
LAST LEVEL CACHE PARTITIONING VIA MULTIVERSE THREAD

CLASSIFICATION

by

Burak Sezin Ovant

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Engineering

Yeditepe University

2017

ii

DATE OF APPROVAL: /. . . . /2017

iii

ACKNOWLEDGEMENTS

It is with immense gratitude that I acknowledge the support and help of my Professor Gürhan

Küçük. Pursuing my thesis under her supervision has been an experience which broadens

the mind and presents an unlimited source of learning.

I thank Research Assistants İsa Ahmet Güney and Muhammet Emin Savaş.

Finally, I would like to thank my family and my beautiful wife Gizem Poslu Ovant for their

endless love and support, which makes everything more beautiful.

We would like to thank TUBITAK for supporting for this project under grant number

114E119.

iv

ABSTRACT

LAST LEVEL CACHE PARTITIONING VIA MULTIVERSE THREAD

CLASSIFICATION

Last Level Caches (LLCs) are positioned in the last line of defense fighting with the famous

memory wall problem. Today, almost all simultaneous multithreaded (SMT) and chip multi

processors (CMP) utilize a LLC for the same reason. Cache partitioning is one of the well-

studied methods that targets improved system performance through isolation of cache lines

dedicated to each thread. In this study, we propose a new allocation policy that chooses the

amount of cache partitions through thread classification and auxiliary cache structures,

which we call Parallel Universe Tag Directories (PUTDs). Each thread maintains a dedicated

PUTD structure, which collects information from another execution dimension, where the

owner thread receives more cache resources. Our test results show that our proposed

mechanism gives better performance and fairness results with negligible hardware

requirements compared to the current state of the art, in all studied processor configurations.

v

ÖZET

ÇOKLU EVRENLER KULLANARAK İŞ PARÇACIKLARI ÜZERİNDEN SON

SEVİYE ÖNBELLEKLERİN SINIFLANDIRILMASI

Son Seviye Önbellekler (SSÖ) ünlü bellek duvarı problemiyle savaşan son hattadırlar.

Günümüzde, hemen hemen bütün eşzamanlı çoklu iş parçacıklı Simultaneous

MultiThreading (SMT) ve yonga çoklu işlemciler, Chip Multi Processor (CMP) SSÖ’yü

aynı sebepten dolayı kullanmaktadır. Önbellek paylaşımı, her iş parçacığına özel önbellek

yollarının yalıtılması yoluyla güçlendirilmiş system performansını hedefleyen, iyi çalışılmış

metodlardan birisidir. Bu çalışmada, iş parçacığı sınıflandırma ve Paralel Evren Etiket

Klasörleri (PUTD) olarak adlandırdığımız yardımcı önbellek yapıları yoluyla önbellek

bölümlerine karar veren yeni bir bölümleme politikası öneriyoruz. Her bir iş parçacığı,

kendisinin daha fazla önbellek kaynağına sahip olduğu başka bir yürütme boyutundan bilgi

toplayan adanmış bir PUTD yapısı tutar. Test sonuçlarımız, önerdiğimiz mekanizmanın

çalışılan tüm işlemci yapılandırmalarında, literatürdeki modern çalışmalara kıyasla, gözardı

edilebilir donanım gereksinimleri ile beraber daha iyi performans ve adalet sonuçları

verdiğini gösteriyor.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES .. viii

LIST OF TABLES .. xi

LIST OF SYMBOLS/ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

2. RELATED WORK ... 7

3. CACHE ALLOCATION THROUGH THREAD CLASSIFICATION 14

3.1. COLLECTION OF RUNTIME STATISTICS ... 15

3.2. THREAD CLASSIFICATION ... 16

3.3. ADAPTIVE TRAFFIC THRESHOLD MECHANISM 20

3.4. SPECIAL THREAD ... 21

3.5. ALLOCATION DECISION ... 22

4. INTEGRATION ISSUES ... 27

4.1. ONE-DESIGN-FITS-ALL (ODFA) STRATEGY ... 27

4.2. TAILOR-MADE DESIGN (TMD) STRATEGY ... 28

5. DESIGN AND IMPLEMENTATION ... 29

6. EXPERIMENTAL METHODOLOGY ... 39

7. TESTS AND RESULTS .. 42

7.1. PERFORMANCE ... 42

7.2. FAIRNESS .. 45

7.3. SENSITIVITY TO ADAPTIVE TRAFFIC THRESHOLD MECHANISM 48

7.4. SPECIAL THREAD ... 49

7.5. A CASE STUDY: COMPARISON OF PIPP INTEGRATION USING ODFA

AND TMD ... 50

8. CONCLUSION .. 52

vii

REFERENCES .. 54

viii

LIST OF FIGURES

Figure 1.1. Framework of UCP ... 2

Figure 2.1. Zero reuse lines for 1MB 16-way L2 cache .. 7

Figure 2.2. Example operation of PIPP for a variety of cache misses (insertions) and hits

(promotions) ... 9

Figure 2.3. Benchmarks with non­convex utility curves i.e. cliffs 11

Figure 2.4. Performance of libquantum over cache sizes. LRU causes a performance cliff at

32MB ... 11

Figure 3.1. Steps of the proposed cache allocation mechanism .. 14

Figure 3.2. Classification through the ThreadClass variable ... 18

Figure 3.3. Hit counts for bwaves-deal-sjeng-mcf benchmark combination 22

Figure 3.4. Steps of the cache allocation decision ... 24

Figure 3.5. Comparison of Classifier with Lookahead in terms of required micro-operations

and latency (in cycles) for completion in worst ca se scenarios, in logarithmic scale 26

Figure 5.1. Set of parameters in params.in file .. 30

Figure 5.2. Details of script.sh file ... 31

Figure 5.3. Instantiation of ATD structures i.e. Tag Arrays(TA) and Hit Counters (HC) .. 32

Figure 5.4. Set selection logic of TADIP ... 33

ix

Figure 5.5. Initialization of TADIP ... 34

Figure 5.6. Decision of insertion position of TADIP .. 35

Figure 5.7. Increasing and decreasing PSEL counter of TADIP ... 35

Figure 5.8. Determination of isLIP boolean in TADIP ... 36

Figure 5.9. Implementation of Classifier allocation algorithm .. 37

Figure 5.10. Example output statistics of trace method implementation 38

Figure 6.1. Macsim implementation of Lookahead algorithm .. 39

Figure 7.1. Speedup of the Classifier and the Lookahead over LRU in 4-core/16-way LLC

configuration .. 43

Figure 7.2. Speedup of the Classifier and the Lookahead over LRU in 8-core/32-way LLC

configuration .. 44

Figure 7.3. Speedup of the Classifier and the Lookahead over LRU in 16-core/64-way LLC

configuration .. 44

Figure 7.4. Weighted speedup and harmonic mean gain of Classifier over Lookahead in 4-

core/16-way LLC configuration .. 46

Figure 7.5. Weighted speedup and harmonic mean gain of Classifier over Lookahead in 8-

core/32-way LLC configuration .. 47

Figure 7.6. Weighted speedup and harmonic mean gain of Classifier over Lookahead in 16-

core/64-way LLC configuration .. 48

Figure 7.7. Adaptive Classifier IPC gain over base Classifier .. 49

x

Figure 7.8. IPC gain of Classifier with Special thread mechanism over Lookahead 50

Figure 7.9. IPC gain of ODFA and TMD Classifier over baseline PIPP 51

xi

LIST OF TABLES

Table 6.1. Processor specifications .. 40

Table 6.2. Benchmarks and the cliff locations for their utility curves 41

xii

LIST OF SYMBOLS/ABBREVIATIONS

A Number of applications

ATD Auxiliary tag directory

B Byte

BIP Bipolar insertion policy

C Number of cores

CMP Chip multi processors

D-cache Data cache

DIP Dynamic insertion policy

DSS Dynamic set sampling

E Epoch duration for allocation decisions in kcycles

EA Number of eligible applications

h Number of cache hits

I-cache Instruction cache

ICEmons In-cache estimation monitors

IPC Instructions per cycle

ISA Instruction set architecture

ir Ideal number of accesses rate

KB Kilobyte

L1 Level 1 cache

LIP LRU insertion policy

LLC Last level cache

LRU Least recently used

LSQ Load/store queue

M Number of cache misses

M(mr) Miss rate function

M(mrpu) Miss rate function parallel universe

xiii

MB Megabyte

mr Miss rate

mrpu Miss rate parallel universe

MRU Most recently used

MSB Most significant bit

PSEL Policy selection

PUTD Parallel universe tag directory

MThreshhi Miss threshold high

MThreshlo Miss threshold low

MThreshmid Miss threshold medium

N Number of cache accesses from a thread

NH Number of harmful threads

NL Number of harmless threads

ODFA One-design-fits-all strategy

PD Protective distance

PIPP Promotion/insertion pseudo-partitioning

PriSM Probabilistic shared cache management

QoS Quality of service

RISC Reduced instruction set computer

RPD Remaining protective distance

S(sr) Steal rate function

S(srpu) Steal rate function parallel universe

SMT Simultaneous multithreaded

sr Steal rate

srpu Steal rate parallel universe

SThreshhi Steal threshold high

SThreshlo Steal threshold low

T(tr) Cache traffic function

TADIP Thread-aware dynamic insertion policy

TMD Tailor-made design strategy

xiv

Tot_Access Total number of accesses of all applications in one epoch

tr Traffic rate

TThreshhi Traffic threshold high

TThreshlo Traffic threshold low

U Number of unit cache ways to each harmful thread

UCP Utility-based cache partitioning

UMON Utility monitor

VIP Value based insertion policy

w Number of cache ways

W Weight of a harmless thread over a harmful thread

WL Workload

1

1. INTRODUCTION

In recent years, Last Level Cache (LLC) structures, which are shared by multiple threads,

gain great importance, since they hold an important position in defending the processor

performance against the well-known memory wall problem. Compared to all other

instructions in an Instruction Set Architecture (ISA) of a Reduced Instruction Set Computer

