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ABSTRACT 
 

 

COMPUTER AIDED DIAGNOSIS OF COGNITIVE DISORDERS USING  

NEUROPSYCHOLOGICAL AND NEUROIMAGING DATA 

 

Computer-aided diagnosis (CAD) is an emerging area of neuroscience and neuroimaging 

that assists physicians in the interpretation of medical images. CAD is an interdisciplinary 

technology that combines artificial intelligence, computer vision, digital image processing 

and medical imaging. The overall goal of this thesis is to develop computer-aided diagnosis 

systems for patients with cognitive disorders based on neuropsychological and neuroimaging 

data using deep learning approaches. In this thesis, we developed three CAD systems. The 

first system aimed to distinguish diseases causing an abnormal decline in cognitive abilities 

that is not related to normal aging in an early stage, based on neuropsychological assessment 

data. The aim of the second CAD system was to predict the risk of developing Alzheimer’s 

disease for mild cognitive impairment patients based on cross-sectional neuroimaging data. 

Finally, the third CAD system shared the same goal with the second CAD system, with a 

difference that it utilized longitudinal neuroimaging data. Furthermore, from a 

methodological perspective, we designed and implemented a novel pooling method for 

convolutional neural network models that is employed in the second and third CAD systems. 

Additionally, we designed and implemented a novel image preprocessing method for the 

longitudinal data of the third CAD system. The very high accuracy results achieved in this 

thesis has shown that deep learning technologies can be beneficial for diagnosis and 

predicting prognosis in cognitive disorders. Furthermore, CAD systems may contribute to 

better treatment of patients with cognitive disorders by altering their medication according 

to predicted prognosis.  
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ÖZET 
 

 

NÖROPSİKOLOJİK VE NÖROGÖRÜNTÜLEME VERİLERİ İLE BİLİŞSEL 

BOZUKLUKLARIN BİLGİSAYAR DESTEKLİ TANISI 

 

Bilgisayar destekli tanı (BDT), sinirbilimi ve beyin görüntüleme alanlarında ön plana çıkan, 

tıbbi görüntülerin yorumlanmasında doktorlara yardımcı olan uzman sistemlerdir. Ayrıca, 

yapay zeka, bilgisayar görüsü, dijital görüntü işleme ve medikal görüntüleme teknolojilerini 

bir araya getiren bir disiplinler arası çalışma alanıdır. Bu tezin genel amacı, derin öğrenme 

yaklaşımlarını kullanarak tıbbi görüntüleme verilerine dayalı bilişsel bozukluklar için 

bilgisayar destekli tanı sistemleri geliştirmektir. Bu amaç doğrultusunda, üç bilgisayar 

destekli tanı sistemi geliştirdik. Birinci çalışmada, nöropsikolojik değerlendirme verilerine 

dayanılarak, normal yaşlanmayla ilişkili olmayan bilişsel yeteneklerdeki anormal düşüşü 

erken aşamada ayırt etmek amaçlanmıştır. İkinci ve üçüncü bilgisayar destekli tanı 

sistemlerinin amacı, hafif bilişsel bozukluk hastalarında Alzheimer hastalığının gelişme 

riskini öngörmektir. İkinci bilgisayar destekli tanı sistemi kesitsel nörogörüntüleme 

verilerine dayanırken; üçüncü sistem, boylamsal nörogörüntüleme verilerinden 

faydalanmıştır. Ayrıca, bu tezde, konvolüsyonel sinir ağı modelleri için yenilikçi bir 

havuzlama yöntemi ve boylamsal veriler için yenilikçi bir görüntü ön işleme yöntemi 

önerdik. Çok yüksek doğruluğa sahip sonuçlar göstermiştir ki, derin öğrenme teknolojileri, 

hafif bilişsel bozukluğun prognozunu öngörmede başarılıdır. Ayrıca bu çalışma, bilgisayar 

destekli tanı sistemleri ile prognozu öngörülen hastalığa uygun ilaç tedavilerinin başlanması 

ile daha iyi bir tedaviye katkıda bulunulabileceğini göstermiştir.  
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1. INTRODUCTION 
 

 

The aim of this thesis is to investigate the use of machine learning and deep learning 

technologies in the field of medicine. More particularly, we attempted to investigate the use 

of these technologies for the prognosis prediction purposes for cognitive disorders. In other 

words, we examined the possibility of predicting the prognosis of cognitive disorders based 

on artificial intelligence methods. The ultimate goal is to provide computer-aided diagnosis 

(CAD) systems for physicians that will help them decide about the prognosis of a disease in 

order to propose a proper medication to patients. At first, we attempted to see if some 

cognitive diseases can be separable with a high success rate based on neurocognitive test 

scores. Furthermore, we examined the possibility of predicting the prognosis for mild 

cognitive impairment (MCI) patients that either they will develop Alzheimer’s disease (AD) 

or remain stable. In order to achieve our goals we used radiological data as an input to 

computer aided diagnosis systems, which is presented in this thesis. 

 

In order to understand computer-aided diagnosis properly, it is good to mention about 

importance of radiology in the diagnosis and treatment of diseases. Radiology is a medical 

discipline that uses medical imaging technologies to diagnose and treat diseases. Magnetic 

resonance imaging (MRI) is a medical imaging modality that uses strong magnetic fields 

and radio waves to acquire three-dimensional images of inside of the human body. The 

magnetic resonance (MR) scanning is a beneficial technology to physicians for diagnosing 

and determining treatment options in brain diseases (e.g. multiple sclerosis [1], Parkinson’s 

disease [2], Alzheimer’s disease [3]), cancer (e.g. prostate cancer [4], breast cancer [5], brain 

tumours [6]), diseases of other organs (e.g. liver [7], pancreas [8] or heart diseases [9]). A 

computed tomography (CT) scanner is a kind of X-ray machine that takes many X-ray 

images of different angles of the desired section of the body and produces tomographic 

images using computer programs [10]. The computed tomography is a powerful technology 

for imaging bone structures. Since a computed tomography scanner produces images faster 

than a magnetic resonance imaging scanner, it is widely used imaging technology in 

emergency services to detect bone injuries, brain traumas, chest problems. The ability to get 

benefit of medical imaging technologies depends on the acquisition quality of the images, as 

well as, on the interpretation quality of the images. A radiologist tries to catch visual clues 
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to interpret medical images for diagnosis or prognosis. Several experiments show that the 

radiologist misses the 20%-30% of those visual clues or may have difficulty to interpret the 

gathered visual clues [11]. Thus, the computer-aided diagnosis is an interdisciplinary study 

to develop computer systems to assist the radiologist in catching or interpreting visual clues 

of medical imaging [12], which combines several technologies like artificial intelligence, 

computer vision, digital image processing to process several medical imaging modalities for 

specific diagnostic or prognostic purposes. In this thesis, we developed three CAD systems 

in order to help physicians in predicting the diagnosis or prognosis of cognitive disorders. 

 

1.1. MOTIVATION 

 

The motivation behind our thesis comes from two perspectives. The first one is the biological 

perspective, which is the motivation behind the selected disease to be investigated in this 

thesis. In other words, this perspective defined the diagnostic or prognostic goals of the 

computer-aided diagnosis models. The second one states the motivation about which 

methods to be used in the development of the computer-aided diagnosis models to achieve 

our goals. 

 

1.1.1. Biological Perspective on Motivation 

 

In this thesis, we decided to predict diseases that are related with the cognitive impairments 

of elderly people. The reason lies on the fact that this type of diseases, more specifically 

dementias, are widespread and a successful prognosis can be beneficial for individuals but 

also for state institutions in terms of finance.  

 

Recent community studies indicated that the prevalence of dementias is rising all over the 

world in the last decade [13]. The ability to take care of themselves may decrease day-by-

day in the patients with dementias, and, they need a growing healthcare. This means that, 

dementia has a great economical, physical and psychological burden on not only individual, 

but also for their family and society [14]. According to the World Alzheimer’s report of 

2015, over 46 million people currently living with dementias in the world, and, it is estimated 

that the number of people suffering from dementias will increase up to 131.5 million by the 

year of 2050. Nowadays, the total estimated worldwide cost of dementias is estimated as 
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$818 billion [15]. The psychological and physical impact of dementias on the caregivers and 

families of patients with dementias can not be ignored. Many family carers, who are caring 

a family member with dementia, suffer from several psychological illness like depression, 

anxiety and feelings of exhaustion due to providing an intensive support to the patient 

including making difficult treatment decisions, dealing with the financial problems, 

providing personal care and housekeeping of the patient [16]. 

 

Beside the psychological impacts of dementias, taking care of a family member with 

dementia may also cause several physical conditions like impaired immunity, high blood 

pressure and cardio-vascular diseases, which are generally caused by decreased mobility due 

to isolation from social life, interrupted sleep due to night-time care and exhausting work 

load [16]. 

 

Despite its prevalence and importance, the term of dementia is generally confused with the 

term of Alzheimer’s disease. The dementia refers to a group of symptoms that are 

characterized by a decline in cognitive abilities. Those cognitive deficits associated with 

dementias are severe enough to disrupt a normal daily life. Among dementias, the 

Alzheimer’s disease accounts for up to 75% of all dementia cases, which is a progressive 

neurodegenerative disorder [17]. The dementia caused by conditions related with an 

inadequate blood flow to the brain is called as vascular dementia (VD), which is considered 

as the second most common type of dementias with a prevalence percentage of 30% [18]. 

However, many other conditions like brain tumours [19], diabetes [20], thyroid disorders 

[21], depression [22] and long-term use of alcohol [23] may cause similar symptoms with 

dementias. 

 

The neurodegeneration is initially characterized by synaptic damage and followed by 

neuronal loss in Alzheimer’s disease [24]. In the course of time, as a result of 

neurodegeneration, brain tissue shrinks in volume, thus causing cognitive impairment. On 

the other hand, mild cognitive impairment is a clinical diagnosis indicating abnormal decline 

in cognitive abilities more than expected for normal aging. And, it has been associated with 

a significant risk of developing Alzheimer’s disease. Although mild cognitive impairment is 

characterized by a decline in memory. In many cases, the memory problems experienced in 

mild cognitive impairment may remain stable for years, unlike Alzheimer’s disease.  
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1.1.2. Methodological Perspective on Motivation 

 

In this thesis, we decided to use machine learning methods for developing prediction systems 

for dementias. The motivation lies on the fact that medical data related with dementias are 

huge in size and present an important complexity and variety; luckily, artificial intelligence 

methods are providing the necessary platform for solving such problems related with the 

prediction of a disease.  

 

In the machine learning studies, the first and most important step is defining features of the 

system. In that context, a feature is defined as a measurable property of an object or a 

phenomenon being observed. Actually, the success of a machine learning algorithm is 

strongly depended on the feature definition [25]. This fact has raised a study field called as 

feature engineering which deals with the representation of the data as a set of features that 

is computationally convenient to process using several methods for extracting, transforming 

or selecting them [26]. A well designed feature set is essential for a machine learning model 

in order to reduce the complexity of the model, to increase the accuracy and to prevent 

overfitting. 

 

Traditional feature engineering in neuroimaging area is a manual process that requires the 

domain knowledge of the data, like defining region-of-interests of white matter hyperintense 

lesions [27], amyloid deposition [28] or other amyloid imaging biomarkers [29]. Even if an 

automated tool is used, this kind of hand-crafted features may need to be verified by an 

domain expert; like determining subtype of white matter hyperintense lesions [30], region-

of-interest of ventricles [31]. 

 

The traditional feature extraction procedure in neuroimaging studies is handled in several 

ways. Considering all voxel intensities of the neuroimaging data as a feature set is a widely 

used technique for the classification purposes [32]–[35]. Since the neuroimaging data is high 

dimensional, several studies employed feature selection methods to reduce the dimension of 

the feature vectors. A special scalar index was proposed for selecting a set of voxels to train 

a classifier algorithm [36]. In another study, a subset of voxels was selected based on a 

proposed scoring algorithm called as structural abnormality index score [34]. Moreover, the 

volume of specific brain tissue [37]–[39] by means of tissue segmentation algorithms or 
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brain regions [40]–[43] were taken into account. Several studies measured cortical thickness 

of specific parts of the brain to be used as a feature vector for constructing a diagnostic model 

of Alzheimer's disease [44], [45]. Gerardin et al. proposed a method for extracting shape 

features of the hippocampus to be used in CAD systems [46]. 

 

The issue of extracting convenient and efficient features of neuroimaging led us to search 

for automatic feature extraction methods. In this context, deep learning has attracted our 

attention, which is an emerging research field of machine learning for learning automatic 

representation of data. Hence, these facts have shaped our motivation for this thesis to 

explore applicability of deep learning techniques for the automation of feature extraction of 

neuroimaging. 

 

1.2. OBJECTIVES 

 

The first aim of this thesis is to build computer-aided diagnosis systems for cognitive 

disorders and to assess the applicability of deep learning techniques to learn features from 

the high-dimensional neuroimaging data. For this purpose, both baseline and 12-months 

follow-up structural MR images of patients with a baseline diagnosis of mild cognitive 

impairment were acquired from the Alzheimer’s disease neuroimaging initiative (ADNI) 

dataset, which it is known that they are either remained stable in mild cognitive impairment 

state or eventually developed Alzheimer’s disease during their follow-up. In this thesis, 

convolutional neural networks (CNN) were employed for the automatic feature extraction 

procedure. The prognosis predictive power of the acquired features was assessed using 

traditional machine learning algorithms. 

 

The second aim of this thesis is to build computer-aided diagnosis systems for age-related 

cognitive decline based on neuropsychological test scores. In order to realize this goal, we 

acquired the neuropsychological assessment data of patients with age-related cognitive 

decline, Alzheimer’s disease, vascular dementia and mild cognitive impairment from the 

neurology department of Maltepe University Hospital. In this thesis, we built a computer-

aided diagnosis system for dementia, which is utilizing statistical methods and machine 

learning algorithms based on the neuropsychological test scores of the patients. 
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1.3. OUTLINE OF THE THESIS 

 

This thesis is divided into five chapters including this current chapter. The contents of each 

chapter are presented in detail below.  

 

Chapter 1 is the current chapter where the introduction and motivation of this thesis is 

presented. 

 

Chapter 2 provides necessary background information of the important concepts used in this 

thesis. 

 

In Chapter 3, a detailed explanation of the applied research methodology is presented. 

 

Chapter 4 presented the findings and results of the conducted experiments. 

 

Finally, we concluded and discussed the results and stated future works in Chapter 5. 
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2. BACKGROUND 
 

 

This chapter provides some general conceptual background about machine learning, deep 

learning, voxel-based morphometry and neuroimaging modalities for a better understanding 

of the methodology of this thesis that are explained in the Chapter 3. Furthermore, the 

Alzheimer's Disease Neuroimaging Initiative is introduced, which is the institution we 

obtained MRI data for this thesis. Finally, recent computational approaches are given in 

terms of diagnostic goals, feature representation methodologies and the use of convolutional 

neural networks for neuroimaging. 

 

2.1. GENERAL INFORMATION 

 

The concept of machine learning, deep learning, voxel-based morphometric analysis and 

neuroimaging modalities are given from historical perspective in this section.  

 

2.1.1. Machine Learning 

 

The discipline of machine learning deals with the question of how a computer programs 

themselves for a specific task and gain experience without implicitly programmed. What we 

mention for the term of machine learning is that the learning algorithms for a computer to 

find one suitable solution among all possible solutions itself by learning from the data. 

 

From the historical perspective, the checker program developed by Arthur Samuel is 

considered as the first machine learning application in the 1950s [47]. Before this, 

McCulloch and Pitts developed the first mathematical model of an artificial neuron known 

as McCulloch-Pitts neuron that is inspired from the human brain [48]. The model was 

working as a threshold logical unit, where simple logical functions, like OR and AND, can 

be implemented with a single McCulloch-Pitts neuron. In 1949, Donald Hebb introduced the 

concept of synaptic plasticity that the synaptic strength is not constant in the brain, more 

specifically, simultaneously activating cells strengthen the synapses [49]. This discovery in 

neuroscience pioneered the development of a new artificial neuron model, called as 

perceptron, which is invented by Frank Rosenblatt in 1957 [50]. Marvin Minsky and 
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Seymore Papert revealed the weakness of perceptrons, stating that the perceptrons solve only 

linearly separable problems. With the development of multi-layered perceptron networks 

and the use of back-propagation algorithm for dealing with the problem of training hidden 

layers, the field of artificial neural networks gained popularity again. In 1995, a new learning 

algorithm, named as support vector machine (SVM), is proposed by Vapnik et al. [51]. 

Nowadays, the SVM is still widely studied learning algorithm in the field of machine 

learning.  

 

2.1.2. Deep Learning 

 

The concept of deep learning is a new area of machine learning concerning hierarchical 

representations of the data, where the higher level features are derived from the lower level 

features. As many researches agree on that, the history of deep learning starts with the study 

of McCulloch and Pitts in 1943 [52]. The studies of Ivakhnenko and Lapa were considered 

as the earlier applications of the deep structures in 1965 [53]. The model introduced by 

Kunihiko Fukushima in the 1980s, called as Neocognitron, inspired the convolutional neural 

networks [54]. Thus, LeCun et al. proposed the convolutional neural network model with 

the implementation for the recognition of handwritten zip code. With the development of 

high-speed computers and huge amount of memories, the studies of deep learning methods 

gained speed in the 2000s. The long short-term memory (LSTM) was proposed by 

Hochreiter and Schmidhuber in 1997 [55], Hinton introduced deep belief networks (DBN) 

[56], and Salakhutdinov and Hinton proposed deep Boltzmann machines (DBM) [57] in 

2009. Recently, the use of deep learning methods have gained popularity in the neuroscience 

studies [52].  

 

In recent studies, two common buildings blocks were used to construct deep networks 

structures: autoencoder and restricted Boltzmann machine (RBM). The main purpose of 

these building blocks are to learn the latent representation of the data. Although both share 

the similar idea, they have differences in their structures. Such that, an autoencoder is a kind 

of feed-forward artificial neural network [58] and a restricted Boltzmann machine is a 

stochastic neural network [59]. A restricted Boltzmann machine is composed of a set of bi-

directionally connected binary visible units in one visible layer and a set of binary hidden 

units in one hidden layer [59]. Unlike an autoencoder, in a RBM each visible unit is bi-
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directionally connected to all hidden units. Also they differ in the training procedure, the 

back propagation algorithm is utilized to train an autoencoder, such that, the output data is 

almost same as the input data. Thus, the output of the hidden neurons in the trained 

autoencoder is the latent representation of data. On the other hand, the contrastive divergence 

[60] algorithm is used for training a restricted Boltzmann machine [61]. 

 

Deep networks are constructed using these building blocks. The most commonly used deep 

network is stacked autoencoders, which is composed of multiple layers of autoencoders [62]. 

Such that, the output of each outer layer is transmitted to the inner layer as input. Figure 2.1 

shows an illustration of a stacked autoencoder with two hidden layers. The acquired latent 

representation of the data at each level is marked with red. 

 

 
 

Figure 2.1. General schema of a two-layered stacked autoencoder 

 

The training of a stacked autoencoder is handled as a stack of several single-layer 

autoencoders. Firstly, a simple autoencoder network is constructed for the outermost layer 

of the deep structure, which the number of hidden units is same as the number of hidden 

units in the first hidden layer of the deep network. Then, the autoencoder is trained to acquire 

the first latent representation of the data. The acquired latent representation becomes the 

input to the next inner layer. In the following step, a new autoencoder network is built, where 

the number of the input units is same as the size of the previously acquired latent 

representation and the number of hidden units is same as the number of hidden units in the 

second hidden layer of the deep network. Similarly, this second network provides the second 

latent representation of the data. In this way, the acquired latent representations are 
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propagated through the remaining hidden layers of the deep network. The same procedure is 

repeated as it is done for the outermost layer. The outmost layer produces the high-level 

representation of the input data. 

