πλ) satisfy the canonical Poisson bracket relations

{Qi, π
j} = δji , {λ0, πλ} = 1. (4.21)

For the first order Lagrangian LPU0 in Eq.(4.15), the conjugate momenta to the coordinates

(Q0, Q1, λ
0) are defined by

π0 =
∂LPU0

∂Q̇0

= λ0 − (Ω2 + ω2)Q̇0 (4.22)

π1 =
∂LPU0

∂Q̇1

= Q̇1 (4.23)

πλ =
∂LPU0

∂λ̇0
= 0. (4.24)

Proposition 4.1.3. The total Hamiltonian function for the first order Lagrangian LPU0 in

Eq.(4.15) is given by

HPU
T 0 =

1

2
(π1)2 − (π0 − λ0)2

2(Ω2 + ω2)
− ω2Ω2

2
(Q0)

2 + λ0Q1

+ πλ
[
Ω2ω2Q0 − π1(Ω2 + ω2)

]
+
[ λ0 − π0

(Ω2 + ω2)
−Q1

]2
. (4.25)
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Proof. From the conjugate momenta π0 and π1 it possible to solve the velocities Q̇0 and Q̇1

Q̇0 =
λ0 − π0

Ω2 + ω2
, Q̇1 = π1 (4.26)

and the remaining momenta leads to a primary constraint Φλ = πλ. The canonical Hamilto-

nian function (3.15) for LPU0 is

HPU
0 = π0Q̇0 + π1Q̇1 + πλλ̇

0 − LPU0

= π0Q̇0 + π1Q̇1 + πλλ̇
0 − 1

2

[
Q̇2

1 − (Ω2 + ω2)Q̇2
0 + ω2Ω2Q2

0

]
− λ0(Q̇0 −Q1)

substituting Q̇0 and Q̇1, the Hamiltonian function equals to

HPU
0 =

1

2
(π1)2 − 1

2

(π0 − λ0)2

Ω2 + ω2
− ω2Ω2

2
(Q0)

2 + λ0Q1. (4.27)

Define the total Hamiltonian

HPU
T 0 = HPU

0 + uλΦλ (4.28)

by adding primary constraint Φλ with undetermined multiplier uλ. The conservation

Φ̇λ = {Φλ, H
PU
T 0 } ≈ {Φλ, H

PU
0 }+ uλ{Φλ,Φλ}

≈ λ0 − π0

(Ω2 + ω2)
−Q1 (4.29)

of the primary constraint Φλ leads to a secondary constraint

Φ =
λ0 − π0

(Ω2 + ω2)
−Q1 (4.30)

using canonical Poisson bracket relations (4.21) and {Φλ,Φλ} = 0. By adding the secondary

constraint Φ with a Lagrange multiplier u, we revise the total Hamiltonian as

HPU
T 0 = HPU

0 + uλΦλ + uΦ. (4.31)

The conservation

Φ̇ = {Φ, HPU
T 0 } ≈ {Φ, HPU

0 }+ uλ{Φ,Φλ}+ u{Φ,Φ}

≈ − Ω2ω2

Ω2 + ω2
Q0 − π1 +

uλ

Ω2 + ω2
(4.32)
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of the secondary constraint makes it possible to determine uλ, and the conservation

Φ̇λ = {Φλ, H
PU
T 0 } ≈ {Φλ, H

PU
0 }+ uλ{Φλ,Φλ}+ u{Φλ,Φ}

≈ Φ− u. (4.33)

of Φ detemines u. The proof will be ended by the substitutions of the determined Lagrange

multipliers u and uλ into the Hamiltonian function (4.31).

Proposition 4.1.4. The Hamilton's equations generated by the total Hamiltonian (4.25) are

Q̇0 ≈ − λ0 − π0

Ω2 + ω2
, Q̇1 ≈ π1, λ̇0 ≈ Ω2ω2Q0 + (Ω2 + ω2)π1 (4.34)

π̇0 ≈ Ω2ω2Q0, π̇1 ≈ −λ0, π̇λ ≈ 0. (4.35)

Proof. We compute

Q̇0 = {Q0, H
PU
T 0 } = − λ0 − π0

Ω2 + ω2
− Φ ≈ − λ0 − π0

Ω2 + ω2
(4.36)

Q̇1 = {Q1, H
PU
T 0 } = π1 (4.37)

λ̇0 = {λ0, HPU
T 0 } = Ω2ω2Q0 − (Ω2 + ω2)π1 (4.38)

π̇0 = {π0, HPU
T 0 } = Ω2ω2Q0 − Ω2ω2Q0πλ ≈ Ω2ω2Q0 (4.39)

π̇1 = {π1, HPU
T 0 } = −λ0 + Φ ≈ −λ0 (4.40)

π̇λ = {πλ, HPU
T 0 } = 0. (4.41)

From these equations λ̇0 and π̇0 give the Euler- Lagrange equations of motion whereas all

the others are satisfied identically.

Dirac Bracket Formalism for LPU0 : All the constraints

Φλ = πλ, Φ =
λ0 − π0

(Ω2 + ω2)
−Q1 (4.42)

are second class since their poisson bracket {Φλ,Φ} = − 1
Ω2+ω2 is nonzero.
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Proposition 4.1.5. Dirac brackets of coordinates are

{Q0, λ
0}DB = 1 (4.43)

{Q0, π
0}DB = 1 (4.44)

{Q1, π
1}DB = 1 (4.45)

{λ0, π1}DB = Ω2 + ω2 (4.46)

and all the others zero.

Proof. By recalling the general form of the Dirac bracket presented in (2.39), we compute

{F,G}DB = {F,G} − (Ω2 + ω2) [{F,Φλ}{Φ, G} − {F,Φ}{Φλ, G}] (4.47)

after the substitution of the inverse of

M =

{Φλ,Φλ} {Φλ,Φ}

{Φ,Φλ} {Φ,Φ}

 =
1

(Ω2 + ω2)

0 −1

1 0

 .
To find the Dirac brackets of the coordinates, we evaluate the Poisson brackets of the coor-

dinates

{Q0,Φλ} = {Q1,Φλ} = {Q1,Φ} = {λ0,Φ} = 0

{π0,Φλ} = {π0,Φ} = {π1,Φλ} = {πλ,Φλ} = 0

{Q0,Φ} = {πλ,Φ} =
−1

Ω2 + ω2

{λ0,Φλ} = {π1,Φ} = 1.

Using these relations and theDirac bracket (4.47), we evaluate, for instance, theDirac bracket

of Q0 and Q0

{Q0, Q0}DB = {Q0, Q0} − (Ω2 + ω2) [{Q0,Φλ}{Φ, Q0} − {Q0,Φ}{Φλ, Q0}]

= 0
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where we employ {Q0, Q0} = {Q0,Φλ} = 0. The Dirac bracket of Q0 and Q1 is

{Q0, Q1}DB = {Q0, Q1} − (Ω2 + ω2) [{Q0,Φλ}{Φ, Q1} − {Q0,Φ}{Φλ, Q1}]

= 0

since {Q0, Q1} = {Q0,Φλ} = {Q1,Φλ} = 0. The Dirac bracket of Q0 and λ0 is

{Q0, λ
0}DB = {Q0, λ

0} − (Ω2 + ω2)
[
{Q0,Φλ}{Φ, λ0} − {Q0,Φ}{Φλ, λ

0}
]

= 1

since {Q0, λ
0} = {Q0,Φλ} = 0 and {Q0,Φ} = −1

Ω2+ω2 , {Φλ, λ
0} = 1. In a similar fashion,

one may continue to determine the Dirac brackets of the coordinates.

Proposition 4.1.6. By employing the Dirac bracket presented in the proposition (4.1.5), the

Hamilton's equations of motion for the canonical Hamiltonian function (4.27) are

Q̇0 = Q1, Q̇1 = π1, λ̇0 = (Ω2 + ω2)π1 + Ω2ω2Q0 (4.48)

π̇0 = Ω2ω2Q0, π̇1 = −π0 − (Ω2 + ω2)Q1, π̇λ = 0. (4.49)

Proof. A direct calculation results with

Q̇0 = {Q0, H
PU
0 }DB =

(
π0 − λ0

Ω2 + ω2
+Q1

)
{Q0, λ

0}DB − π0 − λ0

Ω2 + ω2
{Q0, π

0}DB

=

(
π0 − λ0

Ω2 + ω2
+Q1

)
− π0 − λ0

Ω2 + ω2

= Q1

since Dirac bracket of Q0 only with λ0 and π0 is nonzero. Similarly, the equation of motion
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for other coordinates can be computed as

Q̇1 = {Q1, H
PU
0 }DB = π1{Q1, π

1}DB = π1

λ̇0 = {λ0, HPU
0 }DB = π1{λ0, π1}DB − Ω2ω2Q0{λ0, Q0}DB

= (Ω2 + ω2)π1 + Ω2ω2Q0

π̇0 = {π0, HPU
0 } = −Ω2ω2Q0{π0, Q0}DB = Ω2ω2Q0

π̇1 = {π1, HPU
0 }DB =

(
−1

Ω2 + ω2
+Q1

)
{π1, λ0}DB + λ0{π1, Q1}DB

= −π0 − (Ω2 + ω2)Q1 = −λ0.

Note that the equations of motion presented in the proposition (4.1.6) are the same with

(4.10)− (4.13) after the substitutions X = Q0, Ẋ = Q1.

Hamiltonian formalism for LPU1 : Similar to LPU0 , it is also possible to derive Hamilton equa-

tions of motion for LPU1 . The canonical coordinates (Q0, Q1, λ
1,Π0,Π1,Πλ) on the Hamil-

tonian phase space satisfy the canonical Poisson bracket relations

{Qi,Π
j} = δji , {λ1,Πλ} = 1. (4.50)

For the first order Lagrangian LPU1 in equation (4.16) , the conjugate momenta to the coor-

dinates Q0, Q1 and λ1 are defined by

Π0 =
∂LPU1

∂Q̇0

= λ1 (4.51)

Π1 =
∂LPU1

∂Q̇1

= Q̇1 (4.52)

Πλ =
∂LPU1

∂λ̇
= 0. (4.53)

Proposition 4.1.7. Total Hamiltonian function for the first order Lagrangian in equation

(4.16) is defined by

HPU
T 1 =

1

2

[
(Π1)2 + 2Π0Q1 + (Ω2 + ω2)Q1

2 − ω2Ω2Q2
0

]
+ ω2Ω2Q0Π

λ.

Proof. Only Π1 can be solved for velocity Q̇1 from the conjugate momenta, the other mo-
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menta lead to the primary constraints

ϕ0 = Π0 − λ1, ϕλ = Πλ. (4.54)

The canonical Hamiltonian function (3.15) for LPU1 is

HPU
1 = Πλλ̇

1 +Π1Q̇1 +Π0Q̇0 − LST1 (4.55)

= Πλλ̇
1 +Π1Q̇1 +Π0Q̇0 −

1

2

[
Q̇2

1 − (Ω2 + ω2)Q2
1 + ω2Ω2Q2

0

]
− λ1(Q̇0 −Q1) (4.56)

replacing Q̇1 and π0 = λ1 = Πλ = 0, the canonical Hamiltonian equals to

HPU
1 =

1

2

[
(Π1)2 + 2Π0Q1 + (Ω2 + ω2)Q1

2 − ω2Ω2Q2
0

]
. (4.57)

the total Hamiltonian is defined as

HPU
T 1 = HPU

1 + v0ϕ
0 + vλϕλ (4.58)

by adding the primary constraints with undetermined multipliers v0 and vλ. The requirement

that primary constraints are preserved in time lead to

ϕ̇0 = {ϕ0, HPU
T 1 } ≈ {ϕ0, HPU

1 }+ v0{ϕ0, ϕ0}+ vλ{ϕ0, ϕλ}

≈ ω2Ω2Q0 − vλ (4.59)

ϕ̇λ = {ϕλ, HPU
T 1 } ≈ {ϕλ, HPU

1 }+ v0{ϕλ, ϕ0}+ vλ{ϕλ, ϕλ}

≈ v0 (4.60)

for consistency, thus the multiplier v0 and vλ become determined. Substituting these deter-

mined Lagrange multipliers into (4.58) the proof will be completed.

Proposition 4.1.8. Hamilton equations generated by the total HamiltonianHPU
T 1 given in the

proposition 4.1.7 are

Q̇0 = Q1, Q̇1 = Π1, λ̇1 = ω2Ω2Q0, Π̇λ = {Πλ, HT} = 0 (4.61)

Π̇0 ≈ −ω2Ω2Q0, Π̇1 = −Π0 − (Ω2 + ω2)Q1. (4.62)
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Proof. Hamilton equations for coordinates are

Q̇0 = {Q0, HT} = Q1 (4.63)

Q̇1 = {Q1, HT} = Π1 (4.64)

λ̇1 = {λ1, HT} = ω2Ω2Q0 (4.65)

Π̇0 = {Π0, HT} = −ω2Ω2(Πλ −Q0) ≈ −ω2Ω2Q0 (4.66)

Π̇1 = {Π1, HT} = −Π0 − (Ω2 + ω2)Q1 (4.67)

Π̇λ = {Πλ, HT} = 0. (4.68)

From these equations (4.66) and (4.67) give the equations of motion, all the others satisfied

identically.

Dirac Bracket Formalism for LPU1 : All constraints are second class

ϕ0 = Π0 − λ1, ϕλ = Πλ (4.69)

since the Poisson bracket {ϕ0, ϕλ} = −1 is nonzero.

Proposition 4.1.9. Nonzero Dirac brackets of the coordinates and the momenta are

{Q0, λ
1}DB = 1 (4.70)

{Q0,Π
0}DB = 1 (4.71)

{Q1,Π
1}DB = 1. (4.72)

Proof. To prove these, we use the Dirac bracket (2.39)

{F,G}DB = {F,G} − {F, ϕ0}{ϕλ, G}+ {F, ϕλ}{ϕ0, G} (4.73)

substuting inverse of

M =

{ϕ0, ϕ0} {ϕ0, ϕλ}

{ϕλ, ϕ0} {ϕλ, ϕλ}

 =

0 −1

1 0

 .
To get Dirac brackets of the coordinates, we evaluate the Poisson brackets of coordinates
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with the constraints

{Q0, ϕ
0} = {λ1, ϕλ} = {πλ, ϕ0} = 1

and all others are zero. Using these relations and the Dirac bracket (4.73) we can write Dirac

bracket of coordinates starting with Q0

{Q0, Q0}DB = {Q0, Q0} − {Q0, ϕ
0}{ϕλ, Q0}+ {Q0, ϕλ}{ϕ0, Q0} = 0

since {Q0, Q0} = {Q0, ϕλ} = 0. Dirac bracket of Q0 with λ1 is

{Q0, λ
1}DB = {Q0, λ

1} − {Q0, ϕ
0}{ϕλ, λ1} − {Q0, ϕλ}{ϕ0, λ1} = 1

since {Q0, λ
1} = {Q0, ϕλ} = 0 and {Q0, ϕ

0} = {λ1, ϕλ} = 1. Similarly we can find the

other Dirac brackets of coordinates with each other.

Proposition 4.1.10. Using the Dirac brackets of the coordinates in the proposition (4.1.9),

Hamilton's equations generated by the Hamiltonian function (4.57) are

Q̇0 = Q1, Q̇1 = Π1, λ̇1 = Ω2ω2Q0 (4.74)

Π̇0 = Ω2ω2Q0, Π̇1 = −Π0 − (Ω2 + ω2)Q1, Π̇λ = 0 (4.75)

Proof. Let us derive these equations. Using Dirac brackets of the coordinates and the Hamil-

tonian (4.57), equations of motion for Q0 is

Q̇0 = {Q0, H
PU
1 }DB = Q1{Q0,Π

0}DB

= Q1

since the Dirac bracket of Q0 only with λ1 and Π0 is nonzero. Similarly, equation of motion
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for other coordinates are

Q̇1 = {Q1, H
PU
1 }DB = Π1{Q1,Π

1}DB = Π1

λ̇1 = {λ1, HPU
1 }DB = −Ω2ω2Q0{λ1, Q0}DB = Ω2ω2Q0

Π̇0 = {Π0, HPU
1 } = −Ω2ω2Q0{Π0, Q0}DB = Ω2ω2Q0

Π̇1 = {Π1, HPU
1 }DB =

(
Π0 + (Ω2 + ω2)Q1

)
{Π1, Q1}DB

= −Π0 − (Ω2 + ω2)Q1

Π̇λ = {Πλ, H
PU
1 }DB = 0.

4.1.4. Unconstraint Variational Formalism

Unconstraint Lagrangians for LPU0 and LPU1 are obtained by replacing determined λ0 and λ1

from (4.19) and (4.20)

LPUU0 =
1

2

[
Q̇2

1 − (Ω2 + ω2)Q̇2
0 + ω2Ω2Q2

0

]
− Q̈1(Q̇0 −Q1) (4.76)

LPUU1 =
1

2

[
Q̇2

1 − (Ω2 + ω2)Q2
1 + ω2Ω2Q2

0

]
−
(
(ω2 + Ω2)Q1 + Q̈1

)
(Q̇0 −Q1) (4.77)

these unconstraint Lagrangians are second order. It is not possible to express first order LPU

in a unconstraint first order form. Since LPU is nondegenerate.
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4.2. SARIOĞLU-TEKİN LAGRANGIAN

4.2.1. General Setting

Consider the local coordinates for the six dimensional manifold N

(X i, Y i) ∈ N,

(X i, Y i, Ẋ i, Ẏ i) ∈ TN

(X i, Y i, Ẋ i, Ẏ i, Ẍ i, Ÿ i) ∈ T 2N

(X i, Y i, Ẋ i, Ẏ i, R0
i , S

0
i , R

1
i , S

1
i ) ∈ T ∗TN,

where i runs from 1 to 3. Consider also Sarıoğlu-Tekin Lagrangian on T 2N given by

LST [X i, Y i] =
δij
2

[
a(Ẋ iẊj + Ẏ iẎ j) +

2

µ
Ẏ iẌj −m2(Y iY j +X iXj)

]
(4.78)

here, a, µ,m are parameters [38]. LST is an example of second order degenerate Lagrangian

since the determinant of extended Hessian matrixWij is zero.

For the Sarıoğlu-Tekin Lagrangian LST , the second order Euler-Lagrange equations (3.4)

take the particular form

m2X i + aẌ i =
1

µ
˙̈Y i , m2Y i + aŸ i = − 1

µ
˙̈X i, (4.79)

whereas the Lagrangian one-form (3.11) becomes

θL = δij(aẊ
i − 1

µ
Ÿ i)dXj + δij(aẎ

i +
1

µ
Ẍ i)dY j +

1

µ
δijẎ

idẊj.

