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ABSTRACT

DETECTION OF DISTINGUISHING FEATURES USING SELECTION METHODS
FOR ROBOT-ASSISTED REHABILITATION SYSTEM, REHABROBY

Task involvement is a key factor in sustaining subjects’ participation in rehabilitation programs.
An appropriate challenging rehabilitation task can increase engagement of the subjects. In
this way, it is desirable that task difficulty must be suitably challenging to acquire great
performance from rehabilitation tasks. In order to find the appropriate challenging level for
each subject, it is important to detect the subject’s feelings (he/she is either getting to be
noticeably exhausted or disappointed), and after that to change the rehabilitation task to better
suit the subjects capacities by considering their feelings. In this thesis, three main biofeedback
sensors Blood Volume Pulse (BVP), Skin Conductance (SC), and Skin Temperature (ST)
are used to detect the feelings of the subjects when they use a robot-assisted rehabilitation
system called RehabRoby. It is also important to know which features are distinctive to
properly detect the feelings of the subjects from the physiological signals acquired by these
biofeedback sensors. In this thesis, we explore the distinctive features from physiological

signals using both sequential forward selection (SFS) and ANOVA feature extraction methods.



OZET

ROBOT YARDIMLI REHABILITASYON SISTEMI KULLANILARAK AYIRT
EDiCi OZNITELIKLERIN SECIM YONTEMLERININ DEGERLENDIRILMESI

Gorev katilimi, hastalarin rehabilitasyon programlarina katilimlarinin siirdiiriilmesinde 6nemli
bir faktordiir. Uygun zorlayict bir rehabilitasyon gorevi denekleri motive edebilir ve
denekler i¢in maksimum katilim saglayabilir. Bu nedenle, gorev zorlugunun rehabilitasyon
gorevlerinden iyi performans elde etmek i¢in uygun bir zorlukta olmasi arzu edilmektedir.
Uygun zorluk seviyesini bulmak icin, kisinin duygularin tespit etmek (denek ya sikiliyor ya
da zorlantyordur) ve daha sonra rehabilitasyon gorevini, denegin duygularini dikkate alarak
yeteneklerine daha iyi uyacak sekilde modifiye etmek 6nemlidir. Bu tezde, kisinin duygularini
tespit etmek icin Kan Hacmi Darbesi (BVP), Deri Iletkenligi (SC), ve Deri Sicaklig1 (ST)
olmak {lizere gibi ii¢ biyogeribildirim algilayici kullanildi. Kullanilan biyogeribildirim
algilayicilar yardimiyla fizyolojik sinyallerden deneklerin duygularini dogru bir sekilde tespit
etmek i¢in ayirt edici 6zniteliklerin hangileri oldugunu bilmekde olduk¢a 6nemlidir. Bu tezde,
ardigik ileri se¢cim ve tek yonlii ANOVA 0Oznitelik ¢ikarim yontemleri kullanilarak fizyolojik

sinyallerden ayirt edici Oznitelikler tespit edildi.
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1. INTRODUCTION

Robot-assisted rehabilitation systems have first been utilized as a part of extensive scaled
clinical tests in 1998, and from that point forward various robot-assisted rehabilitation systems
have been developed. Robotic training has shown to improve motor impairment and strength
of the subjects [1], [2]. The robotic devices have been developed to only assist shoulder
movement [3] or elbow movement [4], [5] or both should and elbow movement movements
[61, [71, [8], [9], [10], [11], [12], [13] and [14] or shoulder, elbow and forearm movements
[15], [16], [17]. Additionally, robotics devices have been developed to assist shoulder, elbow,
forearm and wrist movements together [18], [19], [20], and whole arm [21], [22], [23].
The developed robotic devices are considered into two categories in terms of mechanical
structure, which are end-effector-based MIT-MANUS [24], ARM Guide [7], BFIAMT [8],
MEMOS [12], NeReBot [13], GENTLE/S [15], Robot-therapist [ 18] and exoskeleton-based
[3], Dampace [10], L-Exos [16], [11], RehabExos [17], RUPERT IV [19], Salford Arm
Rehabilitation Exoskeleton (SRE) [20], ARMin III [21], ARMOR [22]. There are also few
robotic devices that combine both end-effector based, and exoskeleton-based approaches
which are ArmeoSpring system (courtesy of Hocoma AG), BONES [9], MIME-RiceWrist
[25], [26], REHAROB [14], iPAM [27] and UMH [28]. An exoskeleton-based upper-extremity
robot-assisted rehabilitation system, in Yeditepe University Robotics Research Laboratory

which is called RehabRoby [29], [30], [31] have been developed.

RehabRoby is designed to assist shoulder (flexion/extension, rotation), elbow (flexion/
extension), and forearm (pronation/supination) movements and their combinations. For
this thesis, only elbow(flexion-extension) movements with RehabRoby have been studied.
Here, there are two force sensors used in RehabRoby to detect the applied force for flexion

and extension movements. The details of RehabRoby can be found in [29], [30], [31].

Robot-assisted rehabilitation systems have appeared to be useful in neuromotor rehabilitation
since it is possible to convey intelligent and repeatable sensorimotor exercise, and monitor
the real performance persistently. Motivation and mental engagement of the subjects are

recognized as an important factor to enhance the result of the rehabilitation procedure, and



therapy results [32], [33], [34]. Additionally, motor learning has shown to decrease in the
presence of the over-challenging task [35]. The learning rate of a motor task has shown to be
maximum at a task difficulty level that emphatically challenges and energizes subjects while
not being excessively stressful or exhausting [36]. In this way, task difficulty should be suitably
challenging to acquire great performance from rehabilitation tasks. Too much challenge may
increase workload, which will then be appraised by the subject as low excitement. Similarly,
not enough challenge may induce boredom and both these situations may result in less
involvement, engagement and motivation. An appropriate challenging rehabilitation task can
motivate, and cause most extreme mental engagement for the subjects [37], [38]. Additionally,
it has previously been mentioned that if a robot understands the subject’s feelings, human
machine interaction may become more smooth and efficient [39]. Thus, it is important that
a robot-assisted rehabilitation system supporting in rehabilitation tasks ought to be able to
do first recognizing subject’s feelings (he/she is either getting to be noticeably exhausted or
frustrated), and afterward changing the rehabilitation task to better suit the subjects capacities

by considering his/her feelings.

Face, voice and/or gestures have previously been used to understand the feelings of people
[40], [41], [42]. It is possible for a person not to express his/her feelings through speech,
gestures or facial expressions; however, a change in physiological signal pattern can be
detected correctly. Thus, in this thesis biofeedback sensors are used to detect the feelings
of subjects. Biofeedback sensors have previously been used to understand the feelings of
subjects. Blood Volume Pulse (BVP), skin conductance (SC), and skin temperature (ST)
have been used to classify subjects feelings such as excited, overstressed, bored during robot-
assisted gait rehabilitation [43], [44]. Subjects’ feelings in terms of arousal and valence have
also been estimated in a rehabilitation environment through measurements of physiological
responses [45]. Additionally, biofeedback sensors (pulse, SC, ST) have been used to adaptively
and dynamically change the complexity of the therapy through real-time displays of a virtual
reality system [46]. In the literature, the features that are extracted from the BVP sensor,
such as heart rate (H R), spectral features of heart rate variability (HRV) have shown to
be related with arousal (arousal represents a persons general level of mental activity such
as sleepy or focused) and stress [47]. It has already been demonstrated that increased

value of H R infers increased excitement and valence (the persons feelings are positive or



negative such as miserable or happy) [48]. Additionally, H R has been shown to correlate
positively with valence [49]. The power in the low frequency (L F') band of the HRV range has
shown to decrease when, a higher levels of cognitive load exists [S0]. HRV has beforehand
been translated to give information on the relative feelings of the subject [51]. SC (or
skin conductance response (SC'R)) has additionally appeared to be a decent indicator for
excitement or arousal [49], [52], [53]. SC has been found to increase during demanding tasks
contrasted with rest periods [54]. SCR has additionally been related with cognitive load
particularly with excitement or arousal [55], [56], [57], and the number of SC'R has been
shown to be a sensitive indicator for emotional strain [58]. In this thesis, twenty-four features
are extracted from BVP, SC and ST sensors to understand the subjects’ feelings when they

perform a rehabilitation task with RehabRoby.

