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ABSTRACT

3D OBJECT DETECTION AND REPRESENTATION IN REMOTE SENSING:

PROBABILISTIC METHODS AND APPLICATIONS

Nowadays, satellite images and three dimensional data are actively used in various areas.

The most important of these is the detection of objects after a natural disaster using satellite

images or three dimensional data. In fact, this information is also valuable for government

agencies, city and regional planners even if no natural disaster occurs. Turkey has its own

remote sensing satellites in the orbit. There are also plans to launch new and advanced remote

sensing satellites in the near future. Although we have our own remote sensing satellites in

the orbit, these can only provide raw images. Either an operator should extract information

from them or the information may be extracted by software automatically. The first option is

not applicable most of the times since the size of the raw images are huge. Also, the objects to

be detected from them are tiny compared to the image size. In this thesis, novel methods for

object detection and segmentation are proposed. Remote sensing objects are detected using

combinations of local features and shapes in a novel probabilistic voting framework. The

shape of the objects are extracted using satellite images and height data. First, we developed a

novel back-projection method to obtain the shape of detected objects in satellite images. Then

for height data, two novel segmentation and filtering methods are proposed. The first method

depends on the probabilistic voting method with a novel morphological based region growing

algorithm. The second method uses empirical mode decomposition (EMD) algorithm for

filtering and segmenting DSM into ground and non-ground points. The proposed methods are

tested on different satellite images (IKONOS, WorldView, QuickBird,) and three dimensional

data (DSM, LIDAR). Compared with the methods in the literature, better results have been

obtained.



v

ÖZET

UZAKTAN ALGILAMADA 3D NESNE TESPİTİ VE TEMSİLİ: OLASILIKSAL

YÖNTEMLER VE UYGULAMALAR

Günümüzde uydu görüntüleri ve üç boyut verisi birçok alanda aktif olarak kullanılmaktadır.

Bunlardan en önemlisi doğal bir afet sonrası, bölgede ne tür nesnelerin olduğunu

belirleyebilmektir. Herhangi bir dogal afet olmadan da belirli bir bölgede ne tür nesnelerin

olduğunu uydu görüntüleri veya üç boyut verisi ile elde etmek şehir bölge planlayıcıları

ve devlet kurumları için önemlidir. Türkiyenin yörüngede kendi uzaktan algılama uyduları

bulunmaktadır. İleride de gelişmiş ve yeni uzaktan algılama uydularını yörüngeye oturtma

planları vardır. Her ne kadar kendi uzaktan algılama uydularımız yörüngede bulunsa

da, bunlardan yalnızca ham imge elde edilebilmektedir. Bunlar ya bir operatör aracılığı

ile incelenip, içinden bilgi çıkarılabilir; ya da bir yazılım aracılığı ile bilgiler otomatik

çıkartılmaya çalışılır. Birinci seçenek her zaman uygulanabilir değildir. Çünkü bu imgelerin

boyutu çok büyüktür. Bulunması hedeflenen nesnelerin boyu da imge boyuna göre çok

küçüktür. Bu tezde nesne tespiti ve bölütlemesi için yeni yöntemler önerilmiştir. Uzaktan

algılama nesneleri, yerel öznitelikler ve şekillerin kombinasyonları olasılıksal oylama

çerçevesinde kullanılarak tespit edilmiştir. Nesnelerin şekli uydu görüntüleri ve yükseklik

verileri kullanılarak çıkarılır. İlk olarak, uydu görüntülerinde tespit edilen nesnelerin şeklini

elde etmek için yeni bir geri yansıtma yöntemi geliştirdik. Ardından yükseklik verileri

için iki yeni bölütleme ve filtreleme yöntemi önerilmiştir. İlk yöntem yeni bir morfolojik

tabanlı bölge büyütme algoritması ile olasılıklı oylama yöntemine bağlıdır. İkinci yöntem

DSM’yi zemin ve zemin olmayan noktalara süzmek ve bölmek için ampirik mod ayrıştırma

(EMD) algoritmasını kullanmaktadır. Önerilen yöntemler, farklı uydu görüntüleri (IKONOS,

WorldView, QuickBird,) ve üç boyutlu veriler (DSM, LIDAR) üzerinde test edilmiştir.

Literatürdeki yöntemlerle karşılaştırıldığında daha iyi sonuçlar elde edilmiştir.
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1. INTRODUCTION

Information retrieval from remotely sensed data has gained wide application areas due

to increasing number of aerial and space sensors and sensor resolution. Also accessing

the remote sensing data has become easier with commercial satellite sensors which push

authorities measuring any information from Earth surface for various reasons. Remote

sensing applications mainly interested in detection and classification of objects on Earth.

These include detecting buildings for urban planning, any natural disaster organization for

emergency responses, locating hidden urban locations or planning military operations for

countless reasons. Remote sensing applications also interested in detecting other objects such

as cars for monitoring vehicle traffic flow and intelligent transportation planning in cities,

trees in orchards to manage and forecast crop yield, ships for fishery management, maritime

traffic monitoring, and security etc.

For these purposes, mostly optical satellite images are used. However, the available data is

increasing such as multispectral data with various frequency bands and DSM (Digital Surface

Model) or LiDAR (Light Detecting and Ranging) data for height information. Not only the

data type, but also the spatial resolution of the data is also increasing. This led people to

investigate newer methodologies to analyze the finer details of objects which were not even

seen with bare eyes in low spatial resolution images before. Due to the large data sizes, it is

almost impossible to analyze the data manually. So researchers propose automated methods

to reduce the complexity of the problem. For this purpose, computer vision methods are

heavily used on remote sensing data.

In computer vision applications, segmentation is considered as a crucial step in the image

processing chain. Segmentation helps reducing the complexity of the problem and thus helps

understanding the environment pictured in the sensory data. Perceptual organization of the

features in the sensory data is a way of segmentation of the data where the features are

grouped and organized to help to see the whole meaning in the data.

It is believed that our world is not visually chaotic [1]. So organizing the features in sensory
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data should help understanding the scene in the image. Actually, grouping and structuring the

features has been a study for Gestalt psychologists. The Gestalt principles tell the importance

of the organization in human vision system. They showed that the most probable perceived

meaning in human vision system is the one with most regular and stable one which is the one

furthest from randomness. Thus, it is believed that the human vision system looks for the

spatially organized features in the image.

According to Gestalt principles, there are some basic properties in real world images that helps

our vision system organizing features. Some of these properties are symmetry, continuity,

proximity and closure [2]. Using these properties, it is possible to reduce the data for higher

level cognitive processes. In this thesis, a generic framework is proposed to detect simple

and complex shapes in images using the basic Gestalt principles. The proposed framework is

applied for object detection in remote sensing data such as satellite images and height data. It

is shown that with simple assumptions on object shapes and features, it is possible to detect

and segment objects in a complex environment with a probabilistic framework.

Many object detection techniques utilize machine learning algorithms where the algorithm

itself needs training data. Preparing the training data is extremely painful. Besides, it is

almost impossible to handle all cases in the training data set. In this thesis, an unsupervised

method is proposed for object detection in remote sensing. The outcome of the proposed

framework is separation of objects and background in an image. While separating objects

from the background, object types and their shapes are also extracted.

It is assumed that we have a sensory data output which might include panchromatic images,

RGB images, multispectral images, DSM images, etc. In the first step, some feature extraction

methods are applied on the available data such as corner detection, edge detection, etc. Then

these features are grouped into meaningful parts with a probabilistic voting framework. At

this step, it is assumed that objects in the images have simple or combination of simple shapes.

Thus, the probabilistic voting framework tries to find the center locations of these shapes. At

the last step, the outlines of the objects are extracted.

This thesis is divided into six chapters. Chapter one introduces the overview of the thesis
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and reviews the contributions. We start with relevant literature review in the second chapter.

The feature extraction methods are given in chapter three. In chapter four, the proposed

probabilistic representation and object detection methods are explained in detail. Also the

experiments for object detection in remote sensing data is given at the end of the chapter. In

chapter five, shape extraction and segmentation methods are given. The experiments of the

proposed methods are also given at the end of the chapter. The results are compared with

other methods in the literature. Finally, in chapter six the proposed methods are concluded

with suggestions of further developments.
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2. LITERATURE REVIEW

Computer vision applications are attracting more attention in the recent years due to the

increase in technological developments. The researchers are also paying more attention in

these applications. So new methods emerge almost every day. We heavily utilized low level

features in images and then detected and segmented objects in remote sensing images. In this

chapter, we review the related feature extraction and object detection methods in the literature.

2.1. FEATURE EXTRACTION METHODS

Even though new methods emerge almost everyday, the fundamentals of image processing

applications lean on fundamental feature extraction methods from an image. Low level

feature extraction methods find interest points in the image. Then these are used in many

applications such as detection, shape matching, tracking, recognition etc. The most known

and used low level feature is edges which are extracted point based. Edges are extracted

mostly with first and second order differential operators. The most popular edge detecting

methods are Sobel operator [3], Canny [4] and Marr-Hildreth [5]. The extracted edges and

their orientation are heavily used in computer vision applications. Other mostly used features

are corners. Among many methods, Moravec corner detection is one of the earliest [6]. Harris

corner detector [7], which we also use in this dissertation, is a modified version of Moravec’s.

FAST [8] is one of the high-speed corner detection methods which tests if a portion of the

neighbor pixels brightness is higher or lower than then the reference pixel’s brightness plus

a threshold. In [9] and [10] machine learning based corner detection algorithms proposed

which need less processing power compared to other methods and thus more suitable for real

time scenarios. After detecting corners, or other interest points, feature descriptors are defined

for each feature which describes the patches around these points. These two together, interest

point and descriptor, are generally called local features. SIFT [11] and SURF [12] are robust,

scale and rotation invariant descriptors that are used mostly in applications which require

finding matching points of two images.
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2.2. OBJECT DETECTION METHODS

In this thesis, we are interested in detection of objects in remote sensing images. First we give

brief information on some of the known object detection methods for ground-shot images.

Then, we will give a review of the related field.

Generalized Hough Transform (GHT) [13] is a method for finding arbitrary shapes in grey

level images. In this method, the boundaries of an object are mapped to a Hough transform

space in which the edges of the object are stored in a table with orientations wrt a reference

point. Then, this table is used to detect arbitrary shapes in an image. Implicit shape model

[14] method similarly uses a codebook of appearances of the different parts of an object.

Beforehand, each part of the object is trained for the object center voting process. So if a

patch around an interest point finds a match in the codebook, it votes for the possible object

center. The object detection and segmentation is done with a probabilistic framework. Class

specific Hough forests [15] also use GHT where for the detection of object parts and object

center voting, random forests are used. These methods need training beforehand and mostly

used for objects that are deformable in parts such as cars, pedestrians, animals etc.

For the remote sensing applications we first focus on building detection methods. Detecting

and locating buildings in satellite images has various application areas. Unfortunately,

manually detecting buildings is hard and very time consuming. Therefore, in the literature

several methods are proposed to automatically detect buildings. In general, the researchers

developed algorithms according to the data type available. Researchers used panchromatic,

multispectral or height information to detect buildings. Multispectral information are mostly

used in detection of non-building areas such as shadow [16–19], vegetation and water [20–

22]. So that the search space for buildings is reduced. In [23], local feature extraction

methods are utilized for detection of possible building shapes such as rectangulars. They

used corners, FAST and SIFT features in a probabilistic voting framework to detect buildings

in panchroamtic images. There are also supervised learning methods [24–27] in which

with the ground truth data available, classifiers are utilized in pixel or segment level. There

are several works using DSM for building detection and 3D reconstruction. Most of them

use the height information to remove non-building structures and focus on the building
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shape and rooftop contours. Tournaire et al [28] used point processes on digital elevation

models. They calculated an energy function for fitting rectangles on buildings based on the

adequacy of objects and prior knowledge to extract footprint of buildings. Ortner et al [29]

used two interacting spatial point processes on DEM to fit rectangular shapes on building

segments. Brunn and Weidner [30] separated buildings and vegetation areas using height and

geometric information on DSM data. After detecting buildings, they used surface normals

to extract rooftop geometries. Sirmacek et al [31] used DSM for detecting building ground

floor shapes using an active shape detection approach. Then, they used derivative filters to

extract roof ridge lines. This leads to 3D building reconstruction. Galvanin and Poz [32]

proposed a method for rooftop extraction. They used DSM data to detect above ground objects.

Therefore, they segmented DSM with a recursive splitting technique and region merging

process. Awrangjeb et al [33] also proposed a method to separate buildings and trees using

DSM. They used height and width information from DSM with a ground mask. They used

the image entropy and color information to remove trees. Most previous works assume that

thresholding DSM provides sufficient information about the building shape. Unfortunately,

using local thresholding for DSM data fails at industrial areas where big buildings are closely

located. In these areas, the window size for local thresholding needs to be very large. Also

due to automatic DSM generation, some unwanted outliers may occur. These are caused by

matching errors, temporal changes or applied interpolation techniques. These also affect the

building detection process in the negative manner. As an example, closely located buildings

in city areas cause uncertainty on building edges. The main reason for this is the applied

interpolation technique which causes a loss of sharpness. Buildings also do not have clear

rooftop contours because of the mentioned reasons. Sometimes a group of trees may look

like a building and there is no easy way to separate them. However, the height information in

DSM is still very valuable.

In the second category, we give a review for tree detection methods. Detecting and delineating

tree crowns in satellite images is important subset of object detection problem in remote

sensing. Most of the general object detection methods rely on training based classifiers. In

this and most other tree crown detection methods, a classifier is not used. Instead, specific

clues for trees are used. Tree crown detection methods can be grouped into four categories

as local maxima filtering, image thresholding, scale analysis, and template matching. The



7

first two methods are used extensively in literature [34, 35]. Since tree tops reflect the light

falling on them, they will be seen as bright spots in satellite or aerial images. The reflection

decreases from top to bottom of a tree. Therefore, bottom parts of the tree will be seen

darker. Local maxima filtering method uses this information [36–39]. In thresholding based

methods, bright and dark regions are obtained in the image. To do so, well known image

thresholding methods are used [40, 41]. It is observed that spatial resolution of the image

and size of a tree is important for detection. If the spatial resolution (more specifically the

ground sampled distance) of the pixel is smaller than the tree, then the user should look at

the image from different scales. Then, these are used in tree detection. This method is also

used to detect different sized trees [42–46]. A simple tree template is used to detect trees in

template matching methods. However, this may not be feasible since trees in neighboring

orchards in a single satellite image need not be uniform in terms of size, shape, and height.

We can group tree crown delineation (boundary extraction) methods into three categories

as: valley following, region growing, and watershed segmentation. In the valley following

method, tree boundaries are extracted based on shadow between them [47–50]. In region

growing, tree tops are generally selected as the starting point. Then, the region grows by

inspecting neighboring points. Based on a predefined criterion, the growing stops. This way,

tree boundaries are segmented [37,51–53]. In watershed segmentation, first the negative of the

grayscale image is obtained. Then, local minima is obtained using watershed segmentation.

This region corresponds to the tree crown [38, 52]. Shape information, classification based

on several features, and texture information can also be used to detect and delineate tree

crowns [54–57]. Recently, [58] proposed a method for citrus tree crown detection and

delineation using fast radial symmetry transformation. This paper provides an excellent

literature review on tree crown delineation. [59] also provide an excellent review on tree

crown detection and delineation methods till 2011. [60] also offer a recent review on the same

subject. Although the mentioned methods work fairly well in detecting trees, there are several

problems mentioned in literature. First, multispectral information is used in some studies

which may not be available in operation. Second, trees in neighboring orchards (present in

one satellite or aerial image) may not be uniform in terms of size, shape, and type. Therefore,

it may not be possible to handle these variations by a single method. Third, the background

color in the orchard may not be the same for all test images. Fourth, shadow data may not
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be useful in the image due to the time of the day image is taken. Hence, methods based

on this information may not work properly. Fifth, there may be man-made objects in the

image besides trees. This may further increase the complexity of tree crown detection and

delineation problem.

In the third category we review ship detection methods in remote sensing. Detecting and

locating ships in satellite images can be used for several purposes. The most promising and

emphasized of these can be counted as fishery management, maritime traffic monitoring,

and security. In all these applications, a selected region should be monitored to detect and

locate possible ships. To solve this problem, researchers proposed several methods using

SAR images. Although these images have several advantages, they also have disadvantages.

Therefore, new methods have emerged based optical satellite images. Recent work on optical

satellite image based ship detection can be summarized as follows. Zhu et al. [61] proposed a

hierarchical method based on shape and texture features. Here, the sea regions are assumed to

be detected beforehand. This study also summarizes the advantages and disadvantages of SAR

based ship detection methods in detail. Proia and Page [62] proposed a ship detection method

on optical satellite images using Bayesian decision theory. Corbane et al. [63] proposed a

method to detect ships. This method consists of preprocessing, mathematical morphology,

connected components analysis, logistic regression, wavelet and Radon transform steps. Bi et

al. [64] proposed a method based on visual attention mechanism. This method works on a

hierarchical manner with a multiscale approach. Yang et al. [65] approached the ship detection

problem from a different perspective. They focused on sea surface analysis. Then, they

detected ships using texture and shape information. All these studies used SPOT 5 satellite

images. Shi et al. [66] proposed a method based on HOG features and the Adaboost method.

They also grouped previous ship detection methods into three categories as thresholding,

statistical gray value distribution, and classification based. Xu et al. [67] focused on inshore

ship detection. They proposed a method based on rotation invariant generalized Hough

transform. Liu et al. [68] also focused on inshore ship detection. They proposed a method

based on active contour models and shape analysis. These studies benefit from Google Earth

images for ship detection. Tang et al. [69] recently proposed a ship detection method using

wavelet coefficients, deep neural networks, and extreme learning machines.
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Next we give methods in the literature for car and airplane detection. There are several

car detection methods. Yao et al. [70] used airborne laser scanning (ALS) data for vehicle

detection. They first apply ground level separation to extract the region of interest. Then,

they applied marker controlled watershed segmentation with morphological reconstruction to

detect vehicles. Moranduzzo and Melgani [71] used UAV images to count cars. This method

first extracts asphalt zones. It then extracts features from these regions. Afterwards, SVM is

used for classification. Toth and Grejner-Brzezinska [72] used ALS data to monitor traffic

flow. They used GIS data for road mask and bounding box estimation along road surface.

There are also related work on other sensors such as SAR and infrared cameras [73–76].

Also, there is a good review on vehicle detection in high resolution satellite images [77].

In airplane detection methods, sliding window and supervised learning based approaches

are used. Cheng et al. [78] used histogram of gradient (HOG) features in a discriminatively

trained mixture model. Han et al. [79] merged visual saliency modeling and the discriminative

learning of sparse coding for various object detection including airplanes. Hough forest

methods mainly focus on detecting objects with single orientations only. Lei et al. [80]

proposed using a color enhanced rotation invariant Hough forests for detecting remote sensing

objects. Yu et al. [81] and Qiu et al. [82] also used Hough forest for airplane detection in

remote sensing images. All of these methods require a training step.

In the final step, we review the LiDAR and DSM filtering methods. Sithole and Vosselman [83]

grouped DSM filtering methods into three categories as slope, linear prediction, and

mathematical morphology based. Based on the recent work in this area, three more categories

can be added as segmentation, statistical, and neural network based. Slope based methods

assume that the elevation change between an object and the neighboring ground point will be

abrupt [68, 83–86]. Methods based on this approach are successful on flat regions. However,

their performance decreases at hilly regions. Linear prediction based methods generate an

approximation of bare Earth’s surface and threshold objects above ground [87–91]. In linear

prediction, interpolation methods are used most of the time. These may misclassify small

objects. There are also newer methods in this category. Mongus and Zalik [92] proposed a

parameter free method for DTM generation. Chen et al. [93] improved this method further.

They proposed a multiresolution hierarchical classification algorithm based on LiDAR point

residuals from the interpolated raster surface. Zhang and Lin [94] proposed an updated
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progressive TIN densification method using point cloud segmentation. Mongus and Zalik [95]

proposed a multi-scale decomposition method which uses connected operators. The advantage

of this method is its computational efficiency. Hu et al. [96] recently proposed an adaptive

surface filtering method using regularization. They obtained very good results in detecting

objects on a standard airborne LiDAR test data. Morphology based methods are based on

dilation and erosion operations to extract ground points [97–99]. Methods using this approach

can adopt to various region types. The problem in morphology based methods is finding

an appropriate structuring element for different region types. Recently, there have been

improved methods in morphology based category. Pingel et al. [100] proposed a method

which iteratively applies morphological opening with increasing window size at each iteration.

This method uses image inpainting to generate the DTM. Mongus et al. [101] proposed a

method which uses differential morphological profiles to form a tophat scale-space. They

used this method to extract buildings from LiDAR data. Li [66] proposed a morphological

filtering algorithm based on multi-gradient analysis. Segmentation based methods are mostly

used for land cover classification using LiDAR point cloud data [102–104]. These methods

try to segment the data with heuristic features. Statistical methods assume that LiDAR ground

points have a normal distribution. On the other hand, LiDAR object points tend to break the

symmetry of the normal distribution, thus causing skewness [105–108]. Therefore, these

methods try to remove object points until the skewness is balanced. Jahromi et al. [109]

recently proposed a different method based on artificial neural networks to extract bare-earth

points from airborne laser scanning data. They obtained results for both semi-automatic and

supervised training data.

2.3. CONTRIBUTIONS

In this thesis, the detection of objects is realized with a probabilistic voting scheme. There

are probabilistic voting methods for object detection such as implicit shape modeling, Hough

forests and generalized Hough transform. In these methods, the parts of an object use votes

for detecting the center of the object. To do this, the parts are trained to vote for the correct

location.

In the proposed framework, there are very basic differences. Here we differ from the implicit
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shape modeling and Hough forest methods with the training section. We do not use training

sets for learning where to vote for each feature. In the proposed approach, the training is

implicit within the shape model. It is assumed that the objects have either simple shapes or

combination of simple shapes. For each object, specific rules are defined and it is enforced

that the extracted features with these rules vote for object centers. Actually when the certain

shapes of some objects are considered in satellite images such as house, it is difficult to train

the features for all cases of house images. Other training based methods try to separate parts

of a specific object and train the parts to find the object. However in the house image case,

where it is simply a rectangular shape, it is difficult to define individual parts for training.

Indeed we use general observations on simple shapes and use them for probabilistic voting.

