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Durak Ata and Assoc. Prof. Dr. İlker Bayram also for being a committee member.

My sincere thanks also goes to Prof. Dr. Pramod K. Varshney for his support and guidance

throughout this study. I am very grateful to him for offering me the summer internship

opportunity in Syracuse University and leading me to get great a experience with study

abroad.

I am very grateful being a part of research assistants of EE department. Their great

friendships and my three years at Yeditepe University together with them will always stay as

a valuable experience in my life. Thanks!

Finally, last but by no means least, I would like to thank Mustafa Murat Bilgiç, my project
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ABSTRACT

REAL-TIME SYSTEM FOR BIRD SOUND RECOGNITION

Environmental sound processing is one of the main research areas in biodiversity

preservation studies. One of the most important components of these studies is the sound

processing system to be used. In this study, we propose a stand-alone, low-level, custom-

made, real-time environmental sound processing system concentrated on single-labeled bird

calls and composed of a microphone circuitry, a Texas Instruments Tiva C Connected

Launchpad (consisting of an ARM Cortex-M4F based microcontroller), and a storage unit.

The proposed system enables data recording and on-board preliminary signal processing,

feature extraction, classification and data storage. In the proposed system, we simultaneously

record and process data. As the first processing step, we filter out steady background noise

using spectral noise gating technique. Secondly, we detect necessary sound signal parts. We

then extract mel frequency cepstrum coefficients (MFCCs) as features from the sound signal

and classify features by minimum distance classifier with trained features. As the last step,

store class labels after classification on an SD card. This is done by effectively defining and

utilizing a ping-pong buffer structure on the microcontroller. The proposed system offers

flexibility (both in hardware and software) for expansion.
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ÖZET

KUŞ SESİ TANIMLAMASI İÇİN GERÇEK ZAMANLI SİSTEM

Çevresel seslerin işlenmesi, biyo-çeşitliliğin korunması için yapılan çalışmaların temel

araştıma konularından biridir. Bu çalışmaların en önemli ögelerinden biri kullanılacak olan

ses işleme sistemidir. Biz bu çalışmada kendi kendine çalışabilen, düşük seviyeli, amaca

uygun tasarlanmış, gerçek zamanlı, tek etiketli kuş sesleri üzerine yoğunlaşmış, bir adet

mikrofon devresinden, bir adet Tiva C Connected Lauchpad’ten (Üzerinde ARM Cortex

M4F tabanlı bir mikrodenetleyici barındıran) ve bir depolama biriminden oluşan çevresel

sesleri işleyen bir sistem ileri sürmekteyiz. Önerilen sistemde, aynı anda verileri kaydeder

ve işleriz. İlk işlem adımı olarak, spektral gürültü kapılama tekniği kullanarak durumunu

koruyan arka plan gürültüsünü filtreleriz. İkinci olarak, ses kaydı içindeki gerekli kısımları

ayırırız. Daha sonra, ses sinyalinden mel frekanslı cepstrum katsayılarını (MFCC) çıkarıp,

öğretilmiş özellikler kullanarak en düşük mesafe sınıflandırıcısı ile özellikleri sınıflandırırız.

Son adım olarak, sınıflandırma sonunda oluşan sınıf etiketlerini bir SD karta kaydederiz.

Bu işlemler, mikro denetleyici üzerinde ping-pong arabellek yapısının etkin bir şekilde

tanımlanması ve kullanılması ile yapılır. Önerilen sistem yazılımsal ve donanımsal anlamda

esneklik sunar.
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1. INTRODUCTION

The growing rate of human domination and destructive human activities have originated

massive damage on natural habitats and caused the earth to suffer irreversible environmental

transformations for decades [1, 2]. These facts together with urbanization or contamination

of resources such as water and air led to forest degradation, climate change, change of

wildlife mitigation routes and even extinction of species. Therefore, biodiversity preservation

is one of the main interests in environmental science in our rapidly changing world [3].

Methodologies are developed on environmental monitoring, in order to analyze and herewith

preserve the biodiversity. In environmental monitoring, scientists are interested in observing

wildlife where they analyze the measurements from the environment to make decisions and

predictions on biodiversity, climate change, living species, or detect hazardous events like

wildfire [4–6].

As an environmental monitoring method, acoustic wildlife monitoring is used. Acoustic

monitoring is a passive animal activity observation method, which is done by listening

animal sounds without disturbing them. One of the main research areas of acoustic

monitoring is monitoring and counting vocalization of bird species and analyzing them to

observe characteristics, diversity, environmental adaptation, seasonal population changes of

species and identify the bird species in danger of extinction [7–9]. Because of human-based

monitoring is costly and limited in time, researchers benefit from autonomous monitoring

systems for classification of bird species, identification of animals of interest [10–13].

There are already sophisticated commercially available sensing units for various acoustic

wildlife monitoring applications as in http://www.wildlifeacoustics.com/. These are ideal

for long-term deployment, resistant to extreme weather conditions, and have intense data

storage capabilities. On the other hand, low-cost, and low-energy wireless sensor nodes

can be used together for the same purpose. Such a wireless sensor network (WSN) can

be used in acoustic monitoring for inference [14–19]. As a consequence, it is important to

design and develop new acoustic sensing platforms to add customized sensing modalities,

signal processing capabilities, and additional modules to satisfy dynamic expert needs [18–

20].
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Within acoustic monitoring, classification plays an important role. Unfortunately, the

ambient noise inherent in the environment decreases the performance of the system

[9, 21]. Bardeli et al. [9] indicates that, experiments in a controlled environment (such

as a laboratory) yield good bird sound detection performance. On the other hand, the

performance degrades in an uncontrolled environment due to inherent background noise.

Mporas et al. [21] applies different classificication methods on real-field bird sound

recordings with different level of signal to noise ratio (SNR). They get best results with best

SNRs. Therefore, it is important to implement a noise removal algorithm before processing

environmental audio signals. One of the challenging issues in environmental monitoring is

the automatic identification of bird sounds [22–24]. It comes into prominence due to the

developments in machine-based recognition systems [25]. Accordingly, the sound-based

solutions become adequate to identify the bird species, since the most of the bird sounds

identify their species [26]. In machine-based recognition systems, there has to be a feature

extraction step. Thus, the sound to be classified is defined by reduced amount of data. To

be able to extract features in continuous-time, the data has to be detected first. For WSN

applications, the sound signal or processed data has to be stored on the system or a central

unit. For both conditions, the signal has to be pre-processed and classified on board to reduce

the storage and data transmission load. Thus, only the classified data labels are stored. In

addition, to classify any data and test the classification performance, there should be a labeled

dataset containing training and test data related to classes.

To organize the bird vocalization in acoustical monitoring, the bird sounds are divided into

two parts as bird calls and bird songs. Bird songs are long and complex set of sound signals

produced by a male bird mostly. In a few species, some female birds also sing. Most of

the bird songs can be heard in a certain time of the year, mostly in breeding time. On the

other hand, bird calls are simpler and short sound signals and they are produced by both

male and female birds every time of the year. The calls occur in a more functional pattern

than a song [27]. Calls are actually produced for functions such as informing about food,

synchronous flight, fighting and hawk alarms [8].

In this study, we propose a prototype real-time unit which can simultaneously acquire and

process bird calls. The proposed design is a low-level, standalone system. It acquires the

acoustic data from a microphone and remove noise elements via spectral noise gating. Then
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it detects the bird call in the denoised sound signal by energy thresholding and extracts

MFCC features. Before the last step, it classifies bird calls by minimum distance classifier

on a low-level microcontroller unit. Finally, it saves the labels produced by classification to a

storage unit all in real-time. In order to evaluate the performance of the system, we construct

a dataset by recordings obtained from the website, Xeno-Canto at at http://www.xeno-

canto.org/. Our system and dataset focuses on only bird calls due to reaching sufficient

amount of the same type of bird call samples are more available than reaching the same type

of bird songs as mentioned in previous paragraph.

1.1. LITERATURE SURVEY

In order to collect bird sounds in the environment, there has to be used a sound recording

unit. Wildlife acoustics at http://www.wildlifeacoustics.com/ presents multiple solutions.

They propose their Song Meter SM3 and SM4 devices for bird and land animal sound

recording. The SM3 and SM4 devices are compact, dual-channel sound recorders. They

provide user-ready options such as adjustment of recording schedules, sampling frequency

and filtering on devices. Their devices can save 1 TB of data. On the other hand, the

devices are not customizable and they do not perform onboard processing. Instead, they

present a program called Kaleidoscope to organize, process and classify data. Aide et

al. [29] propose a recording unit with microphone, iPod Touch, and amplification unit for

bird sound recording. They record one minute of every ten minutes of sound instead of

real-time, continuous recording. Their recording unit, the iPod touch is not customizable

for expansions. Acevedo et al. [30] used a Sennheiser ME-62 microphone with MSP430

microcontroller to get 7-minute recordings of every hour during 24 hours. Their microphone

unit is high-cost and not customizable. In Aide’s and Acevedo’s method, they only recorded

data for further offline processing instead of onboard processing.

