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ABSTRACT 

 

 

AN ONLINE ALGORITHM FOR THE GLASS CUTTING PROBLEM WITH 

DEFECTS OF MULTIPLE GRADES AND PRODUCTS WITH QUALITY 

CLASSES 

 

In this thesis, we focus on the problem of placing cutting patterns on a sheet of flat glass 

that contains various types of defects. In flat glass production, a continuous glass sheet is 

cut into glass products of different sizes and different quality classes. Each quality class 

indicates the maximum number of defects of each type that can be tolerated on a glass 

product. Products that do not meet the quality requirements defined by their quality classes 

are considered scrap and sent back to the furnace to be recycled. In a continuous glass 

production line, patterns to be cut from the glass sheet have to be determined in real time, 

which limits the time available for decision making. The main goal of the glass cutting 

problem is to determine the cutting patterns in a limited time so as to minimize the total 

area of scrap glass. In selecting the products to be cut, daily production targets of each 

product type are also considered to ensure timely delivery of orders. To solve this real time 

glass cutting problem, we propose an online algorithm that solves a series of static cutting 

problems over a rolling horizon using various approaches and implements the first few cuts 

from each static solution to avoid a myopic decision. 

In this study, we develop genetic algorithm (GA), dynamic programming (DP) and Mixed 

Integer Programming (MIP) based methods for solving the static cutting problem on a 

glass sheet of fixed size that contains defects. These methods are integrated into the online 

algorithm and tested using realistic instances with different defect densities. In the initial 

versions of the algorithm, production targets are used as constraints. Later, production 

targets are integrated into the objective function in order to the improve solution quality by 

balancing the production of different products during the production run. Moreover, an 

adaptive version of the algorithm, which is capable of adjusting itself based on the current 

status of the production run, is also provided in this study. This thesis is one of the first 

studies in the literature that solves a real time cutting problem with defects of multiple 

grades and products with quality classes.  
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ÖZET 

 

 

FARKLI HATA TÜRLERİ VE ÜRÜN KALİTE SINIFLARI İÇEREN BİR CAM 

KESİM PROBLEMİ İÇİN GERÇEK ZAMANLI BİR ÇÖZÜM ALGORİTMASI 

 

Bu tez çalışmasında, çeşitli hata noktaları içeren düz bir cam şeritten kesilecek ürünlerin 

cam üzerine yerleştirilmesi problemine odaklanmaktayız. Düz cam üretiminde, üretim hattı 

üzerinde sürekli olarak akmakta olan cam şeritten, farklı boyutlarda ve farklı kalite 

sınıflarında cam ürünleri kesilir. Kalite sınıfları, bir ürün üzerinde her hata türünden en çok 

kaç adet hatanın tolere edilebileceğini gösterir. Ait olduğu kalite sınıfının kalite 

gereksinimlerini yerine getirmeyen ürünler artık cam olarak kabul edilir ve geri 

dönüştürülmek üzere fırına yollanır. Sürekli bir cam üretim hattında, kesilecek ürünlere 

karar verme işlemi gerçek zamanlı olarak yapıldığından karar verme süresi kısıtlıdır. Bu 

problemin temel amacı, sınırlı bir süre içinde cam şeridinden kesilecek ürünlerin 

yerleşimini toplam artık cam alanını en aza indirecek şekilde belirlemektir. Siparişlerin 

zamanında teslim edilebilmesi için kesilecek ürünlere karar verirken her ürün türünün 

günlük üretim hedefleri de göz önünde bulundurulur. Bu gerçek zamanlı problemin 

çözümü için, kayan ufuk üzerinde bir dizi statik kesim problemini kesin ya da yaklaşık 

yöntemlerle çözerek, her statik çözümün sadece ilk birkaç kesimini uygulayan bir çevrim 

içi algoritma önerilmektedir.  

Bu çalışmada sabit uzunlukta ve hatalar içeren bir cam şeridi üzerindeki statik kesim 

problemini çözmek için Genetik Programlama (GP), Dinamik Programlama (DP) ve 

Karışık Tamsayılı Programlama (KTP) yöntemleri geliştirildi. Bu yöntemler gerçek 

zamanlı çözüm algoritmasına entegre edilerek, farklı hata yoğunlukları içeren gerçekçi 

üretim örnekleri üzerinde test edildi. Algoritmanın ilk versiyonlarında üretim hedefleri 

birer kısıt olarak dikkate alındı. Sonraki versiyonlarda ise üretimin daha dengeli 

yapılmasını sağlayarak sonuçların kalitesini artırmak amacıyla üretim hedefleri amaç 

fonksiyonuna eklendi. Bununla birlikte, gerçek zamanlı algoritmanın değişen üretim 

koşullarına uyum sağlayabilen adaptif bir uyarlaması da çalışmaya dahil edildi. Bu tez 

farklı hata türleri ve ürün kalite sınıfları içeren gerçek zamanlı bir kesim probleminin 

çözümünü içeren ilk çalışmalardan biridir.  
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1. INTRODUCTION 

 

In this thesis, we focus on a cutting problem that arises in the flat glass production 

industry. Flat glass production is a continuous process in which a ribbon of molten glass is 

produced, cooled, carried on rollers and cut into rectangular products of varying sizes and 

quality specifications. This production line, where the glass sheet from the furnace is 

converted into glass products is called a float line (Figure 1.1). 

 

 
 

Figure 1.1. Flat glass production [1] 

 

An important decision that has to be made in real time in a float line is to determine which 

products should be cut and how these products should be placed on the glass sheet. This 

problem can be viewed as a two dimensional cutting problem in which a number of two 

dimensional products are to be cut from a larger two dimensional stock. This decision is 

complicated by the existence of defects on the glass sheet and the fact that the location of 

these defects becomes available only a few seconds before the cutting decision is made. 

The defects on the glass sheet are categorized into quality grades based on their severity. 

While the glass sheet moves on the rollers, the position and grade of defects that are 

present on the sheet are detected by a camera that has been placed on the float line. Once 

the defects are detected, the product patterns to be cut from the glass sheet are to be 

decided within a timeframe of few seconds. The cutting decision is complicated by the fact 
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that each product has quality requirements that limit the number of defects from each 

quality grade allowed on the product, which prohibits cutting that product from certain 

defective areas. In some cases, it may be preferable to discard pieces of glass that contain 

defects as scrap to avoid cutting products from defective areas. A common practice is to 

remove strips of defective glass by cutting immediately behind a defect, which is called a 

Cut Behind Fault (CBF) in float line terminology. Cutting patterns that are decided are 

immediately communicated to cutting bridges, which score the pattern on the glass sheet in 

the form of vertical and horizontal lines using a cutting wheel. The lines that are parallel 

and perpendicular to the glass ribbon width are called x-cuts and y-cuts, respectively. Both 

x- and y-cuts are end to end, i.e. they traverse the entire width and length of the glass, 

respectively. Such cuts are called guillotine cuts in cutting literature. 

Figure 1.2 depicts a glass sheet on which defects of two quality grades are marked as small 

circles and squares and products 1-3 are marked with vertical and horizontal lines. Shaded 

areas represent the scrap glass that results from cutting. Note that the same grade defect 

(circle) causes product 1 to be discarded as scrap whereas product 3 is acceptable despite 

the same defect. This is because the two products belong to different quality grades: 

product 3’s quality class allows a circle defect while product 1’s does not. 

 

 

 

Figure 1.2. Illustration of a cutting pattern placed on the glass sheet on a float line 

 

Depending on the speed of the glass sheet and the distance between the camera and the 

cutting bridges, the next pattern to be cut should be decided within few seconds. The short 

time frame available for decision making necessitates an efficient algorithm that can 
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produce a solution within seconds. On the other hand, simplistic approaches may result in 

low quality solutions that result in large amounts of scrap. Thus, it is necessary to develop 

a solution approach that can produce good quality solutions within limited time. 

Similar cutting stock problems occur in metal industry [2] and LCD production [3]. 

Rectangular products are cut offline from a flat sheet that generally does not contain 

defects. Unlike these industries, defects are common in many other industries such as 

lumber [4], furniture [5], paper [6], textile [7], and cake manufacturing [8]. Since defective 

products are not valuable in most of the cases, solution methods are designed for defect 

removal. In some production environments such as lumber manufacturing [9], defects are 

classified and defective products with minor defects are accepted. 

To the best of our knowledge, there are a limited number of studies in the literature that 

investigate an online cutting problem with defects of varying severity. Moreover, few 

studies work with products that belong to multiple quality classes such as the one 

considered in this thesis. The static version of the problem, which is solved over a fixed 

length, differs from other problems in the literature in the way that the defects are handled. 

Unlike the problem in this thesis, most of the studies use defect removal instead of 

defective product evaluation. Considering all of these characteristics, this thesis proposes a 

general solution approach for various cutting problems. While this problem is inspired by 

the glass production industry, the static sub problem solved at each step of the online 

algorithm resembles other cutting problems with defects that arise in the metal, lumber, 

furniture, paper, LCD, textile and cake manufacturing. Therefore we expect that the 

solution approaches developed here can be adapted to these problems as well. 

In this study, we propose an algorithm that solves the online glass cutting problem 

iteratively by decomposing it into a series of static cutting problems (SCP) solved over 

overlapping pieces of glass of a fixed length, 𝐿. In each iteration, a SCP is solved to 

determine the patterns to be placed on the fixed length of glass, but only a small portion of 

these patterns are implemented. In the next iteration, a new cutting problem is solved for 

the next 𝐿 meters immediately after the implemented patterns. The usage of a rolling 

horizon for cutting decisions allows the algorithm to avoid making myopic decisions. 

Two versions of the glass cutting problem are examined according to the nature of scrap 

cuts implemented to remove defective areas. In the first and more general version, which 
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we call the Online Glass Cutting Problem (OGCP), scrap cuts of arbitrary length can be 

made between products to remove defective areas. In the second version, called the Online 

Glass Cutting Problem with Cut Behind Fault (OGCPwCBF), scrap cuts can occur only 

right after a defect. As mentioned earlier, such scrap cuts are called Cut Behind Fault or 

CBF. Restricting scrap cuts to CBF is a common practice in the flat glass industry. When 

the scrap cuts are limited to CBF, the number of locations along the length of the glass 

ribbon where a scrap cut can be applied is finite. While this rule simplifies the problem 

significantly, its impact on solution quality is not clear. By comparing the results of OGCP 

and OGCPwCBF, we investigate how the computational requirements and solution quality 

are affected by the CBF rule. A genetic algorithm (GA) and a dynamic programming (DP) 

approach are used to solve OGCPwCBF. On the other hand, we use different versions of a 

mixed integer programming (MIP) model in order to solve OGCP. All of the solution 

methods are later modified to solve realistic problems with production targets. In 

production environments, production targets is not balanced because of variable customer 

demand. Moreover, defect density and distribution may not be the same along the glass 

ribbon during the production run. Therefore, an adaptive version of MIP, which can adapt 

itself to changing production conditions, is also proposed in this thesis. This last version 

uses a multi-objective approach where scrap glass minimization and production balancing 

are assigned different weights in the objective function. The model is designed to estimate 

the future scrap glass amounts using different weights for the two objective function terms 

and update their coefficients in order to obtain better solution quality in the long run. 

The main objective of using two different problem versions, OGCPwCBF and OGCP, is to 

examine the impact of the CBF rule on solution quality and time. By comparing the 

solutions of two versions, we try to find out whether CBF rule leads to an optimal or 

suboptimal solution. Similarly, we have also developed different solution methods for both 

OGCPwCBF and OGCP. Solution qualities of all methods are compared in order to reach 

the best solution methodology for each version. We have also designed new experiments 

for optimizing the parameter sets in all of these solution methods. Finally, we explore the 

effect of production targets on solution quality. For this purpose, we generate new versions 

of all methods which use production targets. We also tested the performance of adaptive 

version of MIP which takes production targets into consideration regulates itself according 

to changing conditions in the production line. 
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Experiments show us DP has better solution quality than GA; however, DP requires longer 

CPU times. The fact that DP cannot be guaranteed to terminate within a certain time makes 

it difficult to use with longer SCP lengths. On the other hand, MIP has better solution 

quality than both GA and DP which shows that CBF rule provides suboptimal solutions 

rather than optimal. Finally, we have shown that the best solution quality among all 

proposed methods can be obtained by the adaptive version of MIP. 

The general structure of the thesis is summarized below: 

Glass cutting problem has various parameters, restrictions and assumptions. All of these 

details are provided in Chapter 2. A simple cutting process is visualized for the reader to 

provide better understanding. One can find the structure of the problem and the main 

objectives in the same chapter. 

A summary of previous studies in literature is discussed in Chapter 3. Studies on SCPs are 

classified under two separate sections, one-dimensional and two-dimensional. We have 

included another section for online cutting problems which is the main focus of this thesis. 

One can find the contribution of this thesis to literature in the last subsection of the same 

chapter. 

Chapter 4 explains the solution methods in detail. The chapter starts with a description of 

the online glass cutting algorithm, which is solved by converting the online cutting 

algorithm into a series of SCPs. Solution methods for SCPs that use the CBF rule, namely 

the genetic and dynamic programming methods, are explained under the next section. In 

the next section, the reader can find the details of the MIP model which is a solution 

method for the SCP without CBF rule. Finally, versions of online algorithm that employ 

production targets are also described in the same chapter. Moreover, one can find the 

adaptive version of MIP in detail under the final subsection of the chapter. 

Chapter 5 consist of three main subsections, experimental results of the methods without 

production targets, with production targets and the adaptive versions of these methods. 

Solution methods with production targets have two different versions. In the first version, 

production targets are used as constraints. Therefore, solution methods do not produce any 

product that reaches its production target. In the second version, the difference between the 

production targets and the total number of items produced so far is added to objective 
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function for each product type with a certain weight. This new term balances the 

production distribution and generally delays the time that a product reaches its target. 

Under each subsection, reader can find how the experiments are designed. Solution 

qualities and computational times corresponding to each version of the solution methods 

are also presented. 

There are many studies in the literature on cutting stock problems. The methodology 

developed in this thesis can be used to solve some of these problems, provided that they 

have structural similarities. Chapter 6 explains what these similarities are and how our 

methodologies can be used to solve other similar problems. We also discuss other types of 

cutting problems which cannot be solved by using our methodology and state the reasons. 

Chapter 7 summarizes our main findings, explain the contribution of this thesis and 

provide suggestions for future work. 
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2. PROBLEM DEFINITION 

 

In the online glass cutting problem, products 𝑝 = 1, … , 𝑃 should be placed on a glass sheet 

of a fixed width 𝑊. The sheet has point defects 𝑑 that are characterized by their x- and y-

coordinates, 𝑥𝑑 and 𝑦𝑑 and quality grades 𝑔𝑑 ∈ 1,2, . . , 𝐺 (𝑥𝑑 and 𝑦𝑑 denote the defect 

positions along the length and width of the sheet, respectively). Each product 𝑝 is of 

rectangular shape, characterized by its width 𝑤𝑝 and length 𝑙𝑝 and value 𝑧𝑝. Quality of 

product 𝑝 is specified by the number of defects allowed of each quality grade 𝑔, denoted 

by 𝑄𝑝𝑔. Moreover, the value of product 𝑝 (𝑧𝑝) is independent of the number of defects on 

the product as long as it does not exceed the allowed limit 𝑄𝑝𝑔∀𝑔 ∈ 𝐺. 

Certain restrictions apply to the cuts to be performed on the glass sheet: 

 All cuts should be guillotine cuts performed along the entire width or length of 

the glass sheet. 

 Cuts should be performed in at most two stages, i.e. an x-cut that cuts the entire 

glass width end-to-end, followed (possibly) by a y-cut that cuts the resulting 

rectangle into smaller rectangles. 

 In some cases, the rectangular pieces resulting from the two-stage cutting 

process can be further trimmed down to the required size outside the production 

line. 

 If a product 𝑝 is placed on an area which does not meet its specifications (i.e. for 

at least one grade 𝑔, the number of defects of grade 𝑔 in that area is greater than 

𝑄𝑝𝑔) the product is considered as scrap. 

 The number of y-bridges that hold the cutting wheels for scoring y-cuts is 

limited (usually to 3-5 y-bridges per float line) and the positions of the cutting 

wheels on these bridges are fixed during the production run. Therefore, there are 

a finite number of configurations (i.e. cutting patterns) that can be cut along the 

y-axis. These possible configurations are defined in the algorithm before the 

cutting process begins.  

 There is no restriction on the number of products of each type that should be 

placed on the glass sheet. The current practice is to adjust the product values 

(𝑧𝑝) in real time during cutting process to balance the demand and production. 
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However, this assumption is relaxed in the latter versions of our solution 

methodology and production targets are taken into consideration during 

production run. 

 There should be a minimum distance between two consecutive x-cuts. This 

minimum distance depends on technical restrictions and the speed of float line. 

The primary objective of the glass cutting problem is the minimization of the total area of 

scrap glass, followed by the maximization of the total value of cut products. In this thesis, 

we assume that product value per unit area is the same for all products. Therefore 

considering only scrap minimization is sufficient since the value of remaining glass sheet 

will have a constant value independent of the product quantities. However, one can use the 

same solution methodology with different product unit values. 

An important aspect of the glass cutting problem is the daily production targets that should 

be met for each product type. As the cutting decisions are made on an online basis, daily 

production targets of each product type should be considered to ensure timely delivery of 

orders. At the beginning of the day, products to be cut may be determined mostly based on 

the minimization of scrap and maximization of product value objectives. However, as the 

day advances, it may become necessary to implement cuts of high scrap and/or low value 

to produce products that are well below their targets. Therefore, the solution proposed for 

the online glass cutting problem should be adaptive, i.e. as the production day progresses, 

it should be able to adapt to the changing priorities of the line so that all targets of all 

product types for that day are achieved. As mentioned above, the current practice is to 

manually adjust the product values in real time during the production process. The online 

algorithm to be developed in this thesis should eliminate the need for such manual 

intervention. 

As mentioned above, the number of possible configurations along the y-axis is limited and 

these configurations are known in advance. Thus, in order to reduce the problem to a one 

dimensional problem along the length of the glass sheet, we can first enumerate all 

possible cutting wheel configurations that can be implemented using the available bridges. 

Figure 2.1 illustrates four possible configurations of products 1-3 that can be scored with 

one y-bridge on which four cutting wheels are positioned at 0.1m, 1.1m, 2.1m and 3.1m. 

Note that depending on the configuration to be scored, cutting wheels can be lifted up to 
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make them inactive which makes it possible to score a wider range of configurations using 

a single y-bridge. For instance, in Configuration 2, only the cutting wheels at 𝑦=0.1m, 

2.1m and 3.1m are active. Also note that there are two distinct configurations 

(Configurations 2 and 3) that consist of one of products 1 and 2 each. On a defective sheet, 

the value of these two configurations may vary depending on the distribution of defects in 

the area where the configuration is placed. Having enumerated all possible configurations, 

we can treat each configuration as a distinct item, for example, Configuration 1 is an item 

of length 1.5m in a one dimensional problem. Width of all configurations is equal to the 

glass sheet width, 𝑊. Defining the cutting problem over configurations of fixed width 

instead of products of varying length and width allows us to reduce the cutting problem 

from a two dimensional problem to a one dimensional one. 

 

 

 

Figure 2.1. Four configurations of products 1-3 that can be scored with one y-bridge on 

which four cutting wheels are positioned at 𝑦=0.1m, 1.1m, 2.1m and 3.1m. 
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3. LITERATURE REVIEW 

 

There is a large body of literature on cutting problems, which deals with placing a number 

of small objects of varying sizes on one or more larger objects. One can refer to survey 

articles published on this subject for a review of the available literature [10], [11] and [12]. 