 

Just as the stacked autoencoders are made up of a stack of autoencoders, the deep belief 

networks (DBN) are composed of a stack of restricted Boltzmann machines. Another 

similarity exists in the training of the network. In other words, the deep belief networks are 

trained layer-wise, too. 

 

A convolutional neural network (CNN) is another kind of feed-forward neural network that 

is used to learn latent representation of grid-structured data, like images or time-series data. 

The concept of convolutional neural network was originally proposed by LeCun et al. and 

applied to recognize handwritten zip code. Nowadays, it is widely used technique in 

neuroimaging studies due to the fact that neuroimaging data are generally acquired and 

analysed in a series of images. A convolutional neural network is composed of a consecutive 

set of convolutional and pooling layer pairs.  

 

 
 

Figure 2.2. General schema of a single-layer convolutional neural network 

 

To illustrate the concept of CNN, Figure 2.2 shows a general schema of a single-layer 

convolutional neural network, which composed of one pair of convolutional and pooling 

layer. In the convolutional layer, each input is convolved with a set of filter to construct a 

set of feature maps. Each feature map highlights different features of the input data depends 

on the corresponding filter. In the pooling layer, each feature map is down sampled 

individually, called as pooled features. Pooling layer is used in convolutional neural 
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networks to progressively reduce the spatial size of the representation in each layer. The 

main advantage of the pooling for the CNN model is the prevention of overfitting by 

reducing the size of feature maps. Finally, the acquired pooled features are vectorised to 

construct a feature vector, which represents the input data. In other words, this feature vector 

is the numeric representation of the image data that can be used further classification 

purposes to train a machine learning algorithm. 

 

2.1.3. Voxel-based Morphometry 

 

It is better to explain “what voxel-based morphometry (VBM) is” for a better understanding 

of this thesis. The VBM is a statistical method used in neuroimaging analysis to investigate 

brain tissue abnormalities [63]. The term of statistical parametric mapping (SPM, 

http://www.fil.ion.ucl.ac.uk/spm/) refers to the name of the technique developed by Friston 

et al. and the name of the software tool developed by the Wellcome Department of Imaging 

Neuroscience. In the terminology of SPM, the concept of VBM incorporates two main 

stages: data preprocessing stage and statistical analysis stage. 

 

The data preprocessing stage of VBM is composed of spatial normalization, segmentation, 

modulation and smoothing steps. The goal of the spatial normalization is to align anatomical 

locations among subjects, which is achieved by registering images into the same template 

[64]. In the segmentation stage, the probabilities of being grey matter, white matter or 

cerebrospinal fluid for each voxel are calculated using a pre-defined tissue probability map 

(TPM), which TPM is provided by the International Consortium for Brain Mapping [65]. 

The spatial normalization and segmentation steps are unified in later versions of SPM 

software [66]. The aim of the modulation is to preserve local probabilistic volumes in 

spatially normalised tissue segmentation images, which is based on the change of variable 

theorem. Finally, it is recommended to smooth images to increase the sensitivity to detect 

changes, which each voxel is the weighted average of surrounding voxels in smoothed 

images [64].  

 

In the statistical analysis stage, this preprocessed images are investigated group-wise 

statistically. In order to more specifically, a t-value or F-value is derived from statistical 

comparison between two groups of preprocessed images for each-voxels separately. 
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2.1.4. Neuroimaging Modalities 

 

One of the most commonly used technologies by physicians to diagnose or make decision 

about the treatment of brain diseases is neuroimaging. The neuroimaging is a general term 

refers in vivo imaging techniques, which can be grouped into two main categories: 

structrural neuroimaging and functional neuroimaging. In this thesis, we dealt with 

structrural neuroimaging due to the relation between abnormalities in grey matter tissue and 

dementias.  

 

Structural imaging technologies are aimed to get images of the anatomical structures of the 

inside of the body. The structural images are good at showing the contrast between different 

tissue types of the brain (e.g. grey matter, white matter and cerebrospinal fluid). Several 

technologies are used to acquire structural brain scans: computed tomography (CT) and 

magnetic resonance imaging (MRI). 

 

The first technology to create structural brain images is the CT scanning of the brain. A CT 

scanner exposes a low level radiation to the brain in several directions. Then, the applied 

radiation passes through the brain tisue. The amount of radiation being absorbed differs in 

each tissue type due to the difference in densities. This is idea behind that how a CT scanner 

produces structural imaging of the brain. 

 

Another kind of technology to produce structural images of the brain is magnetic resonance 

imaging. An MRI scanner uses a huge magnet and radio pulses to create images. Due to the 

existance of gigant magnetism, all protons in the brain are aligned. When a radio pulse is 

applied, some of the protons starts to spin in a specific frequence. After a while, the radio 

pulse is stopped and then the protons starts turn back to their initial states. During this 

relaxation period, each protons releases different amount of energy to be processed by 

computers for producing structural images of the brain. This technology is preferable to the 

CT technology due to lack of radiation and capability of producing high contrast images. On 

the other hand, a CT scanner produces structural images faster than an MRI scanner. This 

makes the CT technology favourite in emergency services, especially to detect the injuries 

and traumas. In this thesis, we prefered to use the structural neuroimages produced by the 

MRI scanners due to their high spatial resolution and contrast.  
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2.1.5. The Alzheimer's Disease Neuroimaging Initiative 

 

We acquired our MRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

for training our CAD models in this thesis. The Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) is an ongoing, multi-center, multi-million dollar study launched in 2004 by the 

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Brain Imaging and Behaviour Administration 

(FDA), private pharmaceutical companies, and non-profit organizations. The scientists of 

ADNI at research centres in the U.S. and Canada have been collecting, validating and 

processing medical data of elderly cognitively normal controls and patients diagnosed with 

any stages of Alzheimer’s disease. Demographic information, biospecimens and physical 

assessment data, MRI and PET scan data, APOE and whole-genome genotyping data, and 

neuropsychological test scores of the patients were collected at the baseline and follow-up 

stages in a predefined protocol. Those data are shared in world-wide with the neuroscientists 

through a data portal. Hereby, it is intended to support the research studies conducted to 

understand the progression of the pathology of Alzheimer’s disease. The preliminary goal 

of the ADNI was to identify clinical, imaging, genetic, and biochemical biomarkers as 

predictors for Alzheimer’s disease for use in clinical trials and diagnosis. Furthermore, with 

the help of the cutting-edge developments in neuroimaging, the ADNI studies encapsulated 

to understand the progress of cognitive decline in AD patients, to develop new methods as a 

result testing the effectiveness of alternative detective methods. 

 

The follow-up data from participants of the longitudinal ADNI study were collected in three 

phases, named as: ADNI-1, ADNIGO, and ADNI-2. Some participants were carried forward 

to next phases for continued monitoring, as well as, new participants were added to further 

investigation for early and differential diagnosis of Alzheimer’s disease, and for the tracking 

of AD progression. 

 

The initial phase (ADNI-1) was launched in 2004 and continued till 2010. 819 participants , 

aged 55 to 90, were included in this phase, which consist of 229 cognitively normal elderly, 

398 patients diagnosed by MCI in baseline, and 192 patients with early AD. The second 

stage of the ADNI study (AGNIGO) started in June 2009 with 500 Normal Controls and 

MCI participants of ADNI-1. 210 participants were moved to the ADNI-1 and 129 new 
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participants in the early mild cognitive impairment (EMCI) were enrolled during ADNIGO 

phase till 2011. With the newly enrolled EMCI participant, the researchers have opportunity 

to understand the characteristic of the AD that precedes MCI. MRI were collected in 3T on 

all newly enrolled subjects, while MRI follow-up scans were continue in 1.5T for transferred 

ADNI-1 participants [67]. Finally, the ADNI-2 is the third and on-going phase which 

launched in 2011. Some participants of ADNIGO and ADNI-1 were forwarded to ADNI-2. 

186 Normal Control, 179 early MCI (EMCI), 163 late MCI (LMCI), and 148 mild AD have 

been newly enrolled in the ADNI-2 stage till now. A new cohort of the significant memory 

concern (SMC) patients were added in the ADNI-2 stage with 106 participants.  

 

 

 

Figure 2.3. Timeline of three phases of the ADNI study 

 

Figure 2.3 illustrates the timeline of the phases starting from the beginning of the ADNI-1. 

The ADNI-1 and ADNIGO phases were closed, but, the ADNI-2 phase still continues to 

enrol new participants and includes the follow-up of patients who enrolled in the previous 

phases.  

 

Table 2.1. The number of the participants for each phases grouped by baseline diagnosis 

 
 ADNI-1 ADNI-GO ADNI-2 TOTAL 
 transfer new transfer new transfer new 

NC - 229 95 - 126 186 415 
AD - 192 1 - 1 148 340 

EMCI - - - 129 120 179 308 
LMCI - 398 114 - 148 163 561 
SMC - - - - - 106 106 

TOTAL 0 819 210 129 395 782 1730 

 

Table 2.1 shows the number of the participants for each phase grouped by their baseline 

diagnosis (cohorts). The number of new enrolments occurred during the phase and the 
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number of transferred participants are given separately. Additionally, the total number of the 

phases and cohorts are provided separately. The grand total number of participants was 1730 

when this analysis is executed.  

 

Among all 1730 participants, 140 had a baseline diagnosis of MCI, had 3T T1-weighted 

MRI data through all their follow-up and they eventually developed AD. The number of 

patients in each phase and each convert time are presented in Table 2.2 for those 140 patients. 

In this thesis, we called them as C-MCI (converted-MCI) patients. Among all 140 patients, 

a total of 26 patients converted to AD six months later baseline. Similarly, of 38 patients 

after 12 months, of 11 patients after 18 months, of 39 patients after 24 months, of 18 patients 

after 36 months, of 5 patients after 48 months, of one after 72 months and of two after 96 

months from the baseline examination. 

 

Table 2.2. The number of patients grouped in phase and convert time 

 
 CONVERT TIME AFTER BASELINE TOTAL 

m06 m12 m18 m24 m36 m48 m72 m96 

ADNI-1 3 17 11 5 5 3 1 2 47 

ADNI-GO - 3 - 4 3 2 - - 12 

ADNI-2 23 18 - 30 10 - - - 81 

TOTAL 26 38 11 39 18 5 1 2 140 

 

Again among all 1730, 165 patients were had a baseline diagnosis of mild cognitive 

impairment and remained stable in mild cognitive impairment during their follow-up at least 

four follow-up periods. We called them as NC-MCI (non-converted-Mild Cognitive 

Impairment) patients through this thesis. 

 

2.2. COMPUTATIONAL APPROACHES IN NEUROIMAGING 

 

Machine learning is widely used techniques in neuroscience for classification of neurological 

diseases or conditions; like, Alzheimer’s disease vs. healthy control (HC) [32]–[34], [68], 

AD vs. MCI [40], [69]–[73], AD vs. frontotemporal lobar degeneration [33] and 

schizophrenia (SC) vs. HC [74]. Among those kind of studies, several kind of data were 

utilized to train machine learning algorithms; like, neurosychological assessment data [75]–
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[78], functional MRI [79], [80], structural MRI [70], [81], [82] or any combinations of them 

[83]–[87]. 

 

In processing neuroimaging by machine learning algorithms, a feature extraction procedure 

is needed to create a numeric representation of the neuroimaging data. The mostly used and 

easy method is to vectorize the data that each voxel will be one feature [32]–[35]. However, 

the problem of high-dimensionality is arised in that kind of representation. Several methods 

were employed to tackle with the high-dimensionality problem in the literature; like, 

considering only a set of voxels based on a specific kind of tissue type [37]–[39], based on 

a specific score defined for each voxel [34], [36].  

 

Another way to prepresent neuroimaging data as a feature vector is to calculate grey matter 

volumes of anatomical parts of the brain [40]–[43]. Sparse auto-encoder [71] and deep 

Boltzmann machine [70], high-order graph matching [88], multi-modality canonical [89], 

tree-structured sparse learning method [90] and kernel-based methods [73] are another 

methods for reducing the high-dimensionality of the neuroimaging data. 

 

One approach to learn kernels for the convolution layer of the convolutional neural networks 

is to train an autoencoder on randomly extracted patches of the dataset, that is proposed by 

Ng et al. [91]. Firstly, the patches are vectorised separately to generate a dataset for training 

the autoencoder. After training, the weight vectors of each hidden neuron of the trained 

autoencoder are reshaped in the same size as the patches. Therefore, this procedure results 

in as many images as the number of hidden neurons, which are to be used as kernels in the 

convolutional layer for generating the feature maps. These kernels are expected to detect the 

most common features of the data. This approach have been successfully applied to 

neuroimaging data by Gupta et al. [81], [82] for differentiating AD from MCI patients. Payan 

et al. [92] were followed the study of Gupta et al. [81], [82] for investigating the use of three-

dimensional patches for the convolutional neural network [80].  

 

The other approach for learning filters for the convolutional neural networks is to initialize 

kernels randomly in the beginning and train the convolutional neural network with 

backpropagation algorithm. For this purpose, the convolutional neural network structure 

should include supervised classifier at the last layer [93]. In other words, this approach is a 
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supervised learning procedure that should need the class membership information of the 

data. 

 

There are several kind of pooling methods used for the pooling layer of convolutional neural 

network in the literature. The widely used types of pooling include the max-pooling, min-

pooling and average-pooling methods. Those three methods are similar during the region 

selection for pooling. In this method, a window is slided over the image for resampling 

purposes, in combination with a scalar value that defines how much the window should be 

shifted each time. Then, according to the applied method, the maximum, minimum or 

average value on the window is taken as the output at every shift. Other pooling methods 

proposed in the literature are rank-based [94], adaptive spatial [95], attention pooling-based 

[96], geometric lp-norm [97], fractional-max [98], stochastic [99], combined local and global 

pooling [100] and multiple spatial pooling [101] approaches. In rank-based pooling, the rank 

of activation in a pooling region is utilized to increase the discriminant ability of the pooled 

features [94]. Liu et al. calculated a spatial distribution matrix to define how the image 

patches are pooled together  [95]. The new pooling scheme, called as attention pooling, 

combines the convolutional layer and the bidirectional long-short term memory [96]. The 

geometric lp-norm pooling method is preserving the class-specific spatial/geometric 

information in the pooled features [97]. Graham et al. proposed a fractional version of max-

pooling to construct suitable pooling regions [98], which is a kind of stochastic pooling [99]. 

Both local and global pooling strategies were combined in the study of Xiong et al. [100]. 

Finally, the features were pooled according to the relations between features and Gaussian 

distributions [101]. To sum up, the pooling algorithms are the algorithms that defines which 

data points will be pooled together to form pooled features. 

 

2.3. SUMMARY OF THE CHAPTER 

 

In this chapter, we provided the necessary background information on machine learning, 

deep learning, voxel-based morphometric analysis and we introduced the ADNI dataset. We 

started with the history of machine learning and deep learning algorithms. Then, we provided 

the necessary information about the machine learning and deep learning algorithms that are 

utilized in this thesis. In order to understand the proposed pooling method in this thesis, the 

voxel-based morphometric analysis is explained. The patients profiles of the ADNI dataset 
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and the selected subjects for this thesis were introduced. Finally, the state of art in 

computational techniques in neuroimaging is provided. 

 

In this thesis, we utilized convolutional neural networks combined with an autoencoder for 

unsupervised feature learning from neuroimaging data. In order to assess the classification 

power of the acquired features, we employed support vector machines. For comparison 

purposes, we also employed multilayer perceptrons and regression classifiers. As it is 

mentioned in this chapter, autoencoders and restricted Boltzmann machines are two similar 

approaches in deep learning. In this thesis, we have chosen autoencoders for its simplicity. 

In the following chapter, the methodology of the CNN model that is introduced in this thesis 

will be explained in detail. 
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3. METHODOLOGY 
 

 

This chapter describes the research methodology used in this thesis. In order to be more 

specific, we followed quantitative research methodology approach to probe out the issue 

regarding how computer-aided diagnosis systems assist radiologists in the diagnosis and 

prognosis of dementias. Firstly, we refined our problem statements. Then, we searched the 

literature to develop our hypotheses. Next, we constructed our research plan including data 

collection, data preparation, computer-aided diagnosis (CAD) development and assessment.  

 

3.1. PROBLEM STATEMENT 

 

Several computer-aided diagnosis studies were proposed in the literature for dementias and 

cognitive disorders based on magnetic resonance imaging. Recent studies proposed 

computer-aided diagnosis systems to differentiate Alzheimer’s disease (AD) patients from 

cognitively normal elderly (HC) with a high accuracies of 94.5% in the study of Magnin et 

al. [32], 96% in the study of Klöppel et al. [33], and 89.3% in the study of Vemuri et al. 

[34]. However, building a computer-aided diagnosis system for differentiating Alzheimer’s 

disease from mild cognitive impairment (MCI) becomes a challenging and difficult task 

compared with the above works; because, cortical atrophy is a non-specific finding in 

Alzheimer’s disease, and also, a patient with mild cognitive impairment may have similar 

atrophic patterns with AD patients.  

 

Although mild cognitive impairment and Alzheimer’s disease are distinct disorders, 

neurological researches showed that some of MCI patients eventually develop AD [102]. 

Because of the relation between them it has been of great interest to predict the risk of 

developing AD for MCI patients. Since AD shares many clinical symptoms with MCI [103], 

the existence of reliable biomarkers plays an important role in the identification of MCI 

patients who will develop AD. Those kind of MCI patients, called as “MCI-due-to-AD”, are 

considered as in the symptomatic preface of Alzheimer’s disease. 

 

Previous researches have defined several biomarkers based on neuroimaging (i.e., structural 

magnetic resonance imaging (MRI), functional MRI, fluorodeoxyglucose – positron 
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emission tomography (FDG-PET) imaging) [104], cerebrospinal fluid (CSF) protein test 

[105] and blood test [106]. Thus, several neuroimaging modalities are being used to develop 

biomarkers for dementias, but it should be preferably considered the use of non-invasive 

ones [107]. Because, ethical issues may arise when considering the use of an invasive 

method in the diagnosis and treatment of a patient with an impaired mental function [108]. 

This fact oriented some researchers towards studies aiming to discover and use less invasive 

biomarkers for patients having dementias. 

 

The blood-based biomarkers are considered as a minimally invasive option compared to the 

CSF-based biomarkers having a higher risk for patients [109]. However, the structural MRI 

scanning is a non-invasive method for acquiring structural images representing the 

morphology of brain structures in a high resolution [110]. By consequence, the structural 

MRI scanning became the most studied modality for dementias. 

 

As an effort to investigate the possibility of a system allowing to make such a differentiation, 

in this thesis, we focused on the problem of predicting the prognostic type of a patients with 

MCI. This prognosis system would be based on the structural MRI of the patients, which is 

one of the most challenging issue in the field of computer-aided diagnosis of dementias. 

 

To sum up, our first problem statement for this thesis work was mainly based on the recent 

growing research interest that is developing neuroimaging biomarkers based on non-invasive 

structural MRI data for identifying “MCI due to AD” patients. 