In processing unit perspectives, the products of Texas Instruments (TI) and Linux-based

Raspberry Pi models are reviewed. TI provides low-power solutions like MSP430G2553

with 16 Mhz system clock [31]. However, their processing capabilities are not sufficient for

complex calculations. TI also presents ARM Cortex-M4F based MSP432 that can reach up

to 48 Mhz clock speed with 64 KB SRAM [32]. It’s also not sufficient for complex software

environments in speed and memory perspective. TI’s Tiva series presents TM4C123GH6PM
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and TM4C1294NCPDT microcontrollers [33, 34]. They provide up to 80 Mhz and 120

Mhz system clock speeds and 32 Kb and 256 KB SRAM memory respectively. There

will be memory allocation suffering in TI’s TM4C123GH6PM microcontroller. As high

processing capability units such as Raspberry Pi are sufficient for real-time data processing

purposes with their up to 1.2 GHz clock speeds and 1 GB memory unit. However, they

have power consumption issues. The lowest power consumption is 160 mA among models

when TI’s TM4C1294NCPDT has 43.3 mA current consumption at 120 MHz with off-

peripherals.

In order to improve feature extraction and classification capability of the system, the

background noise should be removed [9]. Using a regular bandpass filtering will not be

sufficient because the noise on the sound signal is distributed on the whole frequency

spectrum. Boll [35] proposed the spectral subtraction technique. In their method, the

magnitude spectrum of pre-constructed noise profile is subtracted from magnitude spectrum

of the noisy signal. The halfwave rectification is applied on output attenuated magnitude

spectrum. Berouti et al. [37] modified Boll’s method by adding weighted subtraction

mechanism. Kamath et al. [36] modify the Berouti et al.’s method by using different weights

for different SNR values of the noisy signal. Kiapuchinski et al. [38] used spectral noise

gating to filter out the noise part in an acoustic signal. They used their method to remove

noises on bird sound recordings. In the spectral noise gating, the noise profile is used for

gating instead of subtraction. The signal power is greater than noise profile, the signal is

kept without any operation. Otherwise, the signal is smoothed taking previous smoothing

operations into account, instead of zeroing as in spectral subtraction techniques. To note

here, Kiapuchinski et al. used their method in real-time by recording and processing data

on a high-level embedded unit. However, their method cannot simultaneously record and

process data.

Several feature extraction methods from bird sounds have been proposed for recognition

of the species. Mel-frequency cepstral coefficients (MFCCs) are the most common

feature extraction technique for acoustic based classification [39, 40]. Kogan et al. [22],

Fagerlund et al. [40] and Kwan et al. [41] used MFCCs for automatic recognition of

bird species. Furthermore, Juang et al. [42] used linear predictive coefficients (LPC) as

features. The spectrographic features were used to classify bird sounds in [43]. Lee et
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al. [26] extracted two-dimensional cepstral coefficients for automatic classification of bird

species. Fagerlund et al. [44] calculated the permutation transformation coefficients for

feature extraction.

In order to distinguish the animal species using their sound, several classification methods

have been proposed. Acevedo et al. [10] compared three methods, linear discriminant

analysis (LDA), decision tree (DT) and support vector machines (SVM) with pre-recorded

12 bird species sounds on a computer. Vilches et al. [45] used data mining algorithms with a

naive Bayes classifier on bird songs. They used pre-recorded 154 bird songs from 3 species.

Cai et al. [46] studied on pre-recorded bird calls from 14 species with neural networks (NN).

They use cepstrum coefficients with linear and mel frequencies as features. Briggs et al. [47]

proposed the classifier chains with the random forest method for bird sound classification.

They also used pre-recorded bird sounds and their platform for processing was a computer.

Fagerlund et al. [48] used kNN classifier using NN classification on user-ready dataset. They

process and classify species on a computer offline. The developed methodologies on bird

sound classification have three common characteristics in our review. Firstly, they used

pre-recorded data to classify bird species. Secondly, they realized all the processes for

classification on a computer system. Thirdly, they performed their methods offline, instead

of real-time processing.

1.2. LIST OF CONTRIBUTIONS

In this thesis, bird sound pre-classification and classification methods are investigated. We

develop standalone, low-level, custom-made, real-time environmental sound processing

system concentrated on bird calls. Our contributions are listed below.

In our system, we perform onboard recording and processing simultaneously instead of

recording data for further offline processing [10,30,45–48]. All the recording and processing

steps are performed on a low-level microcontroller unit which is limited in processing

power and memory space. In order to achieve simultaneous recording and processing, we

implement ping-pong buffer structure on our limited microcontroller unit. Thus, we can

process real-time discrete sound signals without sacrificing any sound data on a low-level

system.
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In order to record sound data, we develop a microphone circuitry for our implementation

which is customizable for further studies such as optimizations on current consumption

issues and sound quality. Furthermore, we develop our microphone circuitry so that it can

easily be assembled on embedded platforms.

We perform five processing steps as noise removal, detection, feature extraction,

classification, and data storage while recording sound signal in our system. As a noise

removal method, we implement spectral noise gating [38]. We use energy thresholding for

detection of sound. Then we extract MFCCs as features. Finally, we classify features by

minimum distance classifier and store only class labels on an SD card instead of storing all

the recorded sound signals.

To be able to run all these steps in real-time with our low-speed unit, we make optimizations

on sub-steps of the processing steps. Overall, on-board, real-time and standalone

classification and storage of bird species by their calls are achieved on a low-level unit in

the proposed system.

1.3. THESIS ORGANIZATION

The rest of the thesis is organized as follows. In Chapter 2, we introduce the design

details of the proposed system in separate sections as hardware and software details. The

hardware units which are microcontroller unit, microphone circuitry, and storage unit are

elaborated in separate subsections. In Chapter 3, we provide the detailed explanation of the

implementation processes in 6 steps as sound recording, noise removal, detection, feature

extraction, classification, and storage. In each part, we introduce the methods used to

achieve corresponding steps of the system and explain how we implement them in detail.

In Chapter 4, we express the experimental studies in two sections. In the first section,

we evaluate the implementation performance of the system step by step and mention how

we constructed the dataset to analyze the classification performance. Finally, we give a

detailed explanation of classification performance on noisy and denoised sound signals. In

the second section, we give an analysis on system hardware as memory usage, speed and

power consumption. In Chapter 5, we summarize our proposed prototype system and make

inferences and mention possible future works to improve the study.
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2. DESIGN DETAILS OF THE PROPOSED SYSTEM

In this section, we consider the basic design of the proposed system. We handle hardware

and software parts in separate sections. The aim here is getting familiar with the strengths

and weaknesses of the proposed system. To note here, we propose a custom-made sound

processing system such that new modules and properties can always be added as hardware

allows.

2.1. HARDWARE DETAILS

Our real-time environmental sound processing system is composed of three basic hardware

modules. We provide the hardware layout of our system in Fig. 2.1. The first module is

the microphone circuitry. This module is responsible for acquiring and conditioning the

environmental sound. The second module is the microcontroller which is responsible for the

computation in the system. The third module in our system is the storage unit. This module

is responsible for storing the processed audio data. Next, we explain each module in our

proposed real-time system.
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Figure 2.1. Hardware layout of the proposed system.

2.1.1. Microphone Circuitry

The microphone circuitry in our prototype system consists of two parts as a mono channel

microphone and an amplifier part. The mono channel electret microphone is specifically
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picked for this application since it is suitable for embedded platforms [49]. The amplifier

part has a low voltage audio power amplifier, LM386 [50]. We design the circuitry in Fig. 2.2

for amplification taking the design with voltage gain of 200 in LM386 datasheet as reference.

The R1 value can be changed corresponding to the microphone used. It is chosen as 10

A
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Figure 2.2. Microphone circuitry schematic of the proposed system.