The exterior derivative of the one-form results in the pre-symplectic two-form

ΩL = aδij(dẊ
i ∧ dXj + dẎ i ∧ dY j) +

δij
µ
dẎ ∧ dẊ +

δij
µ
(dẌ i ∧ dY j − dŸ i ∧ dXj).
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4.2.2. Jacobi-Ostrogradsky Method

On the Hamiltonian phase space T ∗TN , we have the canonical Poisson bracket relations

defined as

{X i, R0
j} = {Y i, S0

j } = {Ẋ i, R1
j} = {Ẏ i, S1

j } = δij (4.80)

and all others are zero.

Proposition 4.2.1. For the second order Lagrangian LST in (4.78) the Jacobi-Ostrogradsky

momenta (3.9) and (3.10) are computed as

R0
i =

∂LST

∂Ẋ i
− d

dt

(
∂LST

∂Ẍ i

)
= aδij′Ẋ

j′ − 1

µ
δij′Ÿ

j′ (4.81)

R1
i =

∂LST

∂Ẍ i
=

1

µ
δij′Ẏ

j′ (4.82)

S0
i =

∂LST

∂Ẏ i
− d

dt

(
∂LST

∂Ÿ i

)
= aδij′Ẏ

j′ +
1

µ
δij′Ẍ

j′ (4.83)

S1
i =

∂LST

∂Ÿ i
= 0 (4.84)

respectively for X i, Ẋ i, Y i and Ẏ i.

Proposition 4.2.2. Total Hamiltonian function for LST in (4.78) is given by

HST
T = −a

2
δij(Ẋ

iẊj − Ẏ iẎ j) +
m2

2
δij(Y

iY j +X iXj)

+R0
jẊ

j + aµ(ẊjS1
j − Ẏ jR1

j ) + µδij(S0
iR

1
j −R0

iS
1
j ). (4.85)

Proof. Since we cannot solve Ẍ i and Ÿ i from equations (4.82) or (4.84), there exist primary

constraints

Γxi = R1
i −

1

µ
δijẎ

j = 0 (4.86)

Γyi = S1
i = 0. (4.87)

The canonical Hamiltonian function (3.15) for the second order Lagrangian LST takes the
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particular form

HST
c = R0

jẊ
j +R1

jẌ
j + S0

j Ẏ
j + S1

j Ÿ
j − LST

= R0
jẊ

j +R1
jẌ

j + S0
j Ẏ

j − S1
j Ÿ

j − δij
2

[
a(Ẋ iẊj + Ẏ iẎ j)

]
− δij

2

[ 2
µ
Ẏ iẌj −m2(Y iY j +X iXj)

]
. (4.88)

The substitutions of R1
i =

δij
µ
Ẏ and S1

i = 0 result with the Hamiltonian function

HST
c = R0

jẊ
j + S0

j Ẏ
j − δij

2

[
a(Ẋ iẊj + Ẏ iẎ j)−m2(Y iY j +X iXj)

]
. (4.89)

According to (3.19), define the total Hamiltonian function

HST
T = HST

c + U jΓxj + V jΓyj (4.90)

by adding the primary constraints Γxi and Γyj with the Lagrange multipliers U j and V j . In

order to guarantee the consistency of the primary constraints Γxi , we compute

Γ̇xi = {Γxi , HST
T } ≈ {Γxi , HST

c }+ U j{Γxi ,Γxj }+ V j{Γxi ,Γ
y
j}

≈ aδij′Ẋ
j′ −R0

i + V j
(
− 1

µ
δij
)

(4.91)

and for Γyi we compute

Γ̇yi = {Γyi , HST
T } ≈ {Γyi , HST

c }+ U j{Γyi ,Γxj }+ V j{Γyi ,Γ
y
j}

= aδij′Ẏ
j′ − S0

i + U j
( 1
µ
δij
)
. (4.92)

From the consistency checks, no more constraint has been arisen, and the Lagrange multipli-

ers are determined as

U j ≈ µ(−aδjj′Ẏ
j′ + δjj

′
S0
j′) (4.93)

V j ≈ µ(aδjj′Ẋ
j′ − δjj

′
R0
j′). (4.94)

By substituting U i and V i into the total Hamiltonian function (4.90) the proof is completed.
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Remark 4.2.3. It is possible to solve Ẍ i and Ÿ i from the equations (4.81) and (4.83) as

Ẍ i = µ(δijS0
j − aẎ i), Ÿ i = µ(aẊ i − δijR0

j ) (4.95)

and the substitution of the velocities into the canonical Hamiltonian (4.88) gives the total

Hamiltonian (4.85) directly without any constraint analysis.

Proposition 4.2.4. Hamilton equations generated by total Hamiltonian (4.85) are

Ẋ i = Ẋ i − µδijS1
j , Ẍ i = −aµẎ i + µδijS0

j

Ẏ i = muδijR1
j , Ÿ i = aµẊ i − µδijR0

j

Ṙ0
i = −m2δijX

j, Ṙ1
i = aδijẊ

j −R0
i − aµS1

i

Ṡ0
i = −m2δijY

j, Ṡ1
i = −aδijẎ j + aµR1

i .

Proof. Wecompute theHamilton equations acoording to the total Hamiltonian function (4.85)

and the canonical Poisson bracket relations (4.320). The first set of equations related with

the base components

Ẋ i = {X i, HST
T } = Ẋ i − µδijS1

j ≈ Ẋ i (4.96)

Ẍ i = {Ẋ i, HST
T } = −aµẎ i + µδijS0

j (4.97)

Ẏ i = {Y i, HST
T } = µδijR1

j (4.98)

Ÿ i = {Ẏ i, HST
T } = aµẊ i − µδijR0

j (4.99)

are satisfied identically using definitions of momenta (4.81)− (4.84), whereas the set related

with the momenta are

Ṙ0
i = {R0

i , H
ST
T } = −m2δijX

j (4.100)

Ṙ1
i = {R1

i , H
ST
T } = aδijẊ

j −R0
i − aµS1

i ≈ aδijẊ
j −R0

i (4.101)

Ṡ0
i = {S0

i , H
ST
T } = −m2δijY

j (4.102)

Ṡ1
i = {S1

i , H
ST
T } = −aδijẎ j + aµR1

i . (4.103)

The equations defining Ṙ0
i and Ṡ0

i give the Euler-Lagrange equations (4.79). To see this we



46

perform the following calculation

Ṙ0
i = −m2δijX

j

aδij′Ẍ
j′ − 1

µ
δij′

...
Y
j′

= −m2δijX
j

1

µ
δij′

...
Y
j′

= aδij′Ẍ
j′ +m2δijX

j (4.104)

using (4.81), and perform

Ṡ0
i = −m2δijY

j

aδij′Ÿ
j′ +

1

µ
δij′

...
X
j′

= −m2δijY
j

− 1

µ
δij′

...
X
j′

= aδij′Ÿ
j′ +m2δijY

j (4.105)

using (4.83).

Dirac Bracket Formalism for LST : The set of constraints

Γxi = R1
i −

1

µ
δij′Ẏ

j′ , Γyi = S1
i (4.106)

consists of the second class constraints since their Poisson brackets are nonzero.

Proposition 4.2.5. The Dirac bracket for the second order degenerate Sarıoğlu-Tekin La-

grangian LST is defined by

{X i, R0
j}DB = δij (4.107)

{Ẋ i, Ẏ i}DB = µδij (4.108)

{Ẋ i, R1
j}DB = δij (4.109)

{Y i, S0
j }DB = δij (4.110)

and, all the others are zero.
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Proof. General form of the Dirac bracket is given in (2.39), using this we compute

{F,G}DB = {F,G} − {F,Γxm}Mmn
xy {Γyn, G} − {F,Γym}Mmn

yx {Γxn, G}

= {F,G} − µδmn
(
{F,Γxm}{Γyn, G}+ {F,Γym}{Γxn, G}

)
(4.111)

by replacing inverse

M−1 =

 Mmn
xx Mmn

xy

Mmn
yx Mmn

yy

 = µ

 03×3 δmn

−δmn 03×3

 (4.112)

whereM is

M =

 {Γxn,Γxm} {Γxn,Γym}

{Γyn,Γxm} {Γyn,Γym}

 =
1

µ

 03×3 −δmn
δmn 03×3

 . (4.113)

To derive Dirac bracket relations of the coordinates, we also need to compute the Poisson

brackets of the coordinates with the primary constraints

{Ẋ i,Γxm} = {Ẋ i, R1
m − 1

µ
δmj′Ẏ

j′} = δim (4.114)

{Ẏ i,Γym} = {Ẏ i, S1
m} = δim (4.115)

{S1
i ,Γ

x
m} = {S1

i , R
1
m − 1

µ
δmj′Ẏ

j′} =
1

µ
δim (4.116)

and all others are zero. Let us derive some of Dirac brackets of the coordinates. For example

Dirac bracket of X i and Y i

{X i, Y j}DB = {X i, Y j} − µδmn
(
{X i,Γxm}{Γyn, Y j}+ {X i,Γym}{Γxn, Y j}

)
= 0 (4.117)

since {X i, Y j} = {X i,Γxm} = {Y i,Γyn} = 0. Dirac bracket of X i and Ẏ i

{Ẋ i, Ẏ j}DB = {Ẋ i, Ẏ j} − µδmn
(
{Ẋ i,Γxm}{Γyn, Ẏ j}+ {Ẋ i,Γym}{Γxn, Ẏ j}

)
= −µδmnδim(−δjn) = µδij (4.118)

since {Ẋ i, Ẏ j} = {Ẋ i,Γym} = 0 and {Ẋ i,Γxm} = {Ẏ i,Γym} = δim. Dirac brackets of the

other coordinates can be proved in a similar way.
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Proposition 4.2.6. Using the Dirac bracket defined in the Proposition 4.2.5, the Hamilton

equations of motion for the canonical Hamiltonian function (4.89) are

Ẋ i = Ẋ i, Ẍ i = µδijS0
j − aµẎ i, Ẏ i = Ẏ i, Ÿ i = −µδijR0

j + aµẊ i

Ṙ0
i = −m2δijX

j, Ṙ1
i = −R0

i + aδijẊ
j, Ṡ0

i = −m2δijY
j, Ṡ1

i = 0.

Proof. Let us derive these equations one by one. The equations of motion forX i's are satis-

fied identically

Ẋ i = {X i, HST
c }DB = {X i, R0

j}DBẊj = δijẊ
j = Ẋ i (4.119)

since Dirac bracket of X i only with R0
j is nonzero. The equations of motion for Ẋ i's

Ẍ i = {Ẋ i, HST
c }DB = {Ẋ i, Ẏ j}DBS0

j −
a

2
{Ẋ i, δjj′Ẏ

jẎ j′}DB

= µδijS0
j − aµẎ i = µδij

(
aδjj′Ẏ

j′ +
1

µ
δjj′Ẍ

j′
)
− aµẎ i

= Ẍ i (4.120)

are identically satisfied replacing the definition of S0
j . Equations of motion for Y i's are sat-

isfied identically

Ẏ i = {Y i, HST
c }DB = {Y i, S0

j }DBẎ j = δijẎ
j = Ẏ i (4.121)

since Dirac bracket of Y i only with S0
j is nonzero. The equations of motion for Ẏ i are

Ÿ i = {Ẏ i, HST
c }DB = {Ẏ i, Ẋj}DBR0

j −
a

2
{Ẏ i, δjj′Ẋ

jẊj′}DB

= −µδijR0
j + aµẊ i = −µδij

(
aδjj′Ẋ

j′ − 1

µ
δjj′Ÿ

j′
)
+ aµẊ i

= Ÿ i (4.122)

using R0
i . The equations of motion for R0

i 's are

Ṙ0
i = {R0

i , H
ST
c }DB = {R0

i ,
m2

2
δjj′X

jXj′}DB = −m2δij′X
j′ (4.123)
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since Dirac bracket of R0
i only with Xj is nonzero. Using the definition of R0

i , we compute

Ṙ0
i = −m2δij′X

j′

aδij′Ẍ
j′ − 1

µ
δij′

...
Y
j′

= −m2δij′X
j′

1

µ

...
Y
i
= aẌ i +m2X i (4.124)

we get one of the Euler-Lagrange equations of motion (4.79). The equations of motion for

R1
i 's are

Ṙ1
i = {R1

i , H
ST
c }DB = {R1

i , Ẋ
j}DBR0

j + {R1
i ,−

a

2
δjj′Ẋ

jẊj′}DB

= −R0
i + aδij′Ẋ

j′ = −
(
aδij′Ẋ

j′ − 1

µ
δij′Ÿ

j′
)
+ aδij′Ẋ

j′

=
1

µ
δij′Ÿ

j′ = Ṙ1
i (4.125)

using the definition of R0
i and R1

i . The equations of motion for S0
i 's are

Ṡ0
i = {S0

i , H
ST
c }DB = {S0

i ,
m2

2
δjj′Y

jY j′}DB = −m2δijY
j (4.126)

since Dirac bracket of S0
i is nonzero only with Y j . Using definition of S0

i

Ṡ0
i = −m2δij′Y

j′

aδij′Ÿ
j′ +

1

µ
δij′

...
X
j′

= −m2δij′Y
j′

− 1

µ

...
X
i
= aŸ i +m2Y i (4.127)

we get other one of the Euler- Lagrange equations of motion (4.79). Equations of motion for

S1
i

Ṡ1
i = {S1

i , H
ST
c }DB = 0. (4.128)
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4.2.3. First Order Formalisms

We can write the second order Sarıoğlu-Tekin Lagrangian (4.78) as a degenerate first order

Lagrangian functions (c.f. (3.23) and (3.24)) in two different ways given by

LSTC0
=
δij
2

[
a(ẇi0ẇ

j
0 + Ẏ iẎ j) +

2

µ
Ẏ iẇj1 −m2(Y iY j + wi0w

j
0)

]
+ λ0j(ẇ

j
0 − wj1) (4.129)

LSTC1
=
δij
2

[
a(wi1w

j
1 + Ẏ iẎ j) +

2

µ
Ẏ iẇj1 −m2(Y iY j + wi0w

j
0)

]
+ λ1j(ẇ

j
0 − wj1) (4.130)

Here, we use the coordinate transformations X i = wi0, Ẋ
i = ẇi0 = wi1, Ẍ

i = ẇi1, with

Lagrange multipliers λ0j and λ1i . These two first order Lagrangian give Euler-Lagrange equa-

tions of motion (4.79). The variations of LSTC0
and LSTC1

with respect to wi0 give one of the

Euler-Lagrange equations of motion (4.79)

δLSTC0

δwi0
= −m2wi0 − aẅi0 − δijλ̇0j = 0 (4.131)

δLSTC1

δwi0
= −m2wi0 − δijλ̇1j = 0 (4.132)

substituting λ0i and λ1i

λ0i = −δij
1

µ
Ÿ j, λ1i = δij(aw

j
1 −

1

µ
Ÿ j) (4.133)

obtained from variation ofLSTC0
andLSTC1

with respectwi1. The other Euler-Lagrange equations

of motion (4.79)

δLSTC0

δY i
=
δLSTC1

δY i
= −m2Y i − aŸ i − 1

µ
ẅi1 (4.134)

are obtained from the variations of LSTC0
and LSTC1

with respect to Y i.

In the next part we will discuss Hamiltonian formalism for reduced first order Sarıoğlu-Tekin

Lagrangians LSTC0
and LSTC1

in (4.129)− (4.130) and unconstraint Sarıoğlu-Tekin Lagrangians

obtained by substituting λ0i and λ1i in (4.133) into (4.129)− (4.130)
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4.2.4. The First Order Formalism as LSTC0

Hamiltonian Formalism forLSTC0
: In order to write theHamiltonian formulation of the reduced

first order systems, we introduce the conjugate momenta (wi0, wi1, λ0i , Y i, π0
i , π

1
i , π

i
λ, π

Y
j ) on

the dual space. The canonical Poisson bracket relations are defined as

{wio, π0
j} = {wi1, π1

j} = {Ẏ i, πYj } = {λ0j , πiλ} = δij (4.135)

and all the others are zero.

For the reduced first order Lagrangian LSTC0
presented in the equation (4.129), the conjugate

momenta corresponding to coordinates (wi0, wi1, λ0i , Y i) are defined by

π0
i =

∂LSTC0

∂ẇi0
= aδijẇ

j
0 + λ0i (4.136)

π1
i =

∂LSTC0

∂ẇi1
=

1

µ
δijẎ

j (4.137)

πiλ =
∂LSTC0

∂λ̇0i
= 0 (4.138)

πYi =
∂LSTC0

∂Ẏ i
= aδijẎ

j +
1

µ
δijẇ

j
1. (4.139)

Proposition 4.2.7. The total Hamiltonian for the first order Lagrangian LSTC0
in (4.129) is

given by

HST
T1 = µδijπ1

i

(
πYj − aµ

2
π1
j

)
+
m2δij
2

(Y iY j + wi0w
j
0) + λ0iw

i
1

+
1

2a
δij(π0

i − λ0i )(π
0
j − λ0j)−

(
m2δijw

j
0 − a2µ2π1

i + aµπYi
)
πiλ

− 1

a
δij
(
(π0

i − λ0i )− δikw
k
1

)(
(π0

j − λ0j)− δkjw
j
1

)
. (4.140)

Proof. From the conjugate momenta π0
i , π

1
i and πYj it is possible to solve velocities for

Ẏ i = µδijπ1
j (4.141)

ẇi0 =
1

a
δij
(
π0
j − λ0j

)
(4.142)

ẇi1 = µδij
(
πYj − aµπ1

j

)
(4.143)
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and the other momenta πiλ leads to a primary constraint

ψiλ = πiλ = 0. (4.144)

For LSTC0
, after the substitution of ẇi0, ẇi1, Ẏ i and the primary constraint, the canonical Hamil-

tonian function (2.20) turns out to be

HST
c0

= π0
i ẇ

i
0 + π1

i ẇ
i
1 + πiλλ̇

0
i + πYi Ẏ

i − LSTC0

= µδijπ1
i π

Y
j − aµ2

2
δijπ1

jπ
1
i +

m2δij
2

(Y iY j + wi0w
j
0) + λ0iw

i
1

+
1

2a
δij(π0

i − λ0i )(π
0
j − λ0j). (4.145)

The total Hamiltonian is defined as

HST
T = HST

c0
+ Uiψ

i
λ (4.146)

by adding the primary constraint with a Lagrange multiplier Uj . Consistency of the primary

constraint ψiλ

ψ̇iλ = {ψiλ, HST
T } ≈ {ψiλ, HST

c0
}+ Uj{ψiλ, ψ

j
λ}

≈ 1

a
δij(π0

j − λ0j)− wi1 (4.147)

leads us to a secondary constraint

ψi ≈ 1

a
δij(π0

j − λ0j)− wi1. (4.148)

Note that (4.147) will vanish weakly when we use ẇ0 = w1 in the definition of π0
i . In this

case, it is not possible to find the Lagrange multiplier U , thus equation of motion for λ0i
remains arbitrary. To solve this, we consider ψi as a secondary constraint. Revised total

Hamiltonian is

HST
T1 = HST

c0
+ Uiψ

i
λ + Viψ

i (4.149)

by adding secondary constraint with arbitrary functions Vi's. The consistency of the sec-
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ondary constraint ψi can be checked through

ψ̇i = {ψi, HST
T1 } ≈ {ψi, HST

c0
}+ Uj{ψi, ψjλ}+ Vj{ψi, ψj}

≈ −m
2

a
wi0 + aµ2δijπ1

j − µδijπYj + Uj
(
− 1

a
δij
)

(4.150)

which leads us to determine the Lagrange multiplier Uj as

Ui ≈ −m2δijw
j
0 + a2µ2π1

i − aµπYi . (4.151)

On the other hand, the consistency of ψiλ

ψ̇iλ = {ψiλ, HST
T1 } ≈ {ψiλ, HST

c0
}+ Uj{ψiλ, ψ

j
λ}+ Vj{ψiλ, ψj}

≈ ψi + Vj
(1
a
δij
)

(4.152)

leads to us to determine Vj as Vi ≈ −aδijψj. Substitution of Ui and Vi into the total Hamil-

tonian function HST
T in (4.149) completes the proof.