In recent years there have been many studies focusing on industrial cutting applications, 

see [13], [14] and [15] from the automotive, window frame and LCD industries, 

respectively. One of the recent papers by Wäscher et al. [16] provides a topology for the 

categorization of cutting problems and classifies the existing literature according to this 

topology. According to their topology, the static problem solved in each iteration of the 

proposed online algorithm is a variant of the two dimensional Single Large Object 

Placement Problem (SLOPP), where a set of weakly heterogeneous small objects have to 

be placed on a single large object such that the total value of the small objects placed are 

maximized. The term weakly heterogeneous refers to the case where the small objects can 

be grouped into relatively few classes (in relation to the total number of objects), for which 

the objects are identical with respect to shape and size. In our version of this problem, the 

value of the small objects depends on their placement on the large object: if the small 

object is placed in an area where an unacceptable number of defects exist, the small object 

has no value because it has to be discarded as scrap. In the review below, studies on both 

one and two dimensional cutting problems with defects are discussed in Sections 3.1 and 

3.2, respectively. Most of these studies are on static problems, but there is also a limited 

amount of work on online problems, which are reviewed separately in Section 3.3. A list of 

studies in the literature that are relevant to our thesis work is shown in Table 3.1 with their 

basic problem features. All of these studies are explained in the remainder of this chapter. 
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Table 3.1. Comparison of problem structures of references where * indicates the problem 

studied in this thesis 
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*   X 2 X X X X X X X 

[4] 1984   1     X         

[5] 2005 X 2 X X X X X X X 

[6] 1998   1               

[7] 2000   1 X   X         

[17] 1965   2 X     X X X   

[18] 1968   2 X     X X X   

[19] 1966   2 
 

    X X     

[20] 2013   2       X X     

[21] 2014   2       X X     

[23] 2009   2 X     X X X   

[24] 1999   2 X     X X X   

[25] 2015   2 X             

[26] 2014   2 X     X X X   

[27] 2009   2 
 

    X X X   

[28] 1981   1 X             

[29] 1988   1 X     X X X   

[30] 1990   1     X       X 

[31] 2016 X 2 X X X X X X   

 

3.1. TWO-DIMENSIONAL CUTTING PROBLEMS WITH DEFECTS 

The literature on two dimensional cutting problems with quality variations and defects is 

rather limited, most of them are on static versions of the problem. One of the first studies 

in the cutting literature where defects have been discussed is the seminal work of Gilmore 

and Gomory [17]. In this paper, the authors study the one and two dimensional cutting 
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stock problem, in which all small objects should be placed on a minimum number of large 

objects (stocks) of fixed dimensions. In addition to the standard cutting stock problem, 

they consider the case where the value of the small object depends on its position on the 

large object. Position dependent values allow the authors to account for defects and quality 

variations on the large object. They suggest a recursive equation to solve both problems. 

Hahn [18] studies a two dimensional SLOPP that may arise various industries. The author 

works with rectangular stocks which contain multiple rectangular defects. There are small 

objects of various dimensions to be placed on the stock. They also have rectangular shapes 

and their dimensions are known in advance. These small objects should not be placed on 

the areas that contain defects. The cutting process is completed in three stages. All cuts are 

restricted to be guillotine cuts along x or y axis. In each cutting stage, guillotine cut on 

either x or y axis is used. In first stage, the stock is split into sections. Similarly, sections 

are split into strips in the second cutting stage. Finally in the third cutting stage, strips are 

cut into pieces which form the small objects of the problem. The main objective is to find a 

solution with minimum waste of material. The author applies the dynamic programming 

method suggested by Gilmore and Gomory [19] to solve the problem. 

[20], [21] suggest corrections and improvements in computations over the proposed DP 

algorithm of Gilmore and Gomory [19] for the cutting stock problem without defects. In 

[20], the authors suggest three corrections on the solution proposed in [19]. The first 

correction is for an error that was previously discovered by Herz [22] in 1972. The other 

two errors are discovered by the authors. In [20], they suggest corrections for all three 

errors regarding incorrect elimination of feasible solutions. The second paper of the 

authors [21] suggests five different computational improvements for the same solution 

methodology introduced by Gilmore and Gomory [19]. 

More recently, Gelder and Wagelmans [23] focus on a problem that arises in roller blind 

production. Small rectangular objects are placed on a rectangular stock to produce window 

covering products. The stocks are fabrics which may contain small defects. No defects are 

accepted on products, therefore avoiding defects is crucial in order to produce valuable 

products. Two cutting stages are used in the production process. In both stages, only 

guillotine cuts are allowed. The first stage splits the stock by using a vertical guillotine cut 

to create a smaller rectangular part called shelf. This shelf is used as a stock in the second 

cutting stage. The second stage uses horizontal guillotine cuts on the shelf to produce 
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window covers of various dimensions. The objective of this problem is minimization of 

waste. For this purpose, authors suggest a two-stage heuristic where both stages are 

supported by integer programming models. In the first stage, an integer programming 

model is solved in order to find the products to be cut and to determine the length of the 

shelf. In second stage, another model is run to decide the placement of the selected 

products on the shelf. Defect locations are a major input for this decision. 

Twisselman [24] studies another cutting problem that arises in the steel industry. Stocks, 

products and defects are all in rectangular shapes. Only guillotine cuts are allowed such 

that in each cut two smaller rectangular parts are produced. The objective is to find all 

usable rectangular pieces that can be produced using guillotine cuts from a rectangular 

large object with multiple rectangular defects. Twisselman focuses on the problem with a 

distinctive perspective and considers it as a maximum empty rectangle problem which is 

solved by a two stage solution methodology.  

Wenshu et al. [25] study a problem that emerges in wood processing. The problem is a 

cutting stock problem where stocks are decayed wood boards of different dimensions. 

Unlike previous studies explained in this section, the objective of this problem is not the 

placement of products on the stock. Instead, removal of any defective area with minimum 

material loss is desired. In their study, they start with feasible cutting patterns, turn them to 

binary genes and use a genetic algorithm to improve solution quality. 

In their paper, Afsharian et al. [26] deal with a two-dimensional cutting problem where 

both stocks and small items are in rectangular shape. The only cutting option is guillotine-

type cuts, however the number of stages is unlimited. There are multiple defects of 

irregular shapes on the stocks and no small item must overlap with a defective region. 

Maximizing the total value of small items is the objective of the problem. Authors develop 

a heuristic for this two-dimensional cutting stock problem. They use a dynamic 

programming approach and divide the single stock into small parts in each iteration to form 

sub problems. Combined solutions of these sub problems forms a solution to the original 

problem.  

There are other authors who study problems where the large object contains a single 

defect. For instance, Neidlein et al. [27] study the two dimensional SLOPP with a single 

rectangular defect. Cuts are restricted to be guillotine-type and the objective is 



14 
 

 

maximization of the total value of the small items. Small items must not overlap with the 

rectangular defect. They develop a branch and bound algorithm based on AND/OR graphs. 

In order to keep computational times reasonable, they improve their solution methodology 

with performance heuristics. 

3.2. ONE-DIMENSIONAL CUTTING PROBLEMS WITH DEFECTS 

In the literature, there are also several studies that concern one dimensional cutting 

problems with defects. [28] studies a cutting problem that arises in insulating tape 

production. The author considers a variant of the one dimensional cutting stock problem 

where small rolls of fixed size are to be cut from a long roll with defects. In this variant, 

the size of the small rolls is a random variable due to the defects that exists on the long roll. 

After the positions of the cutting knives are fixed, large rolls are cut to produce identical 

small rolls regardless of the size of large roll. If it is needed to produce other sizes of small 

rolls, positions of the knives should be changed before production. The objective of the 

problem is to find where to place the first knife on the large roll in order to minimize long 

term wastes. The author presents both exact and approximate solutions for different 

versions of the problem. 

[4] studies a cutting problem in lumber manufacturing. The production process has two 

main steps. The first step is bucking the tree where a tree is cut into shorter logs. Second 

step is sawing these logs further into lumber. The defect information is collected by an 

electronic scanner. Tree segments are classified into four quality grades based on their 

defects. The value of a product depends on both its size and the quality grade of tree 

segment from where it is produced. In this problem, the size of the stock is not fixed and 

the stock’s shape is not rectangular. Moreover, rotating the logs by any angle before the 

cutting process is also possible in order to gain advantage by the changing positions of 

quality segments. The main objective of the problem is to maximize the total value of the 

cut lumbers. They use a staged dynamic programming algorithm to solve this realistic 

problem taken from the timber industry. 

[29] considers a variant of the one dimensional SLOPP, where the large roll contains 

several punctual defects. The production is completed in two main steps. The first step is 

slitting the large roll into several small rolls and the second step is to cut rectangular pieces 
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from the small rolls. The objective is to achieve the maximum possible total value of 

products. The value of a rectangular product increases by its size. On the other hand, its 

value decreases by the number of defects on it. It is obvious that the number of defects on a 

product is proportional to its size, therefore the proposed solution methodology is designed 

to balance these two factors in order to optimize the total value. Author suggests a dynamic 

programming based solution methodology to achieve this objective.  

Sweeney and Haessler [30] study a one dimensional cutting stock problem, where the large 

object (roll) contains various sections of hierarchical quality grades and the small objects 

(customer orders) have minimum acceptable quality grades. The authors tackle this 

problem by a two stage sequential heuristic in which a shadow price based procedure is 

used to select slitting patterns and the residual problem for the available first quality rolls is 

solved using linear programming. Since customer orders should be satisfied, they include 

orders as constraints in their solution methodology. The objective is to minimize the total 

trim loss. 

[6] considers a problem from the paper industry, where a roll of paper that contains a 

single defective area is to be cut vertically to produce a set of sheets. All cuts are 

guillotine-type cuts and no quality grades exist except that all defects on the paper roll 

should be discarded. The objective is to find a cutting pattern that minimizes the total 

length of the defective sheets. Authors suggest a branch and bound method to solve the 

problem. Moreover, they support their solution methodology with two heuristics to reduce 

the branch and bound search and reach the optimal solution. 

[7] focuses on a one dimensional cutting and wrapping problem from the textile industry. 

In this problem, a long piece of fabric with multiple defects is first cut into smaller pieces, 

each of which are assigned a quality grade based on the defects it contains. Pieces with the 

same quality grade are then wrapped to create rolls of given quality specifications. Quality 

specifications define the selling price of the fabric roll. On the other hand, there is a cost 

for handling and transporting the rolls. The main objective is to maximize the total profit of 

the company by considering both revenue and costs. The author suggests a MIP model for 

the solution of the problem. However, due to insufficient performance of the model in 

terms of computational time, the author proposes mutative simulated annealing as an 

alternative solution approach. 
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3.3. ONLINE CUTTING PROBLEMS WITH DEFECTS 

As mentioned above, literature on static cutting problems is quite extensive; on the other 

hand work on online cutting problems is very limited. To the best of our knowledge, the 

only two studies in the literature that concern cutting of defective items in an online setting 

are by Ghodsi and Sassani [5] and Tuzun Aksu and Durak [31]. 

In [5], the authors introduce a new variant of the cutting stock problem with variable stock 

size that arises in solid wood furniture production. Each stock (wood strip) has both 

defective areas which need to be removed and quality variations along the length of the 

strip. The strips are produced online and cut into various items in real time; in this respect 

this problem is similar to the one proposed here. However, the two studies differ in the way 

that the defects and quality are treated. In [5], defects have to be removed completely by 

guillotine cuts applied along the width of the strip and all non-defective areas are separated 

into quality intervals such that within an interval the entire area has the same quality grade 

along the entire width of the strip, which reduces the problem to one dimension. In our 

problem, we consider point defects which only affect the items placed on the defective area 

(i.e. the item has to overlap with the defect on both dimensions), that does not allow us to 

reduce the problem to one dimension entirely. Furthermore, in [5] same quality grades are 

used for the strip and the items, in parallel to the quality definition of Sweeney and 

Haessler [30]. However, in our case, there is no one-to-one correspondence between the 

grades of defects and the quality grades required for each product. The quality grade of a 

product is defined as the number of defects of each grade that can exist on the product. 

Moreover, even if the problem in [5] is an online problem, the stocks are discrete. 

Therefore any remaining part on the stock with a length less than the minimum product 

length is discarded as waste. However, in our problem, any remaining part in the solution 

of SCP is evaluated in the next SCP again. Similar to our solution approach, [5] tries to 

minimize total waste while balancing the production targets. They use a sub-algorithm in 

order to prioritize the products by considering their lengths and quantities. On the other 

hand, our solution methodology provides a single model for both waste minimization and 

production target balancing. 

In [31], we proposed the initial version of algorithm for the online glass cutting problem 

studied in this thesis. While [31] also considers the online glass cutting problem, it has 
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three major differences from this thesis. First, it employs only the DP method to solve the 

static cutting problem, which limits the cuts to be made to CBFs. Second, it does not take 

into account the production targets specified for each product. And finally, it does not have 

any adaptive features that enable the algorithm to adjust itself according to the conditions 

of the production line. As we will show in the rest of this thesis, the algorithm proposed 

here is superior to the one in [31] in that it solves a more realistic version of the problem 

and offers better solution quality. 

3.4. CONTRIBUTION TO LITERATURE 

Although there are various studies on cutting problems that are similar to the one which 

proposed in this thesis, there are significant differences in terms of defect definitions, 

quality grades of products and cutting techniques. Moreover, all studies except [5] and [31] 

focus on static problems where the locations of defects and defect types are already known 

in advance. However, the proposed solution approach is developed for an online cutting 

problem where the information of defects become available in real time. 

 A unique problem in terms of different types of defects and various product quality 

classes: 

The online problem considered here includes defects of different types and products that 

belong to multiple quality classes. To the best of our knowledge, this online version of the 

problem has not been studied before in the literature. There are various product quality 

classes and a number of defect types in the problem here. Each quality class is defined with 

upper limits on the number of defects allowed of each defect type. Therefore, a product is 

valuable only if all types of defects on the product are within the defined limits of its 

quality class. As a results, the value of a configuration depends on its location on the glass 

sheet. Thus, our solution methodology needs to evaluate all of the products according to 

their positions on the glass sheet and their quality classes. 

  Look-ahead approach for the online problem: 

The proposed solution methodology also provides new perspective for dealing with both 

online and static cutting problems in general. The look-ahead feature, which avoids making 

myopic decisions, provides a framework for solving other similar online cutting problems. 
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Moreover, this framework is not limited to cutting problems and it can be used for solving 

various online problems such as online job scheduling. In addition, the solution methods 

that are developed for solving the static sub problem can also be adapted to other cutting 

problems with and without defects that arise in various other industries, as will be 

discussed in Chapter 6. 

 Impact of the CBF rule: 

Currently, the CBF rule is widely used in the glass cutting industry to limit the location of 

scrap cuts. However, the impact of this rule on solution quality and computational 

requirements has not been investigated. In this thesis, we propose solution methods both 

with and without the CBF rule and compare their performance to provide a quantitative 

answer to this research question. 

 An adaptive model which adjusts its parameters to production conditions: 

In a real time production environment, cutting decisions should also be made considering 

the production targets. Therefore, one important feature of the online glass cutting 

algorithm is its capability to adapt to the changing priorities of different product types so 

that the production targets can be met. Another contribution of this thesis is to provide an 

adaptive method that can be used in industrial glass cutting applications. In fact, this 

adaptive method can also be utilized to prioritize production in other industries where 

customer orders need to be considered in a real time fashion. Since the adaptive approach 

proposed here does not have any context specific features, it can readily be used in real 

time production settings from other industries. 

In summary, this study provides a practical approach that can be readily implemented to 

achieve immediate improvement in productivity. Considering that automation of float lines 

has increased significantly in the last decades, online optimization approaches have 

become essential to improve the productivity of float lines. Therefore the main 

contribution of this thesis is to provide a solution for a cutting problem of practical 

significance. Moreover, the sub problem, which is solved in each iteration of the proposed 

algorithm, is a static cutting problem with multiple defect grades. The problem arises in 

many industrial settings such as the production of paper, fabric, metal, lumber, furniture 

and LCD. Therefore the solution approaches proposed here can also be implemented for 
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similar cutting problems with minor modifications. The applications of our methodology in 

similar problems from different industries are discussed in Chapter 6. 
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4. METHODOLOGY 

 

Our solution methodology uses a look-ahead approach to solve a series of partially 

overlapping sub problems to reach a solution for the online glass cutting problem. Since 

defect information for the entire glass ribbon is not available at the beginning of 

production, an online approach becomes necessary. Only a limited area can be scanned by 

cameras, therefore defect information of a limited length of glass ribbon is available for 

decision making. In the remainder of this chapter, we will first describe the online glass 

cutting algorithm in general and then discuss solution approaches for the static sub 

problems to be solved at each iteration of this algorithm.  

4.1. ONLINE GLASS CUTTING ALGIRITHM 

The online glass cutting algorithm iterates over a series of SCPs. At each iteration, a static 

one dimensional cutting problem of fixed length 𝐿 is solved. Once the static solution is 

obtained, the first 𝑚 configurations are communicated to the cutting bridges for execution. 

The value of 𝑚 is chosen as a small integer, usually 1 or 2. This way, only a small part of 

the static solution is implemented, whereas the rest of the static solution is computed solely 

to account for the impact of the implemented solution on the upcoming solutions. Once the 

first 𝑚 configurations of length 𝑙𝑚 is communicated to the cutting bridges, the algorithm 

advances its starting point 𝑠𝑡𝑎𝑟𝑡by 𝑙𝑚 to solve a new static problem between coordinates 

𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑡𝑎𝑟𝑡 +  𝐿. The flowchart of the look-ahead algorithm is given in Figure 4.1. 
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Figure 4.1. Flowchart of the online glass cutting algorithm 

4.2. SOLUTION OF STATIC GLASS CUTTING PROBLEM UNDER THE CBF 

RULE 

When the scrap cuts are limited to CBF, scrap cuts can occur only immediately following a 

defect, which limits the location of scrap cuts. As explained in the next three subsections, 

this allows us represent scrap cuts using a dummy configuration. Under the CBF rule, we 

proposed to use two approaches to solve the static glass cutting problem: a genetic 

algorithm (GA) and a dynamic programming (DP) algorithm. Both algorithms try to find 

the configuration sequence with the best objective function value. Please note that this 

configuration sequence may include one or more dummy configurations between product 

configurations to allow for the usage of CBF. 

4.2.1. Explicit Enumeration 

Line automation systems used in the glass industry also use an algorithm similar to the one 

displayed in Figure 4.1, except for a major difference: instead of solving a static problem 
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over a fixed length 𝐿 at each iteration, the current practice is to use explicit enumeration 

(EE) to select the best alternative among all possible permutations of 𝑐 consecutive 

configurations and implement the first 𝑐′ configurations from the selected permutation. In 

order to consider solutions that contain scrap cuts, applying a CBF is also evaluated as a 

dummy configuration during this enumeration. We have also implemented a version of the 

online algorithm that uses this EE approach to use as a benchmark in our computational 

study. 

4.2.2. Genetic Algorithm 

In our genetic algorithm, the SCP is represented by a permutation encoding, where a 

solution is simply defined as a permutation of configurations that can fit within a length of 

𝐿. However, since the length of each configuration is variable, the number of 

configurations that can fit on a glass sheet of length 𝐿 may vary. To remedy this, we create 

a sufficiently long chromosome and use only the portion of the chromosome that 

corresponds to a feasible solution, which is denoted as the valid length of the chromosome. 

Another issue with this approach is how to allow strips of scrap glass between 

configurations in the form of CBF. In the permutation encoding, we represent a CBF by a 

dummy configuration, say configuration 0 (E.g. Figure 4.2 displays a chromosome 

encoded as (3,1,0,2,1,2,3) that has a valid length of 5 configurations including one CBF). 