 

Furthermore, in this thesis, we asked the question that “is it possible to predict the abnormal 

decline in cognitive abilities that is not related to normal aging in an early stage?”. 

Nowadays, the assessment of ARCD is based on neuropsychological tools. The 

neuropsychological assessment is executed by several neuropsychological test to measure 

the cognitive decline of an individual in specific domains like memory, execution, 

orientation and attention. It is essential to predict the abnormal decline in cognitive abilities 

that is not related to normal aging in an early stage. The difficulties in the clinical 

interpretation of neurocognitive data for differential diagnosis of dementias have raised the 

use of computational techniques. Thus, our second problem statement of this thesis has 

arised as to discover the possibility of distinguishing the patients with a diagnosis of ARCD 
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from the patients with other type of dementias or cognitive disorders based on only 

neuropsychological assessment data. 

 

3.2. RELATED WORKS 

 

In order to narrow down our problem statements into specific hypotheses, we did 

comprehensive literature search in order to find out the studies that have the same diagnostic 

or prognostic goals with us and the studies that are utilized the deep learning techniques to 

extract features of MRI data. 

 

Firstly, we did a literature search to figure out the studies that aimed to distinguish age-

related cognitive decline (ARCD) from other dementias. There were no specific study that 

aimed to identify ARCD among other dementias in the literature. So, we expanded our 

search to discover related works that utilized neuropsychological test batteries for the 

classification purposes of dementias. Several computational techniques were employed in 

the domain of CAD models based on neuropsychological assessment data. Järvelin et al. 

applied machine learning methods to model aphasia related problems based on the naming 

test scores [76], [77]. In some other studies, the test scores of neurocognitive data were used 

to classify primary progressive aphasia subtypes [111] or to distinguish semantic dementia 

patients [112]. Utilizing random forest tree classifiers was recommended by Clark et al. to 

predict cognitive decline in the elderly having a greater risk of developing Alzheimer’s 

diseases [113]. Although multilayer perceptrons were employed to distinguish normal 

elderly people from people presenting mild cognitive impairment, dementia, Parkinson’s 

disease, stroke and traumatic brain injury [75]. Previous studies applied machine learning 

techniques successfully based on a single neuropsychological test score [114] or compared 

different machine learning algorithms like linear discriminant analysis, logistic regression, 

neural networks, support vector machines, classification trees and random forests [115]. 

Silva et al. [116] selected the better subset among four different verbal memory tests (logical 

memory, California verbal learning test, verbal paired-associate learning and digit span) to 

obtain the highest predictive power. According to the literature search, to the best of our 

knowledge, there were no study of computer-aided diagnosis systems based on 

neuropsychological assessment data exists to distinguish age-related cognitive decline from 

other dementias. 
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A second literature search was conducted to identify the studies that utilized computational 

techniques for predicting the risk of developing Alzheimer’s disease for MCI patients as it 

is summarized in Table 3.1. 

 

Table 3.1. Recent studies predicting the risk of developing AD for MCI 

 

Studies Longitudinal Invasive ADNI 
Data type/ 

Number of Patients 
ACC TPR SPC 

Devanand 

et al. [84] 
No No No 

MRI+Clinical+Cognition 

27 C-MCI, 79 NC-MCI 
94.9% 92.6% 85.2% 

Green 

et al. [117] 
No Yes No 

EEG+CSF 

19 C-MCI, 17 NC-MCI 
94.4% 94.7% 94.1% 

Nazeri 

et al. [118] 
Yes Min Yes 

MRI+Plasma 

110 C-MCI, 190 NC-MCI 
93.5% N/A N/A 

Douaut 

et al. [119] 
No Yes No 

MRI(DTI)+CSF 

13 C-MCI, 22 NC-MCI 
91% 85% 96% 

Minhas 

et al. [83] 
Yes No Yes 

MRI+Cognition 

N/A 
89.7% 87.5% 92.3% 

Peters 

et al. [87] 
No No No 

MRI+Cognition 

18 C-MCI, 22 NC-MCI 
87.5% 90.9% 83.3% 

Dukart 

et al. [120] 
No Min Yes 

MRI+PET+Genetic 

177 C-MCI, 265 NC-MCI 
86.8% 87.5% 77.8% 

Ortiz 

et al. [121] 
No No Yes 

MRI+PET 

N/A 
83% 67% 95% 

Ardekani 

et al. [86] 
Yes Min Yes 

MRI+Cognition+Genetic 

86 C-MCI, 78 NC-MCI 
82.3% 86% 78.2% 

Cheng 

et al. 
No Yes Yes 

MRI+PET+CSF 

43 C-MCI, 56 NC-MCI 
80.1% 85.3% 73.3% 

Korolev 

et al. [122] 
No Yes Yes 

MRI+Clinical+CSF 

139 C-MCI, 120 NC-MCI 
80% 83% 76% 

Willette 

et al. [85] 
No No Yes 

MRI+Cognition 

76 C-MCI, 86 NC-MCI 
80% 78.3% 81.5% 

Suk 

et al. [70] 
No No Yes 

MRI+PET 

76 C-MCI, 128 NC-MCI 
75.9% 48% 95.2% 

Suk 

et al. [70] 
No No Yes 

MRI 

76 C-MCI, 128 NC-MCI 
72.4% 36.7% 91% 

 

Among the works listed in Table 3.1, the different kinds of data were utilized e.g. MRI, 

clinical information (Clinical), neuropsychological test scores (Cognition), genetic test 

results (Genetic), Electroencephalography (EEG), blood plasma test results (Plasma), CSF 
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test results and PET scans. The highest accuracy was achieved by combining cross-sectional 

structural MRI, clinic information and neurocognitive test scores with an accuracy of 94.9% 

[84]. In the work of Ardekani et al. [86], a measure of the hippocampal volumetric integrity 

(HVI) from a baseline and one-year follow-up structural MRI was utilized together with 

cognitive tests, genetics and demographic information. Minhas et al. [83] used the data 

derived from longitudinal MRI together with neuropsychological test score. In another work, 

Nazeri et al. [118] utilized plasma protein measurements together with tensor based 

morphometry (TBM) of MRI data to detect changes over time, which collecting blood 

plasma samples is considered as a minimally invasive method. Devanand et al. [84], Minhas 

et al. [83], Peters et al. [87], Ardekani et al. [86], Willette et al. [85] were utilized the 

neuropsychological assessment data in addition to the neuroimaging data, which may be 

difficult to perform for some of the patients with mild cognitive impairment. 

 

Table 3.2. Recent studies utilized deep learning on neuroimaging 
 

Studies Goal Deep Learning Method 
Data type/ 

Number of Patients 
ACC 

Suk et al. [71] C-MCI vs. NC-MCI Deep SAE MRI+PET+CSF 75.8% 

Suk et al. [123] C-MCI vs. NC-MCI Deep SAE MRI+PET+CSF 77.9% 

Li et al. [124] C-MCI vs. NC-MCI Patch-based 3D-CNN MRI+PET 72.4% 

Suk et al. [70] C-MCI vs. NC-MCI Deep RBM MRI 72.4% 

Suk et al. [70] C-MCI vs. NC-MCI Deep RBM MRI+PET 75.9% 

Gupta et al. [81], [82] AD vs. MCI Patch-based 2D-CNN MRI 86.3% 

Payan et al. [92] AD vs. MCI Patch-based 3D-CNN MRI 86.8% 

Plis et al. [125] SC vs. HC Deep BN + RBM fMRI 90% 

 

Thirdly, the methodological motivation of this thesis, as it is described in section 1.1.2, led 

us to investigate the recent neuroimaging studies utilizing deep learning algorithms as in 

Table 3.2. The studies of Suk et al. [70], [71], [123] and Li et al.[124] aimed to classify MCI 

patients as likely convert (C-MCI) or remain stable (NC-MCI). Additionally, the diagnostic 

goal of the studies of Gupta et al. [81], [82] and Payan et at. [92] was to distinguish the 

patients with a diagnosis of AD from MCI. Finally, the schizophrenia (SC) patients were 

successfully distinguished from the healthy control (HC) individuals with an accuracy of 

90%  based on functional MRI (fMRI) data [125]. Of those, five studies were used deep 
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learning approaches to reduce the high-dimensionality of neuroimaging data; and only four 

of them were utilized deep learning to extract features directly from the images [81], [82], 

[92], [124]. Among those patch-based CNN studies, the studies of Gupta et al. [81], [82] and 

Payan et al. [92] were learnt the convolutional filters of CNN model by using an 

autoencoder. On the other hand, Li et al. [124] were trained CNN using back-propagation 

algorithm to learn the convolutional filters, which is very time and resource consuming 

operation. Suk et al. were utilized deep stacked-autoencoder (SAE) structures for 

dimensionality reduction purposes resulted in an accuracy of 75.8% [71] and 77.9% [123], 

which the MRI data is represented as average values of each atlas-defined region-of-interests 

(ROI) on GM tissue probability maps. 

 

To sum up, the studies of Gupta et al. [81], [82], Payan et al. [92] and Plis et al. [125] were 

utilized deep learning approaches for the feature representation purposes while converting 

MRI data into quantitative data. Since the method applied by Plis et al. [125] is highly 

resource consuming for high-dimensional data and our data is much more bigger than their 

data, we decided to use the patch-based convolutional neural networks. 

 

Furthermore, the study of Suk et al. was selected as a reference study for performance 

comparison due to sharing the same predictive goal with us and utilizing only structural MRI 

data, which yielded an accuracy of 72.4% [70].  

 

3.3. HYPOTHESIS 

 

In this thesis, after searching the literature comprehensively, we stated our hypotheses 

related to the problem statements. In other words, we narrowed down our problem statements 

into five hypotheses in order to achieve objectives of this thesis. 

 

Two of five hypotheses was related to our first problem statement that aims to distinguish 

age-related cognitive decline from other dementias. The first hypothesis (hypothesis-I) says 

that age-related cognitive decline can be distinguished from other dementias using machine 

learning algorithms based on neuropsychological assessment data. The second hypothesis 

(hypothesis-II) was relevant to the hypothesis-I that a feature selection method can improve 

the performance of the machine learning algorithms. 
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Other three hypotheses were connected with the second problem statement searching the 

possibility of predicting the risk of developing Alzheimer’s disease for MCI patients. The 

third hypothesis (hypothesis-III) says that the deep learning models based on cross-sectional 

structural MRI data provide biomarkers indicating the risk of developing AD for MCI 

patients. The forth hypothesis (hypothesis-IV) is similar to the third hypothesis. It claims 

that the predictive power of longitudinal structural MRI data is higher than cross-sectional 

data for deep leaning approaches. Finally, the last hypothesis (hypothesis-V) says that a 

pooling method for CNN based on the significant topographic regions of the brain can 

produce features with a high prognostic power. 

 

3.4. DATASETS 

 

In this thesis, we obtained three different datasets that are the neuropsychological assessment 

data of age-related cognitive decline and dementias, the cross-sectional and the longitudinal 

structural MRI data of MCI patients.  

 

3.4.1. Neuropsychological Assessment Data 

 

In order to evaluate the hypothesis-I and hypothesis-II, we acquired the dataset 

retrospectively from the neurology department of the Maltepe University Hospital, which 

contains neuropsychological measures collected from patients who are diagnosed with one 

among the following diseases: age-related cognitive decline, mild cognitive impairment, 

vascular dementia or Alzheimer’s disease. A total of 125 participants were in our databank. 

Of these, 19 cases were excluded due to methodological issues related with the completion 

of all neuropsychological tests and significant variation of age and education variables 

compared to average values of the groups. 

 

Of  the remaining patients (n=106; mean age = 71.97 ± 7.37 years), 30 patients were 

diagnosed with ARCD (age = 70.07 ± 7.90 years, education = 10.57 ± 3.97 years, 22 female, 

8 male), 20 were diagnosed with probable Alzheimer’s disease (age = 75.45 ± 5.53 years, 

education = 9.75 ± 4.30 years, 11 female, 9 male), 21 were diagnosed with probable vascular 

dementia (age = 72.09 ± 6.61 years, education = 9.14 ± 3.59 years, 13 female, 8 male) and 

35 were diagnosed with amnestic mild cognitive impairment (age = 71.54 ± 7.94 - years, 
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education = 10.34 ± 3.68 years, 18 female, 17 male). Each subject was assigned to a clinical 

dementia rating scale (CDR) [126] in which a value of zero indicates no dementia and values 

of 0.5, 1, 2 and 3 indicate very mild, mild, moderate and severe dementia, respectively. 

Alzheimer’s disease and vascular dementia cases, who were classified by clinicians with a 

CDR value of 0.5 or 1, were selected for this thesis.  

 

All ARCD patients met the diagnostic criteria described by the National Institute of Mental 

Health work group [9] and the criteria of the International Psychogeriatric Association 

Working Party. The first criterion, the subjective impairment, is a report demonstrating that 

cognitive function has declined and the second one, the objective impairment, shows the 

difficulties in any of these cognitive tests such as memory and learning, attention and 

concentration, abstract thinking (problem solving, abstraction), language and visuo-spatial 

functioning in at least one standard deviation measurement (SD) below the age and education 

norms. Psychometric tests have normal values according to age and education level [127]. 

The probable AD patients were diagnosed according to the National Institute of Neurological 

and Communicative Disorders and Stroke and by the Alzheimer’s Disease and Related 

Disorders Association [128]. In addition, the diagnostic criterias for probable VD were set 

according to the National Institute of Neurological Disorders and Stroke and Association 

Internationale pour la Recherche et l’Enseignement en Neurosciences criteria [18]. Finally, 

the MCI patients were diagnosed according to the Albert et al. [129] criteria. 

 

In this dataset, all subjects were examined individually with a neurocognitive test battery 

(NCTB) that aimed to assess the functions of orientation, attention-executive functions, 

language, visuo-spatial skills and memory by the neurology department of the Maltepe 

University Hospital. The measures of cognitive functions of the subjects included the 

Turkish versions of the tests. For the assessment of orientation, scores of personal and 

current information and the Benton judgment of line orientation test [130], were used. 

Attention-executive functions were examined with the following tests: digit span forward 

and digit span backward subscales of the Wechsler memory scale-revised (WMS-R), mental 

control subscale of the Wechsler memory scale-revised, verbal fluency tests (that include 

naming animals for semantic fluency and K, A, S letters for phonemic fluency), the 

similarities subtest of the Wechsler adult intelligence scale-revised (WAIS-R), interpretation 

of Turkish proverbs (three proverbs, with the rating of zero to three points each), the Turkish 
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version of word fluency tests, a clock drawing test (a zero-to-three point scoring system was 

used) [131] and the interference score, incorrect response score and spontaneous correction 

scores of the Stroop test [132]. To assess language function, the Boston naming test (BNT) 

was performed [133]. Verbal fluency tests (both semantic and phonemic) were classified in 

language functions in addition to the attention-executive functions. Visuo-spatial skills were 

examined with the Benton face recognition test, the Benton judgment of line orientation test 

(visuo-spatial perception) and a copying drawings test (three simple and one complex 

drawings, with the rating of one point each) [130]. Both visual and verbal memory were 

assessed. Visual memory was examined with the visual reproduction subtest of the WMS-R 

including immediate recall, delayed recall and recognition scores. Verbal memory was 

examined with the Öktem-VMPT (Ö-VMPT) test including scores of immediate memory, 

total learning, the highest learning, delayed recall and recognition [134]. WMS-R logical 

memory subscale is also used for verbal memory assessment. 

 

3.4.2. Neuroimaging Data 

 

In order to evaluate the hypotheses III, IV and V, the structural MRI data of mild cognitive 

impairment patients were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu) in the preprocessed forms of T1-weighted MR images 

(3 Tesla) acquired with a magnetization-prepared rapid acquisition gradient echo (MP-

RAGE) sequence with data access permission from the ADNI. We selected two datasets for 

this thesis: cross-sectional dataset and longitudinal dataset as explained in the next 

subsections in more detail. 

 

3.4.2.1. Cross-sectional MRI 

 

A total of 305 patients with a baseline diagnosis of mild cognitive impairment were taken as 

the subjects of this thesis to test the hypothesis III and V, whose written informed consents 

were obtained by the ADNI before acquiring. 

 

The subjects were separated into two groups: those who developed Alzheimer’s disease 

during their follow-up (n=140; C-MCI) and those who remained stable in the mild cognitive 

impairment state (n=165; NC-MCI). Among those 140 C-MCI subjects, 26 were diagnosed 
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as having Alzheimer’s disease six months after the baseline assessment, 38 after 12 months, 

11 after 18 months, 39 after 24 months, 18 after 36 months, five after 48 months, one after 

72 months, and two after 96 months. 

 

3.4.2.2. Longitudinal MRI 

 

Furthermore, a total of 168 ADNI patients with a baseline diagnosis of MCI having both 

baseline and 12-months follow-up structural magnetic resonance imaging scans were taken 

as subjects to evaluate the hypothesis IV and V. Additionally, these patients have at least 

four continuous follow-ups that the time interval between two follow-up is six months or 

one-year. 

 

Among them, 73 patients who developed Alzheimer’s disease were grouped as Converted-

MCI (C-MCI) and 95 patients who remained stable in mild cognitive impairment were 

grouped as non-Converted-MCI (NC-MCI). Among the 73 C-MCI group subjects, 11 of 

them were diagnosed with AD 18 months later, 37 of them after 24 months, 17 of them after 

36 months, five of them after 48 months, one of them after 72 months and two of them after 

96 months from the baseline examination.  

 

The pre-processed forms of the selected baseline and one-year follow-up 3-Tesla T1-w MRI 

scans were downloaded from the ADNI data archive.  

 

3.5. STATISTICAL ANALYSIS 

 

Several statistical tests were employed in this thesis for comparing and presenting diagnostic 

groups in demographic profiles and for comparing predictive performances of machine 

learning algorithms.	Statistical data analysis are conducted using MATLAB (Matlab and 

Statistics Toolbox Release 7.3, The MathWorks, Inc., Natick, Massachusetts, USA). 	

 

3.5.1. Describing Data 

 

Descriptive statistics were used to present the demographic-clinic profiles or 

neuropsychological test scores of the diagnostic groups. Among these variables, categorical 
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variables (e.g. gender) were given as the number and percentage of female and male groups 

in corresponding groups. Further, continuous variables (e.g. age, education, mini-mental 

state examination or neuropsychological test scores) are expressed with mean and standard 

deviation.  

 

3.5.2. Comparing Diagnostic Groups 

 

Demographic-clinic profiles or neuropsychological test scores among more than two groups 

were compared by a Kruskal-Wallis statistical test [135], which is a non-parametric 

alternative to the one-way analysis of variance (ANOVA) [136]. The ANOVA assumes that 

the dependent variable is normally distributed.  

 

In order to identify significant difference between two groups on a variable; a two-tailed 

Wilcoxon rank sum test [137] and a Pearson's Chi-square test were employed for 

corresponding continuous variables (e.g. age, education and mini-mental state examination) 

and categorical variables (e.g. gender), respectively. An acquired p-value smaller than the 

selected alpha level indicates that there is a statistically significant difference between two 

groups on the tested variable. 

 

The Wilcoxon rank-sum test is the non-parametric version of the two-sample t-test with a 

null hypothesis saying that the two groups comes from the same distribution with the same 

median [138]. 

