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ABSTRACT 

 

 

STRUCTURAL AND MAGNETIC PROPERTIES OF EXCHANGE BIASED 

CoO/Co MULTILAYERS 

 

In this study, the exchange bias properties of four multilayer stack samples of 

Antiferromagnetic (AFM) CoO and Ferromagnetic (FM) Co in the [CoO/Co]n thin film 

form with n = 1, 2, 3 and 5 are studied. Ferromagnetic resonance (FMR) measurements 

were carried out to investigate the magnetic anisotropies of the samples and vibrational 

sample magnetometry (VSM) was employed to probe the exchange bias properties. Out-of-

plane FMR studies yielded an increasing number of resonance peaks as “n” increased and 

in-plane FMR measurements resulted in a uniaxial in-plane magnetic anisotropy for the 

samples. Low temperature VSM measurements provided shifted hysteresis curves, a sign 

of exchange bias, with a stepwise character. Observed steps are believed to be due to 

magnetization reversals of individual FM layers with varying thicknesses, each of which is 

pinned through two interfaces from above and below with two AFM layers, except the 

uppermost FM Co layer with a single AFM neighbour. TEM images provided FM-AFM 

layer thicknesses, which are important on the pinning of each FM layer by neighbouring 

AFM layers. X-Ray Photoelectron Spectroscopy (XPS) measurements of cobalt-oxide 

layer show that the oxidation states Co+2 and Co+3 coexist in the AFM layer which is an 

indication that different phases of cobalt-oxide, CoO and Co3O4, are existing in the layer. 

These different phases of cobalt oxide are thought to be responsible for the observed 

blocking temperature of the exchange biased system lower than the bulk Néel temperature 

of AFM CoO, in addition to the effect of thickness of the AFM layer. 

 

Along with the main experimental studies, a theoretical account of the Ferromagnetic 

Resonance in a single FM layer was conducted that leads to the fundamental resonance 

condition in FMR. After fundamental resonance condition of FMR was obtained, effort has 

been devoted to systems composed of many FM layers (a multilayer structure) generally 

separated by nonmagnetic spacer layers and a matrix model have been developed to solve 

the system of equations that can then be used to calculate the dynamic  susceptibility and 

can be utilized for the computer simulation of FMR experiments.  
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ÖZET 

 

 

EXCHANGE BIAS ETKİSİ ALTINDAKİ CoO/Co ÇOKLU KATMANLARIN 

YAPISAL VE MANYETİK ÖZELLİKLERİ 

 

Bu çalışmada [CoO/Co]n (n = 1, 2, 3 ve 5) ince film yapısında Antiferromanyetik (AFM) 

CoO ve Ferromanyetik (FM) Co içeren dört adet çok katmanlı örneğin exchange bias 

özellikleri çalışılmıştır.  Ferromanyetik Rezonans (FMR) ölçümleri gerçekleştirilerek 

örneklerin manyetik anizotropileri araştırılmış, Titreşimli Örnek Manyetometresi (VSM) 

kullanılarak exchange bias özellikleri incelenmiştir. Düzlem-dışı FMR çalışmalarından “n” 

arttıkça artan sayıda rezonans tepeleri elde edilmiş, düzlem-içi FMR ölçümlerinden de 

örnekler için film düzleminde tek-eksenel bir manyetik anizotropi elde edilmiştir. Düşük 

sıcaklık VSM ölçümleri, basamaklı yapıda ve exchange biasın işareti olan kaymış histerisis 

eğrileri vermiştir. Gözlemlenen basamakların, tek bir AFM komşuya sahip en üst FM Co 

katmanı dışında, her biri yukarıdan ve aşağıdan iki ara yüzey üzerinden iki AFM katman 

tarafından kilitlenen değişik kalınlıktaki FM katmanların bireysel manyetizasyon 

tersinmelerinden kaynaklandığı düşünülmektedir. Geçirimli elektron mikroskobu (TEM) 

görüntüleri, her bir FM katmanın komşu AFM katmanlar tarafından kilitlenmesinde önem 

arz eden FM – AFM kalınlıklarını ortaya koymuştur. CoO tabakasına ait X-ışını 

fotoelektron spektroskopisi (XPS) ölçümleri, kobalt oksitin CoO ve Co3O4 gibi farklı 

fazlarının varlığının işareti olan Co+2 and Co+3 oksidasyon fazlarının AFM katmanda 

birlikte var olduğunu göstermiştir. Kobalt oksitin bu farklı fazlarının, AFM tabaka 

kalınlığının etkisine ek olarak, exchange bias sisteminde gözlemlenen ve yığın yapıdaki 

AFM CoO’in Néel sıcaklığından daha düşük olan engelleme sıcaklığından sorumlu olduğu 

düşünülmektedir.  

 

Ana deneysel çalışmalarla birlikte, tek bir FM katman için temel FMR rezonans koşulunu 

sağlayan teorik bir çalışma yapılmıştır. FMR için temel rezonans şartı elde edildikten 

sonra, genellikle manyetik-olmayan ara katmanlarla ayrılmış birçok FM katmandan oluşan 

sistemler (bir çoklu katman yapısı) çalışılmış ve dinamik duygunluğu hesaplamak için ve 

FMR deneylerinin bilgisayar benzetimlerimde kullanılabilecek bir matris modeli 

geliştirilmiştir.  
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1. INTRODUCTION 

 

 

Exchange bias (EB) which was discovered more than half a century ago to occur at a 

ferromagnetic (FM) – antiferromagnetic (AFM) interface, has played  an important role in 

the pinning of the magnetization state of one of the ferromagnetic layers used in spin valve 

structures employed in magnetic storage media. Besides the experimental efforts and 

extensive applications in information storage technology, there is still a lack of a definitive 

theory able to account for the observed effects. In order to contribute to the ongoing 

research related to this phenomenon,  experimental studies involving varying forms of FM 

- AFM interfaces have to be performed. 

 

The effect (EB), discovered in 1956 [1] and explained in more detail in 1957 [2] by 

Meiklejohn and Bean, is a phenomenon observed in structures involving FM-AFM 

interfaces when the system is coo1ed down through the Néel temperature (𝑇𝑁) of the AFM, 

with the Curie temperature of FM 𝑇𝐶 > 𝑇𝑁, in the presence of a magnetic field, a 

procedure called field cooling, or when the system is deposited in a magnetic field [3]. The 

effect manifests itself as a shift of the hysteresis curve of FM along magnetic field axis 

generally towards negative field values with an enhanced coercivity defined as the half-

width of the hysteresis curve. Since its discovery [1, 2], the effect has been investigated 

theoretically and experimentally in many papers reviewed in [4-15] and has found a 

tremendous utility in information storage technology. 

 

Exchange bias has found a great application utility along with the giant magnetoresistance 

(GMR) [16-26] and tunnel magnetoresistance (TMR) effects [22, 26-42] in the spin based 

technological device fabrication employing spin-dependent transport [43] leading to 

spintronics (spin electronics) [44-47] for high density magnetic data storage units, read 

heads, spin valves, magnetic tunnel junctions (MTJ) and nonvolatile memory devices like 

magnetoresistive random access memory (MRAM) [48, 49]. However, its microscopic 

origin is still under debate. The need of strong, controllable, predictable and also low-

energy consuming devices for the technology motivates the researchers studying more to 

understand the scientific basis of this phenomenon.  
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Exchange bias has been an indispensible tool in the pinning of the magnetization state of 

the reference layer used in both GMR and TMR based spin-valve structures. The spin-

valve term was coined by B. Dieny at al. and it was the first time where EB had been 

utilized for creating a spin dependent transport [19, 50]. A spin-valve structure is 

composed of two ferromagnetic layers separated by a nonmagnetic spacer layer. When the 

nonmagnetic layer is a conductor, a GMR structure is built whereas a very thin insulating 

layer as a spacer gives rise to a TMR structure. A ferromagnetic reference layer in contact 

with the antiferromagnetic layer has a single easy direction of magnetization stemming 

from the unidirectional anisotropy created by the exchange interaction of the FM and AFM 

spins at the common interface. The electrical resistance of the spin-valve structure is 

dependent upon the relative orientations of the magnetizations in the FM layers. An 

external magnetic field can change the magnetization direction of the sensor FM layer 

whereas the reference layer has its magnetization kept at its easy direction induced by the 

EB effect. The resistance of the system changes as the angle between the magnetizations of 

FM layers is changed by the external field. Thus, the spin-valve structure acts a sensor of 

external fields and can be used to detect the binary information of zeros and ones encoded 

in the magnetic data storage system. “0” is represented by opposite alignments of the FM 

magnetizations that causes a high resistance state and “1” is represented by parallel FM 

magnetizations creating a low resistance state which can be detected by an appropriate 

electronics circuitry. 

 

Since exchange bias is thought to be an interfacial property, systems composed of more 

than one FM – AFM interface has gained attention in the scientific community because of 

the information that can be gathered from such systems. It is mentioned that study of at 

least a trilayer structure would yield information that is not accessible by a single FM – 

AFM bilayer [51]. Multilayer studies would enlighten the dependence on atomic scale 

interface roughness [52, 53], independent exchange bias effects on two FM layers due to a 

spiraling spin structure in AFM and its thickness dependence [54], parallel-antiparallel EB 

couplings [55], competition of interfacial exchange and AFM anisotropy and its 

temperature dependence [56]. In addition to the interfacial properties, these studies also 

reveal that the AFM bulk structure has also a key role on the EB properties. It is also 

important to note the simulation studies for the thickness and bilayer number dependence 

of exchange bias [57]. 
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This thesis work is focused upon thin film bilayers composed of FM Co and AFM CoO 

prepared in a multilayer fashion. In Section 2, a brief overview of magnetism is given. 

Section 3 is devoted to the discovery, basic phenomenology, ideal model and general 

properties of EB and exchange biased systems. In Section 4, a theoretical analysis of one 

of the experimental techniques used in this work, Ferromagnetic Resonance (FMR), is 

provided giving the fundamental resonance condition followed by a linearized model of 

FMR that can be applied to multilayer structures composed of many FM layers and a 

detailed account is given for the use and range of applicability of the obtained set of 

equations. Section 5 is devoted to the material, experimental work and results of the 

multilayer structures of Co/CoO. The experimental findings are discussed in Section 6 

followed by the conclusion provided in Section 7. An appendix is also given for some of 

the magnetic anisotropy energies that can be incorporated into FMR studies. 
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2. BASICS OF MAGNETISM 

 

 

There are two macroscopic sources of magnetism: magnets and electric currents. At the 

microscopic level, however, macroscopic manifestations of magnetism can be understood 

in three fundamental mechanisms in atoms: the orbital motion of the electrons around the 

nucleus, their intrinsic angular momentum called spin and a small induced moment as a 

response to external magnetic fields. The first two contributions are related to what is 

known as paramagnetism and the third is related to diamagnetism [58]. Individual atoms 

possess only these above mentioned magnetic classifications. Diamagnetism is inherent to 

all atoms, therefore, all materials display diamagnetism. Only those atoms, however, which 

have all their electron shells filled are called diamagnetic. Despite being manifested by all 

atoms, diamagnetism is a weak effect, except in superconductors, and is overcome by such 

interactions like paramagnetism or ferromagnetism. The magnetic behaviour of interest, 

however, is magnetic orders exhibited by structures such as ferromagnets, ferrimagnets and 

antiferromagnets which require a collection of magnetic moments in an ordered array. 

  

2.1. MAGNETIC MOMENT 

 

The elementary unit of magnetism is the magnetic dipole moment or magnetic moment in 

short, considering the fact that the magnetic field is created by currents, be it at the atomic 

level or at the macroscopic realm. If there is a current 𝐼 flowing around a surface element 

𝑑𝐴, the magnetic moment is defined as 

 

 
𝜇 = ∫𝑑�⃑� = ∫ 𝐼 𝑑𝐴 �̂� (2.1) 

 

where �̂� is the unit vector along the surface normal as given by the right hand rule for 

which the normal is defined as the direction pointed by the thumb when the four fingers 

curl around the current. The unit of magnetic moment is “𝐴.𝑚2” in SI and “emu“ 

(electromagnetic unit) in CGS systems of units. Since magnetism is related to rotating 

charged particles, there is a relation that connects the magnetic moment to the angular 

momentum: 
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 𝜇 𝑜𝑟𝑏𝑖𝑡 = 𝛾�⃑⃗� (2.2) 

 

where �⃑⃗� represents the orbital angular momentum and 𝛾 is the ratio of the magnetic 

moment to the angular momentum called the gyromagnetic (or magnetogyric) ratio given 

by 

 

 𝛾 =
𝑞

2𝑚
 (2.3) 

 

with 𝑞 being the charge and 𝑚 being the mass of the circulating entity. In the case of 

electrons 𝑞 = −𝑒 in which 𝑒 is the fundamental unit of electric charge. Due to the negative 

charge of the electrons, magnetic moment and angular momentum are oppositely directed 

vectors. It is worth mentioning at this stage that defining 𝜇  and 𝛾 as given by Equations 

(2.2) and (2.3) is a more general approach that can be applied to any charge 𝑞, but when it 

comes to electrons, reader can find examples in the literature such that there appears a 

negative sign in front of 𝛾 in Equation (2.2) but then 𝛾 itself is given by its absolute value 

as we shall practise in Section 5. 

 

As pointed out earlier, the magnetic moment is not only caused by the orbital motion but 

there is an intrinsic angular momentum called spin and therefore it has its own contribution 

to the magnetic moment: 

 

 𝜇 𝑠𝑝𝑖𝑛 = 𝛾𝑠𝑝𝑖𝑛𝑆 (2.4) 

 

with 𝑆 being the spin angular momentum. The reason we had to specify a gyromagnetic 

ratio 𝛾𝑠𝑝𝑖𝑛 for the spin with a subscript is that it is twice the value obtained for the orbital 

part. Therefore for electrons 

 

 
𝜇 𝑜𝑟𝑏𝑖𝑡 = 𝛾�⃑⃗� = −

𝑒

2𝑚
�⃑⃗� = −

𝑒ℏ

2𝑚
∙
1

ℏ
∙ �⃑⃗� = −

𝜇𝐵
ℏ
�⃑⃗� (2.5) 

 

 

 

𝜇 𝑠𝑝𝑖𝑛 = 𝛾𝑠𝑝𝑖𝑛𝑆 = −2 ∙
𝑒

2𝑚
𝑆 = −2 ∙

𝑒ℏ

2𝑚
∙
1

ℏ
𝑆 = −2

𝜇𝐵
ℏ
𝑆 (2.6) 
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where ℏ = ℎ 2𝜋⁄  is the reduced Planck’s constant and 𝜇𝐵 (= 𝑒ℏ 2𝑚⁄ = 9.27×10−24 𝐽/𝑇 

in SI and = 𝑒ℏ 2𝑚𝑐⁄ = 9.27×10−21 𝑒𝑟𝑔/𝑂𝑒 in CGS) is the Bohr Magneton which is the 

fundamental unit of magnetic moment closely equal to that of a free electron. Equations 

(2.5) and (2.6) can be cast into a more general form for electrons 

 

 𝜇 = −𝑔
𝜇𝐵
ℏ
�⃗�  (2.7) 

 

where �⃗⃗�  represents the angular momentum of interest (orbital or spin) and 𝑔 is called the 

spectroscopic splitting factor or simply the 𝑔-factor. For orbital motion 𝑔𝐿 = 1.00, and 

𝑔𝑆 = 2.0023 for spin which is usually taken as 2.00. 

 

The magnitude of the orbital angular momentum is given by 

 

 |�⃗� | = √𝑙(𝑙 + 1)ℏ (2.8) 

 

where 𝑙 is the orbital angular momentum quantum number. The allowed values of 𝑙 are 

integer values: 0 ≤ 𝑙 ≤ 𝑛 − 1 determined from the principal quantum number 𝑛. For the 

electron in a Hydrogen atom in ground state, 𝑛 = 1 which then forces 𝑙 = 0 corresponding 

to the s-orbital. Therefore, the orbital angular momentum is zero for an electron with     

𝑛 = 1. 

 

For the magnitude of the spin angular momentum we have 

 

 |𝑆 | = √𝑠(𝑠 + 1)ℏ (2.9) 

 

for which the only value to be assumed by the spin quantum number 𝑠 is 1 2⁄ . The 

magnitude of the spin angular momentum then becomes √3ℏ 2⁄ . After defining 

magnitudes of the orbital and spin angular momenta, the magnitudes of the associated 

magnetic moments can be given by 

 

 𝜇𝑜𝑟𝑏𝑖𝑡 = 𝑔𝐿
𝜇𝐵
ℏ
|�⃗� | = 1 ∙

𝜇𝐵
ℏ
√𝑙(𝑙 + 1)ℏ = 𝜇𝐵√𝑙(𝑙 + 1) (2.10) 



7 

 

 

 𝜇𝑠𝑝𝑖𝑛 = 𝑔𝑆
𝜇𝐵
ℏ
|𝑆 | = 2 ∙

𝜇𝐵
ℏ
√𝑠(𝑠 + 1)ℏ = 2𝜇𝐵√𝑠(𝑠 + 1) = √3𝜇𝐵 (2.11) 

 

2.2. ZEEMAN INTERACTION 

 

The magnetic moments that we have found in equations (2.10) and (2.11) are valid for the 

electrons in isolated atoms. The energy of a magnetic moment in a magnetic field is given 

by 

 

 𝑈 = −𝜇 ∙ �⃗�  (2.12) 

 

where �⃗� = �⃗⃗�  in CGS and �⃗� = 𝜇0�⃗⃗�   in SI is the applied field. Care should be taken not to 

confuse 𝜇0 with magnetic moments because 𝜇0 is the magnetic permeability of free space. 

When we consider only the case of the orbital angular momentum of the electron and 

taking direction of the magnetic field as the 𝑧 −direction, equation (2.12) calls for the 

projection of 𝜇  along the direction of the magnetic field as required by the dot product: 

 

 𝜇𝑜𝑟𝑏𝑖𝑡,𝑧 = 𝛾𝐿𝑧 = −
𝜇𝐵
ℏ
𝐿𝑧  (2.13) 

 

by virtue of equation (2.5). The projection of the orbital angular momentum with 

magnitude given by equation (2.8) along 𝑧 −direction is given by 

 

 𝐿𝑧 = 𝑚𝑙ℏ (2.14) 

 

where 𝑚𝑙 is the orbital magnetic quantum number restricted to values −𝑙 ≤ 𝑚𝑙 ≤ +𝑙  

changing in integer steps restricting atomic dipole moments to certain values and 2𝑙 + 1 

possible orientations of the orbital angular momentum with respect to external magnetic 

fields leading to space quantization. Insertion of (2.14) into (2.13) gives 

 

 𝜇𝑜𝑟𝑏𝑖𝑡,𝑧 = −
𝜇𝐵
ℏ
𝑚𝑙ℏ = −𝑚𝑙𝜇𝐵 (2.15) 

 

which then transforms (2.12) into  
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 𝑈 = 𝑚𝑙𝜇𝐵𝐵 (2.16) 

 

that adds to the energy of the electrons causing the unperturbed energy levels to change in 

steps of 𝜇𝐵𝐵 and lifting the degeneracy. Positive values of 𝑚𝑙 correspond to orbital angular 

momentum projections in the direction of the magnetic field and then the associated 

magnetic moment components will lie along the negative direction of the external 

magnetic field. This causes an increase in energy. In the opposite case, energy will be 

negative for the negative values of 𝑚𝑙 for which the magnetic moment projections align 

with the field. Therefore, originally degenerate energy levels will now be split into 2𝑙 + 1 

levels and the transitions between these energy levels will have more spectral lines 

(equally spaced triplet) than the case of zero applied field consistent with the selection 

rules. The energy level splittings and the associated transitions between singlet states (zero 

total spin) involves only the orbital angular momentum and is called the normal Zeeman 

effect. 

 

The case where the total electron spin in either the initial or final (or both) states involved 

in the transition is nonzero is called the anomalous Zeeman effect and it can lead to four, 

six and more lines or triplets with wider spacings. The effect is caused by spin-orbit 

coupling (LS coupling) which is due to the interaction of the spin of electron with the 

magnetic field of the nucleus circulating around the electron in electron’s rest frame. The 

spin-orbit interaction depends on the atomic number 𝑍 because the current generated by 

the nucleus is higher for an atom with a greater atomic number and the actual 

proportionality is 𝑍4. In such cases where the effect of both the orbital and spin magnetic 

moments are to be employed, the total angular momentum 𝐽  of the electrons in the system 

must be taken into consideration. 

 

In light atoms where 𝑍 is small, the spin-orbit interaction is weak and therefore the spin-

spin and orbit-orbit interactions are dominant over the spin-orbit coupling. The individual 

orbital angular momenta are summed up to give a resultant �⃗� = ∑ 𝑙 𝑖𝑖  and the individual 

spin angular momenta are coupled to give a total spin angular momentum 𝑆 = ∑ 𝑠 𝑖𝑖 . The 

total angular momentum is then given by 𝐽 = �⃗� + 𝑆 . The LS coupling given in this case is 

called Russel-Saunders coupling. 
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In heavy atoms, there is a stronger spin-orbit interaction which then requires to calculate 

the total angular momentum of individual electrons through 𝑗 𝑖 = 𝑙 𝑖 + 𝑠 𝑖 and then the total 

angular momentum of all electrons are given by 𝐽 = ∑ 𝑗 𝑖𝑖 . This coupling scheme is then 

called j-j coupling. 

 

The total magnetic moment of the atom 𝜇 = 𝜇 𝑜𝑟𝑏𝑖𝑡 + 𝜇 𝑠𝑝𝑖𝑛 is given by  

 

 𝜇 = −
𝜇𝐵
ℏ
(𝑔𝐿�⃗� + 𝑔𝑆𝑆 ) = −

𝜇𝐵
ℏ
(�⃗� + 2𝑆 ) (2.17) 

 

where use is made of the fact that 𝑔𝐿 = 1 and 𝑔𝑆 ≅ 2. Even if the orbital and spin 

magnetic moments are individually collinear with the corresponding orbital and spin 

angular momenta, the total magnetic moment is not collinear with the total angular 

momentum 𝐽 = �⃗� + 𝑆  but proportional to �⃗� + 2𝑆  due to the anomalous g-factor of the 

electron 𝑔𝑆 ≅ 2. 

 

The magnitude of the total angular momentum is dependent upon the total angular 

momentum quantum number 𝐽 and is given by 

 

 𝜇 = 𝑔𝜇𝐵√𝐽(𝐽 + 1) (2.18) 

 

and the projection of the magnetic moment along the field axis is  

 

 𝜇𝑧 = 𝑔𝜇𝐵𝑀𝐽 (2.19) 

 

where 𝑀𝐽 = 𝐽, 𝐽 − 1,… , 0, … , −(𝐽 − 1), −𝐽 is the quantum number for the projection of 

total angular momentum onto the field axis and 𝑔 term in (2.18) and (2.19) is the Landé-g 

factor given by 

 
𝑔 = 1 +

𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 (2.20) 

 

A final note on the behaviour of a magnetic moment in a magnetic field is the torque 

applied to it which is given by 
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 𝜏 = 𝜇 ×�⃗�  (2.21) 

 

which leads to the equation of motion  

 

 𝑑𝜇 

𝑑𝑡
= 𝛾𝜇 ×�⃗�  (2.22) 

 

that will be examined in more detail in Section 4. 

 

2.3. MAGNETIC MATERIALS 

 

Materials can be classified into three major categories depending upon their magnetic 

behaviour. The first two are diamagnets and paramagnets. The third class of materials is 

magnetically ordered systems which itself can be divided into subclasses such as 

ferromagnets, ferrimagnets and antiferromagnets. In the following, brief overview of these 

materials is presented and reader can refer to [58-63] for a more in-depth study. 

 

2.3.1. Diamagnets and Paramagnets 

 

The magnetic behaviour of diamagnetic and paramagnetic materials are characterized by 

their response to external magnetic fields through the magnetic susceptibility 𝜒 defined by 

the relation 

 

 �⃗⃗� = 𝜒�⃗�  (2.23) 

 

where �⃗⃗�  is the induced magnetization defined as magnetic moment per unit volume and �⃗�  

is the applied magnetic field. The diamagnetic and paramagnetic materials are separated by 

the sign of the magnetic susceptibility. For diamagnets the susceptibility is negative, 𝜒 < 0 

and for paramagnetic materials it is positive, 𝜒 > 0. Therefore the magnetic moments of 

the individual atoms are forced to align along the direction of the magnetic field for 

paramagnetic materials and in the opposite direction for diamagnetic materials. The degree 

of alignment, on the other hand, is quite small and the susceptibility is inversely 
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proportional to temperature, 𝜒~1 𝑇⁄ , for paramagnetic materials and independent of 

temperature for diamagnetic ones.  

 

Diamagnetic materials are composed of atoms with no unpaired electrons, therefore zero 

net magnetic moment, whereas for paramagnetic materials atoms do possess a net 

magnetic moment. The diamagnetic effect which alters the electron trajectories and 

induces a small negative susceptibility is actually inherent to all atoms but the effect is 

surpassed in paramagnetic materials due to the higher positive paramagnetic susceptibility. 

 

2.3.2. Ferromagnetic, Ferrimagnetic and Antiferromagnetic Materials 

 

The main difference between the dia(para)magnets and the magnetically ordered systems is 

that there exist a strong internal interaction between the magnetic moments of individual 

atoms in the latter class of structures. It is as if there is an internal field responsible for 

aligning the magnetic moments in an ordered fashion in ferro-, ferri- and antiferro-

magnetic materials. Such an internal field is called the exchange (or more loosely a 

molecular) field and the interaction responsible for such a long range order is called the 

exhange interaction. Exchange interaction is totally a quantum mechanical phenomenon 

stemming from the Pauli exclusion principle and dependent upon the relative orientations 

of the neighbouring spins which affects the total electrostatic energy of the system. 

 

 
 

Figure 2.1. Schematic representation of spins in a saturated ferromagnet 

 

Ferromagnetic materials are characterized by spontaneous magnetization, alignment of 

constituent spins even in the absence of an external field. There exists a critical 

temperature called Curie temperature 𝑇𝐶 and the material manifests paramagnetic 
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behaviour above this temperature. One other important property of the ferromagnetic 

materials is that they show hysteretic behaviour as a function of applied magnetic field.  

 

 
 

Figure 2.2. Hysteresis curve showing the magnetization response M of the ferromagnet as 

a function of applied magnetic field H [64].  

 

If the material starts from a zero magnetization state at the origin as in Figure 2.2, 

magnetization will follow the dashed line called the virgin curve until the material reaches 

saturation with saturation magnetization 𝑀𝑠. As the field is reversed and reduced to zero, 

the magnetization does not go back to zero but to a value called remanence 𝑀𝑟. When the 

direction is reversed, the magnetization will return to zero at a negative field value called 

the coercive field 𝐻𝐶. Further increase in the strength of the field saturates the sample in 

the negative direction. As the magnitude of the field is reduced in the negative direction, 

magnetization passes through −𝑀𝑟 on the M-axis, intersects H-axis at the positive corcive 

field and saturates back in the positive direction. 

 

Antiferromagnetic materials are actually composed of two sublattices of equal spins 

oriented in opposite directions so as to produce zero net magnetization. In the 

ferrimagnetic case, the sublattices have different magnetic moments that cause a net 

magnetization. 
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Figure 2.3. The sketch of (a) antiferromagnetic and (b) ferrimagnetic moments 
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3. EXCHANGE BIAS 

 

 

3.1. DISCOVERY 

 

The exchange bias effect, also known as unidirectional anisotropy, was discovered when 

Meiklejohn and Bean were studying fine single domain spherical FM Co particles 

embedded in their native AFM oxide (CoO) [1, 2, 4]. They first cooled their sample to     

77 K and took an hysteresis curve which resulted in an expected magnetization versus 

magnetic field (𝑀 −𝐻) curve, symmetric on 𝐻 axis around 𝐻 = 0 in both positive and 

negative magnetizations as depicted by the dashed line numbered (2) in Figure 3.1. Then, 

they went back to the room temperature (RT) and recooled their sample to 77 K but this 

time they applied an external field of 10 kOe during cooling of the sample (field cooling 

procedure). What they observed was an 𝑀−𝐻 curve shifted in opposite direction to the 

cooling field and an enhanced loop width in H-axis (half of which is called the 

“coercivity”) as depicted by solid curve numbered (1) in Figure 3.1. 

