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ABSTRACT 

 

 

DEVELOPMENT OF SERS-BASED METHODS FOR EARLY CANCER 

DETECTION 

 

The applicability of SERS in early cancer detection by means of differentiating cancerous 

tissue from healthy tissues was systematically investigated by employing three different 

sample preparation strategies. In the first approach, a 5-µm thick cryosectioned tissue 

specimen was placed on a PDMS layer coated glass slide before adding a volume of 20-µl 

16× concentrated AgNPs containing colloidal suspension onto the tissue. Then, the colloidal 

suspension was dried at the suspended position to achieve optimal distribution of the AgNPs 

in the droplet area. In the second approach, in situ synthesis of AgNPs in the homogenized 

tissue sample was aimed. A 10-µl from each of 4.36x10-1 M AgNO3, 3.55x10-2 M 

HONH2·HCl and 3x10-2 M NaOH was successively added into the 10-µl of homogenized 

tissue suspension to reduce Ag+ ions into AgNPs in the homogenized tissue. Then, a 2µl of 

this mixture was placed onto a CaF2 slide and dried before the SERS measurements. The 

first approach was optimized through parameters including substrate used to place tissue 

specimen (PDMS, Al-foil or CaF2), signal collection type (random selection versus 

mapping), spectral range and acquired-mapping size while the latter approach optimized 

through the acquisition type and concentrations of AgNO3, HONH2·HCl and NaOH 

solutions. Then, the data acquired with each sampling method was analyzed with PC-LDA 

classification models and the coefficients by comparing intra- and inter-method 

reproducibility, accuracy, and SERS performance indicators of spectral richness and SNR. 

Finally, the data acquired from these two methods were compared with our previously 

developed approach of Crashed-liquefied consisting of mixing a 5-µl 32× concentrated 

colloidal AgNP suspension with homogenized tissue sample by utilizing human thyroid 

biopsies (n=64). The results showed that in situ approach indicated a higher classification 

accuracy compared to other approaches for malignant vs. healthy tissue and benign vs. 

healthy tissue diagnostic combinations by using full spectra region of spectra while the best 

classification performance for benign vs. malignant tumors was obtained by using 

Cryosectioned-PDMS and Crashed-liquefied approaches. The findings of this study clearly 

indicate that SERS is a suitable technique to employ in cancer diagnosis.  
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ÖZET 

 

 

KANSERİN ERKEN TEŞHİSİ İÇİN YÜZEYCE ZENGİNLEŞTİRİLMİŞ RAMAN 

SAÇILMASINA DAYALI METOTLARIN GELİŞTİRİLMESİ 

 

Yüzeyde zenginleştirilmiş Raman saçılmasının (YZRS), kanserli ve sağlıklı dokuyu 

birbirinden ayırabilmesi sebebiyle erken kanser teşhisi için uygulanabilirliği, üç farklı 

örnekleme stratejisi geliştirerek sistematik bir şekilde keşfedildi. “Cryosectioned-PDMS” 

isimli ilk yaklaşımda, 16 X kat konsantre edilmiş kolloidal gümüş nanoparçacık (GNP) 

içeren solüsyondan 20-µl hacimce, PDMS ile kaplanmış bir cam slaytta üzerinde yer alan 5 

µm kalınlığındaki cryostat doku kesitinin üzerine eklenir. Sonra, kolloidal suspansiyon, 

damla yüzeyinde optimal bir GNP dağılımı elde edebilmek için, asılı pozisyonda kurutulur. 

“in situ” olarak isimlendirilen ikinci yaklaşımda, GNP’lerin homojenize edilmiş doku 

içerisinde sentezlenmesi amaçlanır. Indirgeyici ajan olarak hacimce 10-µl 3.55x10-2 M 

HONH2·HCl, hacimce 10-µl of 3x10-3M NaOH solüsyonu ile birlikte, hacimce 10-µl doku 

süspansiyonun içerisine eklenmesinden sonra hacimce 10-µl 4.36x10-1 M gümüş nitrat 

çözeltisi de içerisine eklenir. Sonra, bu karışımdan hacimce 2-µl CaF2 slaydının üzerinde yer 

alarak, ölçüm öncesi kurutulmaya bırakılır. İlk yaklaşım, doku örneğinin yer alacağı yüzey 

(PDMS, Al folyo, CaF2), sinyal toplama türü (rastgele seçim, haritalama), spectral aralık, 

haritalanan yüzeyin büyüklüğü gibi parametreler yönünden optimize edilirken; in situ 

metotu, sinyal elde türü ve AgNO3, HONH2·HCl ile NaOH solüsyonlarının konsantrasyon 

optimizasyonlarını içerir. Sonra, her bir metot, parametrelerin değişkenlik katsayıları, metot 

içi ve metot arası tekrarlanabilirlik, doğruluk ve zengin YZRS sinyal paterni terimleri ve PC-

LDA sınıflandırma modelleri ile analiz edildi. Sonra, bu iki metot, hacimce 5-µl GNP 

suspansiyonun homojenize doku ile karıştırılmasını içeren bir önceki yaklaşımımız olan 

“Crashed-liquefied” ile, 64 adet insan tiroid biyopsileri kullanılarak karşılaştırıldı. Sonuçlar 

göstermiştir ki, YZRS datasının tam spectrum bölgesinin kullanılarak, kötü ve sağlıklı doku 

ile iyi huylu ve sağlıklı dokuyu ayırmada en iyi yöntem in situ iken, iyi huylu ve kötü huylu 

tümörleri en iyi ayıran ise Cryosectioned-PDMS ve Crashed-liquefied yöntemleridir. Bu 

çalışmanın bulguları, YZRS tekniğinin kanser tanısında kullanılabilir olduğunu 

göstermektedir. 
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1. INTRODUCTION 
 

1.1. KIDNEY CANCER  

Cancer is an abnormal growth of a cell, which is induced by genetics which regulates cell 

functions, especially growth and division. Genetic changes can occur either due to a person’s 

lifestyle or/and inheritance from parents. The environmental exposures such as chemicals, 

tobacco smoke and ultraviolet rays from the sun can damage the DNA of the healthy cells, 

which eventually leads to uncontrolled cell division. The main mutated genes in healthy cells 

that promote their differentiation into cancer cells are proto-oncogenes, tumor suppressor 

genes, and DNA repair genes [1]. The alterations in these genes are the main reasons for the 

unlimited proliferation and survival characteristics of cancer cells.  Although there are more 

than 100 different cancer types, the most commonly diagnosed types of cancer around the 

worldwide, especially in less developed regions, are lung, female breast, bowel, and prostate 

cancer. Lung, liver, stomach, and bowel are the types that are mostly implicated in cancer-

related deaths [2]. Some cancer cells such as leukemia grow in the blood circulation even 

though others grow in tissue. On the other hand, not every tissue differentiation is cancerous 

such as hyperplasia, but untreated benign tumors can eventually tend to form cancer. The 

untreated cancer cells can spread from the original site of the body using body’s bloodstream 

or lymph vessels to form new tumors in different organs. The spread of cancer cells into 

other tissues is referred as metastasis [1]. 

Kidney cancer is almost 2 per cent of all cancers worldwide, with its most common types 

being renal cell carcinoma (RCC) and transitional cell carcinoma (TCC). As the mortality 

rate due to kidney cancers increases by 2 per cent to 3 per cent per decade, about 210,000 

new cases are reported each year and over 100,000 patients die due to the disease [3]. Kidney 

cancer is diagnosed based on the information obtained from imaging techniques, biopsy 

examinations, and blood and urine testing. The imaging techniques including ultrasound, 

intravenous pyelogram, computed tomography (CT or CAT) scan, cystoscopy/ nephro-

ureteroscopy, and magnetic resonance imaging. The commonly used treatment approach for 

kidney cancer is surgery including radical nephrectomy, partial nephrectomy (PN), 

laparoscopic nephrectomy, and robotic-assisted laparoscopic nephrectomy. According to the 

American Joint Committee on Cancer (AJCC), the most common staging system for kidney 
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cancer is the association between tumor stage and tumor size as T1a ≤ 4 cm, T1b > 4 cm but 

≤7 cm, T2a > 7 cm but ≤ 10 cm, T2b > 10 cm [3]. Tumor size is related to the recurrence 

rate, the survival rate, and the choice of clinical treatment method [4, 5]. Several studies 

have shown that subdividing the T1 tumor stage into T1a and T1b stages is beneficial for a 

better estimation of the survival rate in patients with tumors in the size of 4 cm or less [6, 7]. 

The lower recurrence rate after the PN process for the tumors. 

1.2. THYROID CANCER  

Thyroid cancer is one of the cancer types having a rapid increase in the incidence especially 

in young people [8]. Focal thyroid lesions are one of the most mutual issues for 

endocrinologists and surgeons. The gold standard for identification and therapeutic process 

of thyroid lesions generally depends on the following methods, high-resolution 

ultrasonography (US), fine-needle aspiration cytology (FNAC) under US and surgery. The 

use of gold standard of pathological examination for the abnormal thyroid tissue in 7 percent  

to 16 percent of detected nodules are reported as malignant with a diagnostic sensitivity of 

83 to 98 per cent  and specificity of 70 to 92 per cent  in the literature [9, 10]. 

Papillary thyroid carcinoma (PTC) is the most common cancer type in the incidence of all 

thyroid cancer cases with a range of 70 to 80 per cent , follicular thyroid carcinoma (FTC) 

with an incidence rate of 15 to 20 per cent , medullary thyroid carcinoma (MTC) and 

anaplastic thyroid cancer that constitutes 5-10 per cent  and 2-5per cent  of thyroid cancer 

patients, respectively [11, 12]. Minimally invasive carcinomas are generally 

indistinguishable from benign adenomas in terms of their architectural and cytological 

properties.  The diagnosis of malignancy depends on capsular and/ or vascular invasion [13]. 

Thyroid cancer is generally first recognized by a lump or nodule in the thyroid gland.  FNAC 

can be inadequate to provide differential diagnosis for benign and malignant lesions. Delay 

in diagnosis, sampling error, high rate of false-negative results lead to delayed effective 

treatment protocol for the patients with a traumatic process [14]. A 7-gene panel of genetic 

mutations and rearrangements (BRAF, RAS, RET/PTC, PAX8/PPARγ) gives an 

information platform for decision-making of primary thyroid surgery evaluating molecular 

markers in patients. The sensitivity of the 7-gene mutational panel testing in indeterminate 

cytology thyroid nodules has been reported to vary from a range of 44 per cent to 100 per 
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cent [15-17]. Even though mutational testing has been suggested to provide optimal 

molecular malignancy detection for the cases of indeterminate cytology, it has been yet 

placed in the routine clinical protocol.  Alternative or supportive methods are crucial to 

reduce the cost of diagnosis, to gain time, and to increase the quality of diagnosis.  

1.3. CONVENTIONAL METHODS OF CANCER DIAGNOSIS AND THEIR 

DRAWBACKS  

The physician firstly evaluates the sematic symptoms of the patient with the imaging 

techniques such as ultrasound, computed tomography (CT or CAT) scan, mammograms, 

magnetic resonance imaging (MRI) and endoscopy with marker detection-based blood and 

urine tests. For instance, Flexible sigmoidoscopy, colonoscopy, Double-contrast barium 

enema, CT colonography, guaiac-based fecal occult blood test (gFOBT), fecal 

immunochemical test (FIT) and stool DNA test (sDNA) are the screening tests used in early 

detection of colon cancer [18]. Pap test and HPV test are used in early detection of cervical 

cancer [19]. Yearly endometrial biopsy sometimes is used for the person who has a genetic 

predisposition for early detection of endometrial (uterine) cancer. Prostate-specific antigen 

(PSA) test with or without a rectal exam may be successful to detect prostate cancer. 

Complete skin examination is another screening test used for early detection of skin cancer. 

There are a few more cancer screening tests and techniques such as bone marrow and bone 

scan that are more specific and related to certain cancer types. Although marker detection 

can be helpful in the early diagnosis of cancer cases supposing to increase the survival rate 

and decrease the cancer deaths but not all cancer types have related biomarkers, and some 

invasive screening tests can have harmful effects on patients such as bleeding, health 

problems, as well as false-negative and false-positive results [20]. However, screening tests 

and imaging techniques can provide background information about the size and location of 

cancer but they cannot provide information about the grading status of the lesions. The 

routine clinic application of the techniques varies among the countries related to their 

economic and socials status. The imaging and screening techniques are followed by a biopsy 

or complete surgical removing of the suspicious neoplasm “new growth” from the patient. 

Biopsy samples are diagnosed by a group of pathologists related to histological information 

of cells and extracellular matrixes under a microscope. For this, a series of steps of a gold 

standard approach of pathological examination protocol fixating, embedding, slicing and 
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staining were followed to examine tissue morphology, architecture and composition. 

Hematoxylin and Eosin (H&E) for nuclei and remaining cell components, Mason's 

Trichrome for nuclei, collagen and cytoplasm, Verhoeff and Van Gieson for elastin, 

Verhoeff and Van Gieson for calcification and Safranin-O for glycosaminoglycans are the 

common dyes used to stain and evaluate the pathology [21]. There are differences in 

histological grading systems depending on the parameters such as cell nucleus, size, 

uniformity, nuclear margin, chromatin, mitotic count..etc. Fisher’s modification of Black 

nuclear grading, Mouriquands’s grading, Robinson’s grading, P. Scarff-Bloom-Richardson 

(SBR) grading (mostly used one), a grading system proposed by Khan et al and another 

grading system proposed by Taniguchi et al. are the well-known developed grading systems 

using for cancer grading studies seem to be accurate having a key problem with different 

classification results using different grading systems on the same biopsy samples [22]. 

Fluorescence or chromogenic enzymatic reactions (immunofluorescence (IF), 

immunohistochemical (IHC) analysis are the biological assays used in pathology, which uses 

the tagged proteins and their localization on the sectioned tissues while in situ hybridization 

(ISH) defines specific gene expression. However, to overcome the main shortfall of 

biomarkers assays having low sensitivity, a specific biomarker group should be selected 

immediately because poor selection causes missing diagnosis with inadequate sensitive 

analysis of the tissue. Estrogen receptor (ER), progesterone receptor (PR), HER2, BRAF 

V600, cMET, IDH1, mutant, and MMR panel, are the global markers used for cancer 

diagnosis. For the IHC technique in use, one needs to know in advance which specific 

proteins are related to the type of cancer, which is a complex disease system that it cannot 

have a precise diagnosis only with the most accurate detection of a particular protein but it 

helps for preliminary prognosis of the tumor sample. IHC tests combined with histology-

based information and grading systems are the main parameter used by the pathologist 

finally to give a “predicted” diagnosis, which is still depends on the subjective decision of a 

group pathologist. The last predicted pathology report given by a group pathologist instead 

of a pathologist seems to increase the objectiveness of the diagnosis by decreasing the 

incorrect and non-diagnosis cases.  

Likewise, time consuming steps such as stabilization and preservation of the tissue using the 

routine pathology protocols have challenges underlying the effects of chemical processing, 
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which produce selective antigenic loss and nucleic acid fragmentation thereby reducing the 

likelihood of correct recognition of the biopsied tissue sample [23, 24]. 

Fixation with formaldehyde is a standard procedure used in clinics for long-term storage of 

biopsies to protect the morphological structure of the tissue to prevent the decay of the tissue 

components and to avoid the autolysis of cells. However, formaldehyde as being a biohazard 

for the laboratory affects the quality of DNA / RNA blocking retrieval from the block 

degrades the nuclear material and modifies the sequences, which decrease the applicialbity 

and reliability of molecular based detection tests  [23, 25-27].  

Paraffin-embedding is another conventional process used in routine pathology, which is 

applied after formalin fixation. Paraffin embedding is an advantage in that the tissue section 

taken from the fixation can be maintained for many years and the possibility of reaching the 

tissue sections when the pathologist wants to see, which means the re-diagnosis is possible. 

However, IHC techniques utilize tissue sections without paraffin-embedding which means 

the dewaxation process is employed on the tissue to remove the paraffin. However, whole 

paraffin never removed almost from the tissue structure with the main downside of 

distortions in the tissue components, and paraffin remnants which in turn can affect the 

correct recognition significantly leading to specific antigen loss. 

The main aim of tumor surgery is to maximize tumor removal nearby healthy tissue with a 

well-known criticism of having undifferentiated abnormal cell and tissue from healthy 

tissues. The surgeon that examines tumorous and healthy tissues to determine the tumor-

positive resection margins uses ocular observation. Pathologists that follow intraoperative 

pathological analysis use frozen section procedure, which is the examination of tissue while 

surgery is taking place. This process is time-consuming, requires highly skilled personnel, 

and the interpretation is often subjective [28]. Therefore, tumor tissues are not often removed 

from tumor margins efficiently, and the remaining tumor cells lead to recurrence by failing 

the treatment.  