 

A Wilcoxon rank-sum test is executed as follows: All observations are sorted from smallest 

to largest, which the rank of an observation is determined by its sort order. Then, ranks of 

each groups are summed up, separately.  Next, a U statistics of the first group is calculated 

as follows: 

 

 𝑈 = 𝑛$ ∗ 𝑛& +
𝑛$ ∗ 𝑛$ + 1

2 	− 𝑅$, (3.1) 

 

where 𝑛$ and 𝑛& are the number of observations in each groups, separately, and 𝑅$ is the 

total rank of the first groups. 
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Then, z-score is calculated as: 

 

 𝑧 = 	
𝑈 − 𝑛$ ∗ 𝑛& 2

𝑛$ ∗ 𝑛& ∗ 𝑛$ + 𝑛& + 1 12
 (3.2) 

 

Finally, a critical z-value is calculated for a given significance level alpha to interpret the 

ontained results. Such that, a calculated z-value greater than the critical z-value rejects the 

null hypothesis states that there is a statistically significant difference between medians of 

two groups.  

 

Additionally, the Kruskal-Wallis test [135] is a non-parametric alternative to the one-way 

analysis of variance (ANOVA) [136], where the data is replaced by its ranks. Then, the H-

value of Kruskal-Wallis test is calculated for 𝑘 number of groups as follows: 

 

 𝐻 =	 12 𝑛 ∗ 𝑛 + 1 ∗
𝑅1&

𝑁1

3

14$
, (3.3) 

 

where 𝑛 is the total number of observations, 𝑁1 is the number of observations in 𝑖67 groups 

and 𝑅1 is the sum of the ranks of all observations in 𝑖67 groups. Finally, a critical H-value is 

calculated to interprete the acquired H-value. In this thesis, 𝑘 refers to the number of groups, 

𝑛 refers to the total number of patients in all groups and 𝑁1 is the number of patients in the 

𝑖67group. 

 

3.5.3. Comparing Classifier Performances 

 

In this thesis, a Cochran’s Q test was used to assess the significant differences between the 

responses of more than two classification algorithms on the same dataset [139]. Furthermore, 

McNemar’s tests were implemented for multiple post hoc performance comparisons 

between pairs of classifiers. The Cochran’s Q test is utilized to test the statistically 

significantly different outcome acquired from more than two treatments (in our case, the 

machine learning classifiers) for the same individuals. The Cochran’s Q test applied on two 

treatments is equivalent to the McNemar’s test [140].  
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The Q statistics is calculated for 𝑘 number of treatments as follows: 

 

 𝑄 =	
𝑘 − 1 ∗ 𝑘 ∗ 𝐺& − 𝐺 &

𝑘 ∗ 𝐿 − 𝐿& , (3.4) 

 

where 	𝐺1 indicates the sum of the values of 𝑖67 treatments for all observations and 𝐿1 

indicates the sum of the values of 𝑖67observation for all treatments.  

 

Finally, a critical 𝜒& value is calculated with a degree of freedom 𝑘 − 1  to compare with 

the obtained Q-value. A Q-value greater than the critical 𝜒& value rejects the null hypothesis 

indicating that those treatments has significantly different effect on treatments. In this thesis, 

𝑘 refers to the number of classification algorithms to compare their performances that is 

bigger than two, and the observation refers to the prediction outcome of each algorithms. 

 

3.6. METHODS 

 

 
 

Figure 3.1. Flowchart for developing CAD systems. 

 

In this thesis, computer-aided diagnosis systems for dementias were built in order to test our 

hypothesis. These CAD systems consisted of four common main stages: preprocessing, 

feature extraction, feature selection and classification as it is shown in Figure 3.1. In 
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preprocessing stage, input data is converted to a format that algorithms work with. The 

feature extraction stage only applies to volumetric data. In the feature selection stage, we 

tackled with the high-dimensionality of the extracted features. Finally we assessed the 

predictive power of the acquired features in classification stage. The following subsections 

descibes each of those main stages, separately, in detail. 

 

3.6.1. Data Preprocessing 

 

As it is explained in Section 3.4, the data types used in this thesis are the neuropsychological 

assessment data and the MRI data. The neuropsychological assessment data is a quantitative 

data type that is composed of the neurocognitive test scores of the patients with age-related 

cognitive decline or other dementias. On the other hand, the MRI data is the structural MR 

scans of the patients with MCI who developed AD or remained stable in MCI state. The 

acquired MRI scans are three-dimensional volumes that are composed of a set of axial 

images. Preprocessing methods are different for each type of data as they explained in the 

following subsections. 

 

3.6.1.1.  Neuropsychological Assessment Data 

 

In this thesis, all neurocognitive test scores of a patient is considered as a feature vector of 

the patient, so all those feature vectors are used to train machine learning algorithms as it is. 

Our neuropsychological test battery was including 26 different tests, so the dimension of 

feature vector of a particular patient was 26 in this thesis. 

 

3.6.1.2. Cross-sectional MRI Data 

 

For the cross-sectional data, the normalization and segmentation steps of VBM were 

performed using the “VBM8” extension of the SPM8 toolbox in Matlab 2010a (The 

MathWorks, Inc., Natick, Massachusetts, USA) to acquire grey matter (GM), white matter 

(WM), and cerebrospinal fluid (CSF) tissue probability maps of the aligned structural 

images. The spatially normalized and modulated GM tissue probability maps were smoothed 

with a Full-Width Half-Maximum (FWHM) of 8 mm using SPM8, which the acquired 

volume is called as preprocessed volume data as in Figure 3.1. 
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3.6.1.3. Longitudinal MRI Data 

 

In this thesis, the longitudinal structural MRI data of a patient is composed of MR volumes 

acquired in two different time points: the baseline and the 12-months follow-up. Those 

images are processed by a longitudinal analysis with a novel Jacobian-based method, which 

is proposed and implemented in this thesis. 

 

This novel Jacobian-based method takes the differences between two MRI volumes and 

superposes them into the follow-up MRI as an attempt to create a single volume, called as 

preprocessed volume data as in Figure 3.1 that will include the current state and also mark 

the anatomical parts that will be deteriorated or altered. 

 

This longitudinal pre-processing phase comprises of three steps: the creation of two grey 

matter volumes from the MRI scans belonging to the baseline and the follow-up 

examination, the creation of an enhanced follow-up volume that incorporates the differences 

between the two volumes and a smoothing operation of the resulted volume. As a first step, 

the baseline and the 12-months follow-up grey matter volumes were created from the MRI 

patients’ images using the ‘Segment Longitudinal Data’ function of the CAT. Those grey 

matter volumes were used in the second step. As a second step, we compute a grey matter 

volume of longitudinal changes for each patient using their baseline and 12-months follow-

up exam. 

 

In summary, we attempt to detect the differences in grey matter between the baseline and 

the 12-months follow-up. After detecting these differences, we add them to the follow-up 

volume. The result is an “enhanced” grey matter volume where an eventually progression in 

atrophy will be represented together with the actual state of the brain. In other words, we 

attempt to accentuate the eventual differences that a brain can have in time as a painter that 

will accentuate parts of a drawing with its pencil. 

 

The complete procedure is described in mathematically as follows: Let a transformation 

function 𝑓 ∶ 	𝑅> → 	𝑅>, where 𝑅> is the three-dimensional space and 𝑓 = 𝑏
𝑣 , where 𝑏 is the 

baseline and 𝑣 is the 12-months follow-up grey matter volumes of a patient. 
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Again, let 𝑓1 ∶ 	 𝑅& → 	𝑅& where 𝑅& is the two-dimensional space and 𝑓1 =
𝑏1
𝑣1

 , where 𝑏1 and 

𝑣1 are the 𝑖67 slices of the 𝑏 and 𝑣 volumes respectively. Then, we define the Jacobian matrix 

of 𝑓1 in 𝑥 and 𝑦 direction with the derivatives of  𝑏1 and 𝑣1 in each directions as:  

 

 𝐽1	 = 	

𝜕𝑏1
𝜕𝑥

𝜕𝑏1
𝜕𝑦

𝜕𝑣1
𝜕𝑥

𝜕𝑣1
𝜕𝑦

	. (3.5) 

 

Then, the determinant value of the Jacobian matrix is defined as: 

 

 det 𝐽1 =	
𝜕𝑏1
𝜕𝑥 	 ∙ 	

𝜕𝑣1
𝜕𝑦 −	

𝜕𝑏1
𝜕𝑦 ∙

𝜕𝑣1
𝜕𝑥 	. (3.6) 

 
Finally, the absolute value of the Jacobian determinant is calculated as: 

 

 𝑍1 = 𝑎𝑏𝑠	(det 𝐽1 )  (3.7) 

 

If we apply this procedure for every slice, it will result in the volume 𝑍. This acquired volume 

represents all differences that exist between corresponding slices of the baseline and the 12-

months follow-up MRI scans. We decided to take the absolute value of the Jacobian 

determinant because we are interested of every alternation that occurs in grey matter between 

the consecutive exams. Moreover, our experimental results showed that the use of the 

absolute value in the Jacobian determinant significantly increased the accuracy of the 

system.  

 

Later on, we acquired the enhanced follow-up volumes 𝑉 by adding the 12-months follow-

up volume 𝑓 together with the volume 𝑍 which incorporates the differences of the two 

exams: 

 

 𝑉 = 𝑓 + 𝑍, (3.8) 

 

where 𝑉 is the volume of the enhanced follow-up. 
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Figure 3.2 presents this procedure for the generation of a particular slice of the enhanced 

follow-up patient’s exam: the baseline and the corresponding 12-months follow-up slice are 

used to generate the Jacobian determinant in absolute values. 

 

Then, as shown in Figure 3.2, an element-wise addition with the original follow-up slice is 

performed in order to create the final enhanced follow-up slice. This procedure is repeated 

for all slices and the enhanced follow-up volume is generated. Thirdly and finally, the 

enhanced follow-up volumes were smoothed with a full-width half-maximum (FWHM) of 

8 mm using SPM, which were used to feed the input layer of the CAD system, which is 

called as preprocessed volume data as in Figure 3.1. 

 

 

 

Figure 3.2. Flowchart for preprocessing longitudinal data 

 

3.6.2. Feature Extraction 

 

The section aims to produce a set of features from the preprocessed volume data that are 

capable of predicting whether a particular patient with mild cognitive impairment will 

remain stable in the diagnosis of mild cognitive impairment or eventually will develop 

Alzheimer’s disease. 

 

In this thesis, the developed a novel feature extraction system comprises of a voxel-based 

morphometric analysis, an autoencoder and a convolutional neural network, as it is seen in 

Figure 3.1. The following subsections describes the novel single-layer convolutional neural 

network schema. 
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3.6.2.1. Voxel-based Morphometry 

 

In the statistical analysis stage of VBM analysis of the preprocessed volume data was 

executed for convolutional neural network to create SPM-t or SPM-F contrast maps. In order 

to create contrast maps, we utilized the SPM software, which calculates t-value or F-value 

for every voxel in the GM tissue based on the general linear model (GLM). The GLM is a 

statistical tool to express a dependent variable as a function of a weighted sum of 

independent variables, as: 

 

 𝑦 = 𝑋𝛽 + 	𝑐	, (3.9) 

 

where 𝑦 is the dependent variable, 𝑋 is the independent variable, 𝛽 is the estimated 

parameters and 𝑐 is the residuals. The matrix 𝑋 is called as design matrix in SPM, which 

each row represents a patient and the columns stores the other related variables.  

 

The parameters 𝛽 are estimated by ordinary least squares algorithm, which can be expressed 

as in terms of 𝑋 and 𝑦, as: 

 

 𝛽 	= 	 𝑋T𝑋 U$𝑋T𝑦. (3.10) 

 

Thus, the residual error 𝑟 is the difference between the real 𝑦 and the estimated 𝑦; and 

estimated error variance 𝜎& is defined as: 

 

 𝜎& 	= ((𝑟^𝑇	𝑟))/𝑑𝑓		, (3.11) 

 

where the degrees of freedom 𝑑𝑓 is calculated as the difference between the number of 

observations and the rank of the matrix 𝑋.  

 

Finally, the t-statistics and F-statistics are calculated using the linear combination of the 

estimated parameters 𝛽, as 𝑐T𝛽. The volume where the t-value from t-statistics or F-value 

from F-statistics belonging to each voxel is displayed, is called SPM-t contrast map or SPM-

F contrast map, respectively.  
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The selection of the significance level value for the SPM-t contrast map or SPM-F contrast 

map has repercussions for type-I and type-II errors [141]. Type-I errors occur when a high 

value significance is selected, which leads to a low t-value threshold thus including more 

voxels and increasing by consequence the false positive rate. Type-II errors occur when a 

low value of significant level (𝛼) is chosen, which results in a high t-value threshold that 

excludes more voxels and increases by consequence the false negative rate. After a series of 

experiments, an appropriate statistical significance level (𝛼) was selected . 

 

3.6.2.2. Autoencoder 

 

This section describes the concept of autoencoders and how it is employed in our novel CNN 

model to extract features from MRI data. An autoencoder is a feed-forward artificial neural 

network aiming to learn the latent representation of the data [58]. An autoencoder neural 

network applies back propagation algorithm for training the network, such that the output 

data is almost same as the input data. In this network, the number of hidden neurons can be 

smaller or bigger than the number of input neurons. When the number of hidden neurons is 

smaller than the number of input neurons, the network learns the compressed representation 

of the data. Otherwise, it learns the sparse representation of the data. 

 

 
 

Figure 3.3. Architecture of an autoencoder 

 

The general schema of an autoencoder with a single hidden layer is shown in Figure 3.3. In 

this example autoencoder network, the input 𝐼 and the output 𝑂 are the 𝑛-dimensional 

vectorised data. Each element of input and output is represented with subscript. The 

autoencoder is trained to satisfy a condition where the input and the output will be almost 
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same. In this figure, the hidden layer is composed of 𝑚 hidden neurons. Each element of the 

input vector 𝐼 is connected to each hidden neuron with the weight matrix 𝑤($) of 𝑛×𝑚 size, 

where the its value stands for the weight of the connection between 𝑖67 input element and 

𝑗67 hidden neuron. 

 

As a result, the generated vector 𝑎 is the latent representation of the input data 𝐼. The output 

value 𝑎c	of the 𝑗67 hidden neuron is calculated as in Equation (3.12): 

 

 𝑎c  =𝜑 𝑤1,c
$ ∙ 𝐼1e

14$ , (3.12) 

 

where 𝜑 is the activation function and the input of the activation function 𝑛𝑒𝑡c
$  is the 

weighted sum of the values of the elements of the input vector 𝐼. The operation is repeated 

for all hidden neurons. Thus, the acquired vector 𝑎 is the latent representation of the input 

data 𝐼. In other words, an autoencoder can be formulated as: 

 

 𝑂 =𝑑𝑒𝑐𝑜𝑑𝑒𝑟 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝐼 , (3.13) 

 

where the encoder is the function that calculates the vector 𝑎 and the decoder is the function 

that reconstructs the input data vector from the vector 𝑎. This is how an autoencoder used as 

a dimensionality reduction purposes. 

 

However, in this thesis, we didn’t use that property of the autoencoder in this thesis. We 

utilized autoencoders to learn convolutional filters. In order to do this, the Equation (3.12) 

is rewritten to cover all elements of the vector 𝑎, then each column of the weight matrix is 

called as basis vector (see Equation (3.14)). 

 

 𝑎$ … 𝑎j =𝜑 𝐼$ … 𝐼e
𝑤$,$

$ … 𝑤$,j
$

⋮ ⋮ ⋮
𝑤e,$

$ … 𝑤e,j
$

 (3.14) 

 

In the case where the activation function 𝜑 is the linear identity function, the encoder part 

of the autoencoder corresponds with the principal component analysis method, but with a 
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difference that the basis vectors of the encoder part of the autoencoder are non-orthogonal 

unlike principal component analysis. Finally, each column of the weight matrix is one of the 

learnt filter to be used as filter in the convolutional layer of convolutional neural network 

models. 

 

In addition to these, although the backpropagation learning algorithm is a supervised 

algorithm, due to the use of the data itself as a label for training the autoencoder, the training 

of an autoencoder can be considered as an unsupervised learning procedure. 

 

To sum up, the purpose of using an autoencoder in this thesis is that generating convolutional 

filters for CNN model. For this purpose, a set of patches are extracted from the significant 

regions of the brain. These filters can be considered as an abstraction or a general 

representation of the information included in the regions of interest. During the training 

process, we used a set of patches from the preprocessed volume of all patients and we 

generated a set of filters. Thus, every filter can be considered as an image in the same size 

with the patches and its pixels correspond to the weights of a particular hidden layer. 

Extracted patches were vectorised to feed the input layer of the autoencoder. 

 

After training, the weights of each hidden unit compose a filter. As a result, a number of 

filters of the same number as the hidden units are obtained. 

 

3.6.2.3. Traditional Convolutional Neural Network 

 

Before continue to explain our novel CNN model, it is better to explain how a traditional 

convolutional neural network works. A CNN architecture can be formed in a variety of ways, 

but the simplest one is composed of a set of convolutional and subsampling/pooling layers 

and optionally a supervised classifier as a final layer. 

 

Figure 3.4 illustrates a traditional structure of a two-layered convolutional neural network. 

In this configuration, the input layer contains an 𝑚×𝑛 image that represents an instance. 

Firstly, the input image is convolved with 𝑘($) filters denoted by 𝐶e
($), where 𝑛	 ∈

1, 2, . . , 𝑘($) . Thus, the convolving operation of the first layer produces 𝑘($) feature maps 

with the same size as the input image.  
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Figure 3.4. Architecture of a two-layered convolutional neural network 

 

Now, it is better to explain how a feature map is convolved with a filter for a better 

understanding of convolutional neural network. The convolution is a mathematical operation 

on two functions that indicates the amount of overlap of the two functions as sliding the filter 

over the first function, which plays an essential role in extracting important features from 

the data in signal and image processing. 

 

In a more abstract definition, the convolution is the integral of the point-wise multiplication 

of the two functions 𝑓 and 𝑔 that is given by: 

 

 𝑓 ∗ 𝑔 𝑡 = 𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏	, (3.15) 

 

where	𝑓 and 𝑔 are continuous function of time 𝜏 and 𝑡 is a time-offset. In image processing 

context, the two-dimensional image convolution for a particular (𝑥, 𝑦) position is 

mathematically represented as: 

 

 𝑓 ∗ 𝑔 𝑥, 𝑦 = 𝑓 𝑢, 𝑣 𝑔(𝑥 − 𝑢, 𝑦 − 𝑣)
qr3s

t4qU3s

ur37

v4uU37

	, (3.16) 

 

where 𝑓 is the input and g is the filter with a size of 2 ∙ 𝑘𝑤 − 1 ×(2 ∙ 𝑘ℎ − 1). 
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In order to have a better understanding of the convolution, the calculation of the function 

(𝑓 ∗ 𝑔)(𝑥, 𝑦) with an 7×7 input image and a 3×3 filter (named as kernel also) at the point 

𝑥 = 2 and 𝑦 = 2 is illustrated in Figure 3.5. 

 

 
 

Figure 3.5. Illustration of a convolution operation of an image with a laplacian filter 

 

Therefore, according to the Equation (3.16), the value of that point is calculated as 

𝑓 ∗ 𝑔 2, 2 = 	0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 1 ∙ −4 + 1 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 2 ∙ 0, 

which the result is “-2”. In a  convolution operation, each filter extracts different features out 

of the data. For example, the laplacian filter is used for calculating the second derivative of 

an image as it is illustrated in Figure 3.5. 