(RISC), the memory instructions complete with an unpredictable latency. For instance, when

the address of a LOAD instruction overlaps with the address of an earlier STORE instruction

in the Load/Store Queue (LSQ), accessing to the first level cache structure become

unnecessary. In such a case, the data is forwarded from the data field of the earlier STORE

instruction to the data field of the LOAD instruction within a single clock cycle. However,

if such data forwarding is not possible, first level cache access, which may take 2 to 3 cycles

hit latency in today’s processors, is triggered. If there is a cache miss to the first level cache,

then, the second level cache (i.e. the LLC) is accessed. Moreover, in today’s processors,

there is a third level of cache, and that level is generally being referred as the LLC. The main

difference between the other cache levels and the LLC is that the LLC is a shared resource

whereas the each of the other levels are privately handled by a dedicated thread. However,

in such a configuration, multiple threads might compete for a small set of cache lines of the

LLC even though there are enough free cache resources for all running threads over the

entire cache. Unfortunately, this type of a conflict scenario is quite common since there is

no smart conflict resolution scheme on caches, other than simple cache associativity (or hash

bucket) mechanism. Worst of all, any cache conflict may severely degrade the overall system

performance, since LLC is the last line of defense before hitting the memory wall. To

overcome this problem, cache partitioning mechanisms provide isolated cache space for each

running thread.

The simplest cache partitioning mechanism is known as the static partitioning. Here, the

shared cache space is divided into multiple fixed-size dedicated cache partitions.

Unfortunately, this over-simplistic cache organization does not provide any performance

guarantee. When the size of working sets of running threads are imbalanced, static

partitioning experiences a worst-case scenario. For instance, a partition dedicated to a thread

2

with no memory traffic becomes inaccessible to other threads that can really make use of

some extra cache space.

Utility-based Cache Partitioning (UCP) is one of the first cache partitioning mechanisms that

target adaptive partitioning by tracking thread behavior at runtime [1]. UCP introduces a

hardware-based Utility Monitor (UMON) to collect cache utility statistics to decide on the

number of cache ways to be assigned to each thread. In Figure 1.1, framework of UCP [1]

is shown.

Figure 1.1. Framework of UCP

In the decision process, UCP relies on several heuristics for an accurate allocation decision.

However, this only represents the front-end of a cache partitioning algorithm. In the back-

end, an enforcement policy is also required for guaranteeing the allocation decisions to be

somewhat met. UCP, Promotion/Insertion Pseudo-Partitioning (PIPP) [2] and Vantage [3]

present a variety of enforcement policies that share the same UCP allocation policy in their

front-end. Clearly, the success of a cache partitioning mechanism relies on cumulative

success of both the cache allocation and the cache enforcement policies.

In this study, we focus on the front-end of Last Level Cache (LLC) partitioning mechanisms

by replacing the well-known, but relatively complex, UCP Lookahead algorithm with a

3

simple thread classifying circuitry1. Specifically, we periodically collect various runtime

LLC statistics related to each of the running threads and identify their classes. Meanwhile,

we also keep track of the behavior of each thread in their parallel universes2 where they have

more cache resources compared to their current cache allocation. Consequently, the class

information obtained from the last epoch and the class information obtained from the thread's

multiverse (i.e. present time and parallel universes, altogether) are combined and used to

assign the right amount of cache resources to each thread. For Instance, a thread with no

LLC traffic should not get any LLC resource, whereas a thread, which makes good use of

the LLC in its last epoch and in multiverse, should receive a certain portion of the LLC.

The original allocation policy that is well-accepted in most of the contemporary cache

partitioning algorithms is known as the Lookahead algorithm [1]. The idea is based on the

cache utility curves collected by additional thread-specific way-based cache structures

named the Auxiliary Tag Directories (ATD) and accompanied cache hit counters integrated

into thread-specific structures named Utility Monitors (UMONs). A cache utility curve

provides crucial runtime information for estimating the target cache size required for each

thread since it represents the number of extra cache hits a thread can receive when new cache

ways are allocated to that specific thread. Thus, the mechanism is claimed to be quite

accurate as long as the cache hits (i.e. the utility curve) and the performance curve of a thread

are correlated. To get a better estimate on the required number of useful cache ways for each

thread, the Lookahead policy makes use of a metric known as the marginal utility.

Specifically, the marginal utility is defined as h/w, where h is the number of cache hits and

w is the number of cache ways. Hence, this metric gives the number of cache hits per cache

way, on the average. As a result, a thread with the maximum marginal utility may receive w

cache ways, and the algorithm starts from the beginning until there is no unassigned cache

ways left. This is an O(n2) algorithm, which requires a complex circuitry analyzed in a prior

study [4].

1 Because of its characteristics and usage patterns, partitioning a first level cache is a more challenging subject.

In this study, we focus only on the LLC as most of the prior art do.
2 We use the term parallel universe since we collect statistics from a cache that is run in another execution

dimension. In computer architecture research, collection of such statistics is not a common practice since the

thread execution follows a single path and, in reality, we do not have such a chance to see the outcome of any alternate

execution paths.

4

To further motivate our study, we would like to list the problems that we observe in the

existing studies.

(i). First, in an Out-of-Order (OoO) super-scalar processor that integrates a

speculative execution mechanism, a large number of cache hits does not always

imply that all memory instructions related to those cache hits are to be successfully

retired. Some or most of the hit-dependent instructions might be flushed away

when a prior branch instruction is mispredicted. Therefore, some of the prior art

focus on in-order non-speculative processors. We believe that this type of

assumption is not realistic since most of the high-end processors still have a

speculative OoO superscalar core.

(ii). Second, the criticality of each cache hit may greatly vary. The UMON mechanism

in UCP assumes that all the cache hits of all running threads have the same positive

effect on the processor performance. However, this assumption is definitely not

true either. A value that is supplied by a cache hit might have many consumers,

and such cache hits can really improve the processor performance. On the

contrary, a cache hit with a single consumer cannot have any significant impact

over the performance. Worst of all, both the first and the second factors, which

are discussed up to this point, can conflict with each other. For instance, when a

thread has many cache hits consumed by a high volume of instructions, it does not

necessarily mean that those hits are all critical. In case of a speculative superscalar

OoO execution, all of those instructions might be in the mispredicted path of a

thread and has to be flushed, anyways.

(iii). Third, the UMON and similar mechanisms provide information on each thread's

standalone run. The utility curves collected by the mechanism does not give any

clue on the interaction of running threads when they share the same resource. For

instance, in a 16-way set-associative LLC configuration, when the Lookahead

mechanism finds that a thread achieves the maximum marginal utility value when

it receives 10 cache ways, it immediately allocates 10 cache ways to that thread.

But, if there is another thread, which has a little lower maximum marginal utility

value with 10 cache ways, then, it will not be able to receive enough cache

5

resource to achieve its peak performance. This is a very serious fairness issue,

which is not considered in the UCP study.

(iv). Finally, the UMON mechanism relies on utility curves based on the LRU

replacement policy and its stack-based nature. Other mechanisms, such as PIPP

and Vantage, also try to utilize UMON as their cache allocation decision

mechanism. However, these enforcement mechanism propose a variety of

insertion and eviction policies that are not easily representable by a stack. Thus,

the cache allocation decisions made by the UMON circuitry may not be suitable

for the cache partitioning algorithms that do not use LRU as their replacement

policy.

In this study, we propose a thread classification and cache allocation mechanism, which is

based on various cache statistics rather than a simple cache hit counter-based method. Our

mechanism can replace the UMON based UCP cache allocation mechanism located in the

front-end of many cache partitioning mechanisms [1] [2] [3]. In the extreme case, our

Classifier-based allocation mechanism may perform more than 8 per cent better than the

Lookahead allocation policy. We also evaluate our mechanism in terms of its operational

complexity and fairness. As a result, our evaluation shows that our Classifier-based

allocation mechanism requires only a fraction (less than 1 per cent) of operations required

by the Lookahead mechanism. Finally, our mechanism shows better fairness results in more

than 90 per cent of the workloads that we studied.