These conventional methods need to be improved for early diagnosis of cancer, as they are 

not conclusive enough. There are several spectroscopy based advanced techniques have been 

studied to improve the sensitivity for tissue analysis, such as matrix-assisted laser 

desorption/ionization imaging mass spectrometry (MALDI IMS), fluorescence 

spectroscopy, infrared (IR) and Raman spectroscopy (RS), which are not counting on 
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specific antigens during the tissue analysis. A brief explanation with their promising usage 

in the clinics was given in the next section but the technical details with working principles 

can be found elsewhere [29-32]. 

1.4. ALTERNATIVE CANCER DIAGNOSIS APPROACHES 

There are a number of recent reviews about the alternative advanced methods for cancer 

detection to increase the sensitivity of disease diagnosis [33-38]. Fluorescence spectroscopy 

(FS) is one of the techniques to investigate more precise diagnosis result by improving the 

detection sensitivity of specific antigens bounded a fluorescence-labeled antibody [39]. It 

has high sensitivity but broad bandwidth of fluorescence emission prevents the multiplex 

detection. In RS, dependently SERS, spectral bandwidth is much narrower allowing the 

detection of multiple analytes at the same time. With the increased sensitivity in SERS, it 

can be considered an excellent technique in a range of applications. The recent FS studies 

focus on using a nanoparticle to increase sensing and imaging ability of the system and its 

development is still in progress [40, 41]. 

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) based 

tissue analysis refers to differentially expressed molecules in cancer and healthy pathological 

biopsies [29]. It is a promising technique having a high sensitivity and the advantages of 

direct measurement of peptides from tissues with no antibody requirement compared to the 

conventional IHC methods. However, it has practical limitations due to being time-

consuming, labor intensive, expensive, and analytical limitations in protein detection 

because sensitivity of MS decrease as protein mass increases [42]. 

IR, on the other hand, is an applicable technique for cancer and healthy tissue differentiation 

but the key problem is its inherently low spatial resolution which limits the use of technique. 

On the other hand, the RS with a higher spatial resolution obtained from a molecule or 

molecular structure is considered as its fingerprint that means Raman spectrum can be used 

for the label-free and identification of a molecule or molecular structure. The technique with 

narrow spectral bandwidth and minimal interference from water can provide very rich 

molecular information from cells or tissues, which has the utility of in vivo applications 

using a fiber optic. There are many reports demonstrating the possible use of RS in cancer 

diagnosis [33, 43-45]. For instance, breast cancer diagnosis was studied using RS providing 
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a high predicted classification sensitivity and specificity of up to 99.6 per cent [46]. 

Furthermore, the squamous cell carcinoma (SCC) tissues were differentiated from oral 

healthy tissues using RS based on the tissue water content providing all cancerous tissues 

removing nearby healthy tissue during the oncological surgery [47]. The salivary gland 

cancer was also studied with RS [48]. The cancer and healhty tissues were differentiated 

based on the differences in the their lipid composition and secondary structure of proteins. 

However, breast cancer and healthy tissues were classified based on the differences in the 

intensity of Raman bands related to carotenoids, fatty acids and proteins [49]. 

Along with its weak scattering nature, RS is rather slow technique compare to IR 

spectroscopy, its closest competitor. The necessity to collect spectra from an area rather than 

a point further slows down the spectral collection, which diminishes its applicability in 

clinics. To overcome the key problems of RS, its novel modes were developed with clinical 

applicability in cancer diagnosis, which are Coherent anti-Stokes Raman (CARS) 

microscopy, stimulated Raman spectroscopy (SRS), spatially offset Raman spectroscopy 

(SORS), transmission Raman spectroscopy (TRS) and surface-enhanced Raman scattering 

(SERS). The techniques are briefly mentioned here but the details can be found elsewhere 

[33, 50-52]. CARS technique, which represents a valuable alternative to RS with the 

improved spatial resolution, shorter analysis time, enhanced scattering without using any 

external particles and lower background, was demonstrated for cell and tissue analysis in the 

literature [53-55].  However, it has limited spectral information due to possibility of 

acquiring Raman spectra from the selected vibrational frequencies.  Furthermore, the non-

resonant background problem of CARS was handled by using SRS technique having less 

background noise [56]. On the other hand, SORS technique provides the collection of spectra 

up to 10 mm deep, whereas TRS technique was ideally suited for bulk analysis of 

opaque/turbid [52, 57]. However, after SERS for the detection of a range molecules and 

molecular structures down to even single molecule was reported, SERS-based studies have 

been increased in the literature [58]. SERS-based cancer diagnosis has emerged as a 

powerful approach to detect many cancer types such as esophageal, nasopharyngeal, gastric, 

breast, ovarian, thyroid, bladder, lung, colorectal and renal cancer [59-68]. 
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1.5. VIBRATIONAL SPECTROSCOPY 

The spectroscopic techniques are associated with the interaction of electromagnetic radiation 

with matter. Figure 1.1 shows the diagram of energy absorptions with frequency. Longer 

wavelengths have lower energy and cause molecular rotation and vibration in the microwave 

and infrared regions, respectively. The shorter wavelength radiations such as Ultraviolet-

Visible (UV-Visible) and X-rays, have the highest energies causing electronic excitation 

removing electrons to a higher energy state and bond breaking and ionization. 

 

 

 

Figure 1.1. The schematic diagram of electromagnetic spectrum. 

 

Radiation-matter interactions resulted in ionization can be observed by X-ray spectroscopy, 

electronic transitions by UV-Visible or fluorescence spectroscopy, vibrational changes in 

molecules by IR or Raman spectroscopy while rotational changes can be detected by 

microwave rotational spectroscopy. As mentioned above, IR and Raman spectroscopy, 

which are interested in molecular vibrations, are two complementary techniques due to 

differences in working principles. The principles of vibrations of these two techniques and 

their mechanisms are summarized below in "Section 1.5" and its subheadings, using general 

chemistry books and related references [69-72]. 
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 Molecular Vibrations 

Molecules in space retain three types of degrees of freedom (DOF) known as translational, 

rotational and vibrational, that are movements as a whole on x, y, and z-axes, on orthogonal 

axes, and in the molecular bonds. Moreover, a diatomic molecule has one DOF, a polyatomic 

molecule with “N” atoms has “3N” DOFs. Furthermore, there are three transitional DOFs 

and two rotational DOFs in a linear molecule (3N-5 vibrational modes), whereas there are 

three rotational and three transitional DOFs in a nonlinear molecule (3N-6). The vibrational 

modes of the molecule can be bending (deformation) or stretching, cause alterations in bond 

length and bond angle, respectively. Stretching vibrations can be observed as symmetric or 

asymmetric, whereas bending vibration can be both in-plane as scissoring and rocking, and 

out-of-plane as wagging and twisting as seen in the Figure. 1.2 

 

 

 

Figure 1.2. Vibrational modes of stretching and bending. 

 IR Spectroscopy 

The principle of IR spectroscopy is based on absorption of a certain amount of the incident 

light, which cause a change in the dipole moment of a molecule at specific frequencies 

coming in resonance with the frequency of its bond vibrations. The molecular structure can 

be analyzed by the contribution of IR spectral information with the percentage of the 

transmitted light at certain wavenumbers (cm-1). For instance, in the Figure.1.3 at wave 

number 1721 cm-1 assigned to C=O stretching vibration, about 100 per cent of the incident 

light was absorbed, and the frequency of the band vibration is matched with the frequency 
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of the light. However, 50 per cent of the light was absorbed while 50 per cent was transmitted 

at wave number 1419 cm-1. 

 

 

 

Figure 1.3. The IR spectrum of hexanoic acid [73]. 

 

There are differences between IR and Raman technique due to the electrostatic characteristic 

of the vibration. As a brief explanation of the differences, Raman methods are associated 

with the scattering of the incident light by the vibrating molecules, whereas IR is the result 

of the adsorption of the incident light by vibrating molecules. Raman active vibrations are 

corresponded to a change in the bond polarizability while IR active vibration is related to 

the dipole moment change of the bond. Water cannot be used in IR spectroscopy since it has 

an intense absorption but it is possible to use as a solvent in Raman spectroscopy. Raman 

signal gives information about the covalent character of the molecules while IR spectrum 

indicates the ionic character of the molecule. 

 Raman Scattering 

As mentioned in the previous section, Raman spectroscopy is based on the inelastically 

scattered photons upon collusion of light with molecules while IR corresponds to the 

absorption of the photons. Scattering is the result of the re-emission of the light during the 

return of the bond to its initial position after the electric field of the light induces the electron 

cloud of a bond causing sudden deterioration of the distribution of electrons. Raman 
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scattering is directly interrelated to the bond polarizability affected by the distribution 

tendency of the electrons. 

 The scattering phenomenon taking place simultaneously during Raman scattering is shown 

in Figure.1.4. Rayleigh scattering, inelastic in nature, occurs at the same wavelength with 

the excitation wavelength during the bond electrons return to back to their initial state after 

the electrons are excited to a virtual state as a result of the interaction of incident light. Thus, 

there is no energy change in the excitation photons in this scattering type. The other two 

types of scattering taking place meanwhile are Stokes and anti-Stokes. Some photons loose 

energy during the process and their wavelength sifts to a longer wavelength and called 

“Stokes shift” referring to the same phenomena observed in fluorescence spectroscopy. 

Since some photons gain energy as the vibrational mode returns to its ground state, it is 

called “anti-Stokes shift” as it is the opposite process of “Stokes shift”..  

 

 

 

Figure.1.4. Schematic diagram of scattering types; Rayleigh, Stokes, and Anti-Stokes  

 

Since Raman spectroscopy provides information about molecular structure through bond 

vibrations, it can be considered as “fingerprint”. Easy sample preparation and minimum 

interference from water are the other advantages of the technique. However, weak nature 
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oof scattering is the major disadvantage. The development of powerful laser and sensitive 

detectors helped the advancement of technique but increased laser power and exposure time 

can damage the sample. The RS modes of SERS, TERS, CARS, SERRS, SRS, SORS, and 

TRS mentioned, in the previous sections, were developed to overcoming the drawbacks of 

RS. 

1.6. SURFACE-ENHANCED RAMAN SCATTERING (SERS) 

The phenomenon of bringing the analytes into proximity of a rough metal surface or NP 

colloids to overcome weak scattering of RS was called as Surface Enhanced Raman 

Scattering (SERS).  The SERS was discovered in the 1970s. Richard P. Van Duyne, who is 

one of the pioneers of the field, firstly calculated theoretically that if pyridine molecule 

adsorbs on the electrode surface, the signal intensity would be as 25 counts. While he was 

writing a research article based on his suggestion and explanation in May 1974, he realized 

that a report was published in the journal Chemical Physics Letters by Fleischmann’s group 

indicating the enhanced signal up to 1000 counts from absorbed pyridine molecule on a 

roughened silver electrode [74]. In that report, Fleischmann and McQuillan also stated that 

anodic potentials of electrodes caused the bands shifted with the observation possibility 

adsorbing on a noble metal surface or bringing pyridine molecules into close proximity of 

the metal surface. After Van Duyne had a conversation about the study in Fleischmann’s 

laboratory with McQuillan, he recognized that increased surface roughness of the electrode 

would provide more pyridine adsorption on the electrode increasing the signal intensity 

coming from the molecule. After he and his colleagues were studied on the optimization of 

surface roughness, they noticed that not only roughness of the metal surface is responsible 

for the increased signal intensity but also an electromagnetic field is effective, which is a 

result of induction of conductive electron of the metal to oscillate, Finally, he published was 

his findings in the Journal of Electroanalytical Chemistry, 1977 [75]. Later, Van Duyne met 

with physicists in the Optics at the Solid-Liquid Interface Conference to explain more about 

the surface plasmons and their effects with proposed electromagnetic field enhancement 

(EM) theory of SERS [76]. 

In the same year of EM theory was supposed to be identical for increased signal intensity, 

Albrecht and Creighton were published a report indicating a different proposition which is 
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responsible for the increased scattering called as “chemical effect” (CE) originating from the 

charge transfer between the metal surface and analytes affecting the polarizability of the 

molecular bonds [77]. Three different proposed mechanisms for CE were suggested; 

resonances from molecular excitation or charge transfer between the metal substrate and 

analytes, and non-resonant changes in the polarizability of the molecules [78-80]. Two 

theories, which are responsible for the SERS; EM and CE were accepted by the SERS 

community in 1979 [81]. While EM was reported as more efficient with an enhancement 

factor about 105-106 times than CE with enhancement factor between 100 to 103 to provide 

enhanced Raman scattering with many comparative studies [82, 83]. 

The interaction of light with noble metals causes oscillation of the conductive electrons, and 

these oscillating electrons are known as surface plasmons [84]. The connection of surface 

plasmons with enhanced Raman scattering  was first mentioned by Moskovits in 1978 [85]. 

There are two types of surface plasmon resonance known as localized surface plasmon 

resonance (LSPR) and surface plasmon polaritons (SPR). In LSPR, when coherent 

oscillation of conductance electrons of noble metal nanoparticles and frequency of light 

come into resonance, surface plasmons are formed as seen in Figure 1.5. 

 

 

 

Figure 1.5. Schematic illustration of surface plasmon resonance on metal nanoparticles 

[86] . 

 

SPR is a surface electromagnetic wave that forms at  interface of metal and dielectric 

medium due to coherent oscillations of noble metals electron system and impinging light 

[87, 88]. Localized surface plasmons are formed around 10-200 nm size of NPs with a few 
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nm of depth [88, 89]. The localization surface plasmons change depending on size, shape, 

and assembly of nanoparticles [90]. 

The sharp edged nanostructures such as triangular and rod compared to spherical ones have 

a more effective electric field at the sharp edges but the synthesis procedure of such 

nanostructures is more difficult compared to spherical NPs [91]. SERS can be considered as 

one of the application area of plasmonics [92]. The clusters/aggregates of NPs can provide 

intense SERS enhancement due to the plasmonically coupled metallic dimeric 

nanostructures named as plasmonic hybridization  (also called “hot-spots”) [93]. Metal 

nanoparticles Ag, Au, Cu, Li and Al maintain surface plasmon due to their dielectric function 

in the UV/Vis and near infrared region (NIR) [92]. However, AgNPs and AuNPs are 

different from other metal nanoparticles with their support surface plasmons in the region of 

300-1200, mostly covering the visible region of the spectrum [90]. Due to their high SERS 

activity, colloidal AgNPs as SERS substrates were used in this thesis study. 

1.7. USE OF SERS FOR TISSUE BASED LABEL-FREE CANCER DIAGNOSIS 

SERS is used in numerous applications employing both label-free and labeled approaches 

including detection and identification viruses, bacteria, yeasts, cell surface markers on cells 

and tissues, and monitoring drug release [94-99]. As mentioned earlier, even detection of 

single molecules with the technique was reported [58]. With its high sensitivity, simplicity, 

labeled and label-free detection schemes, SERS is a promising technique for cancer 

diagnosis. Both labeled and label-free approaches were demonstrated in the literature [38, 

48, 68, 100-103]. In most labeled applications, a SERS active label was used by replacing 

the fluorescence detection scheme to increase the sensitivity. The conventional 

immunoassays based approaches used for detection of various species including proteins and 

viruses in clinics such as enzyme-linked immunosorbent assays (ELISA) have significant 

drawbacks of labor intensive sample preparation, small sample size, high cost and low 

sensitivity [104]. SERS can significantly improve the sensitivity while using a small volume 

of sample with minimum analysis steps. For example, the expression of a pancreatic cancer 

biomarker glycosylated large protein known as mucin was detected by a SERS-based 

immunoassay at low concentration overcoming the limitation of decreased detection 

sensitivity of conventional methods of ELISA and radioimmunoassay (RIA) [105]. More 
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SERS labeled methods were developed for the detection of cancer biomarkers such as 

haptoglobin (Hp) for prognosis of ovarian cancer, and p53 -p21 with 4-Mercaptobenzoic 

acid (4MBA) for early cancer diagnosis [102, 106]. SERS was also utilized for circulating 

tumor cell detection, obtaining organelle dependent cellular compartment information by 

conjugation of magnetic beads and SERS tags to EpCAM and her2 antibodies [107]. 

Besides, label-free SERS based detection of cancer cells not only utilizing cell surface 

properties but also dynamic process within cells was used for ex-vivo biopsy analysis [38, 

108-110]. Many cancer types such as esophageal, nasopharyngeal, gastric, breast, ovarian, 

thyroid, bladder, lung, colorectal and renal cancer were evaluated by SERS [59-68].  

