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ABSTRACT 

 

 

EVALUATION OF PERFORMANCE AND POWER CONSUMPTION WHEN 

DIFFERENT CONTROLLERS ARE USED ON ADAPTIVE CRUISE CONTROL 

OF AN ELECTRIC VEHICLE 

 

Research on electric vehicles became a very hot topic in the last few years because they 

have advantageous in terms of efficiency, carbon emission and performance compared to 

combustion engines. However, high battery cost, long charging time and limited traveling 

range of electric vehicles are the challenges that researchers are still currently working on. 

Innovative battery and its management systems have been developed to increase travelling 

range of electric vehicles. Furthermore, lowering the battery power consumption of the 

comfort and safety systems in the vehicle is another research topic to increase battery 

range. Adaptive Cruise Control (ACC), which is one of the comfort and safety systems, 

has also been used to increase the travelling range of electric vehicles. In this thesis, we 

design ACC with three well-known Proportional-Integral-Derivative (PID), Fuzzy and 

Model Predictive Controller (MPC) controllers, and evaluate their 

acceleration/deceleration performance, and power consumption. Initially, the dynamic 

model of an electric vehicle (LCV), which includes electric vehicle longitude dynamic, and 

battery consumption equations, is developed. Later, ACC mathematical equations with 

Proportional-Integral-Derivative (PID), Fuzzy and Model Predictive Controller (MPC) are 

derived, and integrated inside the dynamic model of the electrical vehicle. Simulation 

experiments are performed to evaluate the performance and power consumption when 

these three controllers are used on ACC of the electrical vehicle.  
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ÖZET 

 

 

ADAPTİF HIZ SABİTLEME SİSTEMİNDE FARKLI KONTROLÖRLER 

KULLANILMASI İLE ELEKTRİKLİ ARACIN PERFORMANS VE GÜÇ 

TÜKETİMİNİN DEĞERLENDİRİLMESİ 

 

Elektrikli araçların içten yanmalı motorlara sahip araçlara kıyasla verimlilik, karbon 

emisyonu ve performans avantajları elektrikli araçlar üzerine yapılan araştırmaların 

gündemde olmasını sağlamaktadır. Bununla birlikte, elektrikli araçların batarya maliyetinin 

yüksekliği, uzun şarj süresi ve düşük menzil sorunları araştırmacıların halen üzerinde 

çalıştıkları konulardır. Yenilikçi batarya teknolojileri üzerine çalışmaların olması ile 

birlikte, araç içinde konfor ve güvenlik amaçlı kullanılan sistemlerin çalışma 

prensiplerinde de batarya güç tüketim değerlerini düşürerek araç menzilini arttıracak 

araştırmalar yapılmaktadır. Konfor ve güvenlik sistemlerinden biri olan Adaptif Hız 

Sabitleme (AHS) teknolojisinin batarya menzilini arttırmak için kullanılması bu çalışma 

alanlarından biri olarak gösterilmektedir. Bu tezde bilinen üç denetçi Oransal-Integral-

Türevsel, Bulanık ve Model Öngörümlü denetçileri AHS ile kullanılarak farklı tip 

denetçilerin elektrikli aracın hızlanma/yavaşlama performansına, ve batarya tüketimine 

etkisi değerlendirilmiştir. Öncelikle elektrikli aracın yataydaki dinamik ve batarya tüketim 

davranışları modellenmiştir. Daha sonra Oransal-Integral-Türevsel, Bulanık ve Model 

Öngörümlü denetçiler ile birlikte oluşturulan AHS matematiksel denklemleri elektrikli araç 

dinamik modeline entegre edilmiştir. Simülasyon ortamında her bir denetçinin elektrikli 

aracın performans, ve batarya tüketim değerleri üzerine etkisi değerlendirilmiştir. 
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1. INTRODUCTION 

Fossil fuels are widely used in transportation sector especially in light duty vehicles and 

passenger cars. The latest research on the transportation sector has shown gas emissions 

corresponds 15% of the Europe’s carbon dioxide emissions. Electricity as an energy source 

used for the vehicles engine systems offers renewable and environmental friendly energy 

in the transportation sector [1]. 'Tank-to-wheels' efficiency of the electric vehicles, which 

use electric power, is approximately three times more than the internal combustion engine 

vehicles [2]. Additionally, electric vehicle engines have less noise and vibration [3]. In 

spite of numerous advantages of electric vehicle, the number of electric vehicles in use is 

still insignificant.  

The sales of electric vehicles had reached only 1% of the market shares in 2015. The 

reasons of this low use of electric vehicles are because of high battery costs, long charging 

time, low limited range, and limited charging infrastructures. The battery cost is in 

$180/kWh to $200/kWh range, which has been announced by GM and LG Chem. This cost 

has also been approved by the United States Department of Energy. Tesla and Panasonic 

also confirm these battery costs for electric vehicles [4]. When we consider the average 

battery size is around 40kW in the electric vehicle industry, battery prices for Battery 

Electric Vehicle (BEV) are a huge cost not only for suppliers but also for customers [5,6]. 

Long charging time is another research problem that electric vehicle manufacturers are 

trying to solve. The studies have shown that BEV is in fully charge to find 300 kilometers 

range in 20 minutes [7]. One of the famous electric vehicle manufacturer Tesla 

superchargers gives the opportunity to charge the battery fully in 20 minutes for Tesla 

Model S.  The charger of BMW i3 EV is able to charge the 80 percent battery in 

approximately 30 minutes. However, this is still not enough time to satisfy the customer as 

like internal combustion engine vehicles tank filling [5,6].  

Limited travelling range is also another research topic that researchers are currently 

working on [5,6]. Recently, average electric vehicle ranges increase to 350 kilometers with 

a single charge [6]. This number depends on used battery package size in vehicle. In small 

vehicle segment, Fiat 500e (2015) range is only 135 km range with 24 kWh battery. 

Chevrolet Spark EV (2015) has 130 km range in fully charge with 18.4 kWh battery 
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energy. In medium large segment, Nissan Leaf (2016) serves 250 km range from 30kWh 

battery package. Tesla is one of the luxury EV segment manufacturer has increased the 

travelling range up to 480 km with enlargement battery packet up to 75kWh [8]. Statics 

show that most of vehicle customers want to use vehicles over 400 km range [6].  