When subjects perform the task, the biofeedback sensors start to collect physiological data
from these subjects. First of all, we first use baseline normalization because each subject has
different feeling thus different heart rate when they start to perform the task. We use filtering
technique (Savitzky-Golay) to filter the raw data from the biofeedback sensors to remove the
noise from the signals. When filtering is completed, then the seventeen features from BVP,

four features from SC and three features from ST sensors are extracted.

Two difficulty adjustment algorithms are used to change the difficulty level of the task when
subjects perform the task with RehabRoby. One of the algorithms is called partially ordered
set master (POSM) [30]. POSM learns from observations, and predicts the difficulty level.
POSM is selected because it does not require off-line training, it can ported to any task
and it can guarantee the number of mistakes that can make before learning the suitable
setting. The other algorithm is a well-known increment/decrement one level algorithm
which increase/decrease the difficulty level only one level depending on the scores of
the subjects during the performance of the rehabilitation task. In this context, in [59],
the exercise difficulty level has also been adjusted considering the increment one level
up and decrement one level down by considering the performance (score) of the subjects.
Additionally, the increment/decrement one level algorithm has been used to adjust the difficulty
level of the rehabilitation game for I-TRAVLE robotic system [60]. It is possible to have

different distinctive features when subjects perform the task with two different difficulty level



adjustment algorithms.

Various feature selection methods such as sequential forward selection (SES), sequential
floating forward selection (SFFS), minimal-redundancy-maximal-relevance (MRMR), set
covering problem of correct classifications (SCP), random subset feature selection (RSFS),
statistical dependency between features and labels (SD) and mutual information (MI) have
previously been used [61]. In this thesis, we use the sequential forward selection method
(SES) to extract the distinctive features in each algorithm, and in between two algorithms.
We then use a commonly used method analysis of variance (ANOVA) to find the distinctive

features between two algorithms.

The thesis is organized as follows. We provide details of an exoskeleton-based upper extremity
robot-assisted rehabilitation system, (RehabRoby), the measurement of physiological signals,
the process of feature extraction from these physiological signals, distinctive feature selection
methods, task description, and algorithms to adjust the difficulty level of task in Chapter II.
We provide information about the experimental set-up in Chapter III. We demonstrate the
distinctive feature selection results in Chapter IV. We give the conclusion and future work of

the presented work in Chapter V.



2. MATERIALS AND METHODS

2.1. GENERAL ARCHITECTURE

The general archictecture of the system is given in Fig. 2.1. In this thesis, we use an
exoskeleton-based upper-extremity robot-assisted rehabilitation system, which is called
RehabRoby. We present the details of RehabRoby in [30]. We detect the features that
are most distinctive when subjects perform rehabilitation task using RehabRoby. We first
record the data from the biofeedback sensors during the use of RehabRoby. Then use baseline
normalization and filtering method to reduce noisy signal from the biofeedback sensors raw
data. We extract the features from the processed sensor data. Later, we use feature selection

methods to decide the distinctive features for this application.

Visual Task Display

Feature
rate] Selection

Physiological
Measurements
(Biofeedback Sensor

Figure 2.1. General architecture of the proposed system.

2.2. FRUIT GAME

We use a single player Fruit Picker task [62] that provides elbow flexion/extension task using
various difficulty levels. The Fruit Picker game contains a basket, fruits and rocks as shown

in Fig. 2.2. We can change the parameters of the game such as basket speed, basket size,



level time (sec), fruit number, fruit speed, rock number, rock speed, spawn wait time (sec),
wave wait time (sec) systematically to obtain different difficulty levels of game [63]. We
also demonstrate the score to the subjects during execution of the game to increase their

participation to the game.

High Seore : 500 Score: _! o - - Score
Time: 20,76 > Timc

Object to Collect
(Fruits)
Object to Avoid
(Rocks)

Figure 2.2. Visual display of the task.

The fruits and rocks fall continuously on the game. We instruct the subjects to collect the
fruits and avoid the rocks within a given time as given in Fig. 2.2. The objective of the game
is to collect the fruits, and get away from the rocks by shifting the basket. When the subject
collects the fruits s/he earns 10 points, and when the subject collects the rocks s/he looses 20
points. Subjects perform elbow flexion and extension movements with RehabRoby robot to
move the basket. When the subject makes elbow flexion, the basket acts towards to the left
side, and when the subject makes elbow extension, the basket acts towards to the right side.
At the beginning, the basket is in the right side of the monitor, so for each subject, game starts
within 90 degree elbow extension position, and the game has a working range from 0 to 90

degree which is appropriate for the human anatomy.

7 difficult levels (Level 1-Level 7) are defined. Level 1 is easy (under-challenged), Level 4 is
the medium (challenged), and Level 7 is the difficult (over-challenged) as shown in Fig. 2.3.
Selection of adaptation game parameters depend on the objective of the rehabilitation program.

The goal of the rehabilitation program with RehabRoby is to improve the interval between



.
Score : 0

High Score: 1560

High Score: 1560 Score : -40
Time: 169.80

High Score: 1560

Time: 156.30

Figure 2.3. Examples of game modes.




the appearance/dispersion of targets. Thus, the falling range of fruits and rocks are increased
to make the task challenging, and subjects are required to move in a wider range to collect
fruits and to avoid rocks. Additionally, rock number and rock speed are raised to increase the
difficulty level. Fruit number, fruit speed and basket size are kept same for all 7-difficulty

level.

2.3. ALGORITHMS USED TO ADJUST THE TASK DIFFICULTY OF FRUIT
GAME

We adjust the fruit game task difficulty using two difficulty level adjustment algorithms.

2.3.1. Partially Ordered Set Master Algorithm

Partially Ordered Set Master Algorithm (POSM) learns from observations made during the
task, and predicts the appropriate difficulty setting [30]. The dynamic difficulty adjustment
mechanism input can be subjects performance (e.g. score), time on tasks, and movement
accuracy. In this thesis, POSM is used as the first algorithm to adjust the difficulty level
considering the performance (score) of the subjects. POSM models a more difficult than”
relation. The following these three stages are performed when the fruit game is played by
the subjects: in the first stage, the POSM predicts a difficulty setting, and in the second stage
the subject performs the task in the defined difficulty setting for a period of time, and in the
last stage the POSM receives a feedback, which includes one of the following information, to
understand how the defined difficulty setting fits the subject. These steps repeat until the task
ends. The task is under-challenged if the predicted difficulty setting has not been hard enough
for the subject. The task is challenged if the predicted difficulty setting has been appropriate
for the subject and over-challenged if the predicted difficulty setting has been above the skill

level of the subject. We use POSM as the first algorithm (A1) to detect the distinctive features.



2.3.2. Increment/Decrement One Level Algorithm

We also use another algorithm called increment/decrement to detect the distinctive features as
the second algorithm (A2). This algorithm looks at the difference in the scores in previous 10
s period, and decides the action as given in Table 2.1. The AScorel is the difference between
the score at t + 10 and score at t, and AScore? is the difference between the score at t+20 and
score at t+10 as shown in Fig. 2.4. Low means AScore is 40 and lower points, medium means
AScore is between 40 and 60 points, and high means AScore is bigger than 60 points. For
example, if AScorel is 30 points and next period AScore2 is 50 points, increment/decrement
algorithm decides to stay at same level for next period. These score ranges are generally used

ones and it is possible to change these ranges.

Table 2.1. The Mechanism of Algorithm

Action AScorel | AScore2
Low Low
Decrement One Level | Medium Low
High Low
Low Medium
Stay At Same Level | Medium | Medium
High Medium
Low High
Increment One Level | Medium High
High High

2.4. PHYSIOLOGICAL RECORDINGS

We use blood volume pulse (BVP), skin conductance (SC) and skin temperature (ST) sensors
from Thought Technology Ltd for biofeedback sensory information. We record BVP using
BVP Flex-Pro sensor, which is put on the left hand center finger as given in Fig. 2.5. We
measure SC using skin conductance sensor (sc flex pro) as shown in Fig. 2.5. We put the

electrodes of skin conductance (SC) on the center phalanx of forefinger and ring finger.



Score at Score at Score at
t t+10 t+20
AScorel AScore2
- > | <« -

t t+10 t+20

Figure 2.4. Algorithm score calculation.

10

We record ST utilizing a skin sensor that is put on the fingertip of the thumb. The sensors

are wearable. The sensors are lightweight, non-invasive and FDA approved. We sample

physiological signals at 20 Hertz using Procomp Infinite Encoder using MATLAB software

[64].