SERS substrate has a critical effect on the quality of a measurement. The requirement that a 

substrate and molecule should be in contact or the distance between them should be less than 

3 nm to for molecules to feel the surface plasmons defining the quality of spectrum [88, 89]. 

Note that the spectral quality refers to rich spectra with high reproducibility. Due to the fact 

that a tissue sample is not easy to bring into contact with a nanostructured noble metal 

surface, colloidal noble metal particles are more convenient to use. However, there are only 

a few SERS-based tissue sampling approaches using colloidal noble metal particles such as 

AgNPs or AuNPs. The colloidal noble metal NPs are either added onto the sectioned tissue 

surface or mixed with homogenized tissue sample [28, 111-113].  

Another important point in tissue based cancer diagnosis is the storage and preservation of 

biopsied tissue used in SERS studies. The paraffin embedding and quick-freezing are the 

two conventional methods for long-term storage of biopsies used in the clinics. Furthermore, 

fixation is a standard procedure used in clinics for long-term storage of biopsied tissue 

samples to protect the morphological structure of the tissue preventing the decomposition. 

Formaldehyde and paraffin are two chemicals used in the fixation procedure. Formaldehyde 

is not only a biohazards chemical but also affects the quality of DNA / RNA by degrading 

the nuclear material and modifies the sequences [114]. Paraffin preservation (FFPP) is one 

of the main preferred procedures for the histological examination of tissue sections but the 

use of paraffin embedded-tissue sections is not preferred due to the spectral interference and 

possibility of degrading tissue structure. Thus, the evaluation of different fixative agents and 

tissue type were studied by Tfayli et al. comparing the effect of using fixated-tissues with 

two fixatives, ethanol and glycerol, and embedding tissues with different embedding media 

[115]. Moreover, Wills et al. demonstrated that Raman scattering obtained from 
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cryopreserved (banked) tissue compared to fresh samples resulted in a high correlation 

indicating that frozen tissue from tissue banks could be used to develop diagnostic 

algorithms [46, 115].  Many recent studies used fresh and snap frozen tissues instead of 

fixated or paraffin embedded due to drawbacks mentioned above [116]. Thus, snap frozen 

tissues were used during the study of this thesis.  

In a SERS experiment, the substrate used to place the tissue specimen has a critical 

importance due to the strong background originating from the substrate where tissue sample 

placed upon exposure to laser light. In order to minimize the background signal, Raman and 

SERS-based tissue analysis studies performed on the glass slides with a thicker sectioned 

tissue, CaF2 slides, aluminum coated microscope slides, or quartz flats [87, 90, 117]. In this 

thesis, the possible alternative substrates were also evaluated.   

1.8. SERS SIGNAL QUALITY 

An analytical spectroscopic measurement has two components; signal and noise. The limit 

of detection (LOD) in quantitative analysis is usually determined as the concentration of 

analyte yielding a signal to noise ratio (SNR) of 3 [118]. SERS signal quality refers to high 

SNR and rich spectra with high reproducibility.  The SNR for the peak intensity of a SERS 

band is the average peak height ( ) divided by the standard deviation of the noise (QB) used 

the equation below [118]: 

 

 )1.1(
QB

S
SNR 

 

        

(1.1) 

   

 

Figure 1.6 visualizes the differences in the SNR of two spectra belong to Na2SO4 in water. 
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Figure 1.6. Spectra of 0.1 M Na2SO4 solution by using different laser powers [118]. 

 

It is clear that the SNR of the first spectrum is lower than the second one. The SNR in the 

SERS spectra was used as a comparative parameter to determine the optimized conditions 

during the method development. Richness in the spectral pattern is the second parameter 

which affects the signal quality. It means that the increased number of prominent bands on 

the spectrum possesses much more characteristic information about the sample. The last 

important factor is signal reproducibility which is the key limitation of the SERS is the other 

important point needs to be increased for the intra-and inter method application of a SERS-

based approach. The developed SERS-based approaches also need to be optimized by their 

experimental and instrumental parameters. High intra-method reproducibility (point-to-

point/ spot-to-spot and sample-to-sample) means that the SERS measurements obtained 

under the same conditions at same time having low variation while high inter-method 

reproducibility (point-to-point/ spot-to-spot and sample-to-sample) refers to the decreased 

variation in the SERS measurement performed at same conditions but by a different observer 

or at different times. To evaluate the inter-and intra-method reproducibility, coefficient of 

variation (CV), which is the ratio of standard deviation and the overall mean, was calculated 

to express the maximum differences for each SERS measurement using the equation below 

[119]: 

Noise 
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Xi= exposure measurement; = mean of the exposure measurements; n= number of the 

exposure measurements. 

Higher CV values indicate that the variation of the exposure measurements is increased 

while the reproducibility of the spectral measurement was decreased for that method, 

parameter, condition, etc. During the method evaluation, CV values of the measurement 

were calculated to determine the optimized experimental and instrumental parameters. 

1.9. CHEMOMETRIC ANALYSIS OF SERS DATA 

The SERS data treatment is one of the important parts of the approach due to the high 

dimension features of spectra need to be evaluated by for inter-and intra-variability of the 

samples. Principle Components Analysis (PCA) is the most popular statistical methods used 

in different disciplines. PCA provides a new way to identify the data by extracting the 

patterns in the data regarding to their similarities and differences. The data relevant 

components are the reduced variations from the high dimensions without much loss of 

information. First, PCA calculates a mean from the each dimension (x x ) [120]. Then, a 

covariance matrix relating to the number of the data dimension is created. Covariance matrix 

is used if the number of the variables in the data is more than one to standardize the data. It 

determines the shape of the data. The equation below is used to obtain covariance matrix 

from the data (n is the number of the dimension) [121]: 
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Then, the eigenvectors and eigenvalues were obtained from the covariance matrix. 

Eigenvectors corresponding to an eigenvalue indicates the characteristic roots in the data in 

which useful directions. The eigenvector with the highest eigenvalue generates the principle 

component. The method orders the eigenvectors with highest values to the lowest. The order 

provides to eliminate insignificant eigenvectors which consist not much of information. It 

should be note that “factor” is also used as the term of component. Factor loadings or 

component coefficients also called as component loadings in PCA provide statistically 

calculated information about the variances in the original data. The factor loadings of SERS 

spectra underlie the biological differences representative of tissue sample displaying positive 

and negative bands on the loadings are related to which assigned bond vibration if the SERS 

spectra of each samples was used together in the preforming analysis. The positive and 

negative bands appeared on the loadings corresponds to rising SERS signals in the original 

spectra and reduced contribution of the signals in the acquired SERS spectra. It should be 

note that PCA considers generating directions that maximize the variance in a data set is 

without using class labels and while LDA differentiates the variability within the dataset of 

the sample groups and the variability between the sample groups by maximizing the 

components for class separation [122]. That is why LDA used in order to generate a 

diagnostic model for tissue differentiating. LDA, which is a supervised method, is one of the 

most common pattern recognition algorithm used in the biological data treatment. First, the 

d-dimensional mean vectors (mi) are obtained from the data for different classes with i= 1, 

2, 3 (number of the spectra) [121]: 
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Then, the scatter matrices both within-class (Sw) and between-class (SB) are computed by 

the following equation:  
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ni= sample size of the class; m: overall mean; mi: sample mean; c: number of class labels 
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The eigenvectors and corresponding eigenvalues for scatter matrices are obtained before the 

number of the eigenvectors are reduced to top “k” number vectors with the largest 

eigenvalues. In addition, k x d –dimensional eigenvector matrix (W) is computed by 

reducing the dimensional feature spaces into subspaces which means LDA not only -improve 

the class separation but also reduce the space’s dimensionality. New subspaces (W) are 

computed by transforming the samples (Y) using the equation below. (X= n x d-dimensional 

matrix; n: number of samples) [120, 123]:  

 

  Y= 𝑋𝑥𝑊 

        

(1.9) 

 

The scatter plot of the LDA vectors provides to visualize clustering performance but the 

performance of that classification model needs to be tested. For this reason, leave-one-out 

and cross-validation (LOO-CV) method is commonly used to obtain a predicted 

classification result of using PC-LDA classification model on the SERS data. LOO-CV 

provides multivariate classification predicting class between the training set and record 

SERS signal omitted from the training set. It is almost used in diagnostic algorithm providing 

an idea of how to generalize the model within an independent data set [124]. The outcome 
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of LOO-CV (disease/healhty) style predictor is often presented in a 2x2 contingency table 

detailed in the Table 1.1. The number of correctly predicted diseased and healhty cases are 

indicated by TP (true positives) and TN (true negatives), and the number of incorrectly 

predicted diseased and healthy cases are FN (false negatives) and FP (false positives), 

respectively. 

 

Table 1.1. Outcomes of the prediction methods in a classification model. 

 

Presence of Disease 

Status 

Disease 

(number) 

Healthy        

(number) 
Measures 

LOO-CV 

Outcome-  

Predicted 

Class 

Positive 

(number) 

True 

Positive-TP 

(a) 

False 

Positive- FP 

(b) 

Positive 

predictive 

value 

a/ (a+b) 

Negative 

(number) 

False 

Negative- FN  

(c) 

True 

Negative-TN 

(d) 

Negative 

predictive 

value 

d/(c+d) 

Measures 
Sensitivity 

a/ (a+c) 

Specificity 

d/ (b+d) 

Accuracy 

a+d/(a+b+c+d) 

 

LOO-CV, which is the two class prediction method minimize the misclassifications due to 

overlapping positive cases to negative cases by a cut off seperationg the two classes as seen 

the Figure 1.7. 

 

 

 

Figure 1.7. Seperation of classes based on their descriptors [125]. 
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2. OBJECTIVES OF THE STUDY 
 

Today, cancer is the second most common cause of death around the world. The researchers 

have still been working on understanding of the molecular mechanisms behind its reasons, 

studying on new screening and detection methods, and new treatments. Diagnosis is directly 

proportional to the survival time of the patients. However, the routine clinical protocols 

involve many time-consuming steps and artifacts during the laboratory processes, which lead 

to uncertain and incorrect diagnosis. The pathology protocol is based on the subjective 

decision of a group of pathologists used the morphological information from the stained 

biopsied tissue sections. There is a need for faster and more accurate approaches to remedy 

the problems of the conventional diagnosis approach. The surface-enhanced Raman 

scattering (SERS) as a highly sensitive technique can deliver more accurate and faster results 

compared to the conventional vague cancer diagnosis process. Alternative cancer diagnostic 

methods spread over a much extended period, even if promising, that routine clinical 

protocols can undergo radical changes. For this reason, it would be ideal to develop an easy-

handled method, which is parallel to the pathology procedure. In this thesis, a systematic 

study based on SERS was undertaken. Glass slides and cryosectioned tissue sections with 

the intention to facilitate the integration of the approach into pathology were used in the 

methods. However, a PDMS layer on glass substrate was necessary to eliminate the 

background signal originating from the glass slide. The distribution of SERS active AgNPs 

has critical importance for reproducibility of SERS spectra. The study aimed to develop a 

better SERS-based approach with the expectation of a high reproducibility, rich spectrum, 

low cost, minimal sample preparation steps and high accuracy. Thus, two tissue sampling 

methods, Cryosectioned-PDMS and an in situ AgNP synthesis in homogenized tissue, were 

investigated.  The parameters for Cryosectioned-PDMS method were evaluated involving 

the substrate cross-sectioned tissue sample placed, tissue thickness, objective lens, laser 

power, acquisition type (randomly selection/mapping), mode (StreamHR/Line focus), 

acquired-mapping size, spectral range, SERS substrate concentration and the droplet 

position (suspended/sessile). Moreover, the parameters such as concentration of the 

chemical agents used for in situ synthesis, and spectra collection method for in situ based 

method were optimized. Thyroid cancer was selected as the model system in this systematic 

study. Two developed SERS-based approaches were compared with the method of crashing 

and liquefying, which is previously developed in our laboratory. Three SERS-based tissue 
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sampling methods were applied on the thyroid biopsies (n=64). The performance evaluation 

comparing the methods through the spectral pattern, principal component based linear 

discriminant analysis (LDA) classification accuracy, and method-reproducibility was 

obtained to predict the best SERS-based method for tissue differentiation for cancer 

diagnosis. Indeed, it was aimed to demonstrate the diagnostic power of SERS with the 

developed approaches whereas performing a systematic study to provide translation of 

Raman Spectroscopy into clinics.  
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3. MATERIALS AND METHODS 
 

3.1. CHEMICALS 

Solutions of silver nitrate (AgNO3) (Sigma-Aldrich), hydroxylamine hydrochloride 

(HONH2·HCl) (Merck), sodium hydroxide (NaOH) (Sigma-Aldrich) and trisodium citrate 

(Na3C6H5O7) (Sigma-Aldrich) were prepared with double distilled, deionized water from 

Millipore DirectQ-ultraviolet [21] system. Sylgard 184 silicone elastomer base and Sylgard 

184 silicone elastomer curing agent manufactured by Dow Corning (Midland, MI). The 

cryostat embedding medium for frozen tissue specimen (Optimal cutting temperature-O.C.T 

compound) was purchased from PELCO®. 

3.2. TUMOR SAMPLES 

Bovine liver tissue as a model was used in the optimization studies during the development 

of the approaches. Fresh bovine tissue samples were stored in a deep freeze at -80°C until 

used for analysis. 

The human biopsy samples were obtained from the cancer patients with consent of the 

ethical approval from Yeditepe University Hospital. The tissue specimens stored at −80°C 

in plastic tubes until the samples were prepared for the SERS measurements. 

3.3. PREPARATION OF SERS SUBSTRATES 

The colloidal AgNPs from AgNO3 were synthesized using two different reducing agents; 

HONH2·HCl and Na3C6H5O7 [126, 127]. Briefly, citrate reduced AgNPs (c-AgNPs) were 

prepared according to method of Lee and Meisel, which involves dissolving 18 mg of 

AgNO3 in 100 mL of distilled water,  heating to boil, and adding 2 mL of 1 per cent (w/v) 

Na3C6H5O7solution slowly dropwise into this boiling solution. The suspension was kept 

boiling until it reached to the half of its initial volume. The suspension was concentrated by 

centrifugation at 5500 rpm for 30 min, and one-third of the supernatant was decanted to 

increase the final concentration of the AgNPs colloidal suspension to four times, which was 
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called 4×. The concentrated AgNP suspension was used in the study of SERS-based kidney 

tumor staging.  

Leopold and Lendl based synthesis method provides the synthesis of hydroxylamine reduced 

silver nanoparticles (h-AgNPs), which were used in SERS-based studies in this thesis for 

thyroid tumor differentiation. Briefly, a total volume of 10 ml including 1.5 x 102 M 

HONH2·HCl and 3x 10-2 M NaOH was added in to 90 ml 1.11 x 103 M AgNO3 solution and 

stirred for 15 min at room temperature. The synthesized colloidal nanoparticles were 

characterized with UV-Vis Spectroscopy, and Transmission Electron microscopy [128]. The 

average size of h-AgNPs was approximately 30 nm. Then, the colloidal suspension was 

centrifuged at 5500 rpm for 30 min and was and a portion of the supernatant was removed 

to increase the concentration of the colloidal suspension. 8×,16× and 32 AgNP colloidal 

suspensions were prepared by removing appropriate volume of the supernatant after the 

centrifugation. 

3.4. RAMAN SYSTEM AND SERS MEASUREMENTS 

The SERS spectra of tissue specimen were collected using a Renishaw (Wotton-under-Edge, 

UK) InVia Reflex spectrometer equipped with a diode laser at 830 nm, CCD detector, edge 

filter, holographic grating (1200 grooves/mm) with ultra-fast imaging  Renishaw's 

StreamHR™ technology. The fast imaging mode, StreamHR with a high-speed encoded 

stage (HSES) and synchronized readout of the CCD detector were used in the mapping 

configuration and the Raman system was calibrated by using the silicon phonon mode at 520 

cm−1 before SERS measurement. The incident laser power was adjusted to 30 mW on the 

sample and the spectral data acquisition time was 2 s for the Cryosectioned-PDMS method. 

SERS spectra over a spectral range of 582-1653 cm−1 (1100 cm-1 median value) were 

collected using the StreamHR point mapping acquisition method from a square grid of 10 × 

10 scanned points from a total area of 22.5 μm × 22.5 μm (506.25 µm2). 

For in situ method, randomly selected ten spectra from the droplet surface were acquired 

using 830 nm laser (as adjusted in the software to 15 mW) equipped with 20× (NA: 0.40) 

objective, and 5s exposure time. 
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For the crashed-liquefied method, randomly selected ten spectra over a spectral range of 400 

- 1800 cm−1 from the droplet surface were acquired using 830 nm laser (as adjusted in the 

software to 30 mW) using 20x objective (NA: 0.40) and 5s exposure time. 