Proposition 4.2.8. Hamilton equations of motion using the total Hamiltonian function in the

proposition 4.2.7 are

ẇi0 =
1

a
δij(π0

j − λ0j), ẇi1 ≈ µδij(πYj − aµ2π1
j ), Ẏ i ≈ µδijπ1

j (4.153)

λ̇0i = −m2δijw
j
0 + a2µ2π1

i − aµπYi , π̇0
i ≈ −δijm2wj0 (4.154)

π̇1
i = −λ0i , π̇iλ =

1

a
δij(π0

j − λ0j)− wi1, π̇Yi = −m2δijY
i (4.155)

Proof. Using the total Hamiltonian in the proposition 4.2.7 and the Poisson brackets in (4.135),

the equations

ẇi0 = {wi0, HST
T } =

1

a
δij(π0

j − λ0j) (4.156)

ẇi1 = {wi1, HST
T } = δij(πYj − aµ2π1

j ) + a2µ2πiλ ≈ µδij(πYj − aµ2π1
j ) (4.157)

Ẏ i = {Y i, HST
T } = µδijπ1

j − aµπiλ ≈ µδijπ1
j (4.158)

π̇1
i = {π1

i , H
ST
T } = −λ0i (4.159)

π̇iλ = {πiλ, HST
T } =

1

a
δij(π0

j − λ0j)− wi1. (4.160)
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are satisfied identically from definition of momenta (4.136) and (4.139). The rest

λ̇0i = {λ0i , HST
T } = −m2δijw

j
0 + a2µ2π1

i − aµπYi (4.161)

π̇0
i = {π0

i , H
ST
T } = δij(−m2wj0 +m2πjλ) ≈ −δijm2wj0 (4.162)

π̇Yi = {πYi , HST
T } = −m2δijY

i (4.163)

give the equations of motion using the definition of momenta (4.136) and (4.139).

Dirac Bracket Formalism: The constraints

ψi =
1

a
δij(π0

j − λ0j)− wi1, ψiλ = πiλ (4.164)

for the first order Lagrangian LSTc0 are of second class since the Poisson brackets

{ψi, ψjλ} =
1

a
δij (4.165)

are nonzero.

Proposition 4.2.9. Under the existence of the constraints (4.164), theDirac bracket is defined

by

{wi0, λ0j}DB = δij (4.166)

{wi0, π0
j}DB = δij (4.167)

{wi1, π1
j}DB = δij (4.168)

{λ0i , π1
j}DB = −aδij (4.169)

{Y i, πYj }DB = δij (4.170)

and all others are zero.

Proof. Recall the definition of the Dirac bracket presented in (2.39). In particular, for the

constraints (4.164), we arrive

{F,G}DB = {F,G}+ a{F, ψk}δkn{ψnλ , G} − a{F, ψkλ}δkn{ψn, G} (4.171)
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after the substitution of the inverse matrix of

M =

 {ψk, ψn} {ψk, ψnλ}

{ψnλ , ψk} {ψnλ , ψkλ}

 =
1

a

 03×3 δkn

−δnk 03×3

 . (4.172)

Note that, the Poisson brackets of the coordinates and the constraints are

{wi0, ψj} =
1

a
δij (4.173)

{λ0i , ψ
j
λ} = δji (4.174)

{π1
i , ψ

j} = δji (4.175)

{πiλ, ψj} = −1

a
δij (4.176)

and all others are zero. Using the Dirac bracket (4.171) and the equations (4.173)− (4.176),

we find

{wi0, wi1}DB = {wi0, wi1}+ a{wi0, ψk}δkn{ψnλ , wi1} − a{wi0, ψkλ}δkn{ψn, wi1}

= 0 (4.177)

since {wi0, wi1} = {wi0, ψkλ} = {wi1, ψkλ}. Dirac bracket of wi0 with λ0j is

{wi0, λ0j}DB = {wi0, λ0j}+ a{wi0, ψk}δkn{ψnλ , λ0j} − a{wi0, ψkλ}δkn{ψn, λ0j}

= δij (4.178)

employing {wi0, λ0j} = {wi0, ψkλ} = 0 and {wi0, ψj} = 1
a
δij, {λ0i , ψ

j
λ} = δji . One may continue

to the proof in a similar manner.

4.2.5. Unconstraint Variational Formalism for LSTC0

To get the unconstraint Sarıoğlu-Tekin Lagrangians, we substitute the Lagrange multiplier

λ0i obtained in (4.133) into the first order Lagrangian density LSTC0

LSTU0
=
δij
2

[
a(ẇi0ẇ

j
0 + Ẏ iẎ j) +

2

µ
Ẏ iẇj1 −m2(Y iY j + wi0w

j
0)

]
− δij

µ
(ẇi0 − wi1)Ÿ

j.

(4.179)
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Note that, this is a second order Lagrangian. At this point it is possible to define the Jacobi-

Ostrogradsky momenta forLSTU0
and then apply Dirac analysis. Alternatively, one may reduce

LSTU0
into a first order Lagrangian by introducing a coordinate transformation

Y i = qi0 Ẏ i = q̇i0 = qi1, Ÿ i = q̇i1. (4.180)

In this case, we arrive the following first order constraint Lagrangians

LSTNC0
= LSTU00

(qi0, q̇
i
0, q̇

i
1, w

i
0, ẇ

i
0, ẇ

i
1) + χ0

i (q̇
i
0 − qi1) (4.181)

LSTNC1
= LSTU10

(qi0, q
i
1, q̇

i
1, w

i
0, ẇ

i
0, ẇ

i
1) + χ1

i (q̇
i
0 − qi1) (4.182)

where χ0
i and χ1

i are the Lagrange multipliers depending on q̇i0 or qi1 in the first order La-

grangian LSTU0
(4.179). In this case LSTU00

and LSTU10
become

LSTU00
=
δij
2

[
a(q̇i0q̇

j
0 + ẇi0ẇ

j
0) +

2

µ
q̇i0ẇ

j
1 −m2(qi0q

j
0 + wi0w

j
0)−

2

µ
(ẇi0 − wi1)q̇

j
1

]
LSTU10

=
δij
2

[
a(qi1q

j
1 + ẇi0ẇ

j
0) +

2

µ
qi1ẇ

j
1 −m2(qi0q

j
0 + wi0w

j
0)−

2

µ
(ẇi0 − wi1)q̇

j
1

]
.

We can apply Dirac analysis directly for first order Lagrangians LSTNC0
and LSTNC1

in (4.181)

and (4.182), or we write them as in unconstraint form substituting χ0 and χ1 into (4.181)−

(4.182) and then apply the Dirac analysis. Variations of LSTNC0
and LSTNC1

with respect to qi1
give χ0

i and χ1
i as

χ0
i =

δij
µ
(ẅj0 − ẇj1) = 0, χ1

i = δij(aq
j
1 +

1

µ
ẇj1) (4.183)

since ẇi0 = wi1. Substitutions of these Lagrange multipliers χ0
i and χ0

i into (4.181) and

(4.182) give first order unconstraint Lagrangians respectively

LSTNU0
= LSTU00

(4.184)

LSTNU1
= LSTU10

+ δij(aq
j
1 +

1

µ
ẇj1)(q̇

i
0 − qi1). (4.185)

Note that variations of these Lagrangians with respect to qi0 and wi0 give Euler-Lagrange

equations (4.79). We will continue with Hamiltonian analysis of unconstraint Lagrangians

LSTNU0
and LSTNU1

in (4.184)− (4.185).
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Hamiltonian Formalism for LSTNU0
: For the unconstraint Lagrangian LSTNU0

in (4.184) the con-

jugate momenta are

R0
i =

∂LSTNU0

∂q̇i0
= aδij q̇

j
0 +

1

µ
δijẇ

j
1 (4.186)

R1
i =

∂LSTNU0

∂q̇i1
=

1

µ
δij(w

j
1 − ẇj0) (4.187)

S0
i =

∂LSTNU0

∂ẇi0
= δij(aẇ

j
0 −

1

µ
q̇j1) (4.188)

S1
i =

∂LSTNU0

∂ẇi1
=

1

µ
δij q̇

j
0. (4.189)

Proposition 4.2.10. The canonical Hamiltonian function corresponding to the unconstraint

Lagrangian LSTNU0
is

HST
c0

= −a
2
δij(δikw

k
1 − µR1

i )(δjlw
l
1 − µR1

j )−
aµ2

2
δijS1

i S
1
j + µδijR0

iS
1
j

+ S0
i (w

i
1 − µδijR1

j ) +
m2

2
δij(q

i
0q
j
0 + wi0w

j
0) (4.190)

Proof. From conjugate momenta R0
i , R

1
i , S

0
i and S1

i it is possible to solve the velocities as

q̇i0 = µδijS1
j (4.191)

q̇i1 = aµ(wi1 − µδijR1
j )− µδijS0

j (4.192)

ẇi0 = wi1 − µδijR1
j (4.193)

ẇi1 = µδij(R0
j − aµS1

j ). (4.194)

Using the definition of the canonical Hamiltonian function we have

HST
c0

= R0
i q̇
i
0 +R1

i q̇
i
1 + S0

i ẇ
i
0 + S1

i ẇ
i
1 − LSTNU0

= R0
i q̇
i
0 +R1

i q̇
i
1 + S0

i ẇ
i
0 + S1

i ẇ
i
1 − LSTC0

= R0
i q̇
i
0 +R1

i q̇
i
1 + S0

i ẇ
i
0 + S1

i ẇ
i
1 −

δij
2

[
a(q̇i0q̇

j
0 + ẇi0ẇ

j
0) +

2

µ
q̇i0ẇ

j
1

−m2(qi0q
j
0 + wi0w

j
0)−

2

µ
(ẇi0 − wi1)q̇

j
1

]
. (4.195)
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After the substitutions of the velocities, we arrive

HST
c0

= −a
2
δij(δikw

k
1 − µR1

i )(δjlw
l
1 − µR1

j )−
aµ2

2
δijS1

i S
1
j + µδijR0

iS
1
j

+ S0
i (w

i
1 − µδijR1

j ) +
m2

2
δij(q

i
0q
j
0 + wi0w

j
0). (4.196)

Proposition 4.2.11. Hamilton equations of motion using the Hamiltonian function in propo-

sition 4.2.10 are

q̇i0 = µδijS1
j , q̇i1 = −aµwi1 + µδij(aR1

j − S0
j ), ẇi0 = wi1 − µδijR1

j

ẇi1 = µR0 − aµ2S1, Ṙ0
i = −m2δijq

j
0, Ṙ1

i = 0 (4.197)

Ṡ0
i = −m2δijw

j
0, Ṡ1

i = −S0
i + aδijw

j
1.

Proof. Governing by the canonical Hamiltonian, the equations

q̇i0 = {qi0, HST
c0

} = µδijS1
j (4.198)

q̇i1 = {qi1, HST
c0

} = −aµ
(
w1 −R1

)
− µS0 (4.199)

ẇi0 = {wi0, HST
c0

} = wi1 − µδijR1
j (4.200)

ẇi1 = {wi1, HST
c0

} = µδij(R0
j − aµS1

j ) (4.201)

are satisfied identically. Equations of motion for momenta are

Ṙ0
i = {R0

i , H
ST
c0

} = −m2δijq
j
0 (4.202)

Ṙ1
i = {R1

i , H
ST
c0

} = 0 (4.203)

Ṡ0
i = {S0, HST

c0
} = −m2δijw

j
0 (4.204)

Ṡ1
i = {S1

i , H
ST
c0

} = −S0
i + aδijw1. (4.205)

The first and third of these equations give the Euler-Lagrange equations, and the rest two are

satisfied identically.

Hamiltonian Formalism for LSTNU1
: For the Lagrangian LSTNU1

in (4.185), the conjugate mo-
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menta are

r0i =
∂LSTNU1

∂q̇i0
= aqi1 +

1

µ
ẇi1 (4.206)

r1i =
∂LSTNU1

∂q̇i1
=

1

µ
(wi1 − ẇi0) (4.207)

s0i =
∂LSTNU1

∂ẇi0
= aẇi0 −

1

µ
q̇i1 (4.208)

s1i =
∂LSTNU1

∂ẇi1
=

1

µ
q̇i0. (4.209)

Proposition 4.2.12. The canonical Hamiltonian function corresponding to the Lagrangian

LSTNC1
is

HST
c1

= s0i (w
i
1 − µδijr1j ) + µs1i (δ

ijr0j − aqi1) +
a

2
δijqi1q

j
1 +

m2

2
δij(qi0q

j
0 + wi0w

j
0)

− a

2
δij(w

i
1 − µδikr1k)(w

j
1 − µδjlr1l ). (4.210)

Proof. From the definitions of the conjugate momenta, it is possible to solve velocities as

follows

q̇i0 = µδijs1j (4.211)

q̇i1 = aµwi1 − µδij(s0j − aµr1j ) (4.212)

ẇi0 = wi1 − δijµr1j (4.213)

ẇi1 = µδijj r
0 − aµqi1. (4.214)

Using these, we write the canonical Hamiltonian function as

HST
c1

= r0i q̇
i
0 + r1i q̇

i
1 + s0i ẇ

i
0 + s1i ẇ

i
0 − LSTNU1

= r0i q̇
i
0 + r1i q̇

i
1 + s0i ẇ

i
0 + s1i ẇ

i
0 − (LSTC1

+ δij(aq
j
1 +

1

µ
ẇj1)(q̇

i
0 − qi1))

= r0i q̇
i
0 + r1i q̇

i
1 + s0i ẇ

i
0 + s1i ẇ

i
0 −

δij
2

[
a(qi1q

j
1 + ẇi0ẇ

j
0) +

2

µ
qi1ẇ

j
1

−m2(qi0q
j
0 + wi0w

j
0)−

2

µ
(ẇi0 − wi1)q̇

j
1

]
= s0i (w

i
1 − µδijr1j ) + µs1i (δ

ijr0j − aqi1) +
a

2
δijqi1q

j
1 +

m2

2
δij(qi0q

j
0 + wi0w

j
0)

− a

2
δij(w

i
1 − µδikr1k)(w

j
1 − µδjlr1l ). (4.215)
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Proposition 4.2.13. Using the Hamiltonian function given in the proposition 4.2.12, the

Hamilton equations are

q̇i0 = µδijs1j , q̇i1 = −µδijs0j + aµ(wi1 − µδijr1j ), ẇi0 = wi1 − µδijr1j

ẇi1 = µδijr0j − aµqi1, ṙ0i = −m2δijq
j
0, ṙ1i = −aδijqj1 + aµs1i (4.216)

ṡ0i = −m2δijwj0, ṡ1i = −s0i + aδijw
j
1 − µr1i .

Proof. The Hamilton's equations for the variables qi0, qi1, wi0 and wi1 generated byHST
c1

given

in the proposition 4.2.12 are

q̇i0 = {qi0, HST
c1

} = µδijs1j (4.217)

q̇i1 = {qi1, HST
c1

} = −µδijs0j + aµ(wi1 − µδijr1j ) (4.218)

ẇi0 = {wi0, HST
c1

} = wi1 − µδijr1j (4.219)

ẇi1 = {wi1, HST
c1

} = µδijr0j − aµqi1 (4.220)

which are identically satisfied after the substitutions of momenta. Equations of motion for

momenta are

ṙ0i = {r0i , HST
c1

} = −m2δijq
j
0 (4.221)

ṙ1i = {r1i , HST
c1

} = −aδijqj1 + aµs1i (4.222)

ṡ0i = {s0i , HST
c1

} = −m2δijwj0 (4.223)

ṡ1i = {s1i , HST
c1

} = −s0i + aδijw
j
1 − µr1i . (4.224)

From these equations, the ones in (4.221) and (4.223) give the Euler-Lagrange equations of

motion whereas the other two are identically satisfied.