 

 

Figure 3.1. The hysteresis curves at 77 K of field cooled (1) and zero field cooled (2) FM 

Co particles embedded in AFM CoO [1, 6]. 
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3.2. BASIC PHENOMENOLOGY 

 

The origin of exchange bias is related to interfacial magnetic coupling between FM and 

AFM layers across their common interface [9]. In order to have at least a qualitative 

understanding of the exchange bias phenomenon, this exchange coupling of FM-AFM 

spins at the interface is assumed. The critical temperature below which ferromagnetic order 

takes place in FM materials is called the Curie temperature 𝑇𝐶, while the critical 

temperature for antiferromagnetic order in AFM materials is called the Néel temperature 

𝑇𝑁. If a magnetic field is applied to the FM-AFM system in a temperature range           

𝑇𝑁 < 𝑇 < 𝑇𝐶 , the FM spins line up with this external field while AFM spins are randomly 

oriented (Figure 3.2.(i)). When the system is now cooled to a temperature 𝑇 < 𝑇𝑁 in the 

presence of the external field (field cooling procedure), antiferromagnetic order starts 

manifesting itself in AFM material and the AFM spins at the interface couple to the FM 

spins next to them ferromagnetically (or antiferromagnetically depending upon the type of 

interaction) due to the exchange interaction. The other spin planes in AFM now follow the 

AFM order so as to produce zero net magnetization in AFM (Figure 3.2.(ii)). When the 

magnetic field direction is reversed, the FM spins try to rotate to the new direction of the 

magnetic field. However, due to the strong anisotropy and low susceptibility of the AFM 

material, AFM spins remain almost rigid (Figure 3.2.(iii)). Due to the exchange coupling 

between the FM and AFM spins at the interface, AFM spins exert a microscopic torque to 

FM spins tending to keep them in their original direction which was the direction of the 

initial cooling field. This creates one stable configuration of the FM spins in the original 

cooling field, hence the term “unidirectional anisotropy” is coined. Then the negative 

magnetic field value needed to reverse the FM spins becomes larger to overcome the 

microscopic torque (Figure 3.2.(iv)). Once the magnetic field is reversed back to the 

original direction, it requires a lesser field to rotate FM spins into their original direction 

because now the torque on FM spins due to AFM spins are in the same direction of the 

external field (Figure 3.2.(v)). The system then behaves as if there is an internal biasing 

field causing the hysteresis loop to shift in the magnetic field axis and we have “exchange 

bias”. The initial uniaxial anisotropy of two equally favourable directions on the same axis 

is now converted into a single direction leading to a unidirectional anisotropy. 
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Figure 3.2. Spin configurations of FM and AFM spins at different stages of the hysteresis 

loop of an FM material in contact with an AFM material when the system is subjected to 

field cooling procedure. 

 

3.3. IDEAL EXCHANGE BIAS MODEL 

 

The first theoretical approach to exchange bias came from Meiklejohn and Bean [2, 4] who 

discovered the phenomenon. Their approach assumed a coherent rotation of the 

magnetization and defined an areal energy density (energy per unit area) given by 

 

 ℰ = −𝐻𝑀𝐹𝑀𝑡𝐹𝑀 cos(𝜃 − 𝛽) + 𝐾𝐹𝑀𝑡𝐹𝑀𝑠𝑖𝑛
2(𝛽) + 𝐾𝐴𝐹𝑀𝑡𝐴𝐹𝑀𝑠𝑖𝑛

2(𝛼)

− 𝐽𝐼𝑁𝑇 cos(𝛽 − 𝛼) 
(3.1) 
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where 𝐻 is the applied field, 𝑀𝐹𝑀 the saturation magnetization of FM, 𝑡𝐹𝑀−𝐴𝐹𝑀 the 

thicknesses, 𝐾𝐹𝑀−𝐴𝐹𝑀 the anisotropy constants of the respective FM – AFM layers and 

𝐽𝐼𝑁𝑇 the interfacial interaction constant.  

 

 
 

Figure 3.3. Geometry for the ideal exchange bias model [5]. 

 

The respective angles 𝛼, 𝛽, and 𝜃 between the AFM sublattice magnetization and 

anisotropy direction, FM layer magnetization and anisotropy direction, magnetic field and 

anisotropy directions are shown in Figure 3.3 with the assumption that FM and AFM layer 

anisotropies are collinear. 

 

The terms in Equation (3.1) are as follows: 

 

• First term for the interaction (Zeeman) between 𝐻 and 𝑀𝐹𝑀 

 

• Second term for FM anisotropy 

 

• Third term for AFM anisotropy 

 

• Fourth term for coupling between 𝑀𝐹𝑀 and 𝑀𝐴𝐹𝑀 at the interface 
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In this ideal Meiklejohn Bean (MB) model, magnetic field is applied along the the easy 

axis (anisotropy axis shown with 𝐾𝐴𝐹𝑀) which sets 𝜃 = 0 and for strong AFM anisotropy 

𝛼 = 0 condition is also met. Then, equation (3.1) becomes 

 

 ℰ = −𝐻𝑀𝐹𝑀𝑡𝐹𝑀 cos(𝛽) + 𝐾𝐹𝑀𝑡𝐹𝑀𝑠𝑖𝑛
2(𝛽) − 𝐽𝐼𝑁𝑇 cos(𝛽) (3.2) 

 

by remembering that cos(−𝛽) = cos (𝛽) and 𝑠𝑖𝑛2(𝛼 = 0) = 0.  If the cos(𝛽) terms are 

grouped together, one obtains 

 

 
ℰ = −(𝐻 −

𝐽𝐼𝑁𝑇
𝑀𝐹𝑀𝑡𝐹𝑀

)𝑀𝐹𝑀𝑡𝐹𝑀cos(β) + 𝐾𝐹𝑀𝑡𝐹𝑀𝑠𝑖𝑛
2(𝛽) (3.3) 

 

which dictates that the system behaves as if the hysteresis loop is shifted by an amount 

 

 
𝐻𝐸𝐵 =

𝐽𝐼𝑁𝑇
𝑀𝐹𝑀𝑡𝐹𝑀

 (3.4) 

 

along the magnetic field axis if we look at the term in parentheses in equation (3.3). 

equation (3.4) gives the exchange bias magnitude as predicted by the ideal MB model. 

Another prediction of the model is that, for low AFM anisotropy, that is 𝐾𝐴𝐹𝑀𝑡𝐴𝐹𝑀 < 𝐽𝐼𝑁𝑇, 

the FM and AFM magnetizations will rotate together leading to 𝛽 − 𝛼 ≈ 0. In this case, 

there is only a coercivity increase without a loop shift and the condition for the observation 

of exchange bias then becomes  

 

 𝐾𝐴𝐹𝑀𝑡𝐴𝐹𝑀 ≥ 𝐽𝐼𝑁𝑇 (3.5) 

 

The ideal EB model by MB is capable of predicting some experimental observations like 

the loop shift, the dependence of EB on FM layer thickness (equation (3.4) and section 

3.4.1), AFM layer thickness (equation (3.5) and section 3.4.2). In reality, however, the 

observed loop shifts are orders of magnitude smaller than what the theory can predict. We 

will not be giving an account of other models for EB but interested reader is referred to the 

publications [5-15, 65] and references therein for the main theoretical and experimental 

efforts. 
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3.4. GENERAL PROPERTIES OF EXCHANGE BIASED SYSTEMS 

 

The material systems subjected to investigation for exchange bias properties can be 

collected under the umbrella of three main classes [5, 65]: a) small particle systems in 

core/shell form as in Co/CoO [1, 2, 66-75], Ni/NiO [69, 76-82], Fe/Fe Oxides [83-86] and 

ZnO-Fe/Fe Oxides [87], Fe/Fe2N [88], Co/CoN [70], Fe/FeS [69]; b) inhomogeneous 

materials [89-93] and c) thin film structures discussed in [94-103] and references therein. 

Main properties that affect the exchange bias coupling and are commonly observed in 

exchange bias systems are thicknesses of ferromagnetic and antiferromagnetic layers, 

interface roughness, blocking temperature, cooling field and training effect. 

 

3.4.1. Ferromagnetic Layer Thickness 

 

The general trend in exchange biased systems indicates that the exchange bias is inversely 

proportional to the ferromagnetic layer thickness 𝑡𝐹𝑀 [5, 6, 104, 105] 

 

 
𝐻𝐸𝐵 ∝

1

𝑡𝐹𝑀
 (3.6) 

 

which supports that EB is indeed an interfacial phenomenon [94, 95, 106-109]. The 

relation given in equation (3.6), which is also consistent with equation (3.4)) remains valid 

for increasing thicknesses up until it approaches the domain wall size of the ferromagnet 

[5]. There is also another power law 𝐻𝐸𝐵 ∝ 1 (𝑡𝐹𝑀)
𝑛⁄  observed and based on theoretical 

predictions with cases of 𝑛 = 1 and 𝑛 = 1.5 [14, 97, 110-112]. At the opposite extreme, 

the given relation does not hold for ultrathin ferromagnetic layers [5] probably due to the 

discontinuities and the tension at the interface. 

 

3.4.2. Antiferromagnetic Layer Thickness 

 

The dependency of the exchange bias strength on the antiferromagnetic layer thickness is 

less intuitive compared to that of ferromagnetic layer [113]. For the thin films, the 

exchange bias scales with the thickness of AFM (as also required by equation (3.5)), 

however below a certain range this is no longer true depending on the material, 



20 

 

 

microstructure and temperature [114]. Above a certain range of thickness, the exchange 

bias becomes independent of the antiferromagnetic layer thickness which is generaly 

around 20 nm [5]. This behaviour, however, may not be applicable to some systems like 

NiFe/CoO system with  𝑡𝐴𝐹𝑀 > 10 𝑛𝑚 [115] and the exchange bias field 𝐻𝐸𝐵 (defined as 

the shift of the centre of the hysteresis curve from the 𝐻 = 0 axis) may even scale 

inversely with 𝑡𝐴𝐹𝑀 as 𝐻𝐸𝐵 ∝ 1 𝑡𝐴𝐹𝑀⁄  [65].  

 

3.4.3. Interface Roughness 

 

Roughness of the interface between FM – AFM is observed to be detrimental for EB 

systems as increasing roughness decreases EB magnitude 𝐻𝐸𝐵 for most of the studied 

systems [116-120]. Rough surfaces may form arcs-steps along the interface, therefore 

leading to a reduced sum of spins pinning the ferromagnet in one direction (parallel to the 

ferromagnet-antiferromagnet interface). It should be mentioned that there are also studies 

showing the opposite behaviour [53, 121] or less sensitivity to roughness [122, 123]. 

 

3.4.4. Blocking Temperature 

 

Exchange coupling between FM and AFM at the interface requires that antiferromagnetic 

order is set up in the AFM material which requires the temperature to be less than the 

ordering temperature of the AFM called the Néel temperature 𝑇𝑁. In exchange biased 

systems, however, the unidirectional anisotropy in some cases starts manifesting itself at 

temperatures much lower than the Néel temperature 𝑇𝑁. Therefore, the temperature at and 

above which exchange coupling vanishes is called the Blocking Temperature 𝑇𝐵 ≤ 𝑇𝑁. 

Thickness [5, 124-128] and chemical stoichiometry [129-132] have influences on the 

blocking temperature and will be elaborated more in Discussion in Section 6. 

 

3.4.5. Cooling Field 

 

There is no significant relationship between the magnitude of the cooling field and the 

exchange bias field 𝐻𝐸𝐵 in general. There are material systems like FeF2/Fe and MnF2/Fe 

however, that manifest unusual properties [133, 134] such that the hysteresis loop shift is 

generated in the same direction of the cooling field, a result called positive exchange bias 
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thought to be caused by the changes in the interface spin structure and antiferromagnetic 

coupling between FM – AFM layers instead of ferromagnetic exchange [135]. 

 

3.4.6. Training Effect 

 

Successive hysteresis loops performed on an EB system diminishes the exchange bias field 

𝐻𝐸𝐵 at each cycle and the decrease is a function of the number of cyclic repetations [5]. 

This property is known as Training Effect and the functional relationship [136], 

 

 (𝐻𝐸𝐵
𝑛 − 𝐻𝐸𝐵

∞ ) ∝ 1 √𝑛⁄  (3.7) 

 

holds true if the cycle number satisfies 𝑛 ≥ 2. For a better fit consistent with the 

experimental values Binek approached the problem with a recursive formula [137] 

 

 𝐻𝐸𝐵
𝑛+1 − 𝐻𝐸𝐵

𝑛 = −Γ(𝐻𝐸𝐵
𝑛+1 − 𝐻𝐸𝐵

∞ ) (3.8) 

  

where Γ is the fitting parameter and then Radu proposed [138] the following relationship 

 

 
𝐻𝐸𝐵
𝑛 = 𝐻𝐸𝐵

∞ + 𝐴𝑓𝑒
−
𝑛
𝑃𝑓 + 𝐴𝑖𝑒

−
𝑛
𝑃𝑖 (3.9) 

 

where 𝐴𝑓 and 𝑃𝑓 are related to frozen spins and 𝐴𝑖 and 𝑃𝑖 are related to interfacial disorder. 
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4. THEORETICAL WORK ON FERROMAGNETIC RESONANCE 

 

 

Ferromagnetic resonance (FMR) is a powerful and nondestructive spectroscopic technique 

that can be applied to ferromagnetic materials to gather information on the magnetic 

anisotropies, anisotropy constants, effective g-factors, damping-relaxation processes and 

associated constants, interlayer exchange coupling etc. It is the resonant absorption of 

electromagnetic radiation by a ferromagnetic material when the frequency of the incident 

radiation matches the Larmor frequency of the magnetic moments under the influence of a 

static magnetic field. The effect can also be anticipated from the viewpoint of energy such 

that the external static magnetic field creates Zeeman-split energy levels and as static 

magnetic field strength is swept, there comes a point such that the energy difference 

becomes equal to the photon energy and the electromagnetic wave is absorbed. 

 

Griffiths was the first to experimentally observe FMR in 1946 [139] when he was 

measuring the permeability of FM materials at wavelengths of 1-3 cm [140]. The 

phenomenon was further confirmed by the work of Yager and Bozorth [141]. The first 

theoretical attempt to explain FMR was made by Kittel in 1947 [142] who extended the 

initial theory to include the shape effects in 1948 [143]. Together with Van Vleck’s work 

on the quantum mechanical treatment [144], these initial studies generalized the 

calculations of Landau and Lifshitz [145] whose damping mechanism was further 

developed by the work of Gilbert [146] that lead to the famous Landau-Lifshitz-Gilbert 

(LLG) equation  in addition to the Bloch-Bloembergen type damping terms [147, 148]. 

Since the time of these initial studies, a great amount of data have been published [149-

195] and within the references therein concerning theories, different geometries, 

applications and material classes. 

 

In this part of the study, we wanted to make a theoretical account of the Ferromagnetic 

Resonance (FMR). The main goal was determined to be a basic theoretical understanding 

of FMR theory by studying a model of one of many for the simulations of FMR. The 

mathematical and numerical approaches vary from one model to another even if the 

starting equation of motion is the same which makes it harder for a quick and general level 

of understanding of the theory due to the immense number of contributions to the 
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literature. Therefore, it was the aim of the author to follow the basic steps first and try to 

analyse the equations from the perspective of filling in all the intermediate steps which we 

recognized to be missing in most of the publieshed work that lead to the final forms of 

equations by stating that such an effort is neither complete nor free of mistakes. The main 

objective in Section 4.1 was then to derive the equations to obtain the fundamental 

resonance condition in FMR. In Section 4.2, the equations of ferromagnetic resonance are 

further analyzed, but this time effort is devoted to systems composed of many 

ferromagnetic (FM) layers (a multilayer structure), generally separated by nonmagnetic 

spacer layers.  

 

4.1. FUNDAMENTAL THEORY OF FERROMAGNETIC RESONANCE 

 

4.1.1. Magnetic Moment and Angular Momentum 

 

The general theory of angular momenta and associated magnetic moments is already 

examined in more detail in Section 2. Here we shall continue with the main results. 

Throughout the remaining sections magnetic induction �⃗�  and magnetic field �⃗⃗�  will be 

related by �⃗� = �⃗⃗� + 4𝜋�⃗⃗�  and the externally applied field will be given by �⃗� = �⃗⃗�  without 

the effect of magnetization. 

 

The magnetic moment 𝜇  of an electron (or more precisely the net magnetic moment of all 

the electrons in an atom for our purposes) and the total angular momentum  𝐽  (= �⃗� + 𝑆  for 

light atoms and = ∑(𝑙 𝑖 + 𝑠 𝑖) for heavy ones) are related to each other by 

 

 𝜇 = −𝛾𝐽  (4.1) 

 

where 𝛾 is the gyromagnetic (or magnetogyric) ratio given by 𝛾 = 𝑔
|𝑒|

2𝑚𝑒𝑐
= 𝑔

|𝑒|ℏ

2𝑚𝑒𝑐

1

ℏ
=

𝑔
𝜇𝐵

ℏ
  in CGS units. Here ” |𝑒| “ is the magnitude of the fundamental unit of charge (charge 

of a proton or electron), ” 𝑚𝑒” is the electron mass, “𝑐” is the speed of light in vacuum and 

”𝜇𝐵” is the Bohr Magneton. The term “g” is the Landé-g factor (or the spectroscopic 

splitting factor) given by 
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𝑔 = 1 +

𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 (4.2) 

 

with 𝑆, 𝐿 and  𝐽 representing the spin, orbital and total angular momentum quantum 

numbers respectively. 

 

4.1.2. Equation of Motion and Damping 

 

A magnetic moment 𝜇  in a magnetic field �⃗⃗�  experiences a torque given by 

 

 𝜏 = 𝜇 ×�⃗⃗�  (4.3) 

 

The torque is the time rate of change of angular momentum:  𝜏 = 𝑑𝐽 𝑑𝑡⁄ . Taking            

𝐽 = −𝜇 𝛾⁄   from (4.1) we get 

 

 
𝜏 =

𝑑𝐽 

𝑑𝑡
=
𝑑

𝑑𝑡
(−

𝜇 

𝛾
) = 𝜇 ×�⃗⃗�  (4.4) 

 

from which we get the equation of motion of magnetic moment 𝜇  as 

 

 𝑑𝜇 

𝑑𝑡
= −𝛾𝜇 ×�⃗⃗�  (4.5) 

 

The macroscopic magnetization �⃗⃗�  in a magnetized sample is the vectorial sum of all the 

magnetic moments in unit volume, i.e. �⃗⃗� = ∑ 𝜇 𝑖/𝑉𝑖  . For identical magnetic moments we 

have the same gyromagnetic ratio for all spins, so the equation of motion of magnetization 

becomes 

 

 𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� ×�⃗⃗�  (4.6) 

 

Since the time rate of change of magnetization is a vector given by the cross product of �⃗⃗�  

and �⃗⃗� , it must be perpendicular to both �⃗⃗�  and �⃗⃗�  resulting in the precession of the 
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magnetization �⃗⃗�   around the effective magnetic field �⃗⃗�  with no alignment of �⃗⃗�  along �⃗⃗� , 

contrary to the experimental facts. However, in a material media different types of 

damping processes also take place which transfer energy to the microscopic thermal 

motion in the form of spin waves, lattice vibrations (phonons) and thermal excitation of 

conduction electrons [146] that align magnetization with the magnetic field. Details of 

these damping mechanisms for the energy losses can be too complex to take into account 

in the equations explicitly. However, a phenomenological damping term that includes 

damping parameters corresponding to the rate of energy transfer can be added into the 

equation of motion. 

 

Landau-Lifshitz type damping : −
𝜆

𝑀0
�⃗⃗� ×(�⃗⃗� ×�⃗⃗� 𝑒𝑓𝑓) 

 

Gilbert type damping   :   
𝛼

𝑀0
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
 

 

Bloch-Bloembergen type damping :−
𝑀𝑥

𝑇2
𝑖̂ −

𝑀𝑦

𝑇2
𝑗̂ −

(𝑀𝑧−𝑀0)

𝑇1
�̂� 

 

Bloembergen type damping term is the easiest to deal with mathematically. In this type of 

damping term 𝑇1 is the spin-lattice relaxation time (longitudinal relaxation time) and 𝑇2 is 

due to spin-spin interaction and corresponds to transverse relaxation time. The longitudinal 

relaxation time 𝑇1 describes the direct path into the thermal bath and the so called 

transverse time 𝑇2 is due to energy scattered into the transverse magnetization components 

𝑀𝑥  and 𝑀𝑦.  
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Figure 4.1. (a) Landau-Lifshitz-Gilbert and (b) Bloch-Bloembergen damping paths [196]. 

 

Figure 4.1 (a) depicts the LLG (Landau-Lifshitz-Gilbert) scenario. The  Larmor precession 

is damped by viscosity and the magnetization spirals towards the z-axis (taken as the 

direction of the effective magnetic field). The magnitude of �⃗⃗�  remains constant with an 

increased expectation value of 𝑀𝑧. Figure 4.1 (b) shows the Bloch-Bloembergen (BB) 

spin-spin relaxation. The z-projection of �⃗⃗�  stays constant if 𝑇1 ≫ 𝑇2 with the precessional 

energy scattered into the transverse components 𝑀𝑥  and 𝑀𝑦 [196]. 

 

4.1.3. Effective Magnetic Field Derived From Energy Density 

 

The �⃗⃗�  term in the equation of motion is the effective magnetic field �⃗⃗� 𝑒𝑓𝑓 which is due not 

only to the externally applied magnetic field but also to all other internal interactions such 

as anisotropies, demagnetizing fields etc. able to apply a torque on the magnetization 

vector. Thus if we define 𝐸(�⃗⃗� ) as the free energy (energy “density” to be precise) of the 

system with respect to the work done by rotating the moment against whatever forces are 

present, the effective magnetic field can be given by 

 

 
�⃗⃗� 𝑒𝑓𝑓 = −

𝜕𝐸(�⃗⃗� )

𝜕�⃗⃗� 
 (4.7) 

 

which reads in Cartesian geometry as 
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�⃗⃗� 𝑒𝑓𝑓 = −[𝑖̂

𝜕𝐸(�⃗⃗� )

𝜕𝑀𝑥
+ 𝑗̂

𝜕𝐸(�⃗⃗� )

𝜕𝑀𝑦
+ �̂�

𝜕𝐸(�⃗⃗� )

𝜕𝑀𝑧
] = −∇⃗⃗ �⃗⃗� 𝐸(�⃗⃗� ) (4.8) 

 

This equation makes sense if one recalls the Zeeman energy density ( 𝐸𝑧 = −�⃗⃗� ∙ �⃗⃗�  ), for 

the derivative of 𝐸 with respect to �⃗⃗�  gives a magnetic field. In this sense, the effective 

field is defined as the gradient (with respect to �⃗⃗� ) of the energy density. In FMR 

experiments, angular dependences of resonance fields are studied, so angle dependent 

terms in the expressions of the free energy density will appear in the equations. Then it is 

possible to derive effective magnetic field from the free energy density by taking the 

gradient with respect to the spherical components of �⃗⃗� . In general, the gradient of a scalar 

field 𝐸 in spherical coordinates reads as 

 

 
∇⃗⃗ 𝐸 = �̂�

𝜕𝐸

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝐸

𝜕𝜃
+ �̂�

1

𝑟𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
 (4.9) 

 

Assuming the magnitude of the magnetization fixed at its saturation value 𝑀0, we will then 

be dealing with the dynamics of the magnetization as the dynamics of a point on an M-

sphere, the only variables being the azimuthal (𝜙) and polar (𝜃) angles of the 

magnetization vector. Working on such an M-sphere allows one to replace the “ 𝑟” term in 

equation (4.9) by 𝑀0, i.e. the radius of the M-sphere. Then we can define the effective 

magnetic field as  

 

 
�⃗⃗� 𝑒𝑓𝑓 = −∇⃗⃗ �⃗⃗� 𝐸 = −(�̂�

𝜕𝐸

𝜕𝑀
+ 𝜃

1

𝑀0

𝜕𝐸

𝜕𝜃
+ �̂�

1

𝑀0𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
) (4.10) 

 

�⃗⃗� 𝑒𝑓𝑓 enters the equation of motion of �⃗⃗�  only in the cross product �⃗⃗� ×�⃗⃗� 𝑒𝑓𝑓 , so the only 

important components of �⃗⃗� 𝑒𝑓𝑓 are the ones perpendicular to �⃗⃗� , i.e. components in the 𝜃 −

𝜙 plane [182]. 

 

This will lead us to the act of dropping the first term from the expression of �⃗⃗� 𝑒𝑓𝑓 , 

regarding the above gradient as a 2-D gradient on the surface of M-sphere so that it is 

automatically normal to the �⃗⃗�  [197]. This means that we will be dealing with the 
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components of the effective magnetic field given by equation (4.10) perpendicular 

(normal) to �⃗⃗�  which in turn yields a volume torque given by [198, 199] 

 

 
𝜏 = �⃗⃗� ×�⃗⃗� 𝑒𝑓𝑓 = −�̂�

𝜕𝐸

𝜕𝜃
+ 𝜃

1

𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
 (4.11) 

 

However, it is still instructive to calculate the torque due to the effective magnetic field to 

see that the only remaining terms will be in the 𝜃 − 𝜙 plane 

 

𝜏 = �⃗⃗� ×�⃗⃗� 𝑒𝑓𝑓 = 𝑀𝑜�̂�× [− (�̂�
𝜕𝐸

𝜕𝑀
+ 𝜃

1

𝑀0

𝜕𝐸

𝜕𝜃
+ �̂�

1

𝑀0𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
)] 

= −(�̂�×�̂�)𝑀𝑜

𝜕𝐸

𝜕𝑀
− (�̂�×𝜃)𝑀𝑜

1

𝑀0

𝜕𝐸

𝜕𝜃
− (�̂�×�̂�)𝑀𝑜

1

𝑀0𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
 

= 0 − �̂�
𝜕𝐸

𝜕𝜃
− (−𝜃)

1

𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
 

⟹     𝜏 = −�̂�
𝜕𝐸

𝜕𝜃
+ 𝜃

1

𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
 

 

which reads exactly as equation (4.11). In the intermediate steps use is made of the cyclic 

permutations of the spherical unit vectors in the cross products, i.e. (�̂�×�̂� = 0),               

(�̂�×𝜃 = �̂�) and (�̂�×�̂� = −𝜃). In the calculations above �⃗⃗� = 𝑀𝑜�̂� is taken as the 

magnetization vector in the spherical geometry. Azimuthal and polar angle dependences of 

the magnetization vector �⃗⃗�  is already embedded in the definition of �̂� as �̂� = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝑖̂ +

𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑗̂ + 𝑐𝑜𝑠𝜃�̂� with respect to Cartesian unit vectors. 

 

4.1.4. The Geometry and Energy Terms 

 

The Figure 4.2 shows the geometry under consideration for FMR measurements. The 𝑧-

axis is taken along the direction normal to the film of thickness 𝐿. The film itself then lies 

in the 𝑥 − 𝑦 plane. Here �⃗⃗�  is the macroscopic magnetization, �⃗⃗�  is the static magnetic field 

applied externally to the sample (which should not be confused with �⃗⃗� 𝑒𝑓𝑓 representing the 

effect of not only �⃗⃗�  but also all other torque applying internal interactions such as 
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anisotropies, demagnetizing fields etc.) and �⃗⃗� 𝑔 represents the direction of the geometric 

(oblique) anisotropy due to the film growth. 

 

 
 

Figure 4.2. Geometry for the FMR calculations. 

 

The angles 𝜃𝐻-𝜙𝐻, 𝜃-𝜙 and 𝜃𝑔-𝜙𝑔 represent polar-azimuthal angles of static external 

magnetic field �⃗⃗� , the macroscopic magnetization �⃗⃗�  and the geometric (oblique) 

anisotropy �⃗⃗� 𝑔 respectively. 

 

Ferromagnetic (FM) samples can be modelled by the following energy density expression 

 

 𝐸 = 𝐸𝑍 + 𝐸𝑑 + 𝐸𝑎𝑛𝑖 + 𝐸𝑔 (4.12) 

 

where  

 

𝐸𝑍 : Zeeman energy density 

𝐸𝑑 : Energy density due to the demagnetizing field (shape anisotropy) 

𝐸𝑎𝑛𝑖 : Bulk magnetocrsytalline anisotropy energy density 
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𝐸𝑔 : Geometrical (oblique) anisotropy energy density 

 

The contributing energy density terms to 𝐸 will be calculated in Appendix A according to 

the geometry shown in Figure 4.2. 