The major contributions of this work are listed as follows:

(i). We do a comprehensive literature survey and add some of the most recent

published work in this research area,

(ii). We add an example scenario explaining our allocation mechanism in much greater

detail,

(iii). We extend our thread classifier to carefully classify some of the threads that

require special attention,

(iv). We add a new section to address and discuss different design strategies on our

partitioner mechanism,

6

(v). We test an alternative replacement policy over the replacement policy of UCP,

which we utilized in our previously published paper. [5]

7

2. RELATED WORK

A cache insertion policy focuses on keeping valuable data in the cache while evicting cache

lines that do not have any positive effect on performance. We would like to cite three papers

in this category. Qureshi and his team elaborate that some cache lines are not referenced

until they are evicted in the LRU policy due to absence of temporal locality or reuse distances

greater than cache associativity [6]. Figure 2.1 from the study shows that more than half the

L2 cache lines installed in the cache are never reused before getting evicted. This outcome

is pointing a very important problem which is wasting LLC resources. To overcome this

problem, the study proposes an insertion policy called Bipolar Insertion Policy (BIP) which

inserts new cache lines to the Most Recently Used (MRU) position on a cache set with a low

probability. Otherwise, the new line is inserted into the LRU position. Then, the paper shows

that both BIP and LRU policies may perform better than each other in various scenarios. To

adaptively select the better performing policy, the Dynamic Insertion Policy (DIP) is

suggested. In DIP, a small portion of cache sets are dedicated to LRU and another portion is

dedicated to BIP. With the use of saturated counters, these dueling sets determine which of

these policies causes less cache misses. The remaining sets are governed by the policy

selected by the set dueling mechanism.

Figure 2.1. Zero reuse lines for 1MB 16-way L2 cache [6]

8

Jaleel et al. suggest that thread behavior should be taken into account when determining

whether BIP or LRU should be utilized [7], and propose Thread-Aware Dynamic Insertion

Policy (TADIP) where each thread can use LRU or BIP, independently. TADIP essentially

categorizes applications into Harmful and Harmless, in the context of the other applications

they are running with. TADIP also uses set dueling. In half of the dueling sets dedicated to

a core, the LRU policy is used, while the BIP policy is used for the other half. Rests of the

cores use their current policy in these sets. With saturated counters, these dueling sets

determine if a core is Harmful to the workload in terms of cache misses. For the rest of the

cache, each core uses its current policy determined by the dueling sets.

Duong et al. propose a replacement policy in which cache lines are prevented from being

evicted for a number of accesses to their respective sets [8]. The authors define Protective

Distance (PD) based on reuse distance, which determines the number of accesses cache lines

are protected for. The Remaining PD (RPD) of a line is reset to PD when it is accessed. If

there are no unprotected lines in an inclusive cache the line with highest RPD is evicted; in

non-inclusive caches the line is bypassed. The study derives a function which approximates

hit rates for a given protective distance in non-inclusive caches. The mechanism searches

through all possible values of PD to find the PD with the highest expected hit rate, E. For

multi-core systems, the study suggests an implicit partitioning by assigning different PD

values to cores. The insight behind this system is that threads with higher PDs will tend to

keep their lines longer in the cache, thus using a bigger portion of the cache. The mechanism

selects the thread with the highest E and the corresponding PD. Then, the remaining threads

are examined in a descending order of E, where the PD values near peaks are tested and the

one that works best is selected.

Xie and Loh utilize the UMON mechanism as their allocation policy but enforce the decision

implicitly by arranging the insertion positions [2]. In this policy (PIPP), a core with a target

of n cache ways inserts its new lines into a way position with nth lowest priority. When a

cache line is accessed, it is promoted one step closer to the MRU position, with some

probability. Additionally, the algorithm marks a core as running a stream-like application if

that core experiences a number of cache misses, which is greater than a certain threshold.

Target cache way allocations for stream-like applications are set to the number of stream-

like applications that are currently running. Figure 2.2 from the study explains an example

9

operation of PIPP in a very clear way. The study also proposes In-Cache Estimation

Monitors (ICEmons) as an alternative to UMON, which dedicates a small portion of cache

sets to track the utility of each core. In these dedicated sets, the core being tracked uses the

LRU policy, where the remaining cores use PIPP with an upper limit.

Figure 2.2. Example operation of PIPP for a variety of cache misses (insertions) and hits

(promotions). Evictions always choose the lowest-priority cache line [2]

10

Sanchez and Kozyrakis propose a partition enforcement mechanism called Vantage [3],

which divides the cache into managed and unmanaged regions. On a cache miss, Vantage

give priority to the unmanaged region for cache line evictions. Meanwhile, cache lines from

the managed region are demoted to the unmanaged region according to a coarse-grain time-

stamp LRU policy. Allocation decisions are made by the UMON mechanism. Vantage

enforces target allocations to be reached by demoting one cache line per cache miss on the

average, instead of evicting exactly one cache line from a partition for every cache miss.

This allows Vantage to enforce finer-grain allocations compared to other methods without

degrading associativity.

Qureshi et al. show that there are cliffs in the relation graphs between number of cache

misses and the cache space in [1], and some applications do not immediately benefit from

extra cache space until a working set fits into the cache. Recently, Beckmann and Sanchez

propose Talus, which removes these performance cliffs [9]. Talus behaves as if the cache

space allocated to a thread is distributed into two partitions. The access stream is also

distributed into these two partitions. The distribution rate and partition sizes are calculated

by Talus according to the beginning and the end of the cliff and the target size desired. Figure

2.3 shows the cliffs between misses and cache space from the UCP study [1]; and Figure 2.4

shows the improvement of Talus [9] on those cliffs.

11

Figure 2.3. Benchmarks with non­convex utility curves i.e. cliffs [1]

Figure 2.4. Performance of libquantum over cache sizes. LRU causes a performance cliff at

32MB [9]

12

Manikantan et al. propose a framework that computes eviction probabilities for each core

and replaces the cache lines according to these probabilities in order to achieve a finer

granularity at line level [10]. Probabilistic shared cache management (PriSM), collects the

augmented cache hit information using shadow tags and obtains target size. Using the target

sizes, PriSM suggests a formula to compute eviction probabilities for each core. At the end

of each interval, by subtracting shared cache hits of the core from the stand alone hits of the

core, PriSM obtains potential gains for each core and assigns target sizes. The authors also

propose two other algorithm for improving fairness and QoS.

Contrary to most previous work, Li et al. devise a mechanism called Value based Insertion

Policy (VIP) which takes hit benefits into consideration in addition to the miss penalties [11].

The penalty of a cache miss is determined by time spent when it is the only pending cache

miss. Hit benefit is computed by assuming that the cache access is a hypothetical miss, and

subtracting the miss latency by number of cycles spent where the hypothetical miss is the

only pending one. The value of a cache line is equal to the sum of its miss penalty and hit

benefit. VIP then utilizes two tables in order to learn value relation between incoming and

evicted lines. If an incoming line has a lower predicted value than the evicted line, its eviction

bit is set to 1. During a cache miss, VIP prioritizes lines whose eviction bit is set, and uses

the baseline replacement policy if no such candidates exist.

Wang and Chen argue that strict partition enforcement schemes which restrict the eviction

candidates to lines belonging to partitions who exceed their target sizes hurt associativity by

degrading the ability of finding useless lines, especially when the number of partitions is

large [12], and propose Futility Scaling. The futility is defined as the uselessness of a given

line, which can be determined by various methods such as LRU, LFU, or OPT. Futility

Scaling evicts the line with highest futility, after the futility of all candidates are multiplied

with the owning partition's scaling factor. By changing these scaling factors, Futility Scaling

can adjust the eviction rate of partitions, and therefore shrink or expand the sizes of partitions

in order to meet their target sizes. The study then proposes a low-overhead, coarse time-

stamp LRU based implementation of Futility Scaling.

Guney et al. propose an alternative to the Lookahead partitioning algorithm named as the

Lookup [4]. The Lookup algorithm utilizes a linear function, which calculates a score for

13

each core, periodically. In the offline phase of the algorithm, coefficients are computed by

using machine learning techniques on utility values and partitioning decisions made by UCP

mechanism. In the online phase, scores for each core are calculated by finding the weighted

sum of first four utility values collected from the UMON and corresponding coefficients.

Consequently, the cores are given a fraction of the cache space equal to the ratio of their

individual score to the overall score.

Wang and Martinez allocate resources which include last level cache space among multiple

cores with a market-based approach, where each core tries to obtain most utility with a given

budget [13]. Resource prices are determined by total demand on the resource, and cores

iteratively update their bids according to the changes in prices until the system converges to

a balance. This approach merges allocation of different types of resources among cores;

contrary to applying independent allocation policies for different resource types, which can

be harmful to performance.

Our work is orthogonal to PIPP, Vantage, Futility Scaling, and the UCP. These methods

focus on how to enforce given target sizes among cores rather than determining the target

sizes themselves. DIP and TADIP aim improving performance by changing the insertion

policy and do not utilize any target sizes. Although TADIP somehow classifies running

threads, this is a bimodal classification of which insertion policy causes less cache misses

and is not directly comparable to an allocation policy. Finally, the Lookup mechanism

focuses on complexity and power reduction rather than improving processor performance.

The mechanism is trained for only 4 ways of the ATD structures. Although, the authors

report that the Lookup performs well in small cache configurations, its performance might

quickly deteriorate as the cache associativity and the number of cores increase.

14

3. CACHE ALLOCATION THROUGH THREAD CLASSIFICATION

Our classification-based cache allocation mechanism requires a set of sequential and parallel

steps, as shown in Figure 3.13. The mechanism has a periodic nature, and we collect cache

statistics within each epoch. An epoch may last millions of cycles, and, at the end of each

epoch, the Cache Allocator is triggered to either change or keep the cache allocation

decisions. Here, in this section, we describe the steps of our allocation mechanism, in further

detail.