61

4.2.6. An Alternative Reduction to the First Order Formalism

Hamiltonian Formalism for LSTC1
: Consider the momentum phase space with coordinates

(wi0, w
i
1, λ

0
i , Y

i,Π0
i ,Π

1
i ,Π

i
λ,Π

Y
j ) and the canonical Poisson bracket defined as

{wio,Π0
j} = {wi1,Π1

j} = {Ẏ i,ΠY
i } = δij, {λ0i ,Π

j
λ} = δji (4.225)

and all others are zero. The fiber derivatives of LSTC1
establish the relationship between the

velocities and the momenta as follows

Π0
i =

∂LSTC1

∂ẇi0
= λ1i (4.226)

Π1
i =

∂LSTC1

∂ẇi1
=

1

µ
δijẎ

j (4.227)

Πi
λ =

∂LSTC1

∂λ̇1i
= 0 (4.228)

ΠY
i =

∂LSTC1

∂Ẏ i
= aδijẎ

j +
1

µ
δijẇ

j
1. (4.229)

Proposition 4.2.14. The total Hamiltonian function corresponding to the Lagrangian density

LSTC1
in (4.130) is given by

HST
T = µδij(Π1

iΠ
Y
j − aµ

2
Π1
iΠ

1
j)−

a

2
δijw

i
1w

j
1 +Π0

iw
i
1 +

m2

2
δij(Y

iY j + wi0w
i
0)

− δijm
2wi0Π

j
λ. (4.230)

Proof. From the conjugate momenta in equations (4.227) and (4.229), it is possible to solve

Ẏ and ẇ1 as functions of coordinates and momenta given by

Ẏ i = µδijΠ1
j (4.231)

ẇi1 = µδij
(
ΠY
j − aµΠ1

j

)
, (4.232)

but, unfortunately, the others lead to primary constraints

Ψ0
i = Π0

i − λ1i (4.233)

Ψi
λ = Πi

λ. (4.234)
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The canonical Hamiltonian function (3.15) turns out to be

HST
c1

= Π0
i ẇ

i
0 +Π1

i ẇ
i
1 +Πi

λλ̇
1
i +ΠY

i Ẏ
i − LSTC1

= Π0
i ẇ

i
0 +Π1

i ẇ
i
1 +Πi

λλ̇
1
i +ΠY

i Ẏ
i − δij

2

[
a(wi1w

j
1 + Ẏ iẎ j) +

2

µ
Ẏ iẇj1

−m2(Y iY j + wi0w
j
0)
]
− λ1j(ẇ

j
0 − wj1). (4.235)

After the substitution of Ẏ i, ẇi1 and the primary constraints, the Hamiltonian function be-

comes

HST
c1

= δij(µΠ1
iΠ

Y
j − aµ2

2
Π1
iΠ

1
i )−

a

2
δijw

i
1w

j
1 +Π0

iw
i
1 +

m2

2
δij(Y

iY j + wi0w
j
0). (4.236)

We define the total Hamiltonian as

HST
T = HST

c1
+ ui0Ψ

0
i + uλiΨ

i
λ (4.237)

where ui0, uλi arbitrary function. The consistency checks for Ψ0
i

Ψ̇0
i = {Ψ0

i , HT} ≈ {Ψ0
i , H

ST
c1

}+ uj0{Ψ0
i ,Ψ

0
j}+ uλj {Ψ0

i ,Ψ
j
λ}

≈ −m2δijw
j
0 − uλi (4.238)

and for Ψi
λ

Ψ̇i
λ = {Ψi

λ, HT} ≈ {Ψi
λ, H

ST
c1

}+ uj0{Ψi
λ,Ψ

0
j}+ uλj {Ψi

λ,Ψ
j
λ} (4.239)

≈ ui0 (4.240)

allow us to determine ui0 and uλi . The substitutions of ui0 and uλi lead to write the total Hamil-

tonian HST
T in an explicit form.

Proposition 4.2.15. Hamilton equations of motion using the total Hamiltonian function in
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proposition 4.2.14 are

ẇi0 = wi1, ẇi1 = δij(µΠY
j − aµ2Π1

j), Ẏ i = µδijΠ1
j

Π̇1
i = aδijw

j
1 − Π0

i , Π̇λ
i = 0, Π̇0

i ≈ −δijm2wj0, λ̇1i = −m2δijw
j
0 (4.241)

Π̇0
i = −δijm2wj0, λ̇1i = −δijm2wj0, Π̇Y

i = −m2δijY
j.

Proof. The Hamilton's equations for w0 determine one of the constraints

ẇi0 = {wi0, HST
T } = wi1. (4.242)

The equations governing wi1, Y i,Π1
i and Πλ

i

ẇi1 = {wi1, HST
T } = δij(µΠY

j − aµ2Π1
j) (4.243)

Ẏ i = {Y i, HST
T } = µδijΠ1

j (4.244)

Π̇1
i = {Π1

i , H
ST
T } = aδijw

j
1 − Π0

i (4.245)

Π̇λ
i = {Πλ

i , H
ST
T } = 0 (4.246)

are satisfied identically using the definitions of momenta. The equations governing Π0
i and

λ1i

Π̇0
i = {Π0

i , H
ST
T } = δij −m2wj0 +m2Πj

λ ≈ −δijm2wj0 (4.247)

λ̇1i = {λ1i , HST
T } = −m2δijw

j
0 (4.248)

give one half of the Euler-Lagrange equations (4.79). To see this, we compute

Π̇0
i = −δijm2wj0 (4.249)

λ̇1i = −δijm2wj0 (4.250)

aẇi1 −
1

µ
˙̈Y i = −δijm2wj0 (4.251)

aẌ i +m2X i =
1

µ
˙̈Y i (4.252)
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using λ1. The equations governing the other momenta ΠY
i

Π̇Y
i = {ΠY

i , H
ST
T } = −m2δijY

j. (4.253)

give the rest half of the Euler-Lagrange equations. See that,

Π̇Y
i = −m2δijY

j

aŸ i +
1

µ
ẅi1 = −m2Y i

aŸ i +m2Y i = − 1

µ
˙̈X i (4.254)

using definition of ΠY
i .

Dirac Bracket Formalism: Now we are going to arrive the Hamilton's equations by defining

the Dirac bracket for the constraint space given by

Ψ0
i = Π0

i − λ1i (4.255)

Ψi
λ = Πi

λ. (4.256)

See that, Poisson brackets of constraints

{Ψ0
k,Ψ

0
n} = {Ψλ

k ,Ψ
λ
n} = 0 (4.257)

{Ψ0
k,Ψ

n
λ} = −δnk (4.258)

are non vanishing. So that they are of the second class.

Proposition 4.2.16. For the constraint space defined by (4.255) and (4.256), Dirac brackets

of the coordinates are

{wi0, λ1j}DB = δij (4.259)

{wi0,Π0
j}DB = δij (4.260)

{wi1,Π1
j}DB = δij (4.261)

{Y i,ΠY
j }DB = δij, (4.262)

and the rest is zero.
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Proof. The Dirac bracket presented in (2.39) turns out to be

{F,G}DB = {F,G} − {F,Ψ0
k}δkn{Ψn

λ, G}+ {F,Ψk
λ}δnk{Ψ0

n, G}. (4.263)

where we substitute the inverse of

M =

 {Ψ0
k,Ψ

0
n} {Ψ0

k,Ψ
n
λ}

{Ψk
λ,Ψ

0
n} {Ψk

λ,Ψ
n
λ}

 =

 03×3 −δnk
δkn 03×3

 . (4.264)

To derive the Dirac bracket of the coordinates, we also need to the Poisson brackets of the

coordinates with constraints i.e.

{wi0,Ψ0
k} = {λi,Ψλ

k} = δik, {Πλ
i ,Ψ

0
k} = δik (4.265)

and all the others are zero. The rest simply results of a direct calculation. To demonstrate

this, let us prove some of the Dirac brackets

{wi0, w
j
1}DB = {wi0, w

j
1} − {wi0,Ψ0

k}δkn{Ψn
λ, w

j
1}+ {wi0,Ψk

λ}δnk{Ψ0
n, w

j
1} = 0

since {wi0, w
j
1} = {Ψn

λ, w
j
1} = {Ψ0

n, w
j
1} = 0. See also that,

{wi0, λ1j}DB = {wi0, λ1j} − {wi0,Ψ0
k}δkn{Ψn

λ, λ
1
j}+ {wi0,Ψk

λ}δnk{Ψ0
n, λ

1
j} = δij

using {wi0, λ1j} = 0 and {wi0,Ψ0
j} = {λ1i ,Ψ

j
λ} = δji . Similarly one can calculate the remain-

ing Dirac brackets.

Proposition 4.2.17. Hamilton's equation of motion using the canonical Hamiltonian in (4.236)

are

ẇi0 = wi1, ẇi1 = µδijΠY
j − aµ2δijΠ1

j , Ẏ i = µδijΠ1
j

λ̇1i = −m2δijw
j
0, Π̇0

i = −m2δijw
j
0, Π̇1

i = aδijw
j
1 − Π0

i (4.266)

Π̇Y
i = −m2δijY

j, Π̇i
λ = 0.

Proof. Recall the canonical Hamiltonian in (4.236), and theDirac bracket presented in Propo-
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sition 4.2.16, the Hamilton's equation of motion are

ẇi0 = {wi0, HST
c }DB = {wi0,Π0

j}DBw
j
1 = δijw

j
1 = wi1

ẇi1 = {wi1, HST
c }DB = µδjj

′
ΠY
j′{wi1,Π1

j}DB − aµ2

2
δjj

′{wi1,Π1
jΠ

1
j′}

= µδijΠY
j − aµ2δijΠ1

j

Ẏ i = {Y i, HST
c }DB = {Y i, µδjj

′
Π1
jΠ

Y
j′}DB = µδijΠ1

j

λ̇1i = {λ1i , HST
c }DB = {λ1i ,

m2

2
δjj′w

j
0w

j′

0 }DB = −m2δijw
j
0

Π̇0
i = {Π0

i , H
ST
c }DB = {Π0

i ,
m2

2
δjj′w

j
0w

j′

0 }DB = −m2δijw
j
0

Π̇1
i = {Π1

i , H
ST
c }DB = {Π1

i ,
aµ2

2
δjj

′
wj1w

j′

1 }DB + {Π1
i , w

j
1}Π0

j = aδijw
j
1 − Π0

i

Π̇Y
i = {ΠY

i , H
ST
c }DB = {ΠY

i ,
m2

2
δjj′Y

jY j′}DB = −m2δijY
j

Π̇i
λ = {Πi

λ, H
ST
c }DB = 0.

4.2.7. Unconstraint Variational Formalism for LSTC1

By substituting the Lagrange multiplier λ1i in (4.133) into the Lagrangian function LSTC1
in

(4.130), we define an unconstraint Lagrangian

LSTU1
=
δij
2

[
a(Ẏ iẎ j + wi1w

j
1) +

2

µ
Ẏ iẇj1 −m2(Y iY j + wi0w

j
0)
]

+ δij(ẇ
i
0 − wi1)(aw

j
1 −

1

µ
Ÿ j). (4.267)

This is a second order Lagrangian with respect to Y i. We will apply similar analysis as it has

been done for LSTC0
in Section 4.2.5, first reduce it into first order Lagrangian and express it

in an unconstraint form. To reduce LSTU1
we define the following transformations

Y i = qi0 Ẏ i = q̇i0 = qi1, Ÿ i = q̇i1. (4.268)
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As a result, we define two first order Lagrangian functions

LSTNC0 = LSTU00(qi0, q̇
i
0, q̇

i
1, w

i
0, ẇ

i
0, w

i
1, ẇ

i
1) + ν0j (q̇

j
0 − qj1) (4.269)

LSTNC1 = LSTU10(qi0, q
i
1, q̇

i
1, w

i
0, ẇ

i
0, w

i
1, ẇ

i
1) + ν1j (q̇

j
0 − qj1) (4.270)

where ν0j and ν1j are Lagrange multipliers depending on q̇0i or qi1 used in LSTU1
. Thus, LSTU00 and

LSTU10 are

LSTU00 =
δij
2

[
a(q̇i0q̇

j
0 + wi1w

j
1) +

2

µ
q̇i0ẇ

j
1 −m2(qi0q

j
0 + wi0w

j
0)
]

+ δij(ẇ
i
0 − wi1)(aw

j
1 −

1

µ
q̇j1)

LSTU10 =
δij
2

[
a(qi1q

j
1 + wi1w

j
1) +

2

µ
qi1ẇ

j
1 −m2(qi0q

j
0 + wi0w

j
0)
]

+ δij(ẇ
i
0 − wi1)(aw

j
1 −

1

µ
q̇j1). (4.271)

Now we have to write LSTNC0 and LSTNC1 given in (4.269) and (4.270) in an unconstraint form.

The variation ofLSTNC0 andLSTNC1 with respect to qi1 give the Lagrange multipliers respectively

ν0i = −δij(
1

µ
ẇj1 − ẅj0) = 0 (4.272)

ν1i = δij(aq
j
1 +

1

µ
ẇj1). (4.273)

Substitutions of ν0i and ν1i into LSTNC0 and LSTNC1 lead to first order unconstraint Lagrangians

LSTNU0 = LSTU00 (4.274)

LSTNU1 = LSTU10 + δij(aq
j
1 +

1

µ
ẇj1)(q̇

j
0 − qj1), (4.275)

respectively.

Hamiltonian Formalism for LSTNU0: Recalling the Lagrangian density LSTNU0 in (4.274), the
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conjugate momenta qi0, qi1, wi0, wi1 are defined as

R0
i =

∂LSTNU0

∂q̇i0
= aq̇i0 +

1

µ
ẇi1 (4.276)

R1
i =

∂LSTNU0

∂q̇i1
=

1

µ
(wi1 − ẇi0) (4.277)

S0
i =

∂LSTNU0

∂ẇi0
= awi1 −

1

µ
q̇i1 (4.278)

S1
i =

∂LSTNU0

∂ẇi1
=

1

µ
q̇i0. (4.279)

The only difference between conjugate momenta for LSTNC0 and LSTNC1 is the presence of wi1
in S0

i instead of ẇi0 as expected.

Proposition 4.2.18. The canonical Hamiltonian function for the unconstraint Lagrangian

LSTNU0 is

HST
c0 = −a

2
δij(µ2S1

i S
1
j + wi1w

j
1) + µδijR0

iS
1
j + S0

i (w
i
1 − µδijR1

j )

+
m2

2
δij(q

i
0q
j
0 + wi0w

j
0) + aµR1

iw
i
1. (4.280)

Proof. From the definitions of the conjugate momenta R0
i , R

1
i , S

0
i and S1

i , it is possible to

solve velocities as

q̇i0 = µδijS1
j (4.281)

q̇i1 = µ(awi1 − δijS0
j ) (4.282)

ẇi0 = wi1 − µδijR1
j (4.283)

ẇi1 = µδij(R0
j − aµS1

j ). (4.284)

The canonical Hamiltonian function is computed by

HST
c0 = R0

i q̇
i
0 +R1

i q̇
i
1 + S0

i ẇ
i
0 + S1

i ẇ
i
1 − LSTNU0

= R0
i q̇
i
0 +R1

i q̇
i
1 + S0

i ẇ
i
0 + S1

i ẇ
i
1 − LSTC0

= R0
i q̇
i
0 +R1

i q̇
i
1 + S0

i ẇ
i
0 + S1

i ẇ
i
1 −

δij
2

[
a(q̇i0q̇

j
0 + wi1w

j
1) +

2

µ
q̇i0ẇ

j
1

−m2(qi0q
j
0 + wi0w

j
0)
]
− δij(ẇ

i
0 − wi1)(aw

j
1 −

1

µ
q̇j1). (4.285)
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By substituting the velocities, we have

HST
c0 = −a

2
δij(µ2S1

i S
1
j + wi1w

j
1) + µδijR0

iS
1
j + S0

i (w
i
1 − µδijR1

j )

+
m2

2
δij(q

i
0q
j
0 + wi0w

j
0) + aµR1

iw
i
1. (4.286)

Proposition 4.2.19. Hamilton's equation of motion using the canonical Hamiltonian in the

proposition 4.2.18 are

q̇i0 = µS1 q̇i1 = aµwi1 − µδijS0
j , ẇ0 = w1 − µR1, ẇ1 = µR0 − aµ2S1 (4.287)

Ṙ0 = −m2q0, Ṙ1 = 0, Ṡ0 = −m2w0, Ṡ1 = −S0 + aw1 − aµR1
i . (4.288)

Proof. The Hamilton's equations are

q̇i0 = {q0, HST
c0 } = µS1 (4.289)

q̇i1 = {q1, HST
c0 } = aµwi1 − µδijS0

j (4.290)

ẇ0 = {w0, H
ST
c0 } = w1 − µR1 (4.291)

ẇ1 = {w1, H
ST
c0 } = µR0 − aµ2S1 (4.292)

Ṙ0 = {r0, HST
c0

} = −m2q0 (4.293)

Ṙ1 = {r1, HST
c0

} = 0 (4.294)

Ṡ0 = {s0, HST
c0

} = −m2w0 (4.295)

Ṡ1 = {s1, HST
c0

} = −S0 + aw1 − aµR1
i . (4.296)

generated by the canonical HamiltonianHST
c0 in the proposition 4.2.18. The equations (4.293)

and (4.295) give the Euler-Lagrange equations whereas the others are satisfied identically.

Hamiltonian Formalism for LSTNU1: For the Lagrangian LSTNU1 given in (4.275), canonical
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momenta are defined as

r0i =
∂LSTNU1

∂q̇i0
= δij(aq

j
1 +

1

µ
ẇj1) (4.297)

r1i =
∂LSTNU1

∂q̇i1
=

1

µ
δij(w

j
1 − ẇj0) (4.298)

s0i =
∂LSTNU1

∂ẇi0
= δij(aw

j
1 −

1

µ
q̇j1) (4.299)

s1i =
∂LSTNU1

∂ẇi1
=

1

µ
δij q̇

j
0. (4.300)

Proposition 4.2.20. Canonical Hamiltonian function for LSTNU1 is

HST
C1 = s0i (w

i
1 − µδijr1j )−

1

2
δij
[
a(−qi1q

j
1 + wi1w

j
1)−m2(qi0q

j
0 + wi0w

j
0)
]

+ aµ(r1iw
i
1 − s1i q

i
1) + µδijs1i r

0
j (4.301)

Proof. From conjugate momenta it is possible to solve the velocities as

q̇i0 = δijµs1j (4.302)

q̇i1 = µ(awi1 − δijs0j) (4.303)

ẇi0 = wi1 − δijµr1j (4.304)

ẇi1 = µ(δijr0j − aqi1) (4.305)

and the canonical Hamiltonian function (3.15) is

HST
c1 = r0i q̇

i
0 + r1i q̇

i
1 + s0i ẇ

i
0 + s1i ẇ

i
1 − LSTNU1

= r0i q̇
i
0 + r1i q̇

i
1 + s0i ẇ

i
0 + s1i ẇ

i
1 − LSTC1 − δij(aq

j
1 +

1

µ
ẇj1)(q̇

j
0 − qj1). (4.306)

Substitution of the velocities give canonical Hamiltonian function

HST
C1 = s0i (w

i
1 − µδijr1j )−

1

2
δij
[
a(−qi1q

j
1 + wi1w

j
1)−m2(qi0q

j
0 + wi0w

j
0)
]

+ aµ(r1iw
i
1 − s1i q

i
1) + µδijs1i r

0
j . (4.307)

Proposition 4.2.21. Hamilton equations of motion using the Hamiltonian function given in



71

the proposition 4.2.20 are

q̇i0 = µδijs1j , q̇i1 = −µδijs0j + aµwi1, ẇi0 = wi1 − µδijr1j

ẇi1 = µδijr0j − aµqi1, ṙ0i = −m2δijq
j
0, ṙ1i = −aδijqj1 + aµs1i (4.308)

ṡ0i = −m2δijw
j
0, ṡ1i = −s0i + aδijw

j
1 − aµr1i (4.309)

Proof. Using Hamiltonian function in the proposition 4.2.20, equations of motion for canon-

ical coordinates are

q̇i0 = {qi0, HST
C1 } = µδijs1j (4.310)

q̇i1 = {qi1, HST
C1 } = −µδijs0j + aµwi1 (4.311)

ẇi0 = {wi0, HST
C1 } = wi1 − µδijr1j (4.312)

ẇi1 = {wi1, HST
C1 } = µδijr0j − aµqi1 (4.313)

which are satisfied identically using definitions of momenta. Equations of motion for mo-

menta are

ṙ0i = {r0i , HST
C1 } = −m2δijq

j
0 (4.314)

ṙ1i = {r1i , HST
C1 } = −aδijqj1 + aµs1i (4.315)

ṡ0i = {s0i , HST
C1 } = −m2δijw

j
0 (4.316)

ṡ1i = {s1i , HST
C1 } = −s0i + aδijw

j
1 − aµr1i . (4.317)

The equations (4.314) and (4.316) give the Euler-Lagrange equations (4.79) and the remain-

ing are satisfied identically using the definition of momenta.
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4.3. CLÈMENT LAGRANGIAN

4.3.1. General Setting

Consider a three dimensional spaceM with local coordinates X = (X i). We introduce the

following coordinates on the bundles

X ∈M,

(X, Ẋ) ∈ TM

(X, Ẋ, Ẍ) ∈ T 2M

(X, Ẋ, Ẍ,
...
X) ∈ T 3M

(X, Ẋ, P 0, P 1) ∈ T ∗TM.