Generalized Hough transform finds the parameters of the system, where we describe the

object and search for the object centers directly in the spatial space. Thus we do not try to find

any parameters for the object. The first contribution of the thesis is utilizing simple features

for a rule based object center detection in a probabilistic manner. In the probabilistic voting

approach, vote maps are generated for each feature type. The combination of voting maps are

realized with the Bayes’s theorem. Bayes says that the initial probability of an hypothesis

might be updated based on the related evidences. Basically, for each additional feature, the

probability map of object centers is updated.

After detection of object centers, the shape of the objects are extracted. The rest of the

contributions belong to segmentation and shape extraction. The second contribution of the

thesis is an algorithm for extracting shapes of objects. Here we propose an algorithm for

extracting the outline of the object using a back-projection algorithm. Here we did experiments

on panchromatic images and obtained good results.

The third and fourth contribution are segmentation algorithms of height data into ground

and non-ground pixels. In the first algorithm, a novel ground filtering and region growing

segmentation method is proposed for DSM data. The proposed method uses the local maxima

of probabilistic voting map where the modes of map are used as seed points in segmentation.

Here, a novel segmentation method is proposed based on morphological thicken operations.

The experiments show that the proposed algorithm has certain advantages for filtering large
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size objects compared to other algorithms in the literature.

The fourth and last contribution is filtering and segmenting DSM data with EMD algorithm.

Local, nonlinear, and non-stationary characteristics of EMD allow better DTM generation

and object filtering. The proposed method is tested on two publicly available LiDAR data set

and promising results are obtained. Besides, the proposed method is compared with other

methods in the literature. Comparison results indicate that the proposed method has certain

advantages in terms of performance.
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3. FEATURE EXTRACTION

In this chapter, some of the well-known local and structural feature extraction methods in

image processing are revised such as Harris corner detector [7], steerable filters [110] and

Canny edge detector [4]. In addition to these, we developed new features for object detection

in remote sensing images. These are based on gradient orientation of extracted edges in a

given image.

There are lots of data to be processed in a given image. To reduce the amount of data and

find evidence of objects in the image, we find interest points with feature extraction methods.

The extracted features are either in pixel level such as isolated points, in structural level

or connected region level. We investigate subsets of all three categories. Once we extract

features in the image, we extract complimentary attributes such as edge orientation and

gradient magnitude. The extracted features will be used in a probabilistic framework for

object center location detection in the next chapter. In this chapter, only the feature extraction

methods are considered.

3.1. FUNDAMENTAL FEATURE EXTRACTION METHODS

There are several well-established feature extraction methods in literature. We review the

ones which will be used in the following chapters in this section.

3.1.1. Pixel Orientation

In computer vision applications, pixel orientation is heavily used to extract information from

images performed by gradient operators. In image analysis, the gradient of image means the

derivatives of image intensity for each pixel at horizontal, x, and vertical, y, directions. In a

small neighborhood, the gradient direction indicates the largest possible intensity increase

direction. Since image is a two dimensional discrete data, it is only possible to define

derivatives with simple assumptions such as image has a continuous intensity function and

sampled at pixel locations.
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Generally the image is convolved with a kernel and gradient operation is performed. Therefore,

we convolve the image with a Gaussian smoothing kernel and find x and y gradients as follows.

Ix(x, y) = I(x, y) ∗ −x
2πτ 4g

exp(−x
2 + y2

2τ 2g
) (3.1)

Iy(x, y) = I(x, y) ∗ −y
2πτ 4g

exp(−x
2 + y2

2τ 2g
) (3.2)

where ∗ stands for the two dimensional convolution operation. Here, τg is the smoothing

parameter. As we obtain Ix and Iy, we calculate the gradient direction using

O(x, y) = arctan

(
Iy(x, y)

Ix(x, y)

)
(3.3)

For a pixel with coordinate (xi, yi), the corresponding gradient direction is θi = O(xi, yi).

3.1.2. Directional Edges

Edges are strong indicators of existence of an object. Therefore, it is common to use edge

detector results at structural level with connected component analysis. However, since each

edge pixel location calculated by the edge detector is a possible object boundary, we utilize the

edge detection results in pixel level where each edge point is handled individually. We pick

Canny edge detector due to its scalability and robustness to noise [4]. Suppose the extracted

edge points are represented as (xi, yi) for i = 1, 2, · · ·, N where N is the number of edge

points. We call the edge detector result as B(x, y) where it has binary values as one for edge
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pixels and zero for non edge pixels.

Consider the toy image in Figure 3.1.a. The extracted edge points and their gradient direction

are given in Figure 3.1.b. We also plot edges in different colors according to their gradient

directions in Figure 3.1.c. If the object color is brighter than background, then the edges are

showing the center of the object.

a. Toy image b. Edge points and gradient directions

c. Gradient directions with color coding

Figure 3.1. Rectangle and circle shapes with their edges and gradient direction.

In the following sections, it will be shown that location of the edge point and its orientation

can be used to setup a vote for the possible object center location. This is done by pairing

two edge points where they have opposite directions such as θi = 180 + θj . Unfortunately, in

real images it is difficult to find two points that have exactly opposite directions. We give a

satellite image of a single house in Figure 3.2. As can be seen here, the house does not have a

perfect rectangular shape. Besides, the edge gradient directions are not separated with 90o

which is clearly seen in the histogram in Figure 3.2.c.

Instead of using a single direction, we group edge points with respect to their gradient
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a. Rotated rectangle. b. Edge points and gradient directions.

c. Histogram of the gradient directions.

Figure 3.2. House image and the edges with their gradient direction.

directions. Let’s analyze this approach further on the house example. First, we define a

direction interval such that for a specific direction θ we define a direction interval β[θ, α] =

[θ − α, θ + α] with

β[θ, α] = {x | θ − α 6 x 6 θ + α} (3.4)

where α is the half interval length. Now, we can group edge points that are in β direction.

Extracted edge points with 90o apart are given in Figure 3.3. The edge points which have the

direction interval β is represented as eβi = (xj, yj) for j = 1, 2, · · ·, J where J is the number

of edge points in the specified gradient direction. Then, we define angle intervals with 90o
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a. Grayscale satellite image of houses. b. β
′

Figure 3.3. Directional edges for θ = 45o and α = 30o.

apart with respect to the first angle interval as

β
′
= β + 90o

β
′′

= β + 180o

β
′′′

= β + 270o

(3.5)

In Figure 3.3.b, we give extracted edges for θ = 45o and α = 30o where eβ in magenta, eβ′ in

red, eβ′′ in green and eβ′′′ in blue color dot markers. Thus, the four edges of the rectangular

shapes are extracted individually. Also, on the left side of the image, edges of the road are

separated side by side.

3.1.3. Steerable Filters

Edges are crucial features to detect objects in remotely sensed images. However, the objects

are located in various angles where for some cases a simple edge detector won’t work to

detect all edges successfully. For such cases, we can benefit from the steerable filters [110].
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Steerable filters can be applied in different orientations. Hence, directional edge-like structures

can be extracted. Steerable filters are synthesized easily as a linear combination of a set of

basis filters. For a symmetric Gaussian function, the basis filters G00

1 and Gπ/2
1 are

G0
1 =

∂

∂x
e−(x2+y2) = −2xe−(x2+y2) (3.6)

G
π/2
1 =

∂

∂y
e−(x2+y2) = −2ye−(x2+y2) (3.7)

For an arbitrary orientation θ, the filter Gθ
1 can be synthesized by taking a linear combination

of the basis filters as

Gθ
1 = cos(θ)G0

1 + sin(θ)G
π/2
1 (3.8)

When the image I(x, y) is convolved with the steerable filter function in θ direction as

Jθ(x, y) = Gθ
1 ∗ I(x, y) (3.9)

then we will have a high response if any structure that is perpendicular to θ exists.

Man-made objects mostly have symmetrical shapes such as two parallel edges. When we
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apply a steerable filter which is perpendicular to the side edges of the object, we will get a

high positive response from ground to object passing and high negative response from object

to ground passing. Therefore, we will have positive and negative responses at the side edges

of the object. Since objects may be in any orientation, we should apply steerable filter at

multiple orientations such as for N directions as θε[0, π/N, 2π/N, ..., (N − 1)π/N ]. Thus,

the steerable filter response of the image for θ direction will be Jθ(x, y).

3.1.4. Corner Detection

Corners are interest points in the image which are heavily used in many applications such

as image matching, 3D modeling, and object recognition. Corner may be defined as the

intersection of two edges. Corner detectors are basically detecting the gradient direction

change in the image. In satellite or aerial images when an object exist in the image, we see

several corner points. These are evidence of object existence in the image.

Even though there are other corner detection algorithms, we preferred Harris corner detector

in this study [7]. This detector has invariance to rotation, scale, illumination variation, and

image noise. It uses an auto-correlation function and measures local changes in the image in

a small neighborhood of different directions.

Let’s call I(x, y) the image where (x, y) denotes the location. The auto-correlation function

is defined as

E(x, y) =
∑
W (x,y)

G(xi, yi)[I(xi, yi)− I(xi +∆x, yi +∆y)]2 (3.10)

where (∆x,∆y) is the amount of shift; (xi, yi) are point locations in a window W (x, y); and

G is a Gaussian kernel function.
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Both W and G are centered on (x, y). If (∆x,∆y) is small, then the shifted image may be

rewritten with a truncated Taylor series expansion as

I(xi +∆x, yi +∆y) ≈ I(xi, yi) +
[
Ix(xi, yi) Iy(xi, yi)

]  ∆x

∆y

 (3.11)

where Ix and Iy denote the partial derivatives in the x and y directions, respectively. Thus,

the autocorrelation function in Eqn. 3.10 becomes

E(x, y) =
∑
W (x,y)

G(xi, yi)(
[
Ix(xi, yi) Iy(xi, yi)

] ∆x

∆y

)2

=
[
∆x ∆y

]
M(x, y)

 ∆x

∆y


(3.12)

where M(x, y) is

M(x, y) =

 ∑
W (x,y)G(xi, yi)I

2
x(xi, yi)

∑
W (x,y)G(xi, yi)Ix(xi, yi)Iy(xi, yi)∑

W (x,y)G(xi, yi)Ix(xi, yi)Iy(xi, yi)
∑

W (x,y)G(xi, yi)I
2
y (xi, yi)


(3.13)

Here the matrix M(x, y) is the key point of Harris corner detector. Eigenvalues of M(x, y)

give important information of local changes in the image. If both eigenvalues are small, then

E(x, y) vanishes. This tells that the small neighborhood around (x, y) has a small change. If

only one eigenvalue is high at (x, y), then it is an edge passing. If both eigenvalues are high,
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then the response of E(x, y) will be a peak at (x, y). This tells that, tells there is a corner

there. Instead of calculating the eigenvalues, the response function below is computed.

R(x, y) = det(M(x, y))− k · (trace(M(x, y)))2 (3.14)

Here k is tunable parameter and mostly used as k = 0.04. This is an empirical value suggested

in the literature. If R(x, y) has a positive and local maxima response, then it is considered as

a corner. Mostly a predefined threshold t is used where if R(x, y) > t, then that location is

considered as a corner.

3.1.5. Shadow Detection

When the object is in front of a light source, shadow is created on the opposite side of the

source. Even though shadows are not desired in some computer vision applications due to

non-evenly distributed light on the image, for some applications shadows are evidence of

object existence in the scene. Shadow also gives information on the geometry of the objects

and their positions [111, 112].

In many cases, it is difficult to differentiate whether a pixel is a shadow point or only seen

dark due to its texture and physical color characteristics. There are various methods in the

literature to detect shadows from remotely sensed images. We use one of the most basic

approach for shadow detection which is the histogram approach. When the histogram of a

grayscale image is analyzed, the shadow regions have low illumination characteristics thus

accumulated in the lower side of the grayscale histogram. So we use a basic Otsu’s automated

thresholding method to detect shadows in the image [113].

Detecting non-shadow regions as shadow is not crucial in our methods. The aim here is

detecting as much shadow as possible. In the next sections, we will use the shadow pixels in

feature vectors.
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3.2. FEATURE VECTOR FORMATION

In this section, we will form feature vectors which will contain information of the vector’s

location, direction, and some other related data. Note that, these vectors are not meant to be

extracted from 2D images only. They can also be extracted from height images.

In Figure 3.4 we illustrate some of the extracted feature sets. In this figure, we provide

examples from left to right: on edge-based ribbon pairs, edge-based L-shapes, steerable filter

based ribbon structures, steerable filter based L-shapes, and corners. Next, we will explain

details on these.

Figure 3.4. Extracted feature sets.

3.2.1. Edge-Based Ribbons

Suppose we extracted directional edge points for θn as described in Section 3.1.2 where (xi, yi)

are the extracted edge locations which have gradient directions in interval of [θn − α, θn + α]

as described in Eqn. 3.4.

To extract a ribbon (point pairs), we detect parallel edge points that have opposite gradient

directions. To do this, we extract edges (xj, yj) that are at opposite gradient direction with

[θn + 180o − α, θn + 180o + α]. Then, for each point in (xi, yi), we find the nearest point in

(xj, yj).

To do this, we define the search space as a cone like area as illustrated in Figure 3.5. In this

figure, the black dots represent the extracted edge points. Also the dashed arrows represent
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Figure 3.5. The search space for extracting directional edge based ribbon pairs.

the search direction. The search space in distance r and orientation ϑ is defined as

rmin ≤r ≤ rmax

θn − α ≤ϑ ≤ θn + α

(3.15)

where, rmin and rmax will be set as the smallest and largest object diameter measured in pixels

in the image and α is the orientation tolerance.

Suppose the neighboring edge points satisfying the distance and orientation conditions

(in Eqn. 3.15) to (xi, yi) are (xj, yj). Thus, the nearest point will be as (xn, yn) =

argmin |(xi, yi) − (xj, yj)|. Then, the edge point (xi, yi) and its nearest neighbor (xn, yn)

can be used to set a center point (x̂i, ŷi). This point will have the same distance to (xi, yi)

and (xn, yn) with coordinates x̂i = (xi + xn)/2 and ŷi = (yi + yn)/2. This is the symmetry

location of two points where we call it as the ribbon center. Now we will define a local feature

vector that is describing the ribbon with its length σi and pairing strength, wi, defined as

wi = exp

(
−(180o − ϕi)2

ρ

)
(3.16)
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Here ϕi = |θi − θj| is the angular direction difference of paired edge points. If the gradient

direction of edge points are exactly opposite to each other (ϕi = 180o), then wi = 1.

Otherwise, it will decay exponentially. In Figure 3.6 we give extracted ribbon centers with

yellow marker. In this figure, red and blue markers are edge points (xi, yi) and (xj, yj),

respectively.

Figure 3.6. Extracted point ribbon centers for house image for θn = 60o and α = 30o.

We define the length parameter, σi, as

σi = ||(xi, yi)− (xn, yn)|| (3.17)

We extract all ribbon centers for N directions as θε[0, π/N, 2π/N, ..., (N − 1)π/N ] and save

all the descriptors in a feature vector as −→r1 (x̂i, ŷi, wi, σi, θ).

3.2.2. Edge Based L-Shapes

We extract L-shaped structures using directional edge points. An L-shaped structure can be

used to model rectangular shapes. We illustrate this approach in Figure 3.7.
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Figure 3.7. Two perpendicular ribbons for rectangle modeling.

In extracting edge based L-shapes, we first detect the edge of a grayscale image using Canny

edge detector. We call the binary image with ones at edge locations and zeros at other

locations as B(x, y). Suppose we extracted directional edge points for θn and call this image

as B1(x, y). Then, we select the edges with θn+90o directions and call this image as B2(x, y).

Then, we use connected component analysis and combine these two binary images and select

the edge segments that overlap with at least one pixel. Even though the edge points directions

in two images apart with 90o, we expect to see some overlapping at L-shape edges because of

the direction interval defined with β as in Eqn. 3.4. We call the combined edges of binary

image as BL(x, y). We give an example on an aerial image of buildings in Figure 3.8.

a. Aerial image of

buildings.

b. B1(x, y) c. B2(x, y) d. BL(x, y)

Figure 3.8. L-shape feature extraction steps with directional edges.

As we detect L-shaped edge structures, we extract local feature vectors as follows. For each

L-shaped edge segment, we find the location of end points and find the location of midpoint
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a. Aerial image of houses. b. L-shapes with directional edges. c. L-shapes with steerable filters.

Figure 3.9. L-shapes with directional edges and steerable filters.

of the edge segment by x̂i = (x
′
i + x

′′
i )/2 and ŷi = (y

′
i + y

′′
i )/2 where (x

′
i, y

′
i) and (x

′′
i , y

′′
i )

are the location of the two endpoints of ith L-shaped edge segment. In Figure 3.9.b, we give

extracted endpoints and midpoints of L-shapes with red and yellow markers respectively.

We extract these L-shaped segments for N directions as θε[0, π/N, 2π/N, ..., (N − 1)π/N ].

Then we generate the feature vector
−→
l1 (i) = (x̂i, ŷi, wi, σi, θ) where we call it the edge based

L-shape features vector. In this vector, wi is the weight where we use it for discrimination of

straight line segments from L-shaped segments. In Figure 3.8.d there are some straight line

segments. Actually this happens due to the noisy edge pixels in the image.

Here, we define a weight for L-shape structures with the eccentricity value [114]. To do so,

we calculate the eccentricity of the L-shaped curve. Eccentricity of a straight line segment is

one. Eccentricity of a circle is zero.

We found that eccentricity of L-shaped curves are in the vicinity of 0.8. Therefore, we define

a weight for L-shaped curves as

wi = exp

(
−(ecci − 0.8)2

ρ

)
(3.18)
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where ecci is the eccentricity of the ith edge segment. We define the length parameter as

σi = ||(x′

i, y
′

i)− (x
′′

i , y
′′

i )|| (3.19)

3.2.3. Steerable Filter Based Ribbons

In previous sections, we described ribbons using edge points. There, only two edge points

could be paired as a ribbon. Here, ribbons are defined as line segments, not edge points. The

line segments are extracted using steerable filters.

Steerable filters can be applied in any desired orientation. We apply steerable filter to a given

image and obtain the filtered result Jθ as in Eqn. 3.9. According to the defined filtering

direction θ, we expect to see high response perpendicular to filtering direction. We also see

negative response from object to ground passing. In Figure 3.10, we give some examples. In

this figure, we apply filtering in three directions as θ = 0o, θ = 45o, and θ = 90o respectively.

When θ = 0o we see negative and positive responses from object to ground passing at the left

and right side of the rectangle.

We threshold the filtering result and obtain some features. We define the thresholded results

as Jθp = Jθ > t and Jθn = Jθ < −t where t is the threshold value and it might be obtained

adaptively from Jθ. After thresholding, we apply connected component analysis and obtain

center locations of connected components. Here we assume each connected component in Jθp

and Jθn is a structural feature. The center location of the connected segments in Jθp and Jθn are

(xi, yi) and (xj, yj) respectively.

As in edge based ribbons, we extract possible ribbon centers by finding nearest points from

(xi, yi) to (xj, yj) in a search space as described in Eqn. 3.15. Here we open a 2D cone

like search space in the direction of filtering direction θ which was illustrated in Figure 3.5.

As in edge-based ribbons, we find the nearest point and then find the ribbon center as
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Figure 3.10. Steerable filtering result for θ = 0o, θ = 45o, and θ = 90o respectively.
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(x̂i, ŷi). We repeat this for multiple filtering directions and generate the feature vector
−→r2 (i) = (x̂i, ŷi, wi, σi, θ) where we call it the steerable ribbon vector. Here σi is defined as

σi = ||(xi, yi)− (xj, yj)|| (3.20)

and wi is chosen to be constant for each ribbon.

3.2.4. Steerable Filter Based L-shapes

Steerable filters give flexibility of filtering direction of an image. We benefit from these

to detect L-shaped structures of rectangular objects. If the filter direction is not exactly

perpendicular to the edge alignment, then steerable filter function gives L-shaped curves for

rectangular objects. We illustrated the approach in Figure 3.11. In this figure, θ denotes the

steerable filter direction.

Figure 3.11. Steerable filter for L-shaped rectangle model.

To detect steerable filter based L-shapes, we first threshold the steerable filter result and obtain

the binary image as Jθp = Jθ > t. We apply connected component analysis to Jθp and obtain

the endpoints of each curve. Then, we find the midpoint of the curves by x̂i = (x
′
i + x

′′
i )/2

and ŷi = (y
′
i + y

′′
i )/2 where (x

′
i, y

′
i) and (x

′′
i , y

′′
i ) are the location of the two endpoints of ith

L-shaped curve extracted from Jθp . We give the extracted midpoints on the same example
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Figure 3.12. Corners for rectangle model.

image in Figure 3.9.c. We detected all of the L-shaped curves for θ = 45o. However, there

are also individual straight lines. Analogous to the edge based L-shapes, we lower their effect

with a weight as in Eqn. 3.18. Here, σi is the same with Eqn. 3.19. We apply filtering for N

directions as θε[0, π/N, 2π/N, ..., (N − 1)π/N ] and find L-shaped curves and generate the

feature vector
−→
l2 (i) = (x̂i, ŷi, wi, σi, θ).

3.2.5. Corner Features

In this section, we generate a feature vector for each extracted corner in the image. We benefit

from the gradient direction of corners where for bright objects the corner’s directions are

towards the object center. We illustrated this approach in Figure 3.12. We use Harris corner

detector results and extract the location of the corner points as (xi, yi). Then, we shift every

corner in the direction of θi as follows.

x̂i = xi + risin(θi)

ŷi = yi + ricos(θi)

(3.21)

where the corresponding gradient orientation is θi. ri is the approximate shifting for locating

the object center. Here ri will be selected according to the desired object size. Then we
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Figure 3.13. Shadow feature vectors illustration.

generate feature vector for each corner as−→c (i) = (x̂i, ŷi, wi, σi). In this vector, wi and σi will

be constant, where the rationale selecting these will be explained in the experiments section.

3.2.6. Shadow Features

Shadow information (if available) can also be used to detect objects in a given image. It is

evident that shadow may not be available due to the time of the day the image is taken or the

weather conditions. Even though shadow itself doesn’t give much information on the type of

the object, it provides a strong clue on the location of an object if it can be extracted.