In the study of kidney tumor staging study, the spectra were acquired over a spectral range 

of 400 - 1800 cm−1 with a 50× microscope objective (NA: 0.50) from randomly selected 

points on the sample using the “map image acquisition method” function in WIRE 2.0 

software, and the WIRE 2.0 software was used to carry out the spectral analyses. 

3.5. EXPERIMENTAL  

 Cryosectioned-PDMS Method 

The so-called Cryosectioned-PDMS sampling method includes the following steps;  Tissue 

cryosectioning, placing it on PDMS covered slide, dropping a 20 microliter volume of 16 X 

colloidal AgNP suspension on the tissue surface, drying at suspended position, spectral 

acquisition and data analysis. The experimental design of the method is shown in Figure 3.1. 

 

 

 

Figure 3.1. A schematic illustration of experimental design for Cryosectioned-PDMS 

method. 
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3.5.1.1. Preparation of PDMS Layer  

Sylgard 184 silicone elastomer base and Sylgard 184 silicone elastomer curing agent were 

used to produce the polydimethylsiloxane (PDMS) layer on the glass slide. PDMS substrates 

were made by directly mixing corresponding elastomer base and the curing agent in a 

polystyrene beaker (base/agent mass ratio, 10:1). Then, approximately 0.5, 1, 1.5, 2, 2.5 and 

3 ml volume of the viscous gel were added into six-well plates and was kept in an oven at 

700 C for one hour. 

 

 

 

Figure 3.2. A Shematic illustration for preparation of PDMS covered surfaces. 

3.5.1.2. Preparation of Tissue Sections 

After tissue sample was removed from the deep freeze, it was thawed before placing on 

cryostat chuck and embedded in optimal cutting temperature compound medium (OCT) for 

cryostat sectioning. Then, the tissue embedded in OCT medium on chuck were left on the 

freeze bar of the cryostat.  
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Figure 3.3. An illustration of O.C.T medium embedded bovine liver tissue sample on the 

chuck after frozen in the cryostat freeze bar with cryossectioning process. 

 

Cryostat chucks provide fast freezing of tissue specimens eliminating ice crystal formation 

(freeze artifact), which destroys cellular morphology. The frozen tissue was cryosectioned 

in desired thickness using a Shandon Cryotome SME Cryostat (Thermo Electron, UK) 

device. 

  in situ Based Sampling Method 

The so-called “in situ” method consists the steps of cutting a piece of 2x2x2 mm3 from the 

biopsy sample, placing in a test tube, adding 50-µl distilled water into tube and 

homogenizing it by ultrasonic homogenizator (Omni International, Kennesaw, GA, USA). 

Then, a 10-µl volume of 3.55x10-2 M HONH2·HCl reducing agent and a 10-µl volume of 

3x10-2M  NaOH were added into a 10-µl volume of homogenized tissue suspension. Then, 

a 10-µl volume of 4.36x10-1 M AgNO3 solution was added, and a 2-µl volume of mixture 

was placed on CaF2 slides leaving it to dry at suspended position until SERS measurements. 

Then, SERS spectra collected from randomly selected ten points before pre-processing of 

the SERS data. A brief of experimental design of the in situ method can be seen in Figure. 

3.4.  
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Figure 3.4. A schematic diagram of the experimental design for in situ based SERS 

approach. 

 Crashed-Liquefied Method  

In “Crashed-liquefied” method, the following steps are followed. A piece of tissue 

approximately in the size of 2 × 2 × 3 mm3 was cut from the fresh tissue or frozen tissue and 

thawed tissue. This tissue was snap frozen in liquid nitrogen and crashed with a mortar. The 

homogenized tissue was mixed with the AgNP colloidal suspension. A 5 μL volume of this 

mixture on a CaF2 slide and dried at the suspended position before SERS measurement.  
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Figure 3.5. A schematic diagram of the experimental design for Crashed-liquefied method. 

3.6. DATA PRE-PROCESSING 

Wire 4.1 software was used for pre-processing of the SERS data. First, cosmic ray removal 

was applied to each spectrum, and the SERS spectra were normalized to be equal to 1 before 

the data was used in classification algorithms. Baseline subtraction and smoothing method 

were only applied to visualize the differences in the spectral patterns on the plots but not 

used in the classification models that means cosmic removed and normalized raw data with 

minimal pre-processing was used in the diagnostic classification algorithms.  

3.7. STATISTICAL ANALYSIS 

The pre-processed spectral dataset for statistical analysis was used in the statistical package 

for the social science (SPSS) package (SPSS Inc., Chicago, Illinois), which contains PCA 

and LDA algorithms to clarify the significant spectral characteristics of each tissue type and 

differentiate tissue types from each other according to their variances. PCA was applied 

before LDA to reduce the number of dimensions in the original high-dimensional dataset 

and to derive PC loading vector, which indicates the significant variances in the data. To 
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apply PCA, the spectral data observations having high predictors were placed into a data 

matrix using SERS spectra acquired for each method. The eigenvalue decomposition was 

performed on the covariance matrix of the spectral data matrix. The resultant eigenvectors 

were obtained, and the original spectral dataset was projected into the new coordinate system 

defined by the principal directions of variance, called the principal components (PCs), which 

are the linear combination of the original data variables [129]. Then, the obtained regression 

(REGR) factors were used for classification the tissue specimens with PC-LDA. Leave one 

out-cross validation (LOO-CV) methodologies were applied to demonstrate the accuracy of 

the classification [130].  

3.8. UV-VIS SPECTROSCOPY ANALYSIS 

Colloidal AgNP suspension was analyzed using Lambda 25, Perkin Elmer Ultraviolet-

Visible (UV-Vis) spectrometer. 

3.9. SCANNING ELECTRON MICROSCOPY ANALYSIS 

For scanning electron microscopy (SEM) analysis, cross-sections from PDMS substrate 

were taken to measure the thicknesses. The SEM images were obtained by using a Carl Zeiss 

Evo 40 instrument at under high vacuum with a potential of 10 kV after coating with gold 

in a Polaron SC 502 sputter coater.  

3.10. TEM ANALYSIS 

The images of AgNPs were obtained using a JEOL 2100 Transmission Electron Microscopy 

equipped with an Oxford Instruments 6498 EDS system.  
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4. RESULTS AND DISCUSSIONS 

 

4.1. CHARACTERIZATION OF NANOPARTICLES 

The citrate reduced colloidal silver nanoparticle (c-AgNPs) suspension was used in the 

kidney tumor analysis with the homogenized tissue sampling method where the tissue 

sample was frozen, crashed and mixed with the AgNPs colloidal suspension . Figure 4.1 

shows the SERS spectrum (background) from a dried droplet of colloidal suspension (a), 

UV/Vis spectrum of the colloidal suspension containing c-AgNPs (b) and TEM image of c-

AgNPs (c).  

 

 

 

Figure 4.1. SERS spectrum of colloidal c-AgNPs (a), UV/visible absorption spectra of 

suspension containing colloidal c-AgNPs (b), and TEM image of AgNPs.(c). 

 

The absorption maximum of the UV/ visible spectrum obtained from c-AgNP suspension 

was at 420 nm indicating the average size of the AgNPs is around 50 nm. The final density 
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of the AgNPs used in the study of kidney tumor staging with 4× concentrated suspension 

was calculated as 2.08 × 1011 particles ∕ ml [120]. 

The type of substrate is important in a SERS measurement since it affects the quality of 

spectra. The AgNPs or AuNPs are routinely used in SERS experiments due to their simple 

preparation, low cost, and high enhancement effect [131]. The c-AgNPs are widely used as 

SERS substrates but it is difficult to synthesize without having anomalous peaks originating 

from the molecular debris formed during synthesis [132]. Thus, hydroxylamine reduced 

silver nanoparticles (h-AgNPs), detailed in “Section 3.3”, was used in the most part of this 

thesis due to having the benefits of increased reproducibility, minimal spectral background, 

high SERS activity and long-term stability, nearly 4 months [133]. 

The colloidal suspension containing h-AgNPs was characterized using UV-Vis spectroscopy 

and TEM [Figure 4.2 (a) and (c)]. The maximum absorbance of the UV-Vis spectrum of the 

AgNPs colloidal suspension was observed at 413 nm, and the average diameter of the 

colloidal AgNPs determined to be approximately 30 nm supported by TEM images.  The 

SERS spectra of colloidal AgNPs was obtained with minimum spectral background coming 

from the suspension after a droplet of the suspension was placed on CaF2 slide (Figure 4.2 

(b)) and dried compared to the c-AgNPs case as seen Figure 4.1 a.  

 

 

 

Figure  4.2. UV-Vis spectrum (a), a SERS spectrum of colloidal suspension of AgNPs  (b) 

and TEM image (c). 

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

350 400 450 500 550 600



34 

 

 

4.2. CRYOSENTIONED-PDMS METHOD 

The histology-based diagnosis includes several steps such as sectioning, mounting sectioned 

tissues on glass slide after fixation and embedding into paraffin. It would be ideal to use the 

tissue section prepared for the same procedure but the steps in protocols are time consuming, 

and the artifacts during the sample preparation affects the chemical composition thereby 

reducing the likelihood of correct recognition of the biopsied tissue sample. This is why the 

tissue without fixation is studied with snap-freezing method in molecular-based studies [134, 

135]. Recent Raman and SERS studies mainly used snap frozen tissues without fixation and 

paraffin embedding due to the interfering peaks originating from paraffin wax at 1062, 1171-

1175, 1130 and 1436 cm-1. There is a systematic study performed in 2008 by a group of 

researchers demonstrating the effect of fixation processes on the Raman spectra [116]. In 

that study, different fixative agents were used to fix cells. Then, the spectral variances 

between fixated and unfixed cells were compared using classification models. The 

observations clarified that fixation process affected the cell chemistry reflected by the 

spectral changes. Moreover, the classification accuracy was decreased in the fixated cells 

compared to unfixed cells leading the misclassification of cancer and normal cells. In this 

thesis, the use of fresh or frozen tissue samples without fixation was aimed. However, it 

would be ideal to use a similar tissue section procedure applied in clinics.   

Tissue thickness placed onto the substrate is an important point in Raman measurements 

since the laser light can easily penetrate and reach to the glass substrate generating a 

background signal, which can suppress signal originating from the tissue sample.   In order 

to eliminate the background, a layer of PDMS is decided to use. A systematic optimization 

process was employed to assure that the approach could practically be used in clinical 

applications.  

Bovine liver tissue was used during the optimization studies. Several parameters including 

the substrate where the cross-sectioned tissue sample is placed, tissue thickness, laser power, 

acquisition type (random selection vs. mapping) and mode (StreamHR vs. Line focus), 

mapping size (22.5 x 22.5/ 112.5x22.5/ 562.5 µm x 22.5-µm ), spectral range, SERS 

substrate concentration and the droplet drying position (suspended vs. sessile) were 

investigated. Then, the Cryosectioned-PDMS method with other two sampling methods of 

SERS-based approaches was evaluated using human thyroid tumor and healthy tissue 
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biopsies as a preliminary study. The optimization of the parameters in the Cryosectioned-

PDMS method was given in the following section. 

 Experimental Optimization 

In order to achieve optimal signal collection from sliced tissue, the substrate used to place 

the tissue. Substrate thickness, tissue thickness, objective type, laser power, focus 

adjustment, acquisition type, number of spectra and mode, mapped area size, spectral range, 

drying configuration of droplet including AgNP suspension, AgNPs concentration, and 

region dependent spectral reproducibility in the dried droplet area were evaluated. The 

subtitles below involve the experimental optimization for each parameter of the 

Cryosectioned-PDMS method.  

4.2.1.1. Substrate Used to Place Tissue Sample 

The cryosectioned tissue slices in 5-µm thicknesses were used similar to the pathology 

routine. However, fixation and paraffin-embedded processes were not applied due to spectral 

interference. The routine pathology laboratory uses glass slides to place tissue sections. The 

tissue sections were placed on glass slides, a 20-µl of the 8 × concentrated colloidal AgNP 

suspension was added on the tissue surface, and dried at the suspended position before the 

SERS measurements.  A strong fluorescence background originating from the glass slides 

suppressed the SERS spectra of the tissue specimen. This strong fluorescence background 

was aimed to eliminate by covering the glass with polydimethylsiloxane (PDMS), which is 

an silicone-based elastomeric polymer with mechanical and chemical stability and widely 

used in a variety of applications [1, 39]. First, the microscope glass slides were attempted to 

coat with spin coating but it was not possible to achieve a uniform and controlled PDMS 

thickness on the glass surface due to high viscosity of PDMS gel. Thus, another approach 

called mold-casting was used for the PDMS coating [136]. Figure 4.3 shows the comparison 

of the spectra obtained from the same tissue sample on three different substrates where tissue 

specimen was placed. As seen, the substrate has a dramatic effect on the spectra. CaF2 slides 

are routinely used in Raman measurements due to the low background. Although placing the 

PDMS layer between tissue and glass slide helps to eliminate the background from glass, it 
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is not as good as CaF2 slide. However, CaF2 slides are expensive. Therefore, an approach 

eliminating the glass background in such application is necessary. 

 

 

 

Figure 4.3. SERS spectra of bovine liver cryosectioned tissue specimen placed on glass, 

PDMS, and CaF2 slide. 

 

It is necessary to optimize the thickness of PDMS on the glass slide to prevent supressing 

signal coming from the glass slide. PDMS covered glass slides in different thickness were 

prepared using six-well plate molding method (detailed in “Section 3.5.1.1"). Then, PDMS 

thicknesses on the glass slides were measured from the SEM images.  

Meanwhile, SERS spectra of PDMS covered glass slides were obtained after a 5-µl volume 

of 8 × concentrated AgNP suspension dropped onto the PDMS surface and left to dry at the 

suspended position. After several attempts, at least 1.8 mm thick PDMS layer was found to 

be optimal and decided to use in the studies. Figure 4.4 shows the comparison of the spectra 

obtained increasing thickness of the PDMS layer.   
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Figure 4.4. SERS spectra obtained from different thickness of PDMS coated glass slides. 

 

As seen in Figure 4.4, the minimum thickness should be 1.8 mm or greater for a weakest 

background while the layers with 0.8, 1 and 1.4 thicknesses have still an intense background 

originating from the glass. Thus, a PDMS layer thickness at least 1.8 mm requires on the 

glass slide to suppress the background.  

As the tissue slice is placed onto PDMS layer and the spectra are acquired, the obtained 

spectra can contain both Raman and SERS. Thus, both Raman and SERS spectra of PDMS 

were acquired to evaluate whether there are significant differences in the band position and 

the intensity of the spectra originating from PDMS. The comparison of the mean spectra of 

Raman and SERS from PDMS are given in Figure. 4.5. As seen, only difference is the 

intensity of the bands. However, it is clear that SERS spectra may be the mixture of both 

Raman and SERS. 
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Figure 4.5. Comparison of Raman spectrum (a) and SERS spectrum (b) of PDMS. 

 

Another alternative substrate as six-well plate was evaluated by using instead of cut glass 

pieces for PDMS covering because PDMS coating into the wells of a plastic (polystyrene) 

six-well plate was simpler. Tissue samples were sectioned on two prepared substrates. The 

spectra were acquired. Figure.4.6 shows the comparison of spectra obtained from PDMS on 

glass surface and polystyrene.  As seen, there are a few less peaks on the PDMS spectrum 

compared to the polystyrene plastic. Thus, the PDMS coating on the glass was thought to be 

a better option.  

 

 

 

Figure 4.6. Mean SERS spectra of PDMS placed on glass slide (a) and plastic material 

(polystyrene) (b). 
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4.2.1.2. Tissue Thickness 

The sectioned tissue in the range of 3 to 10 µm depending on the type of tissue is used in 

routine pathological procedure. The best diagnostic definition has been mostly given using 

sectioned tissues at around 5-µm thickness because the tissue sections should be transparent 

rather than opaque so that the light can pass through the tissue specimen to be successfully 

examined under bright field microscopy. The ten SERS spectra acquired from the sectioned 

tissues with different thicknesses after a 20 µl volume of 8× AgNP suspension was placed 

and dried at suspended position. The SERS spectra obtained to realize whether there are 

significant differences between the spectral patterns. Figure 4.7 demonstrates the mean 

SERS spectra of each sectioned tissue thickness with separated plotting of the spectra from 

each other to visualize the differences more clearly. As seen, from figure, the spectral 

patterns are quite similar to each other. There is a slight increase in intensity of the band at 

721 cm-1, which was attributed to DNA [137]. An increase in the nucleic acid concentration 

due to the increased cell population was an expected result due to increased tissue thickness. 