 

After convolutional layer, each of the acquired feature maps is pooled separately to create 

feature vectors. The aim of the following pooling operation is to reduce the size of the feature 

maps. In that case, the size of feature maps were reduced by 0.5 using 2×2 pooling areas, 

which the acquired pooled feature maps form the input of the second layer. The filters of the 

second layer is denoted by 𝐶e
(&), where 𝑛	 ∈ 1, 2, . . , 𝑘(&)  in the Figure 3.4. The number and 

size of kernels may vary for each layer. Since more than one image stands for an instance in 

the second layer, the convolution results are aggregated for each filter separately that 

compose 𝑘(&) features maps in the size of 𝑘($)× 𝑚 2 × 𝑛 2 . 

 

Finally, the pooled feature maps are vectorised in the size of 1×(𝑘(&) ∙ 𝑚 4 ∙ 𝑚 4 ) to 

be used as feature vectors in the classification tasks. In this thesis, we assessed the predictive 

power of the acquired feature vectors of patients using support vector machines. 
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3.6.2.4. Novel Convolutional Neural Network Model 

 

In this thesis, a novel single-layer convolutional neural network model is introduced, which 

comprises an input, a convolutional layer, a pooling layer for extracting prognostic features 

from the structural magnetic resonance imaging data [142]. To be more specific, we 

introduced a novel single-layer convolutional neural network schema that employed an 

autoencoder for the convolutional layer and a SPM-t contrast map or a SPM-F contrast map 

used in the pooling layer to define the pooling clusters. In addition, the contrast maps were 

also indirectly used in the training procedure of an autoencoder by identifying appropriate 

voxels for defining where the patches will be sampled. Finally, the acquired prognostic 

features is used later as an input for the traditional machine learning classifier for assessment. 

This section is organized as follows. Firstly, we introduce the creating of contrast map. Then, 

the training of autoencoders with the help of contrast maps, and then, the purpose of using 

an autoencoder in this novel CNN model are presented. Next, the meaning of contrast maps 

in the pooling layer is explained. Finally, we introduced the novel CNN model utilizing the 

autoencoder and VBM. 

 

First of all, two voxel-based morphometric analyses were performed on preprocessed cross-

sectional volumes and preprocessed longitudinal volumes, separately, using the statistical 

parametric mapping (SPM) software. To be more specific in terms of this thesis, a SPM-t 

contrast map was built using the preprocessed cross-sectional volumes of two groups of 

patients (C-MCI vs. NC-MCI) by performing a voxel-wise two-sample t-test with a one-

sided alternative hypothesis stating that the patients with C-MCI group shows more grey 

matter atrophy in their baseline then NC-MCI group. Similarly, a two-sample t-test was 

designed on the preprocessed longitudinal volumes to specify statistically significantly 

different voxel positions between the two groups, which is resulted in a SPM-F contrast map. 

The significance level was selected as 0.005 with an extend threshold of 600 for both contrast 

maps in this thesis.  

 

Secondly, the autoencoders were trained with the help of contrast maps. The purpose of 

using autoencoders in this CNN model is to create the filters to be used in the convolutional 

layer. To be more specific in terms of this thesis, we trained two autoencoders using the 

preprocessed cross-sectional volumes and preprocessed longitudinal volumes, separately. 
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The first auto-decoder was trained by a set of patches of size 11×11 that are composed by 

1000 patches sampled per preprocessed cross-sectional volumes. The patches are sampled 

from the region determined by the SPM-t contrast map. The number of hidden units of the 

autoencoder was determined after a series of extensive tests implying different numbers of 

hidden units based on the best success rate of the system. The autoencoder with 10 hidden 

units was trained according to the vectorised representations of these patches with a linearly 

decreasing learning rate going from 0.9 to 0.25, a stable learning scale of 0.9, a momentum 

of 0.2, and L2-weight regularization penalty of 0.0001 over a total of 20 epochs. 

Additionally, the second autoencoder was trained by a set of patches of size 15×15 with the 

help of SPM-F contrast map. During the training process, we used 457.800 patches from the 

preprocessed longitudinal data of all patients and we generated 12 filters as described in 

Figure 3.6. Extracted patches were vectorised to feed the input layer of the autoencoder as 

in the figure. After training, the weights of each hidden unit composed a filter in size of 

15×15. Since the system has 12 hidden units, we come up with 12 filters. Those learnt filters 

are further used in the convolutional layer of the novel CAD models. 

 

 

 

Figure 3.6. Flowchart for generating filters using an autoencoder 

 

Thirdly, the main purpose of using the contrast maps in novel CNN model is to developed a 

novel pooling schema to test the hypothesis-V in this thesis. 

 

In other words, the contrast maps were used to determine which voxels will be pooled 

together, named as clusters. Depends on the selected significance level, we came up with a 

set of clusters.  
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Figure 3.7. Flowchart for defining pooling clusters 

 

For determining pooling regions, an atlas-based region-of-interest (ROI) analysis was 

performed on the clusters using the WFU PickAtlas software for mapping the regions of 

interest according to the “TD Labels” atlas as in Figure 3.7. In the analyses related with 

cross-sectional data, this method couldn’t be applicable. So, the clusters were used as it is 

determined by SPM-t contrast maps for the cross-sectional data. In other words, the step 

explained in Figure 3.7 is skipped for the cross-sectional experiments. 

 

 

 

Figure 3.8. Architecture of the novel convolutional neural network for longitudinal data 

 

Finally, after acquiring the filters by an autoencoder and the pooling regions by a contrast 

map, we are ready to built the novel CNN model for extracting prognostic features. Figure 

3.8 presents the steps that are needed for creating the prognostic feature vector of a patient 



45 
 

 

explained through the preprocessed longitudinal data as an example. After several 

experiments for the longitudinal data, we achieved the highest results with 12 filters in a size 

of 15×15 and 65 clusters caused by a significance level of 0.005 with and extend threshold 

of 600. After the acquisition of the patients’ preprocessed longitudinal volumes (enhanced 

follow-up volumes), we apply the following convolution procedure: for every patient, its 

brain volume is convolved with each of the 12 filters calculated before. As mentioned above, 

these filters may be considered as an abstraction of the characteristics indicating if an AD 

conversion will happen or not. For a particular brain volume, the convolution is performed 

with each slide of the volume. In total, 12 new brain volumes are generated (named as 

“feature maps”). Then, for each of them, using the mapped SPM-F contrast map, 65 volumes 

of interest are determined. These regions, as explained before, indicate the parts of individual 

brain anatomical regions that are considered statistically important after performing the 

VBM analysis. The next step is to calculate the mean value of each volume of interest. In 

total, 65 values are generated for each feature map named as “feature vector”. As we have 

12 convolved brain volumes (or 12 feature maps), in the end, a total of 780 values are 

produced named “prognostic features” for longitudinal experiments. 

 

Similarly, another single-layer convolutional neural network model was constructed using 

the preprocessed cross-sectional volumes in this thesis as in Figure 3.8. The best results were 

achieved when we trained an autoencoder with 10 hidden units and we selected the 

significance level as 0.005 and extend threshold of 600. In that case, we utilized the clusters 

as they defined by VBM analysis. Thus, we had five clusters that resulted in 50 prognostic 

features per patients for cross-sectional experiments. 

 

3.6.3. Feature Selection 

 

In order to evalute the hypothesis-II, a Whitney ranksum test [137] was employed to compare 

all possible pairs of treatment groups on each neurcognitive test scores with a significance 

level of 0.01. 

 

Then, a subset of the neurocognitive test scores was selected for each possible pair of 

diagnostic groups based on these Mann-Whitney test statistics in order to train machine 

learning classifier [143]. 
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Moreover, we implemented a support vector machine based recursive feature elimination 

method (SVM-RFE) [144] in order to select the most significant features among the 

prognostic features acquired from the longitudinal MRI data due to its high-dimensionality. 

This method is based on a feature scoring procedure indicating the contribution of each 

feature to the construction of the SVM hyperplane during the training of the SVM classifier. 

For this purpose, we used the SVM-RFE implementation of Weka. 

 

3.6.4. Classification 

 

Finally, the acquired features are processed in a traditional machine learning classifier for 

assessing their prognosis powers. In this thesis, we utilized two common machine learning 

algorithms to assess our obtained feature vectors that are multilayer perceptrons and support 

vector machine classifiers. The following subsection describes those two algorithms. 

 

3.6.4.1. Multilayer Perceptrons 

 

In this thesis, we have utilized the multilayer perceptrons to build the classification models 

based on neuropsychological test scores. Thus, it is good to provide some theoretical 

information about the multilayer perceptrons.  

 

 

 

Figure 3.9. Architecture of a perceptron 

 

The building blocks of a multilayer percepton are the perceptrons that are discovered by 

Frank Rosenblatt [50]. The perceptron is a single unit, which comprises a net input function 

and an activation function in a serial order as it is illustrated in Figure 3.9. The net input 

function calculates the weighted sum of the input values. The activation function can be any 
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differentiable function that calculates the output of that perceptron according to its net value 

calculated by the net function of it. Generally, a linear function, a sigmoid function or a 

logistic function is used as an activation function to transforms the net value. Each 

perceptron in a multilayered structure may have different kind of activation function. 

 

Thus, as the name implies, the multilayer percepton is the finite directed acyclic graph of 

perceptrons. In this network structure, the output of a perceptron is used as input by the other 

perceptrons that are connected next to it. A perceptron may have more than one input 

connection but have only one output connection. If a perceptron has no input connection 

then it is called as “input perceptron”, similarly, if it has no output connection then it is called 

as “output perceptron”. In other words, a multilayer perceptron is a collection of perceptrons 

organized in a layered structures, where the first layer is the input layer, the last layer is the 

output layer and remainings are named as the hidden layers.  

 

The connection between the perceptrons in a multilayer perceptron network has a scalar 

value, named as “weight”, which the value of the weight shows the strength of the bond 

between the perceptrons. Generally, the weights of a multilayer perceptron are trained by the 

backpropagation algorithm [145]. The algorithms back propagates the calculated error from 

the output layer to the input layer and then performs gradient descent in order to minimize 

error. 

 

The common definition of an error in backpropagation is the square of the Euclidean distance 

between the input vector 𝐼 and the output vector 𝑂, as: 

 

 	𝐸 = 	
1
2𝑏 𝐼(q) − 𝑂(q) &

{

q4$

 (3.17) 

 

where 𝑏 is the batch size that is the number of input data forward propagated together and 

each individual data vector is indicated by a superscript indexes one through 𝑏. 

 

Then, the partial derivative of the total output error 𝐸 with respect to one of the weights of 

the output layer gives the amount of change occurred in the total output error when a change 

occurred in that weight. 
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By applying the chain rule, the derivative of the total output error 𝐸 with respect to the 

weight 𝑤1,c becomes as: 

 

 |}
|s~,�

	= 	 |e�6�
|s~,�

∙ |��
|e�6�

∙ |}
|��
	,  (3.18) 

 

where the weight of the connection between the 𝑖67 perceptron in the hidden layer prior to 

the output layer and the 𝑗67 perceptrons in the output layer is indicated by 𝑤1,c, 𝐸 is the total 

output error, and finally, the symbol 𝑛𝑒𝑡c and the symbol 𝑂c stands for the net value and 

output value of the 𝑗67 perceptrons in the output layer, respectively.  

 

 

 

Figure 3.10. Illustration of the chain rule 

 

For a better understanding, the illustration of the chain rule can be seen in Figure 3.10, where 

the symbol 𝑎1 indicates the net value of the 𝑖67 perceptron in the hidden layer prior to the 

output layer and each individual error is indicated by a subscript. 

 

As we said before, the function 𝜑 can be any differentiable function, but in general, the 

sigmoid function is used. If we assume that the activation function 𝜑 is the sigmoid function, 

then the derivative of it is becomes as: 𝑂c 1 − 𝑂c . This is why a differentiable function is 

needed as the activation function. 

 

When we put derivatives of the all parts in Equation (3.18), the following is obtained: 

 

 
|}
|s~,�

= 𝑎1 ∙ 𝑂c ∙ 1 − 𝑂c ∙ 𝑂c − 𝐼c . (3.19) 
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Finally, the new value of the 𝑤1,c is calculated as:  

 

 𝑤1,c = 𝑤1,c − 𝜂 ∙
𝜕𝐸
𝜕𝑤1,c

	, (3.20) 

 

where 𝜂 is a coefficient called as learning rate. Finally, this procedure is repeated for all 

weights of the hidden layer and the backpropagation is applied for the prior layer using the 

output vector 𝑎 of the hidden layer. After training the weights of the network, it will be ready 

for predicting the output of a new input data. 

 

In this thesis, we constructed one MLP classifiers per each pairs of groups to assess the 

predictive power of neuropsychological test scores of patients with an input layer of size 26 

(one for each test score) and an output layer of size two (one for each groups). Additionally, 

to test the hypothesis-II, we constructed similar MLP classifiers having a difference in the 

input layer. Such that, the input layer is fed by the selected subset of test scores. 

 

3.6.4.2. Support Vector Machine 

 

In this thesis, we utilized support vector machines to build the classification models for 

neuropsychological test scores and also for assessing the predictive power of the gained 

neuroimaging features. The support vector machine, as it is mentioned before, is proposed 

by Vapnik et al. as a result of the synergy occurred between machine learning and statistics 

in 1950s [51]. A classic support vector machine is suitable for linearly separable datasets. 

With the help of kernel trick, it is possible to separate the datasets that are non-separable. 

 

The aim of the training of a support vector machine is to find the most suitable hyperplane 

that classifies the dataset clearly among all possible hyperplane. The training procedure of a 

SVM is to learn a function 𝑓 𝑥  with a given set of labelled training data 𝑥1, 𝑦1  as: 

 

 𝑓 𝑥 = 	𝑤T𝑥	 + 𝑏, (3.21) 

 

where 𝑤 is the weight matrix, 𝑥1 is a given input data in the n-dimensional feature space,  

𝑦1 ∈ −1, 1  indicates the class membership of 𝑥1  and 𝑏 is the bias.  
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This learnt function 𝑓 𝑥  is used for the prediction of  class membership of a new data 𝑥 in 

the same feature space as: 

 

 𝑦 = −1, 𝑓 𝑥 < 0
1, 𝑓 𝑥 ≥ 0, (3.22) 

 

where 𝑦 is the predicted class membership for 𝑥. In this thesis, 𝑥 is an 𝑚×𝑛	dimensional 

matrix, which 𝑚 refers to the number of subjects and 𝑛 refers to the number of features 

acquired from either neuropychnological data or MRI data. Furthermore, the class 

memberships 𝑦 refers to the diagnostic groups. 

 

3.6.5. Evaluation 

 

Classification performances were measured in terms of accuracy (ACC), sensitivity (TPR), 

specificity (SPC), precision (PPV) and F-measure (F1).  

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =	 𝑇𝑃 +	𝑇𝑁 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 +	𝑇𝑁 , (3.23) 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	𝑇𝑃 𝑇𝑃 +	𝐹𝑁 , (3.24) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	𝑇𝑁 𝐹𝑃 +	𝑇𝑁 , (3.25) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	𝑇𝑃 𝑇𝑃 +	𝐹𝑃 , (3.26) 

 

 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 	2𝑇𝑃 2𝑇𝑃 +	𝐹𝑁 + 𝐹𝑃  (3.27) 

 

The accuracy is defined as the percentage of all correct identifications among the whole 

groups (in Eq. 3.23). The sensitivity measures the percentage of correctly identified patients 

within the primary group (in Eq. 3.24), and similarly, the specificity measures the percentage 

of correctly identified patients among the secondary group patients (in Eq. 3.25). 

Furthermore, the precision shows the percentage of correctly identified the primary group 

patients to the number of patients predicted as in the same group (in Eq. 3.26). Finally, the 

F-measure is the harmonic mean of precision and sensitivity as it is formulated (in Eq. 3.27). 
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Furthermore, in the above equations, the TP (true positives) and the TN (true negatives) are 

the number of correctly classified the primary and the secondary patients respectively. 

Finally, the FP (false positives) and the FN (false negatives) denotes the numbers of 

incorrectly classified patients.  

 

In this thesis, a ten-fold cross-validation procedure was applied to the machine learning 

classifiers [146]. With this procedure the data set is divided into ten parts and for each 

repetition of training 90% of the dataset is the training set and the remaining 10% constitutes 

the test part. 

 

Only for the neuropsychological assessment data, the ClassifierSubsetEval attribute 

evaluator of WEKA [147] software was applied to every diagnostic pairs with the selected 

features using a ‘‘Best First’’ ranking scheme for each classifier model, separately, to 

calculate the ‘‘merits’’ of the features that reflect the classifier’s specific characteristics. 

 

3.7. SUMMARY OF THE CHAPTER 

 

This chapter presented the essential parts of the scientific research methodology of this 

thesis. A quantitative research methodology approach was followed in this thesis. We 

defined two problem statements: The first problem statement was about the issue of 

predicting the risk of developing AD for the MCI patients based on non-invasive data. The 

second problem statement focused on the problem of differentiating age-related cognitive 

decline from other dementias using only neuropsychological assessment data. After a 

comprehensive literature search, the problem statements were narrowed down to five 

hypotheses, which two of them were related with the first problem statement and remaining 

ones were related with the second problem statement. The hypothesis-I says that 

neuropsychological assessment data is sufficient to build a CAD model for distinguishing 

ARCD from dementias and the hypothesis-II says that a feature selection method will 

improve the performance of the CAD models. Similarly, the hypothesis-III and hypothesis-

IV were constructed to test the predictive power of the cross-sectional and longitudinal MRI 

data, respectively, in determining the risk of developing AD for MCI patients. Finally, the 

hypothesis-V was claiming that considering significant topographic regions of the brain in 

the pooling stage of the CNNs will improve the performance of the models.  
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In order to test our hypothesis, we acquired the dataset retrospectively from the neurology 

department of the Maltepe University Hospital, which contains neuropsychological 

measures collected from patients who are diagnosed with one among the following diseases: 

age-related cognitive decline, MCI, vascular dementia or Alzheimer’s disease. Furthermore, 

the baseline and follow-up MRIs of the MCI patients in the format of preprocessed forms of 

T1-weighted MR images (3 Tesla) with a magnetization-prepared rapid acquisition gradient 

echo (MP-RAGE) sequence were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu) with data access permission of ADNI. 

 

Finally, the diagnostic or prognostic features  were extracted from either neuropsychological 

test scores or MRI data. A novel single-layer CNN model were introduced to extract features 

of structural MRI data. Next, traditional machine learning algorithms were employed to 

assess the predictive performances of the acquired features are given in this section.  
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4. RESULTS 
 

 

This chapter describes the findings of the experiemental evaluations executed to test the 

hypotheses of this thesis; including, descriptive and inferential statistics of the diagnostic 

groups and datasets, the results of the voxel-based morphometric analysis, the presentation 

of the extracted features and the evaluation of the predictive performances of the developed 

CAD models. 

 

4.1. MATERIAL 

 

We obtained the three datasets as previously introduced in Section 3.4. To recall it, the first 

dataset was composed of the neuropsychological test scores of the patients with a diagnosis 

of ARCD, MCI, AD or VD. The baseline structural MR images of the MCI patients who 

remained stable in MCI or developed AD formed the second dataset.  Finally, both baseline 

and 12-months follow-up structural MR images of the same kind of MCI patients were 

obtained as the third dataset. 

 

4.1.1.  Subject 

 

Table 4.1. Descriptive statistics of the groups having neuropsychological data. 