As explained in the previous section, we extract shadow segments from the grayscale image

using Otsu’s thresholding method. In doing so, we take a two level threshold such that the

lowest level corresponds to shadow segments. The rationale here is as follows. If the image

needs to be separated in two classes as shadow and not-shadow, then a single threshold is

enough. If the background intensity is high compared to object intensity, then using a single

threshold may cause wrong results in detecting shadows. Using a two level threshold for

the grayscale image decreases the threshold compared to single level thresholding and gives

better shadow detection results in satellite images.
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Suppose we extracted shadow locations and saved them in a binary image Bs(x, y) where

Bs(xi, yi) = 1 for shadow locations and zero otherwise. Here (xi, yi) are the location of

shadow points. To detect the object location, we shift the shadow points in the direction of

sun’s location. This information can be obtained from the metadata provided by the satellite

image. In case of a missing metadata, the user can extract this information by observation.

Let’s assume that the direction of the sun is obtained as the yaw angle θt. Then, the shifted

location becomes (x̂i, ŷi) with

x̂i = xi + ri sin(θt)

ŷi = yi + ri cos(θt)

(3.22)

We store the shifted locations in our feature vector −→s (i) = (x̂i, ŷi, wi, σi, θt). In this vector,

wi and σi will be constant, where the rationale selecting these will be explained in the

experiments section.

3.2.7. Height Features

DSM data is obtained with LiDAR sensors and stereo image pairs and has been used for a few

decades in remote sensing applications. In DSM, the height of surface is captured. Thus the

height of objects on the ground is known. However, DSM data does not separate object and

ground height measurements. It is basically the height of anything on the ground. In order to

know the actual height of objects or terrain, one needs to filter objects or ground. This can

be done by DTM generation which is achieved by finding correct ground points. For this

matter, most algorithms in the literature try to filter out non-ground objects. The complexity

of the environment and increasing spatial resolution of the data make it difficult to filter DSM

data in an effective manner. Especially in urban areas, where there are dense and very large

buildings, filtering non-ground objects thus DTM generation is challenging.
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In this section, we are going to extract feature vectors on DSM data. These feature vectors

later will be used for detecting objects on the ground. Due to changing terrain characteristics

and object height, it is not easy to distinguish these two. When there is a change of elevation

in DSM data, it is either an object (such as building, car, tree) or some kind of change on the

ground (such as pavement, bridge) or the height of terrain itself is changing. In any case, the

height change in DSM data may be taken as an evidence for existence of an object.

First we will find these changing points with an edge detector. Objects are assumed to be

higher than their surrounding. Therefore, an edge point on the object boundary will have high

and low elevation measurements at its surrounding. Assume we have detected the edges on

DSM data and the location of edges are (xi, yi). Then, we find the maximum and minimum

height of the (xw, yw) neighborhood around each of the corresponding edge point. Let’s call

DSM with Is. Then, we define the neighborhood pixels on DSM image as

xi − w/2 ≤ xw ≤ xi + w/2

yi − w/2 ≤ yw ≤ yi + w/2

(3.23)

where w is the window width. For each edge point, we find the location of maximum and

minimum height in the neighborhood respectively with

(x̂i, ŷi) = argmax(xw,yw)Is(xw, yw)

(x̌i, y̌i) = argmin(xw,yw)Is(xw, yw)

(3.24)

If the edge point is on an actual object, then the height difference is expected to be high.

Otherwise it will be low. We define height difference as ∆hi = Is(x̂i, ŷi) − Is(x̌i, y̌i). We

store the maximum height locations and height differences in
−→
h (i) = (x̂i, ŷi, ∆hi).
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4. PROBABILISTIC OBJECT DETECTION

This chapter explains the probabilistic object detection method proposed in this study.

Therefore it will start with explaining the general framework. Afterwards, details of the

method will be explored.

4.1. GENERAL FRAMEWORK

Given an image or height data, we consider every pixel location as a candidate for being an

object center. Thus for each pixel, we give an initial probability estimation of being a center

of object. Then, using low and medium level features extracted from the image, we increase

the probability at object center locations. This probability map is two dimensional where the

size of it is the same with the image. In this map, every pixel location (x, y) has a probability

of being the interested object center. In short, we model the object locations in an image as

joint random variables and estimate their probability density function (pdf) using features.

Consider the toy image in Figure 4.1 where there are two houses with rectangular shape.

Initially, we give equal probability for each pixel for being house center. Then, we extract

some features in the image and utilize them to increase the probability at house centers.

The desired probability map PB(x, y), probability map of building centers, is also given in

Figure 4.1 on the right. In this example, we detect corner local features where each corner

votes for the building center and increase the probability at vote locations.

In the above example, extracting corners is not sufficient for casting votes for building centers.

We also need supplementary information of where and how to vote. Even though corners

are strong evidences of existing of an object, it is not the only feature for locating objects.

There are lots of other features may be used for voting. Based on the object descriptions

and available data (panchromatic image, RGB image, DSM, Multispectral, etc.), we cast a

condition on observations (features) and enforce the system to locate the objects.

We extract specific features from available data where each feature is indicating the presence
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Figure 4.1. Desired pdf estimation of object center locations.

of a certain object. Some features exist if the specific objects exist and some features exist

for more than one object type. We combine these features with probability maps where for

each feature, we extract an individual probability map of object centers. Every feature is an

evidence and used for updating the probability maps.

At first glance, one may believe this method is analogous to implicit shape modeling,

Hough forests and generalized Hough transform [13]. However, there are very fundamental

differences. Here, we differ from the implicit shape modeling and Hough forest methods with

the training section. We do not use training sets for learning where to vote for each feature.

In our approach, the training is implicit within the shape model. We assume that objects

have either simple shape or combination of simple shapes. We define specific rules for each

object and enforce the features with these rules while voting for object centers. Actually,

when the certain shape of some objects are considered in satellite images such as house, it is

difficult to train the features for all cases of house images. Other training based methods try

to separate parts of a specific object and train the parts to find the object. However, as in the

house image case where it is simply a rectangular shape, it is difficult to define individual

parts for training. Indeed, we use general observations on simple shapes and use them for

probabilistic voting. Generalized Hough transform finds the parameters of the system, where
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Figure 4.2. Proposed high level framework for object detection from satellite images.

we describe the object and search for the object centers directly. Thus, we do not try to find

any parameters for the object.

We assume there are two types of object classes in satellite images: simple and complex

shapes. We place buildings, trees and ships in the simple shapes and cars and airplanes in the

complex shapes category. These objects are our focus of interest in the satellite images and

other data. A very high level of object detection framework was given in Figure 4.2.

For instance, we assume buildings as rectangular shapes and cars as combination of two or

three rectangular shapes. So if we would like to locate the cars in the image, we first find

rectangles and then find appropriate combination of rectangles. Of course, the shape is not the

only feature for discriminating the objects. We also benefit from the shadow, height and size

constraints of objects. To give an example, consider again the cars where the spatial size and

height are well defined. So, in the probabilistic voting process our rules of voting for object

center depends on

• Observations (edge, corner, line, gradient, shadow, etc.)

• Shape constraint

• Spatial size constraint

• Height constraint

• Geometric structure constraint
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In our object detection and segmentation framework, we always try to vote for most possible

object center. As mentioned before, for each feature vector we extract individual probability

maps. Assume that we have detected some number of features f1, f2, ..., fn. Here, the sub

index number defines the different feature vectors such as corner, line, or shadow. For each

feature, we extract probability maps pO(x, y|f1), pO(x, y|f1), ..., pO(x, y|fn). Here sub index

O defines the object type. We combine these probability maps in a decision fusion step and

finalize the probability map for the objects PO(x, y). After detecting the object centers with

the final probability map, we extract shapes of objects which is the subject of next chapter.

4.2. DETECTION OF SIMPLE SHAPED OBJECTS

Many object features are discovered with bare observations. Although these observations

are simple, they become powerful tools for distinguishing certain objects. Since houses in

satellite images are mostly in rectangular shapes, it is a fundamental process to distinguish

rectangular shapes. There are other objects in the scope of our interest such as trees, ships,

cars, and airplanes. Cars also have rectangular outline. On the other hand, ships and trees

have ellipsoidal shapes. They resemble crude rectangular shapes. The other way around is

also true where in a bad resolution image, houses look like in circular shapes.

In our object detection framework, we try to find the object centers in a given image. For this

reason, in our models we benefit from the extracted features and try to locate the object center

with probabilistic voting. We already gave information on the feature vectors in the previous

chapter. In this section, we will define models of the objects according to their geometrical

shapes.

We are interested in detecting simple and complex shapes in satellite images. Buildings,

trees and ships have simple shapes whereas cars and airplanes have complex shapes in our

models. We give such examples in Figure 4.3.a and Figure 4.3.b. We represent buildings with

rectangles and trees and ships with ellipsoidal shapes. Cars and airplanes have complex but

well defined shapes where we model them as combination of multiple rectangles. We give

some example images in Figure 4.3.c.
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a. Buildings b. Trees and ships

c. Cars and airplanes

Figure 4.3. Simple and complex shape object samples from satellite images.

4.2.1. Detection using Single Feature Set

In this section, we will talk about the voting for the object centers where we assume our object

have simple shapes. We will benefit from the extracted features in the previous chapter. We

will define some rules and select features to locate object centers.

In the previous chapter, we extracted some feature vectors. These feature vectors are F ={−→r1 ,−→l1 ,−→r2 ,−→l2 ,−→c ,−→s ,−→h }. For instance, if someone wants to detect rectangular objects with

only a single feature set, such as edge based L-shapes only (F =
{−→
l1

}
), then we can model

the center locations of rectangular objects in the image as joint random variables and estimate

their probability density function (pdf).

For each feature vector, we extracted locations, orientation, weight and length parameters.

For example, for L-shapes from edge points, we defined the feature vector as
−→
l1 (i) =
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(x̂i, ŷi, wi, σi, θ). Here we extracted the vectors for multiple orientations of θ. While extracting

the feature vectors, we tried to find most possible convex object centers. We assume that every

feature votes for the possible object center and thus at object centers the votes accumulate.

So we use these parameters in a joint kernel density estimation. First, we define the pdf for

single orientation as below

pO,θ(x, y|F ) =
K∑
i=1

wi exp

(
−(x− x̂i)2 + (y − ŷi)2

2σi

)
(4.1)

where in this case O = rectangle, F =
{−→
l1

}
and Ki is the total number of feature vectors.

Using this, we write the following sum to obtain pdf for all orientations

pO(x, y|F ) =
∑
θ

pO,θ(x, y|F ) (4.2)

It is hypothesized that the mode locations of pO(x, y|F ) are possible rectangle center locations.

Alternatively, one can use other feature vectors and estimate pdf for each feature set separately.

Note that corner feature vectors, −→c , are extracted for all orientations at once. Thus, the

summation in Eqn. 4.2 is not necessary. It is also true for shadow feature vectors −→s and

height feature vectors
−→
h .

4.2.2. Detection using Multiple Feature Sets

In images, we encounter with many different cases of objects. Sometimes only one or two

edges of rectangular objects are visible due to illumination, noise, color indifference of object

and ground or spatial resolution of the image. Such examples are given in Figure 4.4 where

some object boundaries are not clear. So we are examining different types of attributes of
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Figure 4.4. Noisy and low resolution panchromatic images of buildings.

rectangular shapes to handle such problems.

We can use shadow and height features for any type of objects in the image. Other than

these features, objects might be modeled according to their simplest shapes. As mentioned

in the previous section, rectangular shapes are modeled with combination of ribbons, edge

based L-shapes, steerable filter based L-shapes, and corners. The hierarchical structure for

rectangular shapes is given in Figure 4.5.

Similarly, we can model ellipsoidal shapes with combinations of ribbons and corners. The

hierarchical structure for ellipsoidal shapes is given in Figure 4.6. The extracted single feature

set is not meant to be used to detect rectangles or ellipses only. The motivation behind using

these feature sets is using the combinations of multiple feature sets which lead to detect

specific simple shapes in images. In this section, we will give the details of combination of

feature sets to estimate a finer pdf for building, tree and ship detection.

Let’s call the extracted feature vectors as F = f1, f2, ..., fN . Given these feature vectors, we

want to locate the object centers using the pdf estimation as

pO(x, y|F ) = p(Θ|f1, f2, ..., fN) (4.3)
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Figure 4.5. Detecting rectangular shapes using multiple features.

Figure 4.6. Detecting ellipsoidal shapes using multiple features.

where Θ is the object center locations. Bayes theorem says that initial probability of an

hypothesis might be updated based on the related evidences [115]. Bayes assumption for
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hypothesis H and evidence E is

p(H|E) =
p(E|H)p(H)

p(E)
(4.4)

In our case, the prior distribution of object centers is p(Θ) and the posterior pdf is

pO(Θ|f1, f2, ..., fN). Using the Bayes theorem, we can write the posterior pdf estimation as

p(Θ|f1, f2, ..., fN) =
p(f1, f2, ..., fN |Θ)p(Θ)

p(f1, f2, ..., fN)
(4.5)

We want to determine theΘ values maximizing this equation. In this equation, the denominator

p(f1, f2, ..., fN) is independent of Θ. Assuming the conditional independence

p(fi, fj|Θ) = p(fi|Θ)p(fj|Θ) (4.6)

we can rewrite Eqn. 4.5 as

p(Θ|f1, f2, ..., fN) =
N∏
i=1

p(fi|Θ)
p(Θ)

p(f1, f2, ..., fN)
(4.7)
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Using the Bayes theorem again

p(Θ|f1, f2, ..., fN) =
N∏
i=1

p(Θ|fi)p(fi)
p(Θ)

p(Θ)

p(f1, f2, ..., fN)

=
1

p(Θ)N−1

p(f1)p(f2) · · · p(fN)

p(f1, f2, ..., fN)

N∏
i=1

p(Θ|fi)

(4.8)

Here, when we assume the prior distribution of object center locations p(Θ) is uniformly

distributed within the image. Moreover, noticing the terms before the product term are

independent of Θ, then the maximum likelihood (ML) estimator (thus the Bayesian estimator)

is obtained by maximizing the function below wrt Θ.

p(Θ|f1, f2, ..., fN) ∝
N∏
i=1

p(Θ|fi) (4.9)

Thus, instead of fully estimating p(Θ|f1, f2, ..., fN), we estimate
∏N

i=1 p(Θ|fi) and locate the

possible object centers Θ̂ by

Θ̂ = arg max
Θ

N∏
i=1

p(Θ|fi) (4.10)

In the previous chapter, we extracted the following feature vectors.

• f1: −→r1 , edge based ribbon feature vectors.

• f2:
−→
l1 , edge based L-shape feature vectors.

• f3: −→r2 , steerable filter based ribbon feature vectors.
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• f4:
−→
l2 , steerable filter based L-shape feature vectors.

• f5: −→c , corner based feature vectors.

• f6: −→s , shadow based feature vectors.

• f7:
−→
h , height based feature vectors.

To detect typical objects in remote sensing images, we will use combinations of these features.

If shadow is not present, then it won’t be used. Similarly, if the height data is not available, it

won’t be used. Next, we explain which features will be used for which objects.

4.2.2.1. Building Detection

We extract four features for rectangular shapes and for each of them we estimate pdfs of

possible object centers. We also estimate pdf for shadow and height of any type of object.

While extracting those features for buildings, we use some size constraints. For example,

while extracting edge based ribbons, the search range of ribbon points are set according to

minimum and maximum building size. Similar constraints are also utilized for other feature

vectors. These will be explained in more detail in the experiments section.

If there isn’t shadow in the image, or there isn’t any height data available, then we will only

use the subset of the feature vectors. For instance, when we use only (f2, f3, f4) features for

building detection, then the function to be estimated for building centers will be

pB(x, y|f2, f3, f4) ∝ pB(x, y|f2)pB(x, y|f3)pB(x, y|f4) (4.11)

Then, we will find the modes of the pdf and assume that these are possible building centers.

In the experiments section, we will show that utilizing every feature greatly reduces false

alarms, but also increases missed detections.
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4.2.2.2. Tree and Ship Detection

Trees and ships have ellipsoidal shapes. So, we use the following feature vectors.

• f1: −→r1 , edge based ribbon feature vectors.

• f3: −→r2 , steerable filter based ribbon feature vectors.

• f5: −→c , corner based feature vectors.

• f6: −→s , shadow based feature vectors.

• f7:
−→
h , height based feature vectors.

While extracting the features for ships and trees, we use size constraints. For example, while

extracting edge based ribbons for trees, the search range of ribbon points are set according to

minimum and maximum tree size. Similar constraints are also utilized for ships and other

feature vectors. These will be explained in more detail in the experiments section.

However, using shadows to detect ships mostly doesn’t work due to the closely located ships

in harbor. Also finding height data for ships is difficult. Similarly, because of the illumination

effects in the image and spatial resolution, trees are not detectable using steerable filters. So,

one needs to select a subset of these features to detect ships and trees.

4.3. DETECTION OF COMPLEX OBJECTS

In the previous section, we detected simple shaped objects with combination of different

features in a probabilistic framework. Here, we will detect complex objects such as airplanes

and cars with combination of simple shapes.

4.3.1. Airplane Detection

We model an airplane with three main parts: body, right wing, and left wing. In our model, the

main parts are simple rectangles. It is also true to assume that parts have ribbon like structures

since the part lengths are very large compared to their width. We define a geometrical

relationship between the parts to detect airplane objects in the image. Each part will vote for
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the center location of airplane.

The model is given in Figure 4.7. An airplane has a perfectly symmetric shape and the

symmetry point is the center of its body. In our model we benefit from its symmetrical shape.

Figure 4.7. Multiple rectangles model for airplanes.

We give a sample airplane satellite image in Figure 4.8.a. We also provide the extracted Canny

edges with their gradient direction in Figure 4.8.b. Let’s make some observations on this

image. The first observation is the angle between the body and the wings where it is same for

both wings and we call it θA.

The second observation is the edge direction of the airplane relative to its center. Let’s have a

look only to the right wing. It has a ribbon like structure. The relative angle from the center

of the right wing to the airplane center is perpendicular to directions of wing edges. It is also

true for other wing and the main body part of airplane. So in our model we use these two

observations.

In Figure 4.9, we give the geometric relationship between the parts of the airplane and voting

locations of the parts. We do not know the orientation of the airplane. Thus, we benefit from

the relationship of the body and its wings.

As illustrated in Figure 4.9, the orientation of body, θ1, and two wings, θ2 and θ3, can be given

as follows
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a. Airplane image. b. Edges and their direction.

Figure 4.8. Sample satellite image of airplane and Canny edges.

θ1 = θi

θ2 = θi + θA

θ3 = θi + 180o − θA

(4.12)

In Figure 4.9 the edge points and possible center of parts are also plotted. We only know that

the relative angle from center of the airplane to the part centers (ribbon center) is perpendicular

to edge directions. Thus, for each edge point pair (ribbon), we vote for two possible airplane

locations. For example for the body part of the airplane, even though we find a possible part

center, we do not know if the center of airplane is below or above the part center. So, we vote

for both directions as illustrated in Figure 4.9.

Assume for a specific direction θ1 = θi, we extracted edge pairs. This is shown as black

dots in Figure 4.10.a. Then, using edge pairs we extract body part centers which is shown as

black squares in Figure 4.10.b. Their center location are denoted as (x̂i, ŷi). Since we paired
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Figure 4.9. metry of airplane parts and possible voting locations.

each edge point, there are multiple center points for the body part of airplane. As shown in

Figure 4.10.b, the extracted centers will vote to perpendicular directions of the edge directions.

This can be described as follows.

x̄i = x̂i ∓ r cos(θ1 + 90o)

ȳi = ŷi ∓ r sin(θ1 + 90o)

(4.13)

which is equivalent to

x̄i = x̂i ± r sin(θ1)

ȳi = ŷi ∓ r cos(θ1)

(4.14)
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a. Extracted edges for θ1 in black,

θ2 in red and θ3 in blue color

markers.

b. Possible part centers and voting

directions.

c. Possible airplane centers.

Figure 4.10. Voting method for airplane parts.

In Eqn. 4.14, r is the voting distance and (x̄i, ȳi) are possible airplane centers. We do not

know the distance of the part center to airplane center. We choose a constant value for this

parameter. There are three reasons for that. First, there are multiple body centers (ribbon

centers) located side by side. So, we have a good chance that at least one of the body center

point will vote for exactly the airplane center. Second, the size of the airplanes do not change

as much as other objects such as buildings. So we can define the voting distance using size

constraints. Third, we use a probabilistic voting scheme, thus the uncertainty of the voting

distance is expected to be handled by the method.

We repeat these steps for right wing, θ2, and left wing, θ3. The results for other parts are

shown in Figure 4.10.a and Figure 4.10.b. In Figure 4.10.c we show the voting locations.

As can be seen from this image, the votes of body and wings of airplane are gathered at the

airplane center. We use a joint probabilistic model to locate the center of airplane as in simple

shaped object detection case as follows.

pA,θi(x, y|R1, R2, R3) ∝ pA,θi(x, y|R1)pA,θi(x, y|R2)pA,θi(x, y|R3) (4.15)
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Figure 4.11. Airplane center pdf estimates for θi = 30o.

where R1, R2 and R3 are the extracted part centers (ribbon centers). We define pA,θi(x, y|R1)

as

pA,θi(x, y|R1) =

Ni∑
i=1

exp

(
−(x− x̄i)2 + (y − ȳi)2

2σi

)
(4.16)

For the other two parts, these equations become
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pA,θi(x, y|R2) =

Nj∑
j=1

exp

(
−(x− x̄j)2 + (y − ȳj)2

2σj

)
(4.17)

pA,θi(x, y|R3) =

Nk∑
k=1

exp

(
−(x− x̄k)2 + (y − ȳk)2

2σk

)
(4.18)

where the part centers for θ2 are (x̂j, ŷj) and the part centers for θ3 are (x̂k, ŷk) . The part

centers again are given in Figure 4.10.b with black, red an blue square markers.

The part center locations are calculated as below

x̄j = x̂j ± r sin(θ2)

ȳj = ŷj ∓ r cos(θ2)

(4.19)

x̄k = x̂k ± r sin(θ3)

ȳk = ŷk ∓ r cos(θ3)

(4.20)

In Figure 4.11 we give the vote maps. In Figure 4.11.d the final estimated pdf for airplane

center location has high probability at its correct airplane center.

Even though we have a good result, we assumed airplane’s body orientation is θ1 = θi. We
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Figure 4.12. Multiple rectangles model for cars.

need to find the airplanes that are in other orientations also. So we marginalize the pdf in

Eqn. 4.15 for θε[0, π/N, 2π/N, ..., (N − 1)π/N ] and estimate the final pdf for all airplanes

as follows.

pA(x, y|R1, R2, R3) ∝
N∑
i=1

pA,θi(x, y|R1, R2, R3) (4.21)

Then, we will find the modes of the final estimated pdf and assume the modes are possible

airplane centers.