The physical electrical battery characteristic and battery power consumption of the 

vehicles directly affect the travelling range of electric vehicle. If there is large size battery 

used on vehicle and vehicle consumes low power consumption in moving, then this 

enlarges the electric vehicle travelling range automatically. Thus, the electric vehicle 

manufacturers have been trying to solve low travelling range problem by working on high 

capacity, and low weight batteries. Additionally, some other researchers are trying to find 

solutions to decrease vehicle battery consumption during the travelling on the road [9–12]. 

The high capacity and low weight batteries, and their management systems have 

previously been proposed to change electrical battery power consumption characteristics 

during travelling [9,10]. The ultra-capacitor usage theory on electric vehicle has previously 

shown to improve the vehicle performance [9]. Another development area is related with 

the battery management system (BMS) of the plug-in hybrid electric vehicle (PHEV), and 

electric vehicle (EV). Battery management system optimization methods are performed 

because of the variety of the BMS missions in vehicles (monitoring the capacity of the 

battery, remaining run-time information and counting charge-cycle etc.) [10]. The high 

technology battery management systems have shown to increase engine performance, and 

to extend the life of the battery [13].  

Furthermore, new vehicle technologies such as regenerative braking systems and 

methodologies have also been integrated on vehicles to improve battery range [11,12]. The 

operation of induction machine (IM), which is behind the theory of regenerative braking 

system, is used to obtain the electric power from the powertrains when the brakes are 

applied. When the electric power is generated, then this power is sent to the battery to 

charge operation [11]. Methodological approaches are also defined to increase vehicle 

battery range during the conceptual phase electric vehicles by considering the vehicle 

technologies requirements such as heating, ventilation and air conditioning (HVAC) [12]. 
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Autonomous driving technologies are another research area in the automotive industry. 

Advanced Driving Assistance Systems (ADAS) are improved on the vehicles to develop 

autonomous driving technology to improve road safety and driving comfort and also 

vehicle efficiency. Adaptive Cruise Control (ACC) is one of the important driver 

assistance systems that automatically adjust the vehicle speed to maintain a safe distance 

from the vehicles ahead. Adaptive Cruise Control (ACC), which directly controls engine or 

brake system working conditions, has also previously been used to increase the travelling 

range of the electrical vehicles [14,15].  

ACC automatically adjusts the vehicle speed to maintain a safe distance from the front 

vehicles. Proportional-Integral-Derivative (PID), Linear Predictive Control and Model 

Predictive Control (MPC) methods have previously been used to set the speed, and the 

distance for ACC controllers to increase the travelling range of electrical vehicles [16–18]. 

Various control based eco-driving techniques, and solutions have also been developed to 

decrease battery consumption, and to increase battery range of EV and PHEV when ACC 

is active [16,19].  

Meanwhile, numerical solutions with different optimal consumption algorithms have been 

proposed to decrease battery consumption, and to increase battery range of electric vehicle 

to obtain energy efficient ACC [15,19–23]. Pontryagin’s Minimum Principle (PMP), 

which is one of the optimization theories, is used to minimize the total energy consumption 

when maintaining a safe distance from vehicles ahead. Future trip information is a main 

parameter to evaluate the global optimum solution in PMP [16]. Another optimization 

problem solution is the use of model predictive control theory. In this theory, the quadratic 

equation of the optimization problem has been generated considering the economy 

performance, and safety index parameters [19]. Dynamic Programming (DP) according to 

Bellman is also used to guarantee energy efficiency using traffic signs or traffic data [15]. 

Charge Depleting-Charge Sustaining (CDCS) method, which is currently being used on the 

production vehicle, is another numerical method in the analysis of energy management 

strategies. An optimal control strategy based on Pontryagin’s Minimum Principle (PMP), 

and Charge Depleting and Sustaining (CDCS) method is used to compare the efficiency 

effect on plug-in hybrid electric vehicle (PHEV) or electric vehicle under different road 

conditions [20]. Additionally, information of the road profile and navigation systems is 
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used to provide high efficient regenerative energy braking with different traffic conditions 

[21–23].  

Various methods have been proposed to design energy efficient ACC to decrease battery 

consumption, and to increase battery range. However, to our knowledge, none of the 

previously proposed methods had evaluated the changes in the performance, and the power 

consumption of an electric vehicle when different controllers are used for ACC. The 

evaluation of performance directly effects the power consumption because if the vehicle 

needs more performance from the engine that means the vehicle consumes more electrical 

energy, which can simply be explained by the law of conversation of energy. Thus, energy 

efficiency of the electric vehicle should be evaluated by looking at the power consumption 

of the vehicle during travelling or standing. When the total energy that comes from the 

battery package is constant for one electric vehicle, then power consumption is a key 

parameter to assess energy efficiency of the electric vehicle. The assessment of power 

consumption can provide information about decrement/increment of the travelling range of 

electric vehicle. The aim of this thesis is to compare acceleration/deceleration 

performance, and power consumption of an electric vehicle when different controllers are 

used for ACC. The controller parameters on vehicle dynamics of the electric vehicle are 

varied to evaluate the performance, and the power consumption to obtain energy efficient 

ACC.  

In this thesis, firstly lateral and longitudinal dynamic forces are analyzed to define dynamic 

model of the electric vehicle. The longitudinal forces are considered because of the 

minimal lateral force effect on the electric vehicle. Tractive force, aerodynamic resistance, 

acceleration force, gravitational force, and rolling resistance are included in the dynamic 

model of the electric vehicle. The mathematical model of the longitudinal motion dynamic 

of electric vehicle (LCV) is developed to include them into the cruise control and adaptive 

cruise control.  

ACC is used to increase or decrease the vehicle speed to maintain a distance that is set 

from the driver. This scenario is used to evaluate energy efficiency of designed ACC 

systems in this thesis. Longitudinal acceleration and deceleration of the electric vehicle are 

simulated with different traffic conditions such as city or highway conditions. Experiments 

in MATLAB/Simulink environment are performed to evaluate acceleration/deceleration 

performance, and power consumption of the electric vehicle when different controllers 
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(PID, Fuzzy and MPC) are used for ACC. Since vehicle engine performance can be 

changed with the driving condition (smooth or aggressive), the energy efficiency of the 

system is evaluated by looking at the instantaneous vehicle power consumption. 