KΩ because maximum current for the electret microphone is 0.5 mA and supplied voltage

level is 5 V. C1 capacitor is used to remove the DC terms on the signal since the sound

signal is AC signal. Its value is determined experimentally. The R2 and R3 values provide

the tune of sound volume. Because of the noise elements originated from microphone, it

is not desired to amplify the noise in the original signal. Besides, the amplitude of sound

signal coming from the microphone can cause distortion on the output signal if the input is

not adjusted effectively. Therefore, to help to decrease or removing the low noise elements

and set the maximum value of the sound signal after amplification to an effective value, the

volume of the sound signal coming from the microphone is decreased by fine-tuning the R2

and R3 values. In the beginning, a potentiometer is used to determine the optimal values

for R2 and R3. The C2 is picked as 10 µF to set the voltage gain of the LM386 to 200 as

indicated in LM386 datasheet. C3 acts as a current supplier for the output to help providing

the demanded current against deficiency of current. R3 ensures limiting the current while

C3 is being charged. C3 and R3 are chosen with reference to design with voltage gain of
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200 in the LM386 datasheet. R4 and R5 are used as voltage dividers to make the output

of the circuitry suitable for analog input pin of the microcontroller used. Source to ground

capacitors like C4 are used to handle the noise originated from the source and the value of

C4 is also determined empirically.

2.1.2. Microcontroller Unit

Our system is based on a cheap and low power ARM® Cortex®-M4F based Tiva™

TM4C1294NCPDT microcontroller produced by TI [34]. The microcontroller can reach

120 MHz clock speed. It has 1024 KB flash memory and 256 KB single-cycle static

random access memory (SRAM). It also presents functional on-chip peripherals such

as two 12-bit analog-to-digital converter (ADC) modules with 20 channels, eight 16/32-

bit general-purpose timer (GPTM) blocks and 15 physical general-purpose input/output

(GPIO) blocks with up to 90 programmable pins. The microcontroller has communication

interfaces including eight universal asynchronous receivers/transmitters (UARTs), four quad

synchronous serial interface (QSSI) with bi-, quad- and advanced SSI support. In our

prototype system, we used the Tiva C Connected LaunchPad (EK-TM4C1294XL) to benefit

from the mentioned microcontroller [51].

2.1.3. Storage Unit

Unfortunately, the memory of the picked microcontroller is not sufficient for our operations.

Moreover, there is a necessity for an external storage unit for mobility of data. Therefore,

we added an external memory unit to our system. To do so, we picked the 8 GB SanDisk

Ultra® microSDHC™ UHS-I SD card [52]. We used an SD card socket to interface the

SD card to our microcontroller unit. This setup allows us to store large amounts of data in

real-time.

2.2. SOFTWARE DETAILS

We developed our real-time system on Code Composer Studio v6.1.0. This is the

integrated development environment (IDE) that supports TI’s microcontroller and embedded

processors. We added three software libraries to our project. These are as follows. First, we
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included the TivaWare™ Peripheral Driver Library by TI. The functions in this library are

extremely important to access the peripheral units of the Tiva C microcontroller. Second, we

added the Cortex Microcontroller Software Interface Standard (CMSIS) DSP library offered

by ARM. The functions in this library can be used to utilize DSP functions such as FFT in

a fast and optimal manner. Third, we added the generic FAT file system, FatFS software

library. As mentioned in the previous section, we store the processed data to an SD card in

our prototype system. The processed data can be saved either by a file system or without

using any format. However, data can be available on computer systems if it is formatted by

a file system. Therefore, FatFS library allows us to store data by Fat32 file format. This also

allows storing data in an SD card up to 32 GB in real time. We analyzed the input sound

data and simulated noise removal operations and presented the outputs of the operations by

Audacity®. Audacity is a free, open source, and cross-platform audio software for recording

and editing audio files. To simulate the operations on the proposed system as non-real time

system, we used MATLAB® as the software platform. We use Weka data mining software

to use classification algorithms offline [60]. Weka provides user-ready machine learning

algorithms and the algorithms can be applied on datasets directly.
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3. SYSTEM IMPLEMENTATION

Our real-time environmental sound processing system has six implementation steps. These

are as follows: sampling and recording the sound signal; removing background noise from

the sampled signal by spectral noise gating; detecting the interested sound parts in recordings;

extracting the features for classification by MFCC method; classifying the bird species

by minimum distance classifier and storing the output of classification. To observe the

performance of sound recording, noise removal, detection processes and feature extraction,

we store and reconstruct the signals obtained from the first three steps and store extracted

features for the end user apart from actual operations mentioned above. We provide the

actual system implementation in Fig. 3.1.
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Figure 3.1. Implementation steps of the proposed system.

In the implementation, the sound recording is a continuous process. Therefore, it must not be



12

interrupted by any other processes in real-time. Otherwise, samples may be missed during

processing phases. To overcome this problem, we use the ping-pong buffer technique to

handle all these operations simultaneously [53]. In ping-pong buffering, when the samples

are recorded to the ping buffer, data already filled in the pong buffer is processed and

stored. Thereby, we can achieve recording and processing in real-time simultaneously. This

implementation uses memory with 16-bit integer values to save instant recorded data because

of the 12-bit ADC of microcontroller and the fact that nearest integer size to 12-bit is 16-bit

integer values. Although the recorded data is saved in 16-bit length, the ping-pong buffers

are set to 32-bit length since all the process in implementation is performed by float values

with 32-bit length in the proposed system. The type conversion from 16-bit integer to 32-bit

float is done while assigning the recorded data to ping-pong buffers.

3.1. SAMPLING AND RECORDING

As the first step of environmental sound processing, we applied analog signal sampling

and recording. We record the analog audio signal by the microphone circuitry of our

prototype system. We also amplify the signal before feeding it to the microcontroller. The

microcontroller samples the analog signal with its 12-bit ADC (one channel only) by a 20480

Hz sampling rate since most of the birds are in frequency range 100 Hz - 10 Khz [41, 54].

Thus, according to Nyquist sampling theorem, we can obtain sound samples up to 10240

Hz. As the ADC of microcontroller is 12-bit, the recorded data is in range of 0 - 4095. For

the possibility of overflow in variables in the further steps of the implementation, the values

of recorded data are normalized after type conversion. As the last step for the recording

phase, we transfer the samples on 32-bit ping-pong buffers to implement an effective real-

time progress. Thus, none of the samples in the sequence of time are sacrificed for further

processing. In this step, the recorded sound signals are stored in SD card apart from the actual

implementation in order to analyze the recording phase of the system implementation.

3.2. NOISE REMOVAL

The second phase of implementation is noise removal. Unfortunately, the sampled sound

signal may contain undesired noise terms besides the actual sound signal. To eliminate the
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noise, we implemented the spectral noise gating technique in our prototype system. This

technique is performed in two steps [38]. The first step is extracting the noise profile. The

second step is gating and smoothing. The noise profile is constructed from the obtained

signals. This is an offline learning part of the system. The estimated noise profile is further

used to remove noise in the signal of interest in real-time. Noise removal is implemented by

first constructing the noise profile and then applying spectral noise gating as follows.

3.2.1. Constructing the Noise Profile

Prior to actual environmental sound acquisition operation, the ambient sound is recorded

frame by frame with a frame size of 2048 (100 ms) samples over L frames. We first obtain

the magnitude spectrum of each frame by taking 2048 channel FFT of data. Then, we obtain

the noise gate per each frequency subchannel by averaging the magnitude spectrum over L

frames. Thus, we obtain mean frequency spectrum of noise.

In our implementation, ambient sound data is sequentially saved in ping-pong buffers in an

alternating fashion. This enables simultaneous data recording and processing. While ping or

pong buffer is filled by recording, the magnitude spectrum of the other buffer is extracted by

using the FFT functions of the CMSIS library. The average magnitude spectrum is stored in

a different noise gate buffer with size 2048 samples.

3.2.2. Applying Spectral Noise Gating

Noise profiling process leads to noise removal operation by spectral gating. Here, the noise

profile stored in the noise gate buffer serves as a threshold to gate the magnitude spectrum

of the sound data. The spectral noise gating process is implemented likewise in the noise

profile construction by using the same ping-pong buffers. Fig. 3.2 shows real-time data

recording and processing scheme using ping-pong buffers. As shown in Fig. 3.2, we use a

ping-pong buffer technique by copying the first half of the ping-pong buffers to each other

in an overlapping and alternating process.

Here, each data frame is considered to be composed of 1024 samples. Data frames are written

to ping and pong buffers in an alternating fashion where the size of ping and pong buffers

are still kept as 2048 samples (100 ms). According to Fig. 3.2, at time step one, data frame
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Figure 3.2. Real-time data recording and processing scheme using ping-pong buffers.

one is written to the ping buffer, where the rest of the buffers are empty. At the beginning

of time step two, frame one is copied to the pong buffer. Then frame two is recorded to the

pong buffer. At the beginning of time step three, frame two is copied to the ping buffer. Then

at the pong buffer, spectral noise gating process is executed over the consecutive data frames

one and two. Simultaneously, while processing the pong buffer, the incoming data frame

three is recorded to the ping buffer. In a similar fashion, at the beginning of time step four,

frame three in the ping buffer is copied to pong buffer and the spectral noise gating process is

executed in the ping buffer over the consecutive data frames two and three. While processing

frames two and three, frame four is written to the pong buffer simultaneously. The process

continues this way until the last data frame.