2.5. NORMALIZATION

Feature extraction includes normalization, and dimension reduction.

Features exhibit

variability as a result of age, gender, time of the day, thus normalization is needed to

reduce the effect of these variations. Various normalization methods have been proposed

such as subtracting the mean value of all feature vectors and dividing the result by the

standard deviation of all feature vectors. In this thesis, we evaluate six different normalization

techniques. The equations of these normalization techniques are given in below.

* The first normalization technique is calculated by subtracting the mean value of all

feature vectors (ux) and dividing the result by the standard deviation of all feature

vectors (X;)(Equation 2.1).
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Figure 2.5. Placement of sensors on the hand.

_Xi_NX

‘= Sl @)

* The second normalization technique is the subtracting from mean value of baseline
(Ubasetine) and dividing the result by the maximum absolute value of all feature vectors

(X;) subtracting mean value of baseline (tpqseiine) Where the equation is given below.

o X’L — Mbaseline
g =
maz|X; — Mpaseline|

(2:2)
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* Another normalization technique is calculated by subtracting the mean value of baseline
vectors (fipaseline) and dividing the result by the standard deviation of all feature

vectors(std(X;)). The equation of this technique is given in Equation 2.3.

X’i — Mbaseline

Xz' =

(Z3)

* In the fourth normalization technique the mean value of baseline vectors (Lpasetine)
is subtracted from all feature vectors (X;) and the result is divided by the standard

deviation of mean value of baseline (std(ppasetine ))-

Xi - aseline
X, = 21 Hhaseline (2.4)

Std(ﬂbaseline)

* In another simple normalization technique the mean value of baseline vectors (fpaseine)

is subtracted from all feature vectors (X;) as given in below equation.

Xz' = Xz — Mbaseline (25)

 The last normalization technique equalize the feature vectors to itself,

It can be noticed that the third normalization technique (Equation 2.3) and fourth one
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(Equation 2.4) are derived from first normalization technique (Equation 2.1). We selected the
fifth normalization technique (Equation 2.5) because the raw signal from biofeedback sensors
were best discriminated using Equation 2.5. When the normalization process completed then

we extracted the features.

2.6. FEATURE EXTRACTION FROM BIOFEEDBACK SENSOR SIGNALS

Extraction of features from skin temperature (ST) generally involves the raw data mean, raw
data variance and mean absolute derivative over a certain time period. Since the raw data from
the biofeedback sensors are noisy there is a need to use a filter. We use a Savitzky-Golay filter
to filter the raw data from ST and SC. On the other hand, extraction of heart rate variability
(HRV) from BVP sensor involves careful filtering, peak detection, interpolation and power
spectral density calculation. Some signals have signal specific features such as heart rate
(H R), which is generally characterized by a number of time-domain, and frequency-domain
features of HRV [37]. SC is often characterized by the amplitude and frequency of SC'R [37].
There is an extensive list of features in [65], and computational methods to find the features

in [66], [67].

We initially find the heart rate (H R) in thumps every moment (BPM) from the BVP sensor.
We also obtain mean and standard deviation of inter-beat intervals (IBI) from pulse intervals
and labeled as mean;g; and std;p; , respectively. We find Heart Rate Variability (HRV)
signal [68] by counting the inter-beat interval between subsequent pulse peak intervals. We
take Lomb-Scargle periodogram (plomb) spectrum of the HRV signal, and divide HRV
spectrum into three intervals which are a very low frequency, a low frequency and a high
frequency [69], [70]. If interval is between 0 - 0.04 Hertz interval, it means that it is the very

low frequency (V' LF) interval (Equation 2.7). The code is given in Appendix A.

0.04Hz

VLF = Z plomb( findpeaks(databup)) (2.7)

0H=z
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If interval is between 0.04 - 0.15 Hertz interval, it means that it is the low frequency (LF)

interval (Equation 2.8). The code is given in Appendix A.

0.15H=

LF = Z plomb( findpeaks(databup)) (2.8)

0.04Hz

If interval is between 0.15 - 0.4 Hertz interval, it means that it is the high frequency (H F’)

interval. The code is given in Appendix A.

0.4Hz

HF = Z plomb( findpeaks(databup)) (2.9)

0.15H=

0.4Hz

BV P, = Z plomb( findpeaks(databup)) (2.10)

0H=z

We calculate LF'/H F ratio feature, that indicates the overall balance between sympathetic
and parasympathetic systems [71]. We also find the ratio between the total sum of V' L F' and
LFto HF asusing (VLF + LF)/HF [69]. We obtain the percentage ratio of the very low
frequency (peryrr) when BVP total power (BV P,,) is divided by very low frequency total

power using the following equation. The code is given in Appendix A.

VLF

— x 100 2.11
L (2.11)

PeErvir =
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We find the percentage ratio of the low frequency (per ) by dividing the low frequency total

power with BVP total power (BV P,,). The code is given in Appendix A.

LF
BVP,

perpr = x 100 (2.12)

We extract the percentage ratio of the high frequency (peryr) when BVP total power (BV F,,)
is divided by high frequency total power. The code is given in Appendix A.

HF
= — x 100 2.1
peTHF BVP, X (2.13)

Ratio of low frequency of total power and low-high frequency total power gives low frequency
norm (L F,,,,,,) (Equation 2.14), and ratio of high frequency of total power and low-high
frequency total power gives high frequency norm (H F,,,,,,)(Equation 2.15). The code of

these feature calculations are given in Appendix A.

LF
LE,. —=—" %1 2.
F i o (2:14)
HF
HE =7 4 .
worm = T g % 100 2.15)

Moreover, we obtain mean value and variance of BVP sensor (M eans.p), (V arsy.p), and the
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first derivative of the blood volume pulse (Deriuvy,,) from the BVP sensor. The codes of these

feature calculations are given in Appendix A.

We record average skin conductance (M ean,,.) value, and the variance of skin conductance
value (Vars,.) for a given period of 180 seconds from the SC sensor. We get skin conductance
response (SCR) as the total number of brief increments in the skin conductivity signal [72].
The code of SC'R calculation is given in Appendix A. In this thesis, peaks and valleys of the
skin conductivity signal are found out. After that, we look at from one valley to its subsequent
peak is higher than 0.05, at that point we choose the peak as a substantial SC response number.
Then the total number of such responses forms the SC'R value. The algorithm of the SCR

calculation is given in Algorithm 2.1.

We take the data from the SC sensor to evaluate the mean first derivative of skin conductance
(Derivs.)(The code is given in Appendix A). Finally, we use ST to find mean temperature
(M eaniem,), variance of temperature (V ary.,,), and the first derivative of the temperature
(Deriviemp). The codes of these features calculated from the ST are given in Appendix A. We

give a list of biofeedback sensors, and their related features used in this thesis in Table 2.2.

2.7. DISTINCTIVE FEATURE SELECTION METHODS

2.7.1. Sequential Forward Selection (SFS)

We select sequential forward selection (SFS) method [75] to find the distinctive features
because it is straightforward algorithm to regularly perform aggressively to sequential floating
forward selection [76]. However, it has been previously mentioned that search technique
of SFFS makes it all the more viably overfit the features to the feature determination
informational data and may have driven scientists to overestimate its execution if extra
approval information have not been utilized. Notwithstanding these contemplations, the
computational cost of SFFS was observed to be too high for the extensive beginning feature
pool utilized as a part of the thesis. By and large, SFFS neither neglected to join to a steady

list of feature of a particular size nor it was ready to come to the predefined most extreme list



Algorithm 2.1. Skin Conductance Response Calculation

Start withthe P=[]T=[]Ja=1b=1i=0d=0E =0.05
xL = length(datasc)
while i # zL do
i=i+1
if d = 0 then
if datasc(a) > (datasc(i) + F) then
d=2
else
d=1
end if
if datasc(a) < (datasc(i)) then
a=i
else
b=i
end if
else if d = 1 then
if datasc(a) < (datasc(i)) then
a=i
else
P=[Pa]
b=i
d=2
end if
else if d = 2 then
if datasc(i) < (datasc(b)) then
b=i
else
T=[Tb]
a=i
d=1
end if
end if
end while
scr = length(P)

17
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Algorithm 2.2. Sequential Forward Selection

1. Start with the empty set Y, = @

2. Select the next best feature 2 = argmaz[J(Yy) + z)]
3.Update Y, =Y+ 2T k=k+1

4. Goto2

of feature size of 200 features in a sensible calculation time. In a few past reviews that have
assessed SFES, the algorithm has not been keep running until feature of such size prompting
expansive search spaces, not even in late paralinguistic examination thinks about it. In the few
situations where SFFS managed to achieve include set sizes stipulated for the algorithms in
this thesis, it was found to perform more worse than SFS. The computational cost of SES, then
again, was practical, albeit still observably high in contrast with all the new feature selection
algorithms assessed. In the SFS technique, features are chosen progressively by including the
locally best feature point, the feature point that gives the most noteworthy incremental biased
data, to the current feature set. Consequently, SFS is a conspicuous decision for the feature

selection in the thesis.