Figure 3.1. Steps of the proposed cache allocation mechanism

3 The allocation strategy is way-based, and most of the prior works in the literature choose the same strategy.

However, the granularity of the output of our mechanism can be easily mapped to more scalable and fine-grain

enforcement algorithms such as Vantage.

15

3.1. COLLECTION OF RUNTIME STATISTICS

The first step of our proposed mechanism focuses on collecting crucial cache-related

statistics about each running thread in the present time and in each thread's parallel universe.

Each thread keeps track of a dedicated Tag Directory, which is physically identical to the

Auxiliary Tag Directory (ATD) structure described in the original UCP study [1]. However,

we named our structure as the Parallel Universe Tag Directory (PUTD) since its task is

totally different. A PUTD does not only hold cache tags for a specific thread as an ATD

structure does. It is also updated by the other running threads just as a shared LLC. While

the LLC is updated with the current allocation decisions, the PUTD structures are updated

as if their corresponding threads hold more cache resources. For instance, on an 8-way LLC,

if the current allocation decision is “four ways to thread A and four ways to thread B'', the

PUTD of thread A may be run with “seven ways to thread A and one way to thread B'',

meanwhile the PUTD of thread B may be run with “one way to thread A and seven ways to

thread B'' decision. Specifically, at the beginning of each epoch, the mechanism forks and

run multiverse, where it investigates if each thread behaves differently among others when

it is supplied with more cache resources.

During this first step, several cache statistics are collected from the multiverse structures by

the help of a few hardware counters. These statistics are cache traffic rate (tr), miss rate (mr)

and steal rate (sr) of running threads. Equation 3.1 shows how tr value of a thread is

calculated. The tr value is simply N/E, where N represents the number of cache accesses

from a thread and E represent the epoch duration for allocation decisions in Kcycles. The tr

value is a direct indicator of a cache activity of a thread, and when it is low, then, we can

safely assume that the corresponding thread has no harm on other threads.

 𝑡𝑟 = 𝑁 / 𝐸 (3.1)

The second parameter, the mr value, which is simply M/N, where M represents number of

cache misses, and N, again, represents the number of cache accesses, is an indicator of the

amount of the wasteful activity of a thread, and, when it is high, we can be certain that the

amount of cache resources available to that thread is hardly utilized. Note that when mr is 1,

16

all cache accesses generate cache misses. Finally, the sr value is an indicator of the public

order within the processor, and when it is high, it may trigger a chain of cache steals, which,

in turn, introduce a noticeable performance drop in the overall system. To calculate the sr

value, we counted the number of evictions from the cache lines that do not belong to the

thread that initiates the cache access. In UCP mechanism, when a cache access triggers a

cache miss, the number of cache lines that belongs to the current thread is counted. If that

number is less than the number of target allocations for that thread, evictions are done from

other threads. Here, we apply the same eviction policy and assume that those evictions are

cache steals accounted for the thread that actually triggers them. Note that when sr is 1, all

cache misses cause cache steals. In Figure 3.1, we also show that we collect the miss rate

and the steal rate from a thread's parallel universe through its PUTD structure. We name

these two variables miss rate from parallel universe (mrpu) and steal rate from parallel

universe (srpu).

We believe that these statistics are indicative enough to identify the behavior of a thread

among others, and the number of cache ways a thread deserves can be determined by a

careful observation of these statistics within the thread classification step of the mechanism.

The implementation of this step on hardware might be quite expensive, though. To reduce

its hardware complexity, we choose a method known as Dynamic Set Sampling (DSS)

proven in one of the milestone papers [6]. Once a sufficient number of DSS sets are chosen

for collection of these statistics, it is analytically proven that they become representative

enough of the actual LLC traffic.

3.2. THREAD CLASSIFICATION

In our study, we categorize threads in four classes: Very Harmful, Harmful, Harmless and

Null (We add an additional category named as Special but we will discuss it later in Section

3.4). As its name implies, a Harmful thread is a thread that has a disruptive power on the

execution performance of others. If its degree of disruption is devastating, then it can be

classified as Very Harmful. A Harmless thread, on the other hand, is a thread that can

continue its execution in harmony with others. Finally, a Null thread has no interest on LLC

space. The LLC is a shared resource, and we cannot assume that all of the running threads

will be in similar characteristics. For instance, a thread with high tr, mr and sr values can be

17

easily classified as a Very Harmful thread to others. However, another thread with similar

mr and sr but low tr can be classified as totally Harmless to others. Note that the thread

classification step does not try to guess the class of each thread when they are running

standalone. On the contrary, it classifies threads when they coexist and run among others.

We can further clarify this by an example: A thread might have high tr and low mr and sr

values in its standalone run. But, this does not necessarily make the thread Harmless. When,

it is run with many other threads, its mr and sr values may be much higher due to cache

conflicts and cache steals. As a result, the classification mechanism might be forced to

classify the thread as Harmful, indicating that the thread might be Harmful to the

performance of others.

To implement the thread classifier, we devise an empirical classification function as shown

in Equation 3.2. For each of the threads, the class is determined by calculating three thread-

specific functions, T for the cache traffic, M for the cache miss rate and S for the cache steal

rate. Consequently, these functions help us to discretize and scale down the raw values of tr,

mr and sr. After running a series of tests and collecting runtime statistics on actual SPEC

2006 traces, we generated a set of distinct low (Threshlo) and high (Threshhi) thresholds for

T, M and S functions and one additional (Threshmid) for M. Equations 3.3 through 3.5 show

how a raw value is quantized by the T, M and S functions, respectively. Note that M function

has an exceptional case that can immediately bump up its value to 8. By doing so, when a

thread experiences extremely high cache miss rates, we can directly set its class to Very

Harmful.

 𝑇ℎ𝑟𝑒𝑎𝑑𝐶𝑙𝑎𝑠𝑠 = 𝑇(𝑡𝑟) × (1 + 𝑀(𝑚𝑟) × (1 + 𝑆(𝑠𝑟))) (3.2)

𝑇(𝑡𝑟) = {

0 𝑡𝑟 < 𝑇𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜

1 𝑡𝑟 ≥ 𝑇𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜 ∩ 𝑡𝑟 < 𝑇𝑇ℎ𝑟𝑒𝑠ℎℎ𝑖

2 𝑡𝑟 ≥ 𝑇𝑇ℎ𝑟𝑒𝑠ℎℎ𝑖

(3.3)

18

𝑀(𝑚𝑟) = {

0 𝑚𝑟 < 𝑀𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜

1 𝑚𝑟 ≥ 𝑀𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜 ∩ 𝑚𝑟 < 𝑀𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑑

2 𝑚𝑟 ≥ 𝑀𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑑 ∩ 𝑚𝑟 < 𝑀𝑇ℎ𝑟𝑒𝑠ℎℎ𝑖

8 𝑚𝑟 ≥ 𝑇𝑇ℎ𝑟𝑒𝑠ℎℎ𝑖

(3.4)

𝑆(𝑠𝑟) = {

0 𝑠𝑟 < 𝑆𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜

1 𝑠𝑟 ≥ 𝑆𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜 ∩ 𝑠𝑟 < 𝑆𝑇ℎ𝑟𝑒𝑠ℎℎ𝑖

2 𝑠𝑟 ≥ 𝑆𝑇ℎ𝑟𝑒𝑠ℎℎ𝑖

(3.5)

Figure 3.2. Classification through the ThreadClass variable

Figure 3.2 shows the exponentially increasing ThreadClass curve, which depends on various

<T, M, S> combinations. The boundaries between the classes are empirically determined.

Note that the T value itself is sufficient for a Null type classification, since it is the multiplier

in Equation 3.2. As long as the thread generates very low cache traffic, high miss rate and

high steal rate does not mean anything, and the thread we consider should be classified as a

Null thread, which does not receive any cache lines during the allocation decision stage.

19

However, when the T value is not equal to zero, we have to consider the M and S values, as

well.

In Equation 3.2, T and M values are multiplied. This implies that both T and M values are

quite significant for the classification process. When the T and M values are both high at the

same time, the thread immediately moves to higher classes. Additionally, in Equation 3.2,

M and S values are also multiplied. This indicates that when a thread generates a very low

cache miss rate, its cache steals become insignificant for the classification process. However,

when the T, M and S values are all high at the same time, the thread immediately moves to

the highest class. From the Figure 3.2, we see that when the ThreadClass value is higher

than 6, we can safely assume that the thread is Very Harmful to others in its current context.

However, what we do not really know is if the thread would still be in the same class when

it had received more cache resources. To get a close estimate on this issue, we also calculate

the ThreadClasspu value, which is available from the thread's parallel universe, as shown in

Equation 3.6. Note that the tr value is assumed to be identical for both the present time and

the parallel universe calculations. This is somewhat necessary since we have a single

execution trace, and, for the time being, we do not focus on the estimation of the cache traffic

rate on parallel universes. But, this may be definitely a direction for further research on this

topic.