Let us consider the following second order degenerate Lagrangian

LC [X i] = −mζ
2
δijẊ

iẊj − 2mζ−1Λ +
ζ2

2µm
ϵijkX

iẊjẌk, (4.318)

introduced by Clèment [37]. Here, the inner product X2 = T 2 −X2 − Y 2 is defined by the

Lorentzian metric and the triple product is ϵijkX iẊjẌk. ζ = ζ(t) is a function which allows

arbitrary reparametrization of the variable t whereas Λ and 1/2m are the cosmological and

Einstein gravitational constants, respectively. The second order Euler-Lagrange equations

(3.4) governed by the Clèment Lagrangian are computed to be

−mζẌ i +
ζ2

µm
δijϵjkl

...
X
k
X l +

3ζ2

2µm
δijϵjklẌ

kẊ l = 0. (4.319)

4.3.2. Jacobi-Ostrogradsky Method

On the Hamiltonian phase space T ∗TM , the canonical Poisson bracket relations are defined

as

{X i, P 0
j } = {Ẋ i, P 1

j } = δij (4.320)
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and all others are zero. Legendre transformations (3.9) and (3.10) are introduced through the

definition of Jacobi-Ostrogradsky momenta as

P 0
i =

∂LC

∂Ẋ i
− d

dt

(
∂LC

∂Ẍ i

)
= −mζδij′Ẋj′ +

ζ2

µm
ϵinkẌ

nXk (4.321)

P 1
i =

∂LC

∂Ẍ i
=

ζ2

2µm
ϵiklX

kẊ l (4.322)

conjugated respectively to X i and Ẋ i.

Proposition 4.3.1. Total Hamiltonian function for the Clèment Lagrangian is

HC
T 1 =

1

2
Ẋ iP 0

i − 3

2mζX2
(XP 1

i )(Ẋ
iBi)−

µm

ζ2X2
ϵijkP 1

i BjδklX
l

+
1

2X2
(BiX

i)(δijX
iẊj)− 1

mζX2
(X iBi)

2. (4.323)

Here, we used the abbreviations Bi = mζδijẊ
j + P 0

i and X2 = δijX
iXj .

Proof. It is not possible to solve any component of Ẍ i from (4.322), instead we have to

define 3 primary constraints

Φi = P 1
i − ζ2

2µm
ϵiklX

kẊ l

from equation (4.322). The canonical Hamiltonian function (3.15) turns out to be

HC = P 0
j Ẋ

j + P 1
j Ẍ

j − LC

=
m

2
ζδjj′Ẋ

jẊj′ + 2mζ−1Λ + ẊjP 0
j (4.324)

using (4.321) and (4.322) whereas the total Hamiltonian (3.19) becomes

HC
T = HC + U jΦj

=
m

2
ζδjj′Ẋ

jẊj′ + 2mζ−1Λ + ẊjP 0
j + U j

(
P 1
j − ζ2

2µm
ϵjklX

kẊ l
)
. (4.325)

Here, U j 's are arbitrary functions of the canonical variables. Consistency of the primary
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constraint Φi

Φ̇i = {Φi, H
C
T } ≈ {Φi, H

C}+ U j{Φi,Φj}

≈ −mζδijẊj − P 0
i +

ζ2

µm
ϵijkU

jXk = 0 (4.326)

leads to a secondary constraint

Φ = X i(mζδijẊ
j + P 0

i ). (4.327)

Note that this secondary constraintΦ also follows from equation (4.321). This is not suprising

as we have explained in section (3.2.1). We revise the total Hamiltonian presented in (4.325)

as

HC
T 1 = HC

T + UΦ

= HC + U jΦj + UΦ (4.328)

with the introduction of a Lagrange multiplier U . The consistency condition of secondary

constraint Φ gives that

Φ̇ = {Φ, HC
T 1} ≈ {Φ, HC}+ U j{Φ,Φj}+ U{Φ,Φ}

≈ (mζδijẊ
j + P 0

i )Ẋ
i + U j

[
δjkmζX

k +
ζ2

2µm
ϵjklX

kẊ l
]
= 0. (4.329)

whereas the consistencies of the primary constraints Φ give

Φ̇i = {Φi, H
C
T 1} ≈ {Φi, H

C}+ U j{Φi,Φj}+ U{Φi,Φ}

≈ −mζ ˙δijXj − P 0
i +

ζ2

µm
ϵijkU

jXk + U
[
−mζδijX

j − ζ2

2µm
ϵijkX

jẊk
]
= 0.

(4.330)

No further constraint arises, instead we can solve the Lagrange multipliers U i and U using
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(4.329) and (4.330). Accordingly, we have

U i ≈ µm

ζ2X2
ϵijkδjlX

lBk −
3

2

(
BjẊ

j

mζX
2

)
X i (4.331)

U ≈ − 1

mζX2
X iBi = − 1

mζX2
Φ. (4.332)

Here, we used the abbreviations Bi = mζδijẊ
j + P 0

i and X2 = δijX
iXj . Substitutions of

the constraints Φi,Φ and Lagrange multipliers U i, U in (4.331), (4.332) into the total Hamil-

tonian function HC
T 1 in (4.328) prove the proposition.

Proposition 4.3.2. Hamilton equations of motion for the total Hamiltonian function HT 1 in

the proposition 4.3.1 are

Ẋ i ≈ 1

2
Ẋ i +

µm

ζ2X2
ϵijkδklP

1
j X

l +
1

2X2
X i(δkjX

kẊj) (4.333)

Ẍ i ≈ µm

ζ2X2
ϵijkδjlX

lBk −
3

2ζX2
(BjẊ

j)X i (4.334)

Ṗ 0
i ≈ µm

ζ2X2
δijϵ

jklP 1
kBl +

3

2mζX2
(BjẊ

j)P 1
i − 1

2X2
(δjkẊ

jXk)Bi

− 2

X4

µm

ζ2
(ϵrskδklP

1
rBsX

l)δijX
j (4.335)

Ṗ 1
i ≈ −1

2
P 0
i − µm2

ζX2
ϵijkδ

jlP 1
l X

k − mζ

2X2
X i(δjkX

jẊk). (4.336)

Proof. Using the total Hamiltonian HC
T 1 in the proposition 4.3.1, equation of motion for X i

is identically satisfied. To have this, consider the following calculation

Ẋ i = {X i, HC
T 1} ≈ 1

2
Ẋ i +

µm

ζ2X2
ϵijkδlkP

1
j X

l +
1

2X2
(δkjX

kẊj)X i

≈ 1

2
Ẋ i − 1

2X2

[
X i(δjkX

jẊk)− Ẋ i(δjkX
jXk)

]
+

1

2X2
(δjkX

jẊk)X i

≈ Ẋ i. (4.337)
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Likewise equation of motion for Ẋ i is identically satisfied

Ẍ i = {Ẋ i, HC
T 1} ≈ µm

ζ2X2
ϵijkδjlX

lBk −
3

2mζX2
(BjẊ

j)X i

≈ 1

X2

[
Ẍ i(δjkX

jXk)−X i(δjkX
jẌk)

]
− 3ζ

2µm2
(ϵjklẌ

jXkẊ l)X i

≈ Ẍ i − 1

mζX2

[
mζδjkX

jẌk +
3ζ2

2µm
ϵjklẌ

jXkẊ l
]
X i (4.338)

since the term in the parenthesis is zero, it is the dot product of Euler-Lagrange equations of

motion (4.319) with X i.

Equation of motion for P 0
i gives Euler-Lagrange equations of motion (4.319). To show this

we perform the following computation

Ṗ 0
i = {P 0

i , H
C
T 1}

≈ µm

ζ2X2
δijϵ

jklP 1
kBl +

3

2mζX2
(BjẊ

j)P 1
i − 1

2X2
(δjkẊ

jXk)Bi

− 2

X4

µm

ζ2
(ϵrskδklP

1
rBsX

l)δijX
j

≈ −1

2X2
(δijX

j(BkẊ
k)− δijẊ

j(BkX
k)) +

3ζ

4µm2X2
(BlẊ

l)ϵijkX
jẊk

− 1

2X2
(δjkẊ

jXk)Bi +
1

X4

(
X2(BkẊ

k)− (XkBk)(δlrX
lẊr)

)
δijX

j

using definition of P 1
i . After Substituting the constraint Φ = BiX

i = 0 if we use definition

of Bi

Ṗ 0
i ≈ −1

2X2
δijX

j(BkẊ
k) +

3ζ

4µm2X2
(BlẊ

l)ϵijkX
jẊk − 1

2X2
(δjkẊ

jXk)Bi

≈ −1

2X2
ϵijkẊ

j(ϵklrδrsBlẊ
s) +

3ζ

4µm2X2
(BlẊ

l)ϵijkX
jẊk

≈ ζ2

2µm
ϵijkẊ

jẌk − ζ2

2µmX2
ϵijkẊ

JXk
[
δrlX

rẌ l +
3ζ

2µm2
ϵlrsẊ

lẌrXs
]
(4.339)

the term in the parenthesis is zero since it is the dot product of Euler-Lagrange equations of

motion (4.319) withX i and the remaining term leads to Euler-Lagrange equations of motion

(4.319) using the definition of P 0
i .
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The equation of motion for P 1
i is identically satisfied

Ṗ 1
i = {P 1

i , H
C
T 1} ≈ −1

2
P 0
i − µm2

ζX2
ϵijkδ

jlP 1
l X

k − mζ

2X2
(δjkX

jẊk)X i

≈ −1

2
P 0
i +

mζ

2X2

[
X i(δjkX

jẊk)− Ẋ i(δjkX
jXk)

]
− mζ

2X2
X i(δjkX

jẊk)

≈ −1

2
P 0
i − mζ

2
δijẊ

j ≈ Ṗ 1
i (4.340)

using the definition of P 0
i and P 1

i .

4.3.3. Dirac Bracket Formalism

In this part, we will construct the Dirac brackets using the constraints

Φi = P 1
i − ζ2

2µm
ϵikk′X

kẊk′ (4.341)

χ = X l
(
mζδll′Ẋ

l′ + P 0
l

)
(4.342)

which are of second class.

Proposition 4.3.3. Dirac brackets of canonical coordinates are

{X i, Xj}DB = 0

{Ẋ i, Ẋj}DB =
−µ
ζ3X2

ϵijkAk

{X i, Ẋj}DB =
−1

mζX2
X iXj

{X i, P 0
j }DB = δij −

ζ

2m2µX2
X iϵjknẊ

kXn

{X i, P 1
j }DB = 0

{Ẋ i, P 0
j }DB = − 1

2mζX2
AjẊ

i +
1

2mζX2
(AkẊ

k)δij −
1

mζX2
X iBj

{Ẋ i, P 1
j }DB = δij −

1

2mζX2
(AkX

k)δij +
1

2mζX2
AjX

i − 1

X2
X iδjlX

l

{P 0
i , P

0
j }DB =

ζ

4m2µX2
ϵjilẊ

l(AkẊ
k)− ζ

2m2µX2
(ϵiknẊ

kXnBj − ϵjknẊ
kXnBi)

{P 0
i , P

1
j }DB =

−ζ
4m2µX2

ϵjikẊ
k(AlX

l) +
ζ

4m2µX2
AjϵiklẊ

kX l

{P 1
i , P

1
j }DB =

−ζ
4m2µX2

ϵjkiX
k(AlX

l).
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where we used the abbreviations Ai = mζδijX
j + P 1

i , Bi = mζδijẊ
j + P 0

i and X2 =

δijX
iXj .

Proof. To derive these relations, we use the Dirac bracket (2.39)

{F,G}DB = {F,G} − {F,Φn}Mnn′{Φn′ , G} − {F,Φn}Mn1{χ,G}

− {F, χ}M1n′{Φn′ , G} (4.343)

with the substitution of the inverse matrix

M−1 =

 Mnn′
Mn1

M1n′
M11

 =

 −µϵnn′k(mζδskX
s+P 1

k )

ζ3X2
Xn

mζX2

− Xn′

mζX2 0


of the matrix

M =

 {Φn,Φn′} {Φn, χ}

{χ,Φn′} {χ, χ}


=

 ζ2

µm
ϵnn′kX

k −mζδnlX l − ζ2

2µm
ϵnlk′X

lẊk′

mζδn′lX
l + ζ2

2µm
ϵn′lk′X

lẊk′ 0



First, we define the Poisson brackets of coordinates X i, Ẋ i and P 0
i , P

1
i with the set of con-

straints as follows

{X i, χ} = {X i, X l(mζδll′Ẋ
l′ + P 0

l )} = X i (4.344)

{Ẋ i,Φn} = {Ẋ i, P 1
n − ζ2

2µm
ϵnkk′X

kẊk′} = δin (4.345)

{P 0
i ,Φn} = {P 0

i , P
1
n − ζ2

2µm
ϵnkk′X

kẊk′} =
ζ2

2µm
ϵnik′Ẋ

k′ (4.346)

{P 0
i , χ} = {P 0

i , X
l(mζδll′Ẋ

l′ + P 0
l )} = −mζδil′Ẋ l′ − P 0

i (4.347)

{P 1
i ,Φn} = {P 1

i , P
1
n − ζ2

2µm
ϵnkk′X

kẊk′} =
ζ2

2µm
ϵnkiX

k (4.348)

{P 1
i , χ} = {P 1

i , X
l(mζδll′Ẋ

l′ + P 0
l )} = −mζδilX l (4.349)

and all the others are zero. Substitution of these into the bracket (4.343) lead to the proof of
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the theorem. For example, the Dirac bracket of X i and Ẋ i is computed by

{X i, Ẋj}DB = {X i, Ẋj} − {X i,Φn}Mnn′{Φn′ , Ẋj} − {X i,Φn}Mn1{χ, Ẋj}

− {X i, χ}M1n′{Φn′ , Ẋj}

= −(X i)(− Xn′

mζX2
)(−δjn′)

=
−1

mζX2
X iXj (4.350)

since {X i, Ẋj} = {X i,Φn} = 0. Dirac brackets for the other coordinates can be derived in

a similar way.

Proposition 4.3.4. Hamilton equations using the Dirac algebra of the constraints in the

proposition 4.3.3 are

Ẋ i =
−1

mζX2
X iXjBj + Ẋ i (4.351)

Ẍ i =
−µ
ζ3X2

ϵijkBjAk −
X i

mζX2
BjẊ

j (4.352)

Ṗ 0
i =

−1

2mζX2
Bi(AjẊ

j) +
1

2mζX2
Ai(BkẊ

k) +
1

mζX2
Bi(X

jBj)

− ζ

2µm2X2
ϵiklẊ

kX l(BjẊ
j) (4.353)

Ṗ 1
i = −Bi +

1

2mζX2
Bi(AkX

k)− 1

2mζX2
Ai(BjX

j) +
1

X2
δikX

k(XjBj) (4.354)

where we used the abbreviations Ai = mζδijX
j + P 1

i , Bi = mζδijẊ
j + P 0

i and X2 =

δijX
iXj .

Proof. Using the Dirac brackets of the coordinates in the proposition 4.3.3 and the Hamilto-
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nian function (4.324), equations of motion for X i's

Ẋ i = {X i, HC}DB

= {X i, Ẋj}DB(mζδjj′Ẋj′ + P 0
j ) + {X i, P 0

j }DBẊj

=
( −1

mζX2
X iXj

)
(mζδjj′Ẋ

j′ + P 0
j ) +

(
δij −

ζ

2m2µX2
X iϵjk′n′Ẋk′Xn′)

Ẋj

=
−1

mζX2
X iXj(mζδjj′Ẋ

j′ + P 0
j ) + Ẋ i

=
−1

mζX2
X iXj

( ζ2
µm

ϵjklẌ
kX l
)
+ Ẋ i (4.355)

after cancellation of Ẋ i, the remaining gives secondary constraint Φ since X i is nonzero.