A series of consecutive configuration 0’s denotes cutting behind a series of consecutive 

defects. Due to technical restrictions, there should be a minimum distance between two 

consecutive x-cuts. Therefore, configuration 0 has a minimum feasible length. When a 

defect is closer than this length, GA performs the CBF (configuration 0) after this 

minimum feasible length and sacrifices a larger glass strip. As a crossover operator, we use 

a single point crossover which we have modified so that the crossover only occurs at a 

position that corresponds to a cutting solution. To ensure this, when we crossover two 

parents 𝑖 and 𝑗 with valid lengths 𝑣𝑙𝑖 and 𝑣𝑙𝑗, we choose the crossover point 𝑅 to be in the 

range 1 ≤ 𝑅 ≤ 𝑚𝑖𝑛(𝑣𝑙𝑖, 𝑣𝑙𝑗). This way, we prevent the crossover operator from 

producing an offspring that represents the same solution as its parent. For instance, Figure 

4.3 displays the crossover of the chromosome in Figure 4.2 with another chromosome of 

valid length of 4 that results in two new offsprings of valid lengths of 3 and 5, respectively. 
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The classical mutation operator is also modified so that the gene position 𝐹 to be mutated 

is within the valid gene range of the selected chromosome 𝑖, i.e.1 ≤ 𝐹 ≤ 𝑣𝑙𝑖. As for the 

fitness value of a chromosome, we use the total value of products minus the total area of 

scrap glass generated by the corresponding static solution. 

 

 

 

Figure 4.2. Cutting solution represented by chromosome (3,1,0,2,1,2,3) with a valid length 

of 5 chromosomes on a glass sheet of length 10m. 

 

 

 

Figure 4.3. Crossover of two chromosomes with valid lengths of 5 and 4 (valid lengths 

shaded in grey) at crossover point R = 2. 

 

The advantage of GA is that it is guaranteed to terminate with a feasible solution within the 

allotted time. On the other hand, it does not guarantee the optimal solution for the static 

problem and the time limit may affect the solution quality negatively. 
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4.2.3. Dynamic Programming Algorithm 

The dynamic programming (DP) procedure described below is inspired by the approach 

proposed by Gilmore and Gomory [17] for the cutting stock problem variant where the 

value of each item is dependent on its position on the stock. However, significant 

modifications are needed to account for the case of multiple discrete defects and the option 

of using CBF. 

Equation (4.1) shows the original recursive function proposed by Gilmore and Gomory. 

Here, 𝐹𝑠(𝑥) denotes the best value of a stock of length 𝑥 when only the first 𝑠items are 

used. 𝛱𝑠 and 𝑙𝑠 are the value and length of item𝑠 respectively. If item 𝑠 is used in the stock, 

then 𝐹𝑠(𝑥) = 𝛱𝑠 +  𝐹𝑠(𝑥 − 𝑙𝑠), otherwise 𝐹𝑠(𝑥) =  𝐹𝑠−1(𝑥). Since 𝐹1(𝑥) =  𝛱1[𝑥 𝑙1⁄ ] and 

𝐹𝑠(0) = 0 are initially defined, 𝐹𝑠(𝑥) produces the best value for stock of length 𝑥. 

𝐹𝑠(𝑥) = max
𝑠

{𝛱𝑠 +  𝐹𝑠(𝑥 − 𝑙𝑠),  𝐹𝑠−1(𝑥)}     ,    𝑓𝑜𝑟 𝑠 > 1                   (4.14.1) 

Similar to the recursive function in Equation (4.1), the DP procedure that we propose 

calculates the best sequence of configurations and CBF’s to be placed on the glass sheet of 

length 𝐿. The state of the DP procedure is defined by the x-coordinate of the point 

(between 0 and 𝐿) for which a cutting decision is under consideration. The optimal 

objective function value is calculated as 𝑉(𝐿) using the recursive procedure outlined 

below. Before stating the procedure, the following definitions should be noted:  

𝐿 : length of the glass sheet to be cut (glass sheet is positioned between x-coordinates 

0 - 𝐿),  

𝑁 : number of all possible product configurations that can be obtained by positioning 

cutting wheels on y-bridges, 

𝐷 : number of defects on the glass sheet, 

𝑥𝑑 : x-coordinate of defect 𝑑 on the glass sheet, 𝑑 = 1,2, … , 𝐷, 

𝑙𝑖 : length of configuration 𝑖 along the x-axis, 𝑖 = 1,2, … , 𝑁, 

𝜋𝑖(𝑥) : value of configuration 𝑖 when it is placed between x-coordinates 𝑥 and 𝑥 − 𝑙𝑖, 𝑖 =

1,2, … , 𝑁, 

𝜇 : value of scrap glass per unit length (The width of the scrap glass is constant at 𝑊 

and the value of scrap glass is independent of its position on the glass sheet). 
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𝛿(𝑥) : Length of the scrap cut performed behind the first defect after point 𝑥 in the 

direction glass flow. Note that if the distance between 𝑥 and the defect is less than 

𝑀𝑖𝑛𝐶𝑢𝑡, the length of the scrap cut is increased to 𝑀, i.e.: 

𝛿(𝑥) =  {𝑀𝑎𝑥 (𝑥 − max
𝑑∶ 𝑥𝑑 ≤𝑥

𝑥𝑑 , 𝑀𝑖𝑛𝑐𝑢𝑡)

𝑥
}

∃𝑑 ∶  𝑥𝑑  ≤ 𝑥
∄𝑑 ∶  𝑥𝑑  ≤ 𝑥

                     (4.24.2) 

𝑉(𝑥) : the maximum value that can be obtained for the portion of the glass sheet that lies 

between coordinates 0 and 𝑥. 

One should note that 𝜋𝑖(𝑥), i.e. the objective function contribution of configuration 𝑖 

placed at coordinate 𝑥, should be calculated based on the position of the products in 

configuration 𝑖 and the coordinates of defects between x-coordinates 𝑥 − 𝑙𝑖 and 𝑥. The 

value of 𝜇, i.e. the value of scrap glass per unit length and width 𝑊, can be assumed 0, or 

any value deemed appropriate by the decision maker. If the decision maker deems scrap to 

be undesirable, its value can be assigned a high negative value to discourage cuts resulting 

in scrap glass. In general, the values of 𝜋𝑖 and 𝜇 should be set based on the importance of 

the two objectives stated previously (scrap area minimization and product value 

maximization) for the decision maker. 

Based on the notation described above, the DP procedure can be defined as follows. 

Step 1. (Initialization) 

1.a) List all configurations 𝑖 that can be obtained using available y-bridges,(𝑖 = 1,2, … , 𝑁). 

1.b) Calculate 𝑙𝑖, ∀𝑖 = 1,2, … , 𝑁. 

1.c) Initialize 𝑉(𝑥), ∀𝑥 < min
𝑖

{𝑙𝑖}: 

𝑉(𝑥) =  𝜇 . 𝑥     ∀𝑥 < min
𝑖

{𝑙𝑖}   (4.34.3) 

Step 2. (Recursion) 

Calculate 𝑉(𝐿) using the recursive function below:  

𝑉(𝑥) = 𝑚𝑎𝑥 {
max

𝑖:𝑥 ≥ 𝑙𝑖

{𝜋𝑖(𝑥) + 𝑉(𝑥 −  𝑙𝑖)}

𝜇𝛿(𝑥) + 𝑉(𝑥 −  𝛿(𝑥))
}       ∀𝑥 ≥  min

𝑖
{𝑙𝑖}  (4.44.4) 
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In the above recursive function, the first argument calculates the maximum value that can 

be obtained by placing any configuration 𝑖 between coordinates 𝑥 and 𝑥 − 𝑙𝑖 of the glass 

sheet (see Figure 4.4). The second argument gives the value that can be obtained by 

placing a cut behind the next defect after coordinate 𝑥 (i.e. a cut behind fault, or CBF 

performed after 𝑥) (see Figure 4.5). One should note that there should be a minimum 

distance of 𝑀𝑖𝑛𝐶𝑢𝑡 between two consecutive x-cuts, which is a technical restriction due to 

the set up of the float line. When a CBF results in a scrap cut of length less than 𝑀𝑖𝑛𝐶𝑢𝑡, 

𝛿(𝑥) is set as 𝑀𝑖𝑛𝐶𝑢𝑡 to prevent a technically ineasible cut. By taking the maximum over 

both arguments, the recursive equation finds the maximum value that can be obtained by 

either placing a configuration or performing a CBF at point 𝑥. 

 

 

 

Figure 4.4. Illustration of the first argument in the recursive function in Equation (4.4). 

 

 
 

Figure 4.5. Illustration of the second argument in the recursive function in Equation (4.4). 

 

The advantage of DP procedure is that it finds the optimal solution for the SCP under the 

CBF rule. However, for large static problem lengths and high defect densities, it may not 

give a solution within allotted time. 
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4.3. SUBOPTIMALITY OF THE CBF RULE 

CBF is a common practice used in glass cutting industry. However, as we demonstrate in 

this section the rule of CBF does not guarantee an optimal solution. This finding lead us to 

develop new algorithms that do not rely on the CBF rule. 

In the next two subsections, we provide two examples where the CBF rule leads to a 

suboptimal solution. This first example in Subsection 4.3.1 is for the static problem solved 

at each step of the OGCP. The second one in Subsection 4.3.2 demonstrates the sub 

optimality of CBF for the classical one dimensional cutting stock problem with defects. In 

both subsections, the solutions under the CBF rule are generated using the DP method 

described in Subsection 4.2.3 and the solutions that do not rely on the CBF rule are created 

using the MIP model described later in Section 4.4. 

4.3.1. Suboptimality of the CBF Rule for the Static Problem in the Online Version 

In the first example, we provide a counterexample that proves the sub optimality of CBF 

for the SCP in the online glass cutting algorithm where the glass area behind the 

configurations is not considered as scrap glass since it will be used in the next static 

problem. Solutions of the problem with and without the CBF are shown in Figure 4.6 (a) 

and (b) respectively. In these figures ⋆, × and + represent defect types 0, 1 and 2 

respectively and the numbers represent product types. The defect tolerances of all products 

according to their quality classes are listed in Table 4.1. There are two critical defect points 

(of grade 2) at 𝑥 =106mm and 𝑥 =2,731mm. Under the CBF rule, the algorithm can 

remove the first defect by cutting just behind it. However the minimum cutting distance 

restriction forces the algorithm to cut a minimum length of 500mm, thus the first cutting 

decision is made at 𝑥 =500mm. After cutting two configurations, the algorithm encounters 

with the second critical defect. The CBF rule and the minimum cutting distance restriction 

force the algorithm to cut another glass strip of length 500mm. On the other hand, it is 

possible to sacrifice some more glass at the beginning by cutting the first strip at 

𝑥 =601mm. Since the 601mm long strip satisfies the minimum cutting distance restriction, 

this cut is a valid decision. Moreover, using this decision we can also overcome the second 

critical defect with less scrap, since the type 2 defect now lies within the second 



28 
 

 

configuration. Only 1/3 of the second configuration is discarded as scrap and there is no 

need for the next scrap cut. Sacrificing some glass to save more in the subsequent area of 

the glass sheet is the reason why the second solution has better solution quality. In this 

problem, algorithm with the CBF rule creates 4,354,900mm2 scrap glass whereas without 

the CBF rule the second solution yields only 4,215,800mm2 scrap glass. 

 

 

 

Figure 4.6. Solutions of the static cutting problem instance of 6,000mm with (a) and 

without (b) the CBF rule 
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Table 4.1. Defect tolerances of each product type in the examples shown in Figure 4.6 and 

Figure 4.7 
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* 1 1 2 1 2 

x 1 1 1 1 1 

+ 0 0 0 0 0 
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# 0 0 0 0 0 

 

4.3.2. Suboptimality of the CBF Rule for the Classical Cutting Stock Problem 

In this section, we provide an example for the classical cutting stock problem with defects 

and demonstrate that the CBF rule may lead to suboptimal decisions for this classical 

version as well. In this example, we solve a SCP on a glass of fixed length 𝐿, where any 

glass remaining at the end of the sheet is also considered as scrap. Two different solutions 

with and without the CBF rule are shown in Figure 4.7 (a) and (b) respectively. Defect and 

quality class descriptions are the same as in Subsection 4.3.1. There are three critical defect 

points two of grade 2 at 𝑥 =3,796mm, 𝑥 =3,902mm and one of grade 3 at 𝑥 =5,333mm. 

Both solutions start with the same configuration. Then, in Figure 4.7 (a) the DP solution 

does not make a scrap cut because of the CBF rule which forces the method to cut only 

after defects. DP could make a scrap cut at 𝑥 =2,105mm, however that does not result in 

placing the two type 2 defects in the same product and cutting another valuable 

configuration in the remaining part of the glass sheet. This causes DP to produce only three 

valuable products (one less than the alternative solution without CBF) and a wider glass 

strip at the end of the sheet. On the other hand, as shown in Figure 4.7 (b) we sacrifice a 

glass strip of length 702mm even though there is no high grade defect in the area. However 

this decision makes it possible to collect two type 2 defects in a single product and to cut a 

valuable configuration before the critical defect of type 3. Similar to the first example, 

sacrificing some glass to save more in the subsequent area of the glass sheet is the reason 

for the better solution quality produced without the CBF rule. In this problem, DP creates 
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an area of 11,531,925mm2 scrap glass while the second solution without the CBF rule 

creates 10,673,250mm2 scrap glass. 

 

 

 

Figure 4.7. Solutions of the static cutting problem instance of 6,000mm with (a) and 

without (b) the CBF rule 

4.4. SOLUTION OF STATIC GLASS CUTTING PROBLEM WITHOUT THE 

CBF RULE 

In this version of the static cutting problem, we relax the CBF restriction and allow scrap 

cuts of arbitrary length between product cuts. Since the length of the scrap cut is now 

variable, we can no longer use the three approaches in Section 4.2 that represent the scrap 

cuts as dummy configurations of known length. Therefore the problem is no longer a 
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sequencing problem, which makes it more difficult to represent and solve. In the following 

parts of this chapter, methods to solve this more general problem are explained in detail. 

4.4.1. Mathematical Programming Model 

The static glass cutting problem without the CBF rule can be formulated using a mixed 

integer programming (MIP) model as explained in this subsection. Before we go into the 

model details, one should note that we run a preprocessing algorithm prior to solving the 

MIP model, where the ordered set of configuration set (𝐼0) and the values of each 

configurations in this set (𝑣𝑖) are created before the MIP model. In the MIP model below, 

the value of a configuration depends on its location on the glass sheet. The preprocessing 

algorithm finds all intervals where the value of a configuration remains constant and 

creates a copy of it for each interval. Therefore in the set 𝐼0, there are many configuration 

copies all of which have a validity interval and a constant value. The set 𝐼0 is a set of 

configurations ordered by their starting coordinate of validity intervals. Details of the 

preprocessing algorithm are explained in subsection 4.4.2. 

𝑀𝑎𝑥 ∑ 𝑣𝑖𝑦𝑖 +  𝜇 (𝑋𝑒𝑛𝑑 − 𝑆𝑡𝑎𝑟𝑡 −  ∑ 𝑙𝑖𝑦𝑖𝑖∈𝐼0 )𝑖∈𝐼0 −  𝜀 ∑ 𝑥𝑖𝑖∈𝐼0   (4.54.5) 

s.t. 

𝑥𝑖 ≤  𝑥𝑚𝑎𝑥𝑖
𝑦𝑖   ,   ∀𝑖 ∈ 𝐼0     (4.64.6) 

𝑥𝑖 ≥  𝑥𝑚𝑖𝑛𝑖
𝑦𝑖    ,   ∀𝑖 ∈ 𝐼0    (4.74.7) 

𝑥𝑖 +  𝑙𝑖𝑦𝑖 ≤ 𝑥𝑗 + 𝐿 (1 − 𝑦𝑗)    ,   ∀𝑖, 𝑗 ∈ 𝐼0, 𝑖 < 𝑗   (4.84.8) 

𝑥𝑗 − 𝑥𝑖 −  𝑙𝑖𝑦𝑖 ≥ 𝑀𝑖𝑛𝐶𝑢𝑡 𝑧𝑖 − 𝐿 (2 − 𝑦𝑖 − 𝑦𝑗)    ,   ∀𝑖, 𝑗 ∈ 𝐼0, 𝑖 < 𝑗     (4.94.9) 

𝑥𝑗 − 𝑥𝑖 −  𝑙𝑖 𝑦𝑖 ≤ 𝐿 𝑧𝑖 + 𝐿 (2 − 𝑦𝑖 − 𝑦𝑗)    ,   ∀𝑖, 𝑗 ∈ 𝐼0, 𝑖 < 𝑗          (4.104.10) 

𝑥𝑖 − 𝑆𝑡𝑎𝑟𝑡 ≥ 𝑀𝑖𝑛𝑐𝑢𝑡 𝑤𝑖 − 𝐿 (1 −  𝑦𝑖)    ,   ∀𝑖 ∈ 𝐼0        (4.114.11) 

𝑥𝑖 − 𝑆𝑡𝑎𝑟𝑡 ≤ 𝐿 𝑤𝑖 + 𝐿 (1 − 𝑦𝑖)    ,   ∀𝑖 ∈ 𝐼0   (4.124.12) 

𝑥𝑖 +  𝑙𝑖 ≤ 𝐸𝑛𝑑    ,   ∀𝑖 ∈ 𝐼0               (4.134.13) 

𝑥𝑖 ≥ 𝑆𝑡𝑎𝑟𝑡 − 𝐿 (1 −  𝑦𝑖)    ,   ∀𝑖 ∈ 𝐼0      (4.144.14) 

𝑥𝑖 +  𝑙𝑖 − 𝐿(1 − 𝑦𝑖) ≤ 𝑋𝑒𝑛𝑑    ,   ∀𝑖 ∈ 𝐼0          (4.154.15) 
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𝐸𝑛𝑑 − 𝑀𝑖𝑛𝑙 + 1 ≤  𝑋𝑒𝑛𝑑   ,   ∀𝑖 ∈ 𝐼0              (4.164.16) 

𝑥𝑖  ≥ 0   , ∀𝑖 ∈ 𝐼0     (4.174.17) 

𝑋𝑒𝑛𝑑 ≥ 0                  (4.184.18) 

𝑦𝑖, 𝑧𝑖, 𝑤𝑖  ∈  {0, 1}  , 𝑖 ∈ 𝐼0        (4.194.19) 

where,  

Sets 

𝐼0: ordered set of configurations,𝑖 ∈ 𝐼0: 𝑖 = 1,2, … , 𝑁 

𝑃 : set of products, indexed by 𝑝 

Parameters 

𝑣𝑖 : value of configuration 𝑖, 𝑖 ∈ 𝐼0 

𝜇 : value of scrap glass per unit length (The width of the scrap glass is constant at 𝑊 and 

the value of scrap glass is independent of its position on the glass sheet). 