4.3.2. Car Detection

In 2D images, cars are seen as rectangles side by side. If we have 3D data, we can use height

and size constraints based probabilistic voting method. Cars have almost standard dimensions.

For example, a midsize car has typical dimensions of 1.7 m ×1.5 m ×4.2 m in width, height,

and length respectively. Having high resolution images and height data makes it possible to

detect such objects using size constraints. The rectangle model for cars is given in Figure 4.12.



53

a. Car image. b. Edges and their direction.

c. Edges and their direction, zoomed

Figure 4.13. Sample satellite image of car and Canny edges.

The majority of car shapes will be subset of one these two models in Figure 4.12. In both

sedan and station model cars, the common model would be the one with three rectangles. In

this model, the windshield is rectangular and almost always in a dark color. On the front end

and back end of the car there are rectangles again. In our approach, we will find the rectangles

in the image in which only the relative positions of these rectangles fit the car model will be

remained.

In Figure 4.13.a a sample satellite image of a car is given where the car is on the road next

to a building. There are shadows and trees as well in the image. We draw the Canny edges

and their gradient orientation in Figure 4.13.b. The zoomed version is given in Figure 4.13.c.

There are lots of clutter in the image. Even though one side of the windshield could not be

detected in the edges, the three rectangles model for the car is easily noticed.

In Figure 4.14, we illustrate how the voting process is implemented. In the voting process,

the rectangles always vote for the possible windshield location. Assuming the car is in the

direction of south (90o), first we find the back end rectangle (θ1 = 0o). The car’s length might
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Figure 4.14. The relative geometry between car parts and voting locations.

vary, however the width of the car is assumed to be in a certain interval such as between 1 m

and 2.5 m. Thus, we only try to find the ribbons with this width. As shown in the first part of

Figure 4.14, the center of the ribbon (black square marker) is extracted first. Then, this ribbon

center votes for the windshield location, towards θ1 + 90o. In the second step, the front end

rectangle votes towards the windshield location, in the direction of θ1 − 90o. At this point,

since we don’t know which rectangle belongs to which part of the car, they will both vote

towards south and north directions. At the third step, we find dark rectangles (windshield)

where it is already assumed to be the car center. We have observed that most of the times one

of the two sides of the windshield could not be detected by Canny edges due to color of the

road and the car. So, here we try to find a dark rectangle in the direction of θ3 = θ1 + 90o.

We show our approach step by step on the sample image. First we extract directional edges.

In Figure 4.16.a the extracted edges for θ1 = θ2 = 0o and θ3 = 90o are given with black and

blue dot markers respectively. The extracted ribbon centers are given in Figure 4.16.a with

black and blue markers. The black markers represent possible front end (R1) or back end (R2)

rectangles and blue markers represent possible windshield centers (R3). The ribbon center

locations are denoted as (x̂i, ŷi).

As we mentioned previously, each part of the car will vote for possible windshield location.

The front end rectangle (R1) votes for the possible windshield location, (x̄i, ȳi) as
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a. Directional edges. b. Rectangle centers.

Figure 4.15. Edges and rectangle centers for θ = 0.

x̄i = x̂i + r cos(θ1 − 900)

ȳi = ŷi + r sin(θ1 − 900)

(4.22)

In this equation, r is the voting distance. There are multiple rectangle centers side by side.

So, there is a good chance that at least one of the rectangle center point will vote for the

exact windshield center. Also the size of the cars do not change extremely. We also use

a probabilistic voting scheme thus the uncertainty of the voting distance is expected to be

handled by the method. Thus, we choose the voting distance r as a constant parameter.

The back end rectangle (R2) voting location is in the opposite direction as

x̄j = x̂j + r cos(θ1 + 900)

ȳj = ŷj + r sin(θ1 + 900)

(4.23)

where (x̂j, ŷj) are the possible back end rectangle centers. The windshield rectangles (R3)
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a. Vote locations. b. Vote Locations, zoomed on a car

Figure 4.16. Vote locations for θ = 0o.

voting location is the rectangle center itself.

x̄k = x̂k

ȳk = ŷk

(4.24)

where (x̂k, ŷk) are the possible windshield rectangles (R3) center locations. In Figure 4.16 we

give the voting locations. Each different color votes belong one of three rectangles. As it is

seen in Figure 4.16.b the three rectangles (R1, R2, R3) votes are gathered on the windshield.

Since we assumed the windshield is the possible car center and trying to vote for only possible

windshield center points, we weight each vote with the gray color of the image as

wi = exp

(
−
(
I(x̄i, ȳi)− a

b

)c)
(4.25)

where I(x̄i, ȳi) is the gray color of possible windshield center. We have observed that the

gray color of windshields are mostly below 100. For a = 30, b = 80 and c = 6 the weight
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Figure 4.17. The weight function for voting car center.

function response is plotted as in Figure 4.17.

We use a joint probabilistic model to locate the center of the car. Given three rectangles, the

pdf of locations of possible car centers (windshields) are modeled as

pC,θi(x, y|R1) =

Ni∑
i=1

wi exp

(
−(x− x̄i)2 + (y − ȳi)2

2σi

)
(4.26)

pC,θi(x, y|R2) =

Nj∑
j=1

wj exp

(
−(x− x̄j)2 + (y − ȳj)2

2σj

)
(4.27)
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a. pC,θi(x, y|R1) b. pC,θi(x, y|R2)

c. pC,θi(x, y|R3) d. pC,θi(x, y|R1, R2, R3)

Figure 4.18. Car center pdf estimates for θi = 00

pC,θi(x, y|R3) =

Nk∑
k=1

wk exp

(
−(x− x̄k)2 + (y − ȳk)2

2σk

)
(4.28)

We assume each of the rectangle as a feature and thus for a car in the direction of θi the car

centers are modeled as the joint multiplication of the pdfs.

pC,θi(x, y|R1, R2, R3) ∝ pC,θi(x, y|R1)pC,θi(x, y|R2)pC,θi(x, y|R3) (4.29)

In Figure 4.18 we plot the pdf for each of the three rectangles and the final estimated pdf

when θi = 0o. On the windshield of the car the relative probability is much higher than any of

other locations.

Here we assumed the car is in a specific direction. We need to find the cars with all possible
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orientations. So we marginalize the pdf in Eqn. 4.29 for θε[0, π/N, 2π/N, ..., (N − 1)π/N ]

and estimate the final pdf for all cars as follows.

pC(x, y|R1, R2, R3) ∝
N∑
i=1

pC,θi(x, y|R1, R2, R3) (4.30)

Finally, we will find the modes of the final estimated pdf and assume the modes are possible

car centers.

4.4. EXPERIMENTS ON OBJECT DETECTION

In previous sections, we explained our method for the detection of various objects centers in

remote sensing data. In this section, we will show the experiment results of object detection.

We tested the proposed method on each object type. We used different feature sets for different

objects. In all of the measurements, we take the object based performance measures. As a

result, we count the number of objects in the test images and obtain the object based detection

performances.

We will give detection results on sample images for each object type. For a fixed detection

threshold, we will summarize the performance of the method for all images in terms of True

Positive (TP), False Positive (FP), and False Negative (FN) metrics. If the local maxima

of estimated pdf are anywhere on the object pixels, then we count these as TP. If there are

detections on non-object pixels, then we count them as FP. If there are multiple detections on

the same object, we also count these as FP. If we can not find any detection for an object, then

we count this as FN.

We will also give precision (Correctness - CR), recall (Completeness - CP), and quality

(Q) metrics for accuracy assessment. These metrics are heavily used in computer vision

applications to see how well the algorithm is performing.
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These values can be obtained as follows.

CR =
TP

TP + FP

CP =
TP

TP + FN

Q =
TP

TP + FP + FN

(4.31)

Using precision and recall metrics, we will make up the PR (Precision and Recall) curve [116].

Hence, we will see the performance of the method when the detection threshold is varied. PR

curve shows the performance of the method when a parameter in the method is varied. We

would like to see the algorithm’s performance at the top-left corner of the PR curve.

4.4.1. Building Detection Experiments

Here, we test our method on panchromatic images (2D) and DSM data (3D). So, in the

following two subsections, we analyze the results separately.

4.4.1.1. Experiments with 2D Data

We tested our method on Ikonos satellite images. The satellite images area acquired over

Adana, Turkey. There are total number 23 image sets with a total number of 674 buildings.

Some of the images are given in Figure 4.19. The spatial resolution of the images is 1 m.

We think this large data set represents diverse building types. We manually extracted the

pixels for each building individually. For a fixed detection threshold, we will summarize the

performance of the method.

We use five features in the building detection experiments. These are edge point pairs feature,

edge L-shape feature, steerable filter feature, Harris corner feature, and shadow respectively.
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Figure 4.19. Samples for Adana satellite images.

Figure 4.20. Estimated pdf of buildings for each feature for Adana7 test image.

On a single test image, we will show the estimated pdfs and detection results. In Figure 4.21.b,

the Adana7 image is given. On this image, we extracted five features and estimated building

pdfs for each individually as described in the previous sections.

In Figure 4.20, we give the estimated building pdfs for each extracted features. In this figure,

we used the following features from left to right: edge point pairs feature, edge L-shape

feature, steerable filter feature, Harris corner feature and shadow. The lower and higher

probabilities are shown with dark and light colors, respectively. On this pdfs, the probability
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a. Final estimated pdf. b. Building detections.

Figure 4.21. Final estimated pdf using all five features and building detection results.

at building centers are high. There are also some higher probabilities on non-building spots.

For instance, if only shadow information has been used, there would be many false alarm as

the trees would also marked as buildings. However, when all information is used together,

we expect to see high probabilities on building centers only. In Figure 4.21.a, we give the

estimated pdf when all five features are used. All of the high probabilities on non-building

spots are decreased.

In Figure 4.21.b, we give the building detection results where green, blue and red markers

indicate true detection, false alarm and miss detection respectively.. On the final estimated

pdf, we find the local maximums and assume these are the building centers. While doing

this, we use a threshold such that if there is any local maximum on the pdf has a probability

lower than this threshold, then we discard it. Since the final pdf is merely the product of

five individual pdfs, we would see low probabilities at the center of buildings. For example,

assume that for each five pdfs the probability of a pixel being the building center is 0.6. Then

in the final pdf, this pixel would have a probability 0.65 = 0.0778. So even though for one

pdf the probability of being the building center is high, in the final pdf we see a much lower

probability for that pixel. For this reason, we use a threshold as low as 0.001 to detect the

buildings.
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In Adana7 image, there are 27 buildings where we detected 26 of them correctly. There is

only one FN and two FP. In Table 4.1 we give the results for 23 Adana images. There are 674

building in total. In this table we give the results when the features are used individually, in

combinations and all together. Even though the TP numbers are really high when one feature

is used, FP numbers are also high. When all features are used, the FP numbers are decreased

dramatically. Out of 674 buildings, we correctly detected 631 of them, there are 62 false

alarms and 43 missed detections.

Table 4.1. Building detection results for Adana images.

Feature Building TP FP FN CR CP

f1 674 651 618 23 0.513 0.966

f2 674 617 305 57 0.669 0.915

f3 674 652 871 22 0.428 0.967

f4 674 618 566 56 0.522 0.917

f1, f2 674 654 212 20 0.755 0.970

f1, f2, f3 674 657 149 17 0.815 0.975

f1, f2, f3, f4 674 628 94 46 0.870 0.932

f1, f2, f3, f4, f5 674 631 62 43 0.911 0.936

We varied the detection threshold from 1e− 7 to 0.5 and measured the performance of the

method. The results are plotted in Figure 4.22. The result that is closest to top-left corner on

the PR curve is the best result which is the case when detection threshold is 0.001. When all

features are used together, FP numbers are decreased dramatically and thus the precision of

the algorithm is good.

4.4.1.2. Experiments with 3D Data

In this section, we test our method on DSM data. We used the ISPRS data set which

contains 33 patches having different size [117]. In each patch, there exists a DSM and

true orthophoto (TOP) image. Spatial resolution of the data set is 9 cm. We have

used 8 images of the data set. All of the images are given in Figure 4.23. Here the
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Figure 4.22. PR curve for 23 Adana test images with 674 buildings in total.

top row image names are top mosaic 09cm area1 3 5 7 boottom row image names are

top mosaic 09cm area9 11 13 15.

In this section, we extract the features using only DSM data. We have extracted the edge point

pairs, edge L-shape feature, steerable filter feature, Harris corner detector feature and DSM

height information. We have extracted the the pdf of building centers for each of the feature.

We illustrate the results on top mosaic 09cm area3 image where the orthophoto image and

DSM is given in Figure 4.25. In Figure 4.24 we give the estimated building pdfs for each

future.

Using Eqn. 4.11, we plot the final pdf of buildings pB(x, y|f1, f2, f4, f5, f7) in Figure 4.25.c.

In these results we used the following features from left to right: edge point pairs feature, edge

L-shape feature, steerable filter feature, Harris corner detector feature and height (DSM)As

can be seen in the figure, the pdf estimation has high probability at most of the building

centers. As explained in the previous section, we extract the local maxima and assume these
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Figure 4.23. Test images of Vaihingen, Germany.

Figure 4.24. Estimated pdf of buildings for each future for top mosaic 09cm area3.

are the building center locations. For each local maximum, we only accept it as a possible

detection if pdf estimation at this location is higher than a threshold. The pdf in Figure 4.25.c

is normalized between 0 and 1. In this example the threshold is set to 1e− 3. In this case, the

TP are labeled with green markers, FP are labeled with red markers and FN are labeled with

blue markers in Figure 4.25.a. In this image, there are 63 buildings and we have correctly
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a. TOP image and detections b. DSM c. Final estimated pdf of building

centers: pB(x, y|f1, f2, f4, f5, f7).

Figure 4.25. Final estimated pdf using all five features and building detection results.

detected 50 of them correctly with 1 false alarm. We assume we detected the building correctly

if the local maxima location are on anywhere on the building.

We tested our method on 8 images which were given in Figure 4.23. In these 8 images, there

are a total of 323 buildings. When the detection threshold is set to 1e − 3, we tabulate the

object based detection results in Table 4.2.

Table 4.2. Building detection results for ISPRS Vaihingen data set.

Feature Building TP FP FN Precision Recall

f1 323 281 88 42 0.76 0.87

f2 323 235 177 88 0.57 0.73

f4 323 259 150 64 0.63 0.80

f5 323 222 99 101 0.69 0.69

f7 323 281 84 42 0.77 0.87

f1, f2, f4, f5, f7 323 269 29 54 0.90 0.83

It is shown that when the features are used individually, the TP measurements are high but
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Figure 4.26. PR curve for 8 ISPRS Vaihingen images with 323 buildings.

also FP measurements are high. When all the information is merged in the final pdf, the FP

measurement drops dramatically to 29 but the TP number stays at 269. Even though the recall

value 0.83 is smaller then f1 and f7 features recall value, the precision measurement is the

highest with 0.90 when all of the features are merged.

To measure the sensitivity of the method when the detection threshold changes, we calculated

precision and recall values for 12 different thresholds where the smallest threshold is 1e− 8

and the largest is 0.5. We draw the PR curve in Figure 4.26. For the thresholds larger than

1e− 3, the recall values are below 0.7. The best performance is the one with the closes point

to the north west part of the figure where we tabulate the results in Table 4.2. For the smallest

threshold, the recall value goes up to 0.95. However in this case there are lots of false alarms

also. We have shown that using a reasonable detection threshold gives very good detection

results on DSM data.
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Figure 4.27. Test images used in tree detection experiments.

4.4.2. Tree Detection Experiments

We test the proposed method on 17 orchard satellite images acquired from Google Earth as

in Figure 4.27. In these test images, there are a total of 13476 trees (each having a diameter

between 2 to 20 pixels). Test images contain olive, peach, pear, and citrus trees. Therefore,

tree type variability is satisfied.

We provide metadata for test images in Table 4.3. This metadata clearly indicates that several

regions from different sides of the world are picked in testing. Therefore, the soil type and

background color is not constant. This metadata may be of help for future tree detection

studies as well.

We used the following parameter values throughout experiments. The range interval for

neighbor search in probabilistic voting is set as rmin = 1 and rmax = 25 pixels. The rationale

here is as follows. Trees in test images have diameter varying between 2 to 20 pixels. In

order to handle the smallest and largest tree in neighbor search step, rmin and rmax are set

accordingly. The orientation tolerance in Eqn. 3.15 is set as α = π/12 rad. Setting a smaller

α value may lead to missing neighbor points. A larger α value may result in sparse votes.

Therefore, α = π/12 rad seems to be a good choice.

In order to test the performance of the proposed method, we manually extracted tree crowns
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of all trees in test images. Based on these, we obtain the true positive (TP), false positive (FP),

and false negative (FN) values. Here, we take object based performance measures. Hence, a

tree is assumed to be detected when the ellipse representing it overlaps with the ground truth

data by more than 80 %. Based on this assumption, we provide the total TP, FP, and FN values

obtained from 17 test images with a total of 13476 trees in Table 4.4. As can be seen in this

table, the Canny edge detector has the highest TP value with the lowest FP and FN values.

We next calculate the completeness (CP), correctness (CR), and quality (Q) metrics for

accuracy assessment. Based on the TP, FP, and FN values in Table 4.4, we obtain CP, CR,

and Q values for the proposed method as in Table 4.5. As can be seen in this table, the Canny

edge detector provides the best performance results. Therefore, it is selected throughout the

experiments. To note here, the performance obtained when different edge detectors are used

Table 4.3. Metadata for test images of orchard trees.

Test Image Latitude Longitude Location Image Size No. of Resolution

(pixels) Trees (cm)

Image 1 37o 52’ 56.70” N 120o 51’ 41.07” W California, USA 324 × 238 197 30

Image 2 37o 33’ 09.26” N 120o 59’ 47.57” W California, USA 251 × 270 270 30

Image 3 36o 59’ 37.20” N 35o 00’ 26.44” E Mersin, Turkey 195 × 234 288 40

Image 4 39o 08’ 25.44” N 27o 46’ 48.82” E Manisa, Turkey 386 × 181 354 40

Image 5 36o 56’ 00.74” N 35o 00’ 17.17” E Mersin, Turkey 453 × 185 425 40

Image 6 36o 50’ 18.58” N 35o 20’ 07.93” E Adana, Turkey 367 × 423 380 40

Image 7 36o 59’ 12.50” N 35o 00’ 09.60” E Mersin, Turkey 265 × 226 322 40

Image 8 36o 59’ 33.76” N 35o 00’ 24.60” E Mersin, Turkey 278 × 336 432 40

Image 9 36o 48’ 00.76” N 35o 07’ 58.49” E Mersin, Turkey 399 × 363 655 40

Image 10 36o 47’ 09.07” N 35o 07’ 23.02” E Adana, Turkey 420 × 316 519 30

Image 11 36o 45’ 16.26” N 119o 30’ 58.78” W California, USA 466 × 488 1193 30

Image 12 36o 44’ 51.29” N 119o 31’ 36.08” W California, USA 368 × 465 1137 40

Image 13 36o 42’ 32.16” N 119o 35’ 52.18” W California, USA 438 × 492 1427 30

Image 14 36o 38’ 50.49” N 119o 39’ 37.31” W California, USA 665 × 324 564 30

Image 15 36o 39’ 27.14” N 119o 45’ 39.56” W California, USA 500 × 506 3273 60

Image 16 36o 37’ 13.22” N 119o 50’ 31.74” W California, USA 756 × 394 1555 40

Image 17 39o 25’ 33.63” N 26o 49’ 00.06” E Balikesir, Turkey 493 × 292 485 50
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is also close to the Canny edge detector. Therefore, we can claim that the proposed method

does not heavily depend on the edge detector type in operation.

We next compare the proposed method with the ones in literature. Therefore, we first

pick the local maximum filtering method [36]. Then, we pick Ozdarici-Ok’s method for

comparison [58].

In order to compare the proposed method with local maximum (LM) filtering, we implemented

the LM filtering. To obtain a good result from LM filtering, we had to smooth the image with

a Gaussian kernel with different widths. Then for each width, we separately extracted the

local maxima of the filtered image for detecting tree crowns. The best result is obtained when

the width of Gaussian kernel is set as three pixels.

Table 4.4. TP, FP, and FN values using different edge detectors.

Edge detector TP FP FN

Sobel 11827 2531 1649

Prewitt 11867 2585 1609

Roberts 11299 2740 2177

LoG 11625 2406 1851

Canny 12141 2065 1335

Table 4.5. CP, CR, and Q values in percentages using different edge detectors.

Edge detector CP (%) CR (%) Q (%)

Sobel 80.55 89.81 74.93

Prewitt 80.60 90.20 75.17

Roberts 78.96 84.27 70.17

LoG 82.32 91.08 76.39

Canny 84.73 93.94 80.51
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As can be seen in Table 4.5, we obtain CP, CR, and Q values for the proposed method as 84.73

%, 93.94 %, and 80.51 % respectively. These values were 89.07 %, 83.80 %, and 76.15 % for

the LM filtering method. Comparing these, it can be seen that the proposed method has better

CR and Q values with less CP value. In terms of the CR metric, the proposed method has

almost 10 % improvement compared to the LM filtering method. One possible explanation of

this improvement is due to the shadows in the image. If there are heavy shadows, then the

LM filtering method is negatively affected from it. The other reason may be using a single

filter size in operation which may not be suitable for small and large trees at once.

We also compare the proposed method with Ozdarici-Ok’s method using their image set. To

do so, we applied our method to three of their test images. We provide the test results in

Table 4.6. To be consistent with their naming, we provided the results in terms of precision

and recall which correspond to CR and CP values respectively. As can be seen in this table,

among three test images only in one of them the proposed method has better results. Besides,

the other results are similar at best. There are two explanations for this result. First, the

proposed method does not depend on multispectral information. However, Ozdarici-Ok’s

method uses this information. Second, the proposed method does not assume a specific tree

type. Whereas Ozdarici-Ok’s method focuses on citrus trees. Therefore, the proposed method

could not perform as good as Ozdarici-Ok’s method in their test set.

Table 4.6. Comparison of the proposed method with Ozdarici-Ok’s method.

Ozdarici-Ok Proposed

Image Precision Recall Precision Recall

Image I 95.8 91.2 77.5 90.2

Image II 68.5 66.6 71.0 36.3

Image III 86.2 79.8 80.1 67.3
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Figure 4.28. Satellite images of ships.