 

 
ARCD 

(n=30) 

MCI 

(n=35) 

AD 

(n=20) 

VD 

(n=21) 
p-value 

Gender (F/M) 22/8 18/17 11/9 13/8 =0.32 

Age 70.1±7.9 71.5±7.9 75.5±5.5 72.1±6.6 =0.06 

Education 10.6±3.9 10.3±3.7 9.8±4.3 9.1±3.6 =0.57 

 

Table 4.1. shows the demographic profiles of the patient groups in the first dataset on gender 

(female (F)/ male (M)), age (in years) and education (in years). The p-values from Kruskal-

Wallis test statistics on each demographic variable is given, where a p-value smaller than the 

selected significance level of 0.01 indicates that there is no significant difference among the 

four diagnostic groups on corresponding variable.  
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The descriptive statistics and statistical comparison of the patients groups of the second 

dataset in gender, age, education (in years) and mini-mental state examination (MMSE) 

score at baseline examination are shown in Table 4.2. The statistical analysis showed that 

the two groups did not differ significantly with regards gender, age, and education (p>0.001). 

On the other hand, the MMSE scores of patients with NC-MCI (the group of MCI patients 

who remained stable in MCI) were significantly higher than in patients with C-MCI (the 

group of MCI patients who developed AD after baseline) with a significance level of 0.001. 

 

Table 4.2. Descriptive statistics of the groups having cross-sectional MRI data 

 
 NC-MCI C-MCI Statistics 

Gender  75 (45.5 %) / 90 (54.5 %) 54 (38.6 %) / 86 (61.4 %) p=0.2253 

Age  70.89±7.26; [56-89] 73.12±7.26; [55-87] p=0.003 

Education 16.42±2.55; [11-20] 15.91±2.81; [6-20] p=0.134 

MMSE 29.02±0.80; [28-30] 27.06±1.84; [23-30] p<0.001 

 

The descriptive statistics and statistical comparison of the patient groups of the third dataset 

on gender, age, education and MMSE score at baseline (MMSE-bl) and 12-months follow-

up (MMSE-fl) are shown in Table 4.3. The statistical analysis showed that the two groups 

did not differ significantly in gender, age and education at the significance level of 0.001. 

On the other hand, the median of MMSE scores of the NC-MCI patients were significantly 

higher than those of the C-MCI patients (p<0.001).  

 

Table 4.3. Descriptive statistics of the groups having longitudinal MRI data 

 

 NC-MCI (n=95) C-MCI (n=73) Statistics 

Gender 46 (48.4 %) / 49 (51.6 %) 25 (34.2 %) / 48 (65.7 %) p=0.065 

Age 70.56±7.05; [57-89] 73.75±7.33; [56-87] p=0.002 

Education 16.42±2.59; [11-20] 16.29±2.74; [11-20] p=0.776 

MMSE-bl 29.04±0.79; [28-30] 27.30±1.66; [24-30] p<0.001 

MMSE-fl 28.62±1.45; [24-30] 26.33±1.81; [22-30] p<0.001 

 

As it is shown in Table 4.4, no significant difference in MMSE score between the baseline 

indicated by MMSE-bl and the 12-months follow-up indicated by MMSE-fl examination was 
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noted for the NC-MCI group (t-value: -2.85; df: 94; p-value = 0.003). On the other hand, the 

mean MMSE score at the 12-months follow-up examination of the converted mild cognitive 

impairment group was significantly reduced (t-value: -4.94; df: 72; p-value < 0.001). The 

group means of NC-MCI is 29.04 and 28.62 for baseline and follow-up, respectively. 

Similarly, the baseline and follow-up means are 27.30 and 26.33 respectively for C-MCI. 

 

Table 4.4. The paired t-test statistics on the longitudinal MMSE scores 

 

 

 

Group means 
Statistics 

MMSE-bl MMSE-fl  

NC-MCI 29.04 28.62 t-value: -2.85; p-value = 0.003 

C-MCI 27.30 26.33 t-value: -4.94; p-value < 0.001 

 

4.1.2. Datasets 

 

In this section, the descriptive and inferential statistics of the neuropsychological test scores 

of the patients groups obtained from the neurology department of Maltepe University 

Hospital are given. Furthermore, one of the baseline structural MR images of the patient 

with MCI is given with its corresponding grey matter tissue segment. Finally, the baseline 

and 12-months follow-up images of a particular patient is presented as an example to the 

longitudinal data. 

 

4.1.2.1. Neuropsychological Assessment Data 

 

Table 4.5. shows the mean and the standard deviation of neurocognitive test scores for each 

groups supported by Kruskal-Wallis test statistics. An asterisk (*) indicates a significance 

level of 0.05 and two asterisks (**) are used to denote the significance level as 0.01. In this 

thesis, the critical significance level of 0.01 is selected for the statistical analysis. At this 

selected significance level (𝛼 = 0.01), it is shown in Table 4.5 that there is no statistically 

significant difference on WMS-R personal and current information (p=0.03), WMS-R 

orientation (p=0.014), WMS-R digit span forward (p=0.05), WMS-R mental control 

(p=0.02), Stroop spontaneous corrections (p=0.03), face recognition (p=0.08) and copying 

drawings (p=0.06).  
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Table 4.5. Descriptive and Kruskal-Wallis statistics on each neurocognitive test scores 

 
 ARCD MCI AD VD p 

Orientation 

Personal information 5.57±0.7 5.34±0.8 4.85±0.9 5.33±0.9 * 

Orientation 4.97±0.2 4.69±0.6 4.35±1.0 4.76±0.4 * 

Attention-executive functions 

Digit span forward 5.67±1.2 5.20±0.87 4.95±0.94 5.00±0.9 * 

Digit span backward 4.47±1.2 3.66±0.7 3.30±0.7 3.86±1.8 ** 

Mental control 9.97±3.2 9.43±3.1 8.15±2.5 7.71±2.9 * 

Semantic fluency 20.27±5.0 16.69±5.5 14.30±5.7 14.38±5.6 ** 

Fonemic fluency 33.67±15.3 25.11±11.4 23.00±13.3 18.86±8.1 ** 

Similarities 13.10±2.5 11.77±2.7 8.75±3.9 11.14±3.6 ** 

Proverbs 8.77±0.4 8.20±1.5 7.40±2.3 7.38±2.4 ** 

Clock drawing 2.63±0.7 2.60±0.7 2.00±0.9 2.00±1.0 ** 

Stroop interference 48.0±21.5 82.7±53.8 77.0±36.9 118.9±65.7 ** 

Stroop incorrect responses 1.03±1.9 7.09±11.5 7.20±11.6 5.29±7.8 ** 

Stroop spontaneous 2.53±2.9 2.86±2.2 3.65±2.7 5.14±4.1 * 

Language 

Naming (BNT) 29.87±1.9 28.00±5.4 27.25±2.6 27.10±4.4 ** 

Semantic fluency 20.27±5.0 16.69±5.5 14.30±5.7 14.38±5.6 ** 

Fonemic fluency 33.6±15.3 25.1±11.4 23.0±13.3 18.86±8.1 ** 

Visuo-spatial functions 

Face recognition 41.83±3.1 41.20±4.4 39.40±2.6 40.19±3.8 0.08 

Copying drawings 3.80±0.4 3.89±0.5 3.70±0.6 3.48±0.8 0.06 

Memory functions 

W
M

S-
R

 

VR immediate recall 11.37±2.1 9.57±2.3 7.85±2.5 8.33±2.7 ** 

VR delayed recall 9.87±4.0 6.03±3.9 3.45±3.0 7.00±3.1 ** 

VR recognition 3.13±1.2 2.34±1.4 1.40±1.2 2.48±1.3 ** 

LM immediate recall 16.23±3.0 14.0±3.3 11.30±4.0 15.57±2.8 ** 

LM delayed recall 16.07±3.7 12.31±4.3 9.80±5.3 15.57±3.0 ** 

Ö
-V

M
P 

 

Immediate memory 5.13±2.3 3.97±1.7 3.30±1.7 3.62±1.0 ** 

Total learning score 103.8±24.6 72.0±18.5 61.2±13.3 74.24±17.5 ** 

Highest learning score 13.33±2.4 10.23±2.3 8.60±1.5 10.76±2.1 ** 

Delayed free recall 11.07±3.1 5.94±3.3 3.45±3.1 7.76±3.1 ** 

Recognition score 15.00±0.0 13.63±1.5 11.75±2.8 14.05±1.4 ** 
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4.1.2.2. Cross-sectional MRI Data 

 

Figure 4.1 shows an axial slice of the 3T structural MR image acquired in the baseline 

examination of a 65 years-old woman with a diagnosis of MCI who subsequently progressed 

to AD 12 months after this baseline examination. Figure 4.1 (a) shows the 3T T1-weighted 

bias-corrected MR scan (170 sagittal slices, slice thickness=1.2 mm, matrix 256×256, 

magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence) as acquired 

from the ADNI dataset. Additionally, the corresponding preprocessed cross-sectional 

volume of the patient is shown in Figure 4.1 (b). 

 

 
(a) 

 
(b) 

 

Figure 4.1. Cross-sectional MRI data of a patient. (a) Original baseline, (b) Preprocessed 

 

4.1.2.3. Longitudinal MRI Data 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4.2. Longitudinal MRI data of a patient. (a) Original baseline, (a) Original 12-

months follow-up, (c) Preprocessed 
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Figure 4.2 shows the 3T structural MR images acquired in the baseline and 12-months 

follow-up examination of a 74 years-old man with a diagnosis of MCI who subsequently 

progressed to AD 18 months after this baseline examination. Figure 4.2 (a) shows an axial 

slice of the 3T T1-weighted bias-corrected baseline MR scan (170 sagittal slices, slice 

thickness=1.2 mm, matrix 256×256, magnetization-prepared rapid acquisition gradient echo 

(MP-RAGE) sequence) as acquired from the ADNI dataset. Similarly, Figure 4.2 (b) shows 

an axial slice of the 12-months follow-up scan of the same patient. Additionally, the 

corresponding preprocessed cross-sectional volume of the patient is shown in Figure 4.2 (c). 

 

4.2. FEATURE EXTRACTION 

 

In this thesis, the feature extraction procedure is subject to only the MRI data. The feature 

extraction procedure of MRI data is performed based on the novel convolutional neural 

network system explained in Section 3.6.2.5.  

 

Several novel CNN models were constructed to create prognostic features with three main 

configuration parameters: those are the size of patches, the number of filters and the 

significance level for contrast maps. Thus, the six configurations were designed with the 

combination of one patch size (11x11), three different number of filters (10, 25, 50) and two 

different significance levels (0.001% and 0.005%) for the preprocessed cross-sectional 

volumes. For that case, we selected only one patch size (11x11), because other size of 

patches didn’t worked well.  

 

Similarly for the preprocessed longitudinal volumes, the combination of three different patch 

sizes (11x11, 13x13, 15x15) and four different number of filters (8, 10, 12, 14) resulted in 

12 experiments for the evaluation of the prognostic power of the preprocessed longitudinal 

volumes.  

 

The results based on these configurations are given in this section. Firstly, the contrast maps 

are shown with the descriptive information of the clusters obtained at the selected 

significance level. Then, the learnt convolutional filters are presented. Finally, an example 

feature map is given to a better understanding of the purpose of convolutional filters to 

highlight features of images. 
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4.2.1. Contrast Maps 

 

As it is explained in Section 3.6.2.1, two voxel-based morphometric analyses were 

conducted that resulted in a SPM-t contrast map and a SPM-F contrast map for preprocessed 

cross-sectional and longitudinal volumes, respectively.  This section shows these contrast 

maps and the acquired clusters at the selected significance level. 

 

4.2.1.1. SPM-t Contrast Map 

 

Figure 4.3 (a) shows the SPM-t contrast map of grey matter lower concentration differences 

observed between the C-MCI and NC-MCI groups with an extend threshold of 200 and a 

significance level of 0.005 based on the preprocessed cross-sectional volumes of the patients. 

The superimposition of the SPM-t contrast map based on the individual brain atlases using 

statistical parametric mapping of 116 predefined segments (IBASPM-116) atlas of the WFU 

Pickatlas software is presented in Figure 4.3 (b). The significantly reduced grey matter 

regions in the C-MCI group compared to NC-MCI group were thresholded at a family-wise 

error-corrected p-value of 0.005 (threshold t-value is 5.08). This significance level yielded 

five significant clusters. As an extra test, the same procedure was repeated at the family-wise 

error-corrected-corrected significance level of 0.001, which resulted in seven clusters. 

 

 
(a)                                               (b) 

 

Figure 4.3. SPM-t contrast map based on the cross-sectional data. (a) SPM-t contrast map, 

(b) Superimposed SPM-t contrast map on the atlas 
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The descriptive statistics of the five clusters that acquired at the significance level of 0.005 

are shown in Table 4.6. Each row corresponds to a cluster. Such that, the voxels column 

shows the number of voxels within the cluster, the t-value column shows the mean and 

standard deviation of the t-values of the voxels within the cluster, the maximum column 

shows the maximum t-value observed in the cluster and the IBASPM-116 atlas region 

column gives the anatomic brain region of the voxel with the maximum t-value. 

 

Table 4.6. Descriptive statistics of the five clusters (p<0.005) 

 
 Voxels t-value Maximum IBASPM-116 atlas region 

1 3713 5.82±0.57 7.64 Right superior temporal gyrus 

2 3109 6.45±0.87 8.39 Left amygdala 

3 2921 6.04±0.75 8.85 Right hippocampus 

4 2744 5.86±0.59 7.58 Left superior temporal gyrus 

5 302 5.55±0.34 6.40 Left supramarginal gyrus 

 

Similarly, the descriptive statistics of the seven clusters are shown in Table 4.7, which are 

obtained when the SPM-t contrast map is thresholded at the significance level of 0.001. 

 

Table 4.7. Descriptive statistics of the seven clusters (p<0.001) 

 
 Voxels t-value Maximum IBASPM-116 atlas region 

1 2628 6.67±0.77 8.39 Left amygdala 

2 2114 6.32±0.69 8.85 Right superior temporal gyrus 

3 2050 6.16±0.50 7.64 Right hippocampus 

4 1762 6.16±0.53 7.58 Left middle temporal gyrus 

5 245 5.90±0.33 6.71 Left angular 

6 153 5.82±0.26 6.40 Right inferior temporal gyrus 

7 110 5.63±0.12 5.87 Right superior temporal gyrus 

 

4.2.1.2. SPM-F Contrast Map 

 

Figure 4.4 shows the SPM-F contrast map of statistically significantly different voxels 

between two groups with an uncorrected p-value of 0.005 and an extend threshold of 600 

created using the preprocessed longitudinal volumes. The SPM-F contrast map defines a 
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total of 63119 significant voxels that have a higher F-value than the selected threshold F-

value. A total of 6961voxels of the SPM-F contrast map are located in the sub-gyral region 

of the anatomical ROI mask. Similarly, some other prevailing anatomical labelling are 

parahippocampa gyrus (n=7188), middle temporal gyrus (n=6501), superior temporal gyrus 

(n=7378) and extra-nuclear (n=3122).  

 

 
 

Figure 4.4. The SPM-F based on the longitudinal data 

 

4.2.2. Convolutional Filters 

 

 

 

Figure 4.5. Some patches sampled from the preprocessed cross-sectional volumes 

 

Figure 4.5 shows some of the patches in size of 11that  sampled from the preprocessed cross-

sectional volumes. These patches were used to train an autoencoder for learning the 

convolutional filters. 
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The convolutional filters learnt by an autoencoder with 10 hidden units are shown in Figure 

4.6, where each subimage corresponds to a single convolutional filter with a size of 11×11. 

Those convolutional filters are sensitive to detect prognostic features of the preprocessed 

cross-sectional volumes of the patients with a diagnosis of MCI. 

 

 
 

Figure 4.6. The convolutional filters of the preprocessed cross-sectional volumes 

 

The best prognostic power was achieved by the extracted features of the preprocessed 

longitudinal volumes with a patch size of 15, an autoencoder with 12 hidden units and a 

significance level of 0.005. As a result, the learnt 12 filters are shown in Figure 4.7 below.  

 

 
 

Figure 4.7. The convolutional filters of the preprocessed longitudinal volumes 

 

4.2.3. Feature Maps 

 

In this section, we provide two feature maps, each of which is obtained by convolving two 

preprocessed volumes of different groups with the same convolutional filter. Figure 4.8 (a) 

presents the an axial slice of the preprocessed cross-sectional volume of an MCI patient who 

developed AD (a), an MCI patient who remained stable (c), and the acquired feature maps 

(b, d) for these slices, respectively, in order to show the effect of same filter on different 

images. 
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(a)                   (c) 

 
(b)                   (d) 

 

Figure 4.8. Preprocessed cross-sectional volumes and their corresponding feature maps. (a) 

Belongs to convert-MCI group, (b) and its feature map, (c) Belongs to nonconvert-MCI 

group, (d) its feature map 

 

4.3. FEATURE SELECTION 

 

To tackle with the high-dimensionality of the acquired features, we employed feature 

selection procedure before performing classification. We selected different feature selection 

methods for the features extracted from quantitative data and volume data due to their nature. 

For the quantitative data, we selected a feature selection algorithm based on statistical tests 

Additionally, a SVM based algorithm is employed for the volume data. 

 

4.3.1. Preprocessed Quantitative Data 

 

The high-dimensionality of neuropsychological assessment data is reduced by a classifier-

independent feature subset selection method based on a non-parametric statistical hypothesis 

test, where the importance of a feature is determined by a p-value from the Wilcoxon rank-

sum test statistics as given in Table 4.8. An asterisk (*) indicates a significance level of 0.05 

and two asterisks (**) are used to denote the significance level as 0.01. 
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Table 4.8. The Wilcoxon rank sum statistics for all pairs of diagnostic groups 

 
 ARCD 

MCI 

ARCD 

AD 

ARCD 

VD 

MCI 

AD 

MCI 

VD 

AD 

VD 

Orientation 

Personel information 0.24 * 0.33 ** 0.98 0.07 

Orientation ** * ** 0.18 0.94 0.19 

Attention-executive functions 

Digit span forward 0.13 ** ** 0.16 0.39 0.68 

Digit span backward * * ** 0.06 0.55 0.28 

Mental control 0.53 ** ** 0.07 ** 0.44 

Semantic fluency * * * 0.07 0.16 0.62 

Fonemic fluency ** * * 0.27 ** 0.37 

Similarities ** * ** * 0.71 0.06 

Proverbs 0.12 * * 0.07 0.10 0.86 

Clock drawing 0.74 * ** * ** 0.88 

Stroop interference * * * 0.88 ** ** 

Stroop incorrect responses * 0.07 * 0.47 0.66 0.36 

Stroop spontaneous 0.29 0.08 ** 0.32 ** 0.24 

Language 

Naming (BNT) ** * * ** 0.34 0.53 

Semantic fluency * * * 0.07 0.16 0.62 

Fonemic fluency ** * * 0.27 ** 0.37 

Visuo-spatial functions 

Face recognition 0.49 * 0.08 0.14 0.43 0.60 

Copying drawings 0.10 0.63 0.18 ** * 0.44 

Memory functions 

W
M

S-
R

 

VR immediate recall * * * ** 0.12 0.49 

VR delayed recall * * * ** 0.35 * 

VR recognition ** * ** ** 0.77 * 

LM immediate recall * * 0.46 ** 0.07 * 

LM delayed recall * * 0.49 0.06 * * 

Ö
-V

M
P 

 

Immediate memory ** * * 0.12 0.27 0.51 

Total learning score * * * ** 0.79 ** 

Highest learning score * * * * 0.36 * 

Delayed free recall * * * * ** * 

Recognition score * * * * 0.13 * 
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The ARCD and AD pair as it is shown in Table 4.8, was composed of all neurocognitive 

tests except WMS-R digit span forward (p<.05), WMS-R mental control (p<.05), Stroop test 

incorrect responses, Stroop test spontaneous corrections and copying drawings tests. The 

ARCD and MCI pair didn’t consider the test scores measures orientation and visuo-spatial 

abilities in the training of machine learning algorithms. Similarly, the ARCD and VD pair 

excluded the test scores of orientation and visuo-spatial categories. Face recognition, 

similarities and clock drawing only considered by the ARCD and AD pair. 