The thesis is organized as follows. General architecture of the Cruise Control (CC) and 

Adaptive Cruise Control (ACC) that is developed for this thesis has been given in Chapter 

II. Then, the vehicle dynamic model of the electric vehicle, and power consumption model 

details are given in Chapter III. The details of the designed system with PID, Fuzzy and 

MPC controller are provided in Chapter IV. The experimental set-up, the scenario and the 

results that demonstrate how the performance and power consumption change when 

different controller parameters are used are given in Chapter V. The conclusion and future 

work of the proposed work are presented in Chapter VI. 
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2. GENERAL ARCHITECTURE 

Cruise control (CC) system is an old vehicle technology that controls the vehicle speed to 

set the desired speed from the driver. CC system basically controls throttle-

accelerator system of the vehicle engine system by comparing desired speed (Vdesired), and 

actual speed of the vehicle (Vactual). CC system is turned on/off from set or resume switch 

which is typically placed on the steering wheel [24]. The block diagram of a cruise control 

system is shown in Figure 2.1.The aim of the CC is to reduce the error (Vdesired -Vactual), and 

send necessary torque command to the engine of the vehicle.  

 

 

Figure 2.1. Cruise Control system configuration 

 

Adaptive Cruise Control (ACC) is an intelligent form of CC that is basically developed 

from CC theory of speed limiting. However, apart from the CC, ACC system also controls 

the brake system of the vehicle. Driver does not have to adapt the speed of the vehicle 

considering the traffic conditions. The configuration of the Adaptive Cruise Control system 

is given in Figure 2.2. Sensors (radar or camera) are used in the front of the vehicle to 

detect conditions in the traffic. These sensors provide distance information (Xreal-Real 

Distance) between vehicles, and any form presence in front of the vehicle to the ACC 

system controller. After all, ACC system controller automatically sets vehicle speed 

(Vdesired) by looking at the information from sensor systems. If the distance between vehicle 

and any form is not in the critical range, the speed of the vehicle speed (Vactual) is set 

automatically to the desired speed that is set before. If the sensor systems in the vehicle 

detect any form, then the vehicle automatically slows down. This slowing down procedure 

continues until reaching safe distance (Xdesired) between two vehicles. Desired speed and 

distance is controlled by ACC setting switches by the driver.  
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                     Figure 2.2. Adaptive Cruise Control system configuration 
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3. ELECTRIC VEHICLE DYNAMICS AND POWER 

CONSUMPTION MODELLING 

Newton’s second laws related forces are introduced to derive the electric vehicle dynamic 

model. There are two types of forces acting on the vehicle during motion, which are called 

longitudinal and lateral. Longitudinal forces on the electric vehicle are the traction force 

(𝐹𝑡𝑟), aerodynamic force  (𝐹𝑎𝑒𝑟𝑜), rolling resistance  (𝐹𝑟𝑟), gravitational force  (𝐹𝑔), and 

acceleration resistance  (𝐹𝑎) (Figure 3.1) [25–30]. Toe-in and suspension resistances are 

also the other longitudinal forces act on the electric vehicle. Lateral vehicle forces directly 

acts on the vehicle. Main lateral vehicle forces are cornering resistance, and lateral 

aerodynamic resistance. Toe-in, suspension effect and lateral forces are negligible thus 

these forces are not included in the dynamic equations of the electric vehicle used in this 

thesis.  

 

 

Figure 3.1. Longitudinal forces on vehicle 

 

The general dynamic equation motion of the electric vehicle is given in Equation 3.1.  

 

where, m is mass of vehicle (kg) and V(t) is the vehicle speed (m/s).                      

 

  𝐹𝑡𝑟(t) = 𝑚 ×
𝑑𝑉(𝑡)

𝑑(𝑡)
+  𝐹aero +  𝐹𝑟𝑟 +  𝐹𝑔 +  𝐹𝑎𝑟                             (3.1) 
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The traction force is calculated as; 

                                   

where,  Et  and n are engine net torque (Nm), and overall efficiency of power train (per 

cent), Ng is the total gear ratio of transmission, Na is the driving axle ratio, and R is the 

effective tire radius (m). The tractive force input/output block is shown in Figure 3.2. 

 

 

Figure 3.2. Tractive force input/output block 

 

The aerodynamic force is calculated as follows; 

 

 

where, ρ represents air density, Af is the maximum vehicle frontal cross area (m
2
),                                                                                                  

Cd  is the drag coefficient, V(t) is the vehicle speed (m/s), and Vw  is the wind velocity 

(m/s). The aerodynamic force input/output block is given in Figure 3.3. 

 

 

Figure 3.3. Aerodynamic force input/output block 

 

The rolling resistance is defined as follows; 

 

𝐹𝑡𝑟(t) =
𝐸(𝑡) × 𝑛 × 𝑁𝑔 ×𝑁𝑎

𝑅
                      (3.2) 

𝐹𝑎𝑒𝑟𝑜(t) =
1

2
× ρ × Af × Cd × (V(t) + Vw)2                     (3.3) 

𝐹𝑟𝑟 = 𝑘 × 𝑊 × 𝑐𝑜𝑠 𝜃                                        (3.4) 
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where, k shows rolling resistance coefficient (N/kg), W is multiply of the mass of vehicle 

(m) (kg) and gravitational acceleration (g) (m/s²), and θ is the angle of incline. The rolling 

resistance input/output block is shown in Figure 3.4. 

 

 

Figure 3.4. Rolling resistance input/output block 

 

The gravitational resistance is calculated as follows with same parameter of 𝐹𝑟𝑟;        

                                                                                       

 

The gravitational resistance input/output block is given in Figure 3.5. 

 

 

Figure 3.5. Gravitational resistance input/output block 

 

The acceleration resistance is calculated as; 

 

                                                                                                        

where, λ is rotational inertia constant, m is mass of vehicle (kg), and V(t) is the vehicle 

speed (m/s). The acceleration resistance input/output block is given in Figure 3.6. 

 

 

Figure 3.6. Acceleration resistance input/output block 

Far = λ × m ×
dV(t)

d(t)
                                                        (3.6) 

𝐹𝑔 = 𝑚 × 𝑔 × 𝑠𝑖𝑛 𝜃                                               (3.5) 
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3.1. PARAMETERS OF THE ELECTRIC VEHICLE  

The electrical vehicle parameters that are used in this thesis are taken from a vehicle 

company in Turkey. The parameters of this vehicle are given in Table 3.1.  