4.4.3. Ship Detection Experiments

Detecting and locating ships in satellite images has been extensively studied in the literature.

Majority of the studies used SAR images for this purpose. Recently, researchers proposed

methods based on optical satellite images. Here we test our method using optical satellite

images. We tested our method on four satellite images. These images are given in Figure 4.28.

We aim to detect both open sea and inshore images. Ships are mostly in ellipsoidal shapes. We

have observed that when the steerable filter is applied perpendicular to the ships orientation,

we obtain high response on the ship’s right and left sides. In Figure 4.29.a we give a Geoeye

satellite image of ships in a harbor. Here the ships are so closely located. When we apply

steerable filter along the y-axis we get high positive response at the upper side of the ships.
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a. Sample image. b. Edges from steerable filter when θ = 90o

Figure 4.29. Sample image and edges from steerable filter result.

We also see high negative response at the lower side of the ships. In Figure 4.29.b we give

the thresholded results of these negative and positive responses with black and blue dots

respectively.

After this, we paired these responses as explained in Section 3.2.3 and give a vote to the

center of the positive and negative responses for pdf estimation of possible ship centers. After

doing this for multiple orientations we estimate the final pdf of ship centers which is given in

Figure 4.30.a. The TP detections are given with green, FP detections are given with red and

FN detections are given with blue markers.

In Table 4.7, we summarize the results of ship detection. We used three different satellite’s

images; Geoeye, Ikonos and Quickbird. Geoeye panchromatic images have spatial resolution

of 0.41 m. The spatial resolution of Ikonos and Qickbird panchromatic images are 1 m and

0.61 m respectively. Hence, we tested our method on different resolutions. There are a total

of 1389 ships in 5 satellite images. We correctly detected 1183 images with 59 FP and 206

FN. The precision value is 0.91 and Recall value is 0.77. The difficulty of ship detection lies

on the separation of touching ships in the harbor. In some cases these ships are so close that

multiple ships look like a single object. Our method successfully separated most of the ships

in such cases.
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a. Estimated pdf of ship centers. b. Detections.

Figure 4.30. Estimated pdf of ship centers and ship detections.

4.4.4. Airplane Detection Experiments

We tested the proposed method for airplane detection on 12 satellite images. These images

are acquired from Google Earth and some of them are shown in Figure 4.31. There are a total

of 170 airplanes in 12 images. The sizes of the airplanes vary. The illumination conditions

also vary in the test images.

We provide the metadata for test Images in Table 4.8. We picked 6 different airports where

Table 4.7. Ship detection results.

Image Ships TP FP FN Precision Recall

Geoeye Image-1 722 641 18 81 0.97 0.89

Geoeye Image-2 56 55 2 1 0.96 0.98

Ikonos Image-1 210 167 16 43 0.91 0.80

Ikonos Image-2 238 195 10 43 0.95 0.82

Quickbird Image-1 163 125 13 38 0.91 0.77

Total 1389 1183 59 206 0.95 0.85
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Figure 4.31. Airplane images: Top row Image 1-3-5, bottom row Image 7-9-11.

three of them are located in Turkey, one in Germany, one in Brazil and one in Switzerland.

For each airport there are two different image sets. Some of these images are either collected

in different times, or some of these two collected in the same time but spots the different

locations of the same airport. We provided the latitude and longitude of each of the images.

We also provide the number of airplanes in these images in Table 4.8.

Table 4.8. Metadata for test images of airplanes.

Test Image Latitude Longitude Airport Airplane Number

Image 1 360 53’ 46.59” N 300 48’ 03.86” E Antalya Airport - 1 9

Image 2 360 53’ 46.59” N 300 48’ 03.86” E Antalya Airport - 2 17

Image 3 400 59’ 19.26” N 280 49’ 59.70” E Istanbul Ataturk Airport - 1 14

Image 4 400 58’ 40.41” N 280 49’ 40.53” E Istanbul Ataturk Airport - 2 15

Image 5 400 06’ 56.78” N 320 59’ 30.10” E Ankara Esenboga Airport - 1 11

Image 6 400 06’ 56.78” N 320 59’ 30.10” E Ankara Esenboga Airport - 2 10

Image 7 480 20’ 53.74” N 110 46’ 11.20” E Munich Airport - 1 9

Image 8 480 21’ 10.70” N 110 46’ 49.12” E Munich Airport - 2 14

Image 9 230 25’ 26.24” S 460 27’ 35.69” W Sao Paulo Airport - 2 6

Image 10 230 25’ 44.10” S 460 28’ 53.79” W Sao Paulo Airport - 1 31

Image 11 470 27’ 09.10” N 80 33’ 30.62” E Zurich Airport - 1 17

Image 12 470 27’ 49.32” N 80 33’ 17.37” E Zurich Airport - 2 17

Total 170
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In order to test the proposed method’s performance, we manually extracted the pixels for

each airplane in the images. Based on the airplane center detection results, we obtain the TP,

FP, and FN values. Here we take object based performance measures. Hence an airplane is

assumed to be detected when the methods detection result is anywhere on the airplane. We

also calculate precision and recall measures. All these measures are already explained in

Section 4.4.1.

In our experiments, we only used the complex model approach. So we only benefit from

the directional edges and try to extract three rectangles where these rectangle have a special

relative geometry. This was already illustrated in Figure 4.7. We give pictorial results for

Image 11 in Figure 4.32.

In Figure 4.32.b we give the pdf estimation of airplane center location. Here we normalized

the pdf. We assume that if the local maximums of this pdf is greater than a threshold, then it is

accepted as an airplane center. In this example, the threshold is set to 0.05. In Figure 4.32.a we

give the detection results with colored markers. Here green, blue and red markers indicate TP,

FN and FP respectively. There are 17 airplanes in the image. Here we detected 16 airplanes

with 1 FN and 6 FP detections.

The false alarms are mainly located on the right side of the image where the scene is cluttered

with buildings, trees and roads. Even though the relative probability of being an airplane

center is low at these locations, using 0.05 threshold caused these false alarms. In Figure 4.33

we give three examples of the FP’s. Notice that all of these three examples have a close

geometrical similarity of an airplane (Figure 4.7).

We changed the detection threshold and calculated precision and recall values to draw the PR

curve. The thresholds and detection results are summarized in Table 4.9.

We also plot the PR curve in Figure 4.34. The best results are achieved when the detection

threshold is set between 0.04 and 0.1. In our approach we have only used directional edge

information which is extracted from grayscale images. If the DSM data were available,

then the final estimated pdf of airplane center locations would be modified with this new
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a. Airplane detections.
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b. Estimated pdf of airplane center locations.

Figure 4.32. Detection results for Image 11.

information and detection results would have been improved.

4.4.5. Car Detection Experiments

In our proposed car detection algorithm, we detected different parts of the car. So that we

were able to separate cars from other objects. The three main part of the car, is not visible in

images whose spatial resolution is below about 30 cm. For this reason, proposed car detection

method requires very high resolution satellite images. Again, we benefit from the ISPRS

Vaihingen data set [117]. This data set is with 9 cm spatial resolution. In this data set, DSM

data is also available. We use both TOP images and DSM data.
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a. FP example - 1. b. FP example - 2.

c. FP example - 3.

Figure 4.33. FP examples for airplane detection.

Table 4.9. Airplane detection performance for different detection thresholds.

Airplane# Threshold TP FP FN Precision Recall

170 0.001 160 215 10 0.427 0.941

170 0.005 158 157 12 0.502 0.929

170 0.010 156 123 14 0.559 0.918

170 0.020 155 100 15 0.608 0.912

170 0.040 152 70 18 0.685 0.894

170 0.060 149 58 21 0.720 0.876

170 0.080 146 50 24 0.745 0.859

170 0.100 142 44 28 0.763 0.835

170 0.150 129 34 41 0.791 0.759

170 0.200 121 28 49 0.812 0.712

170 0.400 86 15 84 0.851 0.506

170 0.500 67 11 103 0.859 0.394
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Figure 4.34. PR curve for 12 airport test images with 170 airplanes in total.

In Figure 4.35, we give car detection results on the subset of ISPRS Vaihingen

top mosaic 09cm area3 patch. There are 5 cars in the image. We give one result in

Figure 4.35.a when only TOP image is used. In this case, we use the approach explained in

Section 4.3.2 where we model a car with multiple rectangles.

Using Eqn. 4.30, pdf estimation of car centers is given in Figure 4.36.a. We obtain high

probabilities on the cars with some false alarms on the bottom left of the image. For this case

the TP detections are given in Figure 4.35.a with green markers. FP detections are shown

with red markers.

When we use DSM data only, we vote on cars with size and height constraints. Here an edge

point votes to the highest point on DSM in a w × w neighborhood in x − y directions. If

the maximum and minimum height difference in w × w neighborhood for each edge point

is between [0.4 m,3 m], we vote to the highest point in elevation. This way we will see

high probabilities on the cars. The estimated pdf is given in Figure 4.36.b. Even though the
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a. Car detections using TOP image

only.

b. Car detections using TOP image

and DSM together.

c. DSM of image

Figure 4.35. Car detection results on a subset of ISPRS Vaihingen patch.
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b. Pdf of car centers using DSM

only.
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c. Pdf of car centers using TOP

image and DSM together.

Figure 4.36. Pdf estimations of car centers.

probabilities are high on car centers, there are also false alarms on various spots. When we

merge the pdfs of multiple rectangles model and height model with Eqn. 4.10 the result is

given in Figure 4.36.c. We still see high probabilities on the car centers and probabilities on

other spots are decreased. The detections are shown in Figure 4.35.b where we detected all

cars successfully with no false alarms. Notice that all of the detection locations are on the
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front or rear windshield of cars as explained in Section 4.3.2.

The patch sizes of each ISPRS Vaihingen data set is large. In one patch, there are around 100

cars. The illumination conditions do not change significantly in different patches. So we only

use top mosaic 09cm area1 and top mosaic 09cm area3 patches in our experiments. In

these two patches there are 187 cars in total. We used both TOP images and DSM data. In

Table 4.10, we tabulate the results when the detection threshold is varied.

Table 4.10. Proposed method’s performance on the ISPRS Vaihingen data set.

Car # Threshold TP FP FN Precision Recall

187 1e-7 150 418 37 0.264 0.802

187 1e-6 150 375 37 0.286 0.802

187 1e-5 149 334 38 0.308 0.797

187 5e-5 149 287 38 0.342 0.797

187 0.0001 149 267 38 0.358 0.797

187 0.0003 149 222 38 0.402 0.797

187 0.0005 149 208 38 0.417 0.797

187 0.0007 149 190 38 0.440 0.797

187 0.001 149 185 38 0.446 0.797

187 0.0025 145 146 42 0.498 0.775

187 0.005 140 102 47 0.579 0.749

187 0.0075 134 78 53 0.632 0.717

187 0.01 128 63 59 0.670 0.684

187 0.05 66 19 121 0.776 0.353

187 0.1 41 9 146 0.820 0.219

187 0.2 12 2 175 0.857 0.064

In the multiple rectangles model, the final pdf is merely the product of three separate pdfs.

We also use height information separately. So the detection thresholds in the final pdf should

stay at low values. For this reason, we varied the detection threshold from 1e− 7 to 0.2. In
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Figure 4.37. PR curve for ISPRS Vaihingen test images with 187 cars in total.

Figure 4.37, we give the PR curve. The best results are obtained when the threshold is set

to 0.01 where we get 128 TP and 63 FP detections. In the next chapter, we will give the

segmentation results on the same data set.
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5. SEGMENTATION AND SHAPE EXTRACTION

In this chapter, we present three novel methods for segmentation and shape extraction of

objects. Then, we test these with experiments on satellite images and height data. In the first

section, a vote back-projection algorithm is proposed for extracting the outline of objects in

satellite images in which only the gray level information is available. The second and third

proposed algorithms are for segmenting height data such as DSM of objects on the ground.

The second method for segmenting height data uses the local maxima of the estimated pdf of

object center locations. Here, local maxima are used as seed points in segmentation. A novel

segmentation method is proposed based on morphological operations.

In the experiments section, it will be shown that the proposed algorithm has certain advantages

for filtering large size objects compared to other algorithms in the literature. In the third

method for segmenting height data, Empirical Mode Decomposition (EMD) is used. Local,

nonlinear, and non-stationary characteristics of EMD allow better DTM generation and object

filtering. This method is tested on two publicly available LiDAR data set and best results in

the literature are obtained.

5.1. SHAPE EXTRACTION IN 2D IMAGES

In the previous chapter, we estimated a pdf for locating object centers. In this section, we

will extract the shape of objects based on the given votes in pdf estimation. In Figure 5.1 the

method is demonstrated on hand drawn rectangular shapes.

Assume that we have an image and extracted the edges in it. Each edge point voted for a

possible object center location. Thus, the votes are accumulated at object centers and we see

high probabilities at object centers. In Figure 5.1 the z direction represents the probability of

object centers and dashed lines represent the edges of objects.

Assuming these shapes belong to outlines of buildings, PB(x, y) is the probability map of

building centers. At the house centers, we see local maxima of PB(x, y). At the vicinity
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Figure 5.1. Vote back-projecting method for object outline extraction.

of these local maxima, there are given votes by building edges. We will back-project only

these votes to extract each objects shape individually. In our method, we extract a shape for

each of the local maximum of object center pdf. Therefore, while extracting the edges of

objects, we also separate the edges for each object. Thus, we are able to label each of the

object separately.

In the previous chapter, we assumed that buildings, trees and ships have simple shapes. Also,

we assumed that airplanes and cars have complex shapes. Thus, we analyze extracting the

shape of these objects in two separate sections.

5.1.1. Shape Extraction of Simple Objects

In Figure 5.2, we give the steps of the proposed method. Assume that we already have the pdf

of object centers. Then, we can find the local maxima of this pdf and assume these are object

center locations. Then, for each of the local maximum location, we can select only the most

relevant votes at the vicinity of pdf local maximum location.

Based on the selected votes, we back-project the edges which voted at the vicinity of the pdf

local maximum. Combining all the edge pixels, we can extract the outline of the object.

We will show the proposed method on a sample satellite image of buildings in Figure 5.3.a. In
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Figure 5.2. Steps of the vote back-projecting method for object outline extraction.

Figure 5.3.b, we give the Canny edges of the image. We aim to extract the edges that belong

to buildings only.

a. Sample satellite image of buildings

(Image Name: Adana4).

b. Canny Edges.

c. Estimated pdf of buildings.

Figure 5.3. Sample satellite image of buildings, Canny edges and pdf estimation.

Assume we estimated the pdf for building center locations, pB(x, y|F ), using Eqn. 4.11. Here,

we used multiple features for pdf estimation such as edge based features, steerable filter based

features, corners and shadows. Pdf estimation result is given in Figure 5.3.c. As expected, the

probability at building centers is high. Then, we find the modes of pB(x, y|F ) and take the

extracted mode locations as possible building centers. Assuming we extracted K modes, then
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the building center locations are (xBk
, yBk

) for k = 1 · · ·K.

For each building center, we will extract the shape individually. We need to label the votes

according to their relation with the possible building centers. After labeling all the votes,

there will be K + 1 labels. This means not all votes belong to an object, some of them belong

to clutters such as road segments or trees. Since we tried to use general voting rules in the

previous sections, we expect to see many clutter votes.

a. Vote locations (red points) and local

maximums (yellow triangles).

b. Back-projected edges of selected

votes.

c. Convex shape of extracted edges. d. Chan-Vese segmentation with

convex shape mask.

Figure 5.4. Back-projection and segmentation steps.

We are only back-projecting the edge based votes since they are the most suitable ones for

this purpose. We have described the feature vector for an edge based ribbon as −→v1(i) =

(x̂i, ŷi, wi, σi, xi, yi, xj, yj) where (x̂i, ŷi) is the center of ribbon (vote center) and (xi, yi),

(xj, yj) are edge pairs (vote sources). In Figure 5.4 in the first image, estimated pdf is shown

with iso-contour lines. On the other figures, each color represent a different object. In

Figure 5.4.a we plotted the edges (vote sources) with white color and vote centers with red
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markers. We also plotted the estimated pdf in iso-contour lines and local maxima with green

triangle markers. As expected, the local maxima are at the vicinity of the center of each

building. Due to our voting rule, non-rectangular shapes (such as road edges) have votes but

with low probability. We also used other information such as corners, shadows, and steerable

filter. Thus, the roads and other clutter objects have low probability. Therefore, they are not

detected as buildings.

For each mode of the estimated pdf, we will only select the votes that are around the modes

with an adaptive threshold. We could select the votes which are closer than a constant distance

r to each local maximum. However, it would be problem for small and large buildings.

Therefore, we use an adaptive distance that is extracted for each local maximum using the

probability value at pB(x̂Bk
, ŷBk
|F ).

In Algorithm 5.1, the steps of the back-projection algorithm are listed. For each mode on

pB(x̂Bk
, ŷBk
|F ), we find a region around (x̂Bk

, ŷBk
) where the point locations within the

region have a probability above a threshold pB(x, y|F ) > pref × κ. Here κ is ∈ (0, 1). We

call this region as A(x, y). In the given example, we plot A(x, y) boundary with blue lines in

Figure 5.4.b. Using the votes in that area, we back-project the votes to the vote sources (edge

pairs) and find the shape for each building individually. Thus in the estimated pdf, only the

votes contributed the most help to construct the shape of the buildings. In the example, we

selected κ = 0.75. In Figure 5.4.b we give the back-projected votes where for each building

it is given with different color. Thus, handling each local maximum of pdf individually, each

building outlines are extracted successfully.

Now that we have the edges of each building and labeled them individually, we can extract a

rough shape of the buildings. Here, we use a convex-hull algorithm [118]. The convex-hull of

edge points will be the smallest convex outline that contains the edges.

We extract the convex-shape of the objects in two steps. First, we find the convex-hull of

the edge points. Then, we convert the convex-hull polygon to a filled binary mask. We call

this segmentation result as convex shapes. The result is given in Figure 5.4.c. Here, we paint

each building with different color for better visualization. The convex shapes almost give
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the accurate shapes of the buildings. However, these are rough shapes and in some cases

these shapes will be too rough if the shape of the object is not convex-hull such as L-shaped

buildings. There will also be problems if we cannot extract the edges successfully.

Algorithm 5.1. Iterative shape extraction with vote back-projection

BEGIN
K; number of modes at estimated pdf (number of possible object centers)
N ; number of votes
L(x, y) = 0; initialize the labeled image with zeros at all pixels
κ; set a local threshold value ∈ (0, 1)

k = 1; initialize the counter for buildings
Repeat for each mode (x̂Bk

, ŷBk
)

while k 6 K do
pref = pB(x̂Bk

, ŷBk
|F ); Extract a reference probability

A(x, y); Find a 2D region around (x̂Bk
, ŷBk

) where the point locations
within the region have a probability with pB(x, y|f1) > pref × κ
i = 1; initialize counter of votes
while i 6 N do

if (x̂i, ŷi) ∈ A(x, y); if ith vote center is in desired local area then
L(xi, yi) = k; label the edge point
L(xj , yj) = k; label the edge point
i+ = 1; increase the counter for votes

end if
end while
k+ = 1; increase the counter for buildings

end while
END

For example, at the right bottom corner of Figure 5.4.b we extracted some edge pixels that do

not belong to the building. This caused a defect in convex shape result in Figure 5.4.c. To

eliminate such errors and give better details of the shape, we use active contour segmentation

method with the aid of initial convex shapes. Specifically, we use Chan-Vese active contours

[119]. In this algorithm, when an initial mask (contour) is given and thus the mask evolves

to a final shape and separates the image as background and foreground. The user can define

if the tendency of the mask to shrink inwards or to grow outwards. We used our convex
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shape results as the initial mask of the active contour segmentation. One can utilize other

segmentation algorithms also.

Here the purpose is using our convex shape masks, the segmentation results might get better.

In Figure 5.4.d we give the Chan-Vese segmentation result for 30 iterations. As can be seen,

the shape of the objects are better and the defect on some of the buildings shapes are corrected.

When the iteration number is increased, one can obtain more detailed shapes.

The proposed algorithm here is not meant to be used for buildings only. Other simple objects

shapes such as trees and ships are also extracted with the same method. In the experiments

section, we give visual results for each object type.

5.1.2. Shape Extraction of Complex Objects

In the previous chapter, we defined airplanes and cars with the combinations of their different

parts. Thus, their shape extraction requires the combination of the object’s individual parts.

In this section, we explain our shape extraction approach on airplane and car images.

5.1.2.1. Airplane Segmentation

We summarized the proposed method in Figure 5.5. There are two main differences from the

simple shape extraction method. The first one is that we find the orientation of the airplane.

For this purpose, for each local maximum location in pdf of airplane centers, we look for in

which θ the pdf value of that local maximum is the largest in Eqn. 4.15. Then it is assumed as

the airplane orientation.

After finding the airplane orientation, we back-project the votes to each part of the airplane.

It is the second difference from shape extraction of simple objects. Then, for each part we

extract the convex shapes and merge the results for full-shape extraction of an airplane.

We give each step of the algorithm on a sample image. In Figure 5.6.a we give a sample

satellite image of airplanes. In Figure 5.6.b we give the Canny edges. Assume we estimated
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Figure 5.5. Steps of the vote back-projecting method for airplane shape extraction.

the pdf of airplane center locations with our method as explained in Section 4.3.1. The pdf

estimation result is given in Figure 5.6.c. Here, we successfully detected all airplane centers.

As a reminder, the pdf estimation of airplane center involves the votes of three parts of the

airplane as main body, right wing, and left wing. These three parts of the airplane are detected

using edge based ribbon shapes. They voted according to a relative geometry of the airplane

parts, without knowing which ribbon shape is which part of the airplane. However, since

we know the location of votes and relative geometry of each of the airplane parts, we can

back-project the votes from the airplane center to each airplane part center and then to the

edges of the airplane parts. Then when we merge all these edges, we will roughly obtain the

shape of the airplane.

In Figure 5.7.a, we give the back-projected edges for each individual parts of airplanes. In this

figure, each extracted airplane part edges are shown with different color. Then at the second

step, we extract the convex shape of each airplane part individually. Thus, we will have the

rough shapes of the airplanes. The result is given in Figure 5.7.b.