𝑇ℎ𝑟𝑒𝑎𝑑𝐶𝑙𝑎𝑠𝑠𝑝𝑢 = 𝑇(𝑡𝑟) × (1 + 𝑀(𝑚𝑟𝑝𝑢) × (1 + 𝑆(𝑠𝑟𝑝𝑢))) (3.6)

When ThreadClass and ThreadClasspu are evaluated together, the class of a thread may be

more accurately estimated. Continuing the same example given above, when the

ThreadClasspu value of the same thread is also greater than 6, then, the classifier can

conclude that the thread has a cache thrashing behavior and set its final decision. However,

when its ThreadClasspu value is 4, the classifier becomes more reluctant to classify the thread

as Very Harmful, since the thread promises a well-behaved characteristic with additional

cache resources.

Note that the Equation 3.6 does not guarantee that the ThreadClasspu value will always be

lower, i.e. the thread will be less harmful, when it is supplied with more cache resources.

20

For instance, a thread with a <T, M, S> of <2, 1, 0> may turn into a thread with <T, M, S>

of <2, 1, 1>. This directly shows us that the thread is a Harmful thread and giving additional

cache ways will make its behavior no different since it will start stealing cache lines from

others. On the other hand, if the same thread turns into a <2, 1, 2>, then, it is classified as

Very Harmful in its multiverse. In this study, we decided to return the minimum ThreadClass

value that is gathered from both execution paths.

Throughout this study, we allocate three more cache ways to each target thread by reducing

the allocations of remaining threads by one cache way, within each PUTD structure. For

instance, for a 4-core processor with a 16-way LLC configuration, in the PUTD structure of

the first thread, the first thread receives three extra cache ways by taking one cache way from

each of the other three threads. In higher processor configurations, such as an 8-core

processor with a 32-way LLC, the threads that lose a cache way are arbitrarily chosen.

3.3. ADAPTIVE TRAFFIC THRESHOLD MECHANISM

In the first phase of our study, traffic thresholds are empirically determined. A series of

simulations are run, and optimum values are obtained for a certain L1 cache configuration.

Obviously, this is not a scalable approach for every cache configuration and organization,

and an adaptive traffic threshold mechanism is needed. To overcome this problem, indicators

of cache traffic of threads are measured with relative to each other and the total cache traffic.

Equations from 3.7 through 3.10 show the measurement of the traffic value (tr).

 𝑖𝑟1 = 𝑇𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠/𝐴 (3.7)

 𝑡𝑟1 = 𝑁 𝑖𝑟1⁄ = 𝑁 × 𝐴 𝑇𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠⁄ (3.8)

 𝑖𝑟2 = 𝑇𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠/𝐸𝐴 (3.9)

 𝑡𝑟2 = 𝑁 𝑖𝑟2⁄ = 𝑁 × 𝐸𝐴 𝑇𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠⁄ (3.10)

21

Here, tr of an application is calculated in two iterations. At first iteration, in Equation 3.7,

ideal number of accesses (ir) of an application is calculated by the total number of accesses

of all applications in each specific epoch divided by the number of applications. This ideal

rate represents the expected rate of access of an application compared to accesses of all

applications. Then, in Equation 3.8, tr of an application is compared to ir by number of

accesses of application (N) divided by ir. Eligible applications (EA) are determined by

whether tr of first iteration is beyond the TThreshlo or not. So at first iteration, tr values of

all applications are calculated, and number of eligible applications is determined. At the

second iteration, in Equation 3.9, ideal rate is calculated again with the eligible applications.

It is derived from total accesses of all applications divided by the number of eligible

applications. Since the new ideal rate is calculated in second iteration, tr value can be

updated with this new ideal rate in Equation 3.10. As a result of these two iterations, tr value

is finalized. Then, as in Section 3.2., tr value is compared against TThreshhi and TThreshlo.

Those threshold values are obtained from a set of simulations. Optimal value of TThreshhi is

1.0 and TThreshlo is 0.125. These values express the following: If the traffic rate of an

application exceeds the given share of the total traffic, it is considered as a high traffic. If its

traffic rate goes down below the TThreshlo (0.125 - 1/8), it is considered as Null thread.

3.4. SPECIAL THREAD

In our early classification mechanism, there are four thread classes. However, our

observations from comparison of Lookahead and Classifier results show that a fifth class,

which we call Special, is needed to mark some threads that require special attention. These

Special threads are high-utility threads that may still improve their performance with ten or

more cache ways. For instance, benchmarks, such as deal and astar, need very high cache

associativity, and our early classification mechanism does not respond well to such

demanding benchmarks and may classify them as either Harmless or Harmful. As a result,

those threads may receive only a small number of cache ways due to this somewhat incorrect

classification. Figure 3.3 shows this problem. Hit counts in the figure was obtained from

ATD structure of Lookahead implementation. Benchmarks in the example are bwaves, deal,

sjeng, and, mcf respectively. It can be cleary seen that, deal has 52 hits even in the 10th cache

way while others have none.

22

Figure 3.3. Hit counts for bwaves-deal-sjeng-mcf benchmark combination

To solve this problem in our Classifier, we utilize the PUTD which is similar to ATD of

UCP, to observe whether a thread can still receive cache hits from the tenth cache way. We

give highest priority to these so called Special threads by assigning 4 × W in our classification

mechanism.

3.5. ALLOCATION DECISION

This final step decides on the amount of cache ways each thread is to receive for the next

epoch. When all the thread classes are determined to be the same, then the allocation task is

pretty straightforward, i.e. all the threads receive the same amount of cache ways. However,

the cache allocation mechanism should be ready for any class combination, and this

requirement makes its design much harder. The allocator can be implemented by a small

logic circuit, which accepts multiverse thread classes and generates output for their

corresponding cache allocations.

To simplify the process, we decided to give zero cache ways to both Null and Very Harmful

threads, since it is evident that threads with both types do not effectively utilize the LLC.

Then, the decision circuitry only focuses on allocating ways for Harmless and Harmful

threads. To further simplify the decision process, first, we created a Unit function to calculate

the number of unit cache ways for assigning to each Harmful thread as shown in the sixth

line of Algorithm 3.1. Here, Ways represents the number of total LLC cache ways, NL

represents the number of Harmless threads, NH represents the number of Harmful threads,

and, finally, W represents the weight of a Harmless thread over a Harmful thread. In this

study, we empirically fixed the value of W to 2, indicating that a Harmless thread should

receive twice as many cache ways as of a Harmful thread does (We give value of W to 4 for

23

the Special thread which we explain in next section). Finally, at the end of each epoch,

Algorithm 3.1 is used by the allocator to set the number of allocations.

Algorithm 3.1. Classifier allocation algorithm

Notice that our allocation mechanism does not guarantee strict cache way isolation among

threads as the total number of allocated cache ways might be higher than the number of

available physical cache ways. For instance, after functions are applied in our algorithm,

Harmful thread in Figure 3.4, receives 6 cache ways instead of 5. This implies that there

might be cache conflicts between the Harmless and the Harmful threads over a cache line.

In this study, we gladly pay this type of a penalty for the sake of simpler decision hardware.

24

Figure 3.4. Steps of the cache allocation decision

The Lookahead and the Classifier mechanisms need a number of addition, comparison,

multiplication, and division operations. Since both mechanisms can be implemented

sequentially where a single arithmetic logic unit would be sufficient for each operation, we

evaluate and compare the worst case scenarios of both mechanisms in terms of micro-

operations and latency. Moreover, power requirements of these mechanisms might be easily

related to the number of micro-operations required. Thus, the comparison on the number of

micro-operations also gives us a rough idea to compare the power consumption of both

mechanisms.

The Lookahead requires that each core calculate the maximum marginal utility until all cache

ways are allocated, which requires addition, division, and comparison operations

proportional to C × N, where C is the number of cores and N is the associativity. In the worst

case scenario, cache ways are allocated to cores one by one, in which case way allocation

will be repeated N times, thus total number of addition, comparison, and division operations

will be proportionate to C × N2.

The Classifier, on the other hand, uses only a few addition, division, and comparison

operations per core in order to determine the class of each core. Once these classes are

determined, one addition, one division, and two multiplications are carried out in order to

25

compute U and U × W. Lastly, Classifier uses two comparisons per core in order to assign

cache ways according to their classes. It makes a significant difference in terms of micro-

operations and latency that the number of operations required by the Classifier is only

affected by the number of cores, and is independent of cache associativity.

We show that our mechanism requires only a fraction of operations and clock cycles required

by the Lookahead mechanism in three processor configurations, as shown in Figure 3.5. Intel

Skylake architecture is chosen for the basis of comparison, and operation costs are taken

from [14]. According to the complexity analysis above, number of required addition,

division, comparison, and multiplication operations were calculated and multiplied with

their respective costs in Skylake architecture for each configuration. Addition, comparison

and division operations are assumed to be 16-bit, whereas the multiplication operation is

assumed to be 8-bit. All operations are assumed to be integer operations.

26

Figure 3.5. Comparison of Classifier with Lookahead in terms of required micro-

operations and latency (in cycles) for completion in worst ca se scenarios, in logarithmic

scale

We evaluate the additional area requirement of our design depending only on the

introduction of PUTD structures as the remaining components require much smaller area

and therefore can be ignored. Qureshi and Patt show that the ATD structure required for

UCP takes about only 0.17 per cent of LLC cache area for a 1MB, 16-way cache [1]. This

ratio will almost be fixed as the associativity of the LLC changes. The area requirements of

PUTD structures of the Classifier would be equal to 0.17 per cent times number of cores, i.e.