𝐷𝑝: production target of product 𝑝 

𝑝𝑡𝑖(𝑝) : number of valuable products of type 𝑝 configuration 𝑖 

𝑥𝑚𝑖𝑛𝑖 : minimum possible starting coordinate of configuration 𝑖 

𝑥𝑚𝑎𝑥𝑖 : maximum possible starting coordinate of configuration 𝑖 

𝑀𝑖𝑛𝑙: minimum length of available configurations 

𝑆𝑡𝑎𝑟𝑡: starting coordinate of static problem 

End : end coordinate of static problem 

𝜀: a sufficiently small positive number  

Variables 

𝑥𝑖 : starting x-coordinate of configuration 𝑖, 𝑖 ∈ 𝐼0 

𝑋𝑒𝑛𝑑 : end coordinate of last configuration 

𝑦𝑖 : {
1 if configuration i is chosen for cutting

0 otherwise 
  

𝑧𝑖 : {
1 if there is a scrap cut after configuration i (i ∈ Io) 

0 otherwise 
 

𝑤𝑖: {
1 if there is a scrap cut between Start and configuration i (i ∈ Io) 

0 otherwise 
 

The objective function is given in Equation (4.5). First term in this equation denotes the 

total value of configurations. These 𝑣𝑖 values are calculated by a preprocessing algorithm 
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that is run prior to solving the MIP model. One should note that 𝑣𝑖 values in MIP model 

are not the same with 𝜋𝑖(𝑥) values in DP. In the MIP model, 𝑣𝑖 values are parameters and 

they are known in advance whereas 𝜋𝑖(𝑥) is a function of configuration 𝑖 at coordinate 𝑥 

which is calculated by DP within the recursive function at required 𝑥 values. The second 

term shows the total scrap area between configurations. A negative 𝜇 value should be 

chosen to penalize the scrap glass production. The last term in the objective function is 

added so that the model favours solutions that are closer to the starting coordinate (𝑆𝑡𝑎𝑟𝑡) 

among alternative optimal solutions. Since the last part of the static length will be re-

evaluated, such solutions are considered to be superior. Equations (4.6) and (4.7) ensure 

that all configurations are placed between their allowed minimum and maximum x 

coordinates 𝑥𝑚𝑖𝑛𝑖 and 𝑥𝑚𝑎𝑥𝑖. These coordinates are also calculated by the preprocessing 

algorithm. Equation (4.8) prevents placement of two configurations on the same area. This 

equation works only if configurations are ordered according to their x coordinates and 

there are no two configuration ranges that overlap. The preprocessing algorithm ensures 

that these two conditions are satisfied. According to (4.9) and (4.10), the configurations 

should be placed immediately after one another, leaving no space in between consecutive 

x-cuts or leaving a scrap cut of length of at least 𝑀𝑖𝑛𝐶𝑢𝑡. Similarly, Equation (4.11) and 

(4.12) force the space between the starting point of the glass sheet and first configuration to 

be 0 or at least 𝑀𝑖𝑛𝐶𝑢𝑡. Equations (4.13) and (4.14) ensure that all configurations are 

placed after the starting point of glass sheet and before the end point of the glass sheet for 

the current static problem. Equation (4.15) sets 𝑋𝑒𝑛𝑑 as the end point of the last 

configuration and Equation (4.16) ensures that the length of remaining glass sheet after the 

last cut is less than 𝑀𝑖𝑛𝑙.  

4.4.2. Preprocessing 

Figure 4.8 provides the flowchart of the preprocessing algorithm. The objective of the 

preprocessing algorithm is to define an ordered set of configurations 𝐼0, such that each 𝑖 ∈

 𝐼0 has a range of 𝑥 coordinates that it can be placed and within this range the value of 

configuration 𝑖 remains constant at 𝑣𝑖. The preprocessing algorithm creates the minimum 

cardinality set 𝐼𝑜 such that no two configurations have overlapping ranges. Construction of 

𝐼𝑜 guarantees that the MIP model in Equations (4.5) – (4.19) works. 



34 
 

 

The preprocessing algorithm shown in Figure 4.8 has three main steps. At the first step, 

algorithm finds all intervals within which the value of a configuration remains constant. In 

order to find these intervals, it places a configuration at point 𝑥 =  0 and starts to slide it 

along the glass sheet by increasing its starting coordinate 𝑥. Figure 4.9 explains a defect’s 

impact on the value of a configuration depending its position on the glass sheet. 

Configuration have different values depending on its location on the glass sheet. These 

value changes result from the defects on the glass sheet. Let’s say that the value of a 

configuration 𝑖 is 𝑣 at some point 𝑥. When we shift the configuration by a small distance 𝜖 

along the glass sheet, the new value of configuration 𝑖 is still 𝑣 at point 𝑥 + 𝜖, since it 

contains the same defects on its products (Figure 4.9 (a)). On the other hand, if we shift the 

configuration by a distance 𝛾 which is just enough to place a new defect within the 

configuration (or a current defect point outside the configuration), then the configuration 

will contain a different set of defect points (Figure 4.9 (b)). Thus, the value of 

configuration 𝑖 may be different at 𝑥 + 𝛾. We call these threshold points “leap points” 

where the value of a configuration changes. 

Between any two consecutive leap points, the value of the configuration is the same. The 

preprocessing algorithm finds all of these leap points for each configuration and defines 

the intervals between the leap points where the value does not change. It creates a dummy 

configuration for every interval by duplicating the original one; so we have many dummy 

configurations 𝑖 with a fixed value 𝑣𝑖 and with a defined valid [𝑚𝑖𝑛𝑖, 𝑚𝑎𝑥𝑖] interval.  
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Figure 4.8. Preprocessing algorithm 
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Figure 4.9. Leap point at 𝑥 + 𝛾 where value of the configuration changes due to the 

entrance of third defect into the upper product 

 

The second step of the preprocessing algorithm in Figure 4.8 prevents unnecessary 

elimination of feasible solutions. Equations (4.6) and (4.7) of the MIP model ensure that all 

configurations are placed between their allowed minimum and maximum 𝑥 coordinates 

𝑥𝑚𝑖𝑛𝑖 and 𝑥𝑚𝑎𝑥𝑖. However, the model can place the configuration only once in its 

validity interval even if there is enough space to place more than one configuration. This 

causes the model to ignore some of the feasible placements. Therefore, if the length of the 

interval is larger than the configuration length 𝑙𝑖, then the preprocessing algorithm simply 

divides the interval into sub intervals and creates additional dummy configurations. The 

length of these sub intervals is limited to the length of the configuration, since it is not 

possible to place more than one configuration in this interval.  

The third step of the preprocessing algorithm in Figure 4.8 eliminates the violation risk of 

Equation (4.8) in case of overlapping configurations.  

𝑥𝑖 +  𝑙𝑖𝑦𝑖 ≤ 𝑥𝑗 + 𝐿 (1 − 𝑦𝑗)    ,   ∀𝑖, 𝑗 ∈ 𝐼0, 𝑖 < 𝑗   (4.8 4.8) 

Equation (4.8) is inactive when at least one of the configurations 𝑖 and 𝑗 is not used (i.e. 

𝑦𝑖 = 0 or 𝑦𝑗 = 0). On the other hand, when both configurations 𝑖 and 𝑗 are selected (𝑦𝑖 =

 𝑦𝑗 = 1) then the model creates a feasible solution only if configurations 𝑖 and 𝑗 do not 

overlap. In this case Equation (4.8) becomes 𝑥𝑖 + 𝑙𝑖 ≤ 𝑥𝑗 . 
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In an ordered set 𝐼0, there are three cases for valid intervals of configurations 𝑖 and 𝑗 where 

𝑖 < 𝑗,  𝑖, 𝑗 ∈ 𝐼0. 

(a) 𝑚𝑎𝑥𝑖 < 𝑚𝑖𝑛𝑗 

In this case, it is obvious that in all feasible solutions that use 𝑖 and 𝑗, Equation (4.8) 

prevents overlapping configurations for the following validity intervals of 𝑖 and 𝑗 as 

depicted below (Each rectangle represents the valid intervals of a configuration.): 

 

 

 

Figure 4.10. Validity intervals of configurations 𝒊 and 𝒋 in case (a) 

 

(b) 𝑚𝑖𝑛𝑗 < 𝑚𝑎𝑥𝑖 < 𝑚𝑎𝑥𝑗 

Since all validity intervals are limited by the length of their configurations in Step 2, if 𝑖 is 

used, 𝑗 cannot start before following shaded interval. Equation (4.8) forces 𝑗 to begin from 

the second part of its validity interval, which prevents the two configurations from 

overlapping. 

 

 

 

Figure 4.11. Validity intervals of configurations 𝒊 and 𝒋 in case (b) 

 

(c) 𝑚𝑖𝑛𝑖 < 𝑚𝑖𝑛𝑗 < 𝑚𝑎𝑥𝑗 < 𝑚𝑎𝑥𝑖 

In this last case, each configuration can start from any point within its indicated shaded 

areas. This solution is feasible, however 𝑥𝑖 + 𝑙𝑖 ≥ 𝑥𝑗, which is a violation of Equation 



38 
 

 

(4.8). Thus, in the mathematical model, this feasible case will be accepted as infeasible 

because of Equation (4.8). 

 

 

 

Figure 4.12. Validity intervals of configurations 𝑖 and 𝑗 in case (c) 

 

As a result, Equation (4.8) ensures that there is no overlapping configurations but 

eliminates some of the feasible solutions in case of overlapping validity intervals. Since 

Equation (4.8) is crucial for the model, we transformed case (c) to the following one by 

dividing the validity interval of configuration i further into two new configurations 𝑖′and 

𝑖′′. 

 

 

 

Figure 4.13. Transformation of case (c) in step 3 of preprocessing algorithm 

 

With this transformation, we eliminate case (c) and create two new cases (b) (between 

𝑖′and 𝑗, 𝑗 and 𝑖′′) and a new case (a) (between 𝑖′ and 𝑖′′) which can be handled by Equation 

(4.8). This step of creating dummy configurations is given in third step of Figure 4.8. 

After these two steps of duplicating configurations, the mathematical model is ready to run 

with dummy configurations. The resulting ordered set of configurations 𝐼0 can be used in 

the MIP model in Equations (4.5) – (4.19) to create feasible solutions. 
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4.4.3. Alternative Solution with a Limited Number of Configurations 

The total number of configurations after the duplication described in the previous section is 

much larger than the original problem. Thus, the performance of the MIP model highly 

depends on the number of dummy configurations. In a static problem with 12m length and 

medium defect density, there can be more than 200 configurations. On the other hand, 

there are less than 10 configurations in the solution.  

In many cases, allowed time is not enough for the MIP model to find an optimal solution 

and the best feasible solution found within the allowed time is executed. So, reducing the 

problem size (i.e. the number of configurations) may increase the solution quality or it 

enables the algorithm to find the optimal solution in a shorter time. 

As a result, we decided to reduce the size of the configuration set 𝐼0. In order to test this 

hypothesis we created a version of the algorithm where we use only first n configurations 

in the model. The result of this version is reported in Chapter 5. 

4.4.4. Fall-Back Heuristic 

As mentioned before, there is very limited time to solve the static problem. Frequently the 

model can reach optimal solutions; but sometimes we have to execute the best feasible 

solution since time is not enough to find the optimal one. Unfortunately, there is one 

another case. Rarely, the algorithm cannot find any solution neither optimal, nor feasible. 

There is no way to stop the production line, so we have to find a configuration as good as 

we can. For this purpose, we have developed another very simple heuristic. In this method, 

we check two different possibilities: 

 All configurations that can be cut starting from the starting coordinate (𝑆𝑡𝑎𝑟𝑡) 

 All configurations that can be cut starting from 𝑀𝑖𝑛𝐶𝑢𝑡 (minimum cutting 

distance) 

We can immediately cut a configuration from the beginning or if there are critical defects, 

we can first cut a portion of 500mm, then start from the beginning of the remaining strip. 

In the first case, the heuristic finds the values of all possible configurations. In the second 



40 
 

 

case the heuristic calculates the total value corresponding to the scrap cut, plus the 

configuration placed after that cut. At the end, the best possible option is executed. In case 

of any tie, the configuration with the smallest x-coordinate is chosen to maximize the 

remaining strip for the following iterations.  

4.5. INCORPORATION OF PRODUCTION TARGETS 

In the current industrial applications, production targets are manually controlled by the 

personnel that oversee the glass production line and the product priorities are updated in 

real time throughout the day, taking into account the product targets and the actual 

production quantities. The glass cutting algorithm used in the production line determines 

the products to be cut using these priorities, thus achieving daily targets in each product 

type. In the original algorithm we have developed, the production targets are ignored and 

the algorithm chooses which products are cut solely based on their impact on the objective 

function (i.e. value maximization or scrap minimization). In this version of the online glass 

cutting algorithm, we made modifications to take into consideration the production targets 

during the execution of the online algorithm so that the algorithm can replace the manual 

control mechanism currently being used. In this version, there is no need to manually 

prioritize the cutting line, and problems arising from not intervening in time can be 

avoided. There are two ways to incorporate production targets in the algorithm: 

 Impose constraints on the number of units produced of each product type 

 Include a term in the objective function to balance the production according to 

these targets. 

4.5.1. Production Targets as Constraints 

In this version, we made modifications to all versions of the methods so that production 

targets are observed as cutting solutions are generated. In the GA, a gene corresponding to 

a product which has already reached its production target is evaluated as scrap glass. So, 

the GA does not choose that solution. Similarly in DA, when the production target of a 

product is reached, value function 𝜋𝑖 accepts that product in configuration 𝑖 as scrap.  
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In the MIP model, production targets are included using the following constraint set: 

∑ 𝑝𝑡𝑖(𝑝)𝑦𝑖  ≤  𝐷𝑝𝑖     ,     ∀𝑝 ∈ 𝑃    (4.204.20) 

In this constraint, 𝐷𝑝 is the upper bound on the production of product 𝑝 (the difference 

between the production target of product 𝑝 and the number of products of type 𝑝 produced 

so far) and 𝑝𝑡𝑖(𝑝) is the number of products of type 𝑝 in configuration 𝑖. The summation 

on the left hand side calculates the total number of products of type 𝑝 that will be cut in the 

current SCP. Thus, constraint (4.20) ensures that the model produces solutions within the 

given production targets. At the end of each iteration, production upper bounds of all 

products are updated based on the quantities of each product type produced in that SCP. 

We name this version of MIP model MIP+C which denotes the MIP model with 

production target constraints. 

4.5.2. Production Targets in the Objective Function 

Incorporating production targets only as constraints does not allow the algorithm to 

balance the production quantities of each product type throughout the production process. 

Early completion of some products during the production process reduces the product 

variety that the algorithm can select towards the end of production; thus the algorithm is 

forced to choose configurations with higher scrap glass content. In order to be able to 

achieve a more balanced production distribution, the difference between the production 

targets and the realized production ratios is added to the objective function with a certain 

weight. This difference is calculated as the sum of the absolute value of the difference 

between the production target of each product and the actual production amount. In the 

GA, the fitness function is updated in the same manner. At the beginning of each iteration 

of the online glass cutting algorithm with DP, the difference between the production targets 

and the realized production ratios are updated. Then, the numerical effect of producing one 

more product 𝑝 on this difference is calculated as ∆𝑝 for each product 𝑝 ∈ 𝑃. Finally the 

updated product value 𝜋𝑖
′ function is calculated as in Equation (4.21) and used in DP 

instead of the original value 𝜋𝑖. 

𝜋𝑖
′ =  𝜋𝑖 +  ∑ 𝑝𝑡𝑖(𝑝)∆𝑝𝑝𝜖𝑃     (4.214.21) 
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In the MIP model, production targets are now included with additional constraints and a 

modified objective function. The additional constraints are the equations (4.20) mentioned 

in Subsection 4.5.1. In the new objective function (4.22), 𝑓𝑝 is the ratio of the current 

production of each product 𝑝 to the total quantity of all the products produced so far and 

𝑓𝑝
0 is the ratio of the production target of product 𝑝 to the sum of the production targets of 

all products. This is why the minimization of |𝑓𝑝 − 𝑓𝑝
0| value for all products is intended to 

produce in accordance with the production targets and this balanced production is also 

expected to result in reaching targets of all products around the same time. 

𝑀𝑎𝑥 [∑ 𝑣𝑖𝑦𝑖𝑖∈𝐼0 ] − 𝑊 [𝑋𝑒𝑛𝑑 − 𝑆𝑡𝑎𝑟𝑡 −  ∑ 𝑙𝑖 𝑦𝑖𝑖∈𝐼0 ] −  𝛼 ∑ |𝑓𝑝 − 𝑓𝑝
0|𝑝∈𝑃       (4.224.22) 

The objective function has a nonlinear structure due to the added absolute value term. To 

linearize this function, the constraint 𝑓𝑝 − 𝑓𝑝
0= 𝑓𝑝

+ − 𝑓𝑝
− is added by defining two variables 

for each product type 𝑝, 𝑓𝑝
+ and 𝑓𝑝

− (𝑓𝑝
+, 𝑓𝑝

− ≥ 0). The last term in the objective function is 

changed then to ( −  𝛼 ∑ (𝑓𝑝
+ + 𝑓𝑝

−)𝑝∈𝑃 ). The linearized version of the objective function 

(4.22) is given in Equations (4.23) – (4.25) below. 

𝑀𝑎𝑥 [∑ 𝑣𝑖𝑦𝑖𝑖∈𝐼0 ] − 𝑊[𝑋𝑒𝑛𝑑 − 𝑆𝑡𝑎𝑟𝑡 −  ∑ 𝑙𝑖𝑦𝑖𝑖∈𝐼0 ] −  𝛼 ∑ (𝑓𝑝
+ + 𝑓𝑝

−)𝑝∈𝑃     (4.234.23) 

f
p

 +  ≥ f
p
- f

p

 0 and  f
p

-  ≥ 𝑓𝑝
0 − 𝑓𝑝                                       (4.244.24) 

f
p

 +
, f

p

- ≥ 0                                                        (4.254.25) 

We name this version of the MIP model with Equations (4.6) – (4.19) and (4.23) – (4.25) 

MIP+CO. CO stands for updating both the constraints and the objective function according 

to production targets. The last term in the objective function reduces the weight of first two 

terms which focus on maximizing production value and minimizing scrap glass. This may 

seem as a contradiction when we consider only short term results. However, our 

motivation for this term in objective function is to achieve the best total objective function 

value (i.e. sum of the first two terms) for the whole production process. Figure 4.14 shows 

an example problem where scrap minimization was the main objective. In this figure, we 

see the scrap glass area produced by the MIP versions with and without the production 

balance term in the objective function, MIP+CO and MIP+C respectively. One can see that 

MIP+CO produces more scrap glass in order to balance the production distribution. On the 

other hand, the time when a product reaches its production target can be delayed by this 
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method. The algorithm with MIP+C completes production of one product at iteration 412. 

After that point, MIP+C starts to produce more scrap glass since it has less product options 

to choose from. However MIP+CO reaches its first production target at iteration 606. 

Similar to MIP+C, it starts to produce more scrap glass after that point; but since it has a 

better performance between iterations 412 and 606, its total scrap glass area is less at the 

end. 

 

 

 

Figure 4.14. Scrap glass produced by the algorithm versions MIP+CO and MIP+C (with 

and without production balance) 

4.5.3. Adaptive Algorithm 

Clearly, the performance of the algorithm in Subsection 4.5.2 depends largely on the 

weight placed on production balance (𝛼). As we experimented with different 𝛼 values, we 

observed that the best value for 𝛼 changes with the defect density and values of the 

production targets. It is a fact that both defect density and production targets will vary 

depending on the industry and the production conditions. For this reason, it is important 
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that the algorithm can adapt itself according to the changing conditions of the production 

line by updating 𝛼 value in real time. However, in the production environment, 

determining a suitable value for 𝛼 and adjusting this value manually would require manual 

intervention by an operator who understands the how the algorithm works. The adaptive 

algorithm eliminates this human intervention and ensures that the value of 𝛼 is adjusted 

objectively based on performance. 

Unfortunately, it is very difficult to determine the best value of 𝛼 that will yield the 

optimum long-term performance since introducing a high value of 𝛼 causes the short-term 

performance to suffer. Therefore, we need a way to anticipate the long term impact of a 

particular 𝛼 value in real time. To achieve this, we performed test runs with different 

values of 𝛼 in parallel with the actual production run. By comparing the results of the 

actual and test runs, we decide which 𝛼 value is better in the long term. 

As we inspect Figure 4.14, we see that there are three different values we need to know for 

both 𝛼 values (current and test) so that we can estimate total scrap at the end of the 

production process. These are the critical point where a product reaches its production 

target and scrap glass produced per unit length before and after that critical point. For 

instance, in Figure 4.14, the algorithm with MIP+CO completes the production of one 

product at iteration 606. The end coordinate of the last product of this type on the glass 

sheet is our critical point for the current 𝛼. Similarly, we name this product type as the 

critical product. One can see that the slope (total scrap per length) is not changing 

significantly during the iterations before the critical point. Although the critical point leads 

to a change of this slope, we can see that the slope after this point also does not change 

much within its range. Therefore, we can assume two different slopes before and after 

critical point. If we estimate these three values, we can predict the total scrap glass at the 

end of production run with the following formula: 

Sα CP +Sα
'
(TL - CP)    (4.264.26) 

where 𝑇𝐿 is the total length of glass sheet, 𝐶𝑃 is the critical point, 𝑆𝛼 and 𝑆𝛼
′  are the slopes 

before and after the critical point respectively.  