The proportional increase in the band intensity may be a supportive reason for the method 

with increased signal reproducibility related to more uniform distribution of AgNP 

aggregates. 

 

 

 

Figure 4.7. Mean SERS spectra obtained from increasing tissue thicknesses. 
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A 5-µm thick tissue section was selected as the optimum thickness by also considering that 

about a monolayer of cells in the sectioned tissue would be ideal by preventing interference 

from healthy or cancerous cell above or below of the cells in the monolayer.  

4.2.1.3. Objective, Laser Power and Focus Adjustment 

Other instrumental parameters should also be evaluated for optimal signal collection. First, 

objective lenses of 5×, 20× and 50× were evaluated. Each objective has a different collection 

efficiency and spot size at the focal point depending on their numerical aperture (NA) and 

the selected laser wavelength. The laser spot diameter  was calculated using the formula of 

1.22 λ / NA [138]. Table 4.1 shows the theoretical spot sizes of the three objectives evaluated 

in the study.  

 

Table 4.1. Laser wavelength, laser power at sample, theoretical laser spot size of objective 

lenses with N.A. 

 

Laser wavelength: 830 nm 

Laser power at sample: mW 

 

Objective N.A Laser spot size (µm) 

5× 0.15 0.67 

20× 0.40 0.25 

50× 0.50 0.20 

 

With a 5x objective, it is possible to scan a larger area but the background originating from 

the sample hampers the measurement. However, using higher magnification objectives with 

higher numerical aperture (N.A) provides higher spatial resolution. A 20× objective has 

larger spot size than a 50× objective and was chosen for further studies because their spectral 

patterns were quite similar with each other as seen in Figure 4.8. 
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Figure 4.8. Mean spectra of tissue specimen obtained using 5 ×, 20 × and 50 × objectives. 

 

The other parameters that affect the signal quality are laser power and exposure time. The 

laser powers were set in the Raman software as 3mW, 15mW, 30mW or 150 mW. The 

exposure times of 2, 3 and 5 s were evaluated for signal quality. In addition, five seconds to 

the first exposure time (which makes the total exposure time 7, 8, 10 s) were added as soon 

as SERS signal appeared to see whether there will be any improvement in the  signal quality. 

Figure 4.9 compares the spectral patterns depending on laser power (as adjusted in the 

software) and exposure time. As seen, the richest spectrum is obtained with the use of laser 

power of %10 (of 30 mW) and the exposure time of 2 and 7.  Although 7 s of exposure time 

generates higher SNR, 2 s of exposure time can also be considered as satisfactory since 

choosing 2 s exposure time reduces the analysis time.  Further, the spectral pattern changes 

with traditional point mapping and StreamHR mapping were studied and found that the 

StreamHR point-by-point mapping was satisfactory for Cryosectioned-PDMS method.  For 

comparison, the first spectrum from the top in Figure 4.9 was obtained using traditional point 

mapping. As seen, SNR ratio is lower than StreamHR point-by-point mapping and the 

mapping time is significantly higher, about 70 min for 10x10 points array.  
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Figure 4.9. Mean SERS spectra of tissue sample obtained using different parameters of 

laser power and exposure time. (TP: Traditional point mapping; SP: StreamHR point 

mapping; lp: laser power; e: exposure time; s: second) 

4.2.1.4. Acquisition Type, Number and Mode 

Two acquisition approaches, mapping and random selection, can be employed to collect 

spectra from a sectioned tissue. Since tissue is very heterogeneous in nature possessing 

healthy and cancerous cells, scanning a large area of tissue can be a good strategy. However, 

it can take a long time to scan an area where can provide good spectra representing the 

biochemical characteristics of tissue. Another approach is to collect several spectra from 

arbitrarily chosen points on the tissue sample. In this part of the study, these two approaches 

were evaluated by acquiring spectra following these approaches. For fast scanning, 

StreamHR point acquisition is used. StreamHR acquisition method provides fast and high-

resolution mapping because sample movement, data collection, and data readout occur 

simultaneously by using Renishaw's High Speed Encoded Stage (HSES).  

SERS spectra were collected from ten randomly selected points by using two modes of 

StreamHR point acquisition and traditional point acquisition.  The comparison of mean 
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SERS spectra obtained with these two modes are shown in Figure 4.10. As seen, both spectra 

have a quite similar pattern and SNR. 

 

 

 

Figure 4.10. Mean SERS spectra of liver tissue acquired using StreamHR and traditional 

point acquisition method. (S: StreamHR acquisiton; T: Traditional acquisiton) 

 

Then, the coefficient of variation (CV) was calculated for each measurement and repetition 

for a comparison of intra-and inter-method repeatability and reproducibility. Ten spectra for 

each mode were used to calculate intra-method repeatability to obtain the maximum 

variances between the spectra for all measurements combined while the averaged SERS 

spectra of each collection from three repetitions were used to calculate the inter-method 

reproducibility for the observations at different times.  

The reproducibility is the maximum difference that is likely to transpire between 

observations at different times while the repeatability is the maximum difference that is 

likely to transpire between repeated experiments at the same time. Table.4.2 compares the 

calculated CV values of SERS spectra from three experimental repetitions. 
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Table 4.2. CV values of SERS measurements obtained using traditional and StreamHR 

acquisition method. 
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4.47 7.51 8.5 8.38 1.72 0.5 8.5 8.38 1.72 

 

The CV value for StreamHR as 7.51 per cent, which shows the maximum difference between 

the spectra for the first repeat of experiment, was slightly more than CV value of 4.47 per 

cent for Traditional method. However, the CV values of the spectra obtained using 

Traditional method was slightly higher compared to StreamHR method for the second and 

third experiments. The average CV values indicate the maximum differences between the 

method of Traditional and StreamHR by their mean-centered spectra. The first calculated 

CV value was 8.5 for the first experiment whereas the second and the third ones showed 

0.50 and 1.72 per cent differences between the methods. However, this comparison is not 

enough to determine the optimum conditions for acquisition. The total analysis time for 10 

points acquisition was 7 minutes for traditional point acquisition method while it was 30 

seconds for StreamHR acquisition. This is a quite significant difference. Thus, StreamHR 

point acquisition type was used for collection of spectral information from the tissue 

specimen in Cryosectioned-PDMS sampling method. After the random selection mode was 

optimized, mapping modes also need to be optimized to compare. Next, the traditional point 

mapping, line focus and SteamHR point mapping were compared for their performance. For 

this, one hundred SERS spectra were collected from the same region of crytosectioned tissue 

using three types of mapping modes.  The spectra obtained with each mode and their average 

is presented on Figure. 4.11.  
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Figure 4.11. SERS spectra from a 10x10 points grid on tissue surface by using line (a), 

traditional point (b), and StreamHR point (c) mapping, and comparison of their average 

spectra (d). 
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In the line-mapping mode, laser spot has a shape of a line rather than a spot providing wide-

field sample area illumination. With this method, it is possible to use higher laser power 

without damaging biological samples, and this method provides the collection of spectra 

from multiple location on the sample saving time. This mapping acquisition method was 

also optimized for this study. Even though the collected SERS spectra were noisy, the mean 

spectrum of the data was obtained with an increased quality due to the robust optimization 

of the noisy data by the WIRE.4.1 software.  

The comparison of three approaches can be seen in Figure 4.11. Two experimental 

conditions can be given to collect a satisfactory signal collection. In the first case, the 

minimum laser power should be adjusted to 30 mW with at least 10 s exposure times. In the 

second case, laser power should be adjusted to 150 mW with at least 3 s exposure to reduce 

the time. After the spectral collection, the spectra were normalized. The CV values were 

calculated and compared to determine the reproducibility of each mode and are detailed in 

Table 4.3. 

 

Table 4.3. CV values obtained using three type of mapping methods. 

 

Line Focus  

Mapping 

StreamlineHR Point 

Mapping 

Traditional Point  

Mapping 
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26.29 19.32 23.43 15.99 8.85 10.22 7.54 9.70 10.29 7.13 12.96 6.51 

 

The CV values were obtained as 26.29, 19.32 and 23. 43 by calculating the SERS spectra 

obtained with three repeats. The greatest difference was observed in the CV values of the 

data collected with Line mapping. The values of 8.85, 10.22 and 7.54 indicate a higher 

repetability of using StreamHR mapping compared to Line mapping. However, the CV 
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values calculated from the mean spectra of each experiments were found as 6.51, 9.70 and 

15.99 for Traditional point, StreamHR point and Line mapping methods, respectively 

indicating that Traditional mapping has the the lowest CV values refering to the highest 

reproduciblity with a 3.19 than the StreamHR method. However, another significant point is 

the analysis time for the collection of 100 spectra. It was 5 min for StreamHR and  70 min 

for Traditional one.   

 

Table 4.4. Analysis times and parameters used in mapping methods. 

 

 

Line Focus Mapping 

10 %  laser power 

10 s exposure time 

StreamHR Point 

Mapping 

10 %  laser power 

2s exposure time 

Traditional Point 

Mapping 

5 %  laser power 

10s exposure time 

Total Analysis  

Time 
2 minutes 5 minutes 70 minutes 

 

Based on the results presented in Table 4.3 and Table 4.4, the StreamHR point mapping 

method was selected as the optimum acquisition method for the spectral collection due to 

low analysis time and high reproducibility.  

Further, the random selection of the acquisition point on the tissue sample and mapping type 

was optimized. The random selection and mapping was compared calculating the CV values 

and signal quality. Thus, the spectra from ten randomly selected points on the tissue surface 

were collected using StreamHR point acquisition method, and a 10x10 grid point area was 

mapped using StreamHR point acquisition. Then, the CV values of the spectra were 

calculated for each experiment and are given in Table 4.5. The SERS spectra by each method 

with their mean spectra are shown in Figure.4.12 as a comparison. 
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Figure 4.12. SERS spectra of tissue specimen acquired from randomly selected ten points 

(a) and a 10x10 points grid area (b) using StreamHR point mapping method, and 

comparison of their mean spectra (c). 
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Table 4.5. CV values of SERS spectra obtained using StreamHR point mapping and 

random selection of ten points. 
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Table 4.6. Analysis time and parameters used in the methods. 

 

 

Random Selection of 10 

Points 

10 %  laser power-2s 

exposure times 

StreamHR Point 

Mapping 

10 %  laser power-2s 

exposure times 

Total Analysis 

Time 
6.5 minutes 3 minutes 

 

As seen, the CV values are lower for StreamHR mapping compared to the random selection 

acquisition for both point-to-point variations and sample-to-sample variations. The point 

mapping by StreamHR technology as an optimum data collection method for Cryosectioned-

PDMS method was selected not only resulting in high reproducibility but also short analysis 

time. 

4.2.1.5. Size of Mapping Area  

The size of mapping area also needs to be optimized. Thus, a 10 x 10 points grid, a 50 x 10 

point grid and a 250 x 10 points grid were selected on the same sectioned tissue surface for 

spectral collection. The mean SERS spectra of each collection are demonstrated in Figure. 

4.13. 



50 

 

 

 

 

Figure 4.13. Mean SERS spectra of tissue obtained by selecting three different point arrays 

from the same tissue surface of 22.5-µm x 22.5-µm (a), 112.5- µm x 22.5-µm (b), and 

562.5 µm x 22.5-µm (c). 

 

As seen, the spectral patterns are obtained quite similar to each other. Thus, a 10x10 points 

grid area was selected as the optimum one for the Cryosectioned-PDMS method. 

4.2.1.6. Spectral Range 

The Raman shift range of the acquisition also needs to be optimized because it is possible to 

select a wide range using the traditional point-by-point method (slowest one) but the fast 

acquisition method of StreamHR point uses a median value for the spectral range 

arrangement which reduces the obtained spectral range. Thus, 400-1800 cm-1 range, which 

has the characteristic bands related to the tissue specimen, was divided into two spectral 

regions is included in the median value of 1100 (~580-1560 cm-1) and 1400 (~480-1860 cm-

1). The mean spectra of each divided spectral range are given in Figure. 4.14 including 

PDMS spectra as a comparison. 
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Figure 4.14. A comparison of mean SERS spectra of tissue by two divided Raman shift 

range obtained given median values of 1100 cm-1 and 1400 cm-1, and the SERS spectrum 

of PDMS. 

 

The number of major SERS bands originating from bovine liver tissue is the same for each 

spectral range; 1100 (~580-1560 cm-1) and 1400 (~480-1860 cm-1). The spectral range 

selection may vary depending on the tissue type and analyst. Thus, thyroid biopsies were 

studied in the range of 582 to 1563 cm-1 by selecting 1100 as a median value due to having 

rich band assignments to proteins, lipids, carbohydrates and metabolites. Although the 

restricted spectral range choice is a disadvantage for StreamHR fast mapping, it is much 

faster than the traditional mapping. Mapping the same area takes only 5 min with StreamHR 

fast mapping but 70 min for traditional mapping.    

The distribution and packing of AgNPs aggregates on the tissue surface effect the signal 

reproducibility and quality as well.  The suspended drying position of the droplet including 

colloidal AgNPs indicated an increased scattering and higher reproducibility in our previous 

studies [68, 139, 140]. However, the droplet drying configuration for the Cryosetioned-

PDMS method was needed to be optimized. For this reason, the sessile and suspended 

positions were compared with each other. 
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4.2.1.7. AgNP Suspension-Droplet Position 

The SERS spectra acquired from the mapped area on both sessile and suspended dried 

droplets after a 20 -µl volume of 8× colloidal AgNP suspension was placed on tissue 

specimen. In order to assess the distribution of AgNPs and their aggregates on the tissue 

surface, SEM images were obtained from the droplet area. Figure 4.15 shows the droplet 

configurations and SEM images.  The zoomed areas are marked in the SEM image of the 

whole droplet area to visualize the AgNPs and their aggregates.  

 

 

 

Figure 4.15. SEM images of dried droplet areas on tissue surface with suspended (a), and 

sessile (b) configurations.  
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The numbers 1, 3 and 2 refer to the middle, edge and in between. As seen, as a result of 

“coffee-ring” phenomenon, some of the AgNPs is packed at the edges while some are 

distributed though the droplet areas as single AgNPs or aggregates.  The “coffee-ring” 

formation  is a phenomenon that takes place in a drying droplet and jams most of the particles 

at the liquid–solid–air interface [141]. he SERS spectra were acquired from a 10x10 points 

grid from three different spots on the droplet area. As an example, a set of SERS spectra is 

shown in Figure 4.16. 

 

 

 

Figure 4.16. SERS spectra of tissue specimen obtained from the droplet area dried at 

suspended (a) and sessile position (b), and their mean spectra (c). 
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The averaged spectra to compare the spectral richness for each type of droplet position are 

also shown in Figure 4.16 (c). In general, the spectra obtained from the area where droplet 

is dried at the sessile position were nosier.   

The averaged SERS spectra obtained from the tissue where the suspension was dried at the 

suspended position showed richer spectral pattern than the sessile position provided, which 

means more characteristic bands related to the tissue specimen. This could be both due to 

the difference in distribution of AgNPs in the droplet area and/or the difference in metabolic 

species diffusing into the droplet during drying. As the colloidal suspension is placed onto 

the tissue sample, cellular or metabolic species soluble in aqueous medium can be quickly 

diffuse and come into contact with AgNPs. What is observed on the SERS spectra could also 

be related to this phenomenon.  Further, the CV values of the spectra obtained to address to 

the reproducibility of the sampling approach. Table 4.7 shows the CV values of the SERS 

spectra obtained from each sampling method. The spot-to-spot and sample-to-sample 

variations were calculated to compare the configuration dependent reproducibility.  

 

Table 4.7. CV values of SERS measurements obtained from different region of sessile and 

suspended dried droplets with three repetitions. 
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The spot-to-spot variations and sample-to-sample variations were obtained by calculating 

the CV values of the spectra. As a result, the CV values of the spectra from the suspended 

position were lower than the ones obtained from sessile droplet position. Thus, the 

suspended configuration was selected as optimum configuration for Cryosectined-PDMS 

approach. Then, the suspension concentration was optimized by comparing the signal 

quality. 
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4.2.1.8. SERS Substrate Concentration 

The density of the colloidal suspension containing AgNPs was optimized to increase the 

reproducibility and quality of the spectra by covering the tissue surface as many as AgNPs 

and its aggregates. The concentration of the suspension was increased 8×, 16× and 32× 

before a 20-µl volume of the suspension from each concentration was dropped onto tissue 

surface, and left to dry at suspended position until SERS measurements were performed. 