Fig. 3.3 shows the spectral noise gating process in detail. The 2048 (100 ms) sampled frame

members either in the ping or pong buffers are first multiplied by a 2048 sample Hamming

window. This reduces the leakages caused by overlapped windowing [55]. Here, we save

the parameters of the Hamming window in a different constant buffer to reduce processing

load. We then take the 2048 channel FFT of the windowed signal. The magnitude at each
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Figure 3.3. Spectral noise gating steps.

frequency channel is compared with its noise gate obtained in the previous section. If the

magnitude spectrum value at a given channel is less than its noise gate value, the smoothing

factor is decreased. Otherwise, the smoothing factor is increased as shown in the fourth

step of Fig 3.3. Here, at the beginning of the operation, smoothing factor is selected as one.

Having obtained the smoothing factor for all frequency channels, the FFT of each channel is

multiplied by its corresponding smoothing factor as shown in 5th and 6th step of Fig. 3.3. To

note here, the mentioned FFT of each channel is the FFT calculated from ping-pong buffer

frame without Hamming windowing. The resulting frequency domain signal is later used

in detection and feature extraction operations. It is also converted to time domain signal by

Inverse FFT (IFFT) operation using CMSIS apart from the actual system implementation and

the final data is stored in an external storage unit in time domain to observe the performance

of noise removal.
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Figure 3.4. Bird calls with different N values, (a)128, (b)512, (c)2048, (d)8192

To be more precise why we implemented the window and FFT sizes as 2048, we analyzed the

bird sound recordings with different N values supposing N is window and FFT size. We saw

that there is a trade-off between noise terms and bird sound patterns. In Fig. 3.4, there are

four spectrograms of recorded four calls of Eurasian sparrowhawk with different N values

128, 512, 2048 and 8192 respectively [56]. The N values are selected in 4-fold intervals to

understand the difference visually. As can be seen, samples where N is 128 and 512 have

distinct noise terms and sample with size of 8192 has less indistinct patterns than the sample

where N is 2048. Using high N values causes memory shortage in our implementation.

Increasing the N , it can be supposed that the noise terms are blurred and become easy to

remove. In other words, the increasing the size N mimics a low pass filter on the spectrogram.
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On the other hand, the clearness and distinction of sound patterns are decreased as can be

seen in Fig. 3.4 while increasing the size N . Furthermore, using a small value for N means

small window and FFT size. Small window size causes distinct noise terms in recordings

and small FFT size causes distortion on bird call pattern. So, we determined the optimum

value of N for noise removal and further steps in our implementation as 2048.

To mention here, we implement Real Fast Fourier transform (RFFT) provided by CMSIS

Library referred in Section 2.2 for FFT operation to reduce the processing load and memory

usage by 2 times for FFT operation. Beacuse RFFT works with the real terms only and

calculates only the first half of the FFT bins. Thereby, we only calculate first 1024 bin of

2048 bin FFT for windows where N is 2048 and keep 2048 32-bit memory elements for

real and complex part of FFT values instead of 4096 32-bit memory elements for 2048 bin

FFT.

3.3. DETECTION OF SOUND PARTS IN RECORDINGS

The third operation of the implementation is the detection of sound parts in the recordings.

There are two reasons to implement this section. The first one is to be able to focus on

only the necessary sound parts in recordings. After noise removal operation, the recordings

may contain silence and residual noise parts that are not necessary for feature extraction and

storage. Therefore, we neglect these parts by detection. The second reason is to be able

to observe the beginnings and the ends of the meaningful parts in recordings for feature

extraction. As mentioned in Section 3.2.2, we work with the frames with the size of 2048

(100 ms). However, a meaningful part of an environmental sound may contain more than

2048 samples (100 ms). Therefore, we observe the beginnings and the ends of the meaningful

parts in the recordings by detection.

The detection operation is applied after the sixth part in Fig. 3.3. After smoothing operation

mentioned in Section 3.2.2, we obtain the FFT of denoised frame of recording. To detect the

interested parts, we use the signal energy. According to Parseval’s Theorem,

N−1∑
n=0

|x[n]|2 = 1

N

N−1∑
n=0

|X[k]|2 (3.1)
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where X[k] is the DFT of the x[n] and N is the window size, the energy of the signal can be

calculated by FFT of the signal. To get rid of one more floating point division, we use,

J =
N−1∑
n=0

|X[k]|2 (3.2)

where X[k] is the denoised FFT of recorded frame; J is the energy of the denoised frame;

and N is the denoised FFT size with value of 2048.

The detection operation executes as shown in Fig. 3.5. First of all, the magnitude square of
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Figure 3.5. Implementation steps of the detection of sound parts.

the FFT channels of the denoised signal is calculated. Then, all the magnitude squares are
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added to find the energy as shown in Eq. 3.2. The energy of the signal is compared with

predetermined threshold value. If the energy of the frame is greater than the predetermined

threshold, a timer with 500ms period is started, since a meaningful part of environmental

sounds like bird calls may contain separate chirp signals. In Fig. 3.6, two seconds recording

of a bird species, Common Redstart with one call obtained from Xeno-canto is shown [28].

As can be seen in Fig. 3.6, the call consists of five chirps and there is a silence gap between

Figure 3.6. A call of a bird, Common Redstart.

fourth and fifth chirp. Accordingly, to process all the chirps or any other sounds like chirps

in the same part, the silence signals between chirps in 500ms period are included the same

meaningful part of the bird call. After all, IFFT of the frames fulfilled the conditions

specified in Fig. 3.5 is used by further steps of the proposed system. It is also stored apart

from actual implementation to observe the performance of the detection phase of the overall

system.

As can be seen in Fig. 3.5, the detection process operates as the continuation of the noise

removal process in the overall real-time implementation. Thereby, the detection phase of

the implementation proceeds next to the processing of spectral noise gating in the ping pong

buffer technique used in Section 3.2.2.

3.4. FEATURE EXTRACTION

The fourth section of the proposed system is the feature extraction from denoised and

detected recordings. As a feature extraction method, MFCCs which mimics the human
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hearing is used.

The extraction of MFCCs is achieved by six steps [39]. Fig 3.7 illustrates the steps of

extraction of MFCCs. As shown in Fig. 3.7, the first process of the MFCCs method is the pre-
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Figure 3.7. Steps of extraction of MFCCs and liftered MFCCs.

emphasis of the input signal. By pre-emphasis, the high-frequency parts, that are suppressed

during sound production mechanism of humans, are compensated. On the other hand, in our

proposed system, this procedure is skipped, since we are focused on only the environmental

sounds. As the second step, the frame blocking separates the signal into overlapped frames to

be able to calculate the short-time fourier transform (STFT). This step is already achieved in
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ping pong buffer structure as mentioned in Section 3.2.2. The next step is the windowing the

signal with Hamming window to reduce the leakages caused by overlapped windowing as

mentioned in Section 3.2.2. The fourth step of the procedure is the calculation of FFT to find

magnitude frequency response of each frame. As shown in Fig. 3.3, the resulted magnitude

FFT calculation at fourth steps of MFCCs procedure is already performed by spectral noise

gating. Therefore, we reach the fifth step, the triangular bandpass filtering by skipping first

four steps of MFCCs procedures to reduce the processing load.

Triangular bandpass filtering mimics the human perception by using triangular overlapped

filters distributed at even intervals in mel frequency domain. To calculate the triangular filters,

the frequency domain is converted to mel frequency domain by,

m = 2595 log10

(
1 +

f

700

)
(3.3)

where m is the mel frequency and f is the regular frequency value. Then, the center

points of the triangular filters are determined by distributing them at even intervals in mel

frequency spectrum. Then, half-overlapped triangular filters are constructed. The number

of center points determines the size of filterbank. The suggested number of filterbank size

is in range 20 - 40 [57]. Therefore, supposing M is the filterbank size, M is set to 20

which is the suggested minimum size of filterbank to have minimum processing load on

the microcontroller. The magnitude frequency responses of the frames are multiplied by M

triangular bandpass filters to calculate energies of each frequency bands in the perspective

of human hearing. Thus, we obtain M filterbank energies. The triangular bandpass filtering

is used together with logarithm operation since human hearing is prone to logarithmic scale

than linear scale [57].