In Figure 4.15, we described the algorithm to estimate 𝐶𝑃, 𝑆𝛼, 𝑆𝛼
′  and update the value of 

𝛼 during the production run. The algorithm decides the 𝛼 value by comparing the 
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estimated results of the current 𝛼 value with the estimated results of the test 𝛼 (𝛼_𝑡𝑒𝑠𝑡) 

value in each 4𝑘 iterations, where 𝑘 > 1. Among these 4𝑘 iterations, 2𝑘 are performed to 

execute the production run with the current 𝛼 value, whereas two sets of 𝑘 iterations are 

run using a new 𝛼 value (𝛼_𝑡𝑒𝑠𝑡) to estimate the values of 𝑆𝛼_𝑡𝑒𝑠𝑡 and 𝑆𝛼_𝑡𝑒𝑠𝑡
′ . In a real 

production environment, 2𝑘 test runs and 2𝑘 production runs must be done concurrently on 

identical computers to prevent delays. In our experiments, we simulated the runs on a 

single computer to make sure that two runs were on identical computers and performed the 

runs in sequence. Our adaptive model is given in Figure 4.15. The algorithm is initiated 

using the same value for 𝛼 and 𝛼_𝑡𝑒𝑠𝑡. After 4𝑘 static solutions, algorithm begins to 

update 𝛼 value. 

In the first 2𝑘 iterations of each cycle (Figure 4.15, Step 1), the adaptive algorithm runs 

regularly with the current 𝛼 and calculates the amount of scrap glass produced. At the end 

of the 2𝑘 iterations, we obtain the total area of scrap glass produced with the current 𝛼 

value. Algorithm estimates 𝑆𝛼, by dividing total scrap glass by total length used. Algorithm 

also keeps the production quantities of each product and calculates number of products of 

each type produced per unit length. Thus, it is easy to estimate the coordinates where each 

product type reaches its production target, and the minimum among these coordinates 

gives us the 𝐶𝑃 for the current 𝛼. Each current 𝛼 value has already been tested as 𝛼_𝑡𝑒𝑠𝑡 

before it was assigned as the current 𝛼. For this reason, the algorithm has already 

calculated and logged the results of the current 𝛼 value when one of the product types 

reaches its production target; so it estimates 𝑆𝛼
′  from these logs. After the algorithm 

estimates all necessary values for the current 𝛼 (𝑆𝛼, 𝑆𝛼
′  and 𝐶𝑃), it creates a new 𝛼_𝑡𝑒𝑠𝑡 

value for the test runs. If the previous update of 𝛼 is an update in the direction of increase, 

𝛼_𝑡𝑒𝑠𝑡 becomes 𝛼 + 𝜀, otherwise 𝛼 − 𝜀 where 𝜀 denotes the step size. This information is 

recorded in a variable named 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. In order to test 𝛼_𝑡𝑒𝑠𝑡, the algorithm is rerun on 

the same area of the glass sheet using with 𝛼_𝑡𝑒𝑠𝑡.  

In the third set of 𝑘 iterations (Figure 4.15, Step 2), the algorithm calculates the total length 

of glass used and the total area of scrap glass produced to estimate 𝑆𝛼_𝑡𝑒𝑠𝑡. Similarly 

algorithm keeps the production amounts of each production type and estimates 𝐶𝑃_𝑡𝑒𝑠𝑡. 

However, it cannot estimate 𝑆𝛼_𝑡𝑒𝑠𝑡
′  since 𝛼_𝑡𝑒𝑠𝑡 may be a new value. Then, there is no 

information of 𝛼_𝑡𝑒𝑠𝑡 gathered after the critical point 𝐶𝑃_𝑡𝑒𝑠𝑡 is reached. So, as shown in 



46 
 

 

Step 3 of Figure 4.15, the algorithm runs another set ok 𝑘 iterations using 𝛼_𝑡𝑒𝑠𝑡 and 

setting the production target of the critical product to zero (𝑇𝑐 = 0). Then it can estimate 

𝑆𝛼_𝑡𝑒𝑠𝑡
′  and also keeps the results to be used in the next cycles. 

At the end of the 4𝑘 iterations, the algorithm has estimated the values of 𝑆𝛼, 𝑆𝛼
′ , 𝐶𝑃, 

𝑆𝛼_𝑡𝑒𝑠𝑡, 𝑆𝛼_𝑡𝑒𝑠𝑡
′  and 𝐶𝑃_𝑡𝑒𝑠𝑡. It then calculates the estimates of the total scrap glass to be 

produced using 𝛼 and 𝛼_𝑡𝑒𝑠𝑡, 𝑇𝑆𝐺𝛼 and 𝑇𝑆𝐺𝛼_𝑡𝑒𝑠𝑡 respectively by using Equation (4.26) 

as shown in Step 4 of Figure 4.15. If 𝑇𝑆𝐺𝛼_𝑡𝑒𝑠𝑡 < 𝑇𝑆𝐺𝛼 then, 𝛼_𝑡𝑒𝑠𝑡 will replace 𝛼. 

Otherwise 𝛼 does not change but 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is updated in order to test a better 𝛼_𝑡𝑒𝑠𝑡 

value around the current 𝛼 in the next cycle. 

Parameter 𝑘 can be assigned according to the conditions of production environment. We 

know that the best 𝛼 value depends on the defect density. Although one can classify a 

problem instance by looking at its average defect density, the density is not the same 

everywhere on the glass sheet. In our experiments, we noticed that this nonhomogeneous 

distribution of defects causes wrong 𝛼 decisions frequently when a small 𝑘 value is used. 

Therefore, we recommend not to use very small values to avoid instability of 𝛼 values. On 

the other hand, large 𝑘 values reduce the update rate. As depicted in Figure 4.15, 𝛼 is 

updated only once in every 4𝑘 iterations. Therefore the choice of 𝑘 value is an important 

decision that affects the performance of the adaptive algorithm. We discuss how the value 

of 𝑘 is selected for our adaptive model in Subsection 5.3.1.  
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Figure 4.15. Adaptive algorithm 
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5. COMPUTATIONAL RESULTS 

 

Computational results are collected under three main sections. Section 5.1 covers the 

results of GA, DP and MIP model without any production targets which is described in 

Section 4.4. Section 5.2 presents the behaviour of the methods under production targets. 

Different versions of solution methods with production targets mentioned in Subsections 

4.5.1 and 4.5.2 are addressed in this section. Section 5.3 is dedicated to the adaptive model 

which has the most favourable results among all solution methods. Finally the reader can 

find an overview of all computational results in Section 5.4. 

5.1. COMPUTATIONAL RESULTS OF THE SOLUTION METHODS WITHOUT 

PRODUCTION TARGETS 

In this version of the problem, production targets are unlimited. In the original online glass 

cutting algorithm, three methods are used to solve the underlying SCP without production 

targets. GA and DP are two solution methods which use the CBF rule. On the other hand, 

MIP model was used to obtain the results for the same problem instances without the CBF 

rule. 

5.1.1. Experimental Design 

Experiments are performed by using 3 different SCP lengths (6m, 9m, 12m), 3 different 

defect densities (low – 0.55 defect/m2, medium – 0.83 defect/m2, high – 1.1 defect/m2). 

These densities are representative of contemporary float lines that are currently in 

operation. 5 problem instances are created randomly for each case. Each problem instance 

is a continuous problem on a glass sheet of 1,200m length and 3.21m width.  

For DP, 3 seconds are enough to solve the SCP of length 𝐿 = 6m and 9m. Thus, we do not 

use any time limit for DP. In fact, since DP does not produce a result until it is completed, 

we do not have an option of setting a time limit, we can only measure the elapsed time. We 

also allowed GA 3 seconds to solve each SCP. On the other hand, MIP model solves a 

more complicated version of the problem, so time limit is more important. We run it with 
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unlimited time, with 15 seconds and 3 seconds to compare the performance of the 

algorithm as a function of the CPU time. 

In order to set the parameters for the GA, we run some preliminary experiments. Based on 

these experiments, we set the population size to 20 and choose to use an elitist selection 

with and elite count of 2. 

Experiments on EE are designed to see how much our methods improve the solution 

quality against the explicit enumeration approach currently adopted in the glass industry. 

EE is run only for 𝐿 = 9m with 𝑐 = 3 and 𝑐′ = 1, since the current focus is to enumerate 3 

configurations and implement the first one no matter what the length 𝐿 is.  

In all methods, the minimum cutting distance 𝑀𝑖𝑛𝐶𝑢𝑡 is set as 500mm. The values of all 

products per m2 are assumed to be the same in all cases. Under this assumption, the 

objective function can be reduced to minimizing the total scrap area. Therefore we focused 

on this objective in the evaluation of computational results. This set of experiments aims to 

compare solution qualities of the proposed methods. As explained in Subsection 4.4.3, we 

have observed that the solution quality of MIP model can be improved by limiting the 

number of configurations in the model. Effects of configuration limit on the MIP 

performance are also tested in this section. Various configuration limits between 10 and 

140 are applied to the same problem in order to observe the impact on the results. 

5.1.2. Solution Quality 

A comparison of the results produced by two different solution methods that employ the 

CBF rule (GA and DP) is shown in Table 5.1. Moreover, we include the test results of EE 

on the experiment set of 9m in order to compare the solution qualities of our methods with 

the current practice in the glass industry. This table shows the amount of scrap glass in 

square meters. The rows of the table show the sample problems grouped by their defect 

density, and the columns show the SCP lengths 𝐿 used in each method. We observe that 

solution quality of both methods, GA and DP, is better than the solution quality of EE, 

which is a common approach in glass cutting industry. We obtain an improvement of 25 

per cent by DP, and 18 per cent by GA on the average over the solution quality of EE. The 

results of the DP method using 𝐿 = 12m is included so that improvement in solution 
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quality can be observed even though the DP method does not always terminate in 3 

seconds. In GA, we can make sure that SCPs are solved within 3 seconds because we can 

technically set the time limit. The Table 5.1 shows that the DP produces better results as 

the SCP length increases. The reason for this is that the DP method has defect information 

of longer distances. On the contrary, we see that the results of GA deteriorate as the SCP 

length increases. This is due to the attempt to solve a more complex problem within the 

same time limit. When we compare the two methods, we observe that the GA produces 

better results only in the case of low defect density problems using short SCP lengths. In 

all other cases, we see that DP produces better results. Within the defined time limit of 3 

seconds, the best results are produced by the DP method using SCP length of 9m. Due to 

this overall, superiority of DP, we used this method to compare the performance of the 

methods that use the CBF rule and those that do not use the CBF rule. Table 5.2 

summarizes these results. 

 

Table 5.1. Comparison of EE, DP and GA methods in terms of solution quality (the 

amount of scrap glass in m2) 

 

Defect 

Density 

Problem 

Instance 

EE DP GA 

9m 6m 9m 12m 6m 9m 12m 

Low 

1 549.69 384.10 366.16 343.17 369.50 377.23 411,29 

2 588.95 415.87 404.71 385.24 397.26 404.71 445,35 

3 589.81 419.02 411.29 398.70 421.02 424.74 424,74 

4 534.71 388.11 370.65 350.90 374.65 394.69 394,40 

5 587.40 423.31 415.58 392.68 407.28 407.28 453,36 

Average (Low) 570.11 406.08 393.68 374.14 393.94 401.73 425.83 

Medium 

6 1044.00 775.08 765.92 742.74 811.15 834.04 891,86 

7 1004.10 741.02 720.70 705.53 789.96 801.41 801,41 

8 1016.40 791.40 773.65 748.75 810.00 838.34 868,96 

9 1010.80 754.19 728.14 705.53 791.11 790.54 865,24 

10 976.83 753.33 744.17 714.97 789.68 817.16 862,38 

Average (Medium) 1010.43 763.00 746.52 723.50 798.38 816.30 857.97 

High 

11 1503.80 1195.50 1180.40 1156.00 1320.30 1312.30 1357,50 

12 1481.20 1175.80 1165.80 1138.30 1277.10 1275.40 1334,90 

13 1477.50 1164.30 1144.60 1123.70 1299.70 1303.20 1357,50 

14 1485.20 1137.20 1133.10 1110.30 1247.60 1283.10 1318,60 

15 1451.00 1191.00 1161.80 1138.90 1294.90 1303.50 1358,70 

Average (High) 1479.74 1172.76 1157.14 1133.44 1287.92 1295.50 1345.44 

Average (Overall) 1020.09 780.62 765.78 743.69 826.75 837.84 876.41 
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Table 5.2. Comparison of DP and MIP in terms of solution quality (the amount of scrap 

glass in m2) 

 

Defect 

Density 

Problem 

Instance 

DP MIP (unlimited 

time) 

MIP (3 sec) MIP (15 sec) 

6m 9m 6m 9m 6m 9m 6m 9m 

Low 1 384.10 366.16 360.34 339.73 363.78 481.41 357.77 364.35 

2 415.87 404.71 388.39 382.67 405.28 500.59 390.11 398.98 

3 419.02 411.29 392.68 391.83 415.30 506.60 391.54 404.71 

4 388.11 370.65 363.20 348.32 371.79 492.86 360.34 363.49 

5 423.31 415.58 408.14 397.84 421.02 508.32 409.86 404.13 

Average (Low) 406.08 393.68 382.55 372.08 395.43 497.96 381.92 387.13 

Mediu

m 

6 775.08 765.92 764.49 728.43 767.93 835.76 761.91 745.31 

7 741.02 720.70 711.54 688.07 729.29 833.76 712.11 721.56 

8 791.40 773.65 755.33 724.71 767.93 870.39 754.76 739.59 

9 754.19 728.14 723.56 690.93 737.30 844.63 721.27 701.52 

10 753.33 744.17 731.00 717.84 739.59 856.66 727.00 718.69 

Average (Medium) 763.00 746.52 737.18 710.00 748.41 848.24 735.41 725.33 

High 11 1195.50 1180.40 1164.60 1141.70 1176.40 1226.50 1163.80 1152.00 

12 1175.80 1165.80 1157.50 1135.20 1177.20 1217.60 1166.90 1127.10 

13 1164.30 1144.60 1135.70 1098.50 1149.50 1193.80 1137.70 1110.00 

14 1137.20 1133.10 1124.80 1089.40 1135.70 1169.50 1122.80 1103.40 

15 1191.00 1161.80 1163.20 1136.60 1171.80 1212.10 1164.30 1147.20 

Average (High) 1172.76 1157.14 1149.16 1120.28 1162.12 1203.90 1151.10 1127.94 

Average (Overall) 780.62 765.78 756.30 734.12 768.65 850.03 756.14 746.80 

 

 

In Table 5.2, each row shows a sample problem grouped by defect density, and each 

column shows the SCP lengths used in two methods. The results of the problems display 

the amount of scrap glass produced (in m2) by the two methods using the SCP lengths (𝐿) 

indicated. The MIP model was run with 3 different time limits. The CPU time allowed in 

the first set of runs is considered infinite. We explored this setting to obtain the best results 

that the MIP model can produce. Thus, the effects of the time limits on the model can be 

seen more clearly. The second set of runs were completed under a 3 second time limit 

based on the restriction in the glass industry. A 15 second limit was used in the third set of 

runs. The reason for these last set of runs is the difference in CPU speeds between the 

computers we use for our study and the computers used in the industry. It is possible to 

produce a solution much faster with the computer systems used in the industry than the 

solutions produced in a personal computer. Therefore it is important to observe whether the 

solution quality can be improved when a more powerful computer is used. This 

improvement is quantified in the results under a 15 second time limit.  
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In the MIP results using a SCP length of 𝐿 = 6m, there is no significant difference 

between the solution quality with unlimited time and under a 15 second time limit. 

However, limiting the CPU time to 3 seconds caused a slight deterioration in solution 

quality. In all instances with 𝐿 = 6m, the results produced with MIP model are better than 

those produced with DP.  

For solutions using 𝐿 = 9m SCP length, the effect of time limit is much higher due to the 

larger size of the SCP. Since 15 seconds is still sufficient for solving many of those larger 

SCPs, the results produced are close to unlimited time solutions. However, reducing the 

time limit to 3 seconds has a significant impact on the results. Although MIP yields better 

results, under no time limit and with a limit of 15 seconds, MIP results with a 3 second 

limit are much worse than DP results for this SCP length. The reason is that the MIP model 

cannot achieve an optimal result for many of the SCPs, and it even has to resort using the 

fall back heuristic for some of the SCPs since no feasible solution could be obtained. 

 

Table 5.3. Percentages of optimal, feasible solutions and solutions created by the fall back 

heuristic used by the MIP model in runs with SCP length L =9m under 3 second time limit 

 

Defect density Problem instance Optimal (%) Feasible (%) Heuristic (%) 

Low 

1 2.3 96.7 1.1 

2 1.1 98.2 0.7 

3 1.7 97.3 0.9 

4 8.0 92.0 0.0 

5 3.1 88.4 8.5 

Average (low) 3.2 95.8 1.0 

Medium 

6 9.1 89.2 1.7 

7 12.0 87.2 0.8 

8 11.3 87.7 1.0 

9 10.9 89.0 0.1 

10 15.1 83.7 1.2 

Average (medium) 11.7 87.4 1.0 

High 

11 47.4 52.0 0.6 

12 40.3 59.7 0.0 

13 53.6 45.7 0.7 

14 43.8 55.7 0.4 

15 48.6 51.1 0.3 

Average (high) 46.7 52.8 0.4 

Overall average 20.5 78.7 0.8 
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Table 5.3 shows the usage frequency of three possible outcomes of the MIP model with 

SCP length 𝐿 = 9m under a 3 second time limit. Even if the model rarely uses fall back 

heuristic, one can see that feasible solutions dominates the others. Therefore, solution 

quality of the MIP model is affected negatively by low optimal solution percentage.  

As mentioned in Subsection 4.4.3, we also develop an alternative version of the method 

where the number of configurations in the MIP model is restricted to reduce the problem 

size. The impact of this limitation are depicted in Figure 5.1, 5.2 and 5.3 for 𝐿 = 6, 9 and 

12m, respectively. The graph in the upper part of each figure, the purple line shows how 

the scrap glass changes as the configuration limit increases. The blue line indicates the 

result of the MIP model without any configuration limit. These two lines depict the 

difference in solution quality between two methods for various configuration limits. Since 

less scrap glass is desired, a low value means better solution quality in these graphs. For 

small SCP lengths such as 6m, the solution quality is almost the same as the unlimited 

version when the configuration limit is higher than 60. When the SCP length is 9m, there is 

a configuration limit range (50-100) where the alternative solution method gives better 

results. For larger SCP lengths such as 12m, the alternative solution method is better for a 

larger configuration limit range (20-140). It is also obvious that the solution quality is 

significantly improved (up to 20 per cent) when SCP length is high (𝐿 = 12m). The third 

line of the graphs in the upper part shows average run time per SCP for the version with 

configuration limit. For SCPs with 𝐿 = 9m, the alternative solution method gives the same 

result with the unlimited one in 1.31 seconds which is 57 per cent faster than the version 

without configuration limit. For 𝐿 = 12m, 0.61 second is sufficient to reach the same 

solution quality, which is an 80 per cent improvement. Overall, we see that the alternative 

solution is able to provide better solutions within the same time or the same solution in less 

time. 

In the lower parts of Figure 5.1 – 5.3, the line with label “Optimal” indicates the 

percentage of SCPs for which the MIP model reaches the optimal solution. The label 

“Feasible but not Optimal” line shows the percentage of feasible but not optimal solutions. 

Finally the line labelled “Fall-back Heuristic” shows the percentage of solutions obtained 

using the fall back heuristic. Since there is no other possibility, the sum of the percentages 

of these three solution options is 100 per cent for all configuration limits. With low 

configuration limits, the model can find the optimal solutions for the reduced problem 
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easily; but the solution quality is low. It is because the low configuration causes most of 

the available data to be ignored. With high configuration limits, even if there is sufficient 

data, solution quality is still low. On the other hand, a high configuration limit makes the 

problem difficult and the model cannot find the optimal solution in most of the cases. 