The equation of motion for Ẋ i's are

Ẍ i = {Ẋ i, HC}DB

= {Ẋ i, Ẋj}DB(mζδjj′Ẋj′ + P 0
j ) + {Ẋ i, P 0

j }DBẊj

=
−µ
ζ3X2

ϵijkAkBj −
X i

mζX2
BjẊ

j. (4.356)

Substitutions of Ak = mζδklX
l + P 1

k and Bk = mζδklẊ
l + P 0

k into equation (4.356) give

Ẍ i =
−µ
ζ3X2

ϵijk(mζδskX
s + P 1

k )(mζδjj′Ẋ
j′ + P 0

j )

− X i

mζX2
(mζδjl′Ẋ

l′ + P 0
j )Ẋ

j (4.357)

and with the help of P 0
i and P 1

i the last equation can be written as

Ẍ i =
−1

X2
(δsnX

sẌn)X i + Ẍ i − 3ζ

2µm2X2

(
ϵjnkẊ

jẌnXk
)
X i. (4.358)

After cancellation we get

−X i

X2

(
δsnX

sẌn +
3ζ

2µm2
ϵjnkẊ

jẌnXk

)
= 0 (4.359)

sinceX i is nonzero the term in the parenthesis must be zero. This is not a contradiction since

it is the dot product of the Euler-Lagrange equation (4.319) with X i.
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Hamilton equations of motion for P 0
i 's are

Ṗ 0
i = {P 0

i , H
C}DB

= {P 0
i , Ẋ

j}DB(mζδjj′Ẋj′ + P 0
j ) + {P 0

i , P
0
j }DBẊj

=
−1

2mζX2
Bi(AjẊ

j) +
1

2mζX2
Ai(BkẊ

k) +
1

mζX2
Bi(X

jBj)

− ζ

2µm2X2
ϵiklẊ

kX l(BjẊ
j) (4.360)

First line in the equation (4.360) can be written explicitly as

−1

2mζX2
Bi(AjẊ

j) +
1

2mζX2
Ai(BkẊ

k) +
1

mζX2
Bi(X

jBj)

=

(
−1

2mζX2
(mζδsiX

s + P 1
i )Ẋ

j +
1

2mζX2
(mζδskX

s + P 1
k )Ẋ

kδji

− Xj

mζX2
(mζδil′Ẋ

l′ + P 0
i )

)
(mζδjj′Ẋ

j′ + P 0
j )

=
−ζ2

2µm2X2
(δskX

sẊk)ϵinn′ẌnXn′

+
ζ

2µm2X2
ϵjnn′ẊjẌnXn′(

mζisX
s +

ζ2

2µm
ϵill′X

lẊ l′
)

(4.361)

by substituting the Ak and Bk in terms of P 0
i and P 1

i in X coordinates. Second line in the

equation (4.360) can be written as

− ζ

2µm2X2
ϵiklẊ

kX l(BjẊ
j)

= − ζ

2m2µX2
ϵik′nẊ

k′Xn(mζδjl′Ẋ
l′ + P 0

j )Ẋ
j

= − ζ3

2m3µ2X2
ϵik′nẊ

k′Xnϵjll′Ẋ
jẌ lX l′ (4.362)

using definition of P 0
i . Hence summation of (4.361) and (4.362) in equation (4.360) give
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Hamilton equations of motion for P 0
i ,

Ṗ 0 =
−ζ2

2µm2X2
(δskX

sẊk)ϵinn′ẌnXn′
+

ζ2

2µmX2
(ϵjnn′ẊjẌnXn′

)δisX
s

+
3ζ3

4µ2m3X2
ϵill′X

lẊ l′(ϵjnn′ẊjẌnXn′
)

=
−ζ2

2µmX2
ϵijkẊ

jϵklr(ϵll′mẌ
l′Xm)Xr′δrr′

+
3ζ3

4µ2m3X2
ϵill′X

lẊ l′(ϵjnn′ẊjẌnXn′
)

=
ζ2

2µmX2
ϵijkẊ

j
(
Ẍk(δlrX

lXr)−Xk(δlrX
lẌr)

)
+

3ζ3

4µ2m3X2
ϵill′X

lẊ l′(ϵjnn′ẊjẌnXn′
)

=
ζ2

2µm
ϵijkẊ

jẌk − ζ2

2µm
ϵijkẊ

jXk
(
δlrX

lẌr +
3ζ

2µm2
(ϵjnn′ẊjẌnXn′

)
)
. (4.363)

The term in the parenthesis vanish since it is the dot product of the Euler-Lagrange with X i

and the remaining term gives the Euler-Lagrange equations (4.319) substituting the definition

of P 0
i .

Finally Hamilton equation of motion for P 1
i 's are identically satisfied

Ṗ 1
i = {P 1

i , H
C}DB

= {P 1
i , Ẋ

j}DB(mζδjj′Ẋj′ + P 0
j ) + {P 1

i , P
0
j }DBẊj

= −Bi +
1

2mζX2
Bi(AkX

k)− 1

2mζX2
Ai(BjX

j) +
1

X2
δikX

k(XjBj) (4.364)

substituting Ai and Bi

Ṗ 1
i =

−ζ2

2µm
ϵinkẌ

nXk. (4.365)



83

4.3.4. The First Order Formalism

In this section, we will analyze first order constraint Clèment Lagrangians

LCC0
= −mζ

2
δijQ̇

i
0Q̇

j
0 +

ζ2

2µm
ϵijkQ

i
0Q̇

j
0Q̇

k
1 + λ0j(Q̇

j
0 −Qj

1) (4.366)

LCC1
= −mζ

2
δijQ

i
1Q

j
1 +

ζ2

2µm
ϵijkQ

i
0Q

j
1Q̇

k
1 + λ1j(Q̇

j
0 −Qj

1) (4.367)

using coordinate transformationsX i = Qi
0, Ẋ i = Qi

1, Ẍ
i = Q̇i

1 and Lagrange multipliers λ0i
and λ1i .

Both of the variations of LCC0
and LCC1

with respect to λ0i and λ1i give the constraint equation

Q̇i
0 −Qi

1 = 0. Variation with respect to Qi
1 implies the expression

λ0i = − ζ2

2µm
ϵijkQ

j
0Q̈

k
0 (4.368)

λ1i = −mζδijQj
1 −

ζ2

µm
ϵijkQ

j
0Q̇

k
1 +

ζ2

2µm
ϵijkQ

j
1Q̇

k
0 (4.369)

for the Lagrange multipliers respectively. Finally, the equation from the variation of Qi
0 is

λ̇0i = −mζQ̈i
0 +

ζ2

µm
ϵijkQ̇

j
0Q̇

k
1 −

ζ2

2µm
ϵijkQ̈

j
1Q

k
0 (4.370)

λ̇1i =
ζ2

2µm
ϵijkQ

j
1Q̇

k
1 (4.371)

which give the Euler-Lagrange equations (4.319) forX i when the identification (4.368) and

(4.369) of λ0i , λ1i and the constraints Q̇i
0 −Qi

1 = 0 are used.
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4.3.5. The First Order Formalism as LCC1

Hamiltonian Formalism for LCC1
: To pass the Hamiltonian formalism for the LCC1

in (4.367),

the conjugate momenta are defined by

Π0
i ≡

∂LCC1

∂Q̇i
0

= λ1i (4.372)

Π1
i ≡

∂LCC1

∂Q̇i
1

=
ζ2

2µm
ϵiklQ

k
0Q

l
1 (4.373)

Πi
λ ≡

∂LCC1

∂λ̇1i
= 0. (4.374)

Proposition 4.3.5. Total Hamiltonian function is

HT1 =
1

2
Π0
jQ

j
1 +

1

2Q2
0

(δijQ
i
0Q

j
1)(DiQ

i
0) +

µm

ζ2Q0
2 ϵ
ijkδjlΠ

1
iQ

l
0Dk

− 3

2mζQ2
0

(DjQ
j
1)(Q

i
0Π

1
i ) +

1

2Q2
0

ϵijkΠ
i
λQ

j
1ϵ
klrδlsQ

s
0Dr

− 3ζ

4µm2Q2
0

ϵijkΠ
i
λQ

j
1Q

k
0(DlQ

l
1)−

(DiQ
i
0)

2

mζQ2
0

(4.375)

where we used abbreviations Di = mζδijQ
j
1 +Π0

i and δijQi
0Q

j
0 = Q0

2.

Proof. Recall the definition of momenta (4.372)− (4.374). Neither of the momenta can be

written as explicit functions of the Q̇i
0, Q̇

i
1 and λ̇1i , insteadwe introduce the primary constraints

ϕ0
i ≡ Π0

i − λ1i (4.376)

ϕ1
i ≡ Π1

i −
ζ2

2µm
ϵiklQ

k
0Q

l
1 (4.377)

ϕiλ ≡ Πi
λ. (4.378)
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For the Lagrangian LCC1
, the canonical Hamiltonian function is defined by

Hc = Π0
jQ̇

j
0 +Π1

jQ̇
j
1 +Πj

λλ̇
1
j − LCC1

= Π0
jQ̇

j
0 +

( ζ2

2µm
ϵjklQ

k
0Q

l
1

)
Q̇j

1 +Πj
λλ̇

1
j +

mζ

2
δjj′Q

j
1Q

j′

1

− ζ2

2µm
ϵklnQ

k
0Q

l
1Q̇

n
1 − λ1j(Q̇

j
0 −Qj

1)

=
mζ

2
δjj′Q

j
1Q

j′

1 +Π0
jQ

j
1 (4.379)

using the primary constraints. Then, the total Hamiltonian becomes

HT = Hc + V j
0 ϕ

0
j + V j

1 ϕ
1
j + V λ

j ϕ
j
λ

=
mζ

2
δjj′Q

j
1Q

j′

1 +Π0
jQ

j
1 + V j

0 (Π
0
j − λ1j)

+ V j
1 (Π

1
j −

ζ2

2µm
ϵjklQ

k
0Q

l
1) + V λ

j Π
j
λ (4.380)

where V j
0 , V

j
1 and V λ

j are arbitrary functions of canonical variables.

Now we check the consistency condition for each of the primary constraint ϕ0
i , ϕ

1
i and ϕiλ.

The Poisson brackets of constraints are

{ϕ0
i , ϕ

1
j} = {Π0

i − λ1i ,Π
1
j −

ζ2

2µm
ϵjklQ

k
0Q

l
1} =

ζ2

2µm
ϵjilQ

l
1 (4.381)

{ϕ0
i , ϕ

j
λ} = {Π0

i − λ1i ,Π
j
λ} = −δji (4.382)

{ϕ1
i , ϕ

1
j} = {Π1

i −
ζ2

2µm
ϵiklQ

k
0Q

l
1,Π

1
j −

ζ2

2µm
ϵjk′l′Q

k′

0 Q
l′

1}

=
ζ2

µm
ϵijkQ

k
0 (4.383)

and all the others are zero. The brackets of constraints and the canonical Hamiltonian are

{ϕ0
i , Hc} = {Π0

i − λ1i ,
mζ

2
δjj′Q

j
1Q

j′

1 +Π0
jQ

j
1} = 0 (4.384)

{ϕ1
i , Hc} = {Π1

i −
ζ2

2µm
ϵiklQ

k
0Q

l
1,
mζ

2
δjj′Q

j
1Q

j′

1 +Π0
jQ

j
1}

= −mζδijQj
1 − Π0

i (4.385)

{ϕiλ, Hc} = {Πi
λ,
mζ

2
δjj′Q

j
1Q

j′

1 +Π0
jQ

j
1} = 0. (4.386)
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Using these, we write the consistency conditions for each the primary constraints as follows,

for ϕ0
i 's,

ϕ̇0
i = {ϕ0

i , HT} ≈ {ϕ0
i , Hc}+ V j

0 {ϕ0
i , ϕ

0
j}+ V j

1 {ϕ0
i , ϕ

1
j}+ V λ

j {ϕ0
i , ϕ

j
λ}

≈ ζ2

2µm
ϵiljQ

l
1V

j
1 − V λ

i , (4.387)

for ϕ1
i 's

ϕ̇1
i = {ϕ1

i , HT} ≈ {ϕ1
i , Hc}+ V j

0 {ϕ1
i , ϕ

0
j}+ V j

1 {ϕ1
i , ϕ

1
j}+ V λ

j {ϕ1
i , ϕ

j
λ}

≈ mζδijQ
j
1 − Π0

i −
ζ2

2µm
ϵijlV

j
0Q

l
1 +

ζ2

µm
ϵijkV

j
1Q

k
0, (4.388)

and for ϕiλ's

ϕ̇iλ = {ϕiλ, HT} ≈ {ϕiλ, Hc}+ V j
0 {ϕiλ, ϕ0

j}+ V j
1 {ϕiλ, ϕ1

j}+ V λ
j {ϕiλ, ϕ

j
λ}

≈ V i
0 . (4.389)

Since V i
0 ≈ 0, from the equation (4.387) we arrive

V λ
i ≈ ζ2

2µm
ϵijkQ

j
1V

k
1 . (4.390)

By taking the dot product of Qi
0 and Eq.(4.388), we have a new constraint

ψ =
(
mζδii′Q

i′

1 +Π0
i

)
Qi

0. (4.391)

We revise the total Hamiltonian as

HT1 = Hc + V j
0 ϕ

0
j + V j

1 ϕ
1
j + V λ

j ϕ
j
λ + V ψ (4.392)

by adding the secondary constraint ψ by multiplying it with a Lagrange multiplier V .

The Poisson bracket of the secondary constraint ψ with the canonical Hamilton function is

{ψ,Hc} = {(mζδii′Qi′

1 +Π0
i )Q

i
0,
mζ

2
δjj′Q

j
1Q

j′

1 +Π0
jQ

j
1}

= (mζδii′Q
i′

1 +Π0
i )Q

i
1. (4.393)
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The Poisson bracket of the secondary constraint ψ with the primary constraints are

{ψ, ϕ0
j} = {(mζδii′Qi′

1 +Π0
i )Q

i
0,Π

0
j − λj} = (mζδji′Q

i′

1 +Π0
j) (4.394)

{ψ, ϕ1
j} = {(mζδii′Qi′

1 +Π0
i )Q

i
0,Π

1
j −

ζ2

2µm
ϵjklQ

k
0Q

l
1}

= mζδijQ
i
0 +

ζ2

2µm
ϵjilQ

l
1Q

i
0 (4.395)

{ψ, ϕjλ} = {(mζδii′Qi′

1 +Π0
i )Q

i
0,Π

j
λ} = 0 (4.396)

The consistency condition for ψ is

ψ̇ = {ψ,HT1}

= {ψ,Hc}+ V j
0 {ψ, ϕ0

j}+ V j
1 {ψ, ϕ1

j}+ V λ
j {ψ, ϕ

j
λ}+ V {ψ, ψ}

= (mζδii′Q
i′

1 +Π0
i )Q

i
1 + V j

1

(
mζδijQ

i
0 +

ζ2

2µm
ϵjilQ

l
1Q

i
0

)
. (4.397)

The consistency of the secondary constraint ψ is not giving a tertiary constraint but it defines

V 3
1 using V 1

1 (V
3
1 ) and V 2

1 (V
3
1 ) from the equations (4.388). Hence, we have

V i
1 =

µm

ζ2Q0
2 ϵ
ijkδjlQ

l
0Dk −

3

2mζQ2
0

(DjQ
j
1)Q

i
0 (4.398)

V λ
i =

ζ2

2µm
ϵijkQ

j
1

( µm

ζ2Q0
2 ϵ
klrδlsQ

s
0Dr −

3

2mζQ2
0

(DjQ
j
1)Q

k
0

)
(4.399)

where we used abbreviations Di = mζδijQ
j
1 + Π0

i and δijQi
0Q

j
0 = Q0

2. On the other hand,

consistency of the primary constraints ϕ0
i and ϕiλ are

ϕ̇0
i = {ϕ0

i , HT1} =
ζ2

2µm
ϵiljQ

l
1V

j
1 − V λ

i − V (mζδijQ
j
1 +Π0

i ) (4.400)

ϕ̇iλ = {ϕiλ, HT1} = 0 (4.401)

whereas consistency of the primary constraints ϕ1
i are

ϕ̇1
i = {ϕ1

i , HT1} = mζδijQ
j
1 − Π0

i +
ζ2

µm
ϵijkV

j
1Q

k
0 − V (mζδijQ

j
0 +

ζ2

2µm
ϵijlQ

j
1Q

l
0).

(4.402)

These leads to determine V = − ψ
mζQ2

0
. The substitutions of V i

0 , V
i
1 , V

λ
i and V into the total

Hamiltonian (4.392) complete the proof.
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Proposition 4.3.6. TheHamilton's equations generated by the total Hamiltonian in the propo-

sition 4.3.5 are

Q̇i
0 ≈

1

2
Qi

1 +
1

2Q2
0

(δjkQ
j
0Q

k
1)Q

i
0 +

µm

ζ2Q2
0

ϵijkδklΠ
1
jQ

l
0 (4.403)

Q̇i
1 ≈

µm

ζ2Q2
0

ϵijkδjlQ
l
0Dk −

3

2mζQ2
0

(DjQ
j
1)Q

i
0 (4.404)

λ̇1i ≈
1

2Q2
0

ϵijkQ
j
1ϵ
krsδlrQ

l
0Ds −

3ζ

4µm2Q2
0

ϵijkQ
j
1Q

k
0(DlQ

l
1) (4.405)

Π̇0
i ≈

−1

2Q2
0

(δjkQ
j
0Q

k
1)Di −

µm

ζ2Q2
0

δilϵ
ljkDjΠ

1
k +

3

2mζQ2
0

Π1
i (DjQ

j
1)

+
2µm

ζ2Q4
0

(ϵjklδkk′Π
1
jQ

k′

0 Dl)Q
i
0 (4.406)

Π̇1
i ≈ −1

2
Π0
i −

mζ

2Q2
0

(δjkQ
j
0Q

k
1)Q

i
0 −

µm2

ζQ2
0

ϵijkδ
jlΠ1

lQ
k
0 (4.407)

Π̇i
λ ≈ 0 (4.408)

where we used abbreviations Di = mζδijQ
j
1 +Π0

i and δijQi
0Q

j
0 = Q0

2.

Proof. The equations of motion for Qi
0's are

Q̇i
0 = {Qi

0, HT1}

≈ 1

2
Qi

1 +
1

2Q2
0

(δjkQ
j
0Q

k
1)Q

i
0 +

µm

ζ2Q2
0

ϵijkδklΠ
1
jQ

l
0 (4.409)

identically satisfied

Q̇i
0 ≈

1

2
Qi

1 +
1

2Q2
0

(δjkQ
j
0Q

k
1)Q

i
0 +

µm

ζ2Q2
0

ϵijkδkl(
ζ2

2µm
ϵjrsQ

r
0Q

s
1)Q

l
0

≈ 1

2
Qi

1 +
1

2Q2
0

(δjkQ
j
0Q

k
1)Q

i
0 −

1

2Q2
0

(Qi
0(δjkQ

j
0Q

k
1)−Qi

1(δjkQ
j
0Q

k
0))

≈ Qi
1. (4.410)

The Hamilton's equations governing Qi
1 generated by the total Hamiltonian function are

Q̇i
1 = {Qi

1, HT1} ≈ µm

ζ2Q2
0

ϵijkδjlQ
l
0Dk −

3

2mζQ2
0

(DjQ
j
1)Q

i
0 (4.411)
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using Di, definition of Π0
i , we compute

Q̇i
1 ≈

µm

ζ2Q2
0

ϵijkδjlQ
l
0(Π

0
k +mζδklQ

l
1)−

3

2mζQ2
0

((Π0
j +mζδjlQ

l
1)Q

j
1)Q

i
0

≈ µm

ζ2Q2
0

ϵijkδjlQ
l
0(−

ζ2

µm
ϵkrsQ

r
0Q̇

s
1)−

3

2mζQ2
0

((− ζ2

µm
ϵjrsQ

r
0Q̇

s
1)Q

j
1)Q

i
0

≈ − 1

Q2
0

(
Qi

0(δjkQ
j
0Q̇

k
1)− Q̇i

1(δjkQ
j
0Q

k
0)
)
+

3ζ

2µm2Q2
0

((ϵjrsQ
r
0Q̇

s
1)Q

j
1)Q

i
0

≈ Q̇i
1 +

1

Q2
0

(
− δklQ

k
0Q̇

l
1 +

3ζ

2µm2Q2
0

ϵjrsQ
j
1Q

r
0Q̇

s
1

)
Qi

0. (4.412)

Note that, the term in the parenthesis is the dot product of Euler-Lagrange equation with Qi
0

so that it is zero.