Table 3.1. Vehicle model parameters 

 

Value 

General Parameters 

Vehicle speed, V (m/s) Variable 

Mass of vehicle, m (kg) 1705 

Gravitational acceleration, g ( m/s²) 9,81 

Angle of incline, θ Variable 

Traction Force Parameters 

Engine net torque, Et (Nm) 255 

Overall efficiency of powertrain, n (per cent) 92 

Total gear ratio of transmission, Ng 9,99 

Driving axle ratio, Na 1 to 1 

Effective tire radius, Reff (m) 0,32 

Aerodynamic Force Parameters 

Air density, ro 1,225 

Max vehicle frontal cross area, A (m
2
) 2,66 

Drag coefficient, Cd 0,302 

Wind velocity, Vw Variable 

Rolling Resistance Parameters Rolling resistance coefficient, k (N/kg) 0,011 

Acceleration Resistance Parameters Total rotational inertia constant, ʎ 1,17 

 

It can be seen from Equation 3.2 that 𝐹𝑡𝑟 directly depends with 𝐸𝑡. Generally, when the 

engine speed-engine torque behavior of electric motor is analyzed, it is noticed that the 

torque parameter is not same for every engine speed interval. The electric vehicle motor 

characteristic of the electric vehicle is modeled using the engine characteristics graph given 

in Figure 3.7. It can be seen from Figure 3.7 that when the engine rpm increases then the 

engine peak torque starts to decrease after 4500 rpm interval. 
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Figure 3.7. EV engine characteristic 

 

The engine torque parameter is the main parameter that affects the vehicle as a tractive 

force. Thus, the torque-speed characteristic is formalized to include ACC function into 

electric vehicle used. The mathematical representation of electric vehicle engine 

characteristics is done by Curve Fitting Tool of MATLAB [31] using the engine 

characteristic given in Figure 3.7. Curve Fitting Tool configuration interface can be seen in 

Figure 3.8 regarding work. In this study, Gaussian method is used with ‘2’ number of 

terms chosen as a fitting method to derive the mathematical representation, and the 

following equation is obtained: 

 

 

where F(x) is the peak torque, and x is the engine rpm. The coefficients are calculated as 

a1=86.71, a2=385.6; b1=3744, b2=-9801; c1=2219 and c2=14080. 

Equation 3.7 is used to provide the real torque to the electric engine by looking at the 

actual engine speed. Torque and maximum vehicle speed are directly limited by engine 

speed value because Et is not a flat function, and it changes with engine speed.  
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Figure 3.8. Electric vehicle engine characteristics modeling (rpm/torque) 

 

3.2. POWER CONSUMPTION MODELING 

Power consumption is the parameter that is used to evaluate ACC model. The required 

power formula is written in Equation 3.8 and 3.9 using physical laws to generate tractive 

force in Equation 3.1. In Equation 3.8 and 3.9, the total power requirement (Ptotal) [W] at 

each time step (second) is estimated from the sum of all resistive forces multiplied by the 

vehicle’s longitudinal speed [32–36]. 

    

where, Ftr  is traction force (N), V  is vehicle speed (m/s),  Fa  is acceleration force (N), 

Faero is aerodynamic force (N), Frr is rolling resistance (N), Fg is gravitational force (N) 

and Far is acceleration resistance (N). When all equations from 3.1 to 3.6 are inserted in 

Equation 3.8 then the following equation is obtained. 

 

Ptotal = Ftr × V = (Fa +  Faero  +  F rr +  Fg  +  Far) × V                         (3.8) 



14 

  

Ptotal = ((m ×
dV(t)

d(t)
) V + ( 

1

2
× ρ × Af × Cd × (V(t) + Vw)2) V + (k × W × cos θ)V +

(m × g × sin θ)V + (λ × m ×
dV(t)

d(t)
)V)                                                                        (3.9)                       

                               

where, m shows mass of vehicle (kg), V represents vehicle speed (m/s), ρ is air density, Af 

is maximum vehicle frontal cross area (m
2
), Cd  is drag coefficient, Vw  is wind velocity 

(m/s), k is rolling resistance coefficient (N/kg), W is multiply of the mass of vehicle (m) 

(kg) and gravitational acceleration (g) (m/s²), θ is angle of incline and λ shows rotational 

inertia constant. 
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4. DESIGN OF AN ADAPTIVE CRUISE CONTROL (ACC) USING 

DIFFERENT CONTROLLERS 

ACC is designed with three well-known controllers that are Proportional-Integral-

Derivative (PID), Fuzzy and Model Predictive Controller (MPC) to evaluate their impact 

on vehicle dynamic regarding acceleration/deceleration performance, and power 

consumption. In this section, initially, theoretical information behind these controllers is 

given, and then the details of each ACC design with these three controllers are provided.  

4.1.  DESIGN OF ACC USING A PID (PROPORTIONAL-INTEGRAL-

DERIVATIVE) CONTROLLER  

Proportional-Integral-Derivative (PID) controller is a well-known controller used in many 

areas such as automation systems for energy production, transportation, and manufacturing 

[37]. The aim of the PID controller is to minimize the error (the difference between the 

target value (Ftr) and feedback value of what is controlled). A typical mathematical 

representation of a PID control system is given as follows 

                                           u(t) = Kp [e(t) +
1

Ki
∫ e(τ)d(τ) + Kd

de(t)

d(t)
]                               (4.1) 

Error signal e(t) is used to generate proportional, integral and derivative actions on the 

input signal u(t) . The error signal e(t) is defined as e(t) = r(t) −  y(t) , r(t) is the 

reference input signal and y(t) is the output signal of the system [38]. In this equation, Kp 

represents proportional gain, Ki is the integration gain and Kd is the derivative gain. 

The ACC with a PID controller for the electric vehicle is shown in Figure 4.1. In this 

model, PID controller automatically generates the proportional, integral and derivative 

actions on the error signal. The error signal means the difference between desired tractive 

force and real tractive force in this thesis. PID controller sends ‘Fnet’ to the vehicle 

dynamic system by controlling this error value.  

Desired engine force comes from “ACC decision block”. ACC decision block calculates 

the desired tractive force by checking radar sensor value, and driver set speed value 

(Vdesired). Driver set speed value is a cruising value for ACC decision block. If any object is 
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detected in front of the vehicle from detection sensors, then ACC decision block 

automatically change desired value into the detection form speed (Vdetected). If there is no 

object detected in front of the vehicle, then ACC decision block set desired value to driver 

cruising value again. 