SFS algorithm begin from null dataset, sequentially attach the features = that outcomes in
the highest objective function J(Y) + ™) when joined with the features Y’ that have just
been chosen. The arguments of the maxima (argmax) are the points of the domain of function
at which the function values are maximized. Note that, SFS performs best when the optimal
subset has a small number of features. The algorithm of SFS is given in Algorithm 2.2. with
the objective function evaluated by means of K nearest neighbours (kNN) classification [61].
The SFS is used to find distinctive features between two difficulty adjustment algorithms (Al

and A2) and in each algorithm by itself.

K nearest neighbours (kNN) is connected as the order run in this thesis [73], the estimated
class labelled for each test occurrence is resolved as the one that is seen most much of the
time among the k labelled preparing examples that are nearest to the sample as far as the
Euclidean distance. In spite of being thoughtfully straightforward and simple to execute

(notwithstanding computational productivity issues), it is in any case a capable example
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order technique that, sufficiently given preparing information, can show complex non linear
decision boundaries in the feature space [74]. In any case, kNN is known to be defenseless to
the impacts of the scourge of dimensionality [73], [74]. From another perspective, kNN in its
fundamental frame does not have any inward feature to manage include pertinence. This is
as opposed to classifiers, for example, support vector machines and random forests, which
are better ready to deal with high dimensionalities and unessential features. These things
legitimize the decision of kNN with the end goal of this thesis: being an able, non linear
pattern classification method whose execution, be that as it may, is moderately very subject to
the nature of the list of feature set, it is especially appropriate for looking at the execution and

heartiness of various feature determination approaches.

We standardized each feature in both the preparation and assessment dataset to have zero
mean and unit difference inside the comparing data collection before kNN classification.
When settling on a choice on an input vector in light of its k nearest neighbours as indicated
by the Euclidean distance, the tallies of various classes inside the k-neighbourhood are scaled
by dividing them by the frequencies of event of similar classes in the training data so as to

make up for possibly one-sided class appropriations.

The quantity of neighbours k is picked in this thesis by first choosing the best-performing
esteem ko, from a given scope of qualities, in the grouping of an improvement set utilizing
training data. In grouping the test data, the improvement set is fused into the training material.
So as to keep up the measure of the ky-neighbourhood as far as the Euclidean distance in spite

of the expanded sample thickness of the augmented training set.

2.7.2. Analysis of Variance (ANOVA)

In this thesis, we also use a well-known method called analysis of variance (ANOVA) to
select the distinctive features in between algorithms Al and A2. We use one-way repeated-
measure ANOVA, and post hoc pairwise multiple comparisons with Bonferroni correction

when necessary.

Each group of n sample and k get one of our group. Variance analysis, that k is equal to
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average of the group whether one allows the testing of statistical. x; ; , i. group j. element
(je{1,2,,n} & ie{1,2,,k}). Group mean (y;) is calculated. Then the sum of the squares
within groups (SSW) is calculated. The average of all samples 1 is calculated. The total sum
of squares (TSS) is calculated. Calculated py, 111, , ftx the sum of squares between groups

with values (SSB) is calculated.Let consider the following equation:

TSS =SSB+SSW (2.16)

SSB and SSW using calculations F-score defined as follows:

Ficore = ((SSB/(k = 1)))/((SSW/(k(n — 1)))) (2.17)

Calculated above Fl.,,. also compared with F-test. F-test gives the F-point value satisfies a
predetermined probability p. If value of p is small, hypothesis can refused. For specifying a
p-value, required minimum F-score, can be calculated by using F-table (k — 1, k(n — 1)). In

summary, hypothesis test is performed as follows:

Fuore > Fk — 1,k(n — 1)) Faore < F(k — 1,k(n — 1)) (2.18)

Here results of analysis of variance test gives p-value and looking from p values to selecting

features.



Table 2.2. Features of Physiological Signals
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Physiological Indices
Physiological Signals Features Derived Label used

Heart rate HR
Mean IBI Meanpr
Standard deviation of IBI Stdrpr
Mean BVP Meany,,
Variance of BVP Vary,
First derivative of BVP Derivy,,

Blood Volume Pulse Sensor | Very low frequency VLF
Low frequency LF
High frequency HF
BVP total power BV P,
Ratio of low frequency to high LF/HF
frequency
Ratio of frequencies (VLF + LF)/HF
Percentage ratio of the very low Peryrp
frequency
Percentage ratio of the low Perpr
frequency
Percentage ratio of the high Peryp
frequency
Low frequency norm LEorm
High frequency norm HEorm
Mean Skin Conductance Mean,,
Skin conductance response SCR
First derivative of skin conductance Derivs.

Skin Conductance Sensor
Variance of Skin Conductance Vary.
Mean temperature Meaniemy
Temperature

Variance of temperature Ve
First derivative of temperature Deriviemy
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3. EXPERIMENTAL SET-UP

This section presents the subjects, experimental procedure as well as the measures used in the

analysis.

3.1. SUBJECTS

20 subjects (10 female and 10 male), whose ages were in the range of 20-37, participated
in our study. They did not receive money, course credit,or any other incentive. We prepare
a questionnaire to collect information on the subject’s previous experience with the robot-
assisted rehabilitation systems and computer games. The questionnaire also consisted of
demographic questions designed to solicit knowledge about gender and age. All the subjects
were using his right hand. All subjects were healthy and no information was available about
any disease that could affect the study. Only one of the subjects had experience with robot-
assisted rehabilitation systems, and only eight subjects have computer games experience. We
received the Institutional Review Board of Sabanci University approval to conduct all the
experiments. In the Institutional Review Board application, we reported all details of the
experiments, and we emphasized that the health and safety of the subjects was by no means
endangered by participating in these experiments. We drafted a detailed consent form that
acquainted the subjects with the experimental procedure and their role in it. We allowed
subjects to participate in the experiment only after their consent had been obtained through a

signed consent form.

3.2. EXPERIMENTAL PROCEDURE

Each subject received one practice trial and five experimental trials, and all five were slightly
different from each other because we modified the difficulty level according to the score that
subjects obtained as shown in Fig. 3.1. Thus, the subjects did not know at which difficulty

level he/she was doing the task in all trials. After admission into the laboratory, we asked to
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fill the subjects a consent form and we informed them about the purpose of the experiments.
After we explained the instructions were verbally, then we asked the subjects to relax and
to close their eyes for 3-minutes to obtain baseline data from BVP, SC and ST sensors
that were recorded with the BioGraph Infiniti. Then, we asked subjects to complete a self-
assessment manikin (SAM) survey that was displayed on the screen as given in Fig. 3.2.
We wanted them to respond to a 9-point scale by choosing a number that best represents
their current psychological state. The lowest arousal represented inactive and the highest
arousal represented excited. The lowest valence represented unpleasant and the highest
valence represented very happy. The lowest dominance represented helpless and the highest

dominance represented in control everything.

Trials

Practice

Baseline Trial

3 minute

3 minute

Figure 3.1. The order of the trials.

After completion of the SAM survey, we gave a 2-minute break to the subjects, and practice
trial started as shown in Fig. 3.1. We presented a practice trial to each subject to familiarize
him/her with the system and the task. We record physiological signals from BVP, SC and ST
sensors. Once the subjects finished the practice trial, we asked subjects to complete the SAM,
and we gave a 2-minute break to the subjects. Then, we asked subjects to do the same task 5
times as given in Fig. 3.1. Each task took 3 minutes. When a trial was over, another trial was

started automatically after 2-minute break, and completion of the SAM survey.