Consequently, using feasible solutions and the fall-back heuristic instead of optimal 

solutions reduce the solution quality. That is why only a certain range of configuration 

limit is capable of significant improvement in solution quality. 
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Figure 5.1. Effect of configuration limit on solution quality for an L = 6m SCP length and 

under 3 seconds run time limit 
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Figure 5.2. Effect of configuration limit on solution quality for an L = 9m SCP length and 

under 3 seconds run time limit 
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Figure 5.3. Effect of configuration limit on solution quality for an L = 12m SCP length and 

under 3 seconds run time limit 
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Based on our findings summarized in Figures 5.1 – 5.3, we see that there is no need to 

limit the configurations for the SCPs with 𝐿 = 6m the version with no configuration limit 

offers comparable or better solution quality. Moreover, Table 5.2 indicates that the MIP 

model has better solution quality in this SCP length than DP, even when the number of 

configurations is unlimited. On the other hand, imposing a configuration limit for the 

larger SCPs created for with L = 9m or with L = 12m results in better solution quality. In 

fact, lowest scrap values are created for both SCP lengths when configuration limit is set to 

75. Therefore, we decided to solve the MIP model under a configuration limit of 75 for our 

experiments with the 9m SCP length. The results are summarized in the right most column 

of Table 5.4. In this table, we see that the configuration limit led to an improvement in all 

instances. Although the MIP model still produces worse results than DP, the difference is 

significantly reduced compared to the MIP with unlimited configurations. By limiting the 

number of configurations, we were able to record an average improvement of 7 per cent in 

the MIP model and the average difference between DP and MIP was reduced from 11 per 

cent to 4 per cent. In the latter part of this study, we will see that the problem size, which 

will be further reduced by including production constraints in addition to the configuration 

limit, becomes a greater advantage in terms of MIP. 

 

Table 5.4. Solution quality of DP, MIP and MIP limited to 75 configurations with L = 9m 

in m2 of scrap glass produced 

 

Defect Density 
Problem 

Instance 
DP MIP (3 sec) 

MIP (3 sec) with configuration 

limit of 75 

Low 

1 366.16 481.41 412.15 

2 404.71 500.59 441.63 

3 411.29 506.60 471.40 

4 370.65 492.86 419.30 

5 415.58 508.32 457.09 

Average (Low) 393.68 497.96 440.31 

Medium 

6 765.92 835.76 788.25 

7 720.70 833.76 754.19 

8 773.65 870.39 763.35 

9 728.14 844.63 745.31 

10 744.17 856.66 771.93 

Average (Medium) 746.52 848.24 764.61 

High 

11 1180.40 1226.50 1184.10 

12 1165.80 1217.60 1170.90 

13 1144.60 1193.80 1150.30 

14 1133.10 1169.50 1136.00 

15 1161.80 1212.10 1177.20  

Average (High) 1157.14 1203.90 1163.70 

Average (Overall) 765.78 850.03 789.54 
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5.1.3. Computational Time 

In this section, we will report the computational performance of the online algorithm 

versions with both DP and MIP. Since the solution time per SCP of the GA is fixed at 3 

seconds, we omit the GA results for simplicity. Similarly computational time of EE is less 

than 0.1 seconds per SCP. For this reason, we also omit the computational time of EE. 

Table 5.5 shows total time spent by the methods in seconds for solving a 1,200m problem. 

Note that this total time includes the time to solve hundreds of SCPs within the 1,200m 

range. In general, MIP spends more time to solve a problem with low defect density. It is 

because a smaller number of defects leads to many dummy configurations, which results in 

a larger problem. Unlimited solution of MIP shows us the required time to solve all SCPs 

to optimality. On the other hand, version of MIP with a CPU time limit, especially of 3 

seconds, shows the total time we can spend for production decisions. In real life settings 

the difference between solution times indicates the need for a performance improvement in 

the MIP model. This was the main reason for implementing a configuration limit to reduce 

the problem size in order to improve the MIP results.  

 

Table 5.5. Total solution times of DP and MIP for solving a 1,200m problem 

 

Defect 

Density 

Problem 

Instance 

DP MIP (unlimited 

time) 

MIP (3 sec) MIP (15 sec) 

6m 9m 6m 9m 6m 9m 6m 9m 

Low 1 192.69 599.78 6464.78 98374.44 1793.57 2380.00 2809.48 9829.76 

2 192.69 756.31 4806.19 82975.25 1730.50 2354.54 2525.21 9848.22 

3 197.69 604.06 4272.54 110590.57 1751.80 2387.72 2730.64 10095.39 

4 196.24 576.16 4313.84 94998.10 1774.67 2385.44 2854.00 9919.13 

5 199.38 591.39 4350.30 93550.21 1822.66 2372.40 2690.53 10127.86 

Average (Low) 195.73 625.54 4841.53 96097.71 1774.64 2376.02 2721.97 9964.07 

Medium 6 256.63 909.82 5013.88 37924.86 1417.28 2236.34 2080.36 7745.28 

7 253.92 854.70 3978.33 39771.66 1413.72 2215.28 1984.28 7739.02 

8 250.06 947.14 4888.29 30438.52 1402.05 2205.65 1825.86 7939.34 

9 254.00 935.07 3065.23 30194.33 1387.51 2228.96 1924.73 7834.22 

10 264.54 1109.68 3252.89 45699.59 1455.73 2245.34 2135.45 7912.06 

Average (Medium) 255.83 951.28 4039.72 36805.79 1415.26 2226.31 1990.14 7833.98 

High 11 374.90 1279.17 3205.99 21579.68 1062.64 1994.00 1389.46 5281.23 

12 339.81 1333.23 4206.28 19824.56 1054.82 1996.69 1279.85 5510.22 

13 358.91 1302.65 1888.77 13281.31 980.21 1862.08 1284.80 4687.82 

14 358.59 1328.92 3054.38 19670.17 1025.74 1972.59 1354.52 5242.83 

15 396.50 1281.71 4892.01 15752.32 1001.95 1873.09 1306.38 5117.84 

Average (High) 365.74 1305.14 3449.49 18021.61 1025.07 1939.69 1323.00 5167.99 

Average (Overall) 272.44 960.65 4110.25 50308.37 1404.99 2180.67 2011.70 7655.35 
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5.2. COMPUTATIONAL RESULTS OF THE METHODS WITH PRODUCTION 

TARGETS 

All of the experiments up to this point are based on the assumption that the production 

targets are unlimited. However, production preferences in a real production environment 

also vary according to production targets. In this section, we report our computational 

results for sample problems with production targets. 

In the first set of experiments, we include production targets as constraints into our 

solution methodologies as explained in Subsection 4.5.1 and report the performance of the 

methods under production restrictions. Then, in the second set of experiments, we include 

production targets into the objective function as explained in Subsection 4.5.2. Lastly, all 

experiments are repeated for the MIP model with configuration limit in order to improve 

solution quality. 

These experiments aim to evaluate the performance of the proposed methods with 

production targets and asses their suitability for the production environment. 

5.2.1. Experimental Design 

All previous parameters explained in Subsection 5.1.1 are also used in the creation of this 

experimental design. In addition, the production targets were set as 320 for low defect 

density instances for each product, 280 for medium defect density instances and 240 for 

high defect density instances. These values were calculated based on the average yield for 

each defect density level. When we were testing the new versions of the solution methods 

which include the production targets, we used 9m SCP length and 3 seconds time 

constraint. As discussed previously, this setting provides a good balance between the 

solution quality and CPU time requirement. For the performance improvement heuristic 

explained in Subsection 4.4.3, the first 75 configurations in 𝐼0 are used in the MIP model. 

In order to include production targets into the objective function, we have to set the value 

of coefficient 𝛼 discussed in Subsection 4.5.2. Before starting the experiments, various 𝛼 

values were tested by using a subset of the problems in our experimental design. The aim 

of this preparation is to find a suitable 𝛼 value for the model. 
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5.2.2. Solution Quality 

In this section, we summarize the results of different versions of the online algorithm with 

production targets in terms of solution quality. To compare the performance of the methods 

with GA, DP and MIP, constraints on production targets have been added to all methods 

and the objective functions have been updated as described in Subsection 4.5.2.  

Finding a good value for the coefficient 𝛼 is crucial for the performance of the model with 

production targets. When the 𝛼 value is too small, the production targets will not have a 

significant effect on the objective function. When it is too large, the model will focus on 

homogenously distributing production targets regardless of the amount of scrap glass. For 

this reason, choosing the 𝛼 value is vital for the quality of model output. We performed a 

binary search to determine a good 𝛼 value. We ran the MIP model for one problem 

instance from each defect density by changing 𝛼 values between 100 and 1,000,000. Based 

on the result of our tests, the best value for 𝛼 was determined as 88,000 for low and 

medium defect density instances and 100,000 for high defect density instance. 

Table 5.6 summarizes the solution quality of methods for all problem instances in terms of 

generated area of scrap glass in square meters. In the table, GA+CO column shows the 

results of GA and DP+CO column shows the results of DP method. Both methods are 

updated to include production target both as constraints and in the objective function. 

MIP+C stands for the version of the MIP model where production targets are considered 

only as constraints as described in Subsection 4.5.1. Similarly, MIP+CO (with production 

target constraints and updated objective function) column shows the results of the MIP 

model with coefficient 𝛼. In the last column, MIP+COC (stands for MIP model with 

production target constraints, updated objective function and configuration limit) shows 

the results of the MIP model with a configuration limit of 75. All values are scrap glass 

amounts in m2 produced by methods; therefore low values mean better solution quality. At 

first glance, we can compare the MIP+C and MIP+CO columns to see that a more 

homogeneous production distribution increases solution quality by about 3 per cent. 

Similarly, we can say that the MIP+CO version yields 6 percent better results than GA+CO 

and 4 per cent better results than DP+CO on the average.  
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We previously have tested the impact of configuration limits on the problem instances 

without production targets and found that configuration limits in MIP model can lead 

better solutions. For this reason, we have also tested this practice for the MIP model with 

production targets. In this version, we can see an additional 1.5 per cent improvement over 

MIP+CO results. In summary, when we compare the solution qualities of all methods with 

production targets, we observe that the MIP model yields about 7.5 per cent better results 

than GA+CO and about 5.5 per cent better results than DP+CO. 

 

Table 5.6. Solution quality of methods (in m2 of scrap glass) with production targets 

(L = 9m) 

 

Defect 

Density 
Prob. No GA+CO DP+CO MIP+C MIP+CO MIP+COC 

Low 

1 536.08 564.71 551.54 538.09 529.21 

2 579.02 619.09 621.09 583.6 585.89 

3 577.01 635.12 600.2 582.74 571.58 

4 547.53 606.21 580.45 568.59 539.52 

5 575.3 629.11 625.96 588.12 569.57 

Average (Low) 562.99 610.85 595.85 572.23 559.15 

Medium 

6 1007.2 994.9 971.15 951.97 937.08 

7 978.3 967.71 951.68 935.37 912.76 

8 1017.2 990.89 969.43 951.97 941.09 

9 1004.9 959.12 984.31 930.79 891.29 

10 963.99 955.4 935.37 899.59 877.84 

Average (Medium) 994.32 973.6 962.39 933.94 912.01 

High 

11 1447.7 1339.2 1363 1310.3 1310.3 

12 1416.2 1356.1 1325.2 1281 1310.3 

13 1425.7 1337.8 1325.2 1310.3 1262.1 

14 1424.8 1351.5 1332.1 1310.3 1285.1 

15 1448.6 1355.3 1354.4 1318.3 1336.7 

Average (High) 1432.6 1347.98 1339.98 1306.04 1300.9 

Average (Overall) 996.64 977.48 966.07 937.4 924.02 

 

 

Recall that DP yields better results than MIP when no production targets are imposed. On 

the contrary, MIP has better solution quality when we have production targets. At first 

glance, this seems counter intuitive. Therefore, we examine the effects of production 

targets on MIP solution quality in an effort to find the reason of this improvement. In 
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Figure 5.4, amount of scrap glass produced is shown for the two MIP versions with and 

without production targets (MIP vs MIP+COC). For the first 200 iterations, the two MIP 

versions produce almost the same solution quality. Since we enforce balanced production 

distribution, after 200 iterations, MIP+COC starts to sacrifice some more glass to keep the 

production homogeneous.  

 

 

 

Figure 5.4. Scrap glass amounts (m2) produced by two MIP versions (MIP vs. MIP+COC) 

over iterations on a problem with medium defect density (L = 9m) 

 

Similarly, as you can see in Figure 5.5, after the 466th iteration MIP+COC reaches a 

production target of a product. Thus, MIP+COC starts to produce solutions by using only 4 

different products which decreases solution quality. On the other hand, additional 

constraints and less number of available products create a significant advantage in terms of 

reduced problem size. In this new environment, MIP solves less complex problems in a 

smaller solution space. Therefore, the number of optimal solutions for MIP with 

production targets is relatively higher than MIP without production targets as shown in 

Figure 5.6. 
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Figure 5.5. Change in the number of available products in MIP+COC over iterations on a 

problem instance with medium defect density under 3 seconds time limit (L = 9m) 

 

 

 

Figure 5.6. Number of optimal solutions in MIP and MIP+COC over iterations on a 

problem instance with medium defect density under a 3 seconds time limit (L = 9m) 
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Figure 5.7 shows the change of optimal solution percentages over time. Percentage of 

optimal solutions of MIP without production target has a declining trend. On the other 

hand, MIP with production targets produces more optimal solutions after iteration 466. 

This improvement is expected because one of the products reaches its production target 

and the number of available products decreases. Therefore MIP+COC starts to solve 

simpler problems and produces more optimal solutions. 

 

 

 

Figure 5.7. Optimal solution percentages of MIP and MIP+COC over iterations on a 

problem instance with medium defect density under a 3 seconds time limit (L = 9m) 

 

We know that a high ratio of optimal solutions leads to better solution quality for the MIP 

model. MIP without production targets can only produce 20 per cent optimal solutions 

which is not enough to exceed the solution quality of DP. On the other hand, MIP with 

production targets produces 37 per cent optimal solutions which results in better solution 

quality than DP. This analysis suggests that the MIP version with production targets is 

capable of producing high quality results if sufficient CPU time can be allocated to solve 

the MIP model to optimality. 
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5.2.3. Computational Time 

Table 5.7 shows total time spent by the methods in seconds for solving a 1,200m problem. 

Although using production targets in the objective function improves solution quality, it 

has no significant time advantage for the MIP model. However one can see that limiting 

the number of configurations has a positive effect on the computational time requirement 

of the MIP+COC model since it reduces the problem size. Even if DP+CO is the fastest 

method for (𝐿 = 9m) SCP length, by this reduction, MIP+COC can produce better results 

than DP+CO by spending almost the same computational time in problems with high 

defect density. Unfortunately the CPU time requirements of MIP+COC is significantly 

higher than DP+CO for instances with low and medium defect densities. 

 

Table 5.7. Total solution times of solution methods for solving a 1,200m problem (in 

seconds) 

 

Defect 

Density 

Problem 

Instance 
GA+CO DP+CO MIP+C MIP+CO MIP+COC 

Low 

1 3004.31 653.28 2594.08 2620.27 2366.41 

2 2914.63 682.49 2561.51 2564.72 2425.35 

3 2962.12 650.08 2538.29 2932.12 2453.08 

4 3092.68 664.13 2557.95 2279.85 2423.70 

5 2989.09 675.80 2563.26 2654.51 2410.30 

Average (Low) 2992.57 665.16 2563.02 2610.29 2415.77 

Medium 

6 3290.66 1066.97 2385.35 2448.70 1908.87 

7 3226.92 1079.85 2362.34 2440.03 1929.35 

8 3371.39 1031.49 2435.32 2429.33 1931.36 

9 3205.75 1070.72 3353.44 2459.17 1987.29 

10 3180.09 1082.43 2391.40 2414.23 1932.55 

Average (Medium) 3254.96 1066.29 2585.57 2438.29 1937.88 

High 

11 3778.28 1425.09 1900.54 1767.39 1469.18 

12 3603.92 1423.72 1848.62 1948.27 1558.12 

13 3801.80 1428.83 1812.07 1771.02 1508.09 

14 3810.84 1413.37 1856.71 1879.80 1498.02 

15 3752.78 1478.98 1763.54 1779.62 1393.66 

Average (High) 3749.53 1434.00 1836.30 1829.22 1485.41 

Average (Overall) 3332.35 1055.15 2328.29 2292.60 1946.36 
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5.3. COMPUTATIONAL RESULTS OF THE ADAPTIVE ALGORITHM 

Previous experiments have shown that the performance of the 𝛼 value depends on the 

defect density and the distribution of product targets. These two factors may not be 

constant during the production process. Therefore defining the value of 𝛼 at the beginning 

of the production process and keeping it constant throughout the production process is not 

an effective way in that it ignores the changing conditions of the production line. This 

chapter presents the results of adaptive version of MIP where the value of 𝛼 is updated 

throughout the production.  

The aim of this experiment is to compare the solution quality of the adaptive algorithm 

with the solution qualities of the previous MIP versions and present its performance in 

comparison to others. Moreover, by this set of experiments, we try to find further options 

for improving solution quality of adaptive method by testing the parameters of the 

algorithm such as time limit and step size. Initial 𝛼 value and initial production targets are 

other factors that may affect the solution quality. These factors are also tested in this 

section. 

5.3.1. Experimental Design 

Before testing the adaptive version of MIP, we have examined the effect of the update 

cycle length (4𝑘) on 𝛼 decisions. In Figure 5.8, the x-axis shows the value of 𝑘 and y-axis 

shows the number of 𝛼 updates. The red line shows the maximum number of possible 𝛼 

updates in the entire production run. For instance, when 𝑘 = 13, there is a potential 𝛼 

update in each update cycle of 4𝑘 = 52 iterations and the online algorithm completes the 

whole production in 1355 iterations. Therefore there are 26 cycles. Since there is no update 

in the first cycle, the number of potential updates is 25. The blue line in Figure 5.8 shows 

the number of successful updates. Since we know that the best value of 𝛼 for this instance 

is 88,000 from previous experiments, we evaluate each 𝛼 update that brings it closer to 

88,000 receives a + 1 point, updates in the other direction receive a - 1. For instance, at 𝑘 = 

13, there are exactly the same number of correct 𝛼 update decisions as the incorrect ones. 

Thus, the score is 0 even if there are 25 potential updates. On the other hand, at 𝑘 = 55, 

there are 5 potential updates all of which are correct. This study shows that 𝑘 values less 
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than 33 produce unstable results. On the other hand, 𝑘 values higher than 50 generally does 

not make a decision of incorrect updates. The disadvantage of high 𝑘 values is that there is 

a limited number of update chances, therefore update speed is relatively slow. In our 

experiments, we use the setting 𝑘 = 33 where we observe the highest number of successful 

update in our initial experiments. 

 

 

 

Figure 5.8. Comparison of successful α updates with potential α updates for various k 

values on a problem instance with medium defect density under a 3 seconds time limit 

(L = 9m) 

 

All experiments are performed on a personal computer that has limited CPU performance 

comparing with industrial hardware. Operations which can be completed in 3 seconds with 

industrial hardware will take more time on a personal computer. This difference leads us to 

test the effects of time limit over the solution quality of the adaptive algorithm. Figure 5.9 

shows scrap glass area in m2 vs. time limit in seconds. When we inspect the solutions 

presented here, the performance with a 6 seconds limit appears satisfying in terms of 

solution quality. Moreover it is safe to assume that a computer twice as fast as the one used 
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here will be available in an industrial application. Thus, a time limit of 6 seconds is used in 

our remaining experiments. 