As the last step of extraction of MFCCs, the discrete cosine transform (DCT) is applied on

the log filter-bank energies as in,

cn =
M−1∑
k=0

log10(Ek) cos(n
π

M
(k + 0.5)), 0 ≤ m ≤ D − 1 (3.4)
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Figure 3.8. Feature extraction proceeding in proposed system.

where cm is the MFCCs; D is the number of MFCCs with value of 13; M is the number

of triangular filters; and Ek is the filterbank energies. Thus, we obtain D MFCCs where D

is 13 in our proposed system. The DCT is applied for two reasons [57]. All the filterbank

energies are quite correlated since filter-banks are overlapped. The DCT decorrelates the

filter-bank energies. The higher DCT coefficients represent the fast changes in the filter-

bank energies. To remove these high changes, a limited number of DCT coefficients are

used. In our implementation, we keep D coefficients of DCT as features.

As an extra step, the sinusodial liftering operation is applied as in Paliwal [58]. Because,

liftering operation gives less weight to both higher and lower ceptral coefficients; and it

provides better recognition performance.

Looking from the real-time perspective, the connection between the feature extraction

operation and the detection operation is similar to the connection between the detection and

the noise removal operations. Hence, as shown in Fig. 3.8, the steps of feature extraction

implementation run after detection operation in the time intervals of data processing of
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the ping pong buffer structure mentioned in Section 3.2.2. If the conditions mentioned in

Section 3.3 are fulfilled, all the operations after fourth step in Fig. 3.7 is executed and the

extracted MFCCs of the current frame are stored in a buffer. All the MFFCs with size of

(L ×D) in L frames of a detected part are kept until the detected part ends. If the detected

part ends, the mean values of all MFCCs for L frames are calculated and kept as features. To

note here, as in the previous steps, the outputs (features) obtained from the feature extraction

operation are stored in SD card apart from the actual implementation.

To avoid from extra operating loads in real-time execution, the triangular filter matrix with

the size of M × N
2

where M is 20 and N is 1024, DCT coefficients matrix with the size

of D × M where D is 13 and M is 20, and liftering coefficients with the size of D are

calculated offline and integrated to the memory of the system, since they are constants.

Then, the triangular filtering, applying the DCT on log energies calculated by triangular

filtering, and liftering MFCCs procedures are achieved by only multiplication operations in

real-time.

As mentioned, the size of the triangular filter matrix is 20 × 1024 which needs 20480 32-

bit floating-point memory elements. However, the matrix of triangular filter contains lots

of zeros in it. Therefore, only the non-zero elements, the number of non-zero elements in

each row, and the column indexes of first non-zero elements in each row are stored in the

memory of the system. Thus, instead of 20480 floating-point numbers, 1902 32-bit floating-

point and 40 16-bit unsigned integer numbers are placed in the memory. Correspondingly,

the multiplication operations for triangular filtering is realized using the number of non-zero

elements in each row and the column indexes of first non-zero elements in each row as shown

in Algorithm 3.4.

Algorithm 3.4. Triangular Filter Matrix Multiplication

Begin
M ← 20
k ← 0
for i ∈ 1,...,M do

for j ∈ 1,...,Ri do
Bi ← Zk * PCi + j
k ← k + 1

end for
end for
End
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where M stands for the number of triangular filters; R stands for number of non-zero

elements in rows; B stands for filterbank energies of a frame; Z stands for non-zero elements

in triangular filter matrix; C stands for column indexes of non-zero elements in rows and P

stands for magnitude frequency response array of a frame.

3.5. CLASSIFICATION

The next and the fifth step of the proposed system is the classification of the bird species

in the recordings. In our system, the minimum distance classifier technique is used for the

classification purpose due to the low-weight structure of the classifier in our limited system.

The minimum distance classifier uses the Euclidean distance as,

gi (y) =

√
(y − µi)

T (y − µi) (3.5)

where gi (y), i, µi, y represents Euclidean distance of the features to ith class, class number,

the mean point of the ith bird species in D dimensional space as mentioned and the feature

vector of test bird records respectively.

To note here, because the existence of the square root operation in Eq. 3.5 does not affect

the designation of minimum distance, we remove it on our implementation to decrease the

process load on microcontroller.

The classification operation has three parts as train, cross-validation and test. The train part

for the minimum distance classifier in our proposed system is the calculation and storage

of the mean points of features of each bird species in D dimensional space. The features

mentioned are the features of the sample recordings determined as training samples of

each class. D is the size of the features extracted by MFCCs method as mentioned in

Section 3.4.

In the cross-validation part, maximum possible Euclidean distances from mean points of

each bird class are obtained. To be able to calculate maximum possible distance of each

class, first all the samples in cross-validation set of recordings are labeled by hand, then the

Euclidean distances from labeled samples to mean points of the classes with the same labels
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are calculated and stored. The maximum distances for each class label are kept as maximum

possible distances for each class.

The test part of classification is actually the labeling of the features of sample recordings

separated for testing purposes. The calculation of Euclidean distance from a test feature

vector to trained feature vector of each class enables us to determine the minimum distance

from test sample to classes. After reaching the minimum distance, the possible label of the

test is determined as the label of the class which has the minimum distance. Before labeling,

a threshold comparison of the reached minimum distance against maximum possible distance

of determined possible label is performed. If the minimum distance is in range of maximum

possible distance, the test sample is labeled as the label compared. Otherwise, the test is

labeled as exclusive class.

The training and the cross-validation parts of the classification are carried out apart from the

actual system implementation as offline processes. The features of training set is extracted

and stored by microcontroller. The mean point calculation of these features are realized

in MATLAB offline. The maximum possible distance determination processes are done

in a similar way. First, the features of cross-validation set are stored by microcontroller.

Then, the maximum distances are determined by MATLAB offline. The actual process in

the implemented system is the operation in the test part. The trained features and maximum

possible values for each class are buffered in an array in the microcontroller, in order to use

in classification of the test samples.

3.6. STORAGE

As mentioned in Section 2.1.3, we store the processed data on an SD card. This card

communicates with the microcontroller by serial peripheral interface (SPI) protocol. We

use the QSSI module on the microcontroller as bi-SSI that serves SPI communication.

FatFS library allows us to write the data to the SD card byte by byte. On the other hand,

as mentioned in Section 3, the ping-pong buffers in our system have 32-bit word length.

Therefore, the buffer elements have to be sent as four separate parts. To overcome this

difficulty, we use byte based memory addresses of the buffers to send to the SD card without

any extra processing load in real-time as shown in Fig. 3.9. Then, all the bytes in byte based
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Figure 3.9. 32-bit to 8-bit memory adress to write on SD card.

memories are written on SD card sequentially. Otherwise, we have to separate all the 32-bit

buffer elements into 8-bit buffer elements. This puts an additional processing load to the

microcontroller. Besides, it affects the memory usage in a negative way.
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4. EXPERIMENTAL STUDY

In order to evaluate the system, experimental studies are conducted in two steps. First,

the performance of the implementation steps of the system is observed to understand how

correctly and effectively the system works. Then, hardware related analysis are done to see

how flexible the system is for expansion and how much energy is consumed by the hardware

units.

4.1. PERFORMANCE ANALYSIS

In this part of the experimental study, we perform two distinct implementation experiments.

The first one is the visual examination of noise removal operation, detection steps. This

experimental step is performed apart from the actual real-time operations. The second study

is the evaluation of the real-time classification capability of the system using the constructed

dataset. As an extra step to classification capability, an offline classification performance

evaluation is realized to be able to ponder on how the system will achieve with more complex

classification algorithms.

4.1.1. Evaluation of Pre-classification Operations

The system is executed to store signals obtained by microphone circuitry and then store

output of the noise removal, detection apart from the actual proposed system. Because we

separate the samples after original sound recording, noise gating, and detection into bytes

to store on the SD card, we have to recover them to obtain time-domain sound samples.

The recovery is performed offline using MATLAB. After recovery of the sound samples,

the half-overlapped windowing is performed using Hamming window function to exclude

the leakages caused by windowing. Thus, we obtain the original, denoised and detected

signals.

We next provide a working example of sound recording, noise removal and detection parts of

our prototype system. Within this example, we use the actual bird sound signal recordings.