Figure 3.2. SAM arousal (top), valence (middle), and dominance (bottom).
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4. RESULTS

4.1. SELECTION OF DISTINCTIVE FEATURES

4.1.1. Sequential Forward Selection Analysis

Accuracy was found 78.95%, 78.95%, 89.47%, 84.21%, 68.42% and 78.95% for arousal,
valence, dominance, arousal-valence, arousal-dominance and valence-dominance, respectively
when partially ordered set master algorithm (POSM)(A1l) was used for difficulty level
adjustment for RehabRoby. We found 4 distinctive features perpr, Deriviey,, Meany,,,
Deriuv,, when the label set was arousal. When label set was valence, only 2 distinctive
features perpr and Vare,, were found. We found 2 distinctive features Varie,,, and
M eany,,, when label set was dominance. When label set was arousal-valence, the following 5
features V ariemp, perpr, Deriviem,, V ar., Derivy, were found as distinctive. On the other
hand, when label set was selected as arousal-dominance, we found 5 distinctive features
Derivy,y, Meany,, pervir, Variemy, VLF. When label set was choosed as valence-
dominance, we found 2 distinctive features perr and Var.,,,. We give the label set which
is arousal, valence, dominance, arousal-valence, arousal-dominance and valence-dominance
respectively for kNN, and accuracy was found 78.95%, 84.21%, 78.95%, 63.16%, 68.42% and
68.42%, respectively when increment/decrement algorithm (A2) was used for difficulty level
adjustment of RehabRoby. When the label set was selected as arousal, we found 4 distinctive
features Mean,., SCR, Meany,,, LF/HF. We found 1 distinctive features Derivy,, when
the label set was selected as valence. On the other hand, we found 3 distinctive features
Derivg., Mean,. and M eans,, when the label set was dominance. When label set was
as arousal-valence, then we found 5 distinctive features peryp, SCR, peryir, Derivs.,
HF, . We found 4 distinctive features Vary,,, H R, Derivy,,, Deriv,. when the label set
was arousal-dominance. When the label set was selected as valence-dominance, we found 2
distinctive features Deriv,, and Mean,.. All distinctive features, which were extracted from
raw data, are shown in Table 4.2 and the accuracy of these distinctive features was given on

Table 4.1.



Accuracy

Label set selected arousal for A1

T

T T T T T

k values

T

T

Figure 4.1. Selecting optimum k value.

Table 4.1. Accuracy with Optimum k Value

Algorithm Label Set k | Accuracy (%)

Arousal 7 78.95
Valence 9 78.95
Dominance 7 89.47

Al
Arousal-Valence 5 84.21
Arousal-Dominance | 5 68.42
Valence-Dominance | 7 78.95
Arousal 5 78.95
Valence 9 84.21
Dominance 7 78.95

A2
Arousal-Valence 5 63.16
Arousal-Dominance | 5 68.42
Valence-Dominance | 5 68.42

26
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We classified the extracted features as Partially ordered set master algorithm (A1) and
increment/decrement one level algorithm (A2) using kNN classifier. The accuracy was
calculated by changing the value of k from 2 to 15. The best k value was chosen by looking
at the best performance of the kNN algorithm. K value provides an accuracy by looking at the
nearest neighbors. When we started with k equal to 2, it might give best accuracy percentage.
Thus, it just looked at 2 nearest neighbors. However, the algorithm might not classify as
desired when k is selected as 2. Thus, the best k value was not always 2. For example,
when we selected label set as arousal for A1 algorithm, optimum k value was selected 7 as
shown in Fig. 4.1. We gave label set as arousal, valence, dominance, arousal-valence, arousal-
dominance and valence-dominance respectively for KNN. The accuracy with optimum k value
for each label in each algorithm Al and A2 had been given in Table 4.1. The distinctive
features at these optimum k values were presented in Table 4.2. It could be noticed that
different features had been found as distinctive ones. Furthermore, the distinctive features
between Al and A2 algorithms had been found as Std;g;, and Pery r as shown in Fig. 4.2

and Fig. 4.3.

Table 4.2. Sequential Forward Selection Results

Algorithm Label Set Distinctive Feature
Arousal Perrr, Dertiemp, Meany,, Derivy,,
Valence Peru,. Vil iomy
Al Dominance Variemp, Meany,,

Arousal-Valence Variemp, Perip, DeriViemp, V are, Derityy

Arousal-Dominance | Derivy,,, Meany,, Pervir, Variemp, V LF

Valence-Dominance Perpr, Variemp
Arousal Mean., SCR, Meany,,, LF'/HF
Valence Derityy
Dominance Deritse; Methses Meatiyy,

A2

Arousal-Valence Pergr, SCR, Pervrr, Derivs., HF, o m

Arousal-Dominance Vary,,, HR, Derivy,,, Derivg,

Valence-Dominance Derivg., Meang,
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Overall
0.1

A1
0.09 L_L¥

0.08 -
0.07
0.06 -

0.05-

StdIBI

0.04

0.03-

0.02-

0.01-

Figure 4.2. Distinctive feature Std;p;.

4.1.2. One-way Anova Analysis

We used one way repeated measures ANOVA and post hoc pairwise multiple comparisons
with Bonferroni correction when necessary. We classified the extracted features as A1 and
A2 (p value was selected as 0.05). We found a distinctive feature M ean;,,,,. We observed a
significant difference in M eanie.,, between Al and A2 (p=0.0245). We also conducted the
analysis by summing across all trials however for purposes of depiction. Fig. 4.4 illustrated
the Meany.,,, in each trial for each A1 and A2 algorithms. We observed that temperature
was lower than the baseline (temperature before the trials began) when subjects performed the
task using A1 algorithm as shown in Fig. 4.4. Based on the relevant literature, such as [77]),
this could be interpreted as the subjects’ excitement level increased during Al trials when

compared to A2 trials.

4.2. SUBJECTIVE EVALUATION

The mean values of arousal, valence and dominance rating had been shown in Fig. 4.5. It
could be noticed that when subjects performed the rehabilitation task using Al algorithm

they had a higher valence (positive feeling), and a feeling of empowerment because of higher
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Overall

A1
A2

Figure 4.3. Distinctive feature Pery 1 p.

values in dominance ratings. The mental literature puts that positive full of feeling valence
signals that an subject receives an accessible goal in a given task [78]. That is, subjects
occupied with a given task are occupied with fruitful inhibitory control [79] which brought

about higher inspiration.

We used SAM survey results to draw Russells valence-arousal scale [80]. The valence-arousal
space are divided into 4 quadrants, which are low arousal/low valence (LALV) for first
quadrants, low arousal/high valence (LAHV) for second quadrants, high arousal/low valence
(HALV) for third quadrants and high arousal/high valence (HAHV) for fourth quadrants.
We calculated normalized arousal and valence values by taking arousal and valence values
minus by the baseline mean value for all 5 trials for each algorithm (A1 and A2). Fig. 4.6
demonstrated the normalized arousal-valence ratings on the plane. Partially ordered set master
algorithm (A1) is shown with red dot and it is in the fourth quadrants. It means that when
subjects were playing task during A1 algorithm, they were excited. Increment/decrement one
level algorithm (A2) is shown with black circle and it is in the second quadrants. It means that
when subjects were playing task during A2 algorithm, they were relaxed. Partially ordered set
master algorithm (A1) for baseline is shown with blue square and it is in the first quadrants. It
means that when subjects were resting before they start the practice task during Al algorithm,

they were bored. Increment/decrement one level algorithm (A2) for baseline is shown with
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05
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Figure 4.4. Distinctive feature Mean;c,,,,.

green diamond and it is in the first quadrants. It means that when subjects were resting before
they start the practice task during A2 algorithm, they were bored. When compared to subjects’
baseline, the execution of the rehabilitation task using Al algorithm could be associated with
a large increase in arousal and only a moderate increase in valence. We had also noticed
that ratings of the subjects in Al are in HAHV quadrant which meant they are excited and

pleasured (which had also been shown in Section 4.1 with Meanep,).

We had also investigated the correlation of the different ratings with each other as given in
Table 4.3. Significant correlation (p < 0.05) according to Spearman correlation method were
indicated by stars. When we looked survey data which were taken during the partially ordered
set master algorithm, we observed high positive correlations between arousal and valence,
and between dominance and valence. Seemingly, subjects had positive feeling when they
were excited and were able to control the game. Additionally, high positive correlation was
observed between valence and dominance in A1, which meant subjects were happy when they

could control the game.



Arousal

Valence
Dominance

Figure 4.5. Arousal, Valence and Dominance Ratings.

Valence

IS

LAHV HAHV

LALV HALV

Arousal

Figure 4.6. Normalized Arousal-Valence Ratings.