Now that we have masked the airplane shapes, we can have more details on the shapes

using the Chan-Vese segmentation method as in the previous section. The result is given in

Figure 5.7.c. The details of the airplane shapes are better now. In the experiments section, we

give examples of different cases of the proposed segmentation algorithm.
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a. Sample satellite image of airplanes b. Canny Edges

c. Estimated pdf of airplane centers

Figure 5.6. Sample satellite image of airplanes, Canny edges and pdf estimation.
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a. Back-projected edges of each airplane part. b. Convex shapes of back-projected edges.

c. Chan-Vese segmentation when convex shape

results are used as a mask.

Figure 5.7. Segmentation results for the image of airplanes.
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5.1.2.2. Car Segmentation

In the previous chapter, we detected cars using relative geometry of its main body, windshield

and its front part. We modeled it as combination of rectangles. In this section, we back-project

the votes and extract the shape of cars similar to airplane shape extraction. We summarized

the proposed method in Figure 5.8. The approach is the same with airplane shape extraction.

Figure 5.8. Steps of the vote back-projecting method for object outline extraction.

a. Sample top image of cars on the

road and detections.

b. Back-projected edges. c. Convex shapes of back-projected

edges.

Figure 5.9. Segmentation results for cars.

We give an example on the same image of Figure 4.35.a. Here we detected five local maxima

on the pdf of car centers. First, we find the orientation of each car by looking at each pdf of
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different θ values of Eqn. 4.29. Then, for each local maximum we back-project the votes to

each part of the car and separately extract the vote sources. Extracted edges for each part

is given in Figure 5.9.b with different color. Afterwards, we generate the convex shape of

each part and merge them. The result is given in Figure 5.9.c where each part is given with

different color. If the convex shape results intersect somehow, it is painted in a different color.

As can be seen in Figure 5.9.c we detected three parts of each car. In the experiments section,

we will give more visual results for different cases.

5.1.3. Experiments on Satellite Images

In this section, we give visual results of the proposed segmentation algorithm on various

satellite images. We use the same data set as in Section 4.4. Since there are quite a number of

image sets, we only give visual results for a subset of the test images.

In Figure 5.10, we give visual results for the Ikonos satellite images of Adana. In this figure,

there are six images. The first column represents the satellite images. The second column

represents the back-projected edges. Here, the color of the edges denotes a separate object. In

the third column, we give the convex shape of the back-projected edges. In the last column,

we give the Chan-Vese segmentation result when the convex shape results are used as an

initial mask. In the Chan-Vese segmentation method, we set the iteration number as 30 and

tendency of the contour grow to inwards. We assume that our convex shape segmentation

results are object pixels and other pixels as background. Hence, we assume the binary ones of

the of Chan-Vese segmentation result as objects and binary zeros as background.

The Chan-Vese segmentation gives finer shape for buildings. However, in some cases the

initial mask (convex shape) of a building shrinks too much and results in removing of the object

pixels entirely. There are such examples in Adana7 and Adana12 images in Figure 5.10.

Also in some cases, the segmented pixels are not removed completely but the outline of the

object is shrunk. Since we labeled each of the object separately in the convex shape results,

one can add a control to limit the area of Chan-Vese segmentation result at each iteration.

Next, we give visual results for the orchard tree image sets in Figure 5.11. In some cases, the
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a. Adana1

b. Adana6

c. Adana7

d. Adana12

e. Adana13

f. Adana15

Figure 5.10. Segmentation results on some of the Ikonos satellite images of Adana.
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trees are located close to each other. Also, the color of the trees and the background varies in

the same image. In Table 4.3 we give the spatial resolution and other information for each

of the image. The tree diameters change from 2 to 20 pixels. We successfully separated the

edges of the most of the trees individually. Even though the convex shape results are rough,

Chan-Vese segmentation results give better detail on the tree crown sizes. The advantage

of the proposed method is that it does not need multispectral data or shadow information in

operation. Moreover, it does not depend on a specific tree type or background color.

In Figure 5.12 we give the segmentation results on satellite images of ships. As a reminder, we

used steerable filter features only for the estimation of ship center pdf. Thus we back-project

steerable filter results to segment each ship pixels individually. In the second column of

Figure 5.12, we give the back-projected votes. As can be seen, a single ship mostly has two

lines at the left and right side of the ship. When we use these in our convex shape segmentation

approach, the results are given in the third column. Here each color represents a different ship.

As a reminder, in Figure 5.12.a there are 722 ships. Majority of the ships touch each other.

Our method successfully detected 641 ships in this image and in which we also extracted the

shapes of these ships. Here we do not use Chan-Vese segmentation algorithm. The length of

the ship is only a few pixels in some cases. In most cases, the ships are in white color with

some dark spots on the ship because of the shadow of the pole and sail. These make it difficult

to successfully detect the ships pixels with the Chan-Vese segmentation method. Just after a

few iterations, majority of the ship pixels are removed.

In Figure 5.13 we give the segmentation result of airplanes. In Table 4.8 we gave the metadata

of the images. Here we show visual results for six of the images which are from six different

airports. As in our airplane model in Figure 4.7, we successfully extracted the three parts

of the airplanes in most cases. The results are given in the second and third columns of

Figure 5.13. In the second and third columns, we paint each part of the airplane with different

color. After using the Chan-Vese segmentation, we get better detail of the airplane shapes

where we give the results in the last column of Figure 5.13.

The majority of the false detections are caused by the jetway (jet bridge) which is a movable

connector to extend the airport terminal gate to the airplane. When the jetway is connected
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a. Image 1

b. Image 4

c. Image 5

d. Image 6

e. Image 9

f. Image 10

Figure 5.11. Segmentation results on some of the satellite images of orchard trees.
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a. Geoeye-2

b. Ikonos-1

c. Quickbird-1

Figure 5.12. Segmentation results on some of the satellite images of ships.
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a. Image 2

b. Image 4

c. Image 6

d. Image 8

e. Image 10

f. Image 12

Figure 5.13. Segmentation results on some of the satellite images of airports.
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with the airplane, there we detect it as another airplane or in the segmentation process, it is

detected as a part of the airplane. We see such results mostly in Image 6 in Figure 5.13.

We tested the car segmentation method on ISPRS Vaihingen data set, which is explained in

more detail in Section 4.3.2. Since the image patches are quite large in size, we only give the

visual results for the subset of the images in Figure 5.14. In the first column we give the TOP

images with TP detections in green, FP detections in red and FN detections in blue markers.

In the second column, we give the back-projected edges of each part of the car. Each part is

shown with different color. In the last column, we give the full convex shapes of cars.

In some cases, we could not detect some of the cars. For example in Figure 5.14.a a black

car is in the shadow next to a white car. In this case, we could not detect the edges of the

black car sufficiently because of its color and shadow. However, we could detect the outer

edges of the car. In the voting process, the edges of the white car wrongly used the black

cars outer edges. Thus the local maximum is shifted towards to the black car and we do not

see any detection on the black car. It also affects the back-projecting step. As can be seen in

Figure 5.14.a one of the extracted lines belong to the black car. So the extracted outline of

white car’s width is almost same with its length.

In some cases, we see some FP detections. These detections mostly caused by similar

rectangular shapes of other objects such as a short wall on a sidewalk. Such two cases seen

on the left side of Figure 5.14.b and about the center of Figure 5.14.d. In these cases, we

used votes in the height model because the wall’s elevation is similar to the cars. We also see

shadows behind the walls which were wrongly assumed as a windshield of a car. Thus these

spots accumulated votes and detected as a car. The extracted shapes of these objects also look

similar to a cars shape.

5.2. SEGMENTATION OF HEIGHT DATA WITH VOTING AND MORPHOLOGY

In this section, we segment height data using morphological operations. Here, we use height

data only. LiDAR sensors provide height data from Earth’s surface. This is a valuable source

to solve several remote sensing and geospatial analysis problems [120–123]. Unfortunately,
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a. top mosaic 09cm area1, Subset1

b. top mosaic 09cm area1, Subset2

c. top mosaic 09cm area3, Subset1

d. top mosaic 09cm area3, Subset2

Figure 5.14. Segmentation results of cars on ISPRS Vaihingen data set.
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LiDAR data includes ground and above-ground object returns together. To use it efficiently, it

should be filtered as ground and non-ground points. Digital Terrain Model (DTM) generation

is possible if only true ground points are interpolated. Non-ground points will lead to above

ground object (such as buildings, trees, and cars) detection. These can be used to solve remote

sensing and geospatial analysis problems in an effective manner.

New LiDAR sensors provide higher spatial resolution data with wider coverage area. Hence,

it is becoming more difficult to manually process the obtained data. Therefore, researchers

proposed several methods to automate LiDAR data processing. The first step in the proposed

method is detecting the most probable object center points. However, before that we need a

preprocessing step to clean the data and obtain small objects initially.

5.2.1. Preprocessing

The proposed method works on gridded raster data. Therefore, if the LiDAR point cloud is

available, it should be represented in gridded form. Here the nearest neighbor interpolation is

used to generate the raster DSM from the LiDAR point cloud.

We will explain the proposed method on the Utah-5 DSM test data throughout the paper. This

test sample (with spatial resolution of 0.5 m) is obtained from the NSF Open Topography

website [124]. Here only the first pulse return is available. We provide the original Utah-5

test data without preprocessing in Figure 5.15.a. As can be seen there, it contains buildings

and various vegetation on a sloped terrain. More detail on this test data can be found in the

experiments section. We also picked a subpart of the Utah-5 test data as in Figure 5.15.b to

explain some steps of the proposed method better.

Unfortunately, raw LiDAR measurements are often noisy due to sensor characteristics and

other measurement errors. Specifically, most first and some last LiDAR pulse returns may

cause irregular measurements on trees since the sent LiDAR pulse is reflected between tree

branches. Sometimes, parts of the sent pulse don’t gets back to the sensor. Therefore, the

tree representation by first pulse data is not fully correct. For these reasons, morphological

opening by a 5 × 5 disk is applied on DSM as Is = I ◦ B where I is the DSM, ◦ is the
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a. DSM data b. Subpart of DSM

Figure 5.15. The original Utah-5 DSM test data without preprocessing.

morphological opening operation and B is the 5× 5 disk shaped structuring element. This

operation removes some of the small objects and outliers in DSM data. Removed objects are

elevation thresholded by

Os = (I − Is) ≥ th (5.1)

where Os is the binary class of small objects and th is the elevation threshold. Therefore,

some trees and small objects (such as cars and low vegetation) are detected in advance. Stereo

image based DSM data also contains outliers and small objects. Therefore, if stereo DSM

will be used, the same morphological opening operation should also be applied to it.

We first apply the preprocessing step to the Utah-5 test data and provide the obtained results

in Figure 5.16.a. We also provide the small object detection results from this image in

Figure 5.16.b. We will benefit from these in the following sections.
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a. Preprocessing result b. Small object detection results

Figure 5.16. Demonstration of the preprocessing and small object detection steps.

5.2.2. Initial Segmentation

In Chapter 5, the height data is used in the probabilistic object center location voting

framework. We used edges of DSM in the voting process and obtained the object center

probability map. The first step in DSM segmentation is based on the modes of this pdf. These

will be used in extracting reference elevation values. Let’s say M modes are extracted. These

can be represented as (xBi
, yBi

) for i = 1, · · ·,M . An initial segment can be obtained with

connected pixels to each (xBi
, yBi

) in an iterative manner as

Xk = (Xk−1 ⊕B) ∩ S (5.2)

where,

S =
M∑
i=1

|Is(xBi
, yBi

)− Is(x, y)| < th (5.3)
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a. Non-ground segment b. Ground segment

Figure 5.17. Initial segmentation results on non-ground and ground.

where X0 = S(xBi
, yBi

), ⊕ denotes the dilation operation, and B is a 3 × 3 structuring

element [125]. If Xk = Xk−1, then the iteration stops.

Initial segmentation result on the subpart of Utah-5 test data is given in Figure 5.17. Here

white dots indicate initial segmentation results. Two cases are given here. In the first case, the

mode is on a building. The initial segmentation result for this case is given in Figure 5.17.a as

white dots. As can be seen, the initial segment partly overlaps the building. In the second

case, the mode is on a sloped region. Initial segmentation result for this case is given in

Figure 5.17.b as white dots. As can be seen there, the initial segment spreads on the ground

with the same elevation value.
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Algorithm 5.2. Morphological region growing on DSM data

BEGIN
(xi, yi) ∈ Xk; points in the initial segmentation
µX = 1

N

∑N
i=1 Is(xi, yi); the mean elevation value

tl, tu, ts; lower, upper, and final elevation threshold values
Tmax; maximum iteration number
Bs; sequence of 3× 3 structuring elements for thickening
~; hit or miss transform
�; erosion operation
counter = 0; initialize the counter
repeat
X+
k = Xk ∪ (Xk ~Bs); thicken the current segment

X+
b = X+

k − (X+
k �B); extract the boundary of the thickened segment

∆µ+k = µX − Is(xb, yb) where (xb, yb) ∈ X+
b ; the elevation difference for each

boundary pixel
if ∆µ+k > tu; if any boundary pixel’s elevation value is too low then
X+
k (xb, yb) = 0; set the related pixel to zero

end if
if ∆µ+k < tl; if any boundary pixel’s elevation value is too high then
Xk+(xb, yb) = 0; set the related pixel to zero

end if
if X+

k = Xk or counter > Tmax then
EXIT = true; stop growing

else
EXIT = false; keep growing
Xk = X+

k ; update the initial segment
µX = 1

N

∑N
i=1 Is(xi, yi); update the mean elevation value

counter+ = 1; increase the counter
end if

until EXIT
µb =

1
M

∑M
i=1 Is(xbi , ybi) where (xb, yb) ∈ X+

b ; outer perimeter mean elevation
∆µ = µX − µb; elevation difference of the object and its outer perimeter
if ∆µ < ts; if not satisfying being an object then
Xk(xi, yi) = 0; delete all pixels

end if
return Xk

END
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5.2.3. Morphological Region Growing

The initial segmentation result will be used in the morphological region growing method to

extract possible non-ground object points. The proposed method is algorithmically explained

in Algorithm 5.2. This method can be summarized as follows. The outer boundary of the

initial segment is added to the segmentation result at each iteration. This is done by checking

the elevation value of each pixel in the outer boundary. The final segmentation result is

obtained if the mean elevation height of the segment is greater than the mean elevation height

of the segment’s border pixels. This method is performed for all modes of the vote map.

Finally, all segmentation results are merged.

The iteration steps of the proposed morphological region growing algorithm on the initial

non-ground segment (given in Figure 5.17.a) is given in Figure 5.18. In this figure, white dots

indicate the segmentation result at each iteration. Red dots are pixels whose height is lower or

higher than the upper and lower thresholds respectively. As the region grows at each iteration,

the mean height of the segment is updated. Hence, if the non-ground object is a building and

has a sloped or flat rooftop, the algorithm can handle it. As the iterations end, the algorithm

checks whether the segmentation result belongs to a non-ground object or not. For the case

in Figure 5.17.a, it belongs to a non-ground object. Therefore, the final segment is accepted.

Iteration steps of the proposed region growing algorithm on the initial ground segment (given

in Figure 5.17.b) is given in Figure 5.19. For this case, the final segment is rejected.

5.2.4. Final Non-ground Object Segmentation

In order to detect all objects and extract their shape in DSM data, the algorithm in Algorithm

5.2 is applied on all modes of pdf. As corresponding segments are obtained, they are merged

with the initial small non-ground object detection result by a logical “or” operation [126].

This step can be formulated as
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a. Iteration 1 b. Iteration 4

c. Iteration 7 d. Iteration 10

Figure 5.18. Mmorphological region growing algorithm on the initial building segment.

O = Os ∪
M∑
j=1

Xk(j) (5.4)

where O is the final object detection result. Os is the small non-ground object detection result

obtained in the preprocessing step. Xk(j) is the segmentation result for the jth mode of pdf.

Object detection results for the Utah-5 test data are given in Figure 5.20. Small object

detection result is given in Figure 5.20.a. Segmentation via morphological region growing is

given in Figure 5.20.b. Their combination is given in Figure 5.20.c. As can be seen in this

figure, most of the objects are detected in this test data. Quantitative results for the Utah-5
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a. Iteration 1 b. Iteration 4

c. Iteration 7 d. Iteration 10

Figure 5.19. Morphological region growing method on a ground segment.

a. Small non-ground objects b. Morphological region growing

result

c. Final non-ground objects

Figure 5.20. Non-ground object detection results for the Utah-5 DSM test data.

and other test data will be given in Section 5.2.6.
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5.2.5. DTM Generation

In previous steps, non-ground points are extracted by segmentation. At this step, the remaining

points are taken as ground points. Hence, DTM can be generated from these. Here, we use

image inpainting to generate DTM as suggested by Pingel et al. [100] and Özcan et al. [127].

In image inpainting, missing pixels of the image are interpolated with existing neighbor

pixels [128]. Similarly we label the non-ground pixels in DSM as missing and fill them with

Derrico’s [129] image inpainting method in order to obtain the DTM. The true DTM and

generated DTM for Utah-5 is given in Figure 5.21. As can be seen in this figure, the generated

and true DTMs are similar.

a. True DTM b. Generated DTM

Figure 5.21. DTM for the Utah-5 DSM test data.

5.2.6. Experiments on 3D Data

The proposed method is tested on three different data sets. The first data set is obtained from

the publicly available NSF Open Topography website which provides LiDAR based DSM

data [124]. Challenging residential regions are selected from the web site and the test set is

formed accordingly. The proposed method is also compared with three other methods on this

data set. The second data set is composed of DSM data generated from stereo WorldView

image pairs. Industrial and residential regions are selected here. The third data set is obtained

from ISPRS which is used as a benchmark [83].
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For all data sets, the performance of the proposed method is provided in terms of non-ground

object detection results. We use several evaluation metrics are used. Specifically, Kappa

(K) score, total error (TE), type-I error (TI), and type-II error (TII) are used for the first and

second data sets [83, 130]. Completeness (CP), correctness (CR), and F1 score metrics are

used in the third data set to be consistent with other methods using this data [131].

5.2.6.1. Parameter Settings

There are three data sets as mentioned previously. Spatial resolution is 0.5 m for the first two

data sets. Spatial resolution is 0.09 m for the third data set. Next, parameter values for the

first two data sets are provided. These values should be rescaled according to the resolution of

the third data set. Through the voting and segmentation steps it is assumed that a non-ground

object is at least one meter above the ground. Therefore, the elevation threshold in Eqn. 5.1 is

selected as th = 1 m. This value may be increased or decreased with respect to the height of

small objects to be detected. When a non-ground object is larger compared to the window

size in Eqn. 3.23, votes may not accumulate at one location on the object; but may result

in more than one accumulation point. This may cause multiple peaks in the estimated pdf.

On the other hand, if the window size is selected too large, then some objects may not be

detected. As a compromise, the voting window size in Eqn. 3.23 is selected as w = 3 m.

The width of the Gaussian kernel in Eqn. 4.1 also directly affects the number of peaks in the

estimated pdf as with the voting window size. Therefore, it is also set as σ = 3. To note here,

if multiple peaks are formed in the estimated pdf, this will only increase the processing time

since the proposed method starts segmentation at each mode point. Besides that, there will be

no difference in the obtained result.

The iteration number in Algorithm 5.2 is set as Tmax = 10. Increasing Tmax leads to longer

processing time and does not significantly change the object detection result. Elevation

threshold values in Algorithm 5.2 are set as tl = −5 m, tu = 1 m, and ts = 1 m. The tl

value is set such that the segmentation step can continue with a higher object part. Here,

the negative value only indicates the difference between the height values in the present and

nearby object parts. Let’s assume that an object is partly surrounded by a taller object where

the height difference is lower than five meters. If region growing starts on the lower object, it
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Figure 5.22. Utah DSMs. 1 row: Utah 1-3; second row: Utah 4-6; third row: Utah 7-9.

will continue growing on the taller object. If tl < −5 m, then segmentation stops on the lower

object.

5.2.6.2. NSF Open Topography LiDAR Data Set

The first data set is obtained from the publicly available NSF Open Topography website [124].

The reader can download LiDAR point cloud data by defining an area of interest from this

website. The reader can also download DTM of the selected area from the mentioned website.

Nine test samples are picked from the NSF Open Topography website. These are labeled as

Utah 1-9 throughout the study. DSM data for all test samples are given in Figure 5.22.

The grid resolution for all test samples is 0.5 m. The DTM for this data set is also available on

the website. Due to lack of manually generated ground truth for test samples, the downloaded

DTM is used to form the ground truth. Therefore, the provided results in this section will be
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Figure 5.23. Generated DTMs for Utah-1, Utah-2, Utah-7, Utah-8 and Utah-9 test data.

relative to the downloaded DTM.

Test samples in this data set are acquired from residential regions. These are summarized

in three cases according to the terrain type, object size and type as follows. Test samples

Utah 1-3 have flat terrain; buildings here are mostly in one piece. Building layouts in these

test samples change from small to large. There are trees on the side of roads and buildings.

In Utah-1, there is one large building with an irregular shape. In Utah-2, there is one large

building with flat roof. In Utah-3, buildings mostly have equal size with four of them having

different size. On these samples, the proposed method is tested for detecting objects with

varying size located in a flat terrain. Utah 4-6 test data have sloped terrain with regular sized

separate buildings. In Utah-4, buildings are surrounded by trees. In Utah-5 and Utah-6,

buildings have irregular shapes with trees nearby. On these samples, the proposed method

is tested for detecting objects on a sloped terrain. In Utah 7-9, buildings are connected with

varying size and some buildings exhibit irregular shape. In Utah-7 and Utah-8, the terrain is

mostly flat. In Utah-9, the terrain is partly sloped. On these samples, the proposed method is

tested for detecting large and connected objects on a flat or sloped terrain.
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Figure 5.24. Detailed object detection results for the Utah 1-2-7-8-9 test data.

The proposed method is compared with three other methods in the literature using the NSF

data set. The first method is introduced by Pingel et al. [100]. This method is based on

iterative morphological filtering where it generates DTM and then detects objects on the

normalized DSM. The software for this method is called simple morphological filter (SMRF)

which can be obtained from [132]. Within this software, default parameter values are used

as suggested in [100]. The second method is proposed by Mongus et al. [101]. This method

is also based on morphological operations. It uses a top-hat scale-space transform using

differential morphological profiles on point’s residuals from the approximated surface. Surface

and regional features are used for building detection. The software for this method is called

gLiDAR and can be obtained from [133]. Within this software, default parameter values
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are used as suggested in [101]. The third ground filtering method is based on an iterative

Empirical Mode Decomposition (EMD) [127]. For the assessment of these methods, ground

truth object locations are formed as follows. First, the ground truth DTM is subtracted from

DSM and the normalized DSM is obtained. Then, pixels above one meter are considered

as belonging to a non-ground object. Remaining pixels are taken as ground. Since SMRF,

gLiDAR, and EMD filtering methods also generate DTM, the same procedure is applied to

detect non-ground objects.