0.68 per cent of the LLC area for a 4-core configuration, 1.36 per cent for an 8-core

configuration and 2.72 per cent for a 16-core configuration.

27

4. INTEGRATION ISSUES

When it comes to integration with the existing partitioning mechanisms, there are two

conflicting strategies for our proposed mechanism:

i. One-Design-Fits-All strategy

ii. Tailor-Made Design strategy.

4.1. ONE-DESIGN-FITS-ALL (ODFA) STRATEGY

This plug-and-play type design and integration strategy advocates a general design that can

be accepted and used by the partitioning enforcement mechanisms without any further

modifications. The main advantage of this approach is its simplicity. There is no further

design complexity required to integrate the mechanism with others. For instance, the

allocation mechanism can be designed to work with the LRU replacement policy and its

simplistic stack nature. UMON does that and, today, it is the well-accepted allocation

mechanism for a variety of cache partitioning mechanisms. However, such a strategy can be

the source of various incompatibility problems between the allocation and the enforcement

stages of a cache partitioning mechanism. This is especially true when the allocation and

enforcement mechanism relies on a different insertion/eviction policy.

To implement such a strategy on PIPP [2], on Vantage [3] or on another partitioning

enforcement mechanism, an extra PUTD structure is required for maintaining the present

time information, which is updated by the UMON replacement policy. This requires slight

modifications to the proposed scheme shown in Figure 3.1 (i.e., the LLC box is replaced

with a PUTD box, or more precisely, with a Present Time Tag Directory (PTTD) box, in the

figure).

28

4.2. TAILOR-MADE DESIGN (TMD) STRATEGY

Each cache partitioning enforcement mechanism has its own assumptions that might not

always be appropriate for the ODFA strategy. For instance, PIPP [2] completely changes the

promotion/insertion policy of the cache, and Vantage [3] assumes a special cache

organization (ZCache) is in place [15]. The TMD strategy is based on a custom design of

the allocation policy so that the allocation and the enforcement policies work in harmony.

Intuitively, one can believe that such a design might perform much better than the ODFA

design, since it would track down the behavior of the actually running enforcement policy.

The implementation of TMD requires all PUTD structures to be maintained and updated by

the policies that are utilized by the existing cache partitioner. Though, this may not always

be a straightforward scheme. For instance, in a TMD strategy, integration of PUTD

structures to Vantage requires all PUTD blocks to be organized and maintained as

dynamically set sampled ZCache structures. Unfortunately, there is no clear-cut solution for

this type of an integration scenario.

29

5. DESIGN AND IMPLEMENTATION

Macsim is trace-driven and cycle-level heterogeneous architecture simulator. It

systematically simulates architectural behaviors, including detailed pipeline stages, multi-

threading, and memory systems [16]. Its written in C++ language and built with phyton. In

our implementations, we mainly redesign and extend memory implementations of the

simulator i.e. memory.cc and cache.cc source files. We implement state of the art algorithms

for comparisons such as UCP, Vantage, PIPP, TADIP and our study Classifier as well.

In the main memory cycle of the simulation, we check for that epoch is reached and trigger

our allocation algorithm. Simulator has a file called params.in which contains runtime

configurations. We defined additional parameters for algorithm name, threshold values for

Classifier, promotion rate for PIPP and other many required parameters such as described in

Table 6.1. Figure 5.1. shows set of parameters in params.in file for an example scenario.

30

Figure 5.1. Set of parameters in params.in file

When an epoch is reached, our implementation runs decision algorithms with the help of

auxillary structures (ATDs for UCP, Vantage and PIPP, PUTDs for Classifier) and updates

allocation array. For every memory operation at each cycle, replacement policy of each

algorithm is also applied. For instance, UCP and our study Classifier has the same

replacement policy but Vantage, PIPP and TADIP have their own original policies. We

implement all of their replacement policies in memory.cc and cache.cc. As a result of those

implementations, simulation execution is adapted to each algorithms and results are obtained

from the default output file of the macsim. Each of the cores and total throughput values are

included of those output files. We prepared a batch script for running all of the workload

combinations for all algorithms for 4-core, 8-core and 16-core simulations. Batch script

31

changes the params.in file for choosing algorithms, parameter values and trace files, then

collects the throughput values from output files. Figure 5.2. shows the details of the batch

script file.

Figure 5.2. Details of script.sh file

For UCP, we implement ATDs and UMONs with two dimensional arrays in LLC structure.

One dimension for way ID and the other dimension is for DSS set ID. With the help of this

three dimension array, we are able to store tag information while simulation executes. Figure

5.3 shows the definition and instantiation of ATD structure in our code. Also we

implemented methods for resetting counters, halving counters, Greedy partitioner and

Lookahead partitioner as UCP suggests.

32

Figure 5.3. Instantiation of ATD structures i.e. Tag Arrays(TA) and Hit Counters (HC)

For TADIP, we only implement replacement policy since it does not force any allocation

policy. TADIP changes only insertion policy of cache organization. It gathers feedbacks

from current threads and decide between BIP (Bipolar Insertion Policy) or LRU. BIP

basically inserts replacing cache lines into MRU position with epsilon probability. i.e

epsilon=1/29 is taken for simulation. Otherwise, it inserts into LRU position (Base LRU

policy inserts into MRU position.). For this way, threads that polluting cache (i.e. streaming

applications) will be restricted to only LRU position. For fairness, with epsilon probability,

it inserts into MRU position. Deciding between BIP and LRU is managed with a saturation

counters. Samples from cache sets are monitored with those counters for each thread. Some

sets are always use BIP policy, some others use LRU policy. Set selection logic is shown in

Figure 5.4. Each thread has a saturation counter. For every miss on BIP, counter increased

and for every miss on LRU, counter is decreased. Other follower sets that are not monitored

use those counters to decide. Behaviour of other threads are used as a feedback in counters.

If MSB is 0 LRU policy is chosen and if it 1, BIP is chosen.

33

Figure 5.4. Set selection logic of TADIP

While initiating, in constructor of cache(), TADIP overhead is initiated in Figure 5.5.

34

Figure 5.5. Initialization of TADIP

Once cache is inititied like this, insert_cache() method is modified. Since TADIP does not

include any policy for cache hits, it has policies only on cache miss, i.e. insert_cache(). This

method initializes a new cache line while inserting. A new boolean parameter called isLIP

is added as a parameter into this method in order to decide the insertion position. If it is LIP

(LRU insertion policy), it inserts into LRU position, it can be called only for BIP policy, or

35

if it is not, it inserts into MRU position, i.e. LRU policy. But how this boolean is decided is

shown in Figure 5.6.

Figure 5.6. Decision of insertion position of TADIP

Incresing and decreasing PSEL counter is straightforward. It only checks for upper bound

which is described before and lower bound which is equal to=0. See Figure 5.7.

Figure 5.7. Increasing and decreasing PSEL counter of TADIP

36

Finally, in initialize cache line method, setting last access time of the cache line is decided

as in Figure 5.8.

Figure 5.8. Determination of isLIP boolean in TADIP

For PIPP, we use same ATD structures and allocation methods as it uses Lookahead

algoritgm for allocation. However, PIPP uses different replacement policy with insertion

pointers, promotion and demotion processes. We changed replacement policy of Lookahead

according to PIPP and created a package for further implementations of ODFA and TMD

case study which described in Section 5.5. For ODFA, we combined Classifier with PIPP

for only present time in multiverse. For TMD, Classifier run with PIPP package multiverse.

For Vantage, again we use same ATD structures and allocation methods as it uses Lookahead

algorithm. However, Vantage has managed and unmanaged regions for replacement policy.

We also implemented those structures in memory.cc and cache.cc. accordingly.

Finally for the Classifier, we implemented our PUTD structures which is similar to ATDs in

UCP. We use same replacement policy of UCP, however, our study Classifier distinguishes

from UCP with the allocation algorithm. As a result, in Figure 5.9, we implement our thread

classification mechanism and allocation algorithm in Algorithm 3.1. In later phase of our

study, we also implement adaptive traffic threshold mechanism and Special thread described

in sections 3.3 and 3.4 respectively. Our classifer algorithm run at the end of every epoch as

in other studies.

37

Figure 5.9. Implementation of Classifier allocation algorithm

For tracing purposes, we implement trace methods for every special structure of each

individual algoritm. Parameters such as hit/miss counters, hit/miss rates, classifier

hit/miss/steal rates (tr, mr, sr, mrpu, srpu), ThreadClass values etc. At the end of each epoch

we print those parameters as statistics. Those trace methods helped us to debug our macsim

implementation codes many times. Figure 5.10 shows example output of those trace

methods.

38

Figure 5.10. Example output statistics of trace method implementation

39

6. EXPERIMENTAL METHODOLOGY

We evaluate our proposed mechanism using trace-driven simulations on Macsim [17].

Specifically, for the baseline configuration, we faithfully implement the UCP UMON

mechanism, which integrates the Lookahead cache allocation policy. In Figure 6.1, our

implementation of Lookahead algorithm can be observed.

Figure 6.1. Macsim implementation of Lookahead algorithm

Then, we replace the Lookahead policy with our proposed policy. We compare the results

in terms of throughput and fairness metrics. The details of the simulation parameters are

40

shown in Table 6.1. Simulations are fast forwarded until SimPoints [18] are reached and

executed for up to 1 Billion instructions.