31



Table 4.3. Correlations Between the Scales of Valence, Arousal, Dominance

Algorithm Scale Arousal | Valence | Dominance
Arousal 1 0.81%* 0.41
Al Valence 1 0.71%
Dominance 1
Arousal 1 0.53 0.39
A2 Valence 1 0.53*
Dominance 1

32
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5. CONCLUSION

We assessed distinctive features using two adaptation algorithms by looking at the
physiological signals and subjective reports of emotional state as indexed by SAM survey

results. We overviewed and interpreted the main findings below.

We asked subjects to perform rehabilitation tasks with RehabRoby where the difficulty level
of the task was modified with two algorithms called partially ordered set master (POSM) and
increment/decrement. BVP, SC and ST were recorded during execution of the tasks. The
features from these sensory data were extracted. Two different methods SFS and ANOVA were
used to find distinctive features. First, distinctive features were found in the two algorithms in
each by using SFS method, and between two algorithms. Then, distinctive features were also

found between Al and A2 algorithm using ANOVA.

Various distinctive features were found in each algorithm when SFS was used. However,
the Meany,,, Derivy,, and V ary.,,, features were mostly the common ones. Additionally,
Stdrgy; and Pery r were found as distinctive ones between Al and A2 algorithms. When
ANOVA method was used, only M ean.., had been found as distinctive feature between Al

and A2 algorithms.

With regards to the physiological signals found while subjects were performing the game,
the only a distinctive feature between the two algorithms was observed in the Meane,.
Specifically, our results show that the A2 Meany.,,,, was lower than that of Al across all trials.
A key finding from the research literature on physiological outcomes of the affective states
suggested that a lower body temperature means that arousal/excitement level was high [77]. A
certain level of excitement is welcome in most rehabilitation tasks. However if the excitement
level (i.e., low temperature) across the trials is due to the increasing difficulty provided by the
game, the subjects then may feel over-challenged and eventually drop out of the rehabilitation
exercises. The higher body temperature across the tasks in Al seemed to demonstrate a more
controlled level of excitement, and therefore providing an adaptive level of challenge for the

individual.
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The above interpretation was also confirmed by the subjective ratings provided by the subjects.
Even though there were no significant differences in the reported subjective ratings (valence,
and arousal levels) when subjects were performing under A1 and A2, an interesting difference
emerged in the dominance ratings. The findings yielded that under A1, subjects felt their
dominance level was higher when compared to when they were performing with A2. This
leaded to the conclusion that with changing levels of difficulty the subjects had the subjective
sense of being in control during the game in A1 when compared to A2 (recall that in A2, the
difficulty levels are present; i.e. increasing with each trial). Clearly, the subjects did not feel

they can control the tasks in this situation.

A couple of limitations of the present thesis are listed: It had only been conducted with healthy
subjects. In the future studies, new feature selection methods can be tried and compared
against previous results. All in all, research on robot-assisted systems that are capable of
not only detecting the subject’s performance but also detecting subject’s feelings and then
dynamically adjusting the difficulty level of the rehabilitation task to better suit the patients
feelings and abilities have gained momentum in the recent years. It has previously been
shown that it is possible to develop more efficient and effective robot-assisted treatments
when the subject’s feelings are in the control loop [81]. The long-term goal of this thesis is to
perform closed loop control of difficulty level of the task during robot-assisted rehabilitation
automatically to stimulate a desired level of engagement during rehabilitation by using not

only performance but also physiological signals.
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APPENDIX A: FEATURE EXTRACTION FOR EACH SUBJECT

function Table = extractfeatures(userld, condId) if nargin ==
userld = 1;

condld =1;

end

if condld ==

condText ="gl’;

else

condText ="g2’;

end

load(sprintf(’../matfiles/u%02d%s’, userld, condText));
condTitles = {"Gamel’, ’Game2’, *Game3’, ’Game4’, ’Game5’ };
% Normalization

for j=1:3

for i=1:length(gamel)

normalizeddatagame1(i,j) = (game1(i,j)-mean(baseline(:,j)));
end

end

for j=1:3

for i=1:length(game2)

normalizeddatagame?2(i,j) = (game2(i,j)-mean(baseline(:,j)));
end

end

for j=1:3

for i=1:length(game3)

normalizeddatagame3(i,j) = (game3(i,j)-mean(baseline(:,j)));
end

end

for j=1:3

for i=1:length(game4)
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normalizeddatagame4(i,j) = (game4(i,j)-mean(baseline(:,j)));

end

end

for j=1:3

for i=1:length(game5)

normalizeddatagame5(i,j) = (game5(i,j)-mean(baseline(:,j)));

end

end

bvp = [normalizeddatagamel(:,1);normalizeddatagame2(:,1);normalizeddatagame3(:,1);...
normalizeddatagame4(:,1);normalizeddatagame5(:,1)];

sc = [normalizeddatagamel(:,2);normalizeddatagame?2(:,2);normalizeddatagame3(:,2);...
normalizeddatagame4(:,2);normalizeddatagame5(:,2)];

temp = [normalizeddatagamel(:,3);normalizeddatagame?2(:,3);normalizeddatagame3(:,3);...
normalizeddatagame4(:,3);normalizeddatagame5(:,3)];

% Savitzky-Golay filtering

filtbvp=sgolayfilt(bvp,1,21);

filtsc=sgolayfilt(sc,1,21);

filttemp=sgolayfilt(temp,1,21);

% LPF to remove false peaks, cutting frequency fc =2 Hz
fs=100;

[b, a] = butter(5,2*2/fs);

Ipfbvp = filter(b,a,bvp);

Ipfsc = filter(b,a,sc);

Ipftemp = filter(b,a,temp);

% Gamel
datacell{1}=[Ipfbvp(1:length(normalizeddatagamel)) ...
filtsc(1:length(normalizeddatagamel))...
filttemp(1:length(normalizeddatagamel))];

% Game?2
datacell{2}=[Ipfbvp(length(normalizeddatagame1)+...
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l:length(normalizeddatagame1+length(normalizeddatagame?))...
filtsc(length(normalizeddatagamel)+1:length(normalizeddatagamel)...
+length(normalizeddatagame?2)) filttemp(length(normalizeddatagamel)...
+1:length(normalizeddatagame 1)+length(normalizeddatagame?))];

% Game3

datacell{3}=[Ipfbvp(length(normalizeddatagamel)...
+length(normalizeddatagame?2)+1:length(normalizeddatagamel)...
+length(normalizeddatagame?2)+length(normalizeddatagame3))...
filtsc(length(normalizeddatagamel)+length(normalizeddatagame?2)+...
1:length(normalizeddatagamel)+length(normalizeddatagame?)...
+length(normalizeddatagame3)) filttemp(length(normalizeddatagamel)...
+length(normalizeddatagame?)+1:length(normalizeddatagamel)...
+length(normalizeddatagame?2)+length(normalizeddatagame3))];

% Game4

datacell{4}=[Ipfbvp(length(normalizeddatagame 1)+
length(normalizeddatagame?2)+length(normalizeddatagame3)+
1:length(normalizeddatagame1)+length(normalizeddatagame?2)+
length(normalizeddatagame3)+length(normalizeddatagame4))
filtsc(length(normalizeddatagamel)+
length(normalizeddatagame?2)+length(normalizeddatagame3)+
l:length(normalizeddatagamel)+length(normalizeddatagame?2)+
length(normalizeddatagame3)+length(normalizeddatagame4))
filttemp(length(normalizeddatagamel)+
length(normalizeddatagame?2)+length(normalizeddatagame3)+
l:length(normalizeddatagamel)+length(normalizeddatagame?2)+
length(normalizeddatagame3)+length(normalizeddatagame4))];

% Game5

datacell{5}=[Ipfbvp(length(normalizeddatagame 1 )+length(normalizeddatagame2)+...
length(normalizeddatagame3)+length(normalizeddatagame4)+...
l:length(normalizeddatagame)+length(normalizeddatagame2)+...

length(normalizeddatagame3)+length(normalizeddatagame4)+...
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length(normalizeddatagame5)) filtsc(length(normalizeddatagamel)...
+length(normalizeddatagame?2)+length(normalizeddatagame3)+...
length(normalizeddatagame4)+1:length(normalizeddatagamel )+...
length(normalizeddatagame?2)+length(normalizeddatagame3)+...
length(normalizeddatagame4)+length(normalizeddatagames))...
filttemp(length(normalizeddatagame1)+length(normalizeddatagame?2)+...
length(normalizeddatagame3)+length(normalizeddatagame4)+...
l:length(normalizeddatagamel)+length(normalizeddatagame2)+...
length(normalizeddatagame3)+length(normalizeddatagame4)+...