The details for the synthesis and concentration of the AgNP suspension can be found in 

“Section 3.3”. Then, the SERS spectra were collected from three different droplets areas 

where 8×, 16× and 32× concentrated suspensions were placed. The comparison of the mean 

spectra obtained with three different colloidal suspension concentrations is provided in 

Figure 4.17. 

 

 

 

Figure 4.17. Mean SERS spectra of tissue specimen obtained from suspended dried droplet 

using (a) 8×, (b) 16× and, (c) 32× concentrated AgNP suspension. 

 

The use of 16× concentrated colloidal AgNP suspension resulted in a better signal quality 

with increased band richness in spectral pattern compared to other mean spectra obtained 

from 8× and 32× concentrated suspensions. Thus, 16× concentrated suspension was selected 

as the optimum density for the Cryosectioned-PDMS method. 

0

1

2

3

400 600 800 1000 1200 1400 1600 1800



56 

 

 

4.2.1.9. Spectral Reproducibility of Region Dependent Acquisition 

The spectral reproducibility is a major problem for SERS due to the chaotic nature of the 

interactions of analytes and noble nanoparticles. As the colloidal suspension of AgNPs was 

added onto tissue, the interaction of AgNPs with the tissue components is governed by 

several parameters including the dynamics in a drying droplet. The distribution of the AgNPs 

and their aggregation status influences the SERS activity and dependently the spectral 

reproducibility. To understand the region dependent signal reproducibility and the influence 

of addition of colloidal AgNPs by dropping on to tissue surface, the spectra obtained from 

different regions on the dried droplet at the suspended position. The CV values of the spectra 

were calculated. Each spot labeled as 1, 2, 3, and 4, also shows the direction of acquisition. 

Each spot includes mapping of a 10x10 points grid area from the sample surface. The CV 

values of the spectra to calculate spot-to-spot variations were also obtained. Then, the CV 

values for each averaged spectrum of each region were calculated to understand the region-

to-region variations. The CV values of each region detailed in Table 4.8. A total of sixteen 

spots from four divided regions on the droplet were evaluated as highlighted in Figure  4.18. 

 

Table 4.8. CV values of SERS measurements obtained from different mapped areas on the 

same sample. 
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Figure 4.18. Light microscope images of selected sixteen-mapped areas from a droplet 

area. 

 

The point-to-point variation was obtained between 7 and 19 per cent while the spot-to-spot 

variation was between 11 and 15 per cent, and the region-to-region variation was 12 per 

cent. The results indicated a close CV value between the spots except the first spot. However, 

the CV values between the regions were somewhat similar, which means the spectral 

collection could be selected from any regions on the droplet surface. The sample to sample 

variations to understand the inter-method reproducibility were calculated and interpreted in 

the following section. 
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 Intra-Method Reproducibility  

The CV values of SERS measurements regarding point-to-point, spot-to-spot and sample-

to-sample variations obtained from the three different spots by scanning a 10x 10-points grid 

area on the droplet surface were calculated. The CV values of the 100 spectra were calculated 

to obtained point-to-point variations. Then, the CV values of averaged spectra obtained from 

100 spectra for each spot were calculated to understand the spot-to-spot variations. Finally, 

an average CV value of the averaged spectra obtained from each experiment was calculated 

to obtain the sample-to-sample variations. The intra-method reproducibility of the 

Cryosectioned-PDMS sampling method depends on the CV values among the points, spots 

and samples studied at the same time while inter-method reproducibility depends on the 

results obtained at the different times. 

 

Table 4.9. CV values of SERS measurements obtained from different mapped areas on 

three samples at different times. (Av.; Average) 
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The obtained CV value as 3.5 calculated from the mean spectra belongs to each experiment 

indicated that the intra-method reproducibility for the newly developed method was 

significantly high.   

 Comparison of Substrate Dependent Classification 

The problem of background signal originating from the glass was mentioned in the previous 

section. To overcome this problem, PDMS was selected to cover glass slides due to its 

chemical stability, easy preparation, low cost compared to CaF2 substrates, which is 
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commonly used in Raman and SERS measurements. Moreover, PDMS surface is 

hydrophobic preventing aqueous samples to spread. The background originating from the 

PDMS is a disadvantage but PC loading vector, which represent the PDMS, can be removed 

before its use in the classification algorithm when necessary. 

The influence of the substrates on the classification accuracy can be calculated 

comparatively between CaF2 substrates and PDMS whether there is a significant limitation 

on the classification accuracy due to the background of PDMS. On the other hand, there is 

an alternative substrate, which is Aluminum  foil (Al-foil) covered slides, having more 

straightforward preparation compared to PDMS covered slides, and it was used in many 

SERS studies due to the its low cost and SERS enhancement ability [142, 143]. Al-foil 

covered substrate was also compared to the other substrates used in this study through 

calculating the CV values and classification accuracy results. Thus, the tissue specimen was 

prepared on the Al-foil covered slide and compared to PDMS and CaF2 cases. Figure 4.19 

shows the comparison of the mean SERS spectra obtained with three approaches. 

 

 

 

Figure 4.19. SERS spectra of bovine liver specimens placed on substrates of Al foil (a), 

CaF2 (b), and PDMS substrate (c), and their mean spectra (d). 
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From Figure 4.19, it is apparent that the SNR and signal reproducibility is higher in the 

spectra collected from the tissue placed on PDMS covered slides. However, the signal 

quality is better for the Al-foil substrate compared to the CaF2 slide. This may be due to the 

enhancement effect of Al foil [144]. 

A comparison of the classification accuracy related to the substrates was needed to obtain 

for the choice of a favorable substrate to be used in the Cryosectioned-PDMS method. Thus, 

this sampling method was applied to breast, liver and heart tissue of chicken. Figure 4. 20 

shows the raw and the mean spectra obtained from breast, heart and liver tissue of chicken 

placed on CaF2 slide. 

 

 

 

Figure 4.20. Raw SERS spectra of chicken breast (a), liver (b) and heart (c) tissue 

specimen placed on CaF2 slides, and their mean spectra (d). 

The high dimensional spectral data needs to be mined before using in the classification 

algorithms. PCA analysis method of Statistical Package for the Social Science (SPSS) was 
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used to reduce the spectral dimension (d=1014). Thus, thirty-five PC was extracted from the 

collected spectra. Then, first five PCs including 87.11 per cent of the variance related to the 

tissue specimen as detailed in Table 4.10 was used in PCA classification algorithm. 

 

Table 4.10. Eigenvalues and the percentage of explained variation of PCs. 

 

PC Eigenvalue Explained Variation % 

1st PC 4.36E+01 43.58  

2nd PC 3.39E+01 77.48  

3rd PC 5.05E+00 82.52  

4th PC 1.88E+00 85.23  

5th PC 1.35E+00 87.11 

 

The 2D and 3D PCA scatter plots were obtained as seen in Figure 4.21 after first five PCs 

were used in PCA classification algorithm. The classification results were obtained by using 

leave-one-out cross-validation (LOO-CV) in the PC-LDA classification model. The 

predicted classification results is given in Table 4.11. 

 

Table 4.11. LOO-CV classification results of breast, heart and liver tissue using PC-LDA 

model. 

 

Classification Groups Sensitivity % Specificity % Accuracy % 

Breast- Heart 100.0 99.0 99.5 

Breast-Liver 99.0 100.0 99.5 

Liver-Heart 100.0 97.0 98.5 
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Figure 4.21. 2-D scatter plots of PC1-PC2 (a) and PC1-PC3 (b), and 3-D scatter plots of 

PCs in PC1 to PC3 components related to the SERS spectra acquired from breast, liver, 

and heart tissue specimen placed on CaF2 substrate. 

 

Second, the spectra were collected from breast, heart and liver tissue of chicken placed on 

PDMS to evaluate the performance of PDMS substrate on the classification accuracy. The 

raw and mean spectra of these tissues are provided in Figure 4.22. 

 



63 

 

 

 

 

Figure 4.22. SERS spectra obtained from chicken breast (a), liver (b), and heart (c) tissue 

on PDMS covered slides, and their mean spectra (d). 

 

As seen, the noise level of the spectra obtained from the tissue placed onto PDMS covered 

slides is lower when compared to the spectra obtained from the samples placed on CaF2 

slide. Then, PCA was applied on the spectra to reduce the dimension (d=1014) to sixteen 
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PCs. First five PCs including 93.77 per cent of the total variance, which are detailed in Table 

4.12, were used in PCA classification algorithm.  

 

Table 4.12. Eigenvalues and the percentage of explained variation of PCs. 

 

PC Eigenvalue Explained Variation % 

1st PC 5.25E+01 52.45  

2nd PC 3.80E+01 90.42  

3rd PC 1.40E+00 91.82  

4th PC 1.02E+00 92.84  

5th PC 9.33E-01 93.77  

 

The 2D and 3D PCA scatter plots were obtained and provided in Figure 4.23 after the first 

five PCs were used in PCA classification algorithm. The classification results were obtained 

by LOO-CV in the PC-LDA classification model, and the classification results of PC-LDA 

model are given in Table 4.13. 

 

 

 

Figure 4.23. 2-D scatter plots of PC1-PC2 (a) and PC1-PC3 (b), and 3-D scatter plots of 

PCs in PC1 to PC3 components related to the SERS spectra acquired from breast, liver, 

and heart tissue specimen placed on PDMS covered slides. 
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Table 4.13. Classification results of breast, heart and liver tissue using PC-LDA model. 

 

Classification Groups Sensitivity % Specificity % Accuracy % 

Breast- Heart 100 94 97 

Breast-Liver 100 100 100 

Liver-Heart 96 94 95 

 

The classification accuracy was higher than the results obtained using the CaF2 slide for the 

breast and liver tissue, which means the differences in the variances of the PCs were higher 

between breast and liver tissue specimen placed on the PDMS covered slide. The 

measurements were simultaneously performed to avoid possible variation due to the 

sampling errors. The same experiments were also repeated on Al-foil using the breast, heart 

and liver tissues from chicken. Figure 4.24 shows the raw spectra from each tissue sample 

and their mean spectra as a comparison with the mean and collected spectra obtained using 

Al-foil substrate. 

 

 

 

Figure 4.24. SERS spectra from chicken breast (a), liver (b) and heart (c) tissue specimen 

placed on Al foil covered slides, and their mean spectra (d).  
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PCA was applied on the spectra and sixteen PCs were extracted to reduce the spectral 

dimension (d=1014) before the first five PCs including 88.09 per cent of the variance were 

used in PCA classification algorithms. The per cent of variances related to the PC 

components were detailed in Table 4.14. Then, the classification results were obtained by 

using LOO-CV method in PCA based LDA classification algorithm as indicated in Table 

4.15.  The PCA scatter plots were also obtained and are given in Figure 4.25. 

 

 

 

Figure 4.25. 2-D scatter plots of PC1-PC2 (a) and PC1-PC3 (b), and 3-D scatter plots of 

PCs in PC1 to PC3 components derived from the spectra acquired from breast, liver, and 

heart tissue specimen placed on Al-foil covered slides. 
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Table 4.14. Eigenvalues and the percentage of explained variation of PCs. 

 

PC Eigenvalue Explained Variation % 

1st PC 5.77E+01 57.69 

2nd PC 1.55E+01 73.15 

3rd PC 1.04E+01 83.54 

4th PC 2.74E+00 86.28 

5th PC 1.81E+00 88.09  

 

 

Table 4.15. Performance of the PC-LDA models using Al-foil covered glass slides for 

chicken tissue types; breast, liver, and heart 

 

Classification Groups 
Sensitivity 

% 

Specificity 

% 

Accuracy 

% 

Breast- Heart 100 96 98 

Breast-Liver 100 94 97 

Liver-Heart 94 96 95 

 

Finally, the classification accuracy for each substrate preparation method was shown in 

Table 4.16 as a comparison.  

 

Table 4.16. Performance measurements of the PCA models using different substrates 

forchicken tissue types; breast, liver, and heart. 

 

Substrates Sensitivity % Specificity % Accuracy % 

Al-foil 98.0 95.3 96.6 

PDMS 98.6 96.0 97.3 

CaF2 99.6 98.6 99.1 

 

In conclusion, even though the use of CaF2 as a substrate provides the highest classification 

sensitivity, specificity, and accuracy compared to other substrates, PDMS and Al-foil 

covered glass substrates have significant classification accuracy between 97 and 98 per cent 
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probabilities. Although the difference in the performance measurement of classification 

models was minimal, the PDMS covered slide could be more suitable one to use in clinics. 

It has the advantages of low cost, high mechanical strength and the flexibility, which is 

detailed in Table 4.17, compared to Al foil and CaF2 slides.  

 

Table 4.17. A summary of comparison of the three substrates: PDMS, Al foil and CaF2. 

 

Proporties CaF2 PDMS Al Foil 

Mechanical strength Fragile Flexible and strong Easy tearing 

Surface Hydrophobic Hydrophobic Hydrophilic 

Cost Quite expensive Lower costs Very economical 

 

The substrate dependent signal reproducibility were also obtained by calculating the CV 

values.  

 Comparison of Substrate Dependent Signal Reproducibility  

The spectral reproducibility is one of the major problems of the SERS technique due to the 

heterogeneity of the tissue structure and the chaotic distribution of nanoparticles on the tissue 

surface. Thus, to understand the substrate dependent signal reproducibility, three substrate 

platforms were used in the Cryosectioned-PDMS method with three repetitions. Table 4.18 

shows the CV values of the spectra obtained by using three different substrates. 
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Table 4.18. CV values of the spectra obtained from model tissue specimen using different 

substrates. 
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The PDMS layered slide showed 2.7 per cent variation while CaF2 and Al-foiled slides 

displayed 14.9 and 11.7, respectively. It is obvious that the PDMS coating is more suitable 

based on the CV values and decided to use in the Cryosectioned-PDMS method. 

 A Preliminary Study with Thyroid Tumors 

The optimized approach finally tested on real human benign thyroid tumor and the tissue 

surrounding thyroid tumor (healthy). Thus, two biopsy samples using the Cryosectioned-

PDMS method were prepared for SERS measurements. The protocol of Cryosectioned-

PDMS approach is summarized in the following paragraph with the optimized parameters. 

The cryosectioned tissue sample placed on a cover slide was used for SERS measurements 

by placing the AgNPs colloidal suspension on the sectioned tissue. Then, a layer of PDMS 

with 1.8 mm was placed between the sliced tissue and the cover slide to overcome the 

suppressing background. A 5- µm thick tissue was placed onto the PDMS surface.  A 30 

mW laser power (as adjusted in the software) with 2s exposure time was used. A 10 x 10 

points array was mapped with StreamHR fast point mapping. The colloidal suspension 

concentration was 16×. Raman shift range was set to 582- 1563 cm-1 by given a median 

value of 1100 cm-1, which was found to be optimum for thyroid tumor samples. Finally, the 

collected spectra were reduced to new variables using PCA algorithm, and PC-LDA 

classification model was performed with LOO-CV method. 

The collected SERS spectra from the benign tumor and surrounding tissue (healthy), and 

their mean spectra are shown in Figure 4.26. 
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Figure 4.26. SERS spectra obtained from tissue samples pathologically confirmed as 

healthy (tissue surrounding tumor) (a) and benign tumor (b) placed on PDMS, and their 

mean spectra (c). 

 

The high dimenional data was reduced to sixty-five PCs, which were extracted using PCA 

algorithm. The first five PCs including 81.09 per cent of variance as detailed in Table 4.19 

used in PC-LDA classification model.  

 

Table 4.19. Eigenvalues and the percentage of explained variation of PCs. 

 

PC Eigenvalue Explained Variation % 

1st PC 4.94E+01 49.42 

2nd PC 2.13E+01 70.74 

3rd PC 4.72E+00 75.46 

4th PC 4.07E+00 79.53 

5th PC 1.56E+00 81.09 
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The 2-D and 3-D PCA scatter plots were obtained as shown in Figure. 4. 27. Then, the 

classification results were calculated by using LOO-CV method and detailed in Table 4.20. 

 

 

 

Figure 4.27. 2- D (a) and 3-D (b) PCA scatter plots related to the SERS spectra acquired 

from surrounding (healthy) and tumor tissue specimen placed on PDMS covered glass 

slides. 

 

Table 4.20. Performance measurements of the PC-LDA model using PDMS covered glass 

slides for the differentiation of benign tumor and surrounding tissue specimen. 