Generated and true DTMs for Utah 1-2-7-8-9 are given in Figure 5.23 respectively. Here

the first column corresponds to DSM data. The second to last columns correspond to true

DTM, proposed method, SMRF, gLiDAR and EMD-filtering results respectively. As can be

seen in this figure, all other three methods in the literature had more problems in filtering

large buildings. Detailed non-ground object detection results are also given in Figure 5.24.

Here columns from left to right correspond to the proposed method, SMRF, gLiDAR and

EMD-filtering results respectively. True non-ground object detections are labeled in green,

true ground detections are labeled in gray, miss non-ground detections are labeled in blue,

and false non-ground detections are labeled in red in these figures. The problem in detecting

large buildings is clearly seen in this figure. All three methods in the literature have miss

detections on large objects. However, the proposed method only has miss detection problems

on objects which are connected to another higher object. This is because of the segmentation

algorithm. At the end of segmentation, it is assumed that the object is taller then its immediate

neighbors. Hence, it is tested whether the elevation height difference of the segmented object

and its perimeter is above a threshold. This assumption may fail when buildings are connected

side by side and one is taller than the other. Part of the largest building is lower than its

surrounding for all directions in the Utah-1 test data. Hence, it could not be detected. The

reason for this result can be explained as follows. The missing part did not get sufficient votes

in the probabilistic voting step. Hence, no segmentation has started there. The SMRF and

EMD methods also had a problem in detecting the same part of the building. gLiDAR did not

detect most parts of the same building. There are also similar results on the Utah 7-8-9 test

samples. Here, some buildings which are connected to a taller building could not be detected

by the proposed method.



116

Object detection performance of the proposed and the other three methods are tabulated in

Table 5.1. The values in this table are given in percentages. As can be seen in this table, the

proposed method performed slightly worse than SMRF and EMD and better than gLiDAR in

terms of all metrics on the Utah-1 test data. The proposed method performed better than the

other three methods on the Utah-2 test data. Here, the other three methods have large Type-I

error because of the miss detection of the largest building. All three methods have similar

results on the Utah-3 test data. For Utah 4-6 test data, even though the terrain is sloped and

the proposed method is not based on generated DTM, the obtained result is similar to the

other methods. The proposed method has miss detections on the Utah-7 test data. Therefore,

it has a high TI error. The proposed method has the best K, TE, TI and TII values on the

Utah 8-9 test data. These results can be summarized as follows. If buildings are not large in

the test data (as in Utah-3), all four methods have good and similar results. If there are large

buildings in the test data (as in Utah-1-2-7-8-9), other methods mostly fail where the proposed

method works properly. In a sloped terrain, SMRF has the best score with the proposed and

gLiDAR methods having similar values. The proposed method outperforms other methods on

detecting connected and large buildings.

Table 5.1. Performance results on the NSF Open Topography LiDAR data set.

Proposed Method SMRF [100] gLiDAR [101] EMD [127]

Test-Case K TE TI TII K TE TI TII K TE TI TII K TE TI TII

Utah-1 97.34 1.08 1.48 0.02 97.86 0.87 1.19 0.03 91.87 3.22 4.32 0.03 97.83 0.88 1.21 0.05

Utah-2 98.59 0.65 1.01 0.03 83.27 7.45 10.52 0.07 83.39 7.40 10.44 0.14 83.06 7.55 10.61 0.18

Utah-3 97.53 1.14 1.76 0.03 99.36 0.30 0.45 0.03 98.83 0.54 0.82 0.05 99.48 0.24 0.34 0.07

Utah-4 97.12 1.43 2.41 0.28 97.97 1.01 1.60 0.32 97.09 1.45 2.55 0.13 97.89 1.05 1.04 1.06

Utah-5 97.28 0.96 1.14 0.31 98.35 0.58 0.66 0.30 96.78 1.13 1.40 0.18 98.02 0.70 0.53 1.28

Utah-6 94.57 2.43 3.45 0.33 96.59 1.54 2.01 0.60 94.18 2.60 3.70 0.32 97.06 1.33 1.48 1.06

Utah-7 87.40 6.08 9.65 0.09 83.49 7.94 12.14 0.33 87.49 6.05 9.52 0.24 77.38 10.81 15.58 1.26

Utah-8 97.21 0.97 1.24 0.02 74.09 8.07 9.48 0.06 82.79 5.60 6.71 0.39 69.24 9.50 10.53 3.42

Utah-9 88.78 4.85 6.81 0.07 73.21 11.07 14.24 0.46 72.87 11.21 14.31 0.88 63.93 14.57 17.72 2.10

Mean 95.09 2.18 3.22 0.13 89.36 4.31 5.81 0.25 89.48 4.36 5.98 0.26 87.10 5.18 6.56 1.16

Min 87.40 0.65 1.01 0.02 73.21 0.30 0.45 0.03 72.87 0.54 0.82 0.03 63.93 0.24 0.34 0.05

Max 98.59 6.08 9.65 0.33 99.36 11.07 14.24 0.60 98.83 11.21 14.31 0.88 99.48 14.57 17.72 3.42

Std 4.12 1.96 3.03 0.13 10.87 4.23 5.65 0.21 8.57 3.51 4.61 0.26 14.01 5.46 7.06 1.09
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Results in Table 5.1 can be summarized as follows. The proposed method has the best mean

Kappa score with 94.91 % where SMRF, gLiDAR and EMD mean Kappa scores are 89.36 %,

89.48 % and 87.10 % respectively. The proposed method has the best mean TE, TI, and TII

values with 2.25 %, 3.30 %, and 0.17 % respectively. It also has the lowest standard deviation

(std) of all metrics. This shows the robustness of the proposed method on such a diverse test

set.

5.2.6.3. WorldView Stereo Image based DSM Data Set

The second data set is composed of DSM generated from WorldView-2 stereo image pairs.

More information on DSM generation from these can be found in [31,134]. Spatial resolution

of the available DSM is 0.5 m. In this test set, the sharpness of DSM is slightly worse

compared to the first data set. This affects building boundaries such that they have smoother

transitions towards the ground. Therefore, this data set shows how the proposed method

works under these constraints.

In Figure 5.25 we give the WorldView data set and filtering results. Here columns from

left to right correspond to panchromatic image, DSM, generated DTM and object filtering

results respectively. True non-ground object detections are labeled in green, true ground

detections are labeled in gray, miss non-ground detections are labeled in blue, and false

non-ground detections are labeled in red in these figures. In the first column of Figure 5.25,

four panchromatic test images where the first two are residential and last two are industrial

regions in Istanbul, Turkey are provided. In the second column of the same figure, DSM data

of the same locations are provided. In residential regions, buildings have regular size but

closely located buildings look like connected due to the nature of the DSM data. In industrial

regions, some buildings have very large footprints. In the third column, generated DTMs

are given. In the last column, object detection results are given. Due to lack of ground truth

information for object locations, they are extracted manually.

Quantitative results of the second data set are given in Table 5.2. The values in this table are

given in percentages. Unfortunately, the other three methods could not be used on this data

set since they need LiDAR points as input. The proposed method performs well in residential
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Figure 5.25. Filtering results on the WorldView stereo image based DSM data set.

regions where the Kappa score for the first two data set is over 85 %. In industrial regions,

Kappa scores are worse. False detections cause large TII error in these test data. There are

some embankments where one side of them looks like an object and the other side looks like

belonging to the terrain in the Industrial-1 test data. Thus, it misguides the segmentation

process and causes false detection (in red at the upper right corner of the image). There is

a bridge in the Industrial-2 test data which is correctly detected as an object. However, the

terrain which is connected to the bridge was also detected as an object, which caused a large

TII error. In the upper right of the same test data, part of a large building could not be detected.

Even though the building has a flat roof, it has an irregular distribution of height data on its

roof. Hence, the segmentation method could not work properly.
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5.2.6.4. ISPRS Vaihingen Data Set

The third data set is from ISPRS. They provide a semantically labeled data set which holds

LiDAR data for several benchmark test locations [135]. In this study, the first five tiles of

Vaihingen data are used. For this data set, trees and vegetation are removed by using an

NDVI mask from object detection results. Therefore, it is assumed that the remaining object

detection results represent buildings. Hence, the performance of the proposed method was

evaluated on building detection results of the ISPRS reference data. To be compatible with

other methods using this data set, the completeness (CP), correctness (CR), and F1 score

results are given in Table 5.3 [135]. Here, pixel wise building detection results are provided.

As can be seen in this table, mean completeness and correctness scores are close where mean

completeness is 90.33 % and mean correctness is 88.92 %. The F1 score, which is harmonic

mean of completeness and correctness, is 89.57 %. The reader can check the most recent

comparison results from the mentioned ISPRS website [135]. To note here, most of the other

methods use supervised approaches in the ISPRS data. Although the proposed method has an

unsupervised approach, it still provides good results.

Building detection results on three test samples from the third data set are given in Figure 5.26.

Here columns from left to right correspond to the 2D image, DSM, and building detection

results respectively. In the last column, true non-ground object detections are labeled in green,

true ground detections are labeled in gray, miss non-ground detections are labeled in blue,

and false non-ground detections are labeled in red. As can be seen in this figure, most of the

Table 5.2. Performance results on the WorldView DSM data set.

Test-Case K TE TI TII

Residential-1 86.71 4.64 5.26 2.24

Residential-2 86.28 5.27 6.44 1.49

Industrial-1 83.44 6.45 6.12 7.40

Industrial-2 79.25 9.18 7.71 12.24

Mean 83.92 6.39 6.38 5.84



120

buildings are detected. In cases where a building is partly surrounded by taller buildings or

trees, some miss detections occur. Such a case can be seen in the last row of Figure 5.26

where a building is surrounded by trees at the bottom center of the test data. Hence, it could

not be detected.

5.3. EMD BASED DSM FILTERING

In the previous section, we proposed a segmentation method for DSM and LiDAR data

using the voting process and a novel morphology based segmentation algorithm. Most of

the proposed methods in the literature perform well in regions where the terrain is flat and

non-ground objects have regular shape. However, for steep sloped and abruptly changing

regions, they could not perform as expected. Morphology based methods seem adaptable

to steep sloped regions if the structuring element size is chosen well. Though it requires

a pre-knowledge of the terrain. This prevents its usage for all region types automatically.

Besides, detecting large and small objects at the same time are always hard while using

morphology based methods.

To overcome the mentioned problems, a novel method using Empirical Mode Decomposition

(EMD) is proposed. EMD has been used successfully by the remote sensing community

for hyperspectral image classification. Demir and Erturk [136] used EMD to decompose

hyperspectral image bands. They used the sum of low order IMFs as features in SVM

Table 5.3. Performance on the ISPRS Vaihingen, Germany data set.

Test-Case CP CR F1

Vaihingen-1 93.63 85.78 89.53

Vaihingen-2 88.30 89.40 88.80

Vaihingen-3 89.41 87.72 88.55

Vaihingen-4 89.10 91.00 90.00

Vaihingen-5 91.22 90.69 90.95

Mean 90.33 88.92 89.57
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Figure 5.26. Building detection results on the Vaihingen 1-3-5 of ISPRS data set.

for classification. In a similar study, Demir et al. [137] used two-dimensional EMD for

hyperspectral image classification. Gormus et al. [138] used EMD and wavelets together for

dimensionality reduction in hyperspectral images. Erturk et al. [139] applied EMD to each

hyperspectral image band to generate new features for classification purposes. This way, they

improved the hyperspectral image classification accuracy significantly. He et al. [140] used

EMD and the morphological wavelet transform to extract features for hyperspectral image

classification.

The proposed method is based on iteratively applying two-dimensional EMD to the given

LiDAR data in Digital Surface Model (DSM) form. DSM is generated from LiDAR point data

using nearest neighbor interpolation. The local, nonlinear and non-stationary characteristics

of EMD may help to solve the DTM generation and point classification (as ground and

above-ground objects) problems in a successful manner.
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Within the proposed method, EMD is used in an iterative manner. For each EMD iteration,

the corresponding residual signal is obtained and it is used as an adaptive threshold to detect

above-ground objects crudely. Then, the obtained results are merged using binary logical or

operation. This step is explained in Section 5.3.4. Then, detected above-ground objects are

discarded from DSM data and image inpainting is applied to construct the final DTM. Using

it and slope based thresholding, above-ground objects can be detected in a fine manner. This

part is explained in Section 5.3.6. To explain these steps visually, flowchart of the proposed

method is proposed in Figure 5.27. The proposed method is tested on two publicly available

data sets. Besides, it is compared with other methods in the literature. The obtained results

are provided in Section 5.3.8.

5.3.1. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a data-driven and model free method used to

decompose a signal into additive and finite set of oscillatory modes [141]. EMD is based

on the local characteristics of the signal. Therefore, it can be applied to nonlinear and

non-stationary signals such as the ones in this study.

EMD decomposition of a two-dimensional signal s(i, j) (with horizontal and vertical indices

as i and j) can be represented as

s(i, j) =
K−1∑
k=1

mk(i, j) + r(i, j) (5.5)

where, mk(i, j) are the Intrinsic Mode Functions (IMF) and r(i, j) is the residual signal. Here,

K − 1 is the number of IMFs in EMD. When all the IMFs and the residual signal is summed,

the original signal is obtained [141]. In this decomposition, the first IMF corresponds to the

fastest fluctuating part of the signal. The residue represents the slowest fluctuating part of the

signal. In this study, the residue is used for DTM generation.
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Figure 5.27. Flowchart of the proposed EMD based DSM filtering method.

5.3.2. IMF Extraction

IMF extraction is based on an iterative process called as sifting [141]. Within this method,

local maxima and minima of the signal are extracted. Then, they are used for constructing

upper and lower envelopes respectively. Based on these, average of the envelopes is calculated.

This value is subtracted from the original signal. The result is checked whether it satisfies

being an IMF. If this condition is satisfied, then the result is kept and sifting continues on the

average of the envelopes. Otherwise, sifting continues on the subtracted result.
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Extracted IMFs have specific characteristics as follows. First, the number of local extrema

and zero crossings of each IMF must vary by at most one. Second, the average of upper and

lower envelopes of each IMF should be zero. Third, the number of zero crossings in the IMF

decreases with respect to its index value k. The IMF extraction algorithm based on these

constraints are provided in Algorithm 5.3. As this algorithm is run, IMF components and the

residue term is obtained.

Algorithm 5.3.IMF extraction algorithm based on iterative sifting process

BEGIN
k; iteration number
k = 1

s(i, j); image to be decomposed
r(i, j) = s(i, j)

repeat
extract local maxima and minima of r(i, j)
interpolate local maxima to obtain eu(i, j)
interpolate local minima to obtain el(i, j)
a(i, j) = (eu(i, j) + el(i, j))/2; average of envelopes
d(i, j) = s(i, j)− a(i, j); oscillating part of the image
if d(i, j) satisfies being IMF conditions then
mk(i, j) = d(i, j)

r(i, j) = a(i, j)

k = k + 1

else
r(i, j) = d(i, j)

end if
until less than two local maxima or minima in r(i, j)
return m1(i, j),m2(i, j), · · ·,mK−1(i, j), r(i, j)
STATE END

5.3.2.1. Extrema Detection

In an image, local extrema (maxima or minima) may be defined in several ways. Generally

speaking, a pixel is a local maximum if it’s value is higher than all its neighbors. There are

also other definitions such as regional extrema, extrema in a neighboring window, and extrema

extraction with morphological reconstruction [142, 143].
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In this study, an extrema detection method is proposed based on morphological opening with

varying structuring element size, wi. In the proposed method, a local maximum may be the

entire top of an object. Hence, if subtraction of the opening result from original DSM (tophat

transform result) is larger than a threshold, then it is accepted as a local maximum and all

other pixels are assumed to be local minima [125]. This way, any pixel in the image will be

either local minima or maxima.

5.3.2.2. Envelope Estimation

In sifting process, upper and lower envelopes are estimated from local maxima and minima

respectively. Typically a cubic interpolator is used for envelope estimation. There are also

other interpolator types used in two-dimensional EMD applications [142, 144, 145]. In this

study, the upper and lower envelopes are formed using local maxima and minima extracted

in the previous section. To extract the upper envelope, local maxima pixels in the image are

labeled as missing. Using the modified image, the upper envelope is estimated by image

inpainting. To extract the lower envelope, local minima pixels in the image are labeled as

missing. Using the modified image, the lower envelope is estimated by image inpainting.

Here, Derrico’s image inpainting implementation is used [129]. This envelope detection

method gives better upper and lower envelopes when there are small number of maxima or

minima in the image.

5.3.3. Applying EMD on a Sample DSM Test Data

A sample DSM test data (Utah3) is picked to demonstrate how the proposed method works.

This test data is obtained from the NSF web site as explained in detail in Section 5.3.8.2.

The Utah3 DSM test data is provided in Figure 5.28. In this data, there are buildings and

vegetation on a hillside. To explain the method in detail, a vertical profile of the DSM (with

line number 650) will be used. This profile is plotted in Figure 5.29.

First, EMD is applied to the Utah3 test data. To do so, one needs to define structuring element

sizes for extrema detection. As explained in Section 5.3.2.1, a morphological tophat transform

is applied on DSM and the result is thresholded for each element size. Pixels exceeding the
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Figure 5.28. The Utah3 DSM test data.
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Figure 5.29. Vertical profile of the Utah3 DSM test data with line number 650.

threshold are considered as local maxima and the others as local minima. For a small element

size, large buildings wont exceed the threshold and wont be used as local maxima. Hence,

the estimated residue will be passing over those buildings. For a better understanding, two

small and two larger structuring element sizes, wi, are used as 1, 3, 8 and 18 m on the one

dimensional profile given in Figure 5.29. Here, these structuring element sizes are picked to

span a wide operation range. The rationale in selecting these parameters will be explained in

detail in Section 5.3.8. The extracted residues are given in Figure 5.30. As can be seen in
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d. w4=18 m.

Figure 5.30. Residues obtained from the vertical profile of the Utah3 test data.

this figure, obtained residues hold less or more detail about the DSM based on the selected

structuring element size. To be more specific, as the disk size increases, the extracted residue

can track the terrain profile better.

5.3.4. Iterative EMD based Crude Object Detection

The residual signal can be used for above ground object detection from DSM data.

Unfortunately, one residue is not enough to detect all objects (with varying size) in DSM data.

Therefore, EMD is used in an iterative manner as explained next.

The residual signal is a good candidate of being an adaptive threshold for above ground

object detection in DSM data. Although there are other adaptive thresholding methods in the

literature, EMD characteristics (locality, nonlinearity, and non-stationarity) provide a much
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better threshold value. Hence, above ground objects, Oi, can be detected in a crude manner as

Oi = (Z −Ri) ≥ ti (5.6)

where Z is the elevation value in DSM, Ri is the residue term, and ti is the threshold value.

Detected objects are called as crude since these do not represent the final (and fine) detection

results.

The residue term depends on the structuring element size, wi, as mentioned in Section 5.3.2.1.

Changing this value allows reforming the residue term such that objects with different size

can be detected. Therefore, several structuring elements can be used with different size for

extrema detection in a parallel manner. Since each generated residue will have different

characteristics, the corresponding threshold should also be set accordingly. Therefore, a

different threshold, ti, is used for each residue.

Next, the iterative residue extraction and thresholding process is applied to the Utah3 test

data. In the previous section, residues were obtained with different structuring element sizes.

Using these, above-ground objects can be extracted by applying the threshold value, ti, as

0.1, 0.5, 1.3, 2.9 m. The rationale in selecting these values will be explained in Section 5.3.8.

Crude object detection results for the Utah3 test data are given in Figure 5.31. As can be seen

in this figure, using different residues lead to different object detection results.

5.3.5. Combining Object Detection Results

As mentioned in the previous section, applying EMD in an iterative manner leads to object

detection results with different sizes. These can be combined by a logical or operation [126].

The rationale here is as follows. The logical or operation gives a detection result even if the

detection is done in one scale. Hence, the combined crude object detection will be as
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a. t1=0.1 m. b. t2=0.5 m.

c. t3=1.3 m. d. t4=2.9 m.

Figure 5.31. Crude object detection results from the first to the fourth residue.

O =
L⋃
l=1

Ol (5.7)

where
⋃

represents the setwise logical or operation. Ol for l = 1, · · ·, L represent crude

object detection results. Combined object detection result for the Utah3 test data are given in

Figure 5.32. As can be seen in this figure, combining the result provides good above ground

object detection for the Utah3 test data.



130

Figure 5.32. Combined crude object detection result for the Utah3 test data.

5.3.6. DTM Generation and Fine Object Detection

Crude object detection results can be used in DTM generation. This leads to fine object

detection. In this section, both methods are explained.

5.3.6.1. DTM Generation

In general, ground points will be needed to generate the DTM of a region. To do so,

non-ground points should be generated. In this study, image inpainting is used for this

purpose [128]. Here, non-ground pixels (extracted in the previous section) are filled with the

inpainting process. Hence, DTM is generated.

The generated DTM from the Utah3 test data is provided in Figure 5.33.a. The ground truth

DTM (downloaded from the NSF Open Topography website) is provided in Figure 5.33.b

[124]. More information on this data is given in Section 5.3.8.2. As can be seen in Figure 5.33,

the ground truth and generated DTMs are similar.

5.3.6.2. Fine Object Detection

If the generated DTM perfectly matches to the original DTM, then anything above the ground

may be labeled as an object. Hence, anything above ground is called as a non-ground object.
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a. Generated DTM b. Ground truth DTM

Figure 5.33. DTM generation result on the Utah3 test data.

To detect these, the generated DTM is subtracted from the original DSM and the normalized

DSM is obtained. In this form, an elevation threshold can be used to detect non-ground objects.

However, this may not be a good option to detect objects for hilly or steep sloped regions

since in these regions generating a good DTM is not easy. Such examples are provided in

Section 5.3.8. Therefore, slope based thresholding is used here initially proposed by Pingel et

al. [100].