 

This energy density expression can be extended to include magneto-elastic, domain 

magnetostatic, field induced unidirectional exchange anisotropy and alike energy density 

terms depending upon the material and application.  

 

Plugging in the torque 𝜏  of equation (4.11) due to the total free energy density  𝐸 defined 

in equation (4.12), expressing the effects of the rf-field and the exchange field separately 

and taking the Bloch-Bloembergen type damping term, the equation of motion given by 

equation (4.6) is modified to 

 

 𝑑�⃗⃗� 

𝑑𝑡
= −𝛾 [𝜏 + �⃗⃗� ×ℎ⃗ + �⃗⃗� ×

2𝐴

𝑀0
2 ∇

2�⃗⃗� ] −
�⃗⃗� 𝑥,𝑦

𝑇2
 (4.13) 

 

where  �⃗⃗� ×ℎ⃗   is the torque due to the rf-field and  �⃗⃗� ×
2𝐴

𝑀0
2 ∇

2�⃗⃗�   is the torque due to the 

exchange field  �⃗⃗� 𝑒𝑥𝑐 =
2𝐴

𝑀0
2 ∇

2�⃗⃗�   [145]. 

 

Care must be taken when dealing with the Bloch-Bloembergen damping term −
�⃗⃗� 𝑥,𝑦

𝑇2
 . The 

term in this original expression uses �⃗⃗� 𝑥,𝑦 to express the transverse components of the 

magnetization, transverse to the “equilibrium orientation of the magnetization vector” 

which is assumed to be the direction of the effective magnetic field. Since in the original 

expressions 𝑧-axis is assumed to be the direction of the effective field, then it is natural to 

think of �⃗⃗� 𝑥,𝑦 as the transverse components of the magnetization which dephase in a 

characteristic time 𝑇2. In our geometry, however, 𝑧-axis is not necessarily the direction of 

the effective field, so �⃗⃗� 𝑥,𝑦 will be replaced by a term more appropriate to the geometry 

that we use in our calculations. 
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4.1.5. Linearization of Equation of Motion 

 

There will be no space and time variation of magnetization in the equilibrium orientation. 

Application of a small rf-field ℎ⃗ = (ℎ𝜃𝜃 + ℎ𝜙�̂�)𝑒
𝑖𝜔𝑡 will then induce little angular 

deflections 𝛿𝜃 and 𝛿𝜙 around the equilibrium orientation (𝜃𝑒𝑞 , 𝜙𝑒𝑞) of the magnetization. 

The angles (𝜃𝑒𝑞 , 𝜙𝑒𝑞) corresponding to the equilibrium orientation of magnetization are 

determined from free energy minimum conditions [200] 

 

 𝜕𝐸

𝜕𝜃
= 0        ,

𝜕𝐸

𝜕𝜙
= 0 (4.14) 

 

 𝜕2𝐸

𝜕𝜃2
> 0 ,

𝜕2𝐸

𝜕𝜙2
> 0  ,

𝜕2𝐸

𝜕𝜃 𝜕𝜙
> 0 (4.15) 

 

Then the equation of motion of magnetization can be linearized about the equilibrium 

orientation by keeping only the first order terms in the deviation from equilibrium. The 

equilibrium orientation will then be �̂� direction and small deviations from the equilibrium 

will be in the 𝜃 and �̂� directions [158]. In this coordinate system the magnetization will 

have the form 

 

 �⃗⃗� = 𝑀0�̂� + 𝑚𝜃𝜃 +𝑚𝜙�̂� (4.16) 

 

where 𝑚𝜃 = 𝑀0. 𝛿𝜃 and 𝑚𝜙 = 𝑀0. 𝑠𝑖𝑛𝜃. 𝛿𝜙 (refer to Figure 4.3) represent dynamical 

small deviations of magnetization from the equilibrium direction. To linearize the equation 

of motion, we have to take first order deviations of both sides of equation (4.13) from 

equilibrium 

 

 
𝛿 [
𝑑�⃗⃗� 

𝑑𝑡
] = 𝛿 {−𝛾 [𝜏 + �⃗⃗� ×ℎ⃗ + �⃗⃗� ×

2𝐴

𝑀0
2 ∇

2�⃗⃗� ] −
�⃗⃗� 𝑥,𝑦

𝑇2
} (4.17) 

 

for which 
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𝛿 [
𝑑�⃗⃗� 

𝑑𝑡
] =

𝑑𝑚𝜃

𝑑𝑡
𝜃 +

𝑑𝑚𝜙

𝑑𝑡
�̂� (4.18) 

 

and 

 

 
𝛿 (�⃗⃗� ×

2𝐴

𝑀0
2 ∇

2�⃗⃗� ) ≅ 𝑀0�̂�×
2𝐴

𝑀0
2 (𝜃 ∇

2𝑚𝜃 + �̂� ∇
2𝑚𝜙 )

=
2𝐴

𝑀0
(�̂� ∇2𝑚𝜃 − 𝜃 ∇

2𝑚𝜙 ) 

(4.19) 

 

where again we used �̂�×𝜃 = �̂� and  �̂�×�̂� = −𝜃. The transverse components �⃗⃗� 𝑥,𝑦 will be 

replaced by 

 

 �⃗⃗� 𝜃,𝜙 = 𝑚𝜃𝜃 +𝑚𝜙�̂� (4.20) 

 

making it more appropriate to our geometry as promised. The torque due to the rf-field: 

 

 �⃗⃗� ×ℎ⃗ = (𝑀0�̂� + 𝑚𝜃𝜃 +𝑚𝜙�̂�)× (ℎ𝜃𝜃 + ℎ𝜙�̂�)𝑒
𝑖𝜔𝑡 

                = [𝑀0ℎ𝜃�̂� − 𝑀0ℎ𝜙𝜃 + (𝑚𝜃ℎ𝜙 −𝑚𝜙ℎ𝜃)�̂�]𝑒
𝑖𝜔𝑡 

(4.21) 

 

For the 𝜏  term we can utilize a Taylor expansion around the equilibrium orientation of �⃗⃗�  , 

i.e. around (𝜃𝑒𝑞 , 𝜙𝑒𝑞). The Taylor expansion of a function 𝑓(𝑥) of a single variable 𝑥 

around 𝑥 = 𝑥𝑜 was given by 

 

𝑓(𝑥) ≅ 𝑓(𝑥0) + 
𝑑𝑓

𝑑𝑥
|
𝑥=𝑥0

(𝑥 − 𝑥0)  +  
1

2!

𝑑2𝑓

𝑑𝑥2
|
𝑥=𝑥0

(𝑥 − 𝑥0)
2… 

 

We will only be using first order terms, i.e.  𝑓(𝑥) ≅ 𝑓(𝑥0) + 
𝑑𝑓

𝑑𝑥
|
𝑥=𝑥0

(𝑥 − 𝑥0) which  

reads for a multivariable function 𝑓(𝑥, 𝑦) as 

 

 
𝑓(𝑥, 𝑦) ≅ 𝑓(𝑥0, 𝑦0) +

𝜕𝑓

𝜕𝑥
|
𝑥0,𝑦0

(𝑥 − 𝑥0) +
𝜕𝑓

𝜕𝑦
|
𝑥0,𝑦0

(𝑦 − 𝑦0) (4.22) 
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Remember from equation (4.11) that 𝜏 = −�̂�
𝜕𝐸

𝜕𝜃
+ 𝜃

1

𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
 , so we have to Taylor expand 

both  
𝜕𝐸

𝜕𝜃
  and  

𝜕𝐸

𝜕𝜙
  terms around (𝜃𝑒𝑞 , 𝜙𝑒𝑞) but we have to keep in mind that 𝜏  is not a 

function of a single variable but a function of both 𝜃 and 𝜙.  

 

Taylor expansion of 𝑓(𝜃, 𝜙) =
𝜕𝐸

𝜕𝜃
 around (𝜃𝑒𝑞 , 𝜙𝑒𝑞) by the use of equation (4.22): 

 

 𝜕𝐸

𝜕𝜃
≅
𝜕𝐸

𝜕𝜃
|
𝜃𝑒𝑞,𝜙𝑒𝑞

+ 
𝜕

𝜕𝜃
(
𝜕𝐸

𝜕𝜃
)|
𝜃𝑒𝑞,𝜙𝑒𝑞

(𝜃 − 𝜃𝑒𝑞)  

+ 
𝜕

𝜕𝜙
(
𝜕𝐸

𝜕𝜃
)|
𝜃𝑒𝑞,𝜙𝑒𝑞

(𝜙 − 𝜙𝑒𝑞) 

(4.23) 

 

The first term  
𝜕𝐸

𝜕𝜃
|
𝜃𝑒𝑞,𝜙𝑒𝑞

on the right hand side of equation (4.23) is zero because at 

equilibrium energy is minimized and the first derivative is zero. Realizing that 𝜃 − 𝜃𝑒𝑞 =

𝛿𝜃 and 𝜙 − 𝜙𝑒𝑞 =  𝛿𝜙 , equation (4.23) becomes 

 

 𝜕𝐸

𝜕𝜃
≅  
𝜕2𝐸

𝜕𝜃2
|
𝜃𝑒𝑞,𝜙𝑒𝑞

𝛿𝜃 + 
𝜕2𝐸

𝜕𝜙𝜕𝜃
|
𝜃𝑒𝑞,𝜙𝑒𝑞

𝛿𝜙 (4.24) 

 

Following the same arguments for Taylor expansion of 𝑓(𝜃, 𝜙) =
𝜕𝐸

𝜕𝜙
  around (𝜃𝑒𝑞 , 𝜙𝑒𝑞) we 

get 

 

 𝜕𝐸

𝜕𝜙
≅
𝜕2𝐸

𝜕𝜃𝜕𝜙
|
𝜃𝑒𝑞,𝜙𝑒𝑞

𝛿𝜃 + 
𝜕2𝐸

𝜕𝜙2
|
𝜃𝑒𝑞,𝜙𝑒𝑞

𝛿𝜙 (4.25) 

 

Then by the use of  equations (4.24) and (4.25), the first order approximation for the torque 

𝜏 = −�̂�
𝜕𝐸

𝜕𝜃
+ 𝜃

1

𝑠𝑖𝑛𝜃

𝜕𝐸

𝜕𝜙
  of equation (4.11) will be 

 

 
𝜏 ≅ −�̂� (

𝜕2𝐸

𝜕𝜃2
𝛿𝜃 +

𝜕2𝐸

𝜕𝜙𝜕𝜃
𝛿𝜙) + 𝜃

1

𝑠𝑖𝑛𝜃
(
𝜕2𝐸

𝜕𝜃𝜕𝜙
𝛿𝜃 +

𝜕2𝐸

𝜕𝜙2
𝛿𝜙) (4.26) 
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in which we dropped 𝜃𝑒𝑞 , 𝜙𝑒𝑞 symbols below each partial derivative to avoid a formidable 

looking expression. We should, however, always keep in mind that all the partial 

derivatives expressed in  𝜏   are calculated at 𝜃 = 𝜃𝑒𝑞  𝑎𝑛𝑑  𝜙 = 𝜙𝑒𝑞 (after performing the 

derivatives of course), so they in fact represent scalar linear expansion coefficients rather 

than functions. Making the replacements  𝛿𝜃 = 𝑚𝜃 𝑀0⁄  and 𝛿𝜙 = 𝑚𝜙 𝑀0𝑠𝑖𝑛𝜃⁄  in 

equation (4.26) we get 

 

𝜏 ≅ −�̂� (
𝜕2𝐸

𝜕𝜃2
𝑚𝜃

𝑀0
+
𝜕2𝐸

𝜕𝜙𝜕𝜃

𝑚𝜙

𝑀0𝑠𝑖𝑛𝜃
) + 𝜃

1

𝑠𝑖𝑛𝜃
(
𝜕2𝐸

𝜕𝜃𝜕𝜙

𝑚𝜃

𝑀0
+
𝜕2𝐸

𝜕𝜙2
𝑚𝜙

𝑀0𝑠𝑖𝑛𝜃
) 

 

which finally becomes 

 

 
𝜏 ≅ −�̂� (

𝑚𝜃

𝑀0

𝜕2𝐸

𝜕𝜃2
+

𝑚𝜙

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
)                                      

+ 𝜃 (
𝑚𝜃

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
+

𝑚𝜙

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
) 

(4.27) 

 

Inserting equations (4.18), (4.19), (4.20), (4.21) and (4.27) into equation (4.17) we get 

 

 𝑑𝑚𝜃

𝑑𝑡
𝜃 +

𝑑𝑚𝜙

𝑑𝑡
�̂� = 

 

−𝛾

{
 
 

 
 −�̂� (

𝑚𝜃

𝑀0

𝜕2𝐸

𝜕𝜃2
+

𝑚𝜙

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
) + 𝜃 (

𝑚𝜃

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
+

𝑚𝜙

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
)

+[𝑀0ℎ𝜃�̂� − 𝑀0ℎ𝜙𝜃 + (𝑚𝜃ℎ𝜙 −𝑚𝜙ℎ𝜃)�̂�]𝑒
𝑖𝜔𝑡

+
2𝐴

𝑀0
(�̂� ∇2𝑚𝜃 − 𝜃 ∇

2𝑚𝜙 ) }
 
 

 
 

 

−
𝑚𝜃

𝑇2
𝜃 −

𝑚𝜙

𝑇2
�̂� 

(4.28) 

 

Resolving �̂�, 𝜃 and �̂� components of the left and right hand sides of equation (4.28) 

�̂�: 0 = (𝑚𝜃ℎ𝜙 −𝑚𝜙ℎ𝜃)𝑒
𝑖𝜔𝑡    (4.29) 
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𝜃: 

𝑑𝑚𝜃

𝑑𝑡
= −𝛾

𝑚𝜃

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
− 𝛾

𝑚𝜙

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
 

          +𝛾𝑀0ℎ𝜙𝑒
𝑖𝜔𝑡 + 𝛾

2𝐴

𝑀0
 ∇2𝑚𝜙 −

𝑚𝜃

𝑇2
   

(4.30) 

 

 

�̂�: 

𝑑𝑚𝜙

𝑑𝑡
= 𝛾

𝑚𝜃

𝑀0

𝜕2𝐸

𝜕𝜃2
+ 𝛾

𝑚𝜙

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
 

                 −𝛾𝑀0ℎ𝜃𝑒
𝑖𝜔𝑡 − 𝛾

2𝐴

𝑀0
∇2𝑚𝜃 −

𝑚𝜙

𝑇2
 

(4.31) 

 

Equation (4.29) for the �̂� component yields 𝑚𝜃ℎ𝜙 −𝑚𝜙ℎ𝜃 = 0 which in turn implies 

 

 𝑚𝜃

ℎ𝜃
=
𝑚𝜙

ℎ𝜙
= 𝜒𝜃𝜃 = 𝜒𝜙𝜙 = 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦   (4.32) 

 

4.1.6. Proposed Solutions 

 

Because of the form of the magnetic component ℎ⃗ = (ℎ𝜃𝜃 + ℎ𝜙�̂�)𝑒
𝑖𝜔𝑡 of the driving rf-

field, we can propose plane wave solutions to equations (4.30) and (4.31) in the form [198] 

 

 𝑚𝜃
𝑛(𝑧, 𝑡) = 𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 (4.33) 

 

 𝑚𝜙
𝑛(𝑧, 𝑡) = 𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 (4.34) 

 

along the thickness (𝑧-direction) of the thin film (of thickness 𝐿) where 𝑛 and 𝑘𝑛 represent 

the mode number and the wave number of mode 𝑛 respectively. We need to calculate 
𝑑𝑚𝜃

𝑛

𝑑𝑡
,   

𝑑𝑚𝜙
𝑛

𝑑𝑡
, ∇2𝑚𝜃

𝑛 and ∇2𝑚𝜙
𝑛  from equations (4.33) and (4.34) to place into equations (4.30) and 

(4.31). 

 

 𝑑𝑚𝜃
𝑛

𝑑𝑡
=
𝑑

𝑑𝑡
[𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡] = 𝑖𝜔 𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 (4.35) 

 



36 

 

 

 𝑑𝑚𝜙
𝑛

𝑑𝑡
=
𝑑

𝑑𝑡
[𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡] = 𝑖𝜔 𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 (4.36) 

 

 
∇2𝑚𝜃

𝑛 = (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) [𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡]

= −𝑘𝑛
2 𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 

(4.37) 

 

 
∇2𝑚𝜙

𝑛 = (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) [𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡]

= −𝑘𝑛
2𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 

(4.38) 

 

Putting equations (4.33) for 𝑚𝜃
𝑛 , (4.34) for 𝑚𝜙

𝑛  , (4.35) for  
𝑑𝑚𝜃

𝑛

𝑑𝑡
  and (4.38) for  ∇2𝑚𝜙

𝑛   

into equation (4.30), one gets 

 

 𝑖𝜔 𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡 = 

−𝛾
1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡 

−𝛾
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
𝑚𝜙
0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡 

+𝛾𝑀0ℎ𝜙𝑒
𝑖𝜔𝑡 

+𝛾
2𝐴

𝑀0

(−𝑘𝑛
2)𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 

−
𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡

𝑇2
 

(4.39) 

 

Putting now equations (4.33) for 𝑚𝜃
𝑛 , (4.34) for 𝑚𝜙

𝑛  , (4.36) for  
𝑑𝑚𝜙

𝑛

𝑑𝑡
  and (4.37) for ∇2𝑚𝜃

𝑛 

into equation (4.31), one gets 

 

 

 

 𝑖𝜔 𝑚𝜙
0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡 = (4.40) 
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𝛾
1

𝑀0

𝜕2𝐸

𝜕𝜃2
𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡 

+𝛾
1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
𝑚𝜙
0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡 

−𝛾𝑀0ℎ𝜃𝑒
𝑖𝜔𝑡 

−𝛾
2𝐴

𝑀0

(−𝑘𝑛
2)𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒
𝑖𝜔𝑡 

−
𝑚𝜙
0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑒

𝑖𝜔𝑡

𝑇2
 

 

Cancelling out the common 𝑒𝑖𝜔𝑡 term from both sides, dividing through by 𝛾 and leaving 

𝑀0ℎ𝜙 alone on one side of the equation, equation (4.39) yields (where 𝐷 = 2𝐴 𝑀0⁄ ) 

 

 
     𝑀0ℎ𝜙 = [

𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
+

1

𝛾𝑇2
]𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)  

+ [𝐷𝑘𝑛
2 +

1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
]𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) 

(4.41) 

 

Applying the same judgement of cancelling out the common 𝑒𝑖𝜔𝑡 term from both sides, 

dividing through by 𝛾 and leaving this time 𝑀0ℎ𝜃 alone on one side of the equation, 

equation (4.40) yields 

 

 
𝑀0ℎ𝜃 = [𝐷𝑘𝑛

2 +
1

𝑀0

𝜕2𝐸

𝜕𝜃2
]𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)  

+ [−
𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
−

1

𝛾𝑇2
]𝑚𝜙

0,𝑛𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) 

(4.42) 

 

Equations (4.41) and (4.42) constitute a set of linear equations in unknowns 

𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) and 𝑚𝜙

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) in the following form 

 

 𝑐 = 𝑎𝑥 + 𝑏𝑦 (4.43) 

 

 𝑓 = 𝑑𝑥 + 𝑒𝑦 (4.44) 



38 

 

 

 

with 

 

𝑥 = 𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) 

 

𝑦 = 𝑚𝜙
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) 

 

𝑎 =
𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
+

1

𝛾𝑇2
 𝑏 =  𝐷𝑘𝑛

2 +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
 𝑐 = 𝑀0ℎ𝜙 

 

𝑑 = 𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
 𝑒 = −

𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
−

1

𝛾𝑇2
 𝑓 = 𝑀0ℎ𝜃 

 

The solutions for equations (4.43) and (4.44) are 

 

𝑥 =
𝑒𝑐 − 𝑏𝑓

𝑎𝑒 − 𝑑𝑏
 

 

𝑦 =
𝑎𝑓 − 𝑑𝑐

𝑎𝑒 − 𝑑𝑏
 

 

which then yields solutions to the equations (4.41) and (4.42) as 

 

 𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) =         

 

[−
𝑖𝜔
𝛾 +

1
𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸
𝜕𝜙𝜕𝜃

−
1
𝛾𝑇2

]𝑀0ℎ𝜙 − [𝐷𝑘𝑛
2 +

1
𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸
𝜕𝜙2

]𝑀0ℎ𝜃

∆
 

(4.45) 

 

and 

 

 𝑚𝜙
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) =           

[
𝑖𝜔
𝛾 +

1
𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸
𝜕𝜃𝜕𝜙

+
1
𝛾𝑇2

]𝑀0ℎ𝜃 − [𝐷𝑘𝑛
2 +

1
𝑀0

𝜕2𝐸
𝜕𝜃2

]𝑀0ℎ𝜙

∆
 

(4.46) 

 

where 
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∆= [
𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
+

1

𝛾𝑇2
] [−

𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
−

1

𝛾𝑇2
] 

−[𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] 

 

= [(
1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
) + (

𝑖𝜔

𝛾
+

1

𝛾𝑇2
)] [(

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
) − (

𝑖𝜔

𝛾
+

1

𝛾𝑇2
)] 

−[𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] 

 

= (
1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

− (
𝑖𝜔

𝛾
+

1

𝛾𝑇2
)
2

− [𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] 

 

= (
1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

− (−
𝜔2

𝛾2
+

1

𝛾2𝑇2
2 + 2

𝑖𝜔

𝛾

1

𝛾𝑇2
)

− [𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] 

 

⇒ ∆= (
1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

+
𝜔2

𝛾2
−

1

𝛾2𝑇2
2 −

2𝑖𝜔

𝛾2𝑇2

− [𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] 

 

⇒ ∆=
𝜔2

𝛾2
− {[𝐷𝑘𝑛

2 +
1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] − (

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

+
1

𝛾2𝑇2
2}

−
2𝑖𝜔

𝛾2𝑇2
 

 

Calling  the term in { } parenthesis as  
𝜔0
2

𝛾2
  we get 
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[𝐷𝑘𝑛

2 +
1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] − (

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

+
1

𝛾2𝑇2
2  

=    
𝜔0
2

𝛾2
 

(4.47) 

 

and the ∆ term becomes 

 

 
∆=

𝜔2

𝛾2
−
𝜔0
2

𝛾2
−
2𝑖𝜔

𝛾2𝑇2
 (4.48) 

 

Then equations (4.45) and (4.46) become (4.49) and (4.50) respectively 

 

 𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) =         

[−
𝑖𝜔
𝛾 +

1
𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸
𝜕𝜙𝜕𝜃

−
1
𝛾𝑇2

]𝑀0ℎ𝜙 − [𝐷𝑘𝑛
2 +

1
𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸
𝜕𝜙2

]𝑀0ℎ𝜃

𝜔2

𝛾2
−
𝜔0
2

𝛾2
−
2𝑖𝜔
𝛾2𝑇2

 
(4.49) 

 

and 

 

 𝑚𝜙
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) =           

[
𝑖𝜔
𝛾 +

1
𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸
𝜕𝜃𝜕𝜙

+
1
𝛾𝑇2

]𝑀0ℎ𝜃 − [𝐷𝑘𝑛
2 +

1
𝑀0

𝜕2𝐸
𝜕𝜃2

]𝑀0ℎ𝜙

𝜔2

𝛾2
−
𝜔0
2

𝛾2
−
2𝑖𝜔
𝛾2𝑇2

 
(4.50) 

 

4.1.7. Dynamic Susceptibility and Resonance Condition 

 

The power absorbed by the unit volume of the sample from an rf-field of frequency 𝜔 is 

given as [169, 201] 

 

 
𝑃 =

1

2
𝜔𝜒2ℎ

2 (4.51) 
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where 𝜒2 is the imaginary part of the susceptibility and ℎ is the magnitude of the magnetic 

component of the rf field. The dynamic susceptibility is defined as [173, 198] 

 

 
𝜒 =

�⃗⃗� ∙ ℎ⃗ 

ℎ2
=
𝑚𝜃ℎ𝜃 +𝑚𝜙ℎ𝜙

ℎ𝜃
2 + ℎ𝜙

2 =
𝑚𝑥

ℎ𝑥
= (

𝑚𝜙

ℎ𝜙
)
𝜙=

𝜋
2

= 𝜒1 − 𝑖𝜒2 (4.52) 

 

Now, for the sake of simplicity we rewrite equations (4.49)-(4.50) as 

 

 
𝑚𝜃
0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) =

𝐴. ℎ𝜙 − 𝐵. ℎ𝜃

Δ
 (4.53) 

 

 
 𝑚𝜙

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛) =
𝐶. ℎ𝜃 − 𝐷. ℎ𝜙

Δ
 (4.54) 

 

where 

 

𝐴 = [−
𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜙𝜕𝜃
−

1

𝛾𝑇2
]𝑀0      𝐵 = [𝐷𝑘𝑛

2 +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
]𝑀0 

 

                        𝐶 = [
𝑖𝜔

𝛾
+

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
+

1

𝛾𝑇2
]𝑀0          𝐷 = [𝐷𝑘𝑛

2 +
1

𝑀0

𝜕2𝐸

𝜕𝜃2
]𝑀0 

 

Δ =
𝜔2

𝛾2
−
𝜔0
2

𝛾2
−
2𝑖𝜔

𝛾2𝑇2
 

 

If we now multiply both sides of equations (4.53)-(4.54) with 𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚) and 

integrate with respect to "𝑧" along the thickness 𝐿 of the film we get 

 

 
∫  𝑚𝜃

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧

𝑧=𝐿

𝑧=0

=
𝐴. ℎ𝜙 − 𝐵. ℎ𝜃

Δ
∫ 𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧

𝑧=𝐿

𝑧=0

 

(4.55) 

 

and 
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∫  𝑚𝜙

0,𝑛 𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧

𝑧=𝐿

𝑧=0

=
𝐶. ℎ𝜃 − 𝐷. ℎ𝜙

Δ
∫ 𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧

𝑧=𝐿

𝑧=0

 

(4.56) 

 

If we now leave 𝑚𝜃
0,𝑛

 and  𝑚𝜙
0,𝑛

 alone on the left hand sides by taking them outside the 

integrals (they have no 𝑧-dependence) and putting the remaining integral terms to the 

denominators of the right hand sides 

 

 
𝑚𝜃
0,𝑛 =

𝐴. ℎ𝜙 − 𝐵. ℎ𝜃

Δ
∙

∫ 𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧
𝑧=𝐿

𝑧=0

∫   𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧
𝑧=𝐿

𝑧=0

 (4.57) 

 

 
𝑚𝜙
0,𝑛 =

𝐶. ℎ𝜃 − 𝐷. ℎ𝜙

Δ
∙

∫ 𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧
𝑧=𝐿

𝑧=0

∫   𝑠𝑖𝑛(𝑘𝑛𝑧 + 𝜑𝑛)𝑠𝑖𝑛(𝑘𝑚𝑧 + 𝜑𝑚)𝑑𝑧
𝑧=𝐿

𝑧=0

 (4.58) 

 

Calling the terms related to integrals at the rights hand sights of (4.57)-(4.58) as 𝐼𝑛 known 

as amplitude factor [198] or mode intensity [154] and remembering that Δ =
𝜔2

𝛾2
−
𝜔0
2

𝛾2
−

𝑖
2𝜔

𝛾2𝑇2
, we multiply and divide the right hand sides of (4.57)-(4.58) by the complex 

conjugate of Δ which is Δ∗ =
𝜔2

𝛾2
−
𝜔0
2

𝛾2
+ 𝑖

2𝜔

𝛾2𝑇2
  to make the denominators real, we get 

 

 
𝑚𝜃
0,𝑛 =

(𝐴. ℎ𝜙 − 𝐵. ℎ𝜃). Δ
∗

Δ. Δ∗
∙ 𝐼𝑛 (4.59) 

 

 
𝑚𝜙
0,𝑛 =

(𝐶. ℎ𝜃 − 𝐷. ℎ𝜙). Δ
∗

Δ. Δ∗
∙ 𝐼𝑛 (4.60) 

 

where 

 