The equations of motion for λ1i 's

λ̇1i = {λ1i , HT1}

≈ 1

2Q2
0

ϵijkQ
j
1ϵ
krsδlrQ

l
0Ds −

3ζ

4µm2Q2
0

ϵijkQ
j
1Q

k
0(DlQ

l
1) (4.413)

substitution of Π0 in Di, and some cross product property

λ̇1i ≈
ζ2

2µm
ϵijkQ

j
1Q̇

k
1 +

ζ2

2µm

(
− δklQ

k
0Q̇

l
1 +

3ζ

2µm2Q2
0

ϵjrsQ
j
1Q

r
0Q̇

s
1

)
(4.414)

which is exactly true since the term in the parenthesis is zero since it is the dot product of the

Euler-Lagrange equation with Qi
0 .

The equations of motion for Π0
i 's are

Π̇0
i = {Π0

i , HT1}

≈ −1

2Q2
0

(δjkQ
j
0Q

k
1)−

µm

ζ2Q2
0

δilϵ
ljkDkΠ

1
k +

3

2mζQ2
0

Π1
i (DjQ

j
1)

+
2µm

ζ2Q4
0

(ϵjklΠ1
jQ

k
0Dl)Q

i
0. (4.415)

If we impose DiQ
i
0 = Πi

λ = 0 and use the definition of Π1
i , and we arrive

Π̇0
i ≈

1

2Q2
0

ϵijkQ
j
1

(
ϵklrδll′Q

l′

0Dr −
3ζ

2µm2
Qk

0(DlQ
l
1)

)
. (4.416)
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After imposing the definition of Di in terms of Qi
0 and Qi

1, we get

Π̇0
i ≈

ζ2

µmQ2
0

ϵijkQ
j
1Q̇

k
1 +

ζ2

µmQ2
0

ϵijkQ
j
1Q

k
0

(
−δklQk

0Q̇
l
1 −

3ζ

2µm2
ϵlkrQ

l
1Q

k
0Q̇

r
1

)
. (4.417)

These give the Euler-Lagrange equations (4.319).

The equations of motion for Π1
i 's are

Π̇1
i = {Π1

i , HT1} ≈ −1

2
Π0
i −

mζ

2Q2
0

(δjkQ
j
0Q

l
1)Q

i
0 −

µm2

ζQ2
0

ϵijkδ
jlΠ1

lQ
k
0. (4.418)

After substitution of the definitions Π0
i and Π1

i , we get

Π̇1
i ≈

ζ2

2µm
ϵijkQ

j
0Q̇

k
1. (4.419)

Finally, the equations of motion for Πi
λ's are

Π̇i
λ = {Πi

λ, HT1} = 0 (4.420)

since Πi
λ = 0.

As it is pointed out in [30] that, the constraints ϕiλ = Πi
λ effect only the equation of motion

for λi. So that, we may omit to add them to the total Hamiltonian function HT . In this case,

V i
0 = 0 from the consistency condition hence we may additionally omit the constraint ϕ0

i . So

that, the total Hamiltonian function reduces to

HT = HC + V j
1 ϕ

1
j (4.421)

with the constraints

ϕ1
i = Π1

i −
ζ2

2µm
ϵijkQ

j
0Q

k
1 (4.422)

ψ =
(
mζδii′Q

i′

1 +Π0
i

)
Qi

0 (4.423)

identical to Φ and χ given in terms of the X coordinates (4.341) and (4.342).
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4.3.6. Dirac Bracket Formalism for First Order Lagrangian

We shall write the Hamilton's equations using the Dirac bracket. To this end, we record here

the set of second class constraints

ϕ0
i ≡ Π0

i − λi (4.424)

ϕ1
i ≡ Π1

i −
ζ2

2µm
ϵikk′Q

k
0Q

k′

1 (4.425)

ϕiλ ≡ Πi
λ (4.426)

ψ ≡ (mζδll′Q
l′

1 +Π0
l )Q

l
0. (4.427)

Proposition 4.3.7. The Dirac brackets of the coordinates are

{Qi
0, Q

j
1}DB = − 1

mζQ2
0

Qi
0Q

j
0 (4.428)

{Qi
0, λ

1
j}DB = δij −

1

mζQ2
0

Qi
0δnjQ

n
0 (4.429)

{Qi
0,Π

0
j}DB = δij −

ζ

2m2µQ2
0

ϵjk′n′Qn′

0 Q
k′

1 (4.430)

{Qi
1, Q

j
1}DB = − µ

ζ3Q2
0

ϵijkEk (4.431)

{Qi
1, λ

1
j}DB = Aij (4.432)

{Qi
1,Π

0
j}DB = − 1

2mζQ2
0

ϵirkϵjrlQ
l
1Ek −

Qi
0

mζQ2
0

Dj

{Qi
1,Π

1
j}DB = δij −

1

2mζQ2
0

ϵin
′kϵjn′k′Q

k′

0 Ek −
Qi

0

Q2
0

δjlQ
l
0

{λ1i , λ1j}DB = δinδjn′Cnn′ (4.433)

{λ1i ,Π0
j}DB =

ζ2

2µm
δinB

nrϵjkrQk
1
+

ζ

2m2µQ2
0

ϵirsQ
r
0Q

s
1Dj (4.434)

{λ1i ,Π1
j}DB =

ζ2

2µm
δinB

nrϵjrkQ
k
0 +

ζ2

2mµQ2
0

ϵirsQ
r
0Q

s
1(δjlQ

l
0) (4.435)

{Π0
i ,Π

0
j}DB =

ζϵik′jQ
k′
1 EkQ

k
1

4µm2Q2
0

− ζϵiknQ
k
1Q

n
0Dj

2µm2Q2
0

+
ζϵjk′n′Qk′

1 Q
n′
0 Di

2µm2Q2
0

(4.436)

{Π0
i ,Π

1
j}DB = −ζϵik

′jQ
k′
1 DiQ

k
0

4µm2Q2
0

+
ζϵik′nQ

k′
1 Q

n
0Ej

4µm2Q2
0

(4.437)

{Π1
i ,Π

1
j}DB = − ζ

4µm3Q2
0

ϵink′Q
k′

0 ϵ
nrkEkϵjrlQ

l
0 (4.438)
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and all the others are zero. Here we used abbreviationsDi = mζδijQ
j
1+Π0

i , Ei = mζδijQ
j
0+

Π1
i and δijQi

0Q
j
0 = Q0

2.

Proof. Recall that the Dirac bracket (2.39) can be written as

{F,G}DB = {F,G} − {F, ϕ0
n}Mnn′

0λ {δn′lϕ
l
λ, G} − {F, ϕ1

n}Mnn′

11 {ϕ1
n′ , G}

− {F, ϕ1
n}Mnn′

1λ {δn′lϕ
l
λ, G} − {F, ϕ1

n}Mn
1ψ{ψ,G}

− {F, δnlϕlλ}Mnn′

λ0 {ϕ0
n′ , G} − {F, δnlϕlλ}Mnn′

λ1 {ϕ1
n′ , G}

− {F, δnlϕlλ}Mnn′

λλ {δn′rϕ
r
n, G} − {F, δnlϕlλ}Mn

λψ{ψ,G}

− {F, ψ}Mn′

ψ1{ϕ1
n′ , G} − {F, ψ}Mn′

ψ1{δn′lψ
l
λ, G} (4.439)

substituting the inverse ofM given by

M =


{ϕ0

n, ϕ
0
n′} {ϕ0

n, ϕ
1
n′} {ϕ0

n, ϕ
n′

λ } {ϕ0
n, ψ}

{ϕ1
n, ϕ

0
n′} {ϕ1

n, ϕ
1
n′} {ϕ1

n, ϕ
n′

λ } {ϕ1
n, ψ}

{ϕnλ, ϕ0
n′} {ϕnλ, ϕ1

n′} {ϕnλ, ϕn
′

λ } {ϕnλ, ψ}

{ψ, ϕ0
n′} {ψ, ϕ1

n′} {ψ, ϕn′

λ } {ψ, ψ}



=


0 ζ2

2µm
ϵn′nk′Q

k′
1 −δn′

n −Dn

− ζ2

2µm
ϵnn′k′Q

k′
1

ζ2

µm
ϵnn′kQ

k
0 0 −En

δnn′ 0 0 0

Dn′ En′ 0 0

 (4.440)

whose determinant is ζ6

µ2
Q2

0. The inverse ofM is

M−1 =


Mnn′

00 Mnn′
01 Mnn′

0λ Mn
0ψ

Mnn′
10 Mnn′

11 Mnn′

1λ Mn
1ψ

Mnn′

λ0 Mnn′

λ1 Mnn′

λλ Mn
λψ

Mn′

ψ0 Mn′

ψ1 Mn′

ψλ Mψψ



=


0 0 δnn

′
0

0 −µϵnn′kEk

ζ3Q2
0

Ann
′ Qn

0

mζQ2
0

−δnn′
Bnn′

Cnn′ − ζϵkrsδ
nkQr

0Q
s
1

2m2µQ2
0

0 − Qn′
0

mζQ2
0

ζϵkrsδ
n′kQr

0Q
s
1

2m2µQ2
0

0

 (4.441)
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where

Ann′ =
1

2mζQ2
0

ϵnrkϵn′rlQ
l
1Ek +

1

mζQ2
0

Qn
0Dn′ , Bnn′

= −ϵrkpδ
nkQp

1ϵ
rn′sEs

2mζQ2
0

+
DnQn′

0

Q2
0

.

To arrive at the Hamilton's equations using the Dirac bracket, we first evaluate the Poisson

brackets of the coordinates and the constraints as follows

{Qi
0, ϕ

0
n} = {Qi

0,Π
0
n − λ1n} = δin (4.442)

{Qi
0, ψ} = {Qi

0, (mζδll′Q
l′

1 +Π0
l )Q

l
0} = Qi

0 (4.443)

{Qi
1, ϕ

1
n} = {Qi

1,Π
1
n −

ζ2

2µm
ϵnkk′Q

k
0Q

k′

1 } = δin, (4.444)

{λ1i , ϕnλ} = {λ1i ,Πn
λ} = δni (4.445)

{Π0
i , ϕ

1
n} = {Π0

i ,Π
1
n −

ζ2

2µm
ϵnkk′Q

k
0Q

k′

1 } =
1

2µm
ζ2ϵnik′Q

k′

1 (4.446)

{Π0
i , ψ} = {Π0

i , (mζδll′Q
l′

1 +Π0
l )Q

l
0} = −mζδil′Ql′

1 − Π0
i (4.447)

{Π1
i , ϕ

1
n} = {Π1

i ,Π
1
n −

ζ2

2µm
ϵnkk′Q

k
0Q

k′

1 } =
1

2µm
ζ2ϵnkiQ

k
0 (4.448)

{Π1
i , ψ} = {Π1

i , (mζδll′Q
l′

1 +Π0
l )Q

l
0} = −mζδliQl

0 (4.449)

and all others are zero.

Dirac bracket of Qi
0 and Q

j
0 is

{Qi
0, Q

j
0}DB = 0 (4.450)

since {Qi
0, Q

j
0} = {Qi

0, ϕ
j
λ} = {Qi

0, ϕ
1
j} = 0. Dirac bracket of Qi

0 with Q
j
1 is

{Qi
0, Q

j
1}DB = −{Qi

0, ψ}Mn′

ψ1{ϕ1
n′ , Q

j
1}

= −Qi
0

(
− Qn′

0

mζQ2

)(
− δjn′

)
= − 1

mζQ2
Qi

0Q
j
0 (4.451)

since {Qi
0, Q

j
1} = {Qi

0, ϕ
j
λ} = {Qi

0, ϕ
1
j} = {Qi

1, ϕ
j
λ} = {Qi

1, ϕ
1
j} = {Qi

1, ψ} = 0. Dirac
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bracket of Qi
0 with λ1j is

{Qi
0, λ

1
j}DB = −{Qi

0, ϕ
0
n}Mnn′

0λ1 {δn′lϕ
l
λ, λ

1
j} − {Qi

0, ψ}Mn′

ψ1{δn′lϕ
l
λ, λ

1
j}

= −(δin)(δ
nn′

)(−δn′j)−Qi
0(−

Qn′
0

mζQ2
)(−δn′j)

= δij −
1

mζQ2
Qi

0δn′jQ
n′

0 (4.452)

since {Qi
0, λ

1
j} = {Qi

0, ϕ
j
λ} = {Qi

0, ϕ
1
j} = {λ1i , ϕ0

j} = {Qi
1, ϕ

1
j} = {λ1i , ϕ1

j} = 0. In a

similar way one can derive the remaining Dirac brackets of coordinates.

Proposition 4.3.8. Hamilton equations of motion using the Dirac bracket of coordinates in

the Proposition 4.3.7 and the Hamiltonian function in (4.379) are

Q̇i
0 = − 1

mζQ2
0

(DjQ
j
0)Q

i
0 +Qi

1 (4.453)

Q̇i
1 = − µ

ζ3Q2
0

ϵijkDjEk −Qi
0

1

mζQ2
0

(Qj
1Dj) (4.454)

λ̇1i = AjiDj +
ζ

2mζQ2
0

(DjQ
j
1)ϵirsQ

r
0Q

s
1 (4.455)

Π̇0
i =

1

2mζQ2
0

ϵijkϵ
jlrDlErQ

k
1 +

1

mζQ2
0

Di(DjQ
j
0)−

ζ

2µm2Q2
0

ϵijkQ
j
1Q

k
0(DlQ

l
1) (4.456)

Π̇1
i = −Di +

1

2mζQ2
0

ϵijkQ
j
0ϵ
klrDlEr (4.457)

Π̇i
λ = 0 (4.458)

here Di = mζδijQ
j
1 + Π0

i , Ei = mζδijQ
j
0 + Π1

i , A
n
n′ = 1

2mζQ2
0
ϵnrkϵn′rlQ

l
1Ek +

1
mζQ2

0
Qn

0Dn′

and δijQi
0Q

j
0 = Q0

2.

Proof. The equations of motion for Qi
0's

Q̇i
0 = {Qi

0, Hc}DB = (mζδjj′Q
j′

1 +Π0
j){Qi

0, Q
j
1}DB +Qj

1{Qi
0,Π

0
j}DB

= (mζδjj′Q
j′

1 +Π0
j)(−

Qi
0Q

j
0

mζQ2
) +Qj

1(δ
i
j −

ζϵjk′n′Qn′
0 Q

k′
1

2m2µQ2
) (4.459)

give the secondary constraint

Qi
0Q

j
0(mζδjj′Q

j′

1 +Π0
j) = 0 (4.460)



95

since Q̇i
0 = Qi

1. The equations of motion for Qi
1's are

Q̇i
1 = {Qi

1, Hc}DB = (mζδjj′Q
j′

1 +Π0
j){Qi

1, Q
j
1}DB +Qj

1{Qi
1,Π

0
j}DB

= − µ

ζ3Q2
0

ϵijk(mζδjj′Q
j′

1 +Π0
j)Ek −Qj

1

1

mζQ2
0

(DjQ
i
0)

= (mζδjj′Q
j′

1 +Π0
j)(−

µ

ζ3Q2
0

ϵijk(mζδskQ
s
0 +Π1

k))

−Qj
1

(Qi
0(mζδjl′Q

l′
1 +Π0

j)

mζQ2
0

)
(4.461)

and using the definition of Π1
i and combining similar terms in the last equation, we compute

Q̇i
1 = − µm

ζ3Q2
0

ϵijkδskQ
s
0(mζδjj′Q

j′

1 +Π0
j)−

3

2mζQ2
0

Qi
0Q

j
1(mζδjj′Q

j′

1 +Π0
j)

+
1

2mζQ2
0

Qj
0Q

i
1(mζδjj′Q

j′

1 +Π0
j). (4.462)

This is the same with the first line of (4.412) sinceQj
0(mζδjkQ

jk
1 +Π0

j) = 0. So the equation

of motion for Qi
0 are identically satisfied. The equations of motion for λ1i 's are

λ̇1i = {λ1i , Hc}DB =
(
mζδjj′Q

j′

1 +Π0
j

)
{λ1i , Q

j
1}DB +Qj

1{λ1i ,Π0
j}DB

= −(mζδjj′Q
j′

1 +Π0
j)A

j
i +

ζ

2µm2
ϵirsQ

r
0Q

s
1(mζδjl′Q

l′

1 +Π0
j)Q

j
1. (4.463)

Substitution of Ann′ = 1
2mζQ2

0
ϵnrkϵn′rlQ

l
1Ek +

1
mζQ2

0
Qn

0Dn′ results with

λ̇1i =
−1

2mζQ2
0

Di(EjQ
j
1) +

1

2mζQ2
0

Ei(DkQ
k
1) +

1

mζQ2
0

Di(Q
j
0Dj)

− ζ

2µm2Q2
0

ϵiklQ
k
1Q

l
0(DjQ

j
1) (4.464)

which is the same with the equation presented in (4.360) derived for P 0
i withDi = Bi, Ei =

Ai, Q
i
0 = X i.

The equations of motion for Π0
i 's are

Π̇0
i = {Π0

i , Hc}DB = {Π0
i ,
mζ

2
δjj′Q

j
1Q

j′

1 +Π0
jQ

j
1}DB

=
(
mζδjj′Q

j′

1 +Π0
j

)
{Π0

i , Q
j
1}DB +Qj

1{Π0
i ,Π

0
j}DB. (4.465)

After substituting the Dirac brackets {Π0
i , Q

j
1}DB and {Π0

i ,Π
0
j}DB, using the definition of
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Π0
i ,Π

1
i , and applying some cross product properties, we write

Π̇0
i =

ζ2

2µm
ϵijkQ

j
1Q̇

k
1 −

ζ2

µmQ2
0

ϵijkQ
j
1Q

k
0

(
δklQ

k
0Q̇

l
1 −

3ζ

2µm2
ϵlkrQ

l
1Q

k
0Q̇

r
1

)
(4.466)

which equivalent to the Euler-Lagrange equations (4.319).