 

 

Figure 4.1. Adaptive Cruise Control system with PID controller 

4.2.  DESIGN OF ACC USING A FUZZY CONTROLLER 

Fuzzy control systems are composed of four main elements, which are i) a set of “If-Then 

rules” that contains a linguistic description of how to achieve control, ii) “fuzzy inference“ 

that is the decision making assumptions from experience and experiment knowledge about 

how best to control the plant, iii) “fuzzification mechanism” that is the process to convert 

controller inputs into one or more fuzzy sets, and iv) “defuzzification mechanism” that 

converts the fuzzification sets into the final output sets according to “If-Then rules” and 

“fuzzy inference”[39]. This operation flow is given in Figure 4.2. In this operation flow, 

Fuzzy controller use membership function, input and output ranges rules for each operation 

modes from input to output.  
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Figure 4.2. Fuzzy operation workflow 

 

The ACC with a Fuzzy controller for the electric vehicle is shown in Figure 4.3. In fuzzy 

controller, traction force (Ftr) is not controlled directly by looking at the desired and actual 

engine force. In this model, Fuzzy Logic Controller looks at the desired and actual speed of 

the vehicle to give according engine force into the system. MATLAB/Simulink Fuzzy 

Logic Designer program interface used in this thesis is given in Figure 4.4. “ACC Decision 

Block” is the desired speed decision mechanism, which directly looks at sensor 

information, and sets speed from driver. For example, when driver sets the cruising speed 

to a 90 km/h, this block provides 90 km/h speed information as an output (Vcal) if no 

vehicle or any object is presence in front of the vehicle. If there is a vehicle or any object is 

detected in front of the vehicle, then ACC decision block gives detected speed to 

decelerate the vehicle. After all, “ACC decision block” output, and “actual vehicle speed 

from the vehicle” difference are given to the Fuzzy controller as an input. Fuzzy controller 

decides traction force level by looking at the rules that are introduced in “fuzzy inference”. 

 

 

Figure 4.3. Adaptive Cruise Control system with Fuzzy controller 
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Figure 4.4. Fuzzy Logic designer interface on Simulink 

4.3.  DESIGN OF ACC USING A MODEL PREDICTIVE CONTROLLER (MPC) 

Model Predictive Control (MPC) is based on solving an optimization problem numerically 

at each time step with considering some constrains [40,41]. In recent years, the advances in 

MPC algorithms, and design processes are also discovered in automotive area to increase 

efficiency of the vehicle system, and electronic components. MPC is widely used in power 

train and chassis control applications in the automotive industry [42]. In this thesis, MPC is 

used because of its advantages in terms of efficiency and accuracy.  

In MPC theory, there are three main input and output component. Measured plant output 

(mo) and references (ref) are the input parameters. Model predictive controller gives an 

output as manipulated variable by looking at these two inputs. Prediction, control horizon 

and sample time are used by MPC when calculating output value from input value (Figure 

4.5).  

In ACC design, Vcal is calculated from “ACC decision block”. MPC controller calculates 

traction force (Ftr) by managing three parameters that are “measured plant output”, 

“reference” and “manipulated variable”. Output (Vcal) of the “ACC decision block” 

provides reference (ref) value for the MPC controller. Measured plant output (mo) (Vactual) 

is speed signal that is a feedback from the vehicle. The manipulated variable (mv) is the 

controller block output (Fnet) that is tractive force value expressed in Newton. MPC 
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controls the traction force directly by looking at the desired, and actual vehicle speed 

(Figure 4.6). 

 

Figure 4.5. Model Predictive Controller working principle 

In ACC design, Vcal is calculated from “ACC decision block”. MPC controller calculates 

traction force (Ftr) by managing three parameters that are “measured plant output”, 

“reference” and “manipulated variable”. Output (Vcal) of the “ACC decision block” 

provides reference (ref) value for the MPC controller. Measured plant output (mo) (Vactual) 

is speed signal that is a feedback from the vehicle. The manipulated variable (mv) is the 

controller block output (Fnet) that is tractive force value expressed in Newton. MPC 

controls the traction force directly by looking at the desired, and actual vehicle speed 

(Figure 4.6). 

Model predictive controller configuration is directly set using MPC Designer APP in 

MATLAB/Simulink [43]. Initially, plant is linearized and introduced into the MPC 

controller. Then, optimization methods, control, prediction horizon and sample time are 

selected (Figure 4.7). Later, ACC controller is developed to control the performance of the 

electric vehicle.  

 

 

Figure 4.6. Adaptive Cruise Control system with MPC controller 
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Figure 4.7. MPC Designer interface in MATLAB/Simulink 
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5. EXPERIMENTS AND RESULTS 

In this thesis, the simulation experiments were done using MATLAB/Simulink [44] tool. 

All modeling equations that were given in Section 3.1 and 3.2 were implemented in 

MATLAB/Simulink [44].  

Firstly, vehicle dynamic conditions and ACC function with PID controller is modeled by 

MATLAB/Simulink[45] tuning tool. ACC decision block, PID controller, dynamic vehicle 

longitudinal forces and sensor information (vehicle detected or no vehicle) are the main 

blocks in this model. All blocks can be seen from Figure 5.1. 

 

 

Figure 5.1. ACC model with PID in MATLAB/Simulink 
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Secondly, ACC model with ACC decision block, Fuzzy controller, dynamic vehicle 

longitudinal forces and sensor information (vehicle detected or no vehicle) is created in 

MATLAB/Simulink [51] tuning tool that is given in Figure 5.2.  

 

 

Figure 5.2. ACC with Fuzzy Logic Controller in MATLAB/Simulink design 

 

As a final model, vehicle longitudinal motion forces and ACC with Model Predictive 

Controller (MPC) configuration are implemented in MATLAB/Simulink [43]. 

Relationship between ACC decision block, dynamic vehicle longitudinal forces and sensor 

information is given in Figure 5.3. 
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Figure 5.3. ACC with Model Predictive Controller in MATLAB/Simulink design 

 

A scenario was selected to evaluate the performance in acceleration/deceleration, and 

power consumption when ACC system was designed with three different controllers (PID, 

Fuzzy and MPC). In the scenario, the driver set the cruising speed to 70 km/h. Initially; 

there was no vehicle or object detected in front of the vehicle. After the vehicle reached the 

desired speed, then an object which had a speed between 40 to 45 km/h interval was 

detected by the sensing module. ACC decision block sent a signal to the engine system to 

decelerate. Engine system was also chosen as a deceleration mechanism to charge the 

electric vehicle battery. Then, when the road was clear (no vehicle in the front), ACC 

decision block started to accelerate the vehicle back to the driver cruising value by sending 

speed-up comment to the ACC controller. The same scenario had been evaluated using 

PID, Fuzzy and MPC controllers in ACC.  
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5.1.  PID CONTROLLER PARAMETERS EFFECTS ON ACC SYSTEM 

BEHAVIOR AND EFFICIENCY  

The choice of PID controller gain parameters was important because they had an effect on 

ACC dynamic system, which had been described in Section 4.1.  In this part, 

MATLAB/Simulink PID [45] tuning tool had been used to decide the PID gains. In the 

first case, P, I, D and N parameters were selected for two different models (Table 5.1). It 

was noticed that the transient behavior was aggressive (not robust) at disturbance rejection 

in both models. The response time was faster in the first model than the second model. It 

could be noticed that the vehicle reached the desired speed faster when the first model 

were used (Figure 5.4). However, the vehicle speed settled to 70 km/h faster when the 

second model was used. Power consumption of the battery was more when there was a fast 

acceleration feedback, and longer settling time. The power consumption of two models 

under the same condition could be seen in Figure 5.5. In deceleration phase, first model 

behaved more efficient because of the fast regeneration of the battery.   