 
𝛥. 𝛥∗ = (

𝜔2

𝛾2
−
𝜔0
2

𝛾2
− 𝑖

2𝜔

𝛾2𝑇2
) . (

𝜔2

𝛾2
−
𝜔0
2

𝛾2
+ 𝑖

2𝜔

𝛾2𝑇2
) = (

𝜔2

𝛾2
−
𝜔0
2

𝛾2
)

2

+
4𝜔2

𝛾4𝑇2
2 (4.61) 
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The dynamic susceptibility connects the dynamic magnetization and the excitation 

magnetic field. In most of the cases the susceptibility is given by a tensor. If we write 

down equations (4.59)-(4.60) in matrix form we get 

 

 

(
𝑚𝜃
0,𝑛

𝑚𝜙
0,𝑛
) = 𝐼𝑛

(

 
 

−𝐵. Δ∗

Δ. Δ∗
𝐴. Δ∗

Δ. Δ∗

𝐶. Δ∗

Δ. Δ∗
−𝐷. Δ∗

Δ. Δ∗ )

 
 
(

ℎ𝜃

ℎ𝜙

) (4.62) 

 

which resembles 

 

 

(
𝑚𝜃
0,𝑛

𝑚𝜙
0,𝑛
) = (

𝜒𝜃𝜃 𝜒𝜃𝜙

𝜒𝜙𝜃 𝜒𝜙𝜙
)(

ℎ𝜃

ℎ𝜙

) (4.63) 

 

Off diagonal components refer to the gyration which is related to the optical activity-

scattering in the sample material and the diagonal components 𝜒𝜃𝜃 = 𝜒𝜙𝜙 (equation 

(4.32)) are related to power absorption. By comparing (4.62) and (4.63), the important 

component of the susceptibility tensor becomes 

 

 
𝜒𝑛 =

𝑚𝑥

ℎ𝑥
= (

𝑚𝜙

ℎ𝜙
)|
𝜙=

𝜋
2

= 𝜒𝜙𝜙 = 𝐼𝑛 ∙
−𝐷. Δ∗

Δ. Δ∗
 (4.64) 

 

Then by inserting 

 

−𝐷 = − [𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
]𝑀0  𝑎𝑛𝑑 𝛥

∗ = (
𝜔2

𝛾2
−
𝜔0
2

𝛾2
+ 𝑖

2𝜔

𝛾2𝑇2
) 

⇒ −𝐷. 𝛥∗ = 𝑀0 [𝐷𝑘𝑛
2 +

1

𝑀0

𝜕2𝐸

𝜕𝜃2
] (
𝜔0
2

𝛾2
−
𝜔2

𝛾2
− 𝑖

2𝜔

𝛾2𝑇2
) 

  𝛥. 𝛥∗ = (
𝜔2

𝛾2
−
𝜔0
2

𝛾2
)
2

+
4𝜔2

𝛾4𝑇2
2   

 

we get from (4.64) 
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 𝜒𝑛 = 𝜒𝜙𝜙 = 𝐼𝑛 ∙
𝑀0 [𝐷𝑘𝑛

2 +
1
𝑀0

𝜕2𝐸
𝜕𝜃2

] (
𝜔0
2

𝛾2 
−
𝜔2

𝛾2
− 𝑖

2𝜔
𝛾2𝑇2

)

(
𝜔2

𝛾2
−
𝜔0
2

𝛾2
)
2

+ 
4𝜔2

𝛾4𝑇2
2

 (4.65) 

 

By comparing equation (4.65) with 𝜒𝑛 = 𝜒1
𝑛 − 𝑖𝜒2

𝑛 and remembering the fact that the 

absorbed power per unit volume is dependent upon the imaginary part 𝜒2
𝑛 , we extract from 

(4.65) that 

 

 

𝜒2
𝑛(𝜔) = 𝐼𝑛 ∙

𝑀0 [𝐷𝑘𝑛
2 +

1
𝑀0

𝜕2𝐸
𝜕𝜃2

]
2𝜔
𝛾2𝑇2

(
𝜔2

𝛾2
−
𝜔0
2

𝛾2
)
2

+ 
4𝜔2

𝛾4𝑇2
2

 (4.66) 

 

It is seen in equation (4.66) that susceptibility responsible for the absorbed power acquires 

a maximum when the term with the driving field frequency, the term  
𝜔2

𝛾2
,  is equal to 

𝜔0
2

𝛾2
 . 

In actual experiment, the frequency 𝜔 of the rf-field is fixed but the magnitude of the DC 

magnetic field is swept. During the magnetic field sweep, for a given orientation of the DC 

field with respect to the magnetic object, the magnitude of the DC field reaches a value 

such that the term  
𝜔0
2

𝛾2
  given by (equation (4.47)) 

 

𝜔0
2

𝛾2
= [𝐷𝑘𝑛

2 +
1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [𝐷𝑘𝑛

2  +
1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] − (

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

+
1

𝛾2𝑇2
2 

 

becomes equal to  
𝜔2

𝛾2
  where 𝜔 is the angular frequency of the rf-field. Therefore, 𝜔0 can 

be called the resonance frequency of the magnetic object with that particular orientation of 

the object and the DC field, DC field value, magnetic anisotropies, etc. One can then 

conclude that for every single orientation and DC field value, the system gains a particular 

value of 𝜔0 and for a specific set of parameters it is equal to 𝜔 of the driving field, so what 

we call a resonance phenomenon occurs. 

 

Equation (4.47) rewritten above gives us the most general condition for both FMR and 

SWR (spin wave resonance). In the case of zero wavevector (𝑘 = 0) and neglecting the 
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damping term  
1

𝛾2𝑇2
2  we obtain the uniform precession mode (i.e. the FMR limit): 

 

𝜔0
2

𝛾2
= [

1

𝑀0

𝜕2𝐸

𝜕𝜃2
] [

1

𝑀0𝑠𝑖𝑛2𝜃

𝜕2𝐸

𝜕𝜙2
] − (

1

𝑀0𝑠𝑖𝑛𝜃

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

 

 

 
⇒        (

𝜔0
𝛾
)
2

=
1

𝑀0
2𝑠𝑖𝑛2𝜃

[
𝜕2𝐸

𝜕𝜙2
𝜕2𝐸

𝜕𝜃2
− (

𝜕2𝐸

𝜕𝜃𝜕𝜙
)

2

] (4.67) 

 

which is very well known as Smit–Beljers equation [202] and which is exactly the same as 

equation (2) of [203] and it yields the same condition with equation (2) of [175] to name a 

few correspondences from the literature. 

 

4.2. FERROMAGNETIC RESONANCE IN MULTILAYER STRUCTURES 

 

The form of the solution to the Landau-Lifshitz-Gilbert (LLG) equation for the multilayer 

structure is to linearize the equations of motions of magnetizations of each layer in the 

multilayer of 𝑁-FM layers and to write down a 2𝑁𝑥2𝑁 coefficient matrix multiplying the 

2𝑁𝑥1 dimensional dynamical magnetization vector (composed of azimuthal and polar 

components of all layers). Once the generalized form of the components of the coefficient 

matrix for a system of any number 𝑁 of FM layers is found, the dynamical magnetizations 

in each layer can be solved at once by linear algebra which in turn can be used to calculate 

the dynamical susceptibility. 

 

4.2.1. Equation of Motion 

 

The equation of motion of magnetization for a ferromagnetic (FM) layer in a 

Ferromagnetic Resonance (FMR) experiment can be given in a most general form by 

 

 𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� ×�⃗⃗� 𝑒𝑓𝑓 + �⃗�  (4.68) 
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where the first term on the right hand side is the torque due to and creating a precesssion 

around the effective magnetic field and the second is the damping term responsible for the 

relaxation of magnetization towards the equilibrium orientation close to the effective 

magnetic field. The damping term, for our purposes, can be of 

 

i. Gilbert Type  : 
𝛼

𝑀
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
, 

or 

ii. Bloch-Bloembergen Type: −
�⃗⃗� 𝑥,𝑦

𝑇2
−
�⃗⃗� 𝑧−�⃗⃗� 0

𝑇1
 

 

where 𝛼 is the Gilbert Damping Parameter, 𝑇1 is the longitudinal relaxation time 

responsible for spin-lattice interactions and 𝑇2 is the transverse relaxation time 

corresponding to the spin-spin interactions. The term with 𝑇1 can be neglected in our 

calculations because in FM samples spin-spin interactions are dominant [129] �⃗⃗� 𝑥,𝑦 is the 

transverse component of the magnetization (transverse to the equilibrium orientation of 

magnetization). Since we will be using spherical geometry to obtain resonance spectra as a 

function of orientation of �⃗⃗� , we will replace �⃗⃗� 𝑥,𝑦 by �⃗⃗� 𝜃,𝜙 which is transverse to the 

radially oriented magnetization vector (𝜃 and 𝜙 directions are perpendicular and therefore 

transverse to the radial direction). Then, (4.68) can be rewritten as 

 

 𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� ×�⃗⃗� 𝑒𝑓𝑓 +

𝛼

𝑀
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
−
�⃗⃗� 𝜃,𝜙

𝑇2
 (4.69) 

 

The magnetization in the above representation then has the form: 

 

 �⃗⃗� = 𝑀�̂� + �⃗⃗� 𝜃,𝜙 = 𝑀�̂� + 𝑚𝜃𝜃 + 𝑚𝜙�̂� (4.70) 

 

in which 𝑀�̂� is the radially directed equilibrium magnetization vector and �⃗⃗� 𝜃,𝜙 = 𝑚𝜃𝜃 +

𝑚𝜙�̂� is the dynamical component of the magnetization transverse to the equilibrium 

orientation and is negligible compared to 𝑀�̂� term. 
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Figure 4.3. Components of the magnetization vector. 

 

It is evident from Figure 4.3 that dynamical small deviations of magnetization from the 

equilibrium direction can be given by 

 

 𝑚𝜃 = 𝑀. 𝛿𝜃 (4.71) 

 

 𝑚𝜙 = 𝑀. 𝑠𝑖𝑛 𝜃 . 𝛿𝜙 (4.72) 

 

4.2.2. Effective Field and Its Torque 

 

The effective magnetic field in equation (4.69) can be given by the gradient of the volume 

energy density 𝐸 of the system with respect to the magnetization as 

 

 �⃗⃗� 𝑒𝑓𝑓 = −�⃗� �⃗⃗�  𝐸   (4.73) 

 

In dealing with a system composed of 𝑁 ferromagnetic layers coupled by an exchange 

interaction and separated by nonmagnetic layers, areal energy density (energy per film area 

ℰ) can be used instead of volume energy density 𝐸 [204]: 
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 ℰ =∑𝑡𝑖𝐸𝑖 −∑ 𝐴𝑖,𝑖+1

�⃗⃗� 𝑖 ∙ �⃗⃗� 𝑖+1
𝑀𝑖  𝑀𝑖+1

𝑁−1

𝑖=1

𝑁

𝑖=1

 (4.74) 

 

where 𝑡𝑖 is the thickness and 𝐸𝑖 is the volume energy density of the 𝑖-th layer and 𝐴𝑖,𝑖+1 is 

the  bilinear energy density (energy per unit surface area) coupling constant responsible for 

interlayer exchange coupling between layers 𝑖 and 𝑖 + 1. The negative sign in front of 

𝐴𝑖,𝑖+1 is chosen so that a positive 𝐴𝑖,𝑖+1 corresponds to parallel (ferromagnetic) coupling 

between neighbouring layers whereas a negative 𝐴𝑖,𝑖+1 gives antiparallel 

(antiferromagnetic) coupling. 

 

With the choice of an areal energy density ℰ, equation (4.73) turns into 

 

 
�⃗⃗� 𝑒𝑓𝑓
𝑖 = −

1

𝑡𝑖
�⃗� �⃗⃗� 𝑖ℰ  (4.75) 

 

for the effective magnetic field acting within the 𝑖-th layer. Therefore, the equation of 

motion of magnetization of the 𝑖-th layer without damping can be given by 

 

 𝑑�⃗⃗� 𝑖
𝑑𝑡

= −𝛾𝑖�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓
𝑖 = −𝛾𝑖�⃗⃗� 𝑖×(−

1

𝑡𝑖
∇⃗⃗ �⃗⃗� 𝑖ℰ) = −𝛾𝑖𝜏 𝑖 (4.76) 

 

where 𝜏 𝑖 = �⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓
𝑖  is the torque term which can be expanded as 

 

 
𝜏 𝑖 = �⃗⃗� 𝑖×(−

1

𝑡𝑖
∇⃗⃗ �⃗⃗� 𝑖ℰ)

= 𝑀𝑖�̂�𝑖× [−
1

𝑡𝑖
(�̂�𝑖

𝜕ℰ

𝜕𝑀𝑖
+ 𝜃𝑖

1

𝑀𝑖

𝜕ℰ

𝜕𝜃𝑖
+ �̂�𝑖

1

𝑀𝑖𝑠𝑖𝑛𝜃𝑖

𝜕ℰ

𝜕𝜙𝑖
)] 

(4.77) 

 

which yields 

 

 
𝜏 𝑖 = −�̂�𝑖

1

𝑡𝑖

𝜕ℰ

𝜕𝜃𝑖
+ 𝜃𝑖

1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖

𝜕ℰ

𝜕𝜙𝑖
 (4.78) 
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In obtaining (4.78) from (4.77), use is made of the cyclic permutations of spherical unit 

vectors �̂�, 𝜃 and �̂� (i.e. �̂�×�̂� = 0,  �̂�×𝜃 = �̂� and �̂�×�̂� = −𝜃). In order to linearize the 

equation of motion, we expand the energy density around the equilibrium orientation of the 

magnetization 

 

 
ℰ = ℰ0 +

𝜕ℰ

𝜕𝜃𝑘
𝛿𝜃𝑘 +

𝜕ℰ

𝜕𝜙𝑘
𝛿𝜙𝑘 (4.79) 

 

where ℰ0 is the energy minimum, 𝛿𝜃𝑘 and 𝛿𝜙𝑘 are small angular deviations of 

magnetization from the equilibrium direction and the partial derivatives are understood to 

be calculated at the equilibrium angles (so they represent merely scalar linear expansion 

coefficients rather than functions once the derivative of the 𝐸 function is calculated at the 

equilibrium angles). Equation (4.78) then becomes 

 

 
𝜏 𝑖 = −�̂�𝑖

1

𝑡𝑖

𝜕

𝜕𝜃𝑖
(ℰ0 +

𝜕ℰ

𝜕𝜃𝑘
𝛿𝜃𝑘 +

𝜕ℰ

𝜕𝜙𝑘
𝛿𝜙𝑘)

+ 𝜃𝑖
1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖

𝜕

𝜕𝜙𝑖
(ℰ0 +

𝜕ℰ

𝜕𝜃𝑘
𝛿𝜃𝑘 +

𝜕ℰ

𝜕𝜙𝑘
𝛿𝜙𝑘) 

(4.80) 

 

which results in 

 

 
𝜏 𝑖 = −�̂�𝑖

1

𝑡𝑖
 (ℰ𝜃𝑖𝜃𝑘𝛿𝜃𝑘 + ℰ𝜃𝑖𝜙𝑘𝛿𝜙𝑘) + 𝜃𝑖

1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑘𝛿𝜃𝑘 + ℰ𝜙𝑖𝜙𝑘𝛿𝜙𝑘) (4.81) 

 

In expressing (4.81), use is made of  

 

𝜕ℰ0

𝜕𝜃𝑖
=

𝜕ℰ0

𝜕𝜙𝑖
= 0,   

𝜕2ℰ

𝜕𝜃𝑖𝜕𝜃𝑘
= ℰ𝜃𝑖𝜃𝑘,   

𝜕2ℰ

𝜕𝜃𝑖𝜕𝜙𝑘
= ℰ𝜃𝑖𝜙𝑘 ,  

𝜕2ℰ

𝜕𝜙𝑖𝜕𝜃𝑘
= ℰ𝜙𝑖𝜃𝑘  and  

𝜕2ℰ

𝜕𝜙𝑖𝜕𝜙𝑘
= ℰ𝜙𝑖𝜙𝑘 

 

By utilizing equations (4.71) and (4.72), we now make the replacements 𝛿𝜃𝑘 = 𝑚𝜃𝑘 𝑀𝑘⁄  

and 𝛿𝜙𝑘 = 𝑚𝜙𝑘 𝑀𝑘𝑠𝑖𝑛𝜃𝑘⁄ , where 𝑚𝜃𝑘 and 𝑚𝜙𝑘  are the dynamical components of the 

magnetization of layer 𝑘 with saturation value of 𝑀𝑘 to get 

 



50 

 

 

 
𝜏 𝑖 = −�̂�𝑖

1

𝑡𝑖
 (ℰ𝜃𝑖𝜃𝑘

𝑚𝜃𝑘

𝑀𝑘
+ ℰ𝜃𝑖𝜙𝑘

𝑚𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
)

+ 𝜃𝑖
1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑘

𝑚𝜃𝑘

𝑀𝑘
+ ℰ𝜙𝑖𝜙𝑘

𝑚𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
) 

(4.82) 

 

If we now replace 𝜏 𝑖 in equation (4.76) with the right hand side of equation (4.82), we get 

 

 𝑑�⃗⃗� 𝑖
𝑑𝑡

= −𝛾𝑖 [−�̂�𝑖
1

𝑡𝑖
(ℰ𝜃𝑖𝜃𝑘

𝑚𝜃𝑘

𝑀𝑘
+ ℰ𝜃𝑖𝜙𝑘

𝑚𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
)

+ 𝜃𝑖
1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑘

𝑚𝜃𝑘

𝑀𝑘
+ ℰ𝜙𝑖𝜙𝑘

𝑚𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
)] 

(4.83) 

 

The perturbation on the magnetization is due to the magnetic field component of the rf-

field which creates small deviations of magnetization such that the magnetization can be 

expressed as (as given by (4.70)) 

 

 �⃗⃗� 𝑖 = 𝑀𝑖�̂�𝑖 +𝑚𝜃𝑖
𝜃𝑖 + 𝑚𝜙𝑖

 �̂�𝑖  (4.84) 

 

Using equation (4.84) and assuming that the magnitude of the magnetization is kept at its 

saturation value 𝑀𝑖 (that is 𝑑𝑀𝑖 𝑑𝑡⁄ = 0), equation (4.83) becomes 

 

 𝑑𝑚𝜃𝑖

𝑑𝑡
𝜃𝑖 +

𝑑𝑚𝜙𝑖

𝑑𝑡
�̂�𝑖                                                                          

= −𝛾𝑖 [−�̂�𝑖
1

𝑡𝑖
(ℰ𝜃𝑖𝜃𝑘

𝑚𝜃𝑘

𝑀𝑘
+ ℰ𝜃𝑖𝜙𝑘

𝑚𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
)

+ 𝜃𝑖
1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑘

𝑚𝜃𝑘

𝑀𝑘
+ ℰ𝜙𝑖𝜙𝑘

𝑚𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
)] 

(4.85) 

 

By resolving 𝜃𝑖 and �̂�𝑖 components of (4.85) and rearranging, we respectively get 

 

 1

𝛾𝑖

𝑑𝑚𝜃𝑖

𝑑𝑡
= −

1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖𝑀𝑘
(ℰ𝜙𝑖𝜃𝑘𝑚𝜃𝑘 +

ℰ𝜙𝑖𝜙𝑘
𝑠𝑖𝑛𝜃𝑘

𝑚𝜙𝑘) (4.86) 
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 1

𝛾𝑖

𝑑𝑚𝜙𝑖

𝑑𝑡
=

1

𝑡𝑖𝑀𝑘
(ℰ𝜃𝑖𝜃𝑘𝑚𝜃𝑘 +

ℰ𝜃𝑖𝜙𝑘
𝑠𝑖𝑛𝜃𝑘

𝑚𝜙𝑘) (4.87) 

 

It must be realized at this stage that the left hand sides of (4.86)-(4.87) are due to layer 𝑖 

but right hand sides contain an additional index 𝑘. This has to do with the fact that our 

equations must allow for interactions between neighbouring ferromagnetic (FM) layers 

through interlayer exchange coupling. Therefore,  

 

• for 𝑖 = 1,  𝑘 must run from 1 to 2 

 

• for  2 ≤ 𝑖 ≤ 𝑁 − 1 , 𝑘 must run from 𝑖 − 1 to 𝑖 + 1 

 

• for 𝑖 = 𝑁, 𝑘 must run from 𝑁 − 1 to 𝑁 

 

 where 𝑁 is the number of FM layers. This means that the right hand sides of the equations 

(4.86) and (4.87) written for 𝑚𝜃𝑖
 and 𝑚𝜙𝑖

 are actually to be summed up over the allowed 

𝑘-indices: 

 

 
1

𝛾𝑖

𝑑𝑚𝜃𝑖

𝑑𝑡
=  −

1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖
∑ (

ℰ𝜙𝑖𝜃𝑘
𝑀𝑘

𝑚𝜃𝑘 +
ℰ𝜙𝑖𝜙𝑘
𝑀𝑘𝑠𝑖𝑛𝜃𝑘

𝑚𝜙𝑘)

𝑘=𝑖+1,   𝑘≠𝑁+1

𝑘=𝑖−1,   𝑘≠0

 (4.88) 

 

 
1

𝛾𝑖

𝑑𝑚𝜙𝑖

𝑑𝑡
=
1

𝑡𝑖
∑ (

ℰ𝜃𝑖𝜃𝑘
𝑀𝑘

𝑚𝜃𝑘 +
ℰ𝜃𝑖𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
𝑚𝜙𝑘)

𝑘=𝑖+1,   𝑘≠𝑁+1

𝑘=𝑖−1,   𝑘≠0

 (4.89) 

 

which conform to equations (8) and (9) of reference [186] for a correspondence from the 

literature. Then from (4.88) and (4.89) and considering nearest neighbour interactions 

 

• For 𝑖 = 1  (𝑘 runs from 1 to 2) 
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 1

𝛾1

𝑑𝑚𝜃1

𝑑𝑡
= −

1

𝑡1𝑀1𝑠𝑖𝑛𝜃1
(ℰ𝜙1𝜃1𝑚𝜃1 +

ℰ𝜙1𝜙1
𝑠𝑖𝑛𝜃1

𝑚𝜙1)

−
1

𝑡1𝑀2𝑠𝑖𝑛𝜃1
(ℰ𝜙1𝜃2𝑚𝜃2 +

ℰ𝜙1𝜙2
𝑠𝑖𝑛𝜃2

𝑚𝜙2) 

(4.90) 

 

 1

𝛾1

𝑑𝑚𝜙1

𝑑𝑡
=

1

𝑡1𝑀1
 (ℰ𝜃1𝜃1𝑚𝜃1 +

ℰ𝜃1𝜙1
𝑠𝑖𝑛𝜃1

𝑚𝜙1)

+
1

𝑡1𝑀2
 (ℰ𝜃1𝜃2𝑚𝜃2 +

ℰ𝜃1𝜙2
𝑠𝑖𝑛𝜃2

𝑚𝜙2) 

(4.91) 

 

 

• for  2 ≤ 𝑖 ≤ 𝑁 − 1  (𝑘 runs from 𝑖 − 1 to 𝑖 + 1) 

 

 1

𝛾𝑖

𝑑𝑚𝜃𝑖

𝑑𝑡
= −

1

𝑡𝑖𝑀𝑖−1𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑖−1𝑚𝜃𝑖−1

+
ℰ𝜙𝑖𝜙𝑖−1
𝑠𝑖𝑛𝜃𝑖−1

𝑚𝜙𝑖−1
)

−
1

𝑡𝑖𝑀𝑖𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑖𝑚𝜃𝑖

+
ℰ𝜙𝑖𝜙𝑖
𝑠𝑖𝑛𝜃𝑖

𝑚𝜙𝑖
)

−
1

𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑖+1𝑚𝜃𝑖+1

+
ℰ𝜙𝑖𝜙𝑖+1
𝑠𝑖𝑛𝜃𝑖+1

𝑚𝜙𝑖+1
) 

(4.92) 

 

 1

𝛾𝑖

𝑑𝑚𝜙𝑖

𝑑𝑡
=    

1

𝑡𝑖𝑀𝑖−1
(ℰ𝜃𝑖𝜃𝑖−1𝑚𝜃𝑖−1

+
ℰ𝜃𝑖𝜙𝑖−1
𝑠𝑖𝑛𝜃𝑖−1

𝑚𝜙𝑖−1
)

+
1

𝑡𝑖𝑀𝑖
(ℰ𝜃𝑖𝜃𝑖𝑚𝜃𝑖

+
ℰ𝜃𝑖𝜙𝑖
𝑠𝑖𝑛𝜃𝑖

𝑚𝜙𝑖
)

+
1

𝑡𝑖𝑀𝑖+1
(ℰ𝜃𝑖𝜃𝑖+1𝑚𝜃𝑖+1

+
ℰ𝜃𝑖𝜙𝑖+1
𝑠𝑖𝑛𝜃𝑖+1

𝑚𝜙𝑖+1
) 

(4.93) 

 

• and for 𝑖 = 𝑁 (𝑘 runs from 𝑁 − 1 to 𝑁) 

 

 1

𝛾𝑁

𝑑𝑚𝜃𝑁

𝑑𝑡
= −

1

𝑡𝑁𝑀𝑁−1𝑠𝑖𝑛𝜃𝑁
(ℰ𝜙𝑁𝜃𝑁−1𝑚𝜃𝑁−1 +

ℰ𝜙𝑁𝜙𝑁−1
𝑠𝑖𝑛𝜃𝑁−1

𝑚𝜙𝑁−1)

−
1

𝑡𝑁𝑀𝑁𝑠𝑖𝑛𝜃𝑁
(ℰ𝜙𝑁𝜃𝑁𝑚𝜃𝑁 +

ℰ𝜙𝑁𝜙𝑁
𝑠𝑖𝑛𝜃𝑁

𝑚𝜙𝑁) 

(4.94) 

 



53 

 

 

 
 
1

𝛾𝑁

𝑑𝑚𝜙𝑁

𝑑𝑡
=    

1

𝑡𝑁𝑀𝑁−1
(ℰ𝜃𝑁𝜃𝑁−1𝑚𝜃𝑁−1 +

ℰ𝜃𝑁𝜙𝑁−1
𝑠𝑖𝑛𝜃𝑁−1

𝑚𝜙𝑁−1)

+
1

𝑡𝑁𝑀𝑁
(ℰ𝜃𝑁𝜃𝑁𝑚𝜃𝑁 +

ℰ𝜃𝑁𝜙𝑁
𝑠𝑖𝑛𝜃𝑁

𝑚𝜙𝑁) 

(4.95) 

 

The expressions from (4.90) to (4.95) thus obtained by running equations (4.88) and (4.89) 

over the allowed values of 𝑘 are in conformity with the set of expressions given in 

equation (6) of reference [204]. 

 

4.2.3. Effects of RF Field and Damping 

 

Equations from (4.90) to (4.95) are just linerized outcomes of equation (4.68) without 

damping (without �⃗�  term) to the first order of 𝑚𝜃𝑖
 and 𝑚𝜙𝑖

 in terms of the gradients of the 

surface energy density ℰ of the system of 𝑁 coupled ferromagnetic layers. We now include 

the damping terms and express the effect of the rf-field separately in equation (4.68) for the 

𝑖-th layer. 

 

 𝑑�⃗⃗� 𝑖
𝑑𝑡

= −𝛾𝑖�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓
𝑖 − 𝛾𝑖�⃗⃗� 𝑖×ℎ⃗ +

𝛼𝑖
𝑀𝑖
�⃗⃗� 𝑖×

𝑑�⃗⃗� 𝑖
𝑑𝑡

−
�⃗⃗� 𝜃𝑖,𝜙𝑖
𝑇2

   (4.96) 

 

where the second term on the right is the effect of the rf-field, the third is the Gilbert Type 

damping with damping parameter 𝛼 and the fourth term is the Bloch-Bloembergen type 

damping term with the transverse magnetization �⃗⃗� 𝜃𝑖,𝜙𝑖 = 𝑚𝜃𝑖
𝜃𝑖 +𝑚𝜙𝑖

�̂�𝑖 with 𝑇2 as the 

transverse relaxation time due to the spin-spin interactions. We now calculate the first 

order contributions of these terms. 