The equation of motion for Π1
i 's are

Π̇1
i = {Π1

i , Hc}DB =
(
mζδjj′Q

j′

1 +Π0
j

)
{Π1

i , Q
j
1}DB +Qj

1{Π1
i ,Π

0
j}DB. (4.467)

Substitution of the Dirac brackets {Π1
i , Q

j
1}DB and {Π1

i ,Π
0
j}DB lead to simplified expression

Π̇1
i = −mζδijQj

1 − Π0
i +

1

2mζQ2
0

ϵijkQ
j
0ϵ
klr(mζδll′Q

l′

1 +Π0
l )(mζδrr′Q

r′

0 +Π1
r). (4.468)

Imposing the definition of Π1
i and applying some cross product properties, we get

Π̇1
i = −1

2
(mζδij′Q

j′

1 +Π0
i ) +

1

2Q2
0

(mζδjj′Q
j′

1 +Π0
j)Q

j
0Q

i
0

− ζ

2µm2
ϵill′Q

l
0Q

l′

1 (mζδjj′Q
j′

1 +Π0
j)Q

j
0. (4.469)

Finally, the equation of motion for Πi
λ's are

Π̇i
λ = {Πi

λ, Hc}DB

=
(
mζδjj′Q

j′

1 +Π0
j

)
{Πi

λ, Q
j
1}DB +Qj

1{Πi
λ,Π

0
j}DB

= 0 (4.470)

since {Πi
λ, Q

j
1}DB = 0 and {Πi

λ,Π
0
j}DB = 0.

4.3.7. Unconstrained Variational Formalism

Unconstraint variational formalism corresponding to the first order Clèment Lagrangian (4.367)

is

LCU1
=
mζ

2
δijQ

i
1Q

j
1 −mζδijQ

i
1Q̇

j
0 −

ζ2

2µm
ϵijkQ

i
0Q

j
1Q̇

k
1 +

ζ2

µm
ϵijkQ

i
0Q̇

j
0Q̇

k
1 (4.471)
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by substituting λ1 in (4.369) into LCC1
in (4.367).

To arrive at Hamiltonian formalism for unconstraint Lagrangian (4.471), we introduce the

momenta

π0
i ≡

∂LCU1

∂Q̇i
0

= −mζδijQj
1 −

ζ2

µm
ϵijkQ

j
0Q̇

k
1 (4.472)

π1
i ≡

∂LCU1

∂Q̇i
1

= − ζ2

2µm
ϵijkQ

j
0Q

k
1 +

ζ2

µm
ϵijkQ

j
0Q̇

k
0. (4.473)

conjugated to Qi
0 and Qi

1.

Proposition 4.3.9. Total Hamiltonian function for the first order unconstraint Lagrangian

(4.471) is

HT = − µm

ζ2Q2
0

ϵijkDiδjlQ
l
0Π

1
k +

1

2Q2
0

(DiQ
i
0)(δjkQ

j
0Q

k
1) +

1

2
DiQ

i
1

− mζ

2
δijQ

i
1Q

j
1 +

( 2µm
ζ2Q2

0
ϵijkδilQ

l
0π

1
jDk − 1

2
DiQ

i
1

mζQ2
0

)
(π1

rQ
r
0) (4.474)

where Di = Π0
i +mζδijQ

j
1.

Proof. Equations (4.472) and (4.473) lead to solve two components of Q̇i
0 and Q̇i

1

Q̇i
0 = − µm

ζ2Q2
0

ϵijkδjlQ
l
0(π

1
k +

ζ2

2µm
ϵklrQ

l
0Q

r
1) +

1

Q2
0

Qi
0(δjkQ

j
0Q̇

k
0) (4.475)

Q̇i
1 = − µm

ζ2Q2
0

ϵijkδjlQ
l
0(π

0
k +mζδkrQ

r
1) +

1

Q2
0

Qi
0(δjkQ

j
0Q̇

k
1) (4.476)

and for the remaining one, there exist primary constraints

Φ = π1
iQ

i
0, ϕ = (π0

i +mζδijQ
j
1)Q

i
0. (4.477)

Then the canonical Hamiltonian function for the first order unconstraint Lagrangian (4.471)

is

HU1 = Q̇0iπ
0
i + Q̇i

1π
1
i − LCU1

= − µm

ζ2Q2
0

ϵijkDiδjlQ
l
0Π

1
k −

1

2Q2
0

(DiQ
i
0)(δjkQ

j
0Q

k
1) +

1

2
DiQ

i
1 −

mζ

2
δijQ

i
1Q

j
1 (4.478)
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using Q̇i
0 and Q̇i

1, whereDi = π0
i +mζδijQ

j
0, Q

2
0 = δijQ

i
0Q

j
j . The total Hamiltonian function

is

HT1 = HU1 + UΦ + V ϕ (4.479)

where U and V arbitrary function. Consistency of the primary constraints Φ and ϕ

Φ̇ = {Φ, HT1} ≈ {Φ, HU1}+ U{Φ,Φ}+ V {Φ, ϕ}

≈ mζδijQ
i
0Q

j
1 + V (−mζδijQi

0Q
j
0) (4.480)

and

ϕ̇ = {Φ, HT1} ≈ {ϕ,HU1}+ U{ϕ,Φ}+ V {ϕ, ϕ}

≈ − 2µm

ζ2Q2
0

ϵijkδilQ
l
0π

1
jDk +

1

2
DiQ

i
1 + U(mζδijQ

i
0Q

j
0) (4.481)

give no more constraint, instead we can solve U and V

U ≈
2µm
ζ2Q2

0
ϵijkδilQ

l
0π

1
jDk − 1

2
DiQ

i
1

mζQ2
0

(4.482)

V ≈ δijQ
i
0Q

j
1

Q2
0

. (4.483)

Substitutions of U and V into total Hamiltonian function (4.479) complete the proof.

Proposition 4.3.10. Hamilton equations of motion for the total Hamiltonian function in

(4.474) are

Q̇i
0 ≈ − µm

ζ2Q2
0

ϵijkδjlQ
l
0π

1
k +

1

2Q2
0

Qi
0(δjkQ

j
0Q

k
1) +

1

2
Qi

1 (4.484)

Q̇i
1 ≈ − µm

ζ2Q2
0

ϵijkDjδklQ
l
0 +

1

mζQ2
0

( 2µm
ζ2Q2

0

ϵrjkδrlQ
l
0π

1
jDk −

1

2
DjQ

j
1

)
Qi

0 (4.485)

π̇0
i ≈

µm

ζ2Q2
0

ϵijkδ
jlΠ1

lDk −
1

2Q2
0

Di(δjkQ
j
0Q

k
1)

−
( 2µm
ζ2Q2

0
ϵijkδilQ

l
0π

1
jDk − 1

2
DiQ

i
1

mζQ2
0

)
π1
i −

2µm

ζ2Q4
0

δijQ
j
0(ϵ

ijkδilQ
l
0π

1
jDk) (4.486)

π̇1
i ≈

µm2

ζQ2
0

ϵijkQ
j
0δ
klπ1

l −
mζ

2Q2
0

δijQ
j
0(δklQ

k
0Q

l
1)−

1

2
π0
i . (4.487)
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Proof. π̇0
i gives the Euler-Lagrange equations and the remaining satisfied identically. The

Hamilton equation of motion for Qi
0's are satisfied identically

Q̇i
0 = {Qi

0, HT1}

≈ − µm

ζ2Q2
0

ϵijkδjlQ
l
0π

1
k +

1

2Q2
0

Qi
0(δjkQ

j
0Q

k
1) +

1

2
Qi

1

≈ − 1

2Q2
0

(
Qi

0(δjkQ
j
0Q

k
1) +Qi

1(Q
2
0)
)
+

1

2Q2
0

Qi
0(δjkQ

j
0Q

k
1) +

1

2
Qi

1

≈ Qi
1 (4.488)

using definition of π1
i . The Hamilton equation of motion for Qi

1's are satisfied identically

Q̇i
1 = {Qi

1, HT1}

≈ − µm

ζ2Q2
0

ϵijkDjδklQ
l
0 +

1

mζQ2
0

( 2µm
ζ2Q2

0

ϵrjkδrlQ
l
0π

1
jDk −

1

2
DjQ

j
1

)
Qi

0

≈ Q̇i
1 −

2

Q2
0

(
δjkQ

j
0Q̇

k
1 −

3ζ

µm2
ϵjklQ

j
0Q̇

k
1Q

l
1

)
Qi

0 (4.489)

using definition of π0
i and π1

i . Equation of motion for π0
i 's are

π̇0
i = {π0

i , HT1}

≈ µm

ζ2Q2
0

ϵijkδ
jlΠ1

lDk −
1

2Q2
0

Di(δjkQ
j
0Q

k
1)

−
( 2µm
ζ2Q2

0
ϵijkδilQ

l
0π

1
jDk − 1

2
DiQ

i
1

mζQ2
0

)
π1
i −

2µm

ζ2Q4
0

δijQ
j
0(ϵ

ijkδilQ
l
0π

1
jDk). (4.490)

Substitutions of Di, π
0
i and π1

i give same equation with first line of (4.339) with Qi
0 =

X i, Q1 = Ẋ i. Equation of motion for π1
i 's are

π̇1
i = {π1

i , HT1}

≈ µm2

ζQ2
0

ϵijkQ
j
0δ
klπ1

l −
mζ

2Q2
0

δijQ
j
0(δklQ

k
0Q

l
1)−

1

2
π0
i (4.491)

this is also same with the first line of the equation (4.340) with Qi
0 = X i, Q1 = Ẋ i.

Dirac Bracket Formalism: Let us find the Hamilton equations of motion using the Dirac
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algebra. All constraints are second class since their Poisson bracket

{Φ, ϕ} = −mζ(δijQi
0Q

j
0) (4.492)

is nonzero when δijQi
0Q

j
0 ̸= 0.

Proposition 4.3.11. Dirac brackets of the coordinates are

{Qi
0, Q

j
1}DB = − 1

mζQ2
0

Qi
0Q

j
1 (4.493)

{Qi
0, π

0
j}DB =

1

mζQ2
0

Qi
0π

1
j + δij (4.494)

{Qi
1, π

0
j}DB = − 1

mζQ2
0

Qi
0(π

0
j +mζδjkQ

k
1) (4.495)

{Qi
1, π

1
j}DB = δij −

1

Q2
0

Qi
0Q

j
0 (4.496)

{π0
i , π

0
j}DB =

1

mζQ2
0

[π1
i (π

0
j +mζδjkQ

k
1)− (π0

i +mζδikQ
k
1)π

1
j ] (4.497)

{π0
i , π

1
j}DB =

1

Q2
0

π1
i δjkQ

k
1 (4.498)

and all the others are zero.

Proof. Recall that the Dirac bracket is given in (2.39), using this we compute

{F,G}DB = {F,G} − 1

mζQ2
0

(
{F,Φ}{ϕ,G} − {F, ϕ}{Φ, G}

)
(4.499)

by replacing inverse ofM

M =

 {Φ,Φ} {Φ, ϕ}

{ϕ,Φ} {ϕ, ϕ}

 = mζQ2
0

 0 −1

1 0

 . (4.500)

To prove Dirac brackets of coordinates we also need to compute Poisson brackets of the
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coordinates with the constraints, they are

{Qi
0, ϕ} = {Qi

0, (π
0
j +mζδjkQ

k
1)Q

j
0} = Qi

0 (4.501)

{Qi
1,Φ} = {Qi

1, π
1
jQ

j
0} = Qi

0 (4.502)

{π0
i ,Φ} = {π0

i , π
1
jQ

j
0} = −π1

i (4.503)

{π0
i , ϕ} = {π0

i , (π
0
j +mζδjkQ

k
1)Q

j
0} = −π0

i −mζδikQ
k
1 (4.504)

{π1
i , ϕ} = {π1

i , (π
0
j +mζδjkQ

k
1)Q

j
0} = −mζδijQj

0 (4.505)

and all others are zero. Substitution of these relations in Dirac bracket (4.499) complete the

proof. For instance Dirac bracket of Qi
0 with Q

j
1 is

{Qi
0, Q

j
1}DB = {Qi

0, Q
j
1} −

1

mζQ2
0

(
{Qi

0,Φ}{ϕ,Q
j
1} − {Qi

0, ϕ}{Φ, Q
j
1}
)

= − 1

ζQ2
0

Qi
0Q

j
0 (4.506)

since {Qi
0, ϕ} and {Qi

1,Φ} is nonzero. One can derive the other Dirac brackets of the coor-

dinates similar to this.

Proposition 4.3.12. The Hamilton equations using the Dirac brackets of the coordinates in

the proposition 4.3.11 are

Q̇i
0 ≈ − µm

ζ2Q2
0

ϵjskδslQ
l
0π

1
k +

1

2
Qi

1 (4.507)

Q̇i
1 ≈

2µ

mζ3Q4
0

(
ϵrskδslDrπ

1
kQ

l
0

)
Qi

0 −
Qi

0

2mζQ2
0

Qj
1(π

0
j +mζδjkQ

k
1)

− µm

ζ2Q2
0

ϵirsδslDrQ
l
0 (4.508)

π̇0
i ≈

µm

ζ2Q2
0

ϵijkδ
jlΠ1

lDk −
1

2Q2
0

Di(δjkQ
j
0Q

k
1)

−
( 2µm
ζ2Q2

0
ϵijkδilQ

l
0π

1
jDk − 1

2
DiQ

i
1

mζQ2
0

)
π1
i −

2µm

ζ2Q4
0

δijQ
j
0(ϵ

ijkδilQ
l
0π

1
jDk) (4.509)

π̇1
i ≈

µm2

ζQ2
0

ϵilkQ
l
0δ
skπ1

s −
1

2
π0
i +

1

2Q2
0

(π0
jQ

j
0)δikQ

k
0. (4.510)

Proof. Using the Dirac brackets of the coordinates in the proposition 4.3.11 and the Hamil-
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tonian function 4.478, equations of motion for Qi
0 are satisfied identically

Qi
0 = {Qi

0, H}DB

=
(
− µm2

ζQ2
0

ϵjskQ
s
0π

1
k +

1

2
π0
j

)
{Qi

0, Q
j
1}DB

+ (−µm
2

ζQ2
0

ϵjskδslQ
l
0π

1
k +

1

2
Qj

1){Qi
0,Π

0
j}DB

≈ − µm

ζ2Q2
0

ϵiskδslQ
l
0π

1
k +

1

2
Qi

1 (4.511)

using definition of π1
i . Equations of motion for Qi

1 are

Qi
1 = {Qi

1, H}DB

=
(−µm
ζ2Q2

0

ϵrskδsjDrπ
1
k +

1

2
π0
j +

2µm

ζ2Q4
0

δjj′Q
j′

0 ϵ
rskδslDrπ

1
kQ

l
0

)
{Qi

0, Q
j
0}DB

+ (
−µm
ζ2Q2

0

ϵjskδslQ
l
0π

1
k +

1

2
Qj

1){Qi
0,Π

0
j}DB

+ (
−µm
ζ2Q2

0

ϵrsjδslQ
l
0Dr

)
{Qi

1,Π
1
j}DB

≈ 2µ

mζ3Q4
0

(
ϵrskδslDrπ

1
kQ

l
0

)
Qi

0 −
Qi

0

2mζQ2
0

Qj
1(π

0
j +mζδjkQ

k
1)

− µm

ζ2Q2
0

ϵirsδslDrQ
l
0. (4.512)

Substituting definitions of Di, π
0
i and π1

i the last equation

≈ Q̇i
1 −

2

Q2
0

(
δjkQ

j
0Q̇

k
1 −

3ζ

µm2
ϵjklQ

j
0Q̇

k
1Q

l
1

)
Qi

0 (4.513)

gives Q̇i
1 since the term in the parenthesis is zero. Equation of motion for π0

i 's are

π̇0
i = {π0

i , H}DB

=
( 2µm
ζ2Q4

0

Qj
0ϵlkrQ

l
0δ
skπ1

sDr −
µm

ζ2Q2
0

δjsϵ
skrDrΠ

1
k

)
{π0

i , Q
j
0}DB

+
(
− µm2

ζQ2
0

ϵjlkQ
l
0δ
skπ1

s +
1

2
π0
j

)
{π0

i , Q
j
1}DB

+ (− µm

ζ2Q2
0

ϵijkδjlQ
l
0π

k
l +

1

2
Qj

1){π0
i , π

0
j}DB (4.514)

− µm

ζ2Q2
0

ϵrsjδslDrQ
l
0{π0

i , π
1
j}DB. (4.515)
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Using the Dirac brackets in the Proposition 4.3.11 we get

≈ µm

ζ2Q2
0

ϵijkδ
jlΠ1

lDk −
1

2Q2
0

Di(δjkQ
j
0Q

k
1)

−
( 2µm
ζ2Q2

0
ϵijkδilQ

l
0π

1
jDk − 1

2
DiQ

i
1

mζQ2
0

)
π1
i −

2µm

ζ2Q4
0

δijQ
j
0(ϵ

ijkδilQ
l
0π

1
jDk). (4.516)

which is the same with equation (4.490) where Di = Π0
i +mζδijQ

j
1.

Equation of motion for π1
i 's are identically satisfied

π̇1
i = {π1

i , H}DB

=
(−µm2

ζQ2
0

ϵjlkQ
l
0δ
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s +
1

2
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j
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j
1}DB

+
(−µm2

ζQ2
0

ϵjlkQ
l
0δ
skπ1

s +
1

2
Qj

1

)
{π1

i , π
0
j}DB

≈ µm2

ζQ2
0

ϵilkQ
l
0δ
skπ1

s −
1

2
π0
i +

1

2Q2
0

(π0
jQ

j
0)δikQ

k
0

≈ −1

2
(π0

i +mζijQ
j
1) = π̇1

i (4.517)

using the definitions of π0
i and π1

i .
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5. CONCLUSIONS

In this thesis, theHamiltonian formulations of the second order Pais-Uhlenbeck [39], Sarıoğlu-

Tekin [38] and Clèment [37] Lagrangians have been presented. We note that, Pais-Uhlenbeck

Lagrangian is non-degenerate whereas Sarıoğlu-Tekin and Clèment Lagrangians are degen-

erate. For the nondegenerate cases, the Legendre transformation is immediate after the intro-

duction of the Jacobi-Ostrogradsky momenta. For degenerate ones, one needs to employ the

Dirac-Bergmann algorithm.

In each of these cases, first we have studied directly the second order Lagrangians. We de-

fined related Jacobi-Ostrogradsky momenta, and the canonical Hamiltonian functions. At

this step, the Legendre transforation has been achieved for Pais-Uhlenbeck Lagrangian. For

Sarıoğlu-Tekin and Clèment Lagrangians, further investigations have been needed. The

Dirac-Bergmann constraint algorithm have been run and the Dirac-Poisson brackets have

been constructed for these degenerate theories.

The reductions of Pais-Uhlenbeck, Sarıoğlu-Tekin and Clèment Lagrangians to the first or-

der theories have been presented. The fiber derivatives have been computed and the Dirac-

Bergmann algorithms have been performed for the reduced Lagrangians. It has been shown

the possibility of arriving a reduced Lagrangian in a variational free form. Dirac analysis for

this is quite similar to the reduced first order Lagrangian.
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