 

On the other hand, the most statistically significant overlap occurred between the MCI-VD 

pair. All neurocognitive test scores of orientation and language functions are statistically 

insignificant. Only copying drawings and WMS-R logical memory delayed recall test scores 

have significance in the MCI-VD pair. Impaired face recognition is one of the 

neurocognitive hallmarks for differentiating cognitive impairment for AD patients [148]. 

Face recognition test scores were statistically significant only in the ARCD-AD pair. WMS-

R personal-current information and WMS-R orientation features were significantly different 

only in the case of the differential diagnosis of ARCD from AD.  

 

4.3.2. Preprocessed Volume Data 

 

Since we had 65 number of clusters for the longitudinal data, we came up with a high-

dimensional feature vector depend on the number of hidden units in the trained autoencoder. 

For example, when we trained an autoencoder with 12 hidden units using the longitudinal 

data, we acquired a 780 dimensional feature vector. There was no need to apply any feature 

selection method due to few clusters obtained for the cross-sectional case. 

 

For this purpose, we utilized the support vector machine based recursive feature elimination 

method (SVM-RFE) [144] implementation of Weka software. We sorted the acquired 

features based on their calculated SVM-RFE scores. In each iteration, we eliminated the 

feature having the least SVM-RFE score, and then, we evaluated their classification 

performances for the remaining ones. The accuracy of the total system increased and peaked 

at some point as we eliminated the least important one. We considered the remaining features 

at the peak point as our selected subset of the features to assess the predictive power of them 

using machine learning algorithms. 
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4.4. CLASSIFICATION PERFORMANCES 

 

The classification performances were assessed differently for three kind of datasets of this 

thesis to test our hypothesis. 

 

4.4.1. Predictive Power of Neuropsychological Test Scores 

 

A multilayer perceptrons, a support vector machine with a linear kernel and a M5-model tree 

classifiers were employed to assess the predictive powers of the neuropsychological test 

scores for distinguishing age-related cognitive decline from other dementias. 

 

The following Table 4.9 shows the performances of three classifiers trained using all 

neuropsychological test scores of the patients in terms of accuracy (ACC), sensitivity (TPR), 

specificity (SPC), precision (PPV), F-measure (F1) and area under the ROC curve (AROC).   

 

Table 4.9. Classification results for distinguishing ARCD based on all test scores 

 
 ACC TPR SPC PPV F1 

ARCD vs MCI 

MLP 73.8 80 68.6 74.7 73.8 

SVM 76.9 73.3 80 76.9 76.9 

M5P 90.8 96.7 85.7 91.5 90.8 

ARCD vs AD 

MLP 84 75 90 84 83.8 

SVM 88 80 93.3 88.1 87.9 

M5P 100 100 100 100 100 

ARCD vs VD 

MLP 74.5 83.3 61.9 74.3 74.1 

SVM 72.5 80 61.9 72.3 72.3 

M5P 80.4 86.7 71.4 80.3 80.2 

 

Similarly, the same classifiers were trained using only selected subsets of the 

neuropsychological test scores and the classifier performances are shown in Table 4.10 in 

terms of same measurement types. The best performances among three different type of 

algorithms are marked in bold. Diagnostic predictability was over 80% for all treatment 
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groups. When Table 4.9 and Table 4.10 are compared, it is observed that eliminating 

insignificant neurocognitive test scores resulted in a slightly increased performance in terms 

of accuracy. 

 

Table 4.10. Classification results of the pairs of ARCD using selected features 

 
 ACC TPR SPC PPV F1 

ARCD vs MCI 

MLP 89.2 90 88.6 89.3 89.2 

SVM 89.2 86.7 91.4 89.2 89.2 

M5P 95.4 96.7 94.3 95.4 95.4 

ARCD vs AD 

MLP 86 80 90 85.9 85.9 

SVM 88 80 93.3 88.1 87.9 

M5P 100 100 100 100 100 

ARCD vs VD 

MLP 78.4 83.3 71.4 78.3 78.3 

SVM 86.3 93.3 76.2 86.5 86.1 

M5P 84.3 90  76.2 84.3 84.2 

 

Table 4.11 shows the neurocognitive test scores with the higher merit values among the 

subset of selected neurocognitive test scores. The worthiest feature for the ARCD-AD pair 

was “Öktem-VMPT recognition score”. Additionally, Öktem-VMPT total learning score has 

the higher merit value for M5P classifier that has performed better among all three classifiers 

in the ARCD-MCI pair. 

 

Another observation is that the neuropsychological test scores with a higher merit value in 

the best classification model of the age-related cognitive decline and vascular dementia pair 

were semantic fluency, proverbs, Stroop interference and Boston naming test. 

 

In order to compare the performances of machine learning algorithms we utilized statistical 

tests as we mention in Chapter 3. The Cochran’s 𝑄 test and McNemar’s test statistics are 

presented in Table 4.12, where the obtained values greater than the critical value 

(𝜒($,�.��)& =3.841) for the McNemar’s test and the obtained 𝑄 values greater than the critical 

value (𝑄 &,�.�� = 5.99 ) for the Cochran’s 𝑄 tests are indicated in bold.  
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Table 4.11. The merit features of the classifiers for each of diagnostic pairs 

 
MLP SVM M5P 

ARCD vs MCI 

Semantic fluency 

Stroop interference 

WMS-R LM immediate recall 

Ö-VMPT highest learning  

Ö-VMPT delayed free recall  

Ö-VMPT recognition 

WMS-R digit span backward 

Semantic fluency 

Stroop interference 

Stroop incorrect responses 

WMS-R LM delayed recall 

Ö-VMPT total learning 

Ö-VMPT delayed free recall 

Ö-VMPT recognition 

Ö-VMPT total learning 

ARCD vs AD 

Ö-VMPT recognition Ö-VMPT recognition Ö-VMPT recognition 

ARCD vs VD 

Semantic fluency 

Fonemic fluency 

Proverbs 

Stroop interference 

WMS-R VR immediate recall 

Ö-VMPT immediate memory 

Ö-VMPT delayed free recall 

Semantic fluency  

Proverbs 

Stroop interference 

Naming BNT  

Proverbs 

Stroop interference 

Ö-VMPT total learning 

Ö-VMPT delayed free 

recall  

 

Table 4.12. McNemar’s and Cochran’s Q test statistics to compare classifiers 

 
 MLP vs SVM MLP vs M5P SVM vs M5P All 

 𝝌 𝒑 𝝌 𝒑 𝝌 𝒑 𝑸 𝒑 

ARCD vs MCI 0.25 0.62 1.13 0.29 1.13 0.29 3.2 0.2 

ARCD vs AD 0 1 5.14 0.02 4.17 0.04 9.55 0.01 

ARCD vs VD 2.25 0.13 0.57 0.45 0 1 2.89 0.24 

 

The results demonstrate that all three classifiers can be successfully used for distinguishing 

age-related cognitive decline from other dementias. Beside this, the M5-model regression 

tree classifier performs better for distinguishing age-related cognitive decline from 

Alzheimer’s diseases in all cases.  
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4.4.2. Predictive Power of Cross-sectional Data 

 

Table 4.13 presents the classification performances of the prognostic cross-sectional features 

using the following classifiers: SVM with polynomial kernel (SP), SVM with linear kernel 

(SL) and logistic regression (LR) in terms of accuracy, sensitivity and specificity. The 

diagnostic predictability resulted in an accuracy between 73.4%-78.7% for all classification 

models using ten-fold cross-validation. The best performance was achieved with a 

configuration of 10 feature detectors (#f) and five volume-of-interests (#v) at the 

significance level of 0.005. 

 

Table 4.13. The classification performances of the acquired features 

 
 Accuracy (%) Sensitivity (%) Specificity (%) 

#f #v SP SL LR SP SL LR SP SL LR 

10 5 78.7 73.1 76.1 80.6 77.6 78.8 76.4 67.9 72.9 

10 7 75.7 70.2 74.1 80.6 78.2 72.1 70.0 60.7 75.8 

25 5 76.7 73.8 74.8 78.8 75.8 75.8 74.3 71.4 73.6 

25 7 73.8 73.8 65.6 78.2 76.4 66.1 68.6 70.7 65.0 

50 5 76.1 77.4 74.4 77.6 78.8 76.4 74.3 75.7 72.1 

50 7 73.4 73.4 74.1 75.8 77.0 77.0 70.7 69.3 70.7 

 

In order to have a better evaluation of the proposed method, we compared our results with 

two other conventional methods. The first comparative method was that taking the all 

significant voxels of the five clusters as features to train classifiers, which is mentioned as 

“without VBM” in the Table 4.14. Another comparative method employs an additional 

dimensional reduction step to the “without VBM” method based on principal component 

analysis (PCA), which is called as “without VBM+PCA” in the table. 

 

A support vector machine with polynomial kernel, a support vector machine with linear 

kernel and a logistic regression were used as classifier algorithms. The results were 

compared with our best result  labelled as “novel CNN” in terms of accuracy, sensitivity and 

specificity. To sum up, the comparison showed that the novel convolutional neural network 

model introduced in this thesis extracted features of cross-sectional data with a high 

predictive power than other two comparative methods. 
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Table 4.14. Performance comparison of the proposed solution. 

 
 Accuracy (%) Sensitivity (%) Specificity (%) 

SP SL LR SP SL LR SP SL LR 

Novel CNN 78.7 73.1 76.1 80.6 77.6 78.8 76.4 67.9 72.9 

Without VBM 63.3 64.3 65.6 67.3 68.5 70.3 58.6 59.3 60 

Without VBM+PCA 63.9 66.9 74.1 64.2 67.3 77 63.6 66.4 70.7 

 

4.4.3. Predictive Power of Longitudinal Data 

 

The prediction performances of all and selected subset of features extracted from the 

preprocessed longitudinal volumes are presented in Table 4.15 in terms of accuracy (ACC) 

sensitivity (TPR), specificity (SPC), precision (PPV) and F-measure (F1). Three classifiers 

were employed to assess the predictive power of the features using a ten-fold cross validation 

procedure, which those classifiers are a support vector machine (SVM), a linear discriminant 

analysis (LDA) and a multilayer perceptron (MLP) using with configurations of patch size 

and number of filters.  

 

The performances above 90% in all statistical measures are marked with bold and have a 

grey background. Other statistical measures above 90% are marked only with bold. 

Furthermore, the highest performance is marked with blue that was achieved when we 

trained an autoencoder with 12 hidden unit using patches in size of 15. This combination 

yielded an accuracy of 97% with a sensitivity of 96.8% and a specificity of 97.3% with a 

subset of features determined by SVM-RFE method. 

 

The best performance was achieved in the configuration using patches of size 15×15, 12 

filters, a subset of 99 prognostic features and a support vector machine classifier, where an 

accuracy of 97%, a sensitivity of 96.8% and a specificity of 97.3% was achieved.  

 

It is worth to mention that the support vector machine classifier always produced the best 

results among the three classifiers. Furthermore, the patches in size of 8 couldn’t extract 

enough information from the longitudinal data to differentiate the diagnostic groups. The 

better performances were achieved when the patches are sampled in size of 13 and 15 with 

an accuracy above 90%. 
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Table 4.15. The results of the CAD system for different configurations 

 
  Total set of prognostic features Subset of prognostic features 

Patch size 

Filters 
Classifier ACC TPR SPC PPV F1 ACC TPR SPC PPV F1 

 

15×15 

14 

LDA 67.3 65.8 68.4 67.6 67.4 85.1 87.4 82.2 85.1 85.1 

SVM 78 69.9 84.2 77.9 77.8 94.6 96.8 91.8 94.7 94.6 

MLP 76.8 71.2 81.1 76.7 76.7 89.3 89.5 89 89.3 89.3 

 

15×15 

12 

LDA 75 69.9 78.9 74.9 75 88.1 90.5 84.9 88.1 88.1 

SVM 81.5 76.7 85.3 81.5 81.5 97 96.8 97.3 97 97 

MLP 78 74 81.1 77.9 78 95.2 95.8 94.5 95.2 95.2 

 

15×15 

10 

LDA 72.6 71.2 73.7 72.8 72.7 79.8 82.1 76.7 79.8 79.8 

SVM 81.5 76.7 85.3 81.5 81.5 91.7 95.8 86.3 91.8 91.6 

MLP 75 69.9 78.9 74.9 75 86.9 86.3 87.7 87.1 86.9 

 

15×15 

8 

LDA 61.9 60.3 63.2 62.3 62 67.9 72.6 61.6 67.8 67.8 

SVM 75 74 75.8 75.2 75.1 84.5 83.2 86.3 84.8 84.6 

MLP 69.6 64.4 73.7 69.6 69.6 79.2 78.9 79.5 79.4 79.2 

 

13×13 

14 

LDA 73.8 69.9 76.8 73.8 73.8 86.3 89.5 82.2 86.3 86.3 

SVM 78 74 81.1 77.9 78 92.3 93.7 90.4 92.3 92.3 

MLP 75 71.2 77.9 75 75 88.7 91.6 84.9 88.7 88.7 

 

13×13 

12 

LDA 78.6 71.2 84.2 78.5 78.4 87.5 91.6 82.2 87.5 87.5 

SVM 79.8 72.6 85.3 79.7 79.6 93.5 94.7 91.8 93.4 93.4 

MLP 76.2 69.9 81.1 76.1 76.1 88.1 91.6 83.6 88.1 88.1 

 

13×13 

10 

LDA 73.2 74 72.6 73.7 73.3 85.1 86.3 83.6 85.1 85.1 

SVM 76.2 71.2 80 76.1 76.1 92.3 95.8 87.7 92.4 92.2 

MLP 77.4 71.2 82.1 77.3 77.3 89.3 91.6 86.3 89.3 89.3 

 

13×13 

8 

LDA 64.9 67.1 63.2 65.7 65 77.4 81.1 72.6 77.3 77.3 

SVM 73.8 63 82.1 73.7 73.5 83.9 90.5 75.3 84.1 83.8 

MLP 73.8 68.5 77.9 73.7 73.8 80.4 85.3 74 80.3 80.3 

 

11×11 

14 

LDA 76.2 76.7 75.8 76.5 76.3 76.8 81.1 71.2 76.7 76.7 

SVM 81.5 78.1 84.2 81.5 81.5 86.3 89.5 82.2 86.3 86.3 

MLP 71.4 60.3 80 71.4 71.1 85.7 89.5 80.8 85.7 85.7 

 

11×11 

12 

LDA 75.6 71.2 78.9 75.6 75.6 88.7 89.5 87.7 88.7 88.7 

SVM 83.9 79.5 87.4 83.9 83.9 95.8 95.8 95.9 95.8 95.8 

MLP 78.6 72.6 83.2 78.5 78.5 92.3 93.7 90.4 92.3 92.3 

 

11×11 

10 

LDA 75 71.2 77.9 75 75 87.5 89.5 84.9 87.5 87.5 

SVM 79.2 75.3 82.1 79.1 79.1 92.3 93.7 90.4 92.3 92.3 

MLP 76.8 69.9 82.1 76.7 76.7 88.7 91.6 84.9 88.7 88.7 

 

11×11 

8 

LDA 72.6 69.9 74.7 72.7 72.7 80.4 81.1 79.5 80.5 80.4 

SVM 72 63 78.9 71.9 71.8 84.5 87.4 80.8 84.5 84.5 

MLP 70.2 58.9 78.9 70 69.9 84.5 89.5 78.1 84.6 84.4 
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Figure 4.9 presents the accuracies obtained each feature elimination steps for the best case 

achieved with a patch size of 15 and a filter number of 12. During the feature elimination 

process, the accuracy is higher when only 99 features are selected. 

 

 

 

Figure 4.9. The accuracies of the feature elimination steps 

 

In order to measure the performance of the preprocessed longitudinal volume, we compared 

the results of the CAD system for the best configuration in terms of number of filters and 

patch size for the baseline only and the 12-months follow up exam only. For every case a 

different SPM-F contrast map is generated.  

 

Table 4.16. Comparison of the baseline, the follow-up and the preprocessed longitudinal 

 

 Baseline Follow-up Preprocessed Longitudinal 

Patch size 

Filters 

 

ACC TPR SPC ACC TPR SPC ACC TPR SPC 

15×15 

12 
91.1 90.4 91.6 93.5 90.8 95.8 97 96.8 97.3 

 

As shown in Table 4.16, the preprocessed longitudinal volume performed better than the 

only baseline or the only follow-up thus proving that the differences between the two exams 

contain significant information for the prediction prognosis. The configuration with the 
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baseline exam only performed an accuracy of 91.1% and with the 12-months follow-up only 

resulted in an accuracy of 93.5%. 

 

4.5. SUMMARY OF THE CHAPTER 

 

In this chapter, we presented the results on the experimental evaluation of the hypothesis in 

four main sections in correspondence with the four main stages of the methodology 

explained in Section 3.6. Firstly, the descriptive statistics of the datasets were provided. 

Then, information on extracted features are given. Next, experimental set-ups are provided. 

Finally, the predictive capacities of the acquired features are provided. 

 

In order to test our hypothesis, we obtained three different datasets. A neuropsychological 

assessment data set consisting of 26 neuropsychological test scores of 106 patients with age 

related cognitive decline, Alzheimer's disease, vascular dementia or mild-cognitive 

impairment was obtained from the neurology department of Maltepe University Hospital. 

Other dataset was composed of a set of structural MRI data that scanned in the baseline 

examination of two groups of patients with MCI consisting of a group of patients who 

remained stable in MCI and a group of patients who subsequently developed AD. 

Additionally, we obtained another dataset of the longitudinal structural MRI data of MCI 

patients who eventually developed AD or not. The patient groups were statistically 

significantly similar on age, education and gender (p<0.001) in each dataset. 

 

Then, we presented the feature extraction methods applied to convert our datasets into 

feature vectors. In this thesis, we used the neuropsychological test scores of a patient directly 

as the feature vector for that patient. However, we introduced a novel single-layer 

convolutional neural network schema to represent the MRI data of a patient as a feature 

vector.  

 

Next, we employed feature selection methods to tackle with the high-dimensionality of the 

feature vectors acquired from the neuropsychological assessment data. A classifier-

independent feature subset selection method based on a non-parametric statistical hypothesis 

test were used, where the importance of a feature is determined by the p-value from the 

Wilcoxon rank-sum test statistics. Selecting a classifier-independent feature selection 
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method provided a fair comparison between the classification algorithms. Evaluating the 

statistical significance of the selected features leads to a model that is more understandable 

according to the statistical methods used by physicians in the neuropsychological domain. 

In this chapter, we presented selected neuropsychological tests based on Wilcoxon rank-sum 

test statistics.  