 

Classification Tissue 

Groups 
Sensitivity % Specificity % Accuracy % 

Healthy  vs  Tumor 100 100 100 

  

Applying newly developed Cryosectioned-PDMS approach displayed successfully 

diagnosis of tumor and healthy thyroid biopsies with an accuracy of 100 per cent.  
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 Diagnosis of Thyroid Tumors 

In this part of the study, SERS-based Cryosectioned-PDMS method was applied on 31 

normal and 33 abnormal pathologically evaluated tissue samples obtained from thyroid 

disease patients to differentiate sample groups. Table. 4. 21 shows the tissue type, collected 

spectra per sample and pathological diagnostic results of tissue specimen examined in the 

clinic. The tissue samples were marked as tumor (benign/malignant) and healthy (the tissue 

surrounding the tumor). Although the tissue surrounding the tumor marked healthy and 

phatologically verified healthy, it might still have tumorus cells. 

StreamHR point mapping acquisition from a square grid of 10 × 10 scanned points, a total 

area of 22.5 μm × 22.5 μm (506.25 µm2), was performed with the optimized parameters of 

Cryosectioned-PDMS approach. One hundred spectra per biopsy sample (total of 6400 

spectra for 64 biopsy sample) were collected. The mean spectrum of each tissue type 

(benign, malignant and healthy) obtained from one hundred spectra, which is presented in 

Figure 4. 28 and Figure 4.29. 

 

Table 4.21. Pathological evaluation of the specimens, number of biopsies, and number of 

spectra obtained per biopsy. 

 

Sample type 
Sample 

Number 

Spectra 

Number 

Adenomatous Nodule 16 1600 

Follicular Adenoma 3 300 

Papillary Thyroid Carcinoma 9 900 

Hürthle Cell Adenoma 3 300 

Multifocal Papillary Thyroid Carcinoma 1 100 

Minimally Invasive Follicular Carcinoma 1 100 

Normal Thyroid Tissue 31 3100 

Benign Tumor 22 2200 

Malignant Tumor 11 1100 

Total 64 6400 
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Figure 4.28. Mean SERS spectra of benign (n=22) and healthy (n=22) tissue specimen 

prepared by using Cryosectioned-PDMS sampling method. 

 

The cosmic ray filtering and min-max normalization processes through the WIRE.4.1 

software were applied to the spectral data. The baseline correction and smoothing were not 

applied to the spectral data used in the classification model because variations in band 

intensity and localization could be appeared affecting the reliability of results.  
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Figure 4.29. Mean SERS spectra of malignant (n=11) and healthy tissue specimen (n= 11) 

prepared by using Cryosectioned-PDMS approach. 

 

The same pre-processing steps, cosmic ray filtering and min-max normalization processes 

were applied also to the spectral data belonging to malignant and healthy tissue specimen. 

Baseline correction using cubic splines and smoothing through the WIRE.4.1 software were 
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applied on the averaged SERS spectra related to malignant and healthy tissue samples to 

increase the visibility of the differences between the spectral patterns but original data 

without baseline correction was used in the classification model. 

As seen, there are similarities between the average spectra of malignant tumor and healthy 

tissue. However, significant differences in the spectra of tissue samples from different 

patients were also observed. This is possibly due to the variation of the tissue from patient 

to patient. The variations in the spectra were statistically observed by using PCA method.  

PCA was performed in the thesis study due to two primary reasons. First one is to minimize 

high dimensional spectral data to new relevant scores to be able to use in LDA based 

diagnostic algorithm to serve the purpose of comparison on classification accuracy between 

the tissue sampling methods of Cryosectioned-PDMS, in situ method and Crashed-liquefied. 

The second one is to indicate the variability in the spectral data by extracted loading vectors, 

which represent the variances of each variable (wavenumber). The variations in the 

molecular components of tissue specimen were reflected on the spectra, and the variances 

can be observed by analyzing the loading vectors of the PCs with the positive and negative 

contributions related to prominent SERS bands.  

The average spectra for each one hundred spectral data was estimated to represent each 

biopsy tissue specimen before using this multidimensional data (dimension=64x1015) to 

construct loading vectors and regression (REGR) factors by using PCA algorithm. After the 

data processing, the average spectra were reduced into new relative variants called as 

principle components scores (PCs). Nineteen significant PCs (eigenvalues greater than > 1) 

were obtained by PCA method in the SPSS software as seen in Table 4.22 with the per cent 

value of explained variances in each PC. 

The REGR factors derived by using PCA method, and the factors were then used in PC-

LDA classification model. The scatter plots of PCA and PC-LDA analysis are shown in 

Figure 4. 30.  

The PCs of first three factors were used in PCA scatter plot but it does not indicate well-

separated clusters for each group. Then, LDA classification algorithm was applied on PCs 

with LOO-CV method to increase the classification accuracy by maximizing the differences 

within the groups, and obtaining a predicted classification result explained in the terms of 

sensitivity, specificity and accuracy. However, PC-LDA scatter plot (b) indicated better 
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classified groups compared to the PCA scatter plot (a). Table 4.23 gives the detailed 

classification results obtained after the LOO-CV method applied on the PCs (1, 2 and 3 

assigned healthy, benign and malignant type, respectively). 

 

Table 4.22. Total variance explained PCs with percentage of explained variation of PCs for 

64x1015 dimensional spectral data set. 

 

Total Variance Explained 

PC Total %  of Variance Cumulative % 

1 718.88 71.11 71.11 

2 96.27 9.52 80.63 

3 60.95 6.03 86.66 

4 34.83 3.45 90.10 

5 21.83 2.16 92.26 

6 17.04 1.69 93.95 

7 15.07 1.49 95.44 

8 8.39 0.83 96.27 

9 6.25 0.62 96.89 

10 5.74 0.57 97.45 

11 4.17 0.41 97.87 

12 3.48 0.34 98.21 

13 3.11 0.31 98.52 

14 2.11 0.21 98.73 

15 1.77 0.18 98.90 

16 1.52 0.15 99.05 

17 1.27 0.13 99.18 

18 1.18 0.12 99.30 

19 1.02 0.10 99.40 
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Figure 4.30. Scatter plots of PCA (a) and PC-LDA (b) with the PC scores related to the 

spectra of healthy, benign and malignant tissues. 

 

 

Table 4.23. Classification results for healthy, benign and malignant tissue samples. 

 

 
Predicted Group 

Total Membership 

1 2 3 

  1 22 6 3 31 

Original Count 2 6 15 1 22 

  3 0 1 10 11 

  1 71 19.4 9.7 100 
 % 2 27.3 68.2 4.5 100 

  3 0 9.1 90.9 100 

  1 22 6 3 31 

Cross-

validated 
Count 2 6 15 1 22 

  3 0 1 10 11 

  1 71 19.4 9.7 100 
 % 2 27.3 68.2 4.5 100 

  3 0 9.1 90.9 100 

 

73.4 per cent of original grouped tissue specimens and 73. 4 per cent of cross-validated 

grouped tissue specimens were correctly classified based on the result presented in Table 

4.24. Then, the loading vectors were extracted from the data using PCA to highlight the most 

prominent diagnostic variables among the spectra belongs to differently diagnosed tissue 

samples. The first 8 loading PC vectors, which have the most prominent bands on it, were 

shown in Figure 4. 31 and Figure 4.32. 
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Figure 4.31. First four loading PC vectors obtained using PCA. 
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Figure 4.32. Last four loading PC vectors obtained using PCA. 
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The loadings exhibited the differences between the benign, malignant and healthy thyroid 

tissue samples. Their respective negative (down arrow) and positive (up arrow) bands in the 

loadings originated considerably the differentiation of the neoplasm and healthy sample.  

The bands on the loading vectors can be attributed to biochemical components such as 

nucleic acids (724, 740, 1415 cm-1), proteins (617, 667, 760, 854, 920, 1008, 1052, 1180, 

1210, 1280, 1295, 1315, 1334, 1457 and 1506 cm-1), metabolites (724 and 920 cm-1), and 

lipids (960, 1096, 1385, 1435 and 1457 cm-1). The tentative assignments of the bands 

observed on the spectra of tissues are given in Table 4.24. 

Then, REGR factors derived by using PCA method applying on the specific bands at 667, 

724, 740, 760, 854, 920, 960, 1008, 1052, 1096, 1180, 1210, 1280, 1295, 1315, 1334, 1385, 

1415, 1435, and 1457 cm-1 instead of using the full spectral range. The derived factors were 

used in PC-LDA classification model, and the PCA and PC-LDA scatter plots were obtained 

and given in Figure. 4. 33-36.  

Finally, LOO-CV method was used to obtain a predicted classification result by using the 

PC-LDA classification model. Table.4. 25 shows the predicted classification results of PC 

components of SERS spectra respective to tumorous (benign, malignant) and healthy tissue. 

The classification model was applied on the collected spectra in the full  range of 582 to 

1563 cm-1 and specific region at 667, 724, 740, 760, 854, 920, 960, 1008, 1044, 1096, 1180, 

1210, 1295, 1315, 1334 and 1385 cm-1. 
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Table 4.24. Tentative band assignment list for SERS spectra [33, 59, 60, 62, 63, 130, 145-

147]. 

 

Band position (cm-1) Tentative Band Assignments 

425 Cholesterol 

478 DNA / RNA 

485 Uric acid / glycogen 

524 S-S disulfide stretching in proteins 

548 Cholestrol 

570 Tyr / Cys / G 

617 C-C twisting (protein) 

627 Uric acid/ glycerol 

667 C-S stretching mode of Cys (collagen type I) 

687 G 

725 Hypoxanthine/  ring breathing mode of DNA/RNA bases 

738 T (ring breathing mode of DNA/RNA bases) 

760 Ring breathing tryptophan (proteins) 

810 Uric acid/ Phosphodiester, (RNA,DNA)/ Tyr 

830 Tyr 

854 C-C stretching of proline (collagen assignment) 

885 Phospholipids, collagen 

905 Protein/ glycogen 

920 Lactic acid / protein 

960 Cholesterol 

1008 Phe 

1030 Collagen /Phe 

1053 C-O stretching, C-N stretching (protein) 

1058 Lipids 

1086 Phosphodiester groups in nucleic acids 

1096 Lipids / nucleic acids 

1126 Uric acid / lipids 

1154 C-O stretching, C-N stretching (protein) 

1180 C, G (DNA/RNA), Tyr (protein) 

1210 Uric acid/ Amide III (collagen and protein) / Tyr / Phe 

1245/1280 Amide III (collagen and protein) 

1295 C 

1315 Amide III (α-helix) / lipids 

1334 Collagen 

1385 Lipids 

1397 Lipids / protein 

1365 Nucleic acids 

1415 A, G 

1435 Lipids 

1444 Lipids / collagen 

1457 CH2 deformation of lipids and proteins 

1506 Cys 

1536 Protein 

1576 Nucleic acids 
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Figure 4.33. 3-D PCA and 2-D LDA scatter plots for PC components of SERS bands at, 

667, 724, 740 and 760 cm-1. 
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Figure 4.34. 3-D PCA and 2-D scatter plots for the PC components of SERS bands at 854, 

920, 960, 1008, 1044 and 1096 cm-1. 
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Figure 4.35. 3-D PCA and 2-D LDA scatter plots for the PC components of SERS bands at 

1180, 1210, 1334 and 1295 cm-1. 
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Figure 4.36. 3-D PCA and 2-D LDA scatter plots for the PC components of SERS bands at 

1435, 1506, and 1457 cm-1. 
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Table 4.25. Probability of predicted classification results obtained using LOO-CV method 

for tumorous and healthy tissue differentiation. 

 

PCA-LDA 

Classification Results 
Healthy Tissue vs. Benign and Malignant Tumor 

Cryosectioned-PDMS Original Case Cross-validation Case 

Wavenumber (cm-1) Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

582-1563 79 70 73 79 70 73 

667 100 100 100 100 100 100 

724 100 100 100 100 100 100 

740 100 100 100 100 95 98 

760 100 100 100 100 100 100 

854 100 100 100 100 100 100 

920 100 100 100 100 100 100 

960 100 100 100 100 100 100 

1008 100 100 100 100 100 100 

1044 100 100 100 100 100 100 

1096 100 100 100 100 100 100 

1180 100 100 100 100 100 100 

1210 100 100 100 100 100 100 

1295 100 100 100 100 100 100 

1315 100 100 100 100 100 100 

1334 99 100 99 98 96 97 

1385 100 100 100 100 100 100 

 

The classification of tumorous tissues (benign and malignant) versus healthy tissues using 

PC-LDA methods in the spectral rage of 582 to 1563 cm-1 was obtained with the sensitivities 

of 79 per cent  and 79 per cent  and the specificities of 70 per cent  and 70 per cent , and the 

accuracy of 73 per cent, and 73 per cent for original and cross validated cases, respectively. 

To increase the classification accuracy, the PC components of each significant SERS bands 

obtained from the tissue samples was used in PC-LDA classification model. The sensitivity, 

specificity and accuracy of classification results belongs to healthy tissues and tumor 

biopsies was obtained high as 100 per cent  using PC components of each specific spectral 

bands except SERS band at 740 and 1334 cm-1. The PC components of the spectra at 740 

and 1334 cm-1 were classified with the accuracy of 98 per cent and 97 percent, respectively. 
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Two class predictions were also applied for the subgroups of tumorous tissue, benign and 

malignant, and healthy tissues. Table 4.26 gives the PC-LDA classification results for 

malignant, benign and healthy tissue samples using the bands at 617, 667, 724, 740, 760, 

854, 920, 960, 1008, 1044, 1096, 1180, 1210, 1295, 1315, 1334 and 1385 cm-1. 

 

Table 4.26.  Predicted values of classification results for malignant, benign and healthy 

tissues using PC-LDA algorithms. 
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Probability of correctly predicted performance of using PC-LDA classification algorithm for 

differentiation of tumorous and healthy tissues resulted with the sensitivities of 94, 79 and 

100 per cent and the specificities of 79, 71 and 77 per cent, and accuracy of 93, 76 and 91 

per cent for by using the data set in the spectral range of 582 to 1563 cm-1 between benign 

and malignant; benign and healthy, malignant and healthy, respectively.  

The discrimination results of the diagnostic combinations of benign tumor versus malignant, 

benign tumors versus healthy tissues, and malignant tumors versus healthy tissues were 

achieved with the sensitivity, specificity and accuracy of 100, 95 and 97 per cent based on 

the PC components of SERS band at 740 cm-1 while the posterior probabilities based on the 

SERS band at 1385 cm-1 was obtained with the sensitivities of 96, 96 and 97 per cent, 

respectively.  

4.3. IN SITU METHOD 

In situ approach is another sampling, which involves the synthesis of SERS active AgNPs 

in the homogenized tissue. In the first approach discussed in the previous section, where 

already synthesized AgNPs are added onto the sliced tissue, the AgNPs and the molecular 

tissue components come into contact with AgNPs containing colloidal suspension is placed 

onto the tissue surface. Another possibility in the first approach is that some water-soluble 

tissue molecular components may diffuse into colloidal suspension added onto the tissue 

surface and come into contact with the AgNPs during the droplet drying process dominating 

the SERS spectrum. In the in situ approach, as the AgNPs are synthesized in the 

homogenized tissue, the possibility of diverse number of molecules coming into contact with 

AgNPs and their aggregates may increase influencing the spectral richness.   

In the in situ approach, the influence of temperature the formation of AgNPs in homogenized 

tissue was also evaluated with or without a reducing agent. The attempt to reduce Ag+ ions 

without addition of a reducing agent was not successful resulting in a weak SERS 

enhancement indicating that the formation of AgNPs was not enough or complete. 

Hydroxylamine chloride (HONH2·HCl) was selected to form AgNPs to increase the 

enhancement effect in the homogenized tissue inspired by the wet chemical synthesis 

method [126]. The development of in situ method involved the optimization of AgNO3, 

HONH2·HCl and NaOH concentrations, and instrumental parameters during SERS 
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measurements. Then, the CV values of the spectra to optimize method parameters and the 

classification results by using PC-LDA model were obtained for three trials referring in 

terms of (i) intra-method reproducibility, (ii) inter-method reproducibility, (iii) accuracy, and 

(iv) SERS performance. Finally, the optimized method was evaluated using thyroid biopsies 

and the results were compared to the two other approaches. 

 Experimental Optimization 

4.3.1.1. Temperature  

First, the quality of the spectra obtained from the tissue sample by addition of only AgNO3 

solution at increasing temperatures at 25°C, 35°C, 45°C, 55°C, 65°C, 75°C and 85°C was 

observed. After the addition of a 50-µl volume from 3.55x10-2 M AgNO3 solution into the 

50-µl volume of homogenized tissue suspension, it was kept 30 minutes in a heated water 

bath.  Then, a 5 µl volume of the mixture was placed on the CaF2 slide and left to dry until 

SERS measurement. Figure 4.37 shows the averaged SERS spectra obtained at the 

increasing temperatures.  

 

 

 

Figure 4.37. Mean SERS spectra obtained from each step of heating process. 



90 

 

 

 

As seen, the spectral pattern and the band intensity are almost the same at all temperatures. 