 

• RF torque:  

 

 �⃗⃗� 𝑖×ℎ⃗ 𝑖 = 𝑀𝑖�̂�𝑖×(ℎ𝜃𝑖𝜃𝑖 + ℎ𝜙𝑖�̂�𝑖) = −𝑀𝑖ℎ𝜙𝑖𝜃𝑖 +𝑀𝑖ℎ𝜃𝑖�̂�𝑖  (4.97) 

 

Any magnetic component of the driving rf-field along the radial direction will have zero 

net contribution to the torque, due to the cross product nature of the torque term which 
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favours the perpendicular terms. Therefore, ℎ⃗ 𝑖 is explicity given by ℎ𝜃𝑖𝜃𝑖 + ℎ𝜙𝑖�̂�𝑖 because 

any possible radial term will disappear in the final form. 

 

• Gilbert damping 

 

 𝛼𝑖
𝑀𝑖
�⃗⃗� 𝑖×

𝑑�⃗⃗� 𝑖
𝑑𝑡

=
𝛼𝑖
𝑀𝑖
𝑀𝑖�̂�𝑖×(

𝑑𝑚𝜃𝑖

𝑑𝑡
𝜃𝑖 +

𝑑𝑚𝜙𝑖

𝑑𝑡
�̂�𝑖) (4.98) 

 

Due to the rf excitation, time dependence of the transverse magnetization components can 

be assumed as 

 

𝑚𝜃𝑖
= 𝑚𝜃𝑖

0 𝑒−𝑗𝜔𝑡 

 

𝑚𝜙𝑖
= 𝑚𝜙𝑖

0 𝑒−𝑗𝜔𝑡 

 

so that  
𝑑𝑚𝜃𝑖

𝑑𝑡
= −𝑗𝜔𝑚𝜃𝑖

0 𝑒−𝑗𝜔𝑡 = −𝑗𝜔𝑚𝜃𝑖
   and   

𝑑𝑚𝜙𝑖

𝑑𝑡
= −𝑗𝜔𝑚𝜙𝑖

0 𝑒−𝑗𝜔𝑡 = −𝑗𝜔𝑚𝜙𝑖
. 

Therefore the Gilbert damping term becomes 

 

 𝛼𝑖
𝑀𝑖
�⃗⃗� 𝑖×

𝑑�⃗⃗� 𝑖
𝑑𝑡

=
𝛼𝑖
𝑀𝑖
𝑀𝑖�̂�𝑖×(−𝑗𝜔) (𝑚𝜃𝑖

𝜃𝑖 +𝑚𝜙𝑖
�̂�𝑖)

= 𝑗𝜔𝛼𝑖𝑚𝜙𝑖
𝜃𝑖 − 𝑗𝜔𝛼𝑖𝑚𝜃𝑖

�̂�𝑖  

(4.99) 

 

where 𝜔 is the angular frequency of the rf field and 𝑗 = √−1. 

 

• Bloch-Bloembergen type damping 

 

 
  −
�⃗⃗� 𝜃𝑖,𝜙𝑖
𝑇2

= −
𝑚𝜃𝑖

𝑇2
𝜃𝑖 −

𝑚𝜙𝑖

𝑇2
�̂�𝑖 (4.100) 

 

Putting (4.97), (4.99) and (4.100) into (4.96) and dividing through by 𝛾𝑖, one gets 
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1

𝛾𝑖

𝑑�⃗⃗� 𝑖
𝑑𝑡

=
1

𝛾𝑖

𝑑𝑚𝜃𝑖

𝑑𝑡
𝜃𝑖 +

1

𝛾𝑖

𝑑𝑚𝜙𝑖

𝑑𝑡
�̂�𝑖

= −�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓
𝑖 − (−𝑀𝑖ℎ𝜙𝑖𝜃𝑖 +𝑀𝑖ℎ𝜃𝑖�̂�𝑖) +

𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜙𝑖

𝜃𝑖

−
𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜃𝑖

�̂�𝑖 −
𝑚𝜃𝑖

𝛾𝑖𝑇2
𝜃𝑖 −

𝑚𝜙𝑖

𝛾𝑖𝑇2
�̂�𝑖 

(4.101) 

 

Resolving 𝜃𝑖 and �̂�𝑖 components of (4.101): 

 

 1

𝛾𝑖

𝑑𝑚𝜃𝑖

𝑑𝑡
= (−�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓

𝑖 )
𝜃𝑖
+𝑀𝑖ℎ𝜙𝑖 +

𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜙𝑖

−
𝑚𝜃𝑖

𝛾𝑖𝑇2
 (4.102) 

 

 1

𝛾𝑖

𝑑𝑚𝜙𝑖

𝑑𝑡
= (−�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓

𝑖 )
ϕ𝑖
−𝑀𝑖ℎ𝜃𝑖 −

𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜃𝑖

 −
𝑚𝜙𝑖

𝛾𝑖𝑇2
 (4.103) 

 

In equations (4.102) and (4.103) (−�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓
𝑖 )

𝜃𝑖
 and (−�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓

𝑖 )
𝜙𝑖

stand for the 𝜃𝑖 and �̂�𝑖 

components of the −�⃗⃗� 𝑖×�⃗⃗� 𝑒𝑓𝑓
𝑖  term of (4.101). These components had already been given 

by the right hand sides of equations (4.88) and (4.89). Plugging those components into 

(4.102) and (4.103) yields 

 

 
1

𝛾𝑖

𝑑𝑚𝜃𝑖

𝑑𝑡
= −

1

𝑡𝑖𝑠𝑖𝑛𝜃𝑖
∑ (

ℰ𝜙𝑖𝜃𝑘
𝑀𝑘

𝑚𝜃𝑘 +
ℰ𝜙𝑖𝜙𝑘
𝑀𝑘𝑠𝑖𝑛𝜃𝑘

𝑚𝜙𝑘)

𝑘=𝑖+1,   𝑘≠𝑁+1

𝑘=𝑖−1,   𝑘≠0

+𝑀𝑖ℎ𝜙𝑖

+
𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜙𝑖

−
𝑚𝜃𝑖

𝛾𝑖𝑇2
 

(4.104) 

 

and 

 

 
1

𝛾𝑖

𝑑𝑚𝜙𝑖

𝑑𝑡
=
1

𝑡𝑖
∑ (

ℰ𝜃𝑖𝜃𝑘
𝑀𝑘

𝑚𝜃𝑘 +
ℰ𝜃𝑖𝜙𝑘

𝑀𝑘𝑠𝑖𝑛𝜃𝑘
𝑚𝜙𝑘)

𝑘=𝑖+1,   𝑘≠𝑁+1

𝑘=𝑖−1,   𝑘≠0

 

−𝑀𝑖ℎ𝜃𝑖 −
𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜃𝑖

 −
𝑚𝜙𝑖

𝛾𝑖𝑇2
 

(4.105) 
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The expressions thus obtained give us the equation of motion of the dynamical components 

of magnetization including the effects of the rf-field and damping terms. Once we run the 

summations over the allowed 𝑘-indices in (4.104) and (4.105) and recalling that        

𝑑𝑚𝜃𝑖

𝑑𝑡
= −𝑗𝜔𝑚𝜃𝑖

0 𝑒−𝑗𝜔𝑡 = −𝑗𝜔𝑚𝜃𝑖
  and   

𝑑𝑚𝜙𝑖

𝑑𝑡
= −𝑗𝜔𝑚𝜙𝑖

0 𝑒−𝑗𝜔𝑡 = −𝑗𝜔𝑚𝜙𝑖
 

 

• For 𝑖 = 1  (𝑘 runs from 1 to 2) 

 

 
−
𝑗𝜔

𝛾1
𝑚𝜃1

= −
1

𝑡1𝑀1𝑠𝑖𝑛𝜃1
(ℰ𝜙1𝜃1𝑚𝜃1 +

ℰ𝜙1𝜙1
𝑠𝑖𝑛𝜃1

𝑚𝜙1)

−
1

𝑡1𝑀2𝑠𝑖𝑛𝜃1
(ℰ𝜙1𝜃2𝑚𝜃2 +

ℰ𝜙1𝜙2
𝑠𝑖𝑛𝜃2

𝑚𝜙2) 

         +𝑀1ℎ𝜙1 +
𝑗𝜔

𝛾1
𝛼1𝑚𝜙1

−
𝑚𝜃1

𝛾1𝑇2
 

(4.106) 

 

 
−
𝑗𝜔

𝛾1
𝑚𝜙1

=
1

𝑡1𝑀1
 (ℰ𝜃1𝜃1𝑚𝜃1 +

ℰ𝜃1𝜙1
𝑠𝑖𝑛𝜃1

𝑚𝜙1)

+
1

𝑡1𝑀2
 (ℰ𝜃1𝜃2𝑚𝜃2 +

ℰ𝜃1𝜙2
𝑠𝑖𝑛𝜃2

𝑚𝜙2) 

               −𝑀1ℎ𝜃1 −
𝑗𝜔

𝛾1
𝛼1𝑚𝜃1

 −
𝑚𝜙1

𝛾1𝑇2
 

(4.107) 

 

• for 2 ≤ 𝑖 ≤ 𝑁 − 1  (𝑘 runs from 𝑖 − 1 to 𝑖 + 1) 

 

 
−
𝑗𝜔

𝛾𝑖
𝑚𝜃𝑖

= −
1

𝑡𝑖𝑀𝑖−1𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑖−1𝑚𝜃𝑖−1

+
ℰ𝜙𝑖𝜙𝑖−1
𝑠𝑖𝑛𝜃𝑖−1

𝑚𝜙𝑖−1
)

−
1

𝑡𝑖𝑀𝑖𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑖𝑚𝜃𝑖

+
ℰ𝜙𝑖𝜙𝑖
𝑠𝑖𝑛𝜃𝑖

𝑚𝜙𝑖
)

−
1

𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖
(ℰ𝜙𝑖𝜃𝑖+1𝑚𝜃𝑖+1

+
ℰ𝜙𝑖𝜙𝑖+1
𝑠𝑖𝑛𝜃𝑖+1

𝑚𝜙𝑖+1
) 

         +𝑀𝑖ℎ𝜙𝑖 +
𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜙𝑖

−
𝑚𝜃𝑖

𝛾𝑖𝑇2
 

(4.108) 
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−
𝑗𝜔

𝛾𝑖
𝑚𝜙𝑖

=   
1

𝑡𝑖𝑀𝑖−1
(ℰ𝜃𝑖𝜃𝑖−1𝑚𝜃𝑖−1

+
ℰ𝜃𝑖𝜙𝑖−1
𝑠𝑖𝑛𝜃𝑖−1

𝑚𝜙𝑖−1
)

+
1

𝑡𝑖𝑀𝑖
(ℰ𝜃𝑖𝜃𝑖𝑚𝜃𝑖

+
ℰ𝜃𝑖𝜙𝑖
𝑠𝑖𝑛𝜃𝑖

𝑚𝜙𝑖
)

+
1

𝑡𝑖𝑀𝑖+1
(ℰ𝜃𝑖𝜃𝑖+1𝑚𝜃𝑖+1

+
ℰ𝜃𝑖𝜙𝑖+1
𝑠𝑖𝑛𝜃𝑖+1

𝑚𝜙𝑖+1
) 

−𝑀𝑖ℎ𝜃𝑖 −
𝑗𝜔

𝛾𝑖
𝛼𝑖𝑚𝜃𝑖

 −
𝑚𝜙𝑖

𝛾𝑖𝑇2
 

(4.109) 

 

• and for 𝑖 = 𝑁 (𝑘 runs from 𝑁 − 1 to 𝑁) 

 

 
−
𝑗𝜔

𝛾𝑁
𝑚𝜃𝑁

= −
1

𝑡𝑁𝑀𝑁−1𝑠𝑖𝑛𝜃𝑁
(ℰ𝜙𝑁𝜃𝑁−1𝑚𝜃𝑁−1 +

ℰ𝜙𝑁𝜙𝑁−1
𝑠𝑖𝑛𝜃𝑁−1

𝑚𝜙𝑁−1)

−
1

𝑡𝑁𝑀𝑁𝑠𝑖𝑛𝜃𝑁
(ℰ𝜙𝑁𝜃𝑁𝑚𝜃𝑁 +

ℰ𝜙𝑁𝜙𝑁
𝑠𝑖𝑛𝜃𝑁

𝑚𝜙𝑁) 

+𝑀𝑁ℎ𝜙𝑁 +
𝑗𝜔

𝛾𝑁
𝛼𝑁𝑚𝜙𝑁

−
𝑚𝜃𝑁

𝛾𝑁𝑇2
 

(4.110) 

 

 
−
𝑗𝜔

𝛾𝑁
𝑚𝜙𝑁

=
1

𝑡𝑁𝑀𝑁−1
(ℰ𝜃𝑁𝜃𝑁−1𝑚𝜃𝑁−1 +

ℰ𝜃𝑁𝜙𝑁−1
𝑠𝑖𝑛𝜃𝑁−1

𝑚𝜙𝑁−1)

+
1

𝑡𝑁𝑀𝑁
(ℰ𝜃𝑁𝜃𝑁𝑚𝜃𝑁 +

ℰ𝜃𝑁𝜙𝑁
𝑠𝑖𝑛𝜃𝑁

𝑚𝜙𝑁) 

−𝑀𝑁ℎ𝜃𝑁 −
𝑗𝜔

𝛾𝑁
𝛼𝑁𝑚𝜃𝑁

 −
𝑚𝜙𝑁

𝛾𝑁𝑇2
 

(4.111) 

 

4.2.4. Matrix Representation of the Magnetization Dynamics 

 

The equations from (4.106) to (4.111) represent a set of coupled equations for the 

dynamical components of magnetization of layers from 𝑖 = 1 to 𝑁 under the influence of 

the torque due to the effective magnetic field derived from the surface energy density ℰ of 

the system of 𝑁 coupled FM layers, microwave magnetic field and damping. All these 

coupled equations can now be put into a more compact matrix form 

 

 𝐶 ∙ �⃗⃗� = 𝑀ℎ⃗⃗⃗⃗⃗⃗  (4.112) 
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where 𝐶 is a 2𝑁×2𝑁 dimensional coefficient matrix multiplying a column matrix �⃗⃗�  of 

dimensions 2𝑁×1 composed of the dynamical magnetization components such that its 

transpose reads as 

 

 �⃗⃗�  𝑇 = (𝑚𝜃1 ,𝑚𝜙1 , …… ,𝑚𝜃𝑖
, 𝑚𝜙𝑖

, …… ,𝑚𝜃𝑁 , 𝑚𝜙𝑁) (4.113) 

 

The right hand side of (4.112) is the column matrix 𝑀ℎ⃗⃗⃗⃗⃗⃗  of dimensions 2𝑁×1 with 

elements obtained from the multiplication of the saturation magnetization 𝑀𝑖 of each layer  

by the projection of external microwave field on polar unit vectors of each FM layer such 

that its transpose is given by 

 

 𝑀ℎ⃗⃗⃗⃗⃗⃗  𝑇 = (𝑀1ℎ𝜃1 , 𝑀1ℎ𝜙1 , …… ,𝑀𝑖ℎ𝜃𝑖 , 𝑀𝑖ℎ𝜙𝑖 , …… ,𝑀𝑁ℎ𝜃𝑁 , 𝑀𝑁ℎ𝜙𝑁) (4.114) 

 

In order to obtain the form given by equation (4.112), we reorganize equations (4.106) to 

(4.111) as follows: 

 

From (4.107): 

 

 
(
ℰ𝜃1𝜃1
𝑡1𝑀1

−
𝑗𝜔

𝛾1
𝛼1) ∙ 𝑚𝜃1 + (

ℰ𝜃1𝜙1
𝑡1𝑀1𝑠𝑖𝑛𝜃1

+
𝑗𝜔

𝛾1
−

1

𝛾1𝑇2
) ∙ 𝑚𝜙1

 

+(
ℰ𝜃1𝜃2
𝑡1𝑀2

) ∙ 𝑚𝜃2 + (
ℰ𝜃1𝜙2

𝑡1𝑀2𝑠𝑖𝑛𝜃2
) ∙ 𝑚𝜙2 = 𝑀1ℎ𝜃1  

(4.115) 

 

From (4.106): 

 

 
          (

ℰ𝜙1𝜃1
𝑡1𝑀1𝑠𝑖𝑛𝜃1

+
1

𝛾1𝑇2
−
𝑗𝜔

𝛾1
) ∙ 𝑚𝜃1 + (

ℰ𝜙1𝜙1
𝑡1𝑀1𝑠𝑖𝑛2𝜃1

−
𝑗𝜔

𝛾1
𝛼1) ∙ 𝑚𝜙1

 

+(
ℰ𝜙1𝜃2

𝑡1𝑀2𝑠𝑖𝑛𝜃1
) ∙ 𝑚𝜃2 + (

ℰ𝜙1𝜙2
𝑡1𝑀2𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2

) ∙ 𝑚𝜙2 

= 𝑀1ℎ𝜙1  

(4.116) 

 

From (4.109): 
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(
ℰ𝜃𝑖𝜃𝑖−1
𝑡𝑖𝑀𝑖−1

) ∙ 𝑚𝜃𝑖−1
+ (

ℰ𝜃𝑖𝜙𝑖−1
𝑡𝑖𝑀𝑖−1𝑠𝑖𝑛𝜃𝑖−1

) ∙ 𝑚𝜙𝑖−1
 

+(
ℰ𝜃𝑖𝜃𝑖
𝑡𝑖𝑀𝑖

−
𝑗𝜔

𝛾𝑖
𝛼𝑖) ∙ 𝑚𝜃𝑖

+ (
ℰ𝜃𝑖𝜙𝑖

𝑡𝑖𝑀𝑖𝑠𝑖𝑛𝜃𝑖
+
𝑗𝜔

𝛾𝑖
−

1

𝛾𝑖𝑇2
) ∙ 𝑚𝜙𝑖

 

+(
ℰ𝜃𝑖𝜃𝑖+1
𝑡𝑖𝑀𝑖+1

) ∙ 𝑚𝜃𝑖+1
+ (

ℰ𝜃𝑖𝜙𝑖+1
𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖+1

) ∙ 𝑚𝜙𝑖+1
 

= 𝑀𝑖ℎ𝜃𝑖   

(4.117) 

 

From (4.108): 

 

 
 (

ℰ𝜙𝑖𝜃𝑖−1
𝑡𝑖𝑀𝑖−1𝑠𝑖𝑛𝜃𝑖

) ∙ 𝑚𝜃𝑖−1
+ (

ℰ𝜙𝑖𝜙𝑖−1
𝑡𝑖𝑀𝑖−1𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝜃𝑖−1

) ∙ 𝑚𝜙𝑖−1
 

+(
ℰ𝜙𝑖𝜃𝑖

𝑡𝑖𝑀𝑖𝑠𝑖𝑛𝜃𝑖
−
𝑗𝜔

𝛾𝑖
+

1

𝛾𝑖𝑇2
) ∙ 𝑚𝜃𝑖

+ (
ℰ𝜙𝑖𝜙𝑖

𝑡𝑖𝑀𝑖𝑠𝑖𝑛2𝜃𝑖
−
𝑗𝜔

𝛾𝑖
𝛼𝑖) ∙ 𝑚𝜙𝑖

 

+(
ℰ𝜙𝑖𝜃𝑖+1

𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖
) ∙ 𝑚𝜃𝑖+1

+ (
ℰ𝜙𝑖𝜙𝑖+1

𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝜃𝑖+1
) ∙ 𝑚𝜙𝑖+1

 

= 𝑀𝑖ℎ𝜙𝑖  

(4.118) 

 

From (4.111): 

 

 
(
ℰ𝜃𝑁𝜃𝑁−1
𝑡𝑁𝑀𝑁−1

) ∙ 𝑚𝜃𝑁−1 + (
ℰ𝜃𝑁𝜙𝑁−1

𝑡𝑁𝑀𝑁−1𝑠𝑖𝑛𝜃𝑁−1
) ∙ 𝑚𝜙𝑁−1 

+(
ℰ𝜃𝑁𝜃𝑁
𝑡𝑁𝑀𝑁

−
𝑗𝜔

𝛾𝑁
𝛼𝑁) ∙ 𝑚𝜃𝑁 + (

ℰ𝜃𝑁𝜙𝑁
𝑡𝑁𝑀𝑁𝑠𝑖𝑛𝜃𝑁

+
𝑗𝜔

𝛾𝑁
−

1

𝛾𝑁𝑇2
) ∙ 𝑚𝜙𝑁

 

= 𝑀𝑁ℎ𝜃𝑁  

(4.119) 

 

From (4.110): 

 

 
(

ℰ𝜙𝑁𝜃𝑁−1
𝑡𝑁𝑀𝑁−1𝑠𝑖𝑛𝜃𝑁

) ∙ 𝑚𝜃𝑁−1 + (
ℰ𝜙𝑁𝜙𝑁−1

𝑡𝑁𝑀𝑁−1𝑠𝑖𝑛𝜃𝑁𝑠𝑖𝑛𝜃𝑁−1
) ∙ 𝑚𝜙𝑁−1 

+(
ℰ𝜙𝑁𝜃𝑁

𝑡𝑁𝑀𝑁𝑠𝑖𝑛𝜃𝑁
−
𝑗𝜔

𝛾𝑁
+

1

𝛾𝑁𝑇2
) ∙ 𝑚𝜃𝑁

+ (
ℰ𝜙𝑁𝜙𝑁

𝑡𝑁𝑀𝑁𝑠𝑖𝑛2𝜃𝑁
−
𝑗𝜔

𝛾𝑁
𝛼𝑁) ∙ 𝑚𝜙𝑁

 

= 𝑀𝑁ℎ𝜙𝑁  

(4.120) 
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Thus, the products 𝑀𝑖ℎ𝜃𝑖 and 𝑀𝑖ℎ𝜙𝑖
 (elements of 𝑀ℎ⃗⃗⃗⃗⃗⃗  matrix given in equations (4.112) 

and (4.114)) are obtained 

 

• for 𝑖 = 1 by Equations (4.115) and (4.116) 

 

• for 2 ≤ 𝑖 ≤ 𝑁 − 1 by Equations (4.117) and (4.118) 

 

• and for 𝑖 = 𝑁 by Equations (4.119) and (4.120) 

 

as a linear combination of  𝑚𝜃1 ,𝑚𝜙1 , …… ,𝑚𝜃𝑖
, 𝑚𝜙𝑖

, …… ,𝑚𝜃𝑁 , 𝑚𝜙𝑁  which are the 

elements of �⃗⃗�  matrix given in equations (4.112) and (4.113). Not all the elements of �⃗⃗�  

contribute to 𝑀𝑖ℎ𝜃𝑖 and 𝑀𝑖ℎ𝜙𝑖
 for a given FM layer number 𝑖 and this is due to the fact 

that the coefficients multiplying some 𝑚𝜃𝑘 and 𝑚𝜙𝑘  are zero (physically it is the result of 

the fact that 𝑀𝑖ℎ𝜃𝑖 and 𝑀𝑖ℎ𝜙𝑖
 for a given 𝑖 are dependent upon  𝑚𝜃𝑖

, 𝑚𝜙𝑖
 and upon 

interactions with the nearest neighbours with index numbers ”𝑖 − 1” and “𝑖 + 1”. 

 

It is now instructive to create the matrix form of the dynamics of a multilayer system 

composed of 𝑁 = 3 FM layers separated by nonmagnetic layers and interacting through 

interlayer exchange coupling to deduce the general matrix representation of a system 

composed of any number 𝑁 of FM layers. For 𝑁 = 3 one will calculate 𝑀1ℎ𝜃1, 𝑀1ℎ𝜙1 , 

𝑀2ℎ𝜃2, 𝑀2ℎ𝜙2, 𝑀3ℎ𝜃3  and 𝑀3ℎ𝜙3 , therefore we will need 6 equations for 𝑁 = 3 (that is 

why it is necessary to use a matrix form with dimensions 2𝑁×2𝑁 for 𝐶 and with 

dimensions  2𝑁×1  for  �⃗⃗�   and  𝑀ℎ⃗⃗⃗⃗⃗⃗   for a system of 𝑁 coupled FM layers). 

 

𝑀1ℎ𝜃1 and 𝑀1ℎ𝜙1  are already obtained in (4.115) and (4.116) respectively. To get 𝑀2ℎ𝜃2 

and 𝑀2ℎ𝜙2 we put 𝑖 = 2 into equations (4.117) and (4.118): 

 

From (4.117) with 𝑖 = 2 
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(
ℰ𝜃2𝜃1
𝑡2𝑀1

) ∙ 𝑚𝜃1 + (
ℰ𝜃2𝜙1

𝑡2𝑀1𝑠𝑖𝑛𝜃1
) ∙ 𝑚𝜙1 

+(
ℰ𝜃2𝜃2
𝑡2𝑀2

−
𝑗𝜔

𝛾2
𝛼2) ∙ 𝑚𝜃2 + (

ℰ𝜃2𝜙2
𝑡2𝑀2𝑠𝑖𝑛𝜃2

+
𝑗𝜔

𝛾2
−

1

𝛾2𝑇2
) ∙ 𝑚𝜙2

 

+(
ℰ𝜃2𝜃3
𝑡2𝑀3

) ∙ 𝑚𝜃3 + (
ℰ𝜃2𝜙3

𝑡2𝑀3𝑠𝑖𝑛𝜃3
) ∙ 𝑚𝜙3 

= 𝑀2ℎ𝜃2  

(4.121) 

 

and from (4.118) with 𝑖 = 2 

 

 
 (

ℰ𝜙2𝜃1
𝑡2𝑀1𝑠𝑖𝑛𝜃2

) ∙ 𝑚𝜃1 + (
ℰ𝜙2𝜙1

𝑡2𝑀1𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1
) ∙ 𝑚𝜙1 

+(
ℰ𝜙2𝜃2

𝑡2𝑀2𝑠𝑖𝑛𝜃2
−
𝑗𝜔

𝛾2
+

1

𝛾2𝑇2
) ∙ 𝑚𝜃2 + (

ℰ𝜙2𝜙2
𝑡2𝑀2𝑠𝑖𝑛2𝜃2

−
𝑗𝜔

𝛾2
𝛼2) ∙ 𝑚𝜙2

 

+(
ℰ𝜙2𝜃3

𝑡2𝑀3𝑠𝑖𝑛𝜃2
) ∙ 𝑚𝜃3 + (

ℰ𝜙2𝜙3
𝑡2𝑀3𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃3

) ∙ 𝑚𝜙3 

= 𝑀2ℎ𝜙2  

(4.122) 

 

To get 𝑀3ℎ𝜃3  and 𝑀3ℎ𝜙3, we put 𝑁 = 3 into (4.119) and (4.120). From (4.119) 

 

 
(
ℰ𝜃3𝜃2
𝑡3𝑀2

) ∙ 𝑚𝜃2 + (
ℰ𝜃3𝜙2

𝑡3𝑀2𝑠𝑖𝑛𝜃2
) ∙ 𝑚𝜙2 

+(
ℰ𝜃3𝜃3
𝑡3𝑀3

−
𝑗𝜔

𝛾3
𝛼3) ∙ 𝑚𝜃3 + (

ℰ𝜃3𝜙3
𝑡3𝑀3𝑠𝑖𝑛𝜃3

+
𝑗𝜔

𝛾3
−

1

𝛾3𝑇2
) ∙ 𝑚𝜙3

 

= 𝑀3ℎ𝜃3       

(4.123) 

 

and from (4.120) 

 

 
(

ℰ𝜙3𝜃2
𝑡3𝑀2𝑠𝑖𝑛𝜃3

) ∙ 𝑚𝜃2 + (
ℰ𝜙3𝜙2

𝑡3𝑀2𝑠𝑖𝑛𝜃3𝑠𝑖𝑛𝜃2
) ∙ 𝑚𝜙2 

+(
ℰ𝜙3𝜃3

𝑡3𝑀3𝑠𝑖𝑛𝜃3
−
𝑗𝜔

𝛾3
+

1

𝛾3𝑇2
) ∙ 𝑚𝜃3

+ (
ℰ𝜙3𝜙3

𝑡3𝑀3𝑠𝑖𝑛2𝜃3
−
𝑗𝜔

𝛾3
𝛼3) ∙ 𝑚𝜙3

 

= 𝑀3ℎ𝜙3      

(4.124) 

 

Now, the dynamics of a multilayer system composed of 𝑁 = 3 FM layers is represented by 
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(

  
 