length(normalizeddatagame5))];

for r=0:4 % r=0 means Gamel / r=1 means Game2 / r=2 means Game3 / r=3 means Game4 /
r=4 means Game5

fs=100;

data=datacell{1,7 + 1};

databvp = data(:,1);

datasc = data(:,2);

datatemp = data(:,3);

meanbvp=mean(databvp); % mean bvp
meansc=mean(datasc); % mean sc
meantemp=mean(datatemp); % mean temp
vbvp=var(databvp); % variance bvp
vsc=var(datasc); % variance sc

vtemp=var(datatemp); % variance temp

fdmbvp=mean(diff(databvp)/(1/fs)); %first difference mean for smoothed data bvp
fdmsc=mean(diff(datasc)/(1/fs)); %first difference mean for smoothed data sc

fdmtemp=mean(diff(datatemp)/(1/fs)); %first difference mean for smoothed data temp
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% bvp calculation %

m = length(databvp);

time = (0:m-1)/fs;

[pks, locs|=findpeaks(databvp); % This is an important step, false peaks may %deceive the
features.

tpeaks = time(locs);

figure(1)

subplot(5,1,r+1);

plot(time,databvp)

hold on

plot(tpeaks,pks,’r*”)

title(sprintfCBVP-%s’, condTitles{r+1}));

% This is an important step, false peaks may deceive the features.
tvar = diff(tpeaks);

tvec = tpeaks(2:end);

Xvec = tvar;

[power, f| = plomb(xvec,tvec);

figure(3)

subplot(5,1,r+1);

plot(f,power)

xlim([0 0.5])

xlabel(’Frequency’)

ylabel(’Power”)

hold on

plot(0.04*ones(1,10),linspace(0,max(power),10),’r-’, LineWidth’,2)
plot(0.15*ones(1,10),linspace(0,max(power),10),’g-’,’ LineWidth’,2)
plot(0.4*ones(1,10),linspace(0,max(power),10),’k-",’LineWidth’,2)
title(sprintf(’Spectrum of HRV - %s’, condTitles{r+1}));

grid on

[, v]=find(f>0 & f<=0.4);



bvptp = sum(power(u));

[u, v]=find(f>0 & £<0.04);

bvpvlf = sum(power(u));

[u, v]=find(0.04<f & £<0.15);

bvplf = sum(power(u));

[u, v]=find(0.15<f & £<0.4);

bvphf = sum(power(u));

bvplfhf = bvplf/bvphf;
percenthf=(bvphf/(bvphf+bvplf+bvpvlf))*100;
percentlf=(bvplf/(bvphf+bvplf+bvpvif))*100;
percentvlf=(bvpvlf/(bvphf+bvplf+bvpvlf))*100;
Ifnorm = (bvplf/(bvplf + bvphf))*100;

hfnorm = (bvphf/(bvplf + bvphf))*100;

ratio = (bvpvlf+bvplf)/bvphf;

stdIBI = std(tvar);

meanIBI = mean(tvar);

BPM = 60/meanIBI;

BVPFeatureVec(:,r+1) = [BPM; meanIBI; stdIBI; bvptp;
bvpvlf;bvplf;bvphf;bvplfhf;percentvif;percentlf;percenthf; Ifnorm;hfnorm;ratio];
% SCR calculation %
P=[;T=[;a=1;b=1;i=0;d=0;

E =0.05;

xL = length(datasc);

while (i = xL)

i=i+1;

if (d==0)

if (datasc(a) >= (datasc(i) + E)) % E threshold value
d=2;

elseif (datasc(i) >= (datasc(b) + E ) )

d=1;

end;



if (datasc(a) <= datasc(i) )

a=i;

elseif (datasc(i) <= datasc(b) )

b=1i;

end;

elseif (d==1)

if (datasc(a) <= datasc(i) )

a=1i;

elseif (datasc(a) >= (datasc(i) + E))

P =[Pal; b=1i;d =2; % peaks

end;

elseif (d==2)

if (datasc(i) j= datasc(b) )

b=1i;

elseif (datasc(i) >= (datasc(b) + E ) )
T=[Tb]; a=1i;d = 1; %troughs

end;

end;

end;

scr= length(P);

m = length(datasc);

time = (0:m-1)/fs;

figure(11);

subplot(5,1,r+1);

plot(time,datasc)

hold on

plot(time(P),datasc(P), r*")
title(sprintf(’SC - %s’, condTitles{r+1}));
SCFeatureVec(:,r+1) = [scr;meansc;vsc;fdmsc];
TempFeatureVec(:,r+1) = [meantemp;vtemp;fdmtemp];

BVPFeatureVecl(:,r+1) = [meanbvp;vbvp;fdmbvp];

51



end

ALLFEATURE=[SCFeature Vec;BVPFeatureVec;BVPFeatureVecl;TempFeatureVec];
Features = {"SCR’;’"MeanSC’;’ VarianceSC’;...
"FirstDerivativeMeanSC’;’HR’;’MeanIBI’;’ StdIBI’;...

"BvpTotalPower’;’ VeryLowFrequency’;’ LowFrequency’;...
"HighFrequency’;’ LowFreq/HighFreq’;...

"% VeryLowFrequency’;” %LowFrequency’;’ %HighFrequency’;...
"LowFrequencyNorm’;”HighFrequencyNorm’;...

"Ratio of Frequencies’;”MeanBVP’;’ VarianceBVP’;...
"FirstDerivativeMeanBVP’;’MeanTEMP’;...

’Variance TEMP’ ;" FirstDerivativeMeanTEMP’ };

MeanGame = mean(ALLFEATURE’)’;

StdGame = std(ALLFEATURE’)’;

Table = table(ALLFEATURE,MeanGame,StdGame,’ RowNames’ ,Features);
save(sprintf(’../tables/u%02d%s’, userld, condText),' Table’)
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APPENDIX B: PLOTTING THE FEATURES

%% overall features table

clear all

close all

cle

condTextl =’gl’;

condText2 =’g2’;

table = zeros(24,7);

%% G1

fori=1:20

load(sprintf("u%02d%s’, i, condText1), Table’)
Table = table2array(Table);

table = Table(:,:)+table(:,:);

end

overallgltable = table/20; % mean

%% G2

clear table;

table = zeros(24,7);

fori=1:20

load(sprintf(Cu%02d%s’, i, condText2), Table’)
Table = table2array(Table);

table = Table(:,:)+table(:,:);

end

overallg2table = table/20; % mean

% ploting data using bar command
Features = {"SCR’;’"Mean{sc} ;...
"Var{sc}’;’Deriv{sc};...
"HR’;’Mean{IBI}’;’Std{IBI}";...
'BVP{tp}’;’”VLF’;’LF’;"HF’;’ LFtoHF ;...
"%VLF; %LF’; %HF’;’ LF{norm}’;...
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"HF{norm}’; (VLF+LF)toHF’;...

"Mean{bvp}’;’ Var{bvp}’;...
"Deriv{bvp}’;’Mean{temp}’;...

"Var{temp}’; Deriv{temp}’};

xlabel= { Trail 1, Trail 2 *,’Trail 3 ...

"Trail 4’,’ Trial 5°,’Overall’ };

overalltable = [overallgltable(:,1) overallg2table(:,1) ...

overallgltable(:,2) overallg2table(:,2) overallgltable(:,3) ...
overallg2table(:,3) overallgltable(:,4) overallg2table(:.4) ...

overallgltable(:,5) overallg2table(:,5) ...
overallgltable(:,6) overallg2table(:,6)];

%%

table = zeros(24,6);

fory =1:24

fori=1:20

load(sprintf("u%02d%s’, i, condText1), Table’)
Table = table2array(Table);

table(i,:) = Table(y,1:6);

end

table = [table(1:20,:)];
overallglstd(y,:)=std(table)./sqrt(length(table));
end

%%

table = zeros(20,6);

fory =1:24

fori=1:20

load(sprintf("u%02d%s’, i, condText2), Table’)
Table = table2array(Table);

table(i,:) = Table(y,1:6);

end

table = [table(1:20,:)];
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overallg2std(y,:)=std(table)./sqrt(length(table));
end

%o %

overallstd = [overallglstd(:,1) overallg2std(:,1) ...

overallglstd(:,2) overallg2std(:,2) ...
overallglstd(:,3) overallg2std(:,3) ...
overallglstd(:,4) overallg2std(:,4) ...
overallglstd(:,5) overallg2std(:,5) ...
overallglstd(:,6) overallg2std(:,6)];
fori=1:24

figure(i);

m = [overalltable(i,1:2);overalltable(i,3:4);...
overalltable(i,5:6);overalltable(i,7:8);...
overalltable(i,9:10);overalltable(i,11:12)];
s = [overallstd(i, 1:2);overallstd(i,3:4);...
overallstd(i,5:6);overallstd(i,7:8);...
overallstd(i,9:10);overallstd(i,11:12)];
errorbargroups(m’,s’);

hold on;

set(gca, XTickLabel’ xlabel, XTick’,[1.53.55.57.59.5 11.5]....