 

 

 

 

 

 

 

Table 5.1. First and second PID model parameters 

 First Model Second Model 

PID Parameters Value Value 

P 0 0.1654 

I 0.6699 0.0003 

D 0 -2.35 

N 100 0.080 

Response Time  Behavior Faster Slow 

Transient  Behavior 
Aggressive at 

disturbance rejection 

Aggressive at 

disturbance rejection 
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Figure 5.4. First and second PID systems effect on vehicle speed (km-h/s) 

 

 

Figure 5.5. First and second PID systems effect on power consumption (W/s) 

 

Then the controller performance had been evaluated when the filter coefficient effect (N) 

had been changed. The second model filter coefficient was changed from 0.080 to 0.070 

(Table 5.2). It was observed that hanging filter coefficient created the ripples on the vehicle 

speed (Figure 5.6). Thus, speed could not be kept constant because of these ripples. 

Additionally, these ripples could cause extra power consumption for the vehicle (Figure 

5.7).  As a summary, when the filter coefficient (N) was decreased, vehicle acceleration 

and deceleration phase and also steady state behavior oscillation frequency was increased 

and caused energy battery efficiency of the vehicle in worst direction. 
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Table 5.2. Second and third PID model parameters 

 

 

 

 

 

 

 

 

Figure 5.6. Second and third PID systems effect on vehicle speed (km-h/s) 

 

Figure 5.7. Second and third PID systems effect on power consumption (W/s) 

 Second Model Third Model 

PID Parameters Value Value 

P 0.1654 0.1654 

I 0.0003 0.0003 

D -2.35 -2.35 

N 0.080 0.070 

Response Time  Behavior Slow Slow 

Transient  Behavior 
Aggressive at 

disturbance rejection 

Aggressive at 

disturbance rejection 
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Another control parameters had been used for the fourth model (Table 5.3). Closed loop 

response time behavior was selected same for both models. First model transient behavior 

was set as more aggressive at disturbance rejection than fourth model by changing P, I, D 

and N parameters. It was observed that speed transient behavior was smoother in fourth 

model than first model (Figure 5.8). First ACC model consumed much power than fourth 

model when ACC system was in acceleration period (Figure 5.9). 

 

Table 5.3. First and fourth PID model parameters 

 First Model Fourth Model 

PID Parameters Value Value 

P 0 0.1469 

I 0.6699 0.6188 

D 0 -0.1841 

N 100 0.798 

Response Time  Behavior Faster Faster 

Transient  Behavior 
More aggressive at 

disturbance rejection 

More robust against 

plant uncertainty 

 

 

Figure 5.8. First and fourth PID systems effect on vehicle speed (km-h/s) 
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Figure 5.9. First and fourth PID systems effect on power consumption (W/s) 

5.2. FUZZY CONTROLLER PARAMETERS EFFECTS ON ACC SYSTEM 

BEHAVIOR AND EFFICIENCY 

Fuzzification, fuzzy inference process and defuzzification are three important steps to 

design fuzzy controller. The purpose of fuzzification is to map the inputs to the values 0 to 

1 using membership functions. At this stage, membership functions can be triangular, 

trapezoidal, linear, gaussian etc. After the fuzzification stage, fuzzy rules are set in fuzzy 

inference process. In fuzzy theory, Mamdani and Takagi-Sugeno are two commonly 

linguistic form rules as fuzzy inference process. Once and for all, the output from the 

inference engine are converted into crisp output value with defuzzification methods. 

Common defuzzification techniques are center of-area (gravity), center-of-sums and mean 

of maxima [46–48]. 

Different membership functions were compared on the same ACC operation condition. 

Input and output range effects were investigated to understand fuzzification, and 

defuzzification process effect on power consumption. In this thesis, Mamdani inference 

approach was used because of the nonlinear ACC behavior. 

Fuzzy parameters for two different models were given in Table 5.4. Both the model input 

and output Fuzzy range were the same. However, first membership function was chosen as 

a z-shape, and second membership function was chosen as a triangular-shaped. Fuzzy 

model input range was selected as [-150, +150] in negative and positive interval because if 

the vehicle needed to slow down fuzzy input became in negative interval. However, if the 
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vehicle was in speed up, fuzzy input became in positive interval (as it had been shown in 

Figure 4.3). [-150, +150] interval was selected with considering minimum and maximum 

vehicle speed difference coming from the closed loop feedback. Output interval of fuzzy 

logic was directly related with engine force. It was observed that vehicle speed transient 

behavior was more aggressive when zmf membership function was used. Furthermore, the 

settling time of first model was shorter than second model (Figure 5.10). Power 

consumption of the battery was more in the first model because of the fast acceleration 

feedback (Figure 5.11). However, because of the negative torque effect, first model 

generated more energy in short deceleration interval than second model. 

Table 5.4. First and second Fuzzy models parameters 

 

 

 

 

 

Figure 5.10. First and second Fuzzy systems effect on vehicle speed (km-h/s) 

 

Fuzzy Models First Model Second Model 

Input Range [-150,+150] [-150,+150] 

Input Membership Function Type zmf trimf 

Output Range [0,+150] [0,+150] 

Ouput Membership Function Type zmf trimf 
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Figure 5.11. First and second Fuzzy systems effect on power consumption (W/s) 

 

The second and third experiments were related with the changes in the input and output 

range of fuzzy membership function to examine controller response effect on vehicle 

acceleration/deceleration. Changing input and output range (Table 5.5) resulted in different 

fuzzification and defuzzification behavior of fuzzy model. For the second experiment, third 

model was designed with decreasing interval of input and output fuzzy rule range from [-

150, +150] to [-75, +75] to improve the performance of controller. This performance 

change directly resulted in increment in power consumption in acceleration phase of 

vehicle (Figure 5.12). Energy regeneration was more than second model because 

deceleration performance of the vehicle was faster in the third model (Figure 5.13).  