The recorded bird sound signal is played from the speaker of a PC in a house with highway
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noise. The microphone of the proposed system is located approximately 30 cm away from

the speaker of a regular laptop PC. To illustrate the sound volume while recording, the sound

level in dB is measured by a smart-phone LG G2. The phone’s microphone is placed beside

the microphone in proposed system and the original record of the sound in Fig. 3.4 is played

by PC. Likewise, the noise level in the house environment is measured. The measured sound

and noise levels are maximum at 60 dB and 50 dB respectively. When we compare the

measured sound level with the actual speech sound level, it is seen that both are very close

to each other. The performances of the spectral noise gating and detection in our prototype

real-time system are shown in Fig. 4.1 that illustrates the recorded, denoised and detected

spectrograms of the played twelve seconds bird sound signal having four calls. Prior to

Figure 4.1. Bird calls (a)Recorded, (b)Denoised, (c)Detections

spectral noise gating, the noise profile is constructed by listening to the ambient sound for
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30 sec. In other words, the noise profile is constructed by averaging L frames where L is

300.

The first window Fig. 4.1(a) represents the sound signal obtained by the microphone circuitry

in our system. As can be seen, the system has a noticeable amount of background noise.

This background noise is originated from the environment where recording is performed,

non-ideal microphone circuitry and also non-ideal voltage source of the system.

The second window Fig. 4.1(b) is the spectrogram of the reconstructed output signal of

spectral noise gating process. As can be seen, the undesired background noise is removed

without disrupting the original signal as possible. Accordingly, we can conclude that the

noise removal operation provides an independent signal from the sound recording technique

and the environment at a sufficient level. As can be seen in Fig. 4.1(b), our implementation

of spectral noise gating on our proposed system works properly.

The detection result of after noise removal operation is shown in Fig. 4.1(c). In spectrogram

presented in Fig. 4.1(c), the parts outside of the detected parts are the zero power parts after

detection. The bird calls in denoised sound are detected properly for this recording into

four parts. It provides a proper feature extraction and classification. The implementation of

detection on system works as expected, as can be seen in Fig. 4.1(c).

4.1.2. Classification Capability

As the last part of the implementation analysis, the classification results are obtained to be

able to evaluate the classification capability.

In order to obtain the results, first a dataset is constructed. The dataset construction

is achieved in 3 steps. The first step is determining which conditions are going to be

issued while choosing the data. The second step is downloading and merging sound data

respectively. The third and the last step is dividing the data into train, cross-validation and

test sets.

Four conditions are evaluated for selection of recordings included in the dataset as

follows,

• Using recordings with different level of SNR,
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• Using single labeled recordings or recordings including one dominant label and other

weak labels,

• Using recordings including only bird calls.

• Using world-wide recordings of bird species seen around Turkey.

We obtained all the recordings from the website, Xeno-Canto at http://www.xeno-canto.org/

since we have found the recordings in Xeno-Canto keeping all four conditions. Xeno-Canto

is a database website for bird sound collections. It already contains 352682 recordings of

9724 species with different subspecies and its dataset is getting larger day by day. To be

clear about using Xeno-Canto for the first condition, the website contains recordings with

different sound qualities and there are quality labels A, B, C, D, E for the recordings. So

constructing the dataset, we’ve used recodings A to E.

In Xeno-Canto, the labels of both dominant and weak species are provided for user in

recordings. The sound can be listened online and the spectrogram of the recordings can

be seen online. Thereby, we keep the second condition for our recordings just before the

downloading thorough listening and visualizing them one by one. This website uses a filter

for sound types of birds. We determine our recordings by this filter as bird calls. To keep our

last condition, we filtered recordings by region and selected around Turkey and found the

species used and got the samples of these species in recordings all over the world. To note

here, we used Turkey as a region for real environmental experiments as a future work and

we used world-wide recordings of species because the data from Turkey is not sufficient in

the website yet.

After obtaining recordings, we downloaded 237 recordings and ignored the species with few

samples and extracted bird sounds in the recordings and merged them together. In order

to evaluate how the system behaves against the sounds outside the trained classes, we also

added some other types of sounds such as urban-originated sounds, other species of birds,

strong noise. Table 4.1 presents the bird species with class labels and number of samples

for each class. As can be seen in the last column in Table 4.1, we have had 1116 samples

with 21 species and other types of sounds. To get the total number of samples in merged

set, the sound finder tool in Audacity is used. The sound finder tool finds the sound parts

in recordings and labels them with a counter value. Fig. 4.2 shows the setting window of



31

Table 4.1. Bird species with labels and number of samples in dataset

Species Labels Samples
Black Frankolin B1 53
Black RedStart B2 37
Black Woodpecker B3 57
Common Blackbird B4 40
Common Chiffchaff B5 43
Common Nightingale B6 69
Corn Bunting B7 69
Corn Crake B8 72
Eurasian Magpie B9 48
Eurasian Scops Owl B10 59
Eurasian Sparrowhawk B11 47
Eurasian Wryneck B12 38
European Greenfinch B13 52
European Robin B14 52
Green Warbler B15 58
Little Bittern B16 55
Red-billed Chough B17 50
Rose-ringed Parakeet B18 41
Ruddy Shelduck B19 39
Tawny Owl B20 38
White-throated Kingfisher B21 53
Other O 46
Total 1116

Audacity sound finder tool. All the settings presented in Fig.4.2 is used as shown.

As the last step of the dataset construction, we divide the dataset as 20% train, 20% cross-

validation and 60% test set for each species. Table 4.2 shows the class labels with their

number of train, cross-validation and test samples. Consequently, we have 222 train, 222

cross-validation and 672 test samples in total as can be seen in Table 4.2. As can be seen

at last column of Table 4.2, the other type of sounds are not included in train and cross-

validation set beacuse they are not samples of specific types and they are mix of sound

types.

The next step after dataset construction is the experimental setup. The same experimental

setup in Section 4.1.1 is provided for recordings of training, cross-validation, and test sets.

We repeat the experiments for two conditions.
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Figure 4.2. Setting window of Audacity sound finder tool.

Table 4.2. Class labes with number of train, cross-validation and test samples

Labels B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 O Total
Train (20%) 11 8 12 8 9 14 14 15 10 12 10 8 11 11 12 11 10 9 8 8 11 0 222
CV (20%) 11 8 12 8 9 14 14 15 10 12 10 8 11 11 12 11 10 9 8 8 11 0 222
Test (60%) 31 21 33 24 25 41 41 42 28 35 27 22 30 30 34 33 30 23 23 22 31 46 672

As the first condition, the system is operated regularly as mentioned in Chapter 3. Pre-

classification steps in implementation are realized and features of the samples in train and

cross-validation sets are extracted by the microcontroller. Then, the class mean points

and maximum possible distances of class labels are calculated by MATLAB. As the last

step, the test results are obtained by recording and processing samples in the test set by

the real-time proposed system. The confusion matrix for this experiment is provided in

Table 4.3. As can be seen, 669 samples in the test set are captured with 3 miss. Total 557

samples are labeled correctly. To emphasize here, the false labeling among classes mostly

occurs in 10th class, Eurasian Scope Owl to 11th class, Eurasian sparrowhawk with 12 false

labeling. Investigating both classes, it is observed that the test set of the 10th class contains

samples which have strong bird sounds with the frequency band of 11th class. Therefore, we

trained, cross-validate and test the class with excluding that specific samples, the confusion

in labeling for 10th class is disappeared. So, the background species are causing the labeling

error. As can be calculated in Table 4.3, the most of the false labeling is done to other class

label (o) with 54 false labeling.
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Table 4.3. Confusion matrix of minimum distance classifier with SNG

PREDICTED CLASS

Species B
1

B
2

B
3

B
4

B
5

B
6

B
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B
9
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B1 19 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 5 30
B2 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21
B3 4 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 33
B4 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 24
B5 0 0 0 0 21 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 24
B6 0 0 0 0 0 36 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 3 41
B7 0 0 0 0 0 0 40 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 41
B8 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 3 42
B9 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 1 0 0 0 2 5 28

B10 0 0 0 0 0 0 0 0 0 23 12 0 0 0 0 0 0 0 0 0 0 0 35
B11 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 2 0 0 0 6 27
B12 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 4 2 22
B13 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 4 30
B14 0 0 0 2 0 0 0 0 0 0 1 0 0 25 0 0 0 0 0 0 0 2 30
B15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 1 34
B16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 2 33
B17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 1 0 0 1 30
B18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 4 22
B19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 23
B20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 2 22
B21 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 27 2 31
O 1 0 0 0 0 0 1 0 0 0 0 0 1 0 6 0 0 3 4 0 0 30 46

Predicted Total 24 20 24 21 21 36 43 39 21 25 33 22 27 25 40 31 29 23 28 20 33 84 669

In the second condition, we exclude the spectral noise gating technique in our

implementation and repeat rest of the steps likewise in the first condition in order to evaluate

the effect of the noise removal. The confusion matrix of the results is provided in Table 4.4.