Table 6.1. Processor specifications

Processor 4, 8 or 16 cores, 128 entry ROB, OoO execution, 1 thread per core

L1 Cache 8, 16, 32 or 64KB I-cache and D-cache, 4-way, 64B line size, 3 cycle hit latency

L2 Cache 2, 4 or 8MB, shared, 20 to 40 cycles hit latency

DSS sets 32

For workload generation, we chose 19 SPEC2006 CPU benchmarks after eliminating

benchmarks with similar utility curves and cliff locations. The list of benchmarks is given in

Table 6.2. We randomly generated 100 4-thread, 50 8-thread and 25 16-thread workloads

that require 16, 32 and 64 LLC ways, respectively. Then we extend the set of simulated

workloads in first phase of our study from 50 to 100 workloads.

41

Table 6.2. Benchmarks and the cliff locations for their utility curves

Benchmarks Cliff location

bwaves, libquantum, mcf, milc 1-way

sphinx3, sjeng, povray, namd, zeusmp, games, hmmer, astar 4-ways

gems, xalanc, gromacs 8-ways

leslie3d 10-ways

omnetpp, gobmk, deal 12-ways

soplex, href264 16-ways

42

7. TESTS AND RESULTS

Threshold values for traffic rate, miss rate, and steal rate are determined by a sensitivity

study. Traffic rate thresholds are tested in a fine-grain (step size of 0.005) brute force manner

in the first phase of our study but adaptive traffic threshold values are used in the second

phase. Miss rate and steal rate thresholds fixed at three different preset points: low (0.25,

0.50), medium (0.50, 0.75) and high (0.75, 0.95). Next, by fixing the traffic rate thresholds

at their optimal settings, same sensitivity study was applied on miss rate followed by steal

rate thresholds. The results show that the performance of the classifier is not very sensitive

to threshold changes around peak threshold values.

Performance and fairness results presented in sections 7.1 and 7.2 are obtained from

validation workloads, which are different than training workloads used in sensitivity studies,

and are run for longer simulation periods. The threshold values obtained by our sensitivity

studies are shown in Table 6.1.

In Figures 7.1 and 7.2, workloads are sorted in ascending order according to their gains,

separately for each legend. The workloads on the x-axis are different for each LLC

configuration. Also note that the index of a workload in two graphs are not necessarily same.

7.1. PERFORMANCE

Figure 7.1 shows the percentage of IPC gains compared to a non-partitioned baseline LRU

scheme for both Lookahead and Classifier mechanisms. Compared to Lookahead

mechanism, our Classifier-based allocation mechanism gives better or equal performance in

49 (out of 50) workloads that we studied. While the average performance improvement

reaches to 3 per cent, peak performance improvement is 8.5 per cent in workload 25, which

contains bzip2, libquantum, gamess and GemsFDTD benchmarks. Another important fact,

which we notice in the same graph, is that Lookahead fails to beat baseline LRU scheme in

more than 20 workloads, while Classifier does not lose a single round. As a result, this graph

emphasizes that our Classifier-base allocation mechanism has a significant advantage over

43

the Lookahead mechanism. We strongly believe that this advantage comes from the better

distribution of resources among threads with the use of our thread classification scheme.

Figure 7.1. Speedup of the Classifier and the Lookahead over LRU in 4-core/16-way LLC

configuration

Figures 7.2 and 7.3 show similar trends in performance for 8- and 16-core processor

configurations. For the 8-core processor configuration, peak IPC gain over Lookahead is

nearly 5 per cent in workload 9, which contains gamess, namd, bwaves, gromacs, omnetpp,

GemsFDTD, mcf and xalanc benchmark mixture. For the 16-core processor configuration,

we also ran Vantage mechanism with 64-way LLC cache and compared the effectiveness of

both Lookahead and Classifier side-by-side. As a result, Figure 7.3 shows both UCP and

Vantage results in one graph. Our Classifier-based mechanism performs better than

Lookahead in all 25 workloads with the UCP enforcement policy. When we consider the

Vantage enforcement mechanism, this number reduces to 21 workloads. Classifier's peak

performance gain over Lookahead is again nearly 5 per cent in workload 24. Remembering

that the hardware complexity of our Classifier is much simpler compared to the Lookahead

mechanism, overall IPC gain shows that our Classifier-based allocation mechanism is also

very suitable to CMPs with a large number of cores.

44

Figure 7.2. Speedup of the Classifier and the Lookahead over LRU in 8-core/32-way LLC

configuration

Figure 7.3. Speedup of the Classifier and the Lookahead over LRU in 16-core/64-way LLC

configuration

45

7.2. FAIRNESS

We also evaluate the fairness of our mechanism in terms of weighted speedup and harmonic

mean metrics as shown in Equations 7.1 and 7.2. A number of fairness metrics including

harmonic mean have been discussed by Vandierendonck and Seznec in [19]. Figure 7.4

shows that, for the 4-core processor configuration, these metrics gives almost identical

results in all simulated workloads. Moreover, we also show that the fairness of our Classifier

is better than the fairness of Lookahead in 46 (out of 50) workloads. While the average

fairness improvement reaches to 2 per cent, peak performance improvement is around 6 per

cent in workload 50, which contains zeusmp, milc, povray and mcf benchmarks. As a result,

we can safely say that our Classifier-based allocation mechanism not only increases the

performance of workloads but also improves the level of fairness compared to the Lookahead

mechanism. Here, the important point is that Null or Very Harmful threads do not lose

performance since they do not utilize LLC, meanwhile other threads can make good use of

extra cache ways. Notice that only 4 workloads have slightly negative weighted speedup and

harmonic mean but their IPC gains are still positive. We believe that in these four workloads

Very Harmful classification might have been failed. As we already discussed in Section 3.2,

the classification of threads are done by the help of some empirically-chosen thresholds. In

a later study, we would like to study these thresholds in further detail. We also would like to

emphasize the possibility of making these thresholds adaptive to the behaviors of the running

threads.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = ∑
𝐼𝑃𝐶𝑖

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

𝐼𝑃𝐶𝑖
𝐿𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑

𝑁
𝑖=1 (7.1)

𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑒𝑎𝑛 = 𝑁

∑
𝐼𝑃𝐶

𝑖
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

𝐼𝑃𝐶𝑖
𝐿𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑

𝑁
𝑖=1

⁄
 (7.2)

46

Figure 7.4. Weighted speedup and harmonic mean gain of Classifier over Lookahead in 4-

core/16-way LLC configuration

For the 8-core runs, we observe similar results, which are shown in Figure 7.5. Here, the

fairness of our Classifier is better than the fairness of Lookahead in 43 (out of 50) workloads.

While the average fairness improvement reaches to 2 per cent, peak performance

improvement is more than 5 per cent in workload 42, which contains omnetpp, soplex,

sphinx3, bwaves, href264, leslie3d, namd and milc benchmarks. Also note that there is a

large discrepancy between the weighted speedup and harmonic mean results of workload 11,

which contains milc, gamess, povray, bwaves, soplex, xalanc, mcf and sjeng benchmarks.

This problem is due to misjudgment of a thread class resulting in huge performance drop in

one of the benchmarks. In such a case, the overall performance may still be high (see

workload 11 in Figure 7.2), but the harmonic mean will get the maximum penalty, indicating

that the resources are not fairly distributed among threads. In this specific case, the

problematic benchmark is mcf. Although, it is sufficient to allocate one cache way to satisfy

this benchmark, the Classifier fails to classify it as a Harmless class but a Null class giving

it none of the cache ways. Although, the performance of mcf benchmark is quite low, after

this allocation decision, its IPC is nearly halved resulting in a huge harmonic mean drop.

47

Figure 7.5. Weighted speedup and harmonic mean gain of Classifier over Lookahead in 8-

core/32-way LLC configuration

Finally, for the 16-core runs, we again combined the UCP and the Vantage results in a single

graph, which is shown in Figure 7.6. Fairness results for the UCP runs show that the

Classifier is the sole winner in all workloads when the weighted speedup metric is

considered. Moreover, When harmonic mean metric is considered, Classifier still gives

better fairness results in 23 (out of 25) workloads. However, although performance results

for our Classifier in Vantage mechanism is almost always better than the Lookahead

mechanism, the fairness graphs shows that Classifier performs very poorly in 7 workloads.

This is the first time that we encounter such a disparity. This might be the result of the ODFA

strategy, which we choose for the integration process. In a later study, we are planning to

investigate a TMD-based integration, since we believe that it would create a more natural

binding between the allocation and the enforcement mechanisms.

48

Figure 7.6. Weighted speedup and harmonic mean gain of Classifier over Lookahead in

16-core/64-way LLC configuration

7.3. SENSITIVITY TO ADAPTIVE TRAFFIC THRESHOLD MECHANISM

In section 3.3, we describe the requirements of the adaptive threshold mechanism to achieve

better scalability to different sizes of the L1 cache. Here, we discuss the results of the

simulations. We run the simulations with 4-cores and 4-sets of L1 size (32, 64, 128 and 256

sets). We compare the baseline LRU algorithm, the base classifier and, finally, the adaptive

classifier, which we propose in this work. Figure 7.7 shows the comparison of these results.