 

Table 5.5. Second and third Fuzzy models parameters 

 

 

 

 

Fuzzy Models Second Model  Third Model 

Input Range [-150,+150] [-75,+75] 

Input Membership Function Type trimf trimf 

Output Range [0,+150] [0,+75] 

Output Membership Function Type trimf trimf 
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Figure 5.12. Second and third Fuzzy systems effect on vehicle speed (km-h/s) 

 

Figure 5.13. Second and third Fuzzy systems effect on power consumption (W/s) 

 

The input and output range had been increased from [-75, +75] to [-350, +350] (Table 5.6) 

to observe slow response effect of designing fuzzy controller on vehicle power 

consumption. Fuzzification and defuzzification behavior was smoother than the first, 

second and third models. Additionally, the vehicle speed had slower response than all 

previous models in acceleration and deceleration performance (Figure 5.14). This 

performance changes directly resulted in more travelling range when power consumption 

had been considered in acceleration period (Figure 5.15). This behavior was expected 

because slower acceleration meant less power consumption. It was vice versa for 

deceleration phase. 
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Table 5.6. Third and fourth Fuzzy models parameters 

 

 

 

 

 

Figure 5.14. Third and fourth Fuzzy systems effect on vehicle speed (km-h/s) 

 

Figure 5.15. Third and fourth Fuzzy systems effect on power consumption (W/s) 

Fuzzy Models Third Model Fourth Model 

Input Range [-75,+75] [-350,+350] 

Input Membership Function Type trimf trimf 

Output Range [0,+75] [0,+350] 

Ouput Membership Function Type trimf trimf 
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5.3. MPC CONTROLLER PARAMETERS EFFECTS ON ACC SYSTEM 

BEHAVIOR AND EFFICIENCY 

There are three key controller parameters when designing a system with MPC which are 

prediction horizon (Tp), control horizon (Tc) and sample time (δ). The controller predicts 

the dynamic behavior of the system over a prediction horizon (as a future prediction), and 

determines the input over a control horizon based on the measurements (reference (ref) 

value and measured plant output (mo)) obtained at time t. Control horizon is always 

smaller than Tp. This process is repeated for each sampling time with control and 

prediction horizon shifting forward [49,50].  

 

Different MPC configuration was set to understand vehicle acceleration/deceleration 

performance, and power consumption effects of MPC controller parameters. Firstly, 

control horizon time was evaluated. Secondly, prediction horizon effect was analyzed with 

keeping sample and control horizon time constant. Lastly, three MPC systems were 

configured with different sample time to understand sample time effect on vehicle speed 

behavior, which would affect the performance. 

MPC parameters for three different models of the first model to third model were given in 

Table 5.7. All models sample time and prediction horizon time were chosen as 1 and 10 

seconds to see control horizon effect in wide range between 6-8 sec intervals. It was 

observed that decreasing of controlling horizon served acceleration, and deceleration 

performance of the vehicle was faster than the second and third model. This meant that if 

the controlling horizon was too low, the controller capability of the quick response was 

improved (Figure 5.16). Additionally, this performance changing directly resulted power 

consumption increasing in acceleration interval (Figure 5.17).  

 

Table 5.7. All MPC models parameters for control horizon experiments 

 

 

 

 

MPC Models First Model Second Model Third Model 

Sample Time(s) 1 1 1 

Prediction Horizon(s) 10 10 10 

Control Horizon(s) 6 7 8 
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Figure 5.16. MPC control horizon effect on vehicle speed (km-h/s) 

 

 

Figure 5.17. MPC control horizon effect on power consumption (W/s) 

 

The second experiment was related to change in prediction horizon effect (Tp) on ACC 

system. Fourth, fifth and sixth models were created with 1 second sample time, and 2 

second control horizon. Prediction horizon of the controllers was increased from 2 seconds 

to 100 seconds (Table 5.8). When plant output (vehicle speed) of each models were 

analyzed, then it could be seen that sixth model transient feedback was faster than fifth and 

fourth model (Figure 5.18). It was verified that prediction horizon increasing improved 

output reaction of the controller. When the power consumption effect was analyzed, then it 

could be seen that fourth model of the power consumption (acceleration) was higher than 

the other ones. The main reason of this behavior was the increase in vehicle acceleration 

(Figure 5.19). Regeneration of the EV battery in sixth model was much than the other 

models because sixth model deceleration performance was faster than the other ones. 
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Table 5.8. All MPC models parameters for prediction horizon experiments 

 

 

 

 

 

Figure 5.18. MPC prediction horizon effect on vehicle speed (km-h/s) 

 

 

Figure 5.19. MPC prediction horizon effect on power consumption (W/s) 

 

MPC Models Fourth 

Model 

Fifth 

Model 

Sixth 

Model 

Sample Time(s) 1 1 1 

Prediction Horizon(s) 2 10 100 

Control Horizon(s) 2 2 2 
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Three MPC models were created to understand the sample time parameter effect of MPC 

controller on vehicle speed and consumption parameters (Table 5.9). In these parameters, 

all prediction horizons were chosen as 10 seconds. 2 seconds was described for all MPC 

control horizon because control horizon of the MPC had to be less than prediction horizon 

(according to the MPC theory [49]). Sample time was chosen as 0.1, 1 and 5 seconds for 

seventh model, eighth and ninth model. 

It was observed that when the sample time of MPC controller had increased, then the 

transient response of the controller was slower.  For instance, seventh model sample time 

was less than the other ones. Thus, the vehicle reached 70 km/h (driver set speed) faster 

than the other MPC models (Figure 5.20). When the power consumption effect had been 

analyzed, it had been seen that ninth model of the power consumption (acceleration) was 

higher than the other ones because of the slope of vehicle acceleration (Figure 5.21). The 

performance changing resulted less travelling range for ninth model since the usage of 

instant torque of the engine was increased in acceleration period. 

 

                 Table 5.9. All MPC models parameters for sample time experiments 

 

 

 

 

 

Figure 5.20. MPC sample time effect on vehicle speed (km-h/s) 

MPC Models Seventh 

Model 

Eighth 

Model 

Ninth 

Model 

Sample Time(s) 0.1 1 5 

Prediction Horizon(s) 10 10 10 

Control Horizon(s) 2 2 2 
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Figure 5.21. MPC prediction horizon effect on power consumption (W/s) 
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6. DISCUSSION AND CONCLUSION  

 

Efficiency, carbon emission and performance are the important advantageous of the 

electric vehicles when it is compared with internal combustion engine. However, high 

battery costs, long charging time, low limited range, and limited charging infrastructures 

are problems that researchers are still working on. These problems are the reasons of the 

low number of electric vehicles in the roads. Changing physical and chemical battery 

characteristic and its management systems are some of the proposed studies to increase 

travelling range of electric vehicles. Furthermore, new vehicle technologies such as 

regenerative braking systems or ADAS systems have also been used on the electric 

vehicles to increase battery range. Adaptive Cruise Control (ACC), which is one of the 

Advanced Driving Assistance Systems (ADAS) systems, has also been used to increase the 

travelling range of electric vehicles without compromising the safety. 