𝑐11 𝑐12
𝑐21 𝑐22

𝑐13 𝑐14
𝑐23 𝑐24

𝑐15 𝑐16
𝑐25 𝑐26

𝑐31 𝑐32
𝑐41 𝑐42

𝑐33 𝑐34
𝑐43 𝑐44

𝑐35 𝑐36
𝑐45 𝑐46

𝑐51 𝑐52
𝑐61 𝑐62

𝑐53 𝑐54
𝑐63 𝑐64

𝑐55 𝑐56
𝑐65 𝑐66)

  
 
×

(

 
 
 

𝑚𝜃1
𝑚𝜙1
𝑚𝜃2
𝑚𝜙2
𝑚𝜃3
𝑚𝜙3)

 
 
 
=

(

 
 
 
 

𝑀1ℎ𝜃1
𝑀1ℎ𝜙1
𝑀2ℎ𝜃2
𝑀2ℎ𝜙2
𝑀3ℎ𝜃3
𝑀3ℎ𝜙3)

 
 
 
 

 (4.125) 

 

which is the form promised in equation (4.112), that is 𝐶. �⃗⃗� = 𝑀ℎ⃗⃗⃗⃗⃗⃗ . We see from (4.125) 

that 

 

 𝑐11𝑚𝜃1 + 𝑐12𝑚𝜙1 + 𝑐13𝑚𝜃2 + 𝑐14𝑚𝜙2
+ 𝑐15𝑚𝜃3 + 𝑐16𝑚𝜙3

= 𝑀1ℎ𝜃1  (4.126) 

 

 𝑐21𝑚𝜃1 + 𝑐22𝑚𝜙1 + 𝑐23𝑚𝜃2 + 𝑐24𝑚𝜙2
+ 𝑐25𝑚𝜃3 + 𝑐26𝑚𝜙3

= 𝑀1ℎ𝜙1  (4.127) 

 

 𝑐31𝑚𝜃1 + 𝑐32𝑚𝜙1 + 𝑐33𝑚𝜃2 + 𝑐34𝑚𝜙2
+ 𝑐35𝑚𝜃3 + 𝑐36𝑚𝜙3

= 𝑀2ℎ𝜃2  (4.128) 

 

   𝑐41𝑚𝜃1 + 𝑐42𝑚𝜙1 + 𝑐43𝑚𝜃2 + 𝑐44𝑚𝜙2
+ 𝑐45𝑚𝜃3 + 𝑐46𝑚𝜙3

= 𝑀2ℎ𝜙2  (4.129) 

 

   𝑐51𝑚𝜃1 + 𝑐52𝑚𝜙1 + 𝑐53𝑚𝜃2 + 𝑐54𝑚𝜙2
+ 𝑐55𝑚𝜃3 + 𝑐56𝑚𝜙3

= 𝑀3ℎ𝜃3  (4.130) 

 

  𝑐61𝑚𝜃1 + 𝑐62𝑚𝜙1 + 𝑐63𝑚𝜃2 + 𝑐64𝑚𝜙2
+ 𝑐65𝑚𝜃3 + 𝑐66𝑚𝜙3

= 𝑀3ℎ𝜙3  (4.131) 

 

Comparison of (4.126) with (4.115) which was given by 

 

(
ℰ𝜃1𝜃1
𝑡1𝑀1

−
𝑗𝜔

𝛾1
𝛼1) ∙ 𝑚𝜃1 + (

ℰ𝜃1𝜙1
𝑡1𝑀1𝑠𝑖𝑛𝜃1

+
𝑗𝜔

𝛾1
−

1

𝛾1𝑇2
) ∙ 𝑚𝜙1

 

+(
ℰ𝜃1𝜃2
𝑡1𝑀2

) ∙ 𝑚𝜃2 + (
ℰ𝜃1𝜙2

𝑡1𝑀2𝑠𝑖𝑛𝜃2
) ∙ 𝑚𝜙2 

= 𝑀1ℎ𝜃1 

 

reveals that  
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𝑐11 =

ℰ𝜃1𝜃1
𝑡1𝑀1

−
𝑗𝜔

𝛾1
𝛼1 

𝑐12 =
ℰ𝜃1𝜙1

𝑡1𝑀1𝑠𝑖𝑛𝜃1
+
𝑗𝜔

𝛾1
−

1

𝛾1𝑇2
 

𝑐13 =
ℰ𝜃1𝜃2
𝑡1𝑀2

 

𝑐14 =
ℰ𝜃1𝜙2

𝑡1𝑀2𝑠𝑖𝑛𝜃2
 

𝑐15 = 𝑐16 = 0 

 

(4.132) 

If the same judgement is applied to the remaining rows of (4.125) expressed in equations 

(4.127) to (4.131) and they are respectively compared with equations (4.116) and (4.121) 

to (4.124), all the other matrix elements the coefficient matrix 𝐶 can be obtained as follows 

 

Comparison of (4.127) with (4.116) yields 

 

 
𝑐21 =

ℰ𝜙1𝜃1
𝑡1𝑀1𝑠𝑖𝑛𝜃1

+
1

𝛾1𝑇2
−
𝑗𝜔

𝛾1
 

𝑐22 =
ℰ𝜙1𝜙1

𝑡1𝑀1𝑠𝑖𝑛2𝜃1
−
𝑗𝜔

𝛾1
𝛼1 ;  𝑐23 =

ℰ𝜙1𝜃2
𝑡1𝑀2𝑠𝑖𝑛𝜃1

 

𝑐24 =
ℰ𝜙1𝜙2

𝑡1𝑀2𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2
 ;  𝑐25 = 𝑐26 = 0 

 

(4.133) 

 

From (4.128) and (4.121) 

 

 
𝑐31 =

ℰ𝜃2𝜃1
𝑡2𝑀1

 ;  𝑐32 =
ℰ𝜃2𝜙1

𝑡2𝑀1𝑠𝑖𝑛𝜃1
 ;  𝑐33 =

ℰ𝜃2𝜃2
𝑡2𝑀2

−
𝑗𝜔

𝛾2
𝛼2 

𝑐34 =
ℰ𝜃2𝜙2

𝑡2𝑀2𝑠𝑖𝑛𝜃2
+
𝑗𝜔

𝛾2
−

1

𝛾2𝑇2
 

𝑐35 =
ℰ𝜃2𝜃3
𝑡2𝑀3

  ;  𝑐36 =
ℰ𝜃2𝜙3

𝑡2𝑀3𝑠𝑖𝑛𝜃3
 

(4.134) 

 

From (4.129) and (4.122) 
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𝑐41 =

ℰ𝜙2𝜃1
𝑡2𝑀1𝑠𝑖𝑛𝜃2

 ;  𝑐42 =
ℰ𝜙2𝜙1

𝑡2𝑀1𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1
 

𝑐43 =
ℰ𝜙2𝜃2

𝑡2𝑀2𝑠𝑖𝑛𝜃2
−
𝑗𝜔

𝛾2
+

1

𝛾2𝑇2
 ;  𝑐44 =

ℰ𝜙2𝜙2
𝑡2𝑀2𝑠𝑖𝑛2𝜃2

−
𝑗𝜔

𝛾2
𝛼2 

𝑐45 =
ℰ𝜙2𝜃3

𝑡2𝑀3𝑠𝑖𝑛𝜃2
 ;  𝑐46 =

ℰ𝜙2𝜙3
𝑡2𝑀3𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃3

 

(4.135) 

 

From (4.130) and (4.123) 

 

 
𝑐51 = 𝑐52 = 0 ;  𝑐53 =

ℰ𝜃3𝜃2
𝑡3𝑀2

 

𝑐54 =
ℰ𝜃3𝜙2

𝑡3𝑀2𝑠𝑖𝑛𝜃2
 ;  𝑐55 =

ℰ𝜃3𝜃3
𝑡3𝑀3

−
𝑗𝜔

𝛾3
𝛼3 

𝑐56 =
ℰ𝜃3𝜙3

𝑡3𝑀3𝑠𝑖𝑛𝜃3
+
𝑗𝜔

𝛾3
−

1

𝛾3𝑇2
 

(4.136) 

 

From (4.131) and (4.124) 

 

 
           𝑐61 = 𝑐62 = 0 ;  𝑐63 =

ℰ𝜙3𝜃2
𝑡3𝑀2𝑠𝑖𝑛𝜃3

 

𝑐64 =
ℰ𝜙3𝜙2

𝑡3𝑀2𝑠𝑖𝑛𝜃3𝑠𝑖𝑛𝜃2
 ;  𝑐65 =

ℰ𝜙3𝜃3
𝑡3𝑀3𝑠𝑖𝑛𝜃3

−
𝑗𝜔

𝛾3
+

1

𝛾3𝑇2
 

𝑐66 =
ℰ𝜙3𝜙3

𝑡3𝑀3𝑠𝑖𝑛2𝜃3
−
𝑗𝜔

𝛾3
𝛼3 

(4.137) 

 

Expressions (4.132) to (4.137) give us the components of the 𝐶-matrix first introduced in 

equation (4.112) and exemplified in (4.125) for a system of 𝑁 = 3 FM layers. Therefore, 

the system of 𝑁 = 3 FM layers interacting via interlayer exchange coupling will be 

represented by the matrix (4.125) which now has the form given below with only its 

nonzero components. 
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(

  
 

𝑐11 𝑐12
𝑐21 𝑐22

𝑐13 𝑐14
𝑐23 𝑐24

0 0
0 0

𝑐31 𝑐32
𝑐41 𝑐42

𝑐33 𝑐34
𝑐43 𝑐44

𝑐35 𝑐36
𝑐45 𝑐46

0 0
0 0

𝑐53 𝑐54
𝑐63 𝑐64

𝑐55 𝑐56
𝑐65 𝑐66)

  
 
×

(

 
 
 

𝑚𝜃1
𝑚𝜙1
𝑚𝜃2
𝑚𝜙2
𝑚𝜃3
𝑚𝜙3)

 
 
 
=

(

 
 
 
 

𝑀1ℎ𝜃1
𝑀1ℎ𝜙1
𝑀2ℎ𝜃2
𝑀2ℎ𝜙2
𝑀3ℎ𝜃3
𝑀3ℎ𝜙3)

 
 
 
 

 (4.138) 

 

If one were to compute the matrix representation of a multilayer system composed of , let’s 

say, 𝑁 = 5 FM layers separated by nonmagnetic layers and interacting through interlayer 

exchange coupling, the coefficient matrix would be as follows 

 

 

(

 
 
 
 
 
 
 
 

𝑐11 𝑐12 𝑐13 𝑐14 0 0 0 0 0 0
𝑐21 𝑐22 𝑐23 𝑐24 0 0 0 0 0 0
𝑐31 𝑐32 𝑐33 𝑐34 𝑐35 𝑐36 0 0 0 0
𝑐41 𝑐42 𝑐43 𝑐44 𝑐45 𝑐46 0 0 0 0
0 0 𝑐53 𝑐54 𝑐55 𝑐56 𝑐57 𝑐58 0 0
0 0 𝑐63 𝑐64 𝑐65 𝑐66 𝑐67 𝑐68 0 0
0 0 0 0 𝑐75 𝑐76 𝑐77 𝑐78 𝑐79 𝑐7,10
0 0 0 0 𝑐85 𝑐86 𝑐87 𝑐88 𝑐89 𝑐8,10
0 0 0 0 0 0 𝑐97 𝑐98 𝑐99 𝑐9,10
0 0 0 0 0 0 𝑐10,7 𝑐10,8 𝑐10,9 𝑐10,10)

 
 
 
 
 
 
 
 

×

(

 
 
 
 
 
 
 

𝑚𝜃1
𝑚𝜙1
𝑚𝜃2
𝑚𝜙2
𝑚𝜃3
𝑚𝜙3
𝑚𝜃4
𝑚𝜙4
𝑚𝜃5
𝑚𝜙5)

 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

𝑀1ℎ𝜃1
𝑀1ℎ𝜙1
𝑀2ℎ𝜃2
𝑀2ℎ𝜙2
𝑀3ℎ𝜃3
𝑀3ℎ𝜙3
𝑀4ℎ𝜃4
𝑀4ℎ𝜙4
𝑀5ℎ𝜃5
𝑀5ℎ𝜙5)

 
 
 
 
 
 
 
 
 

 (4.139) 

 

We see from (4.139) that the first two rows of the 𝐶-matrix are responsible for connecting 

𝑀1ℎ𝜃1 and 𝑀1ℎ𝜙1  to 𝑚𝜃1 , 𝑚𝜙1 , 𝑚𝜃2 , 𝑚𝜙2. For the first two rows, therefore, only the first 

four components are non-zero because  𝑀1ℎ𝜃1  and 𝑀1ℎ𝜙1  are only coupled to dynamical 

magnetizations 𝑚𝜃𝑘 , 𝑚𝜙𝑘 with 𝑘 ≤ 2 explicitly, i.e. 𝑚𝜃1 , 𝑚𝜙1 , 𝑚𝜃2 , 𝑚𝜙2. The same holds 

true for 𝑀5ℎ𝜃5 and 𝑀5ℎ𝜙5 that they are only coupled to those 𝑚𝜃𝑘 , 𝑚𝜙𝑘 with 𝑘 ≥ 𝑁 − 1, 

i.e. 𝑚𝜃4 , 𝑚𝜙4 , 𝑚𝜃5 , 𝑚𝜙5. Therefore, only the last four components of the last two rows are 

nonzero. For the 𝑀𝑖ℎ𝜃𝑖 and 𝑀𝑖ℎ𝜙𝑖 of the intermediate layers with 2 ≤ 𝑖 ≤ 𝑁 − 1, they are 

coupled to those 𝑚𝜃𝑘 , 𝑚𝜙𝑘 with 𝑖 − 1 ≤ 𝑘 ≤ 𝑖 + 1. For example, for 𝑖 = 2 we have 𝑀2ℎ𝜃2 

and 𝑀2ℎ𝜙2 coupled to 𝑚𝜃𝑘 , 𝑚𝜙𝑘 with 𝑘 = 1,2 and 3, i.e. to 𝑚𝜃1 , 𝑚𝜙1 , 𝑚𝜃2 ,𝑚𝜙2 , 𝑚𝜃3 , 𝑚𝜙3. 

Therefore, there are only six nonzero components in a given row of the 𝐶-matrix except 

the first two and the last two rows where there are only four. Starting with the third row, 

we have the initial six components in the row being non-zero which is also true for the 

fourth row. Then, this block of six nonzero components shift to the right by two columns 

for every two rows. 
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4.2.5. General Rules for Calculating the Nonzero Elements of the Matrix 

Representation 

 

The aim of our analysis so far was to obtain the general form of the matrix representation 

of the magnetization dynamics of a multilayer system composed of FM layers interacting 

through interlayer exchange coupling mediated by spacer layers. Since this general outlook 

is obtained that shed light on where the nonzero components are located, we now turn our 

attention to finding out the general rules for calculating these non-zero components of the 

𝐶-matrix for a multilayer system for any given number 𝑁 of FM layers. 

 

If examined carefully, it is seen from equations from (4.132) to (4.137) written for the 

elements of the 𝐶-matrix (which were only for a multilayer with 𝑁 = 3 FM layers but 

which can be generalized as we are set out to do), one realizes that the mathematical 

expressions of the components can be grouped to only 12 number of distinct forms. Below 

are those distinct forms forming recursive relationships that can be utilized to calculate the 

matrix components of the 𝐶-matrix by examining what we found earlier: 

 

  

𝑐11 =
ℰ𝜃1𝜃1
𝑡1𝑀1

−
𝑗𝜔

𝛾1
𝛼1 

 
⇒   𝑐2𝑖−1,2𝑖−1 

 

=
ℰ𝜃𝑖𝜃𝑖
𝑡𝑖𝑀𝑖

−
𝑗𝜔

𝛾𝑖
𝛼𝑖 

 

1 ≤ 𝑖 ≤ 𝑁, for any 𝑁 

𝑗 = √−1 

 

𝑐33 =
ℰ𝜃2𝜃2
𝑡2𝑀2

−
𝑗𝜔

𝛾2
𝛼2 

 

 

𝑐55 =
ℰ𝜃3𝜃3
𝑡3𝑀3

−
𝑗𝜔

𝛾3
𝛼3 

 
 

(4.140) 
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𝑐12 =
ℰ𝜃1𝜙1

𝑡1𝑀1𝑠𝑖𝑛𝜃1
+
𝑗𝜔

𝛾1
−

1

𝛾1𝑇2
 

 

⇒   𝑐2𝑖−1,2𝑖 

 

=
ℰ𝜃𝑖𝜙𝑖

𝑡𝑖𝑀𝑖𝑠𝑖𝑛𝜃𝑖
+
𝑗𝜔

𝛾𝑖
−

1

𝛾𝑖𝑇2
 

 

1 ≤ 𝑖 ≤ 𝑁, for any 𝑁 

 

𝑗 = √−1 

 

𝑐34 =
ℰ𝜃2𝜙2

𝑡2𝑀2𝑠𝑖𝑛𝜃2
+
𝑗𝜔

𝛾2
−

1

𝛾2𝑇2
 

 

 

𝑐56 =
ℰ𝜃3𝜙3

𝑡3𝑀3𝑠𝑖𝑛𝜃3
+
𝑗𝜔

𝛾3
−

1

𝛾3𝑇2
 

 
 

(4.141) 

 

 

  

𝑐21 =
ℰ𝜙1𝜃1

𝑡1𝑀1𝑠𝑖𝑛𝜃1
+

1

𝛾1𝑇2
−
𝑗𝜔

𝛾1
 

 

⇒   𝑐2𝑖,2𝑖−1 

 

=
ℰ𝜙𝑖𝜃𝑖

𝑡𝑖𝑀𝑖𝑠𝑖𝑛𝜃𝑖
+

1

𝛾𝑖𝑇2
−
𝑗𝜔

𝛾𝑖
 

 

1 ≤ 𝑖 ≤ 𝑁, for any 𝑁 

 

𝑗 = √−1 

 

𝑐43 =
ℰ𝜙2𝜃2

𝑡2𝑀2𝑠𝑖𝑛𝜃2
+

1

𝛾2𝑇2
−
𝑗𝜔

𝛾2
 

 

 

𝑐65 =
ℰ𝜙3𝜃3

𝑡3𝑀3𝑠𝑖𝑛𝜃3
+

1

𝛾3𝑇2
−
𝑗𝜔

𝛾3
 

 
 

(4.142) 
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𝑐22 =
ℰ𝜙1𝜙1

𝑡1𝑀1𝑠𝑖𝑛2𝜃1
−
𝑗𝜔

𝛾1
𝛼1 

 

⇒   𝑐2𝑖,2𝑖 

 

=
ℰ𝜙𝑖𝜙𝑖

𝑡𝑖𝑀𝑖𝑠𝑖𝑛2𝜃𝑖
−
𝑗𝜔

𝛾𝑖
𝛼𝑖  

 

1 ≤ 𝑖 ≤ 𝑁, for any 𝑁 

 

𝑗 = √−1 

 

𝑐44 =
ℰ𝜙2𝜙2

𝑡2𝑀2𝑠𝑖𝑛2𝜃2
−
𝑗𝜔

𝛾2
𝛼2 

 

 

𝑐66 =
ℰ𝜙3𝜙3

𝑡3𝑀3𝑠𝑖𝑛2𝜃3
−
𝑗𝜔

𝛾3
𝛼3 

 
 

(4.143) 

 

 

  

𝑐13 =
ℰ𝜃1𝜃2
𝑡1𝑀2

 

 

⇒   𝑐2𝑖−1,2𝑖+1 

 

=
ℰ𝜃𝑖𝜃𝑖+1
𝑡𝑖𝑀𝑖+1

 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐35 =
ℰ𝜃2𝜃3
𝑡2𝑀3

 

 

 

…𝑐57 =
ℰ𝜃3𝜃4
𝑡3𝑀4

 

 
 

(4.144) 
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𝑐31 =
ℰ𝜃2𝜃1
𝑡2𝑀1

 

 

⇒   𝑐2𝑖+1,2𝑖−1 

 

=
ℰ𝜃𝑖+1𝜃𝑖
𝑡𝑖+1𝑀𝑖

 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐53 =
ℰ𝜃3𝜃2
𝑡3𝑀2

 

 

 

…𝑐75 =
ℰ𝜃4𝜃3
𝑡4𝑀3

 

 
 

(4.145) 

 

 

  

𝑐14 =
ℰ𝜃1𝜙2

𝑡1𝑀2𝑠𝑖𝑛𝜃2
 

 

⇒   𝑐2𝑖−1,2𝑖+2 

 

=
ℰ𝜃𝑖𝜙𝑖+1

𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖+1
 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐36 =
ℰ𝜃2𝜙3

𝑡2𝑀3𝑠𝑖𝑛𝜃3
 

 

 

…𝑐58 =
ℰ𝜃3𝜙4

𝑡3𝑀4𝑠𝑖𝑛𝜃4
 

 
 

(4.146) 
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 𝑐41 =
ℰ𝜙2𝜃1

𝑡2𝑀1𝑠𝑖𝑛𝜃2
 

 

⇒   𝑐2𝑖+2,2𝑖−1 

 

=
ℰ𝜙𝑖+1𝜃𝑖

𝑡𝑖+1𝑀𝑖𝑠𝑖𝑛𝜃𝑖+1
 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐63 =
ℰ𝜙3𝜃2

𝑡3𝑀2𝑠𝑖𝑛𝜃3
 

 

 

…𝑐85 =
ℰ𝜙4𝜃3

𝑡4𝑀3𝑠𝑖𝑛𝜃4
 

 
 

(4.147) 

 

 

  

𝑐23 =
ℰ𝜙1𝜃2

𝑡1𝑀2𝑠𝑖𝑛𝜃1
 

 

⇒   𝑐2𝑖,2𝑖+1 

 

=
ℰ𝜙𝑖𝜃𝑖+1

𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖
 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐45 =
ℰ𝜙2𝜃3

𝑡2𝑀3𝑠𝑖𝑛𝜃2
 

 

 

…𝑐67 =
ℰ𝜙3𝜃4

𝑡3𝑀4𝑠𝑖𝑛𝜃3
 

 
 

(4.148) 
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𝑐32 =
ℰ𝜃2𝜙1

𝑡2𝑀1𝑠𝑖𝑛𝜃1
 

 

⇒   𝑐2𝑖+1,2𝑖 

 

=
ℰ𝜃𝑖+1𝜙𝑖

𝑡𝑖+1𝑀𝑖𝑠𝑖𝑛𝜃𝑖
 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐54 =
ℰ𝜃3𝜙2

𝑡3𝑀2𝑠𝑖𝑛𝜃2
 

 

 

…𝑐76 =
ℰ𝜃4𝜙3

𝑡4𝑀3𝑠𝑖𝑛𝜃3
 

 
 

(4.149) 

 

 

  

𝑐24 =
ℰ𝜙1𝜙2

𝑡1𝑀2𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2
 

 

⇒   𝑐2𝑖,2𝑖+2 

 

=
ℰ𝜙𝑖𝜙𝑖+1

𝑡𝑖𝑀𝑖+1𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝜃𝑖+1
 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐46 =
ℰ𝜙2𝜙3

𝑡2𝑀3𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃3
 

 

 

…𝑐68 =
ℰ𝜙3𝜙4

𝑡3𝑀4𝑠𝑖𝑛𝜃3𝑠𝑖𝑛𝜃4
 

 
 

(4.150) 
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𝑐42 =
ℰ𝜙2𝜙1

𝑡2𝑀1𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1
 

 

⇒   𝑐2𝑖+2,2𝑖 

 

=
ℰ𝜙𝑖+1𝜙𝑖

𝑡𝑖+1𝑀𝑖𝑠𝑖𝑛𝜃𝑖+1𝑠𝑖𝑛𝜃𝑖
 

 

1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑁 ≥ 2 

 

𝑗 = √−1 

 

𝑐64 =
ℰ𝜙3𝜙2

𝑡3𝑀2𝑠𝑖𝑛𝜃3𝑠𝑖𝑛𝜃2
 

 

 

…𝑐86 =
ℰ𝜙4𝜙3

𝑡4𝑀3𝑠𝑖𝑛𝜃4𝑠𝑖𝑛𝜃3
 

 
 

(4.151) 

 

 

• Expressions from (4.140) to (4.151) give us the recursive formulae for the nonzero 

elements of the 𝐶-matrix along with their range of valid 𝑖 and 𝑁 values.  

 

• The first four expressions, (4.140) to (4.143), are valid for a multilayer system of 

any number 𝑁 of FM layers and the index 𝑖 is to run in the range 1 ≤ 𝑖 ≤ 𝑁.  

 

• However, the other eight expressions from (4.144) to (4.151) are only to be applied 

to multilayers consisting of at least 𝑁 = 2 FM layers with the restriction on the 

index 𝑖 as 1 ≤ 𝑖 ≤ 𝑁 − 1. 

 

To clear these restrictions consider the case where there is only one FM layer. This FM 

layer will have only two dynamical magnetization components and the matrix form of the 

dynamics of the system will be  

 

(
𝑐11 𝑐12
𝑐21 𝑐22

)× (
𝑚𝜃1
𝑚𝜙1

) = (
𝑀1ℎ𝜃1
𝑀1ℎ𝜙1

) 

 

The elements 𝑐11, 𝑐12, 𝑐21 and 𝑐22 are calculated by expressions written for 𝑐2𝑖−1,2𝑖−1, 

𝑐2𝑖−1,2𝑖, 𝑐2𝑖,2𝑖−1 and 𝑐2𝑖,2𝑖 given respectively by (4.140), (4.141), (4.142) and (4.143). So, 
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for this system of 𝑁 = 1 FM layer, we will only need expressions from (4.140) to (4.143) 

which are valid for any number 𝑁 of FM layers and the condition 1 ≤ 𝑖 ≤ 𝑁 will 

guarantee that the only value to be assumed by 𝑖 is 1 because 𝑁 = 1 for this specific case. 

The expressions given by (4.144) to (4.151) are restricted to the cases for 𝑁 ≥ 2 and 

therefore they will not be calculated. 

 

In the case of 𝑁 = 2, the matrix representation will be 

 

(

𝑐11 𝑐12 𝑐13 𝑐14
𝑐21 𝑐22 𝑐23 𝑐24
𝑐31 𝑐32 𝑐33 𝑐34
𝑐41 𝑐42 𝑐43 𝑐44

)×(

𝑚𝜃1
𝑚𝜙1
𝑚𝜃2
𝑚𝜙2

) =

(

 
 

𝑀1ℎ𝜃1
𝑀1ℎ𝜙1
𝑀2ℎ𝜃2
𝑀2ℎ𝜙2)

 
 

 

 

This time, expressions (4.140) to (4.143) will be used to calculate 𝑐11, 𝑐12, 𝑐21 and 𝑐22 with 

the index 𝑖 set to 1 and 𝑐33, 𝑐34, 𝑐43 and 𝑐44  with the index 𝑖 set to 2 because this time 𝑁 =

2 and the condition 1 ≤ 𝑖 ≤ 𝑁 imposed on expressions (4.140) to (4.143) will allow 𝑖 to 

run from 1 to 2. The remaining eight components of the 𝐶-matrix will be calculated by 

expressions (4.144) to (4.151) which were restricted to conditions i) 𝑁 ≥ 2 which is met 

because 𝑁 = 2 in this case and ii) 1 ≤ 𝑖 ≤ 𝑁 − 1 and this latter condition will only allow 

the index 𝑖 to assume a single value, namely 𝑖 = 1. Therefore, no unneeded matrix 

components will be calculated by expressions (4.144) to (4.151). 