This method is modified by taking the squared power of the slope of DTM and adding it to

a fixed threshold. For flat regions, the slope will be small. Hence, taking its power will not

change the threshold much. For steep sloped regions, the slope will be large. Therefore, it

will increase the threshold and decrease false detection results. Based on these observations,

the fine object detection, FO, will be as

FO = Zn ≥ (ρ+∆2) (5.8)

where Zn is the normalized DSM. ρ is the fixed elevation threshold value and ∆ is the slope

at given location. Actual values for these parameters are obtained experimentally as explained
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a. Extracted objects b. Ground truth

Figure 5.34. Fine object detection results on the Utah3 test data.

in Section 5.3.8. This step is called as fine object detection, since it benefits from both crude

object detection and the DTM generation results.

Fine object detection results for the Utah3 test data are provided in Figure 5.34. In the

same figure, the ground truth data is provided as well. As can be seen in this figure, fine

object detection works fairly well. Quantitative comparison results will be provided in

Section 5.3.8.2.

5.3.7. Pseudo Code of the Proposed Method

In order to clarify the above procedure, a different approach is provided here. Hence, the

pseudo code is given in Algorithm 5.4. Here, the proposed method is explained using abstract

operations. Hence, no specific programming language is targeted. We believe this will help

the reader to grasp the proposed method better.
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Algorithm 5.4. Pseudo code of the proposed EMD based filtering method

BEGIN
Objects; initial binary object class
Is; corresponding DSM
Id; generated DTM
ρ; elevation threshold in meters
N ; interval number
wi; disk size in meters
ti; threshold in meters
i = 1; iteration number
∼; complement
repeat
residue = EMD(Is, ti, wi);
crudeObjects = (Is − residue) > (ti ∗ 0.75);
Objects = Objects | crudeObjects;
i = i+ 1;

until i>N
Id = inpaint(∼ Objects, Is);
fineObjects = (Is − Id) > (ρ+∆2);

return Id, fineObjects
END

5.3.8. Experiments on 3D Data

The performance of the proposed method is tested on two publicly available data sets. The

first data set is obtained from ISPRS. Although this is a relatively old data set, it has been used

as a benchmark on several studies. This data set contains various terrain characteristics like

vegetation, building, road, railroad, bridge, and water surface. The second data set is obtained

from the publicly available NSF Open Topography website. Forest and residential regions are

specifically picked for this data set. For both data sets, the performance of the proposed method

is provided in terms of object detection. Here, Kappa scores are used [130]. We also compare

the proposed method with other methods in the literature. Based on these comparisons, the

strengths and weaknesses of the proposed method are emphasized. MATLAB codes used in

experiments are also provided in [146]. The reader can also evaluate our results using these

codes.
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5.3.8.1. ISPRS LiDAR Data Set

The first data set used in this study is provided by Sithole and Vosselman [83]. It is publicly

available at [117]. This data set is composed of 15 airborne LiDAR samples of which the first

nine are from urban regions. The remaining six samples are from rural regions. The point

spacing in urban areas (first nine data set samples) is between 1 and 1.5 m. For rural areas

(last six data set samples) the point spacing is between 2 and 3.5 m. Sithole and Vosselman

specifically picked these 15 samples such that they should be challenging for automated

methods. The ground truth data is also provided for this data set. Here, each LiDAR point is

manually classified either as ground or above ground object.

The performance of the proposed method is compared with five other (best performing)

methods in the literature. The comparison results are tabulated in Table 5.4 in terms of Kappa

score percentages. For the proposed method, 10 iterations are applied with the structuring

element size, wi, set from 1 to 20 m in 10 equally spaced values. The corresponding object

detection threshold values are set from 0.1 to 4 m in 10 equally spaced values. In selecting

these values, the rationale was as follows. The maximum structuring element size is selected

in order to filter out the largest object in the tophat transform for the EMD extraction step.

Hence, it can be used as local maxima in EMD extraction. Object detection threshold values

are set according to the structuring element size such that most non-ground objects can be

detected. The iteration number does not affect the performance much. Such a test is provided

in Figure 5.37.a. There, the effect of other parameters on the performance is also analyzed. In

Eqn. 5.8 the elevation threshold is selected as ρ = 0.6m.

As can be seen in Table 5.4, the proposed method has the best mean Kappa score. It also

has the lowest standard deviation for Kappa scores. The standard deviation indicates the

reliability of the obtained mean Kappa score. It also indicates the performance of the proposed

method on different data sets as long as the mean Kappa score is high. It can be said that with

such a high mean Kappa score and low standard deviation, the proposed method performs

fairly well on different data samples compared to other methods in the literature. To briefly

summarize some data characteristics, samp51 has slope with vegetation. Samp52 and samp53

has very steep sloped regions. Samp54 has dense ground cover. Samp61 has large gaps with
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embankments in the road. Samp71 has a bridge with underpass and road with embankments.

In five samples out of 15 the proposed method has the best Kappa score. Notice that, for

samp53 and samp61 the proposed method performs fairly well compared to the ones in the

literature. In these test samples, the DSM has steep slopes and sharp ridges. These results

indicate that, the proposed method can handle such region types fairly well. The proposed

method also has the best Kappa score for samp41. In this test sample, there are very large

objects. Here, most morphology based methods failed to detect these large objects since

they need manually adjusted parameters in morphological operations. On the other hand,

Table 5.4. Comparison with five other methods in literature on the ISPRS data set.

Pfeifer Axelsson Meng Pingel Hu Proposed

[147] [148] [149] [100] [96]

samp11 66.09 78.48 70.96 82.4 82.78 82.04

samp12 91.00 93.51 92.28 93.8 94.02 93.77

samp21 92.51 86.34 93.79 94.43 94.26 95.86

samp22 84.68 91.33 87.83 92.07 91.76 89.56

samp23 83.59 91.97 83.35 87.02 90.47 89.45

samp24 78.43 88.5 82.83 89.49 89.52 88.96

samp31 96.37 90.43 93.31 95.00 93.41 92.24

samp41 78.51 72.21 88.27 78.41 87.47 91.04

samp42 93.67 96.15 97.18 93.07 97.10 89.84

samp51 89.61 91.68 81.18 90.74 91.49 92.20

samp52 41.02 83.63 58.43 78.8 83.69 83.15

samp53 30.83 39.13 25.60 47.24 53.06 61.15

samp54 88.93 93.52 80.61 92.65 94.57 92.48

samp61 47.09 74.52 50.16 75.38 71.08 76.08

samp71 66.75 91.44 64.11 90.52 90.54 89.90

Mean 75.27 84.19 76.66 85.40 87.01 87.18

Std 20.70 14.39 19.72 12.34 11.37 8.80
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Figure 5.35. Visual DTM generation results for some ISPRS data samples.

the proposed method did not seem to have such a problem. The proposed method could not

perform well on samp42 compared to the other methods. One possible reason for this poor

performance is the structure of the data. Here, there is a railroad and most test points belong

to one large object. Therefore, iterative EMD could not model this terrain characteristics well.

For the remaining test samples in this data set, the proposed method has either the second or

third best performance. These results indicate that the proposed method performs fairly well

on the publicly available ISPRS data set compared to other five (best performing) methods in

the literature.

To visually explain the obtained results, samp11, samp41, samp42, and samp53 are picked.

As mentioned before, these are challenging test samples. The original DSM, generated and

the ground truth DTMs for these test data are provided in Figure 5.35. In this figure, the first

row represents the original DSM for samp11, samp41, samp42, and samp53 respectively. The

second row represents the ground truth DTMs. The third row represents the generated DTMs

by the proposed method. For the same data set, object detection results and the ground truth

are provided in Figure 5.36. In this figure, the first row represents the ground truth for the

samp11, samp41, samp42, and samp53 respectively. The second row represents the object

detection results by the proposed method.
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Figure 5.36. Visual object detection results for some ISPRS data samples.

In obtaining object detection performances, some parameter values have been set. In this

section, the sensitivity of the proposed method to these parameter changes are analyzed. First,

the interval number (N) is considered. In the previous section, this value is set as 10. In order

to test the effect of this interval number on object detection performance, the following test is

applied. The interval number is changed from 2 to 20 (while keeping the lower and upper

limits of wi the same) and the mean Kappa scores (in terms of percentages) on 15 ISPRS test

samples is provided in Figure 5.37.a. As can be seen in this figure, the mean Kappa score

increases fairly fast till the interval value reaches six. Afterwards, increase in the Kappa score

becomes insignificant. This result can be explained as follows. The interval number directly

affects the number of window size (wi) used in operation. For example, when the interval

number is four, wi values will be as 1, 7, 14, and 20; keeping the lower and upper limits as 1

and 20. Each window size can be used to detect objects with a different size. Therefore, when

the interval number is increased, more objects can be detected. To be on the safe side, the

interval number is picked as 10 in this study.

Next, the maximum wi value in iterations is considered. The mean Kappa scores (in terms

of percentages) on 15 ISPRS test samples is provided in Figure 5.37.b. Here, the change of

the mean Kappa score of fifteen samples is provided when the maximum wi value changes.

Keeping the lower limit of wi as 1, the maximum (upper limit) wi value is varied from 16
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to 25 m with 1 m steps. For all maximum wi values, the interval number N is set as 10. To

explain this figure better, if the maximum wi is set as 16, this means that wi values from 1 to

16 in 10 equally spaced values are used. These are rounded as [1, 3, 5, 7, 9, 12, 14, 16, 18, 20]

in operation. As can be seen in Figure 5.37.b, when the maximum wi value changes, the mean

Kappa scores of fifteen samples do not change significantly. Only a 3% to 4% change in mean

Kappa score is observed. Hence, the proposed method is almost insensitive to the maximum

wi value. Finally, the effect of the maximum threshold value is tested in Figure 5.37.c. To

explain this figure better, if the maximum threshold is set as 4 m, this means that we use 10

equally spaced threshold values as [0.10, 0.53, 0.97, 1.40, 1.83, 2.27, 2.70, 3.13, 3.57, 4.0] m

in operation.

Analysis of the plots in Figure 5.37 reveal that in order to get a mean Kappa score above

85% the maximum structuring element size should be typically around 20 m. The maximum

threshold should be in the interval of 3 to 5 m and the interval number should be greater than

four. These settings are considered as default throughout the study. If the method will be used

only on urban area where there are very large objects (such as buildings) and the terrain is

not sloped, the maximum element size may be increased and the maximum threshold may be

decreased for better performance.

5.3.8.2. NSF Open Topography LiDAR Data Set

The second data set used in this study is obtained from the publicly available NSF Open

Topography website [124]. From this website, the reader can download LiDAR point cloud

data by defining an area of interest. The reader can also download the DTM of the selected

area from the mentioned website. Here, the DTM is generated from LiDAR points in which

data is stored in TIN structure [150].

Seven test samples are downloaded from the NSF Open Topography website. Three of these

are from the HJ Andrews Experimental Forest. These test samples represent forest regions

with dense trees. Four of the remaining test samples are from the State of Utah. These are

from residential regions with houses and other non-ground objects nearby. The grid resolution

of the test samples is 0.5 m. DTM of all test samples are also donwloaded. Due to lack of
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Figure 5.37. The effect of parameters on the performance for the ISPRS data set.

manually generated ground truth for the test samples, the downloaded DTM is assumed as

ground truth. Therefore, the provided results in this section will be relative to the downloaded

DTM. Metadata for the NSF Open Topography data set is provided in Table 5.5.

To compare the performance of the proposed method, two publicly available methods are

picked. The first method is by Pingel et al. [100]. MATLAB code for this method is available

at [132]. In accordance with the author, this method is called as Simple Morphological Filter

(SMRF). The second method is by Mongus et al. [101]. The software for this method is

available at [133]. It is called as gLiDAR in accordance with the website. These two methods

are specifically picked, since their performance was better than the others in the literature on

the ISPRS data set. Besides, their software was available online. Hence, the reader can test

them on a different data set for comparison purposes.
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First, the proposed method is tested on forest region samples (Andrews1, Andrews2, and

Andrews3). For the SMRF method, default parameter values are used as suggested at [132].

Within the gLiDAR software, the default parameter values are used suggested in [101]. For

the proposed method, the same parameter settings are used as in Section 5.3.8.1. The DSM,

ground truth DTM, and generated DTMs are provided in Figure 5.38. In this figure, the

first, second, and third rows correspond to Andrews1, Andrews2, and Andrews3 test samples

respectively. The first column corresponds to DSM data. The second column corresponds

to the ground truth DTM data. The third, fourth, and fifth columns correspond to DTMs

generated by the proposed method, SMRF, and gLiDAR respectively.

As can be seen in Figure 5.38, the forest region samples have dense vegetation over a sloped

terrain. Some regions also have sharp ridges. For the Andrews1 and Andrews3 test samples,

the proposed method lost some detail at some ridge regions. The SMRF method also had the

same problem. On the other hand, gLiDAR kept sharp ridges. This will be quantitatively seen

in Figure 5.39.

In forest region samples, trees are dense. As a result, almost every point can be labeled as an

object even for a small threshold value. In order to compare the object detection performance

of the proposed and two other methods, the following strategy is applied. First, the generated

DTM is subtracted from DSM and the normalized DSM is obtained. Then, it is thresholded

Table 5.5. Metadata for the NSF Open Topography LiDAR data set.

Name Size # points Type

Andrews1 442 × 488 912,783 dense forest

Andrews2 606 × 710 1,376,563 dense forest

Andrews3 670 × 757 979,133 dense forest

Utah1 521 × 516 1,149,354 residential

Utah2 524 × 763 2,040,449 residential

Utah3 734 × 840 2,885,314 residential

Utah4 693 × 717 1,001,804 residential
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Figure 5.38. DTM generation results on forest region test samples.

with multiple values and Kappa score for each is calculated. This way, object detection results

can be obtained for trees having different heights. Otherwise in such a dense forest region,

object (mostly tree) detection results may misguide the reader.

Kappa scores for the proposed and other two methods on forest region test samples are

provided in Figure 5.39. In this figure, squared, circular, and triangular marks represent

the proposed method, SMRF, and gLiDAR respectively. As can be seen in this figure, the

obtained Kappa scores are fairly high for all methods. Moreover, for threshold values of 2 m

and above, Kappa scores are higher than 80%. Based on these results, it can be claimed that

the proposed method performs as well as the other two methods in forest regions.

Next, the proposed method is tested on residential region samples (Utah1, Utah2, Utah3, and

Utah4). The Utah1 test site has buildings on a high sloped hillside. Also there is vegetation

around buildings. The Utah2 test site has large buildings on a flat terrain. The Utah3 test site

contains small buildings on a hillside. The Utah4 test site contains small buildings on a fairly

smooth hillside (with low slope). Here, vegetation around buildings is not very dense. As can

be seen here, these test sites represent fairly diverse region characteristics. On these samples,
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Figure 5.39. Object detection performances in terms of Kappa scores on forest regions.

the results are compared with two different methods. For this test, the maximum window size

(wkmax) is changed in SMRF to 25 m to obtain a better performance. In a similar manner,

in the proposed method the structuring element size, wi, is set from 1 to 25 m in 10 equally

spaced values. The corresponding object detection threshold values are set from 0.1 to 3 m in

10 equally spaced values. Besides, all other parameters are the same as in the forest region

data set. The DSM, ground truth DTM, and generated DTMs are provided in Figure 5.40. In

this figure, the first four rows correspond to Utah1 to Utah4 test samples respectively. The first

column corresponds to DSM data. The second column corresponds to the ground truth DTM

data. The third, fourth, and fifth columns correspond to DTMs generated by the proposed

method, SMRF, and gLiDAR respectively.

Visual object detection results on residential region test samples is provided in Figure 5.41. In
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Figure 5.40. DTM generation results on residential region test samples.

this figure, the first four rows correspond to Utah1 to Utah4 test samples respectively. The first

column corresponds to the normalized DSM obtained from the ground truth DTM data. The

second column corresponds to the thresholded (by one meter) version of this data. The third,

fourth, and fifth columns correspond to object detection results obtained by the proposed

method, SMRF, and gLiDAR respectively. For the Utah1 sample, there are some false

detections at the top right corner of the DSM. Although all buildings are detected correctly,

vegetated regions on the sloped parts caused error. On the same test sample, gLiDAR could

not detect all parts of the two buildings. SMRF had similar performance as in the proposed

method. On the Utah3 test sample, the proposed method was able to detect all buildings with

some false alarms towards the edge of buildings and some of the vegetation on the sloped

regions. gLiDAR had some problems in detecting the entire layout for some buildings. In

the Utah2 test sample, buildings are large. Here all methods had miss detection problems on

several buildings. In Utah4, all three methods correctly detected most of the objects.

Kappa scores for the proposed and other two methods on residential region test samples

are provided in Figure 5.42. In this figure, squared, circular, and triangular marks represent

the proposed method, SMRF, and gLiDAR respectively. As can be seen in this figure, the

proposed method has better Kappa scores for all threshold values for the Utah1 and Utah3
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Figure 5.41. Object detection results on Utah test samples.

samples. To note here, these regions have sloped terrain. Therefore, the proposed method

can deal with such regions better than the other methods. The remaining Utah2 and Utah4

samples represent regions with flat terrain. In the Utah2 sample, gLiDAR has the worst Kappa

score.

Based on the experiments done on the NSF Open Topography data set, some observations

can be summarized. First, the proposed method performs as good as the other two methods

on forest regions. Second, the proposed method performs fairly well on residential regions

compared to the existing two other methods.

The computation time of the proposed and the other two methods are compared in this section.

In tests, a PC with Intel Core i7 quad core processor with 8 GB RAM is used. The proposed

method is implemented in MATLAB on Windows 7 operating system.

The first comparison is done on the proposed and the other two methods on the ISPRS LiDAR

data set composed of 15 samples. The total number of points in this data set is 384,955. The
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Figure 5.42. Kappa scores of detection results on residential regions.

SMRF method processes all 15 samples in 25.7 seconds. Here, default parameter set is used

given in [100]. According to the timing values indicated by Mongus et al. [101], it is assumed

that gLiDAR needs 7-8 seconds to process all 15 samples. Note that, this method is coded in

C++. Therefore, it will be faster than the other two methods coded in MATLAB.

The computation time of the proposed method depends on the interval number. Therefore,

the interval number versus computation time is provided in Figure 5.43. As can be seen in

this figure, the computation time increases almost linearly with interval number. The interval

number is set to 10 in comparing the performance of the proposed method. For this value,

the computation time needed to process all 15 samples is 70.3 seconds. Based on this result,

it seems that the proposed method is the slowest compared to the other two methods on the

ISPRS data set. However, if the user accepts a slightly less performance, then the computation
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Figure 5.43. Interval number (N) versus the computation time for the ISPRS data set.

time for the proposed method becomes better. One final comment on the computation time of

the proposed method is as follows. MATLAB’s parallel implementation property is used in

obtaining these results. Therefore, the method is run on four processors in a parallel manner.

If the number of processors increase, the computation time of the proposed method will

decrease since the iterations in the proposed method are independent of each other.

Next, proposed and the other two methods are compared on the NSF Open Topography data

set. Here, test sample sizes are large. Moreover, they contain more points to process as can be

seen in Table 5.5. The computation times in seconds are tabulated for the proposed and the

other two methods in Table 5.6.

As can be seen in Table 5.6, the average computation time for the proposed method is better

than gLiDAR and almost the same as SMRF. Again, the interval number for the proposed

method is taken as 10 for this timing comparison test. If the interval number decreases, the

computation time of the proposed method will become better than the other two methods.
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Table 5.6. Computation times in seconds on the NSF Open Topography data set.

Sample SMRF [100] gLiDAR [101] Proposed

Andrews1 24.85 41.40 25.31

Andrews2 42.75 51.94 48.90

Andrews3 41.74 23.33 65.05

Utah1 31.75 60.58 30.44

Utah2 48.55 112.70 50.61

Utah3 68.32 169.85 72.81

Utah4 40.03 20.59 41.94

Average 42.57 68.63 47.86
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6. CONCLUSIONS

In this dissertation, novel object detection and shape extraction methods are proposed. Some

of the broadly known feature extraction methods are used in a probabilistic voting framework.

In this framework, the extracted features are combined to detect the object centers using

Bayes theorem. It is shown that using very simple assumptions on object shapes in satellite

images, objects such as buildings, trees, ships, cars and airplanes can be detected.

After detecting the object locations, we proposed a shape extraction method on satellite

images. Here the modes of object center location pdf are used and a vote back-projection

algorithm is proposed. It is shown that the outline of objects are extracted using this algorithm.

We extracted the shapes of buildings, tree crowns and ships. We also extracted shapes of

objects with multiple parts such as airplanes and cars.

We also proposed two segmentation algorithm for height data. The first method consists

of probabilistic voting and morphological segmentation steps. The method is based on the

assumption that the object should be higher than its surrounding. However, the proposed

method does not depend on DTM generation in extracting objects. Moreover, it is insensitive

to the object size to be detected. These two properties are the advantages of the proposed

method compared to those available in literature. We tested the proposed method on two

different LiDAR and one stereo image based DSM data set. Experimental results show that the

proposed method works fairly well in both flat and sloped terrain. Furthermore, it performed

better in detecting large buildings compared to the other methods in the literature. There may

be some miss detections due to the structure of complex building.

The second method for height data segmentation and filtering is based on two-dimensional

EMD. The EMD method is modified by morphology based operations to improve its

performance. Moreover, EMD is applied in an iterative manner to obtain the residual signals

with different resolution. These serve as adaptive elevation threshold values for crude object

detection from DSM data. Then, DTM is generated using this detection result. Afterwards,

final objects are detected using DTM and slope based thresholding. The proposed method



149

is compared with the ones in the literature on two publicly available data sets as ISPRS and

NSF. For the ISPRS data set, the proposed method performed better than the other methods in

the literature in terms of mean Kappa score and the standard deviation of Kappa scores. It

also performed better on specific data sets where some other methods failed. For the NSF

data set, the proposed method performed as good as the other two methods on seven test

samples. On one test sample, it performed better than the other two methods. The proposed

method does not require any pre-knowledge of the terrain to work properly. However, if the

general characteristics of the terrain is known in advance its performance improves. Two

scenarios can be given for this case. For large objects on a flat terrain, the user may increase

the maximum structuring element size for a better filtering performance. For small objects on

very steep sloped regions, the user may decrease the maximum structuring element size for a

better filtering performance. The computation time of the proposed method is comparable

with the ones in the literature. Based on these observations, the proposed method can be

successfully applied to generate DTM and filter LiDAR data. Wavelets have been used to

solve similar problems in image processing as with EMD. If an analogy can be established

between EMD and wavelet transform in terms of DTM generation, then new methods may

emerge. Besides, researchers can test other modified versions of EMD in connection with the

proposed method to improve its performance.
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