 

 

 

Figure 5.9. Total scrap glass area (m2) produced by adaptive algorithm under different time 

limits on a problem instance with medium defect density (L = 9m) 

 

Step size (𝜀) defines how fast the algorithm can update the 𝛼 values. Larger step sizes 

improve solution quality faster, however precision of the 𝛼 value is low. On the other 

hand, with smaller step sizes the solution quality improves slowly but the precision of the 

obtained 𝛼 value is higher. Thus, one cannot conclude that smaller or larger step sizes are 

better. In our previous preliminary experiments, we used 10,000 as step size, but in this 

section we further tested this value to obtain better solution quality. Figure 5.10 shows the 

change in scrap glass area by step size increases. Since the best solution quality is obtained 

when step size equals to 8,000, this value is used in latter experiments. 
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Figure 5.10. Total scrap glass area (m2) produced by the adaptive algorithm under different 

step sizes on a problem instance with medium defect density (L = 9m) 

 

The adaptive algorithm requires more data for better estimations. Moreover, it may take 

longer to reach an 𝛼 range where the algorithm starts to produce better solution quality. 

Therefore, unlike the previous experiments, the length of the glass sheet for the problem 

instances in this section is set at 6,000m instead of 1,200m in the experimental design of 

the adaptive algorithm. The effect of configuration limit on MIP versions has already been 

tested in the previous experiments. Therefore, a configuration limit of 75, which produced 

good results for the earlier runs is used for all adaptive versions of the algorithm where 

MIP is used to solve the underlying static problem. 

The main motivation for the adaptive algorithm is to provide an efficient production 

process by balancing the production according to production targets in order to prevent an 

early completion of any product. In our preliminary adaptive experiments, we started with 

the same production targets for all of the products. We expected that the adaptive 

algorithm to try to protect the initial balance along the whole production process. However, 

assigning the same production targets to all of the products is not a realistic approach. 

Therefore, to create a more realistic experiment and better observe the adaptive capability 

of the online algorithm, we start with random production targets for each product type for 

the problem instances in this section. In these experiments, we expect to see more 

production of products with higher production targets in order to prevent early completion 
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of others. Table 5.8 shows the production targets of products used in adaptive algorithm 

experiments. For each problem instance, production targets of products are shown in the 

columns of the table.  

 

Table 5.8. Initial production targets of products used in the adaptive algorithm experiments 

 

Defect 

Density 

Problem 

Instance 

Production Targets of Products 

1 2 3 4 5 

Low 

1 1581 2783 628 2290 1656 

2 3904 1080 1444 2206 727 

3 1684 1274 1465 2360 1454 

4 1972 2510 736 2104 1644 

5 3768 2201 618 1407 1675 

Medium 

6 1376 1449 1275 1394 1549 

7 3428 2193 690 1011 1177 

8 1609 2612 1099 1446 870 

9 2431 1645 590 1731 1637 

10 2166 2655 957 1594 685 

High 

11 2555 919 635 1057 1634 

12 3718 1722 640 952 645 

13 1543 1384 1026 1122 1210 

14 3193 1152 414 2185 737 

15 3363 1260 741 1215 801 

 

 

In the previous experiments, we observed that the most efficient values of 𝛼 were 88,000 

and 100,000 for the MIP model with fixed 𝛼. When the adaptive algorithm starts with 𝛼 =

0, it spends some time to reach the reasonable 𝛼 values. Therefore, it produces more scrap 

glass during this period. If the algorithm starts with another 𝛼 value, let’s say 90,000, it can 

find the efficient 𝛼 values within a short time and does not produce unnecessary scrap 

glass. In order to test the effects of initial 𝛼 value, we repeated the experiments with two 

different initial 𝛼 values, 0 and 90,000. 

5.3.2. Solution Quality 

Our first adaptive experiments are conducted to observe the changes in 𝛼 and determine 

the parameters that affect the solution quality of the algorithm. We started with a 3 seconds 
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time limit and a step size of 10,000. These parameters are tested and updated in 

experimental design, but the initial results are also included in this section in order to 

present the evolution of the study. 

 

 

 

Figure 5.11. Change in the value of α during the production process on a problem instance 

with medium defect density under a 3 second time limit 

(k = 33, stepsize = 10,000, L = 9m) 

 

Figure 5.11 shows that, value of 𝛼 is continuously updated according changing conditions. 

Update of 𝛼 values are affected by two main factors: production targets of the products and 

the defect density of the glass sheet. Figure 5.12 and Figure 5.13 show the 𝛼 updates 

performed by the adaptive algorithm on problem instances with low and high defect 

densities respectively. One can see that the algorithm adapts itself with various update 

decisions by considering the existing circumstances. 
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Figure 5.12. Change in the value of α during the production process on a problem instance 

with low defect density under a 3 second time limit (k = 33, stepsize = 10,000, L = 9m) 

 

 

 

Figure 5.13. Change in the value of α during the production process on a problem instance 

with high defect density under a 3 second time limit (k = 33, stepsize = 10,000, L = 9m) 
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The preliminary results which are presented above show us the parameters that affect the 

algorithm and lead us to design the main experiments of this section. The results of this 

experiment in terms of solution quality are summarized in Table 5.9. This table shows the 

solution qualities of the adaptive model where 𝛼 is updated continuously and the 

MIP+COC version that is run using a fixed 𝛼 value. There are two columns for both 

models. The only difference between these columns is the 𝛼 values used to initialize the 

run: first column shows the results with an initial 𝛼 = 0 and second one shows with initial 

𝛼 = 90,000. All values are scrap glass amounts in m2. 

 

Table 5.9. Solution qualities of MIP+COC and the adaptive algorithm on problem 

instances with a glass sheet length of 6,000m under a 6 seconds time limit 

(k = 33, stepsize = 10,000, L = 9m) 

 

Defect 

Density 

Problem 

Instance 

MIP + COC Adaptive 

α = 0 α = 90000 α = 0 α = 90000 

Low 

1 3455.20 3446.60 3290.90 3282.71 

2 3530.50 3268.30 3133.70 2900.97 

3 2969.20 2940.30 2933.70 2905.15 

4 3359.10 3287.80 3254.30 3185.22 

5 3639.30 3465.20 3303.60 3145.56 

Average (Low) 3390.66 3281.64 3183.24 3083.92 

Medium 

6 4437.20 4772.10 4718.90 5075.06 

7 5728.10 5572.40 5545.00 5394.28 

8 4528.70 4923.60 4931.60 5361.63 

9 5298.80 5186.60 5225.50 5114.85 

10 5172.90 4934.20 4993.10 4762.70 

Average (Medium) 5033.14 5077.78 5082.82 5141.70 

High 

11 7347.90 7306.70 7312.40 7271.40 

12 7928.60 7856.50 7838.20 7766.92 

13 6824.70 6728.50 6725.10 6630.30 

14 7768.90 7648.70 7714.00 7594.65 

15 7717.40 7663.60 7653.30 7599.95 

Average (High) 7517.50 7440.80 7448.60 7372.64 

Average (Overall) 5313.77 5266.74 5238.22 5199.42 

 

 

Table 5.9 indicates that the adaptive algorithm provides an average of 1.5 per cent 

improvement compared to the version with fixed 𝛼 when the initial 𝛼 values are 0 in both 
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versions. The adaptive algorithm updates the value of 𝛼 continuously along the production 

process to reduce the scrap glass area. However, it takes some time to reach reasonable 𝛼 

values. During this interval, the adaptive algorithm produces some more scrap glass than 

necessary. Therefore, in order to observe the potential of adaptive version, we repeated the 

same experiment with initial 𝛼 = 90,000 which is a more appropriate value based on our 

previous findings. As shown in Table 5.9, choosing a good initial 𝛼 value has a positive 

effect on solution quality. By eliminating the time spent using inappropriate 𝛼 values, it is 

possible to improve the solution quality by almost another 1 per cent. 

Figure 5.14 and Figure 5.15 show the change in the value of 𝛼 during the production 

process when it is initialized at 𝛼 = 0 and 𝛼 = 90,000 respectively. In the experiments of 

the MIP version with fixed 𝛼, we observed that the most efficient values of 𝛼 change 

between 88,000 and 100,000 depending on the defect density. Therefore, when initialized 

at 𝛼 = 0, the adaptive algorithm increases the 𝛼 value to obtain better solution quality as 

shown in Figure 5.14. It completes the production with a final 𝛼 value of 24,000 on the 

average. On the other hand, when initial 𝛼 = 90,000, which is an efficient value, the 

adaptive model tries to preserve this value during the production. Even if there are small 

changes in the 𝛼 value, adaptive algorithm completes the production with a final 𝛼 of 

92,333.33 on the average which is close to the initial value of 𝛼. 

 

 

Figure 5.14. Change in the value of α during the production process when initial α = 0 
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Figure 5.15. Change in the value of α during the production process when initial 

α = 90,000 

5.3.3. Computational Time 

The only difference between the MIP versions in this experiment is the value of 𝛼 which is 

a coefficient in objective function. Therefore, we do not observe significant computational 

time difference among the algorithm versions. In Table 5.10, computational times are 

listed in seconds. On the other hand, we observe that computational times depend on defect 

densities. Low defect densities require more time since the number of possible 

configurations is high. On the contrary, less computational time is required due to the 

limited solution space when defect density is high. 
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Table 5.10. Computational times of MIP+COC and adaptive algorithm in seconds on 

problem instances with length 6,000m under a 6 seconds time limit 

(k = 33, stepsize = 8,000, L = 9m) 

 

Defect 

Density 

Problem 

Instance 

MIP + COC Adaptive 

α = 0 α = 90000 α = 0 α = 90000 

Average # of iterations 3795 3810 3859 3851 

Low 

1 58511.07 59127.26 57856.06 58465.36 

2 58279.25 60489.68 55954.16 58076.41 

3 59069.55 59594.09 58309.32 58827.11 

4 60068.83 60635.52 59169.33 59727.54 

5 57441.78 58311.22 55607.75 56449.43 

Average (Low) 58674.10 59631.55 57379.33 58309.17 

Medium 

6 44912.46 55058.77 51055.29 62589.34 

7 51949.08 50730.70 49312.66 48156.11 

8 46383.36 54609.57 49002.10 57692.75 

9 56437.34 56318.06 51687.03 51577.79 

10 53622.35 56585.51 51001.61 53819.95 

Average (Medium) 50660.92 54660.52 50411.74 54767.19 

High 

11 38751.81 38475.47 37302.44 37036.43 

12 39374.86 40150.83 39102.18 39872.78 

13 41067.72 41771.58 39135.93 39806.68 

14 41899.31 41921.64 40486.58 40508.16 

15 40445.28 39668.26 39101.57 38350.37 

Average (High) 40307.80 40397.56 39025.74 39114.88 

Average (Overall) 49880.94 51563.21 48938.93 50730.41 

 

5.4. OVERVIEW OF COMPUTATIONAL RESULTS 

One of the primary goals of the study was to test the CBF rule, which is often used in the 

industry. For this reason we have designed our experiments with two methods that use the 

CBF rule (GA and DP) and another one that does not use this rule (MIP). In terms of 

solution quality, the MIP model is the best-performing method among the three, which 

clearly shows that the CBF rule produces suboptimal solutions despite its prevalence in the 

glass industry.  

Under the CBF rule, we compare the solution qualities of our solution methods with the 

solution quality of EE. We observed that GA and DP yield significantly better quality 
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solutions than EE. The improvements of GA and DP are 18 per cent and 25 per cent on the 

average respectively.  

When we compare the two methods that use the CBF rule, we observe that DP produces a 

higher solution quality than GA. However, the time required to produce the solutions of 

DP varies considerably depending on the underlying SCP lengths (𝐿). In addition, we 

cannot impose a time limit on DP. These two factors pose a risk that DP cannot produce 

solutions within the allowed time when higher SCP lengths such as 12m are used. For this 

reason, the practical use of DP is more likely to be with conservative SCP lengths such as 6 

or 9m. On the other hand, although GA produces lower solution quality than DP, it 

guarantees to provide feasible solutions within the allowed time. Hence, we can say that 

GA has the practical usage for any SCP length. However, the solution quality of GA 

deteriorates as the SCP length increases. To summarize, when the CBF rule is used, it is 

recommended to use DP as long as it does not pose the risk of not terminating within 

allowed time, and to use GA if this risk exists. In the production environment, one way to 

eliminate the risk of DP not terminating in the allowed time is to run the GA version in 

parallel to DP as a back-up so that the GA solution is used whenever DP fails to terminate 

in time. 

If we remove the CBF rule, we face a more complicated problem in the form of a MIP 

model. As expected, we need more time to solve this complex problem. However, whether 

we use the CBF rule or not, we have to solve the problem within the same time limit. The 

best choice is always to use the optimal solution if we can find it within the time limit. If 

not, we can use the best feasible solution we have so far. If the model does not even 

produce a feasible solution, we have to use a fall-back heuristic. Using this three-step-

methodology, we can guarantee to reach a solution in the allowed time. Our computational 

results indicate that the solution quality depends which of these three solutions we use 

predominantly. We observe high quality solutions when the model produces mostly 

optimal solutions, but the solution quality is be relatively poor in cases where the model 

often resorts to the fall-back heuristic. In an effort to increase the percentage of optimal 

solutions produced by MIP, we propose to reduce the complexity of the problem by 

limiting the total number of configurations. We achieve this by removing some 

configurations present in the model that have a relatively limited effect on the cutting 

decision because they are in the last part of the SCP length and will be re-evaluated in the 
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next iterations. The computational results demonstrate that reducing the number of 

configurations did not lead to a significant improvement in problems where the SCP length 

is set at 6m. SCPs with 𝐿 = 6m, which is a relatively short length, are simple enough to 

produce an optimal solution within the allowed time. However, since the SCPs with 9m 

and 12m lengths are more complex, the limiting the number of configurations has a 

positive effect on the result for these settings. With this modification, we were able to 

record an average improvement of 7 per cent in the MIP model. However, DP still has a 

solution quality which is 3 per cent higher than MIP model despite the improvement in the 

MIP solutions. 

Production targets are an important consideration for all of the solution methods so that 

they can be used in real life settings. When we incorporate production targets into the 

online algorithm only as constraints, we observe that some products are produced more 

frequently than others and reach their production targets much sooner. In the later stages of 

production, this situation reduces the number of products to choose from, which results in 

more scrap glass. Therefore we added a term for production balancing into the objective 

function that penalizes high differences in achievement of production targets among 

products. Using a properly determined objective function coefficient for production 

balancing provides 3 per cent additional improvement in solution quality. When this 

adaptive algorithm is used with a MIP model that has a limited number of configurations, 

we were able to improve the solution quality further by another 1.5 per cent. When we 

compare the three methods under production targets, it is observed that the MIP model 

yields an average of 7.5 per cent better solution quality than GA and 5.5 per cent than DP. 

In an effort to create an adaptive method that updating the value of 𝛼 based on the current 

conditions of the production line, we created an adaptive version of MIP and conducted 

experiments to find efficient parameters for this adaptive model. Based on initial 

experiments, we set the cycle length at 4𝑘 = 132 iterations (𝑘 = 33 iterations), CPU time 

limit at 6 seconds and step size at 8,000 and used a configuration limit of 75 as before. To 

better observe the adaptive behaviour of the algorithm, we used longer problem lengths 

(6,000m) and randomly set production targets for these experiments. The results of 

experiments showed that the adaptive model can provide an average of 1.5 per cent 

improvement in solution quality compared to the MIP+COC version where the value of 𝛼 

is constant during the production process. Moreover, starting with a good 𝛼 value provides 
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an additional 1 per cent improvement in solution quality. Overall, these results indicate that 

the adaptive method can generate slightly better results than the version with a fixed 𝛼 

value. Based on these results, we can conclude that the adaptive algorithm is capable of 

adjusting the value of 𝛼 to the conditions of the float line, which suggests that it can run 

autonomously without the intervention of a human operator.  
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6. EXTENSIONS AND FURTHER APPLICATION AREAS 

 

Both the online algorithm and the methods for solving the underlying static cutting 

problem proposed in this thesis can be generalized to solve many other cutting problems in 

the literature. However, as we will demonstrate with various examples in this section, these 

problems should have a structure that can be transformed to the one investigated here. In 

order to enable this transformation, the original problem should have the following 

features: 

 It should be possible to reduce the original problem to a one-dimensional one.  

In the glass cutting problem, this is achieved by having a limited number of cutting wheels 

whose positions are known and fixed during the production run and all cuts being limited 

to guillotine cuts. In order to use the GA, DP and MIP based solution methods proposed 

here, one should either have a one-dimensional problem in its original form or should be 

able to limit the number of possible cutting configurations along the second dimension to 

reduce it to one dimension.  

 All products are defined and their sizes are known in advance. 

This allows us to create the set of possible configurations and reduce the problem to one 

dimension. This can be done as a preprocessing step at the beginning of the production run 

so that the configuration set is known in advance. In fact, even when product definitions 

and sizes are subject to change, it is sufficient to have the up to date information for the 

products to be cut in the next static cutting problem. 

One should also note that the algorithm proposed in this thesis works on an online problem 

where the stock can be assumed to be of infinite length. However, the problem is solved by 

decomposing the problem into overlapping cutting problems of fixed length. Therefore the 

same approach would be valid for online problems where individual stocks of fixed size 

problems are cut into products in an online fashion. In fact, our solution approach does not 

require that each static cutting problem is solved over a fixed stock size 𝐿. Therefore the 

same approach can be used when the problem involves variable stock size. To summarize, 

the approach proposed here is quite flexible and can be applied to many cutting problems 

of an online nature. 
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In this section, the reader can find how similar cutting problems can be solved by the 

methodology proposed in this thesis. To demonstrate the limitations of our approach, we 

also include some other problems where our methodology cannot be used to produce a 

solution. 

6.1. CUTTING OF PAPER ROLLS WITH DEFECTS 

[6] studies on a cutting problem from the paper industry. In this problem, a defective paper 

roll is slit to appropriate widths by paper mills, however defective area cannot be used and 

should be removed from the paper roll (see Figure 6.1). 

 

 

 

Figure 6.1. Cutting paper roll where there is a rectangular defect [6] 

 

This problem can be converted to our problem by minor modifications. First, we have to 

define one configuration for all available paper widths. Second, all defective areas are 

assumed to be filled with point defects of highest defect class which are not accepted in 

any of the configurations. Third, the width of the paper roll is assigned as our static 

problem length. Since the problem is not continuous, it will be enough to solve it once as a 

static problem (see Figure 6.2). 
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Figure 6.2. Transformation of the paper cutting problem 

6.2. CROSSCUT OPTIMIZATION OF WOODEN BOARDS 

[32] applies a dynamic programming method to a cutting problem that arises in the wood 

industry. In this problem, window parts with different sizes are cut from a wooden stock. 

All product sizes are known in advance. Similar to our problem, there are different defect 

types and window parts that have different quality requirements as shown in Figure 6.3. On 

the other hand, each window part can be placed at different rotations. The objective is 

maximizing the total value of products. 
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Figure 6.3. Defects on wooden stock (top), defect types allowed for each quality class A – 

E with corresponding defect tolerances (bottom) [32] 

 

The problem can be solved using our algorithm as a single static problem since all of our 

methods for solving SCP (GA, DP, MIP) are designed to handle problems with different 

defect types and products of various quality classes.  

Problem is a three dimensional problem, therefore the first step is transforming it to one 

dimensional problem. Each side of wooden stock can be represented as a strip on a two 

dimensional plane as shown in Figure 6.4. 
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Figure 6.4. Transformation of wooden stock [32] 

 

Similarly, each side of a product should be represented as a strip on the same plane. This 

transformation forms a two dimensional problem which corresponds to the original one. 