49

Figure 7.7. Adaptive Classifier IPC gain over base Classifier

For 32 sets L1, it performs slightly better 0.07 per cent, for 64-sets, it performs as the same

as base classifier since the optimal threshold values are obtained from this configuration of

L1 cache, for 128 sets, it performs slightly worse -0.004 per cent and for 256 sets of L1

cache, it performs slightly worse again; -0.09 per cent On the average, adaptive classifier

results 0.01 per cent decrease in performance. Results show that our adaptive approach gives

similar performance as compared to the base classifier. This proves that the adaptive

mechanism can easily be implemented upon the base classifier since it does not require any

predefined traffic threshold and can adapt to any sizes of L1 cache.

7.4. SPECIAL THREAD

In section 3.4, we describe the requirement of an additional class of threads which we call

Special Thread. Implementation of this additional classification gives better performance

results when deal and astar benchmarks are taken into consideration. In the first phase of

our work, we choose randomly 50 WL for 4 core simulations but for the Special thread study,

we add extra 50 WLs that include deal and astar. In Figure 7.8, for 100 WLs, base classifier

algorithm gives 1.24 per cent worse performance as compared to Lookahead algorithm.

50

However, our special thread implementation gives 0.75 per cent worse performance as

compared to Lookahead algorithm. In other words, special thread implementation improves

the base classifier algorithm when running way-demanding benchmarks, such as deal and

astar. Specifically for the additional 50 WLs that includes deal and astar, improvement is

1.61 per cent.

Figure 7.8. IPC gain of Classifier with Special thread mechanism over Lookahead

In WL43 nearly 10 per cent improvement, in WL86 more than 8 per cent improvement and

in WL87 nearly 7 per cent improvement is observed. All of those three WLs include deal

benchmark. On the other hand, WL14 and WL15 shows decrease in performance (3 per cent

and 5 per cent drop, respectively), since those WLs do not include deal or astar benchmarks.

On the average, Special Thread implementation gives better performance and makes the base

classifier more robust against all kind of threads.

7.5. A CASE STUDY: COMPARISON OF PIPP INTEGRATION USING ODFA

AND TMD

While ODFA strategy keeps LRU-based replacement policy in all PUTD structures, TMD

approach focuses on implementing the replacement policy of a partitioning mechanism to

provide a better harmony between the allocation and enforcement mechanisms. Therefore,

in this case study, we choose PIPP as our enforcement mechanism, and make PUTD

structures of TMD to run PIPP-based replacement policy instead of the LRU-based policy

51

that ODFA implements. In Figure 7.9, results show that performance is insensitive whether

the implementation is ODFA or TMD for PIPP. Another outcome of these results is the 6

per cent average increased performance of ODFA or TMD is originated from the success of

classifier in classifying and measuring the applications; not from the fitness of ODFA or

TMD for PIPP.

Figure 7.9. IPC gain of ODFA and TMD Classifier over baseline PIPP

52

8. CONCLUSION

Contemporary processors utilize a Last Level Cache (LLC) that is shared by all running

threads. Cache partitioning mechanisms propose resource management strategies for

allocating sufficient cache resources to these threads so that the overall system performance

is improved. Today, Lookahead cache allocation mechanism for Utility-based Cache

Partitioning (UCP) is one of the well-known mechanisms that is heavily utilized in many

cache partitioning mechanisms. Specifically, the UCP proposes a cache utility monitor

named UMON to periodically track the utility curves for each thread and make allocation

decisions, accordingly. Utility curves are constructed by collecting cache misses in structures

named Auxiliary Tag Directory (ATD) dedicated to each thread.

In this study, we propose a new cache allocation policy that chooses the amount of cache

partitions through thread classification and Parallel Universe Tag Directories (PUTDs),

which are structurally identical to ATDs. However, the function of these structures is to

create parallel execution dimensions, which we call Multiverse, in which we can test whether

each thread can make good use of extra cache resources or not. We collect cache traffic,

cache miss rate and cache steal rate from these structures and classify each thread according

to their harmful behavior on other threads. By the help of a simple allocation function, we

assign cache ways to threads with different classes.

We show that our Classification-based allocation mechanism requires only a fraction of

operations (less than 1 per cent) compared to the Lookahead allocation mechanism, and this

makes it highly scalable and suitable for CMPs with a large number of cores. We also

evaluate the proposed mechanism in terms of performance and fairness metrics in 4-core, 8-

core and 16-core configurations with 16-way, 32-way and 64-way set associative cache

organizations, respectively. The results show that the mechanism performs consistently

better than Lookahead in all of the studied configurations. The IPC gain over Lookahead can

be as high as 8.5 per cent whereas fairness improvement can be as high as 6 per cent.

We also discuss the possibility of two design alternatives for integration with other

partitioning enforcement policies. The One-Design-Fits-All (ODFA) strategy, which we

focus in this study, is a generic LRU based implementation of the mechanism that may not

53

be suitable for enforcement policies with different cache organizations and replacement

policies. As a result, our ODFA-based Classifier gives better results when LRU-based UCP

enforcement policy is utilized. However, its integration with Vantage enforcement

mechanism gives somewhat lower gains. The IPC gain of the Classifier is still higher than

the IPC gain of the Lookahead in all the workloads that we studied. But, the fairness results

are notably worse than the Lookahead in 7 workloads of the 16-core configuration.

54

REFERENCES

1. K. Qureshi, and Y. N. Patt. Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches. Proceedings of the 2006 39th

Annual IEEE/ACM International Symposium on Microarchitecture, Orlando, 423-432,

2006.

2. Y. Xie, and G. H. Loh. PIPP: Promotion/Insertion Pseudo-Partitioning of Multi-Core

Shared Caches. Proceedings of the 2009 36th Annual International Symposium on Computer

Architecture, Austin, 174-183, 2009.

3. D. Sanchez, and C. Kozyrakis. Scalable and Efficient Fine-Grained Cache Partitioning

with Vantage. IEEE Micro, 3:26-37, 2012.

4. I. A. Guney, A. Yildiz, I. U. Bayindir, K. C. Serdaroglu, U. Bayik, and G. Kucuk. A

Machine Learning Approach for a Scalable, Energy-Efficient Utility-Based Cache

Partitioning. ISC High Performance Computing, Frankfurt, 409-421, 2015

5. M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive Insertion Policies

for High Performance Caching. Proceedings of the 2007 34th Annual International

Symposium on Computer Architecture, San Diego, 381-391, 2007.

6. B. S. Ovant, I. A. Guney, M. E. Savas, and G. Kucuk. Allocation of Last Level Cache

Partitions through Thread Classification with Parallel Universes. Proceedings of the 2016

14th International Conference on High Performance Computing and Simulation, Innsbruck,

204-212, 2016.

7. A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. C. Steely, and J. Emer. Adaptive

Insertion Policies for Managing Shared Caches. Proceedings of the 2008 17th International

Conference on Parallel Architectures and Compilation Techniques, Toronto, 208-219, 2008.

55

8. N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum.

Improving Cache Management Policies Using Dynamic Reuse Distances. Proceedings of

the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,

Vancouver, 389-400, 2012.

9. B. Nathan, and S. Daniel. Talus: A Simple Way to Remove Cliffs in Cache Performance.

Proceedings of the 2015 IEEE 21st International Symposium on High Performance

Computer Architecture, San Francisco, 2015.

10. R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic Shared Cache Management

(PriSM). Proceedings of the 2012 39th Annual International Symposium on Computer

Architecture, Portland, 428-439, 2012.

11. L. Li, J. Lu, and X. Cheng. Block Value Based Insertion Policy for High Performance

Last-Level Caches. Proceedings of the 2014 28th ACM International Conference on

Supercomputing, Munich, 63-72, 2014.

12. R. Wang, and L. Chen. Futility Scaling: High-Associativity Cache Partitioning.

Proceedings of the 2014 47th Annual IEEE/ACM International Symposium on

Microarchitecture, Cambridge, 356-367, 2014.

13. X. Wang, and J. F. Martinez. Xchange: A Market-Based Approach to Scalable Dynamic

Multi-Resource Allocation in Multicore Architectures. Proceedings of the 2015 IEEE 21st

International Symposium on High Performance Computer Architecture, San Francisco, 113-

125, 2015.

14. A. Fog. Instruction Tables Lists of Instruction Latencies, Throughputs and Micro

Operation Breakdowns for Intel, AMD and VIA CPUs,

http://www.agner.org/optimize/instruction_tables.pdf [retrieved 20 January 2016].

15. D. Sanchez, and C. Kozyrakis. The Zcache: Decoupling Ways and Associativity.

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, Atlanta, 187-198, 2010.

56

16. Macsim Manual. CompArch, http://comparch.gatech.edu/hparch/macsim/macsim.pdf

[retrieved 1 October 2013].

17. Macsim Simulator, http://code.google.com/p/macsim/ [retrieved 1 October 2013].

18. T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution Analysis to Find

Periodic Behavior and Simulation Points in Applications. Proceedings of the 2001 6th

International Conference on Parallel Architectures and Compilation Techniques,

Novosibirsk, 2001.

19. H. Vandierendonck, and A. Seznec. Fairness Metrics for Multi-Threaded Processors,

IEEE Computer Architecture Letters, 1:4-7, 2011.