As can be seen, 649 different samples are captured with miss 23 samples. Total 471 samples

are labeled correctly. The higher miss value here is caused by noise in the recording.

Because there may be high background noise, the detection is not achieved properly and

some detected parts are captured together and perceived as one detection. In addition, we

increase the detection threshold to samples since the noise removal operation is excluded.

This causes some misses for detection. Likewise in experiments in the first condition, the

most of the false labeling is done to the other class label (o) with 78 false labeling as can be

calculated in Table 4.4

To evaluate the classification performance of the two experiments in detail, the test statistics
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Table 4.4. Confusion matrix of minimum distance classifier without SNG

PREDICTED CLASS
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B1 22 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 2 30
B2 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 20
B3 0 0 21 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 7 32
B4 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 23
B5 0 0 0 0 17 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 25
B6 0 0 0 0 0 36 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 39
B7 0 0 0 0 0 0 34 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 38
B8 0 0 0 0 0 0 0 36 0 0 0 0 0 0 1 0 0 0 1 0 0 3 41
B9 0 0 0 0 0 0 0 0 20 0 0 0 1 0 0 0 1 0 0 0 2 4 28

B10 0 0 0 0 0 0 0 0 0 22 4 0 0 0 0 0 0 0 0 0 0 9 35
B11 0 0 0 0 0 2 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 8 26
B12 0 0 0 0 0 0 0 0 0 1 0 15 0 0 0 0 0 0 0 0 0 5 21
B13 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 2 0 6 0 0 0 0 29
B14 0 0 0 0 0 0 0 0 0 2 5 0 0 17 0 1 0 0 0 0 0 4 29
B15 0 0 0 0 0 0 2 3 0 0 0 0 0 0 27 1 0 0 0 0 0 0 33
B16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 32
B17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 1 0 0 9 29
B18 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 14 1 3 0 2 24
B19 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 17 0 0 1 21
B20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 15 0 3 20
B21 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 22 4 30
O 1 0 0 1 0 2 3 0 0 0 0 0 7 0 5 3 0 3 4 1 0 15 45

Predicted Total 23 11 21 24 17 41 42 40 24 26 28 23 32 18 34 40 20 24 26 19 24 93 650

below,

• true positive (TP) which is total number of test results that correctly indicate the

presence of a condition,

• false positive (FP) which is total number of test results which wrongly indicate that a

particular condition is present,

• true negative (TN) which is total number of test results that correctly indicate the

absence of a condition,

• false negative (FN) which is total number test results which wrongly indicate that a

particular condition is absent,

are calculated for each species from two confusion matrices in Table 4.3 and Table 4.4 and

presented in Table 4.5. As can be seen in Table 4.5, the true positive values for experiment
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Table 4.5. TP, FP, FN, TN for confusion matrices in Table 4.3 and Table 4.4

Labels TP w/
SNG

TP w/o
SNG

FP w/
SNG

FP w/o
SNG

FN w/
SNG

FN w/o
SNG

TN w/
SNG

TN w/o
SNG

B1 19 22 5 1 11 8 634 619
B2 20 11 0 0 1 9 648 630
B3 24 21 0 0 9 11 636 618
B4 19 22 2 2 5 1 643 625
B5 21 17 0 0 3 8 645 625
B6 36 36 0 5 5 3 628 606
B7 40 34 3 8 1 4 625 604
B8 39 36 0 4 3 5 627 605
B9 20 20 1 4 8 8 640 618
B10 23 22 2 4 12 13 632 611
B11 19 16 14 12 8 10 628 612
B12 16 15 6 8 6 6 641 621
B13 26 21 1 11 4 8 638 610
B14 25 17 0 1 5 12 639 620
B15 33 27 7 7 1 6 628 610
B16 31 32 0 8 2 0 636 610
B17 28 19 1 1 2 10 638 620
B18 18 14 5 10 4 10 642 616
B19 23 17 5 9 0 4 641 620
B20 20 15 0 4 2 5 647 626
B21 27 22 6 2 4 8 632 618
O 30 15 54 78 16 30 569 527
Total 557 471 112 179 112 179 13937 13471

with SNG and experiment without SNG are 557 and 471 in total respectively. By using SNG,

86 more bird samples are correctly labeled. The false positive values for experiment with

SNG and experiment without SNG are 112 and 179 in total. So, total 67 more samples in

experiment without SNG are labeled as positives for species when there is no sample of the

species.

After calculation of Table 4.5, the test statistics below,

• sensitivity or true positive rate (TPR) which is capability measure of tests to indicate

the condition when condition is present and which is formulated as,

TPR =
TP

TP + FN
(4.1)

• specificity or true negative rate (TNR) which is capability measure of tests to correctly
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exclude the condition when the condition is absent and which is formulated as,

TNR =
TN

TN + FP
(4.2)

• positive predictive value (PPV) which is the proportion of tests indicating true presents

to tests indicating both true and false presents and which is formulated as,

PPV =
TP

TP + FP
(4.3)

• negative predictive value (NPV) which is the proportion of tests indicating true

absences to tests indicating both true and false absences and which is formulated as,

NPV =
TN

TN + FN
(4.4)

are calulated by using the values in Table 4.5 and presented in Table 4.6 As can be seen, the

noise removal does not affect the performance of true negative rates but the true positive rates

are 83% and 70% for two experiments respectively. The removal of noise provides making

13% more correct labeling in our classification dataset. In addition, the noise removal does

not affect the performance of negative prediction, however positive prediction is 7.1% more

in experiments with SNG.

As an extra step to classification capability, an offline classification is performed on the

features used in online classification. To be able to use the features used in online

classification, all the features are stored in SD card beside the labels of online classification

results.

The neural network algorithm is used as the offline classification algorithm. To use the

algorithm, Weka data mining software is used [60]. To be able to use the neural network

algorithm, the multilayer perceptron classifier is selected among the classifier algorithms in
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Table 4.6. TPR, TNR, PPV, NPV for Confusion Matrices in Table 4.3 and Table 4.4

Labels TPR w/
SNG

TPR w/o
SNG

TNR w/
SNG

TNR w/o
SNG

PPV w/
SNG

PPV w/o
SNG

NPV w/
SNG

NPV w/o
SNG

B1 0.61 0.71 0.99 1.00 0.79 0.96 0.98 0.99
B2 0.95 0.52 1.00 1.00 1.00 1.00 1.00 0.99
B3 0.73 0.64 1.00 1.00 1.00 1.00 0.99 0.98
B4 0.79 0.92 1.00 1.00 0.90 0.92 0.99 1.00
B5 0.84 0.68 1.00 1.00 1.00 1.00 1.00 0.99
B6 0.88 0.88 1.00 0.99 1.00 0.88 0.99 1.00
B7 0.98 0.83 1.00 0.99 0.93 0.81 1.00 0.99
B8 0.93 0.86 1.00 0.99 1.00 0.90 1.00 0.99
B9 0.71 0.71 1.00 0.99 0.95 0.83 0.99 0.99
B10 0.66 0.63 1.00 0.99 0.92 0.85 0.98 0.98
B11 0.70 0.59 0.98 0.98 0.58 0.57 0.99 0.98
B12 0.73 0.68 0.99 0.99 0.73 0.65 0.99 0.99
B13 0.87 0.70 1.00 0.98 0.96 0.66 0.99 0.99
B14 0.83 0.57 1.00 1.00 1.00 0.94 0.99 0.98
B15 0.97 0.79 0.99 0.99 0.83 0.79 1.00 0.99
B16 0.94 0.97 1.00 0.99 1.00 0.80 1.00 1.00
B17 0.93 0.63 1.00 1.00 0.97 0.95 1.00 0.98
B18 0.78 0.56 0.99 0.98 0.78 0.58 0.99 0.98
B19 1.00 0.74 0.99 0.99 0.82 0.65 1.00 0.99
B20 0.91 0.68 1.00 0.99 1.00 0.79 1.00 0.99
B21 0.87 0.71 0.99 1.00 0.82 0.92 0.99 0.99
O 0.65 0.33 0.91 0.87 0.36 0.16 0.97 0.95
Total 0.83 0.70 0.99 0.99 0.88 0.80 0.99 0.99

Weka. The parameters of the algorithm are used as in default settings.