Here, the important point is defining all of the possible rotations of window parts as a 

unique configuration. In Figure 6.5, strip A can be used for the front surface of the shown 

product. However, it is also possible to rotate the product to cut its front surface from strip 

D if there is a critical defect on strip A. Therefore, all of the four cutting rotations should 

be defined as separate configurations. In others words, each product can be represented by 

multiple configurations in our model to reduce the problem to one dimension. 
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Figure 6.5. Transformation of products to configurations 

6.3. CROSSCUT OPTIMIZATION IN A WOOD PROCESSING MILL 

Another wood cutting problem is solved using dynamic programming by Fathi and Kainfar 

[9]. The problem arises in the lumber industry where cubic blocks with predefined 

dimensions and surface characteristics are cut from a wood stock. The problem is three 

dimensional and defects can be seen on each side of the stock. Each product has a quality 

requirement and can be cut by using different orientations as shown in Figure 6.6. The 

problem is different from the one explained in Section 6.2 in term of stock shapes and the 

orientation options. The crosscut area of the problem has a rectangular shape whereas the 

one in Section 6.2 has a square crosscut area. 
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Figure 6.6. Cutting options (O1, O2, O3, O4) for different orientations [9] 

 

First we have to transform the problem to one dimension. By treating each surface of the 

stock as a parallel strip on the two dimensional plane, the problem can be transformed into 

two dimension. This plane is the stock of our static problem. Similarly, we have to 

transform all of the products to a two dimensional plane with all of the possible orientation 

variations. Each variation corresponds to a configuration in the model, so one product is 

represented by more than one configuration. This representation provides another 

dimension reduction and creates a one-dimensional problem which is similar to ours. Since 

the width of all configurations are the same as the width of the stock in the final model 

(which is equal to the circumference of three dimensional stock), we can use our solution 

methodology (see Figure 6.7).  
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Figure 6.7. Transformed wood cutting problem 

6.4. ROLLER BLIND PRODUCTION 

[23] studies a cutting stock problem in roller blind production. Although there are no 

defect types or quality classes in this problem, the problem structure is similar to ours. 

They work on a continuous problem with two-stage guillotine cuts and rectangular 

products. However, after the online cutting is completed additional cuts are applied in an 

offline fashion to produce final products. In the offline cutting process, products can be 

placed such that defects on the stock is avoided. Although this detail increases the number 

of possible configurations significantly, the problem can be solved using our approach. 

 

 

 

Figure 6.8. A feasible configuration that can be cut in two stages [23] 

 

Figure 6.8 shows a feasible configuration. In the second cutting stage, the configuration is 

cut into products A, B and C by sacrificing some material. The value of the configuration 
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is set as the total value of the nondefective products minus the value of discarded area. The 

second cutting stage allows various cutting orientations for a configuration, some of which 

are shown in Figure 6.9. It is possible to shift the products within the available area of 

configuration so that the model can avoid any defect on products. In Figure 6.9, defects are 

represented as circles. Depending on the defect location, any orientation of the 

configuration can be used to gain advantage. However, this necessitates all orientations to 

be defined as separate configurations in the model, which increases the problem size 

significantly. 

 

 

 

Figure 6.9. Different orientations of a feasible configuration 

6.5. BUN SPLITTING 

In [8], Glass and Oostrum study a defective cutting stock problem in cake manufacturing. 

A set of buns are baked in a fixed-sized rectangular tray and then cut into smaller pieces 

consisting of multiple buns by guillotine cuts for packaging. Figure 6.10 and Figure 6.11 

display two alternative cutting schemes for cutting a tray of size 9 x 6 into packages of size 

3 x 2. 

 



90 
 

 

 

 

Figure 6.10. Bun splitting (one of the basic cutting schemes) [8] 
 

 

 

Figure 6.11. Bun splitting (another basic cutting scheme) [8] 
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However some of the buns are burnt or misformed during the baking process. (To simplify 

the problem, the authors assume that there can be only one burnt cake on a tray.) These 

buns are considered as defective and should be thrown away after the splitting stage. 

Therefore, a second cutting operation is needed after splitting to remove the defective bun 

as shown in Figure 6.12. In this figure, two 2 x 3 packages with a single defective bun are 

displayed. Secondary cuts are applied to each 2 x 3 package to create a different set of 

smaller pieces: the first one results in one 4-bun piece and a 1-bun piece, whereas the 

second one creates two 2-bun pieces and a 1-bun piece. At the packaging stage, it is 

necessary to combine these smaller pieces into a 2 x 3 packages (For instance, a 4-bun 

piece can be combined with a 2-bun piece to form a package). Thus the problem has an 

online nature where the pieces that are to be cut should be decided based on a continuously 

changing set of small pieces (consisting of 1, 2, 3 or 4 buns) available for combining.  

 

 

 

Figure 6.12. Removal of burnt or misformed buns (sub-cutting schemes) [8] 

 

The problem is an online problem with the one studied in this paper. Our methodology can 

be applied to cake manufacturing with minor modifications. Moreover, using our 

methodology, we can solve a more general version of the problem in which there can be 

more than one burnt cake on a tray; which is much more realistic than the single defect per 

tray assumption in [8]. The authors of [8] also acknowledge that there may be more than 

one defective bun on a tray. Furthermore, since two (or more) burnt buns are likely to be 

close to each other, it is possible to have more than one burnt bun even on a 2 x 3 piece to 

be processed in the second stage. Using the algorithm proposed in this thesis, we can 

remove this assumption and generalize the problem to one with multiple defects. In order 

to solve the problem using our approach, we can assume that we solve each tray as a 

separate SCP during the online algorithm. We can reduce the two dimensional cutting 
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problem for each tray to a one dimensional one by defining configurations along the longer 

side of the rectangular tray (the x-axis). Each configuration defines a pattern consisting of 

(possibly partial) packages along the other axis (the y-axis). Depending on its position 

along the x-axis and the position of the defective bun(s) on the tray, each configuration has 

a value based on the type of pieces that can be cut from it. The algorithm can then find the 

best permutation of configurations that match the available pieces to form 2 x 3 packages. 

6.6. A DECAYED WOOD CUTTING PROBLEM WITH NON-GUILLOTINE 

CUTS 

[25] suggests a genetic algorithm for a problem from the wood industry. The problem is 

not a continuous problem and requires cutting stocks in order to produce products with 

various dimensions. No defect types or quality classes are used; all defective areas should 

be removed. Although the problem seems similar to ours, we cannot use our methodology 

to solve it. The reason is that we are using guillotine cuts in all of our solution methods, 

however cuts are not restricted to guillotine ones in this problem. Figure 6.13 shows a 

feasible solution for this problem where the shaded area represents a defective region. One 

can see that solution in Figure 6.13 cannot be produced by any method that uses only 

guillotine cuts. This prevents the problem from being reduced to one dimension, which is 

essential for our approach. 

 

 

 

Figure 6.13. A feasible solution for decayed wood board cutting problem [25] 
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6.7. A GENERIC TWO-DIMENSIONAL CUTTING PROBLEM WITH 

ARBITRARY CUT POSITIONS ALONG BOTH AXES 

[26] studies a two dimensional cutting problem that can be encountered in various 

industries. The problem is a static problem with unlimited product demands. All of the 

defective areas should be removed, hence no defect types or quality classes are defined. 

The authors suggest a dynamic programming based heuristic to solve the problem. Unlike 

our problem, it focuses on removal of defective areas as shown in Figure 6.14 and more 

importantly non-guillotine cuts are allowed in this removal process.  

  

 

 

Figure 6.14. Removal of defective regions [26] 

 

One of the main assumptions of our methodology is the fixed positions of the y-cutting 

wheels, which allow us to transform the problem from two dimensions to one dimension. 

In this problem, cutting decisions are possible on any point along both x and y axes. This 

flexibility creates infinitely many possible configurations, which prevents us from using 

our methodology. 

6.8. LOG BUCKING AND LUMBER MANUFACTURING 

The problem in [4] is a static cutting problem from the wood industry. Each product has 

specific dimensions and a quality class and value of a product depend on both of these two 

features. The objective is to maximize the total value of products produced by cutting the 

tree. The authors suggest a dynamic programming based method to solve the problem. 
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There are two important differences between our problem and the problem studied in their 

paper. First, their stocks are not rectangular as shown in Figure 6.15.  

 

 

 

Figure 6.15. Stocks used in log bucking and lumber manufacturing [4] 

 

Second, they have the option of cutting the tree at different angles (see Figure 6.16). These 

two differences prevent the problem from being reduced to a single dimension. Therefore 

our algorithm is not applicable to this problem. 

 

 

 

Figure 6.16. Two cutting options of the same stock with different cutting angles [4] 
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7. CONCLUSION AND FUTURE WORK 

 

In this thesis, we developed an algorithm for the online glass cutting problem that arises in 

flat glass production. Problem contains defect points of varying severity and product types 

with different quality classes. Glass sheet is cut horizontally and vertically with guillotine 

cuts to produce rectangular products. The goal of the problem is to place products on the 

glass sheet in order to minimize the total scrap glass area and maximize the total value of 

produced products. Since the problem is an online problem, computational time is the most 

significant restriction for making a cutting decision: the decision maker has just a few 

seconds to determine the next product to cut. 

We developed a solution algorithm that decomposes the online problem into a series of 

static cutting problems with a fixed length. In each iteration, the algorithm solves one static 

problem and implements only a small portion of it. This prevents the decision maker from 

making myopic decisions.  

In order to solve static problems in each iteration, two different approaches can be used. In 

the first approach where the scrap cuts are limited to CBF, we propose a genetic algorithm 

(GA) and a dynamic programming (DP) algorithm. On the other hand, when scrap cuts can 

be made at any arbitrary position, these two solution methods can no longer be used. For 

this version, we use a MIP model with a preprocessing algorithm and two heuristics, one 

for performance improvement and another as a fall-back back heuristic to be used in case 

the MIP does not yield a feasible solution. 

In the initial versions of all methods, production targets are assumed to be unlimited. 

However in practical usage, production targets are one of the main restrictions of a cutting 

problem. Therefore, we developed new versions of all methods in order to consider 

production targets. First, we included production targets into MIP model as constraints. 

Similarly, GA and DP methods accept the product as scrap glass if its production target has 

already been achieved. In our experiments, we noticed that early completion of any 

product reduces solution quality significantly in the latter parts of the glass sheet. Thus, in 

order to balance the production distribution according to production targets, we added a 

new term into the objective functions of all methods with a coefficient, 𝛼. 
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After we completed the experiments with the new versions, we observed that the suitable 

values of 𝛼 depend on the current defect density and the distribution of unfilled production 

targets. Both values change continuously during the production process. Therefore, using a 

fixed value for 𝛼 is not the best way to balance the production distribution. These results 

inspired us to create the final version of MIP, the adaptive algorithm. This adaptive 

algorithm solves the problem in parallel with two different 𝛼 values. The first 𝛼 value is 

the one currently used in production, and the second 𝛼 value is used for a parallel test run. 

If the second 𝛼 produces better results, then the algorithm updates the first 𝛼 with the 

second one. Otherwise, the first 𝛼 continues to be used in production and a new 𝛼 value is 

tested as a challenger. 

7.1. SUMMARY OF FINDINGS 

In this thesis, we developed an online cutting problem with defects that has practical 

significance for the glass industry. The algorithm also provides a general framework for 

online cutting problems that arise in other industries. Especially the static sub problem 

solved at each iteration of the algorithm is general enough to adapt to cutting problems 

with defects encountered in other industries. 

Our study starts with two methods for solving static problems, GA and DP methods, both 

of which use CBF rule. First results show that, both methods have better performance than 

EE, which is a common practice in the glass industry. Even if GA has better solution 

quality than DP in low defect density and 6m of static problem length, DP dominates GA 

in all other cases. On the other hand, computational time of DP highly depends on the 

defect density and the static problem length, but we cannot assign a time limitation to DP. 

This poses the risk of not producing a result within the allowed time limit. On the contrary, 

GA always produces a result within a given time interval. However, when the static 

problem length is high, solution quality reduces significantly. To sum up, under the CBF 

rule, we recommend using DP due to its superior solution quality but limiting the static 

problem length at a conservative value to minimize the risk of not terminating within the 

allowed time. Even though the risk is minimal, it is always advisable to have a back-up 

plan in case DP does not yield a solution in time. In fact, in a production environment it 
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would be a good idea to run GA as a back-up procedure in parallel with DP and the 

solutions generated by GA can be used whenever DP fails to terminate. 

In our studies, we questioned the optimality of the results obtained under the CBF rule. We 

have provided two counterexamples which prove suboptimality of the CBF rule. In both 

examples, we were able to find a better result than the one produced by DP. These cases 

prove that CBF rule provides suboptimal results rather than optimal solutions. These two 

counterexamples inspire us to create another algorithm that does not rely on the CBF rule. 

The MIP model which eliminates the CBF rule is used in conjunction with a fall-back 

heuristic so that it can guarantee to generate a solution within the allowed time. However 

using suboptimal solution reduces the solution quality. We showed that high optimal 

solution ratio can be achieved by reducing the problem size of MIP. By eliminating some 

of the noncritical configurations, we were able to reduce the problem size. Our 

experiments showed that 7 per cent improvement on average is possible when the number 

of configurations is limited.  

In the production environment, each product has a different demand and priority. During 

production, cutting decisions also depend on these parameters. At first, we used production 

targets as constraints in our algorithm. Then, we included them into the objective function 

with 𝛼 coefficient in order to balance the production distribution. Including production 

targets into the objective function provides 3 per cent improvement in all methods on the 

average. We also experimented with limiting the number of configurations in the MIP 

model in this new version and obtained an additional 4.4 per cent improvement in solution 

quality. When production targets are incorporated into the algorithm, we observed that the 

MIP model yields 7.5 and 5.5 per cent better results compared to GA and DP.  

In our final set of experiments, we have shown that balance production quantities of 

different products improves the solution quality. In order to provide a balanced production 

distribution, we used an additional term with 𝛼 coefficient in objective function. However, 

𝛼 value was a fixed number. We developed an adaptive algorithm that updates this 

coefficient during production so that the algorithm can adapt itself to changing conditions 

such as changes in defect density or a filling of production targets. Experiments showed 

that a 1.5 per cent improvement in solution quality is possible by using the adaptive 

algorithm compared to the fixed 𝛼 version. In addition, starting with a good initial 𝛼 value 
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improves the solution by 1 per cent more. The results indicate that the adaptive algorithm 

can be used without manual intervention to yield comparable and even superior results 

than the manually optimized 𝛼 values and demonstrate that it can be used autonomously 

without the need for an operator.  

As explained earlier, the scrap glass resulting from the production process is sent to recycle 

step and heated again to produce molten glass. This reheating process causes additional 

energy consumption. Moreover, the scanning and cutting processes are performed again, 

which further increases the production costs and reduces productivity. Therefore, reduction 

of scrap glass area is the top priority for float lines. In our conversations with em-glass, we 

were informed that even a 1 per cent improvement has a significant effect on profitability 

the profitability of a flat glass manufacturer. In this thesis, we have shown that more than 

30 per cent improvement can be achieved by using our adaptive algorithm instead of the 

explicit enumeration approach currently adopted in the industry. When implemented on a 

production line, this 30 per cent improvement has the potential to translate into 

considerable savings. 

7.2. CONTRIBUTIONS OF THIS THESIS 

In this thesis, we focused on a cutting problem that is solved in real time in float lines. 

Contributions of our thesis to the literature are summarized below: 

 New framework applicable to many online problems. 

The glass cutting problem studied in this thesis is an online problem. We transform it to 

many smaller static problems that are required to be solved within a limited time. 

However, we implement only a small portion of the solution in order to avoid myopic 

decisions. The remaining part of the solution is revaluated with new defect information to 

improve solution quality. This look-ahead approach is a new framework that can be used in 

different online problems that arise in various industries.  

 The problem is a unique problem in terms of different types of defects and various 

product quality classes.  
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There are various defect types on the glass sheet. In addition, there are different product 

quality classes. Each quality class is defined with upper limits of each defect types. 

Therefore, a product with a particular quality class is valuable only if all types of defects 

on the product are within the defined limits of that quality class. As a results, the value of a 

configuration depends on its location on the glass sheet. With all of these characteristics, 

the problem is a unique problem which has not been studied before. Consequently, our 

solution methodology does not simply address a simple defect removal process, instead we 

propose evaluation of all products according to their positions on the glass sheet and their 

quality classes.  

 Solution approach proposed in this study can be generalized to solve other cutting 

problems. 

The approach proposed here can be utilized for many other cutting problems where defects 

are present. Our study suggests a solution for a problem with multiple defects, which is a 

general form of the single defect problem. Moreover, the problems where defect removal is 

necessary can also be solved using our methods. If the definitions of quality classes are 

updated so that they accept zero defects, our algorithms can be used to create solutions that 

completely avoid placing products on the defective area. In Chapter 6, we demonstrate that 

other problems where the stock contains continuous regions of various quality levels or 

problems in which products can be rotated to avoid defects can also be addressed with the 

methods described in this thesis. Therefore, although we focus on a specific cutting 

problem from the glass industry, our approach is flexible enough to be utilized in the 

solution of many other cutting problems with defects.  

 An adaptive algorithm which updates itself in real time is proposed. 

In online problems with defects, production is a continuous process. In general, defects do 

not have a particular pattern and their distribution is not homogenous. Therefore, algorithm 

can face with various defect densities during the production. Similarly, production targets 

depend on market conditions and customer demands. These changing parameters affect the 

performance of the algorithm and the solution quality. In current float lines, production 

targets and product priorities are entered into the system manually by operators in real 

time. The adaptive model has the ability to update itself according to conditions, therefore 

it eliminates the need for human intervention. The novel update mechanism developed in 
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this thesis has the potential to be implemented in other online problem settings with 

changing conditions.  

 The adaptive algorithm can be used for other online multi-objective problems. 

The adaptive algorithm proposed in this thesis is designed for a problem with two 

objectives. The algorithm tries to reduce scrap the glass amount and keeps the production 

balanced at the same time. In order to adapt to changing conditions, the model 

continuously checks the weight of the objective function term (𝛼) and updates it as 

necessary. Updating the weight of production balancing is just one application area of this 

approach. In general, the model can be used to control and update the weights of an 

objective function term in any online multi-objective problem. From this perspective, we 

can view the model as a machine learning tool which observes changing conditions and 

creates efficient patterns for them in order to increase solution quality. 

 CBF rule produces suboptimal results.  

GA and DP methods solve the SCP under the CBF rule, which is widely believed to 

produce superior solution quality in the glass cutting industry. In our MIP model, we 

removed this rule and had the opportunity to test the optimality of the CBF rule. Using 

counter examples, we were able to demonstrate the suboptimality of this rule. Moreover, 

the results of our computational experiments showed us that the CBF rule increases the 

amount of scrap produced and causes considerable reduction in solution quality. 

7.3. SUGGESTIONS FOR FUTURE WORK 

In our study, we noticed that similar cutting applications are used in different industries 

such as paper, textile, metal, lumber, furniture and LCD. The look-ahead approach of our 

methodology can be adapted to other online cutting problems with defects from these 

industries. Moreover, as explained in Section 7.2, our approach for solving the static 

problem is a general solution methodology that can be implemented for various cutting 

problems. Therefore, these algorithms can be adapted to other static cutting problems with 

defects. 
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In this study we focus on glass cutting problems and generalize our solution to other 

cutting applications in different industries. However, the novel update mechanism used in 

our adaptive algorithm is quite general and does not have any context specific features. 

Therefore this approach can be used in other areas where an adaptive behaviour is desired. 

For instance, online job scheduling problems where scheduling of jobs have to be done 

according to the changing priorities of the production environment can be a new 

application area. 

Our adaptive algorithm analyses the current data and learns how to update the parameters 

in order to improve solution quality. To achieve this, it estimates the future results by 

interpreting the results that have already been produced. With these features, our adaptive 

approach can also be viewed as a machine learning algorithm. This adaptive approach can 

be used in any online setting as a machine learning tool that learns the good parameter 

settings while solving the problem. In particular, our approach provides an effective 

mechanism that allows the algorithm to set the relative weights of two objectives of a 

multi-objective problem. In future studies, the adaptive algorithm can be used to solve 

other online multi-objective problems to update the weights of the objective function terms 

continuously according to changing conditions. This new approach can be implemented for 

many other online multi-objective problems to automate the solution process and eliminate 

manual intervention. 
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