 

Once the nonzero matrix elements of the 𝐶-matrix defined in equation (4.112) by  

𝐶 ∙ �⃗⃗� = 𝑀ℎ⃗⃗⃗⃗⃗⃗  are determined via running equations (4.140) to (4.151) with the appropriate 

range of 𝑖 and 𝑁 values, its inverse (𝐶−1) can be utilized such that  

 

 �⃗⃗� = 𝐶−1. 𝑀ℎ⃗⃗⃗⃗⃗⃗  (4.152) 

 

gives us the components of the dynamical magnetization, transpose of which was given by 

equation (4.113) as 

 

�⃗⃗�  𝑇 = (𝑚𝜃1 , 𝑚𝜙1 , …… ,𝑚𝜃𝑖
, 𝑚𝜙𝑖

, …… ,𝑚𝜃𝑁 , 𝑚𝜙𝑁) 
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where 𝑀ℎ⃗⃗⃗⃗⃗⃗  in (4.152) was defined in (4.114) as 

 

𝑀ℎ⃗⃗⃗⃗⃗⃗  𝑇 = (𝑀1ℎ𝜃1 , 𝑀1ℎ𝜙1 , …… ,𝑀𝑖ℎ𝜃𝑖 , 𝑀𝑖ℎ𝜙𝑖 , …… ,𝑀𝑁ℎ𝜃𝑁 , 𝑀𝑁ℎ𝜙𝑁) 

 

4.2.6. Extracting Dynamical Magnetic Susceptibility 

 

Microwave power absorption is proportional to average dynamical magnetization which is 

to be constructed from the contributions of all layers. Therefore, one can calculate the 𝜃 

and 𝜙 components of the dynamical magnetization, namely 𝑚𝜃 and 𝑚𝜙, of each layer by 

the steps given above and then these two components can be projected onto the 𝑥-axis on 

which the magnetic field component ℎ𝑥
0 of the rf-field resides. After summing up all the 

contributions from all the layers, the resultant dynamical magnetization on 𝑥-axis (𝑚𝑥) is 

divided by ℎ𝑥
0 such that the average magnetic susceptibility becomes 

 

 𝜒 =
𝑚𝑥

ℎ𝑥
0  (4.153) 

 

This method is not restricted to those geometries where magnetic component of the 

microwave field is on the 𝑥-axis but can be applied to any polarization of the ℎ-field by 

considering the projections of dynamical magnetizations on to the respective polarization 

axis of the ℎ-field. In this example, we are considering a geometry where the microwave ℎ-

field is on the x-axis (this is known as the out of plane geometry). 

 

In order to calculate 𝜒, we need to write down ℎ𝜃𝑖 and ℎ𝜙𝑖 of any layer 𝑖 in terms of ℎ𝑥
0. 

Therefore, we have to find out the projection of ℎ𝑥
0 onto the 𝜃 and �̂� axes as follows 

 

 ℎ𝜃 = ℎ𝑥
0⃗⃗⃗⃗ ∙ 𝜃 (4.154) 

 

and 

 

 ℎ𝜙 = ℎ𝑥
0⃗⃗⃗⃗ ∙ �̂� (4.155) 
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where 

 

 ℎ𝑥
0⃗⃗⃗⃗ = ℎ𝑥

0 𝑖̂ (4.156) 

 

in which 𝑖̂ is the Cartesian unit vector along the 𝑥-axis. To perform the inner products 

given (4.154) and (4.155), one needs to recall the transformation from Cartesian unit 

vectors to the ones in spherical geometry as given by 

 

 
(
�̂�
𝜃
�̂�
) = [

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 −𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0

] ∙ (
𝑖̂
𝑗̂

�̂�

)  (4.157) 

 

From (4.157) one can get 

 

 𝜃 = 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 𝑖̂ + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑗̂ − 𝑠𝑖𝑛𝜃 �̂� (4.158) 

 

 �̂� = −𝑠𝑖𝑛𝜙 𝑖̂ + 𝑐𝑜𝑠𝜙 𝑗̂ (4.159) 

 

Using (4.156) for ℎ𝑥
0⃗⃗⃗⃗  and (4.158) for 𝜃, ℎ𝜃 in (4.154) becomes 

 

ℎ𝜃 = ℎ𝑥
0⃗⃗⃗⃗ ∙ 𝜃 =  ℎ𝑥

0 𝑖̂ ∙ (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 𝑖̂ + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑗̂ − 𝑠𝑖𝑛𝜃 �̂�) = ℎ𝑥
0𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 

 

which reads for a given layer number 𝑖 as 

 

 ℎ𝜃𝑖 = ℎ𝑥
0𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝜙𝑖  (4.160) 

 

Following the same judgement and using (4.156) and (4.159) in (4.155) one gets 

 

ℎ𝜙 = ℎ𝑥
0⃗⃗⃗⃗ ∙ �̂� = ℎ𝑥

0 𝑖̂ ∙ (−𝑠𝑖𝑛𝜙 𝑖̂ + 𝑐𝑜𝑠𝜙 𝑗̂) = −ℎ𝑥
0𝑠𝑖𝑛𝜙 

 

which then yields for layer number 𝑖 
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 ℎ𝜙𝑖 = −ℎ𝑥
0𝑠𝑖𝑛𝜙𝑖  (4.161) 

 

We are now able to replace ℎ𝜃𝑖 and ℎ𝜙𝑖  in  𝑀ℎ⃗⃗⃗⃗⃗⃗  𝑇 given by (4.114) as 

 

𝑀ℎ⃗⃗⃗⃗⃗⃗  𝑇 = (𝑀1ℎ𝜃1 , 𝑀1ℎ𝜙1 , …… ,𝑀𝑖ℎ𝜃𝑖 , 𝑀𝑖ℎ𝜙𝑖 , …… ,𝑀𝑁ℎ𝜃𝑁 , 𝑀𝑁ℎ𝜙𝑁) 

 

by the expressions given in (4.160) and (4.161). However, 𝜒 = 𝑚𝑥 ℎ𝑥
0⁄  implies that we also 

have to write down 𝑚𝑥 in terms of 𝑚𝜃𝑖
’s and 𝑚𝜙𝑖

’s as pointed out early in this chapter. 

Therefore, we project each 𝑚𝜃𝑖
 and 𝑚𝜙𝑖

 onto the 𝑥-axis to find the contribution of each 

layer to 𝑚𝑥 and then sum them up from 𝑖 = 1 to 𝑖 = 𝑁 where 𝑁 is the number of FM 

layers. 

 

The contribution of the dynamic magnetization of layer 𝑖 to 𝑚𝑥 is given by 

 

 𝑚𝑥
𝑖 = 𝑚𝜃𝑖

𝑥 +𝑚𝜙𝑖
𝑥  (4.162) 

 

where 𝑚𝜃𝑖
𝑥  and 𝑚𝜙𝑖

𝑥  are projections of 𝑚𝜃𝑖
 and  𝑚𝜙𝑖

 onto the 𝑥-axis. 𝑚𝜃𝑖
𝑥  can be found by 

 

𝑚𝜃𝑖
𝑥 = �⃗⃗� 𝜃𝑖 ∙ 𝑖̂ = 𝑚𝜃𝑖

𝜃𝑖 ∙ 𝑖̂ 

⇒   𝑚𝜃𝑖
𝑥 = 𝑚𝜃𝑖

(𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝜙𝑖  𝑖̂ + 𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝜙𝑖  𝑗̂ − 𝑠𝑖𝑛𝜃𝑖  �̂�) ∙ 𝑖̂ 

 

which gives us 

 

 𝑚𝜃𝑖
𝑥 = 𝑚𝜃𝑖

𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝜙𝑖  (4.163) 

 

where use is made of (4.158) for expanding 𝜃𝑖. For 𝑚𝜙𝑖
𝑥  we proceed as follows: 

 

𝑚𝜙𝑖
𝑥 = �⃗⃗� 𝜙𝑖 ∙ 𝑖̂ = 𝑚𝜙𝑖

�̂�𝑖 ∙ 𝑖̂ 

⇒   𝑚𝜙𝑖
𝑥 = 𝑚𝜙𝑖

(−𝑠𝑖𝑛𝜙𝑖  𝑖̂ + 𝑐𝑜𝑠𝜙𝑖  𝑗̂  ) ∙ 𝑖̂ 

 

which yields 
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 𝑚𝜙𝑖
𝑥 = −𝑚𝜙𝑖

𝑠𝑖𝑛𝜙𝑖  (4.164) 

 

where in expanding �̂�𝑖, use is made of (4.159).  If we now feed (4.163) and (4.164) into 

(4.162), we get 

 

 𝑚𝑥
𝑖 = 𝑚𝜃𝑖

𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝜙𝑖 −𝑚𝜙𝑖
𝑠𝑖𝑛𝜙𝑖    (4.165) 

 

To find the total dynamical magnetization along 𝑥-axis, we sum (4.165) over all the FM 

layers within the system to get 

 

 
𝑚𝑥 =∑𝑚𝑥

𝑖

𝑁

𝑖=1

=∑(𝑚𝜃𝑖
𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝜙𝑖 −𝑚𝜙𝑖

𝑠𝑖𝑛𝜙𝑖)

𝑁

𝑖=1

 (4.166) 

 

Equation (4.166) gives us  𝑚𝑥 in terms of 𝑚𝜃𝑖
 and 𝑚𝜙𝑖

 of all layers which were embedded 

in the term �⃗⃗�  in equation (4.152) given by 

 

�⃗⃗� = 𝐶−1. 𝑀ℎ⃗⃗⃗⃗⃗⃗  

 

in which 𝐶 was the so-called coefficient matrix, elements of which were defined by 

expressions from (4.140) to (4.151) and  �⃗⃗�  was defined in (4.113) as 

 

�⃗⃗�  𝑇 = (𝑚𝜃1 , 𝑚𝜙1 , …… ,𝑚𝜃𝑖
, 𝑚𝜙𝑖

, …… ,𝑚𝜃𝑁 , 𝑚𝜙𝑁) 

 

and  𝑀ℎ⃗⃗⃗⃗⃗⃗  was defined in (4.114) as 

 

𝑀ℎ⃗⃗⃗⃗⃗⃗  𝑇 = (𝑀1ℎ𝜃1 , 𝑀1ℎ𝜙1 , …… ,𝑀𝑖ℎ𝜃𝑖 , 𝑀𝑖ℎ𝜙𝑖 , …… ,𝑀𝑁ℎ𝜃𝑁 , 𝑀𝑁ℎ𝜙𝑁) 

 

where ℎ𝜃𝑖 and ℎ𝜙𝑖 were calculated respectively by (4.160) and (4.161) as 

 

ℎ𝜃𝑖 = ℎ𝑥
0𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝜙𝑖          ℎ𝜙𝑖 = −ℎ𝑥

0𝑠𝑖𝑛𝜙𝑖 
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Therefore, (4.160) and (4.161) can be used to calculate ℎ𝜃𝑖 and ℎ𝜙𝑖 which were then 

inserted into 𝑀ℎ⃗⃗⃗⃗⃗⃗  𝑇 in (4.114). Once the coefficient matrix 𝐶 is calculated by expressions 

from (4.140) to (4.151), one can use the expression �⃗⃗� = 𝐶−1. 𝑀ℎ⃗⃗⃗⃗⃗⃗  to calculate all 𝑚𝜃𝑖
 and 

𝑚𝜙𝑖
. These 𝑚𝜃𝑖

 and 𝑚𝜙𝑖
 are then fed into (4.166) written for 𝑚𝑥 which then is finally 

inserted into (4.153) to find the susceptibility 𝜒 = 𝑚𝑥 ℎ𝑥
0⁄ . Since 𝑚𝑥 includes ℎ𝑥

0 as a 

common multiplicative term (starting from ℎ𝜃𝑖 and ℎ𝜙𝑖, through 𝑀ℎ⃗⃗⃗⃗⃗⃗  and finally 𝑚𝜃𝑖
 and 

𝑚𝜙𝑖
 in �⃗⃗� ),  𝜒 = 𝑚𝑥 ℎ𝑥

0⁄  will cancel out all ℎ𝑥
0 dependence. This will give us a workflow as 

depicted in Figure 4.4 for the calculation of the dynamical susceptibility. 

 

 
 

Figure 4.4. Workflow for the calculation of the dynamical susceptibility. 
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5. MATERIAL, EXPERIMENTAL WORK AND RESULTS 

 

 

The material systems studied in this work are thin film structures composed of 

ferromagnetic (FM) Co and antiferromagnetic (AFM) CoO with nominal thicknesses of 10 

nm and 15 nm. Four samples were produced on top of Si substrates. The first sample is 

composed only of a single bilayer structure of CoO/Co. In the other samples, this bilayer 

structure repeats itself for two, three and five times. We, therefore have produced samples 

of single, double, triple and quintuple bilayers of CoO/Co structure as shown in Figure 5.1 

below. 

 

 
 

Figure 5.1. CoO/Co multilayer thin film structure. 

 

The deposited Cr layer seen in the figures acts as a protective capping layer. The samples 

were produced by magnetron sputtering and structurally and magnetically characterized by 

XPS, TEM, VSM and FMR techniques as given in the following sections. Some parts of 

the following material are “reproduced from [205] [M. Öztürk, E. Sınır, E. Demirci, M. 

Erkovan, O. Öztürk and N. Akdoğan. Exchange bias properties of [Co/CoO]n multilayers. 

Journal of Applied Physics, 112(9):093911(1-7), 2012], with the permission of AIP 

Publishing”. 
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5.1. SAMPLE PREPARATION 

 

The samples were prepared at Gebze Technical University Nanotechnology Center Surface 

Physics Laboratory in a cluster ultra high vacuum (UHV) chamber, depicted in Figure 5.2 

combined with one preparation chamber and analytical chamber. The preparation chamber 

has 6 magnetron sputtering deposition guns (3 DC, 2 RF and one DC pulse) and one 

sample holder with quartz crystal microbalance. The analytical chamber is equipped with 

X-ray, UV photoelectron spectroscopy and low energy ion scattering systems with a 

hemispherical charged particles energy analyzer. The photoelectron spectroscopy was used 

to characterize the electronic structure and identify the chemical stoichiometry of samples. 

All processes were carried out on native-oxide p type Si (001) wafer. Before loading the 

sample into the chambers, the wafer substrate was cleaned by sonication in acetone and 

methanol, respectively. The wafers were further cleaned by several cycles of Ar+ sputtering 

for 10 min followed by annealing at 600 ℃ for 10 min. The cleanness of the surface was 

confirmed by XPS. 

 

 
 

Figure 5.2. Cluster UHV chamber at Gebze Technical University for magnetron sputtering 

and surface characterization. 
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Reactive deposition was used to grow cobalt oxide films. The Co target (6N grade) 

attached to rf-sputter gun was operated with 40 W so that the deposition rate achieved    

0.3 Å/𝑠 for pure Co growth. In order to grow the CoO film, the pure oxygen molecular gas 

(6N grade) was released (by mass flow meter fixed at 0.15 sccm) to the growth chamber. 

When the base pressure became stable at 5x10-5 mbar, the rf-sputter gun loaded by Co 

target was fired. During the reactive sputtering deposition, the chamber pressure was 

established in range of (1.2 - 1.3)x10-3 mbar. 

 

The thickness of CoO films was determined by Vecoo profilometer.  The 300 Sec 

deposition succeeds the thickness of 15 nm.  The samples and their nominal thicknesses 

are as follows: single bilayer [Co(10 nm)/CoO(15 nm)]1, double bilayer [Co(10 

nm)/CoO(15 nm)]2, triple bilayer [Co(10 nm)/CoO(15 nm)]3 and quintuple bilayer [Co(10 

nm)/CoO(15 nm)]5. Chromium cap layers were grown on top of all four samples against 

any environmental effect, especially against the oxidation of uppermost Co layer.  

Chromium target (6N grade) attached to DC sputter gun was fired for the deposition of the 

cap layer. 

 

5.2. STRUCTURAL CHARACTERIZATION 

 

In order to structurally characterize the samples, two techniques, X-Ray Photoelectron 

Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) were employed. XPS 

provided information on the expected formation of the oxidized form of Co, cobalt-oxide, 

and also gave us the presence of different phases of cobalt-oxide: CoO and Co3O4. TEM 

images provided us with the thicknesses of individual layers. 

 

5.2.1. X-Ray Photoelectron Spectroscopy (XPS) Measurements 

 

The XPS data provided by Gebze Technical University Surface Physics Laboratory in 

Figure 5.3 are used to confirm the chemical stoichiometry with satellite peaks which 

indicate the successful CoO surface. The satellite peaks associated with Co2p peaks on 

XPS from the surface of CoO appear to be stronger rather than the other forms of Co-oxide 

due to the charge-transfer band structure characteristic of the late 3d transition metal oxide 

[206]. The lack of electron on the d bands causes the charge-transfer readily on XP spectra. 
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However, Co 2p peak is broader compared to the peak of a single oxide surface that proves 

the coexistence of different oxide forms such as CoO and Co3O4 (in spinel form 

CoO.Co2O3). Co3O4 is a mixed valence compound with Co2+  and Co3+  ions in tetrahedral 

and octahedral sites respectively of cubic close packed lattice of oxygen anions [207]. 

Different stoichiometries of cobalt oxide as CoO, Co2O3 and Co3O4 are expected because 

they can coexist below 900oC [208]. The width of the Co 2p photoemission peaks is 

consistent with the presence of both Co2+ and Co3+ as well as the Co2+ satellites. In the 

region of both Co 2p3/2 and Co 2p1/2 peak lines, two Voigt-peaks were fitted to calculate 

ratio of Co-oxide formation ratio.  The result shows that Co2+ / Co3+ ratio is 2.6. This 

means that Co-oxide layer contains mostly CoO  formation. The O1s XPS spectrum shows 

a main peak at 529.5 eV.  This main peak indicates main CoO formation. The details of the 

CoO XPS analysis can be found in [103]. 

 

 
 

Figure 5.3. XPS survey spectra from the Co-oxide surface and the Co 2p spectral region 

showing the effects of oxidation. Inset data indicate the satellite peaks of CoO films. 

Reproduced from [205] with the permission of AIP Publishing. 

 

5.2.2. Transmission Electron Microscopy (TEM) Measurements 

 

In order to determine the real thicknesses of the samples and to see the successful 

deposition of multilayers, we have used the advantage of transmission electron microscopy 
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technique (TEM) with Tecnai G2 F20 S-TWIN system at Gebze Technical University. 

This technique produces images via the interaction of electrons with samples, for this 

reason the samples are needed to be thin enough to become transparent for electrons. 

Focused ion beam (FIB) at national nanotechnology research centre (UNAM) is used to 

prepare very thin cross sectional samples out of multilayer  samples for TEM imaging.  

During FIB, buildup of excess electrons on the surface of the sample can cause charging 

effects. To avoid the system from charging effects the top of the samples are covered with 

Pt layers before preparing thin cross-section with FIB for TEM measurements. The cross-

sectional pieces from the samples are examined by TEM in detail as given in Figure 5.4. 

The thicknesses of each layer are tabulated in Table 5.1. 

 

 
 

Figure 5.4. TEM images of [CoO/Co]n multilayers. Cr cap layers were grown on top of all 

four samples against the oxidation of uppermost Co layer. The Pt layers are due to FIB 

sample preparation for TEM imaging. Reproduced from [205] with the permission of AIP 

Publishing. 

 

For the single bilayer sample, FM and AFM layers have nearly the same thicknesses 

around 14.1 nm. For the other samples, the FM layer thicknesses are lower than those of 

AFMs. It is important to note that although the layer thicknesses are very close to each 
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other, they have small differences to play a crucial role in exchange bias properties. Table 

5.1 shows all measured thicknesses of the samples. The Pt layer is due to the Focused Ion 

Beam (FIB) sample extraction process for TEM imaging. 

 

Table 5.1. The TEM measured thicknesses of [CoO/Co]n multilayers [205]. 

 
 

From 

bottom 

to top 

 

Single Bilayer 

[CoO/Co]1 

 

Double Bilayer 

[CoO/Co]2 

 

Triple Bilayer 

[CoO/Co]3 

 

Quintuple Bilayer 

[CoO/Co]5 

CoO 14.1 nm 14.8 nm 15.2 nm 13.9 nm 

Co 14.1 nm 11.9 nm 10.1 nm 11.5 nm 

CoO - 13.4 nm 14.1 nm 12.7 nm 

Co - 10.5 nm 10.3 nm 11.1 nm 

CoO - - 13.6 nm 12.3 nm 

Co - - 10.1 nm 12.3 nm 

CoO - - - 12.7 nm 

Co - - - 11.0 nm 

CoO - - - 13.7 nm 

Co - - - 11.2 nm 

Cr 6.3 nm 12.7 nm 15.6 nm 7.6 nm 

 

 

5.3. MAGNETIC CHARACTERIZATION 

 

For the magnetic characterization of the samples, the techniques of Ferromagnetic 

Resonance (FMR) and Vibrational Sample Magnetometry (VSM) are employed. Magnetic 

anisotropies of the as-produced samples are examined in both in-plane and out-of-plane 

geometries by FMR. The exchange bias properties of the samples are determined by VSM. 

 

Room temperature (RT) FMR measurements have been carried out by using a Bruker 

EMX spectrometer operating at X-band (9.8 GHz) frequency. 

 

As the VSM tool, Quantum Design Physical Property Measurement System (PPMS) with  

9 T magnetic field capability have been used. 
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5.3.1. Ferromagnetic Resonance (FMR) Measurements 

 

The Electron Spin Resonance (ESR) also known as Electron Paramagnetic Resonance 

(EPR) spectrometer system at Gebze Technical University as shown in Figure 5.5 can be 

used for taking FMR measurements by operating at X-band frequency of 9.8 GHz.  

 

 
 

Figure 5.5. Bruker EMX EPR system at Gebze Technical University for FMR 

measurements. 

 

The spectrometer is equipped by an electromagnet which provides a dc magnetic field up 

to 2.2 Tesla in the horizontal plane. A goniometer was used to rotate the vertical rod 

shaped sample holder which is parallel to the microwave magnetic field and perpendicular 

to the applied static magnetic field. Both in-plane (IP) and out-of-plane (OOP) 

measurements are performed with respect to the static magnetic field. For the in-plane 

geometry, samples are attached to the bottom of the holder to keep the static magnetic field 

parallel to the film surface during the 360° rotation. For the out-of plane geometry, the 

samples are attached to the side of the holder and rotated by 180° to convert the magnetic 

field from parallel to perpendicular and then parallel again to the film surface. Microwave 
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magnetic field is kept fixed perpendicular to the surface for the in-plane geometry and 

parallel to the surface for the out-of-plane measurements. In Figure 5.6 and Figure 5.7, one 

can see how the sample is placed in the sample holder and rotated in IP and OOP 

geometries.  

 

 

 

 

 

Figure 5.6. In-plane sample placement and angular sweep for FMR. 

 

 

 

 

 

Figure 5.7. Out-of-plane sample placement and angular sweep for FMR. 
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Figure 5.8 shows the in-plane and out-of-plane geometries together without giving 

specifics of the angular sweeps and how the sample is located within the sample holder, 

but providing a much clearer picture. 

 

 
 

Figure 5.8. In-plane and out-of-plane geometries for FMR measurements [132]. 

 

We have not been able to observe in-plane FMR signal in single and double bilayer 

CoO/Co samples. Non-conventional structure of our FMR system does not allow for in-

plane measurements for very thin films. The in-plane FMR spectra of triple bilayer 

[CoO/Co]3 and quintuple bilayer [CoO/Co]5 samples are shown in Figure 5.9. In order to 

check the presence of anisotropic behaviour, the samples were rotated by 360 degrees in 

the film plane. At zero degree, the applied field was chosen parallel to the geometric [100] 

edge direction of the sample. At the beginning, the resonance fields of the in-plane peaks 

are small but after rotating the sample to higher angles the required magnetic fields for 

resonance increase and the peaks possess the maximum field values at 90 and 270 degrees.  

Therefore, samples used in this study show two collinear easy directions and two collinear 

hard directions resulting in an in-plane uniaxial anisotropy. Since the samples are 

polycrystalline, the uniaxial anisotropic behaviour of the samples can be attributed to 

growth-induced geometric (or oblique) anisotropy [209-211] which will be detailed in 

Discussion part in Section 6. 
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Figure 5.9. In-plane FMR data for the angular dependence of resonance fields from triple 

bilayer [CoO/Co]3 and quintuple bilayer [CoO/Co]5. 0° and 180° correspond to collinear 

easy directions while 90° and 270° are on hard directions [205]. 

 

For out-of-plane FMR spectra, easy axes of the samples which were determined by the in-

plane measurements were parallel to the applied dc magnetic field at the beginning and the 

sample plane is in the vertical. The sample was then rotated around the vertical axis by 180 

degrees from parallel position to the antiparallel position, reducing the angular step to even 

0.125 degrees for those directions of dc magnetic field close to the film surface normal. 

Figure 5.10 reveals the resonance fields of FMR signal as a function of polar angle which 

represents the angle made by dc magnetic field with the surface normal. Well resolved 

FMR peaks were observed for this geometry. 
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Figure 5.10. The angular dependence of resonance field from FMR data of single bilayer 

[CoO/Co], double bilayer [CoO/Co]2, triple bilayer [CoO/Co]3 and quintuple bilayer 

[CoO/Co]5 for out-of-plane geometry [205]. 𝜽𝑯 = ± 𝟗𝟎° corresponds to magnetic field 

parallel to easy magnetization axis of Co in the plane of the thin film. The insets show the 

details of resonance fields when the direction of the magnetic fields is close to the film 

normal for the related samples. 

 

As can be seen in Figure 5.10, one, two, three and four peaks are observed for single, 

double, triple and quintuple bilayers, respectively. One peak was missing for quintuple 

sample. However, it can be said that the fifth peak was embedded in the fourth peak. The 

embedding behaviour is clear in the real spectra as shown in Figure 5.11 that the distance 

between the peaks getting closer for the deepest layer. 
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Figure 5.11. A part of out-of-plane collective FMR detailed real spectra of quintuple 

bilayer [CoO/Co]5 taken at varying 𝜃𝐻 [205]. Four peaks can be seen clearly. The fifth 

peak is thought to be embedded in the fourth peak seen at the right. 

 

5.3.2. Vibrational Sample Magnetometry (VSM) Measurements 

 

In order to characterize the exchange bias (EB) properties of bilayers, a VSM 

magnetometer (Quantum Design PPMS 9T) was used as given in Figure 5.12. M versus H 

loops have been recorded at selected temperatures from 10 K to 320 K. Since the Néel 

temperature of CoO is about 290 K, the samples were heated up to 320 K to control the 

magnetic order of AFM layers before arriving at each target temperature. While field-

cooling (FC) the samples from 320 K to the target temperatures, an in-plane magnetic field 

(𝐻𝐹𝐶) of 2 kOe was applied to set the unidirectional anisotropy.  
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Figure 5.12. Quantum Design PPMS (9 T) System at Gebze Technical University for VSM 

measurements. 

 

It is well-known in exchange bias systems that performing successive hysteresis 

measurements at a given target temperature leads to a decrease in the exchange bias field 

which is defined as the training effect [5, 99]. After measuring a single hysteresis loop at 

the lowest target temperature of 10 K, we cannot directly heat the FM/AFM system to the 

next target temperature because the system is already at the verge of suffering from the 

training effect. Therefore, after taking a single hysteresis loop at a given target temperature 

the system is heated to above the bulk Néel temperature of the AFM material to bring it 

back to the paramagnetic state. The above mentioned FC procedure is then exactly 

repeated with the same 𝐻𝐹𝐶  to re-field-cool the system to the next target temperature to 

induce the unidirectional anisotropy in the same direction as in the previous target 

temperature. The measurement protocol is depicted in Figure 5.13. 
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Figure 5.13. Measurement protocol for EB measurements with VSM [reproduced with 

appropriate changes from a drawing of Dr. Mustafa Öztürk from Gebze Technical 

University]. 

 

Figure 5.14 shows the easy axis hysteresis loops of the samples at 10 K and 300 K. The 

coercive fields are symmetric at 300 K, but after field cooling the coercive fields become 

asymmetric at 10 K and the sample has a negative exchange bias as expected. The 

dependency of coercive fields is strongly related with temperature. Single bilayer sample 

has a standard exchange bias behaviour. In the double bilayer system one more step 

observed for the 10 K exchange biased hysteresis loop. Double bilayer system has two Co 

and two CoO layers. The main step of the hysteresis loop which has a smaller shift is 

related to the upper Co and the second step which has a larger exchange bias is related to 

the inner Co. The easy axis hysteresis loops of triple bilayer sample revealed three steps. In 

the triple bilayer system, there are three Co and three CoO layers. It is thought that the first 

step is belonging to upper Co and the third (the largest) is belonging to the innermost Co 

layer. Two steps for double bilayer and three steps for triple bilayer were observed. The 

expectation that the number of steps is directly related to number of bilayers, however, is 

false because only two steps are observed for quintuple bilayer instead of five. The reason 

for the observation of additional steps and identification of these steps and the asymmetric 
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character of the hysteresis loops between ascending and descending branches will be 

addressed in the Discussion part in Section 6. 
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Figure 5.14. The hysteresis loops normalized to saturation magnetization at room 

temperature (RT) (dashed lines) and at 10 K after field cooling (solid lines) of the samples. 