In this evaluation, we use the same dataset features as mentioned. All the extracted features

with and without spectral noise gating are used for offline classification. In this part, we use

10-fold cross validation technique to obtain the results on offline analysis instead of dividing

data into train, cross-validation and test set. In 10-fold cross validation, all the dataset is

divided into 10 separate parts. Then, the training and test operations are repeated 10 times

by using nine parts as the training and one part as the test set. In every iteration, the unused

one part of 10 parts is used as the test part. After 10 iteration, the mean results are calculated

for the experiments with and without spectral noise gating.

The mean numbers of correctly labeled samples of both experiments with and without

spectral noise gating for neural network classifier are presented in Table 4.7. As can be

seen in the Table 4.7, the mean number of correctly classified samples in experiments with

noise removal are 60 samples more than in experiments without noise removal.
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Table 4.7. Number of correctly labeled and total samples for experiments

Exp. w/SNG Exp. w/o SNG
Correctly Classified Samples 1039 979
Total Number of Samples 1116 1116

As can be calculated from the Table 4.7, the true positive rates (accuracy) of both experiments

are presented in the first row of Table 4.8. The second row of Table 4.8 shows the accuracies

Table 4.8. Classification accuracies

Exp. w/SNG Exp. w/o SNG
Neural Network 0.93 0.87
Minimum Distance Classifier 0.83 0.70

of minimum distance classifier. As can be seen in Table 4.8, the accuracy of neural network

algorithm is better for both experiments. In addition, the difference between accuracies

of experiments with and without noise removal for neural network classifier is 6%. The

same difference is 13% for minimum distance classifier. We can conclude that using more

complex algorithms provide us to obtain more robust systems in noisy environments. When

using low-weight algorithms, the noise removal operation is essential. However, the noise

removal operation can be excluded when using complex algorithms.

4.2. HARDWARE ANALYSIS

In this part of the experimental study, we explain the hardware related analysis. This section

is separated into two parts. First, speed and memory analysis of the system is presented, then

the power consumption analysis of the system is detailed.

4.2.1. Speed and Memory Analysis

In order to interpret the flexibility of the system to future expansions, system hardware is

investigated in both speed and memory perspective. The system uses 116558 (11%) bytes of

1048576 bytes of flash memory. The proposed system with window and FFT size N where

N is 2048 uses 80317 bytes (30%) of 262144 bytes of SRAM memory. If necessary in the
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future, the size, N can be 4096 at maximum. The size 8192 or more causes fail in memory

allocation with the same implementation steps as in proposed system.

The determination of the system speed is essential for the stability of ping-pong buffer

technique and power consumption. More CPU speed means more processing capability

but more energy usage at the same time. For example, the microcontroller in the system

consumes 8.78 mA, 12.4 mA, 29.4 mA, 43.3 mA at 1 MHz, 16 MHz, 60 Mhz and 120 MHz

respectively when none of the peripherals is on as can be seen in Fig. 4.3 Therefore, we
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Figure 4.3. The current consumption against clock frequency of the microcontroller

determine the minimum speed ensuring the ping-pong buffering stability. In order to find

out the minimum necessary speed, we measured the necessary clock cycles to process one

ping or pong buffer. Table 4.9 shows the maximum approximated measured clock cycles

for the implementation steps which are noise removal, detection, feature extraction, and

classification. In our proposed system, feature extraction and classification steps are never

executed together in ping or pong time of ping-pong buffering. Thereby, the maximum

necessary cycles are calculated as 2980000 by summing cycles of noise removal, detection,

and feature extraction steps. According to necessary clock cycle, the minimum necessary
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Table 4.9. Clock cycles of Implementation Steps

Implementation Step Clock Cycles
Noise Removal 1060000
Detection 60000
Feature Extraction 1860000
Classification 14100

clock speed is calculated as,

Fmcu =
2×Ncycles × Fs

Nbuffer

(4.5)

where Ncycles is the total cycles of implementation steps, Fs is the sampling frequency,

Nbuffer is the ping-pong buffer size and Fmcu Hz is the necessary clock speed. As can

be calculated by Eq. 4.5, the Fmcu is 59.6 MHz. Hence, we execute our system at 60 MHz,

the closest frequency provided by MCU.

4.2.2. Power Consumption

To be able to find out maximum uninterrupted run-time of the system, the current

consumption of each part of the system is measured. The system has three hardware parts as

mentioned in Section 2.1. These are microphone circuitry, microcontroller, and storage unit.

To use the microcontroller in our system, Tiva Connected C Launchpad is used. Tiva is run

at 5 V DC however, the source voltage of the microcontroller is 3.3 V DC. The microphone

circuitry is also run at 5 V DC.

The current consumptions of the hardware units are shown in Table 4.10. Minimum current

value of the microphone circuitry is obtained under silence and normal conditions. The

maximum value is obtained under high level sound volumes like shout.

The current measurement for microcontroller is done on microcontroller’s source, not on

the Tiva Launchpad at run-time execution. In microcontoller, an analog to digital converter

(ADC) and 2 timer modules are activated at run-time.
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Table 4.10. Current consumption of hardware units

Hardware Unit
Current Consumption (mA)

Min. Max.
Microphone Circuitry 4.66 6.00
Microcontroller Unit 31.50 31.50
Storage Unit 2.88 3.20

The read-write current consumption of the storage unit is measured at run-time of the system.

The no read-write current consumption is measured after system stops the implementation

steps.

As can be calculated from Table 4.10, average current consumption of whole system at run-

time is 39.1 mA. To ponder on the system lifetime at uninterrupted run-time, the proposed

system with Duracell MN1500 AA battery is exemplified. Fig. 4.4 presents life-time of

Duracell MN1500 AA battery under constant current consumption values, 5 mA, 10 mA,

25 mA and 50 mA is shown. Fig 4.4 is obtained by datasheet of Duracell MN1500

Figure 4.4. Duracell MN1500 AA battery current drain [59]

AA battery [59]. We approximate the lifetime of the system since the exact curve for

39.1 mA is not provided. To supply necessary voltage level, 5 V to proposed system,
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minimum four of Duracell MN1500 AA batteries is necessary. The horizontal red line in

Fig 4.4 indicates the minimum voltage for one of four batteries. The vertical line indicates

the approximate intersection point of 39.1 mA curve and red line. As can be seen, the

approximate uninterrupted run-time of the proposed real-time system will be around 50

hours.
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5. CONCLUSION

In this thesis, we presented a custom-made hardware unit for real-time environmental sound

processing and bird sound classification consisting of a microphone, a microcontroller,

and a data storage unit. The proposed system can handle data recording and onboard

preliminary signal processing, feature extraction, and classification simultaneously by

effectively utilizing the ping-pong buffers on the microcontroller unit.

To realize the presented system, we first handled the sound recording in real-time both in

hardware and software perspectives. To get analog sound from environment, we designed a

microphone circuitry and recorded the outputs of microphone circuitry by a microcontroller.

Then, we practised and implemented a solution to remove background noise elements

distributed in frequency spectrum of the sound. To reduce noise, we implemented the spectral

noise gating method on the microcontoller.

After noise removal, we obtained the denoised signals of the sound. Then, we used energy

thresholding method to detect the necessary sound parts in continuous recordings. To be

able distinguish the bird species by a reduced amount of data, we implemented the MFCC

feature extraction method and extracted the MFCC feature vectors of detected sound samples.

Then, we implemented the minimum distance classifier for classification of bird calls. To be

able to store the data in file system, we used and updated FatFS library according to our

system.

In conclusion, we implemented six steps of data processing which is able to buffer and

process data without any loss. We implemented these steps on the limited microcontroller

by doing optimizations on memory usage and processing load. To evaluate the system

performance, we constructed a dataset which contains only bird calls, test and observe our

system in both software and hardware parts. In our tests, we observed that the noise removal

enhanced the system performance in both detection and classification steps. In addition, we

concluded that using such as system, the power-efficient, long-living and standalone systems

can be achieved by code and hardware optimizations.

This study is expandable to more advanced methodologies and optimization techniques. In
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hardware perspective, the system can be upgraded to more powerful platforms or some

other processing units can be added to realize more complex calculations. As an example,

there can be a unit to process classification techniques which need more processing loads.

In addition, some other sensing modalities (such as temperature, humidity, pressure) can

easily be included the system. Thereby, the system can be adaptive to environment using

the information obtained by sensing modalities. For example, different noise profiles can

be used for different weather conditions. Furthermore, the detection method can also be

changed according to environmental events. Addition of a wireless transmission unit to the

system make the system capable for remote environmental monitoring. Using WSN and

IOT technologies, localization and classification of species can be achieved together. To

overcome the power consumption issues and extend the runtime of the system, a comparator

unit can be used before recording step on processing unit. The system can be run for only

necessary sound events by low power modes. Consequently, the study can be improved by

enhancements on both hardware and software.
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