 

Finally, in this chapter, we presented the experimental results on evaluating the predictive 

powers of the acquired feature vectors on each datasets. Those experimental setups aimed to 

test our hypotheses of this thesis. 

 

We designed six experimental setups for each pairwise classification models with the 

combination of three different classification algorithms (multilayer perceptrons, support 

vector machines and M5-model trees) and two sets of features (all 26 test scores and selected 

test scores) for the CAD of age-related cognitive decline based on neuropsychological 

assessment data. The results of the experiments based on all 26 test scores allowed us to 

accept the hypothesis-I that says “age-related cognitive decline can be distinguished from 

other dementias using machine learning algorithms based on neuropsychological assessment 

data”. To be more specific, age-related cognitive decline can be distinguishable from 

Alzheimer’s disease with an accuracy of 100% (a sensitivity of 100%; a specificity of 100%), 

from mild-cognitive impairment with an accuracy of 90.8% (a sensitivity of 96.7%; a 

specificity of 85.7%) and from vascular dementia with an accuracy of 80.4% (a sensitivity 

of 86.7%; a specificity of 71.4%) as it is seen in Table 4.9. Additionally, the results of the 

experiments based on only selected test scores (as in Table 4.10) allowed us to accept the 

hypothesis-II that says “if a feature selection method is used to select a subset of 

neuropsychological test scores, the performances of the classifiers aimed to identify age-

related cognitive decline will improve”. The improved results were reported in this thesis as 

an accuracy of 95.4% (a sensitivity of 96.7%; a specificity of 94.3%) for MCI and an 

accuracy of 86.3% (a sensitivity of 93.3%; a specificity of 76.2%) for VD. 

 

Furthermore, the six configurations were designed with the combination of one patch size 

(11x11), three different number of filters (10, 25, 50) and two different significance levels 

(0.001% and 0.005%) for the CAD of MCI-due-to-AD based on baseline MRI. Among 

those, we reported an accuracy of 78.7% (a sensitivity of 80.6%; a specificity of 76.4%) to 



75 
 

 

predict the risk of having AD for MCI patients based on their structural baseline MR scans, 

which is 6% more than the reference study [70]. Furthermore, we conducted another set of 

experiments to test the effect of our proposed pooling method. So, we have achieved more 

than 10% accuracy compared to the comparative methods, which lead us to accept the 

hypothesis-V that claims the importance of considering anatomical structure of brain on 

pooling. 

 

Similarly for the preprocessed longitudinal volumes, the combination of three different patch 

sizes (11x11, 13x13, 15x15) and four different number of filters (8, 10, 12, 14) resulted in 

12 experiments for the evaluation of the prognostic power of the preprocessed longitudinal 

volumes. Thus, we accepted the hypothesis-IV based on the reported results in Table 4.15 

with an accuracy of 97% (a sensitivity of 96.8% and a specificity of 97.3). 
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5. DISCUSSION 
 

 

In this thesis, we aimed to distinguish age-related cognitive decline from other dementias 

and to predict the risk of having Alzheimer’s disease for MCI patients. The following 

subsections discuss the finding of this thesis in that two perspectives. 

 

5.1. DISTINGUISHING AGE-RELATED COGNITIVE DECLINE 

 

In this thesis we attempted to differentiate age-related cognitive decline from other 

dementias by utilizing three different commonly used machine learning algorithms 

(multilayer perceptrons, support vector machines and M5-model trees). As it is explained in 

Chapter 3, it is essential to predict the abnormal decline in cognitive abilities that is not 

related to normal aging in an early stage. Concerning the neurocognitive tests, traditionally, 

a neurocognitive assessment is performed as a set of tests aiming to examine several 

cognitive ability areas such as orientation, attention, executive functions, visuo-spatial skills, 

language and memory [149]. The difficulties in the clinical interpretation of neurocognitive 

data for differential diagnosis of dementia have raised the use of computational techniques.  

 

The neurocognitive test battery used in this thesis was composed of several tests that covers 

all of these cognitive domains. We trained our pairwise classification models based on those 

huge dataset. In this regard, the classification models were totally distinguished age-related 

cognitive decline from Alzheimer’s disease with an accuracy of 100%. 

 

In studies using machine learning approaches, adequate feature selection is an important task 

for the creation of a classification model that will have a successful interpretation of data, a 

reduced variance and an improved classification accuracy in general [150]. For that reason, 

we have used a classifier-independent feature subset selection method based on a non-

parametric statistical hypothesis test, where the importance of a feature is determined by a 

p-value from the Wilcoxon rank-sum test statistics of the difference between groups of the 

classifier model. Selecting a classifier-independent feature selection method provided a fair 

comparison between the classification algorithms and improved our results up to an accuracy 

of 95.4% (a sensitivity of 96.7%; a specificity of 94.3%) for ARCD vs. MCI pair. 
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Furthermore, evaluating the statistical significance of the selected features leads to a model 

that is more understandable according to the statistical methods used by physicians in that 

domain. 

 

All methods presented a high success rate in their predictions with the M5P classifier 

performing better for differentiating ARCD from other dementias. Additionally, other 

popular machine learning algorithms, like SVM and MLP classifiers, achieved high 

classification performances.  

 

We can conclude that the neurocognitive tests are sufficient enough to differentiate ARCD 

from MCI or AD or VD. Additionally, neurocognitive tests of different diagnostic groups 

were pairwise compared accompanied with a statistical analysis to individual tests in order 

to measure their statistical importance. According to the findings it is possible to use 

computational approaches in neurocognitive assessment in clinic after eliminating 

insignificant test scores. 

 

Additionally, a decision-making system of diagnosis can be enriched with data originating 

from different sources such as electroencephalogram and neurocognitive tests [151]. For that 

reason, even if the analysis of our neurocognitive test data shows some significant results, 

additional data obtained from other sources such as PET, MRI, fMRI or biomarkers could 

furthermore contribute to the differential diagnosis.  

 

5.2. PREDICTING THE RISK OF AD FOR MCI PATIENTS  

 

Until today a treatment that can cure Alzheimer’s disease or any other type of dementia is 

still to be discovered. Thanks to recent advances in medical technology, drug and non-drug 

treatments are discovered and validated in patients with Alzheimer’s disease in routine 

clinical use, thereby improving their quality of life and preventing the progression of 

symptoms in the early stages of dementia. On the other hand, the majority of those patients 

are older patients. Therefore, drug treatment in older patients should be carefully considered 

in terms of adverse effects with eventual other medications of the patients. Thus, the 

possibility of identifying individuals with MCI that will progress to AD would be very 

beneficial for the patients in terms of good prognosis and delaying/preventing the symptoms 
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of Alzheimer’s disease by immediately applying a neuro-modulation treatment, and a 

treatment that slows down the progression to AD. This thesis aimed to help patients by 

reducing the use of unnecessary medications for individuals who are predicted to remain 

stable in MCI. 

 

Table 5.1. Recent studies in the literature aiming to predict the risk of developing AD 

 

Studies Longitudinal Invasive ADNI 
Data type/ 

Number of Patients 
ACC TPR SPC 

Current 

study 
Yes No Yes 

MRI 

73 C-MCI, 95 NC-MCI 
97% 96.8% 97.2 

Devanand 

et al [84] 
No No No 

MRI+Clinical+Cognition 

27 C-MCI, 79 NC -MCI 
94.9% 92.6% 85.2% 

Green 

et al [117] 
No Yes No 

EEG+CSF 

19 C-MCI, 17 NC-MCI 
94.4% 94.7% 94.1% 

Nazeri 

et al. [118] 
Yes Min Yes 

MRI+Plasma 

110 C-MCI, 190 NC -MCI 
93.5% N/A N/A 

Douaut 

et al. [119] 
No Yes No 

MRI(DTI)+CSF 

13 C-MCI, 22 NC -MCI 
91% 85% 96% 

Minhas 

et al. [83] 
Yes No Yes 

MRI+Cognition 

N/A 
89.7% 87.5% 92.3% 

Peters 

et al. [87] 
No No No 

MRI+Cognition 

18 C-MCI, 22 NC -MCI 
87.5% 90.9% 83.3% 

Dukart 

et al. [120] 
No Min Yes 

MRI+PET+Genetic 

177 C-MCI, 265 NC -MCI 
86.8% 87.5% 77.8% 

Ortiz 

et al.[121] 
No No Yes 

MRI 

N/A 
83% 67% 95% 

Ardekani 

et al. [86] 
Yes Min Yes 

MRI+Cognition+Genetic 

86 C-MCI, 78 NC -MCI 
82.3% 86% 78.2% 

Korolev 

et al. [122] 
No Yes Yes 

MRI+Clinical+CSF 

139 C-MCI, 120 NC -MCI 
80% 83% 76% 

Willette 

et al. [85] 
No No Yes 

MRI+Cognition 

76 C-MCI, 86 NC -MCI 
80% 78.3% 81.5% 

Suk 

et al. [70] 
No No Yes 

MRI+PET 

76 C-MCI, 128 NC-MCI 
75.9% 48% 95.2% 

Suk 

et al. [70] 
No No Yes 

MRI 

76 C-MCI, 128 NC-MCI 
72.4% 36.7% 91% 

 

It is generally accepted that using non-invasive data is preferable for dementia patients 

because the use of invasive methods may arise ethical issues for patients with impaired 
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mental function. The techniques for obtaining CSF measurements are full invasive methods 

that may be painful or may have post-operation complications. In addition, those methods 

should be performed under anaesthesia. General anaesthesia carries a higher risk for the 

elderly people and local anaesthesia may not be applicable for them due to several health 

conditions. Furthermore, PET or MRI scans with a contrast agent can be considered as a 

minimally invasive method due to administration of a contrast agent. Thus, we have 

concentrated on developing CAD systems based on non-invasive data. In the studies 

presented in Chapter 4 and 5, we utilized T1-weighted MR images that are totally non-

invasive data. 

 

In this thesis, we introduced two CAD systems for MCI patients based on their  cross-

sectional and longitudinal structural MRI data to predict their risk for developing AD 

eventually. We compared our models with similar systems that present one or more common 

characteristic such as the use of longitudinal data or not, data from ADNI or another 

database, and the use of invasive minimal invasive or non-invasive methods. Thus, Table 

5.1 presents the most successful recent studies in terms of accuracy, sensitivity and 

specificity. Devanand et al. [84] proposed a non-ADNI study with high accuracy results 

(94.9%) but with relatively low specificity (85.2%) combining MRI, clinical and cognition 

data obtained in the baseline. Green et al. [117] proposed a CAD system with a very high 

accuracy of 94.4% (94.7% sensitivity, 94.1% specificity) based on electroencephalography 

(EEG) test scores and CSF data (an invasive method) of a non-ADNI dataset. In both studies, 

the number of C-MCI patients was relatively small. 

 

Among the studies that utilized the ADNI dataset, the study of Nazeri et al. achieved an 

accuracy of 93.5% using longitudinal data of the MRI and plasma protein data [118] which 

is a minimal invasive method. The study of Douaut et al. was interesting due to the 

employment of diffusion tensor imaging (DTI) data, which are not available in ADNI dataset 

[119]. When comparing our study in terms of ADNI dataset and the use of invasive methods 

or additional tests, the closest among the studies of the Table 5.1 is the one of Minhas et al. 

[83] which has lower success rates (accuracy 89.7%) and still uses cognitive tests. 

 

We compared our results based on the cross-sectional data with the study of Suk et al. [70] 

as a reference study. Unlike the study of Suk et al. [70], which used two-layered deep 
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network, we only used a single-layer convolutional neural network. Our approach resulted 

in a slightly superior accuracy of 78.7% than that of the study of Suk et al. (more than 6%).  

Additionally, we compared the success of the proposed method with two additional methods: 

one taking in account the all significant grey matter voxels and another using principal 

component analysis for reducing them. The proposed method performed better than the other 

comparative methods more than 10% in accuracy. 

 

As a general observation, the CAD model of longitudinal data presents slightly higher results 

when compared with similar systems that use invasive methods or clinical and cognition 

tests in order to achieve a high performance. Moreover, it performed much better when 

compared with systems where no additional tests or invasive methods were utilized. As we 

said before in the introduction, the use of non-invasive method for acquiring data in elderly 

people and patients with dementias is very essential. Our approach achieved high success 

rates with an accuracy of 97%, a sensitivity of 96.8% and a specificity of 97.3%. When 

comparing the results of the proposed method with the studies listed in Table 5.1 we see that 

this system outperforms them all. 

 

In neuroimaging, the enhanced performance of longitudinal data over cross sectional data 

has been validated by numerous studies: Xu et al. [152] demonstrated that for the detection 

of brain imaging phenotypes, longitudinal data outperform cross-sectional data. For 

neurodegenerative diseases, longitudinal ADNI studies [83], [86], [118] performed better 

than the cross-sectional studies [85], [106], [122]. According to the above observations, the 

exploration of longitudinal data and the research for new methods in order to extract 

information from them could be beneficial for the prognosis and treatment of dementias. 

 

In comparison with other systems, the acquired results were higher from all known systems 

and were comparable only with those that utilized invasive methods like CSF tests [117], 

[119], minimal invasive methods like plasma [118] or additional cognitive tests [84]. In 

particular, the CSF test is one of the diagnostic methods for brain or spine related diseases. 

During this test, a sample of cerebrospinal fluid is removed in a procedure called “Lumbar 

puncture” often performed in anaesthesia. The CSF sampling is performed by inserting a 

needle into the spinal canal where several trials may be needed with different sizes of needles 

[153] thus elevating the risk of back pain and trauma. In addition, lumbar puncture may have 



81 
 

 

some post-operation complications like cerebral and spinal herniation post lumbar puncture 

headache [154]. 

 

From that point of view, the proposed method presents a significant advantage as it does not 

need invasive procedures which may be uncomfortable, inappropriate or tests that sometimes 

are difficult to be executed by the elderly people [155]. 

 

Using a system for the prognostic diagnosis of Alzheimer’s disease in MCI patients is vital 

to start the treatment immediately using preventive or therapeutic medicines for slowing 

down the progression to AD or treating the symptoms of dementia [156]. However, the 

benefit of medication treatment for preventive purposes should be considered carefully in a 

geriatric population due to the comorbidities and side-effects of drugs. The use of preventive 

medication in MCI patients who actually will not develop AD may expose those patients to 

the unnecessary burden of medication. For this reason, the identification of MCI patients 

who are most likely to convert to AD with a high accuracy is essential in terms of preventing 

unnecessary medication-related problems. 

 

The CAD system yielded a 97% accuracy (96.8% sensitivity and 97.2% specificity), thus 

contributing to the efforts towards the creation of a prognosis prediction system which will 

decide about the type of treatment of mild cognitive impairment patients without necessarily 

involving the use of invasive methods or cognitive tests. 

 

Furthermore, this thesis has two main methodological contributions to the literature. The one 

of them is about the pooling layer of the convolutional neural network. Traditional pooling 

methods define the grid-shape pooling regions. In this thesis, we proposed a novel pooling 

method. The idea behind this proposed pooling method is the spatial relevance of brain 

tissues in neighbouring voxels. For that purpose, we used the significant clusters (volume-

of-interests) defined by the voxel-based morphometric analysis results as the regions of 

pooling. In the study presented in Chapter 4, this method is applied successfully using the 

five clusters at significance level of 0.005 and the seven clusters at significance level of 

0.001. In the study presented in Chapter 5, we have improved our idea by associating the 

clusters with individual regions of the brain, thus, we achieved better results in terms of 

accuracy. In other words, an atlas-based region-of-interest (ROI) analysis was performed on 
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the SPM-F contrast map using the “TD Labels” atlas of the Wake Forest University (WFU) 

PickAtlas to determine which voxels will be pooled together. 

 

The other methodological contribution of this thesis focus on the representing longitudinal 

data in a single-volume. We have proposed a novel method to merge baseline and 12-months 

follow-up images as it is presented in Chapter 5. The method gets benefit of progressive grey 

matter atrophy by modelling the difference between two time-point images using a method 

based on the jacobian determinant. To acquire the representative longitudinal volume, we 

got the slice-wise jacobian determinant of the baseline image and follow-up image and added 

the result to the follow-up image for each patient. Comparison of the classification 

performances between baseline only or follow-up only exams showed that the follow-up 

exams have more discriminative information than the baseline. This is an expected situation 

in biological terms, because the progressive MCI patients have higher atrophy rate than the 

stable MCI patients. 

 

5.3. SUMMARY OF THE CHAPTER 

 

In this thesis, we explored the applicability of deep learning approaches to extract features 

of neuroimaging data for predicting the risk of developing Alzheimer’s disease for mild 

cognitive impairment patients. Beside this purpose, we also explored the distinguishability 

of age-related cognitive decline from Alzheimer’s disease, vascular dementia and mild 

cognitive impairment based on only neuropsychological test scores. The traditional 

classification models of neuroimaging generally depend on neuroimaging on hand-crafted 

features. Some hand-crafted features requires excessive domain knowledge and expertise or 

may include bias [46]. Thus, we considered the use of convolutional neural networks that 

are successfully used in the field of image processing [157]. We especially dealt with the 

possibility of extracting features based on unsupervised training. For this purpose, we 

employed a patch-based autoencoder to learn a set of feature detectors to be used in the 

convolutional layer. A large amount of two-dimensional patches are randomly selected from 

the structural MRI images of the patients with a baseline diagnosis of MCI. Then, those 

patches are vectorised to create a training dataset for and autoencoder. After the training 

procedure of the autoencoder, we have obtained a set of feature detectors that are sensitive 

to the informative parts of the structural MRI images. The acquired feature detectors were 
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employed in the convolutional neural network model as convolutional kernels to extract the 

neuroimaging features of the patients.  

 

Furthermore, we had two methodological contribution in this thesis.  The first one is a new 

pooling approach for the subsampling layer of CNN based on VBM analysis that selects 

regions with a statistical significance between converted and non-converted patients with 

MCI. When comparing our results with similar studies that did not use our pooling approach, 

we observed that our method performed better (78.7%), thus showing that the VBM analysis 

can be integrated successfully with deep learning approaches for MCI prediction prognosis. 

The second one is a novel information extraction method of longitudinal MRI data aiming 

to “emphasize” the differences in grey matter based on a slide-by-slide generation of 

differences between the aligned baseline and the 12-months follow-up exam and the addition 

of these differences to the follow-up exam. This method was applied in a CAD system and 

the results showed that the information extracted by this process contributed to the success 

of this approach when used in combination with VBM and deep learning techniques. 

 

The first diagnostic goal of this thesis was to differentiate MCI patients who will develop 

AD among all MCI patients. The study presented a CAD model that achieved an accuracy 

of 78.7% (80.6% sensitivity and 76.4% specificity) by using the baseline T1-weighted MR 

images. The other CAD model yielded an accuracy of 97% (sensitivity of 96.8% and 

specificity of 97.3%), which outperformed the existing studies in the literature. Another 

diagnostic goal of this thesis was to distinguish age-related cognitive decline from other 

dementias. The pairwise classification results show that ARCD is completely separable from 

AD with a success rate of 100% and highly separable from MCI and VD with success rates 

of 95.4% and 86.30%, respectively. 

 

In summary this work contributes to the literature by proposing a novel pooling method, a 

longitudinal analysis method, two CAD models for MCI patients based on deep learning 

techniques and one CAD model for age-related cognitive decline patients using machine 

learning techniques. This work can be further enlarged by including other type of diseases 

presenting similar characteristics as AD.  
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