Insets with red solid lines show the central parts of RT symmetric hysteresis loops. 

Reproduced from [205] with the permission of AIP Publishing. 

 

Figure 5.15 shows the characteristic temperature evolution of magnitudes of both positive 

and negative coercive fields. At the beginning, absolute values of the coercive fields are 

the same with decreasing temperature. But after a certain point, a bifurcation occurs on 

field values. The temperature at and below which the separation of the coercive fields is 

observed is called as the ‘blocking’ temperature 𝑇𝐵. The blocking temperature in the 

present systems is around 200 K. Above the blocking temperature, the loops are symmetric 

and the exchange bias fields are zero. The dependence of the exchange bias and the 

coercive fields on temperature for all samples are summarized in Figure 5.15.  
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Figure 5.15. Temperature dependence of magnitudes of coercive fields (−𝐻𝐶1 and 𝐻𝐶2) 

and exchange bias field (−𝐻𝐸𝐵) for [CoO/Co]n multilayers [205]. 

 

Since exchange bias is observed as a shift in the hysteresis loop, the exchange bias field 

values can be calculated from the shift of coercive fields by using the well known formula 

 

   
𝐻𝐸𝐵 =

𝐻𝐶1 + 𝐻𝐶2
2

 (5.1) 

  

Here  𝐻𝐶1 represents the intersection of the hysteresis loop with the magnetic field axis on 

the descending part whereas 𝐻𝐶2 is the value on the ascending part. In all the samples, 𝐻𝐶1 

is negative and 𝐻𝐶2 is positive that −𝐻𝐶1 and 𝐻𝐶2 are plotted in Figure 5.14 to represent 

the absolute values, or magnitudes, of these two coercive fields. The total coercive field 

defined as the half-width of the hysteresis loop is given by 

 

 
𝐻𝐶 =

−𝐻𝐶1 + 𝐻𝐶2
2

 (5.2) 
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Since |𝐻𝐶1| > 𝐻𝐶2 and since 𝐻𝐶1 is negative, the exchange bias field values               

𝐻𝐸𝐵 = (𝐻𝐶1 + 𝐻𝐶2) 2⁄  are negative and that gives us a shift of hysteresis loop towards 

negative values on the magnetic field axis. This is also the reason why  −𝐻𝐸𝐵 is plotted in 

Figure 5.15 to represent the magnitude of exchange bias. 
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6. DISCUSSION 

 

 

In-plane FMR spectra of polycrystalline [Co/CoO]n samples used in this study revealed 

two-fold symmetry with two collinear and opposite easy directions forming an easy axis 

and two hard  directions in the same manner for 360° in plane rotation as shown in Figure 

5.9. It is not expected of a polycrystalline structure to exhibit such kind of a uniaxial 

magneto crystalline anisotropy. This unexpected behaviour of [Co/CoO]n polycrystalline 

thin films is explained by growth conditions and called as growth induced or geometric 

(oblique) anisotropy [209-211]. For vacuum deposited thin metallic films, a fiber axis 

structure is formed varying from the normal to the substrate during the evaporation. That 

fiber axis tilts in a similar direction of incidence to that of the metallic flux. As the fiber 

axis was no longer normal to the plane of the film, depending on the geometric location of 

the evaporating filament, so-called geometric anisotropy was induced. 

 

The onset of exchange bias with decreasing temperatures refers to the blocking 

temperature 𝑇𝐵 and its value is expected to be very close to the Néel temperature 𝑇𝑁 of 

AFM material depending on its thickness [5, 124-128] and stoichiometry [129-132]. In this 

study, this value is lower than the expected bulk value for CoO. Néel temperature of bulk 

CoO is around 290 K and observed blocking temperatures for all four polycrystalline 

[Co/CoO]n samples were around 200 K. Two arguments can be stressed to account for the 

observed low 𝑇𝐵 of polycrystalline [Co/CoO]n samples. It is reported in the literature that 

homogeneity range of CoO from Co1O1 to Co3O4 can change the 𝑇𝑁 of the material [129-

132]. The 𝑇𝑁 of Co1O1 is 291 K while that of Co3O4 is 34 K. Since XPS data revealed 

coexistence of different cobalt oxide phases in AFM layer causing nonstoichiometry, the 

𝑇𝑁 of the [Co/CoO]n samples should be reduced below to 291 K and this reduction  

translates to low 𝑇𝐵 because the upper limit of the 𝑇𝐵 is fixed by 𝑇𝑁. Blocking temperature 

is also strongly related with the AFM layer thickness up to a limiting transition thickness to 

the bulk properties depending on material. This dependence of 𝑇𝑁 on AFM CoO layer 

thickness was related to a finite-size scaling effect [124]. Studies for CoO show that 𝑇𝑁 

reduces below 20 nm with decreasing thickness and thus 𝑇𝐵 reduces [5, 125, 126]. Since 

we on the average have 15 nm AFM CoO layer thickness for each sample, a lower 𝑇𝐵 is 

expected. Caution should be taken, however, because a neutron diffraction study [127]  
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revealed that for CoO layer thicknesses less than 9 nm, reduced 𝑇𝐵 is not associated with 

reduced 𝑇𝑁. A study conducted on CoNiO/NiFe exchange bias system also revealed that 

the blocking temperature of the AFM layer is dependent on the deposition conditions such 

as the substrate bias and the sputtering pressure which was also thought to be related to 

finite size scaling phenomena [212]. 

 

The effect of increase in the number of FM-AFM interfaces on exchange bias field is 

detailed in this study. For single bilayer system, standard exchange bias hysteresis loop 

was observed. However, additional steps were observed for hysteresis loops of other 

bilayers. Two, three and again two steps emerged in the hysteresis loops of double, triple 

and quintuple bilayer samples respectively. In all cases the outer ferromagnetic Co layers 

have just one antiferromagnetic CoO neighbour and inner ferromagnetic Co layers have 

two antiferromagnetic CoO neighbours. The pinning effects of two separate AFM 

neighbours on a single FM layer cause the magnetization reversal to happen at higher 

negative coercive fields. As a result, exchange bias field increases for the inner Co layers 

and this behaviour causes an additional step in the hysteresis loop. Considering only the 

number of pinning AFM neighbours maximum two steps for all samples are reasonable 

because one FM layer can only have one or two AFM neighbours in the thin film stack. 

The third steps can be explained by the nonuniform distribution of layer thicknesses, as 

shown in TEM images (Figure 5.4). This is reported in the literature that both FM and 

AFM layer thicknesses affect the exchange bias field [5, 6, 99, 115, 213]. It is asserted that 

the thickness of AFM materials up to 20nm is effective on the exchange bias effect in a 

positive manner [5]. For the hysteresis loop of triple bilayer, inner and innermost layers 

have different thicknesses. The innermost and a bit thinner FM Co layer has thicker AFM 

CoO neighbours than the next Co layer above it that can increase the exchange bias effect 

and cause one more step as compared to double bilayer system. The thickness distribution 

within the quintuple bilayer system, however, is more uniform as compared to the triple 

bilayer system, causing all the inner FM layers to have more or less the same coercive field 

to have their magnetization reversals together. As a result, the steps in the exchange bias 

hysteresis loops can be based on the number of AFM neighbouring interfaces of FM 

material  and the differences between the thicknesses of the layers. 
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Apart from the absence of step-like behaviour in the ascending branches of hysteresis 

loops, there is another asymmetry between the ascending and descending branches even in 

the single bilayer system. This kind of asymmetric behaviour was indicated to be intrinsic 

to the exchange biased systems with different magnetization reversal pathways, e.g. 

domain wall motion or coherent rotation, at each branch of the hysteresis loop [96, 102, 

214]. The asymmetry is affected by the relative orientation of the FM anisotropy and the 

induced unidirectional anisotropy directions, competition between the magnitudes of these 

anisotropies and the angle made by the hysteresis magnetic field and the unidirectional 

anisotropy direction [215]. The hysteresis curves for all samples show relatively sharp 

changes during the magnetization reversals of FM layers along the descending branches 

and more rounded features on the ascending parts. This seems to suggest that first reversal 

happens via a domain wall movement and the subsequent reversals to the positive 

magnetization by rotation [216]. One must be cautious, however, that our VSM 

magnetometry system is only sensitive to the projection of magnetization along the 

hysteresis magnetic field, carrying no information on the perpendicular magnetization 

component, that distinguishing between domain nucleation-propagation and magnetization 

rotation is rather questionable. Angle dependent measurements of the hysteresis loops and 

numerical simulations may illuminate the problem more satisfactorily to give insight to the 

role of competing anisotropies. We also expect that our inability to perfectly align the 

unidirectional anisotropy direction and the FM uniaxial anisotropy axis experimentally 

causing noncollinearity might also have induced an asymmetric character [214]. 

 

Our fundamental FMR theoretical analysis showed clearly that 𝜔0 as obtained by equation 

(4.67) is the resonance frequency of the FM material and it is a dynamical quantity 

dependent upon the orientation of the film with respect to the DC magnetic field, the 

magnitude of the DC field, magnetic anisotropies, etc. Thus, we concluded that varying the 

orientation and DC field value causes the material to gain a particular value of 𝜔0 and for a 

specific set of parameters it is equal to 𝜔 of the driving field which in turn creates a 

resonance as the name ferromagnetic resonance implies. 

 

Our work on FMR theory of multilayer structures provided us a framework to write down 

the dynamical magnetization components in a linearized model. Our step by step 

calculations makes it clear how the elements of the 𝐶-matrix can be modelled and 
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calculated, along with the range of magnetic layer number 𝑖 and the total number of FM 

layers 𝑁 in the multilayer stack. The restrictions on 𝑖 and 𝑁 identified and clarified in the 

main text are important for a solution algoritm.  It is the hope of the author that this step by 

step anaysis, which might seem to be over detailed, might provide some clear idea on how 

those hidden intermediate steps in the published papers can actually be dealt with. The 

analyses can be extended for different geometries from in-plane to out-of-plane by the 

procedures outlined and, by a choice of proper energy terms, FMR data can be simulated to 

extract magnetic properties of the FM materials.  
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7. CONCLUSION 

 

 

In this work, we have studied polycrystalline [Co/CoO]n multilayers with different number 

of repetitions n and tried to probe their exchange bias and magnetic properties.  A uniaxial 

magnetic anisotropy in the film plane was observed for the as produced polycrystalline 

[Co/CoO]n  thin films at room temperature and the observed uniaxial anisotropy was 

explained by geometric (or oblique) anisotropy due to film growth. The out-of-plane room 

temperature FMR results indicated that the surface normal is a hard axis and that the FM 

layers have slightly different anisotropies close to film normal. In all the multilayer 

samples, exchange bias is observed under field cooling switching anisotropy from uniaxial 

to unidirectional. The blocking temperature (𝑇𝐵) below which EB emerges was found to be 

around 200 K and its lower value than the bulk Néel temperature 𝑇𝑁 is explained by the 

nonstoichiometry due to varying phases of cobalt oxide, finite-size scaling effects and the 

deposition conditions of the AFM layers. For multi bilayer systems, additional steps are 

observed in the exchange biased hysteresis loops and this behaviour is related to incoherent 

magnetization reversals of individual layers due to (i) two kinds of interfaces made by the 

FM layers in contact with two AFM neighbours from above and below, except the 

uppermost FM Co with a single AFM neighbour and (ii) varying thicknesses of FM and 

AFM layers as was observed in previous studies. The separate spin-flips were observed in 

one shot. The observed asymmetries in the hysteresis loops were connected to 

magnetization reversal pathways, competing anisotropies, noncollinearities between the 

uniaxial anisotropy of the FM film and unidirectional anisotropy direction that is expected 

after the field cooling procedure. Theoretical work on ferromagnetic resonance 

demonstrated how the resonance condition can be obtained and FMR study on multilayers 

resulted in a linearized model with clear restrictions on the use of recursive relationships in 

the calculation of the matrix elements of the linear model in obtaining the dynamical 

susceptibility.  
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APPENDIX A:  CALCULATION OF ENERGY DENSITY TERMS 

 

 

Ferromagnetic (FM) samples can be modelled by the following energy density expression 

 

 𝐸 = 𝐸𝑍 + 𝐸𝑑 + 𝐸𝑎𝑛𝑖 + 𝐸𝑔 (A.1) 

 

where  

 

𝐸𝑍 : Zeeman energy density 

 

𝐸𝑑 : Energy density due to the demagnetizing field (shape anisotropy) 

 

𝐸𝑎𝑛𝑖 : Bulk magnetocrsytalline anisotropy energy density 

 

𝐸𝑔 : Geometrical (oblique) anisotropy energy density 

 

i. Zeeman Energy Density: 

 

This energy density contribution is due to the scalar product �⃗⃗� ⋅ �⃗⃗�  between the 

magnetization vector �⃗⃗�  and the applied magnetic field �⃗⃗� . The components of �⃗⃗�  and �⃗⃗�  are 

given by (from Figure 4.2) 

 

𝑀𝑥 = 𝑀. 𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜙 

𝑀𝑦 = 𝑀. 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜙 

𝑀𝑧 = 𝑀. 𝑐𝑜𝑠𝜃 

and 

𝐻𝑥 = 𝐻. 𝑠𝑖𝑛𝜃𝐻 . 𝑐𝑜𝑠𝜙𝐻 

𝐻𝑦 = 𝐻. 𝑠𝑖𝑛𝜃𝐻 . 𝑠𝑖𝑛𝜙𝐻 

𝐻𝑧 = 𝐻. 𝑐𝑜𝑠𝜃𝐻 

 

Zeeman energy density is given by 
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𝐸𝑍 = −�⃗⃗� ∙ �⃗⃗� = −(𝑀𝑥𝐻𝑥 +𝑀𝑦𝐻𝑦 +𝑀𝑧𝐻𝑧) 

 

By replacing the 𝑥, 𝑦 and 𝑧 components we get 

 

𝐸𝑍 = −[(𝑀𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)(𝐻𝑠𝑖𝑛𝜃𝐻𝑐𝑜𝑠𝜙𝐻) + (𝑀𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)(𝐻𝑠𝑖𝑛𝜃𝐻𝑠𝑖𝑛𝜙𝐻)

+ (𝑀𝑐𝑜𝑠𝜃)(𝐻𝑐𝑜𝑠𝜃𝐻)] 

 

which after regrouping becomes 

 

𝐸𝑍 = −𝑀𝐻[𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃𝐻(𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜙𝐻 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜙𝐻) + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝐻] 

 

The term (𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜙𝐻 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜙𝐻) is just equal to 𝑐𝑜𝑠(𝜙 − 𝜙𝐻), therefore the Zeeman 

energy density finally becomes 

 

 𝐸𝑍 = −𝑀𝐻[𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃𝐻𝑐𝑜𝑠(𝜙 − 𝜙𝐻) + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝐻] (A.2) 

 

ii. Energy Density Due To Demagnetizing Field: 

 

The demagnetizing field is the source of the shape anisotropy in FM samples which is 

caused by the magnetization in the sample [61], acting to oppose and thus reduce the 

magnetization and is given by 

 

�⃗⃗� 𝑑 = −𝑁𝑑�⃗⃗�  

 

where 𝑁𝑑 is the demagnetizing factor determined by the shape of the sample. We have 

three demagnetization factors which are related to each other by the constitutive relation 

 

𝑁𝑥 + 𝑁𝑦 +𝑁𝑧 = 4𝜋 

 

which is a well known identity stemming from the fact that the sum of the demagnetization 

factors in three orthogonal directions is 4𝜋 [62, 63]. For the sample geometry in thin film 

form as given in Figure 4.2, we have 𝑁𝑥 = 𝑁𝑦 = 0 which then implies that 𝑁𝑧 = 4𝜋. 
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Macroscopic demagnetizing field caused by the magnetization itself is opposite to the 

magnetization 

𝐻𝑑 = −𝑁𝑀 = −𝑁𝑧𝑀𝑧 

 

The energy density that would give this demagnetizing field is 

 

 𝐸𝑑 = 2𝜋𝑀𝑧
2 = 2𝜋𝑀2𝑐𝑜𝑠2𝜃 (A.3) 

 

iii. Magnetocrystalline Anisotropy Energy Density: 

 

This anisotropy is due to the spin-orbit interaction and it reflects the crystal symmetry of 

the sample. In polycrystalline and amorphous thin films, this energy is expected to average 

to zero. For a uniaxial crystal, the magnetocrystalline anisotropy can be given by [59, 61] 

 

 𝐸𝑎𝑛𝑖 = 𝐾1𝑠𝑖𝑛
2𝜃 + 𝐾2𝑠𝑖𝑛

4𝜃 (A.4) 

 

where 𝜃 is the angle between the easy axis of magnetization and the magnetization itself 

and the constants 𝐾1 and 𝐾2 are the anisotropy coefficients. If the crystal possesses a single 

easy-axis so that the magnetization can point either up or down, it has a uniaxial symmetry. 

 

When the anisotropy constants are positive, the energy minimum occurs at 𝜃 = 0 where 

the magnetization is along the easy-axis. Magnetocrystalline anisotropy is intrinsic to the 

material.  

 

iv. Geometrical (Oblique) Anisotropy Energy Density: 

 

Due to the film preparation technique, a growth induced or geometric anisotropy can be 

observed in the samples [209-211]. If we again refer to the Figure 4.2, we can establish an 

equation for this kind of anisotropy. If we denote the unit vector along �⃗⃗�  by �̂�𝑚 and the 

unit vector along the geometrical anisotropy �⃗⃗� 𝑔 by �̂�𝑔, the components of these two unit 

vectors will become as in Table A.1. 
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Table A.1. Components of the unit vectors for oblique anisotropy energy density 

calculation 

 

𝑒𝑥
𝑚 = 𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜙 𝑒𝑥

𝑔
= 𝑠𝑖𝑛𝜃𝑔. 𝑐𝑜𝑠𝜙𝑔 

𝑒𝑦
𝑚 = 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜙 𝑒𝑦

𝑔
= 𝑠𝑖𝑛𝜃𝑔. 𝑠𝑖𝑛𝜙𝑔 

𝑒𝑧
𝑚 = 𝑐𝑜𝑠𝜃 𝑒𝑧

𝑔
= 𝑐𝑜𝑠𝜃𝑔 

 

If the angle between magnetization �⃗⃗�  and the geometrical anisotropy field �⃗⃗� 𝑔 is denoted 

by 𝛽, then we have 

 

�̂�𝑚 ⋅ �̂�𝑔 = |�̂�𝑚|. |�̂�𝑔|. 𝑐𝑜𝑠𝛽 = 𝑐𝑜𝑠𝛽 =  𝑒𝑥
𝑚𝑒𝑥

𝑔
+ 𝑒𝑦

𝑚𝑒𝑦
𝑔
+ 𝑒𝑧

𝑚𝑒𝑧
𝑔

 

 

where use is made of the properties of the dot product and that the magnitudes of the unit 

vectors are 1. By using the components in the table above, we get 

 

𝑐𝑜𝑠𝛽 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑔𝑐𝑜𝑠𝜙𝑔 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑔𝑠𝑖𝑛𝜙𝑔 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝑔 

 

If the 𝛽 dependence of the geometrical anisotropy energy is given by 

 

 𝐸𝑔 = −𝐾𝑔𝑐𝑜𝑠
2𝛽 (A.5) 

 

Then for 𝜙𝑔 = 0 

 

𝑐𝑜𝑠𝛽 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑔 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝑔 

 

which upon squaring becomes 

 

𝑐𝑜𝑠2𝛽 = 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜃𝑔𝑐𝑜𝑠
2𝜙 + 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜃𝑔 + 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃𝑔𝑐𝑜𝑠𝜃𝑔𝑐𝑜𝑠𝜙 

 

From the identity 𝑠𝑖𝑛(𝑎 + 𝑏) = 𝑠𝑖𝑛𝑎𝑐𝑜𝑠𝑏 + 𝑠𝑖𝑛𝑏𝑐𝑜𝑠𝑎, we get 𝑠𝑖𝑛(2𝑎) = 2𝑠𝑖𝑛𝑎𝑐𝑜𝑠𝑎 

which translates into 𝑠𝑖𝑛𝑎𝑐𝑜𝑠𝑎 = (1 2⁄ )𝑠𝑖𝑛(2𝑎) which then can be used for 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 and 

𝑠𝑖𝑛𝜃𝑔𝑐𝑜𝑠𝜃𝑔 terms to obtain 
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𝑐𝑜𝑠2𝛽 = 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜃𝑔𝑐𝑜𝑠
2𝜙 + 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜃𝑔 +

1

2
𝑠𝑖𝑛(2𝜃)𝑠𝑖𝑛(2𝜃𝑔)𝑐𝑜𝑠𝜙 

 

If now 𝑐𝑜𝑠2𝜙 = 1 − 𝑠𝑖𝑛2𝜙 and 𝑐𝑜𝑠2𝜃 = 1 − 𝑠𝑖𝑛2𝜃 are employed, after some 

manipulation we get 

 

𝑐𝑜𝑠2𝛽 = 𝑠𝑖𝑛2𝜃[𝑠𝑖𝑛2𝜃𝑔 − 𝑐𝑜𝑠
2𝜃𝑔 − 𝑠𝑖𝑛

2𝜃𝑔𝑠𝑖𝑛
2𝜙] + 𝑐𝑜𝑠2𝜃𝑔 +

1

2
𝑠𝑖𝑛(2𝜃)𝑠𝑖𝑛(2𝜃𝑔)𝑐𝑜𝑠𝜙 

 

⇒  𝑐𝑜𝑠2𝛽 = −𝑠𝑖𝑛2𝜃[(𝑐𝑜𝑠2𝜃𝑔 − 𝑠𝑖𝑛
2𝜃𝑔) + 𝑠𝑖𝑛

2𝜃𝑔𝑠𝑖𝑛
2𝜙] + 𝑐𝑜𝑠2𝜃𝑔

+
1

2
𝑠𝑖𝑛(2𝜃)𝑠𝑖𝑛(2𝜃𝑔)𝑐𝑜𝑠𝜙   

 

From the identity 𝑐𝑜𝑠(𝑎 + 𝑏) = 𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑏 − 𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑏, we get 𝑐𝑜𝑠(2𝑎) = 𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑎 −

𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑎 which translates into 𝑐𝑜𝑠(2𝑎) = 𝑐𝑜𝑠2𝑎 − 𝑠𝑖𝑛2𝑎 which then can be used for 

𝑐𝑜𝑠2𝜃𝑔 − 𝑠𝑖𝑛
2𝜃𝑔 term to obtain 

 

 𝑐𝑜𝑠2𝛽 = −𝑠𝑖𝑛2𝜃[𝑐𝑜𝑠(2𝜃𝑔) + 𝑠𝑖𝑛
2𝜃𝑔𝑠𝑖𝑛

2𝜙] + 𝑐𝑜𝑠2𝜃𝑔

+
1

2
𝑠𝑖𝑛(2𝜃)𝑠𝑖𝑛(2𝜃𝑔)𝑐𝑜𝑠𝜙   

(A.6) 

 

By combining equations (A.5) and (A.6) we obtain the energy term for the geometrical 

anisotropy: 

 

 𝐸𝑔 = 𝐾𝑔 [𝑠𝑖𝑛
2𝜃(𝑐𝑜𝑠(2𝜃𝑔) + 𝑠𝑖𝑛

2𝜃𝑔𝑠𝑖𝑛
2𝜙) − 𝑐𝑜𝑠2𝜃𝑔

−
1

2
𝑠𝑖𝑛(2𝜃)𝑠𝑖𝑛(2𝜃𝑔)𝑐𝑜𝑠𝜙] 

(A.7) 

 

 

v. Mixed Anisotropy Terms For Various Anisotropy Axes: 

 

In some situations where the system under consideration is to be represented by different 

energy contributions, it is a good practice to develop the angular dependence of energy 
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terms so that further numerical studies can be completed with relative ease. In this section 

a couple of different scenarios will be discussed. 

 

• Demagnetizing Field with a Possible Perpendicular Anisotropy: 

 

Demagnetization energy from equation (A.3): 

 

𝐸𝑑 = 2𝜋𝑀𝑧
2 = 2𝜋𝑀2𝑐𝑜𝑠2𝜃 

 

Perpendicular anisotropy along the film thickness: 

 

𝐸𝑝 = −𝐾𝑝𝑐𝑜𝑠
2𝜃 

 

Since both 𝐸𝑑 and 𝐸𝑝 have the same angular dependence, they can be combined together to 

give 

 

𝐸𝑒𝑓𝑓−𝑧 = 2𝜋𝑀2𝑐𝑜𝑠2𝜃 − 𝐾𝑝𝑐𝑜𝑠
2𝜃 

 

which can be written as  

 

 𝐸𝑒𝑓𝑓−𝑧 = 𝐾𝑒𝑓𝑓−𝑧 𝑐𝑜𝑠
2𝜃 (A.8) 

 

where  

 

 𝐾𝑒𝑓𝑓−𝑧 = 2𝜋𝑀2 − 𝐾𝑝  (A.9) 

 

is the effective anisotropy constant along the film normal (z-direction). 
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• Uniaxial Anisotropy 

 

If the direction of magnetization is represented by the angles 𝜃 and 𝜙 and that of the 

uniaxial energy by 𝜃𝑢 and 𝜙𝑢, the angle between the magnetization and the uniaxial 

anisotropy axis will be 

 

𝑐𝑜𝑠𝛼 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃𝑢𝑐𝑜𝑠(𝜙 − 𝜙𝑢) + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝑢 

 

which actually reads exactly from the angular part of equation (A.2) with exchanging 𝜃𝐻 

and 𝜙𝐻 by 𝜃𝑢 and 𝜙𝑢. Then for the uniaxial anisotropy energy we can write 

 

 𝐸𝑢 = −𝐾𝑢𝑐𝑜𝑠
2𝛼 = −𝐾𝑢[𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃𝑢𝑐𝑜𝑠(𝜙 − 𝜙𝑢) + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝑢]

2   (A.10) 

 

which then can be utilised to account for uniaxial anisotropies along a given direction as 

given in the following examples: 

 

➢ Uniaxial Anisotropy in 𝑥 −direction: 

 

This is the first example of an in-plane uniaxial anisotropy which is in the 𝑥 −direction 

with respect to Figure 4.2. For this case, 𝜃𝑢 = 𝜋 2⁄  and 𝜙𝑢 = 0 which then implies from 

equation (A.10) that 

 

 𝐸𝑢−𝑥 = −𝐾𝑢𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜙   (A.11) 

 

➢ Uniaxial Anisotropy in 𝑦 −direction 

 

This time 𝜃𝑢 = 𝜋 2⁄  and 𝜙𝑢 = 𝜋 2⁄  and equation (A.10) will read 

 

 𝐸𝑢−𝑥 = −𝐾𝑢𝑠𝑖𝑛
2𝜃𝑠𝑖𝑛2𝜙   (A.12) 
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➢ Uniaxial Anisotropy in the Film Plane 

 

When the anisotropy axis is in the plane of the film (𝑥𝑦 −plane), 𝜃𝑢 = 𝜋 2⁄  and equation 

(A.10) will become 

 

 𝐸𝑢−𝑥𝑦 = −𝐾𝑢𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2(𝜙 − 𝜙𝑢) (A.13) 

 

If, for example, the anisotropy axis makes an angle 𝜙𝑢 = 𝜋 4⁄  with the 𝑥 −axis, we will 

have 

 

𝐸𝑢−𝑥𝑦 = −𝐾𝑢𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2 (𝜙 −

𝜋

4
) = −𝐾𝑢𝑠𝑖𝑛

2𝜃 [𝑐𝑜𝑠 (𝜙 −
𝜋

4
)]
2

 

 

which by the use of 𝑐𝑜𝑠(𝑎 − 𝑏) = 𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑏 + 𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑏 becomes 

 

𝐸𝑢−𝑥𝑦 = −𝐾𝑢𝑠𝑖𝑛
2𝜃 [𝑐𝑜𝑠𝜙𝑐𝑜𝑠

𝜋

4
+ 𝑠𝑖𝑛𝜙𝑠𝑖𝑛

𝜋

4
]
2

 

 

 
⇒  𝐸𝑢−𝑥𝑦(𝜙𝑢 = 𝜋 4⁄ ) = −

𝐾𝑢𝑠𝑖𝑛
2𝜃

2
 (𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜙)2  (A.14) 

 