’XTickLabelRotation’,45,” Fontsize’,20)
ylabel(Features(i,1));
legend(CA1°,A2’)

title(COverall’)

end
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APPENDIX C: ANOVA CALCULATIONS

clear all

close all

cle

condTextl =’gl’;

condText2 =’g2’;

t=1;

%% G1

fory =1:24

fori=1:20

load(sprintf("u%02d%s’, i, condText1), Table’)
Table = table2array(Table);

tableg1(t,:) = Table(y,6);

t=t+1;

end

end

%% G2

t=1;

fory=1:24

fori=1:20

load(sprintf(Cu%02d%s’, i, condText2), Table’)
Table = table2array(Table);

tableg2(t,:) = Table(y,6);

t=t+1;

end

end

%% overall

SCR = [tableg1(1:20,:) tableg2(1:20,:)];
MeanSC = [tableg1(21:40,:) tableg2(21:40,:)];
VarianceSC = [tableg1(41:60,:) tableg2(41:60,:)];
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FirstDerivativeMeanSC = [tableg1(61:80,:) tableg2(61:80,:)];

HR = [tableg1(81:100,:) tableg2(81:100,:)];

MeanlBI = [tableg1(101:120,:) tableg2(101:120,:)];

StdIBI = [tableg1(121:140,:) tableg2(121:140,:)];

BvpTotalPower = [tableg1(141:160,:) tableg2(141:160,:)];
VeryLowFrequency = [tableg1(161:180,:) tableg2(161:180,:)];
LowFrequency = [tableg1(181:200,:) tableg2(181:200,:)];
HighFrequency = [tableg1(201:220,:) tableg2(201:220,:)];
RatioofLowFreqtoHighFreq = [tableg1(221:240,:) tableg2(221:240,:)];
PerVeryLowFrequency = [tableg](241:260,:) tableg2(241:260,:)];
PerLowFrequency = [tableg1(261:280,:) tableg2(261:280,:)];
PerHighFrequency = [tableg1(281:300,:) tableg2(281:300,:)];
LowFrequencyNorm = [tableg1(301:320,:) tableg2(301:320,:)];
HighFrequencyNorm = [tableg1(321:340,:) tableg2(321:340,:)];
RatioofFrequencies = [tableg1(341:360,:) tableg2(341:360,:)];
MeanBVP = [tableg1(361:380,:) tableg2(361:380,:)];

VarianceBVP = [tableg1(381:400,:) tableg2(381:400,:)];
FirstDerivativeMeanB VP = [tableg1(401:420,:) tableg2(401:420,:)];
MeanTEMP = [tableg1(421:440,:) tableg2(421:440,:)];
VarianceTEMP = [tableg1(441:460,:) tableg2(441:460,:)];
FirstDerivativeMeanTEMP = [tableg1(461:480,:) tableg2(461:480,:)];
%% 1-Way Anova

[p, tbl] = anoval(SCR);

saveas(gcf, sprintf(’../anova/SCR(%s).png’,’anova’));

[p, tbl] = anoval (MeanSC);

saveas(gcf, sprintf(’../anova/MeanSC(%s).png’,’anova’));

[p, tbl] = anoval(VarianceSC);

saveas(gcf, sprintf(’../anova/VarianceSC(%s).png’,’anova’));

[p, tbl] = anoval (FirstDerivativeMeanSC);

saveas(gcf, sprintf(’../anova/FirstDerivativeMeanSC(%s).png’,’ anova’));

[p, tbl] = anoval(HR);
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saveas(gcf, sprintf(’../anova/HR(%s).png’,’anova’));

[p, tbl] = anoval (MeanIBI);

saveas(gcf, sprintf(’../anova/MeanlBI(%s).png’,’anova’));

[p, tbl] = anoval(StdIBI);

saveas(gcf, sprintf(’../anova/StdIBI(%s).png’,’anova’));

[p, tbl] = anoval (BvpTotalPower);

saveas(gcft, sprintf(’../anova/BvpTotalPower(%s).png’,’anova’));

[p, tbl] = anoval (VeryLowFrequency);

saveas(gcf, sprintf(’../anova/VeryLowFrequency(%s).png’,’anova’));
[p, tbl] = anoval(LowFrequency);

saveas(gcf, sprintf(’../anova/LowFrequency(%s).png’,’anova’));

[p, tbl] = anoval (HighFrequency);

saveas(gcf, sprintf(’../anova/HighFrequency(%s).png’,’anova’));

[p, tbl] = anoval (RatioofLowFreqtoHighFreq);

saveas(gcf, sprintf(’../anova/RatioofLowFreqtoHighFreq(%s).png’,’anova’));
[p, tbl] = anoval (PerVeryLowFrequency);

saveas(gcft, sprintf(’../anova/PerVeryLowFrequency(%s).png’, anova’));
[p, tbl] = anoval (PerLowFrequency);

saveas(gcf, sprintf(’../anova/PerLowFrequency(%s).png’, anova’));

[p, tbl] = anoval (PerHighFrequency);

saveas(gcf, sprintf(’../anova/PerHighFrequency(%s).png’,’anova’));
[p, tbl] = anoval (LowFrequencyNorm);

saveas(gcft, sprintf(’../anova/LowFrequencyNorm(%s).png’,’anova’));
[p, tbl] = anoval (HighFrequencyNorm);

saveas(gcf, sprintf(’../anova/HighFrequencyNorm(%s).png’, anova’));
[p, tbl] = anoval(RatioofFrequencies);

saveas(gcf, sprintf(’../anova/RatioofFrequencies(%s).png’, anova’));
[p, tbl] = anoval (MeanBVP);

saveas(gcf, sprintf(’../anova/MeanBVP(%s).png’,’anova’));

[p, tbl] = anoval(VarianceBVP);

saveas(gcf, sprintf(’../anova/VarianceBVP(%s).png’,’anova’));
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[p, tbl] = anoval (FirstDerivativeMeanBVP);

saveas(gcf, sprintf(’../anova/FirstDerivativeMeanBVP(%s).png’,’anova’));
[p, tbl] = anoval (MeanTEMP);

saveas(gcf, sprintf(’../anova/MeanTEMP(%s).png’,’anova’));

[p, tbl] = anoval (VarianceTEMP);

saveas(gcf, sprintf(’../anova/VarianceTEMP(%s).png’,’anova’));

[p, tbl] = anoval (FirstDerivativeMeanTEMP);

saveas(gcf, sprintf(’../anova/FirstDerivativeMeanTEMP(%s).png’, anova’));



APPENDIX D: SURVEY AROUSAL-VALENCE SCALE

clear all

close all

cle

load survey.mat

overallgl = (gamelgl+game2gl+game3gl+gamedgl+gameSgl)./S;
overallg?2 = (gamelg2+game2g2+game3g2+game4g2+gameSg2)./5;
overgl=overallg1([1:2,4,6:8,10:end],:);
overg2=overallg2([1:3,5:9,11:18,201],:);

¢ = mean(overgl)./std(overgl);

d = mean(overg2)./std(overg2);
baselinegl=mean(bg1)./std(bgl)
baselineg2=mean(bg2)./std(bg2)

figure(2)

plot(c(1,2),c(1,1), 1*)

hold on

plot(d(1,2),d(1,1),’ko”)

xlabel(’Valence’)

ylabel(’ Arousal’)
plot(baselineg1(1,2),baselineg1(1,1),’b*”)
plot(baselineg2(1,2),baselineg2(1,1),’bo’)
legend(’G1°, G2’ BaselineG1’, BaselineG2’)
axis([1919]))
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