The aim of this thesis is to compare acceleration and deceleration performance by looking 

at the vehicle speed, torque map and power consumption characteristic of the electric 

vehicle when different controllers (PID, Fuzzy and MPC) are used for ACC. Different 

control parameters are selected to investigate the changes in the performance, and power 

consumption of the electric vehicle.   

In this study, first the mathematical model of the longitudinal motion dynamic of electric 

vehicle has been extracted. In this model, tractive force, aerodynamic resistance, 

acceleration force, gravitational force, and rolling resistance equations have been put into 

Newton second law equation. All these forces are extracted and included into the dynamic 

equations.  The model of the power consumption has been taken from the literature studies 

[32–36]. Then, PID, Fuzzy and MPC controllers have been integrated into this dynamic 

model of the electric vehicle. PID tuning tool in MATLAB/Simulink [45] have been used 

to decide the PID gains.  Fuzzy logic designer tool in MATLAB/Simulink [51] have been 

used to change the fuzzy logic parameters. MPC configuration is directly set using MPC 

Designer APP in MATLAB/Simulink [43].  

A scenario has been developed to evaluate the performance in acceleration/deceleration, 

and power consumption of designed ACC system with PID, Fuzzy and MPC controllers. 

This scenario demonstrates a typical ACC working use-case in real-life and used for three 
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controller types (PID, Fuzzy and MPC). In this scenario, the driver sets the cruising speed 

assuming there is no vehicle in the front. The power consumption has been evaluated with 

considering the vehicle acceleration performance in this interval (0 to 70 km/h). When the 

vehicle reaches the desired speed, then there is a time interval that the vehicle is in constant 

speed. Later, the vehicle has a lower speed then the cruised value (that means the driver 

uses brakes – which is introduced by the sensing module). In this case, vehicle decelerates 

in a short period of time. The deceleration performance, and power consumption of the 

vehicle have also been analysed in this time interval.  

PID parameters (Proportional, Integral, and Derivative) have been changed in 

methodological approach (increasing or decreasing step by step with a constant time 

interval). The response and transient behavior of the electric vehicle have been investigated 

when the parameters changed. It has been noticed that when PID parameters (Proportional 

=0.1654, Integral=0.0003, Derivative=-2.35 and Filter Coefficient= 0.080) are selected 

then the electric vehicle has a slower, and smooth response transient speed, which affect 

power consumption positively in acceleration period. However, because of the transient 

speed response has been slow in deceleration phase; low level regeneration of battery 

energy is effective in this interval. It has been also observed that the oscillation (which is 

important in the stability) of the electric vehicle speed cause extra power consumption for 

the vehicle not only in acceleration, and deceleration phase but also steady-state conditions 

when filter coefficient (N) is decreased. It is noticed that when there is a change in the 

parameter, then the steady state error and settling time performance of vehicle speed 

change which effects the power consumption of battery. 

Fuzzy controller has also been investigated by changing input-output fuzzy membership 

function range, and membership function type to see acceleration/deceleration performance 

of each fuzzy configuration. In this study, trimf and z shape membership function type 

given in MATLAB/Simulink [44] have been used. When z shape membership function has 

been used, then it is observed that vehicle speed transient behavior has been more 

aggressive than trimf function, and settling time has been shorter which results in more 

power consumption for the vehicles in acceleration period. It has also been observed that 

changing input-output membership fuzzy range interval has more effect on instantaneous 

power consumption than membership function type because of the sensitivity tolerance of 

the fuzzy. It is noticed that decreasing interval of input and output fuzzy rule range from [-
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150, +150] to [-75, +75] improve the acceleration performance of the vehicle. This 

performance change directly results in increment of power consumption in acceleration 

phase of vehicle, which is a negative effect on energy efficiency. On the other hand 

increasing of this interval results more energy regeneration in deceleration phase of the 

ACC. This fuzzy configuration can be used to obtain more energy from powertrain to the 

battery in the short period.  

There are three key controller parameters when designing a system with MPC which are 

prediction horizon (Tp), control horizon (Tc) and sample time (δ). The effects of these 

parameters on the vehicle speed-torque performance, and power consumption have also 

been investigated. It has been observed that power consumption of the vehicle dramatically 

increases when the parameters have been selected towards the acceleration performance 

increase direction. Decreasing of control horizon (from 8 to 6 sec), prediction horizon (100 

to 2 sec) and increasing sample time (0.1 to 5 sec) cause battery power consumption 

increase. When deceleration performance is considered then it is noticed that regeneration 

of the electric vehicle battery is much in short time period. Additionally, when Tp and Tc 

are increased, and δ is decreased then a change in the positive direction for power 

consumption is noticed in the acceleration interval. 

In this thesis, ACC system is evaluated only in simulation environment using different 

controllers. As a future work, the experiments will be performed in real-time on the real 

electric vehicle. A radar or lidar module will be placed into the vehicle and engine control 

module. Other road and traffic conditions such as different weather conditions or up and 

down road conditions will be included into the model. Stop and go traffic effects on battery 

consumption will also be investigated.  

Optimization of each controller parameter is another study that will be done in the future 

considering performance and power consumption of the electric vehicle. In this study, we 

compare electric vehicle performance and power consumption when different PID 

parameters (Proportional, Integral, and Derivative), Fuzzy controller parameters (input-

output membership functions and types) and MPC parameters (prediction horizon, control 

horizon, and sample time) are used. However, there is no optimum solution introduced for 

each controller parameters to reach energy efficient ACC design. In the future, electric 

vehicle battery consumption could be defined in optimization problem to find the best 

parameter for each controller.  
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The developed controller behaviors will also be integrated with traffic data or GPS/Internet 

based navigation system to define electronic horizon in the future. The geometric 

description of the road that is curvature or slope can be reached from this electronic 

horizon. The speed profile (acceleration, deceleration) and controller parameters will be 

considered according the horizon without compromising safety criteria, which may 

improve energy efficiency of ACC technology in positive direction. 
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