Interestingly, SERS enhancement effect was obtained from each sample without using any 

reducing agent but the obtained SERS spectra had very low SNR indicating the insufficient 

formation of AgNPs. Thus, addition of a reducing agent to enhance the reduction of Ag+ 

ions in the tissue was evaluated. 

4.3.1.2. Chemical Concentration 

A range of concentrations of AgNO3, HONH2·HCl and NaOH was used to optimize the 

method. The influence of the addition order of chemical solution on SERS signal quality 

was also studied. Thus, two set of experiments were performed simultaneously by changing 

the order of incorporation of chemicals to observe the quality of SERS spectra.  

The different quantities and the addition order of the chemicals were optimized using two 

experimental set-ups. After the SERS spectra were collected, the mean SERS spectra were 

obtained as illustrated in Figure 4.38. Figure 4.38 (a) shows the optimized concentration and 

the addition order of the solution. The optimized in situ synthesis protocol includes the 

addition of a 10 µl volume of 3x10-2 M NaOH solution into a 10 µl volume of homogenized 

tissue suspension before addition a 10 µL volume of 4.36x10-1 M HONH2·HCl solution. 

Finally, a 10 µl volume of 3.55x10-2 M AgNO3 solution was added into the mixture. The 

optimized order of the addition of agent solutions was found to be as NaOH, HONH2·HCl 

and AgNO3, respectively.  Figure 4.38 (b) shows the mean spectra obtained by using the 

solution with the optimized concentration but the addition order was AgNO3, NaOH and 

HONH2·HCl, respectively. As seen, the addition order of the reagent solutions influences 

the spectral quality. The high SNR in Figure 4.38 (a) clearly indicates the better formation 

of AgNPs in the homogenized tissue mixture. It is clear that addition of reducing agent first 

increases the chance reduction of those Ag+ ions into AgNPs before their binding to other 

molecular species present in the complex tissue mixture.  
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Figure 4.38. Mean SERS spectra of liver, heart and breast tissue using the addition order as 

NaOH, HONH2·HCl and AgNO3 (a) and AgNO3, NaOH and HONH2·HCl (b).  

 

The AgNPs formed in the homogenized tissue were visualized with TEM. Figure 4.39 shows 

the representative AgNP TEM images formed in the tissue sample. As seen, the average size 

is around 25 nm, which can be considered as a suitable size for SERS enhancement. 
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Figure 4.39. TEM images of AgNPs synthesized in situ homogenized bovine liver tissue 

specimen. 

4.3.1.3. Acquisition of Point-by-Point versus Mapping 

Since the AgNPs in the sample are not homogenously distributed in the prepared tissue 

sample, it is important to realize the influence of point-by-point acquisition versus mapping 

on spectral reproducibility. Thus, the acquisition type was also studied for optimization. 

SERS spectra were acquired from one, five and ten randomly selected points and a 10x10 
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points grid from three different spots on the sample with three trials conducted at different 

times as seen in Figure 4.40. Then, the CV values were calculated as shown in Table 4. 27 

to compare their performance. 

 

 

 

Figure 4.40. SERS spectra acquired from random selection of one point, five points, ten 

points and mapping of 10x10 points grid on the tissue surface.  

 

 

Table 4.27. CV values of the spectra acquired from randomly selected one, five and ten 

points on the sample with three repetitions. 

 

  1st  Experiment 2nd Experiment 3rd  Experiment 
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Average Type of the 

acquisition 
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Average 
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Average 
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five points 
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ten points 
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In each trial, the CV value were variable but results were close to each other. Three 

experimental sets were performed at different times to observe the inter-method 

reproducibility. The average SERS spectrum for each experiment was obtained from the 

mean spectra of three spots and the comparison of the CV values is given in Table 4.28.  

 

Table 4.28. CV values obtained from the mean spectra of the spots with three repetitions. 
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The lowest CV values were obtained as 2.61 and 2.94 belongs to randomly selected ten 

points and five points acquisition methods, respectively. The results demonstrated that the 

lowest CV value belongs to ten randomly selected acquisitions. The random selection of ten 

points to collect spectral information was selected as the optimum acquisition method due 

to its lower CV value indicating the high inter-method reproducibility.  

Before proceeding with the further evaluation of the approach, the spectral quality of in situ 

and Crashed-liquefied methods was also evaluated. The Crashed-liquefied method involves 

the addition of colloidal AgNPs into the crashed and homogenized tissue.. 

 Comparison of Signal Quality of in situ and Crashed-Liquefied Methods 

The SERS spectra from ten randomly selected points were collected using each sampling 

method and their raw and mean spectra are presented on Figure 4.41. 

 



95 

 

 

 

 

Figure 4.41. Raw SERS spectra of tissue by using Crashed-liquefied (a), and in situ 

sampling methods (b), and their mean SERS spectra. 

 

As seen, it is clear that mean SERS spectra obtained from in situ method shows higher signal 

quality having high SNR and more spectral bands compared to the spectrum obtained from 

the Crashed-liqufied method. Many SERS band locations and intensities are different due to 

possibly differences in size and aggregation of colloidal nanoparticles, differences in the  

interaction of metal-analyte complexes, and differences in the position of  analytes relative 

to the SERS substrate [148-151]. Finally, the developed in situ approach was applied on the 

sixty four thyroid biopsies to evaluate its performance for cancer diagnosis.  
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 Evaluation of Thyroid Tumors with in situ Method 

The in situ SERS-based approach for thyroid tissue differentiation was applied to 31 normal 

and 33 abnormal pathologically evaluated tissue samples obtained from thyroid disease 

patients. Table 4.29 lists the tissue type, the collected spectra per sample and pathological 

diagnostic results of tissue specimen examined in pathology. According to optimized 

experimental parameters for in situ SERS-based tissue sampling method, the spectral 

information belongs to biopsy sample was collected by randomly selected ten points (10 

spectra for 64 biopsy samples, totally 640 spectra) using 15 mW (as adjusted in the software) 

of 830 nm laser equipped with 20× objective and 5s exposure time.   

 

Table 4.29. Pathological evaluation of the specimens, number of biopsies, and number of 

spectra obtained per biopsy. 

 

Sample type Samples Spectra 

Adenomatous nodule 16 160 

Follicular Adenoma 3 30 

Papillary Thyroid Carcinoma 9 90 

Hürthle cell adenoma 3 30 

Multifocal Papillary Thyroid Carcinoma 1 10 

Minimally Invasive Follicular Carcinoma 1 10 

Normal thyroid tissue 31 310 

Benign Tumor 22 220 

Malignant Tumor 11 110 

Total 64 640 

 

The collected spectra were pre-processed by using cosmic ray filtering and normalization 

between the 0 and 1 through the WIRE.4.1 software. Figure 4.42 shows the comparison of 

mean spectra obtained from healthy and pathologically evaluated as benign tissues. Each 

spectrum on the figure is the average of ten spectra arbitrarily collected from the sample. As 

seen, there are similarities between the tissues deemed to be healthy and benign. However, 

although the tissue samples thought to be healthy, it may still contain tumorous cells. This 

could be the one reason behind the spectral differences.  
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Figure 4.42. Mean SERS spectra of benign (n=22) and healthy (n=22) tissues using in situ 

approach. 

 

The spectral patterns within the tissue samples were similar whereas the differences in the 

variations of patterns were increased among the samples. The same preprocessing 

parameters were applied to the spectral data belonging to the malignant and healthy tissues. 

The mean spectra belong to the malignant tumor and surrounding tissues obtained as seen in 

Figure. 4. 43. 
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Figure 4.43. Mean SERS spectra of malignant (n=11) and healthy tissue specimen (n= 11) 

prepared with in situ SERS-based sampling method. 

 

After the spectral information of each biopsy sample was collected, the multi high 

dimensional data needed to be minimized by using PCA method which was also applied on 

the spectral data related to the Cryosectioned-PDMS thyroid study in the previous section. 

However, the question of “Should a biopsy sample be represented by ten spectra or a mean 
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of ten spectra in the PCA dimension reduction process?” should be clarified before 

proceeding to the text step. Thus, the multidimensional spectral dataset represented both by 

the ten spectra (10 spectra for each, totally 640 spectra, 640x1714) and by the average 

spectrum (64x1714) was reduced into new relative variants called as PCs. Twenty three 

significant PC vectors (eigenvalues greater than > 1) for representation by ten spectra 

(d=640x1714) and sixteen PC for representation by one averaged spectrum (d=64x1714) 

were extracted using the PCA, which are detailed in Table 4.30 and Table 4.31. 

 

Table 4.30. Total variance explained PC vectors with percentage of explained variation of 

PCs for 640x1714 dimensional spectral data set. 

 

Total Variance Explained 

PC Total 
%  of 

Variance 

Cumulative 

% 
PC Total 

%  of 

Variance 

Cumulative 

% 

1 1151.55 67.18 67.18 13 1.93 0.11 95.16 

2 326.34 19.04 86.22 14 1.71 0.1 95.26 

3 63.15 3.68 89.91 15 1.63 0.09 95.35 

4 25.49 1.49 91.40 16 1.46 0.09 95.44 

5 19.61 1.14 92.54 17 1.31 0.08 95.51 

6 15.22 0.89 93.43 18 1.27 0.07 95.59 

7 7.90 0.46 93.89 19 1.18 0.07 95.66 

8 6.59 0.38 94.27 20 1.11 0.06 95.72 

9 4.91 0.29 94.56 21 1.09 0.06 95.78 

10 3.58 0.21 94.77 22 1.08 0.06 95.85 

11 2.73 0.16 94.93 23 1.03 0.06 95.91 

 

 

Table 4.31. Total variance explained PC vectors with percentage of explained variation of 

PCs for 64 x 1714 dimensional spectral data set.  

Total Variance Explained 

PC Total %  of Variance 
Cumulative 

% 
PC Total %  of Variance 

Cumulative 
% 

1 1269.65 76.67 76.67 9 5.11 0.31 98.31 

2 188.7 11.39 88.06 10 4.36 0.26 98.57 

3 61.86 3.74 91.80 11 3.48 0.21 98.79 

4 53.36 3.22 95.02 12 2.95 0.18 98.96 

5 19.58 1.18 96.20 13 2.31 0.14 99.1 

6 12.57 0.76 96.96 14 1.78 0.11 99.21 

7 10.04 0.61 97.57 15 1.44 0.09 99.30 

8 7.16 0.43 98.00 16 1.19 0.07 99.37 
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The PC components related to each data set were scatter plotted as seen in the Figure 4.44. 

The variances in the data within the groups were detectable even though the PC clusters 

related to each data set did not separate well using unsupervised PCA analysis method. It 

should be noted that PCA considers generating directions that maximize the variance in a 

data set without using class labels while LDA differentiates the variability within the dataset 

of the sample groups and the variability between the sample groups by maximizing the 

components for class separation [122]. 

 

 

 

Figure 4.44. PCA scatter plots of two spectral data set, represented by ten spectra (a), and 

one averaged spectrum per biopsy (b), respectively. 

 

LDA classification algorithm was applied on PCs with LOO-CV method to differentiate the 

biopsy samples according to their PC components derived from the representative of spectral 

data. Two SERS spectra of healthy tissue, three spectra of benign tumor and one spectra of 

malignant tumor sample was discarded from the SERS data before PC-LDA analysis due to 

relatively low SNR. The LDA scatter plot of the PC components of the spectral data set 

represented by one averaged spectrum, and ten spectra obtained as shown in Figure 4. 45.   
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Figure 4.45. 2-D LDA scatter plots of SERS data set represented by one averaged 

spectrum (a), and ten spectra (b). 

 

The predicted classification results of using PC-LDA differentiation model on the spectral 

data set represented by one averaged spectrum and ten spectra were obtained as detailed in 

Table 4.32 and Table 4. 3, respectively. The number of 1, 2 and 3 are the labels of the healthy 

tissue, benign tumor and malignant tumor, respectively. 

 

Table 4.32. Classification results performing PC-LDA discrimination algorithms on the 

PCs obtained by ten spectra-representation (d=64x1714). 

 

 

Predicted Group 

Membership Total 

1.00 2.00 3.00 

Original 

Count 

1.00 27 2 2 31 

2.00 5 17 0 22 

3.00 1 1 9 11 

% 

1.00 87.1 6.5 6.5 100.0 

2.00 22.7 77.3 0.0 100.0 

3.00 9.1 9.1 81.8 100.0 

Cross- 

validated 

Count 

1.00 24 2 5 31 

2.00 6 16 0 22 

3.00 3 3 5 11 

% 

1.00 77.4 6.5 16.1 100.0 

2.00 27.3 72.7 0.0 100.0 

3.00 27.3 27.3 45.5 100.0 
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Table 4.33. Classification results performing PC-LDA discrimination algorithms on the  

PCs obtained by one averaged spectrum-representation (d=640x1714). 

 

 
Predicted Group Membership 

Total 

1.00 2.00 3.00 

Original 

Count 

1.00 294 21 1 316 

2.00 25 159 27 211 

3.00 0 10 99 109 

% 

1.00 93.0 6.6 .3 100.0 

2.00 11.8 75.4 12.8 100.0 

3.00 0.0 9.2 90.8 100.0 

Cross-validated 

Count 

1.00 293 22 1 316 

2.00 28 141 42 211 

3.00 0 12 97 109 

% 

1.00 92.7 7.0 .3 100.0 

2.00 13.3 66.8 19.9 100.0 

3.00 0.0 11.0 89.0 100.0 

 

82.8 per cent of the original grouped cells and 70.3 per cent of cross-validated grouped cells 

are correctly classified with an average spectrum per biopsy sample, and 86.8 per cent of 

original grouped cells and 86.8 per cent of cross-validated grouped cells are correctly 

classified with ten spectra per biopsy sample. The predicted classification results show that 

the ten spectra per biopsy sample have a higher classification accuracy compared to an 

average spectrum. Thus, representative of ten spectra per biopsy was used to derive PC 

loading plots as seen in Figure. 4.46 and Figure 4.47. The first eight loading PC vectors 

indicate the most important diagnostic variables related to the differences in the SERS data. 

In addition, the positive and negative PC scores in the loadings underlie the biological 

differences representative of tissue samples. 

The loading vectors were obtained to extract the significant differences in the spectra. Their 

respective negative (down arrow) and positive (up arrow) loadings originated from the 

variations between the spectra obtained from neoplasm and healthy tissue. It should be noted 

that the detailed information about the variations among the tissues is not the aim of this 

thesis but the differences can be examined in depth related to the tumor types. The PC 

loadings have bands which can be attributed to biochemical components such as nucleic 
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acids (687 cm-1), proteins (610, 675, 1005, 1170, 1278, 1452, 1656 and 1536 cm-1), and 

lipids (425, 1058, 1100 and 1397 cm-1).  

 

 

 

Figure 4.46. First four loading PC vectors calculated by PCA. 
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Figure 4.47. Last four loading PC vectors calculated by PCA. 

 

Then, the PC coefficients placed in REGFR factors were extracted using the full spectral 

range in PC-LDA model. In addition, PCs related to SERS bands at 425, 610, 675, 687, 

1005, 1058, 1100, 1170, 1278, 1397, 1452, 1536 and 1656 cm-1 appeared on the loading 

vectors were also used in PC-LDA classification model, and the PCA and LDA scatter plots 

were obtained as seen in the Figure 4. 48-4.51. 
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Figure 4.48. 3-D PCA and 2-D LDA scatter plots related to SERS bands at 425, 610, 675, 

860 and 1005 cm-1. 
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Figure 4.49. 3-D PCA and 2-D LDA scatter plots related to SERS bands at 1058,1100, 

1170 and 1278 cm-1. 
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Figure 4.50. 3-D PCA and 2-D LDA scatter plots related to SERS bands at 1382, 1397, 

1452 and 1536 cm-1. 
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Figure 4.51. 3-D PCA and 2-D LDA scatter plots related to SERS bands 1656 cm-1. 

 

Even though PCA clusters are well separated for many relative SERS bands, LDA is used 

to derive a prediction value to differentiate the tissue types. The predicted classification 

results of PC components of the SERS spectra respective to tumorous (benign, malignant) 

and healthy (surrounding) tissues are detailed in Table 4.34. 

The classification of tumorous and healthy tissues performing PC-LDA model on the spectra 

in the rage of 400 to 1800 cm-1 was obtained with the sensitivities of 92 per cent and 92 per 

cent and the specificities of 81 per cent and 81 per cent, and the accuracy of 87 per cent, and 

87 per cent, respectively, indicating that the classification of normal and tumourous tissues 

is possible with a high diagnostic efficacy but still needs to be increased. Thus, the PC 

components of sigificant SERS bands obtained from the tissue samples was used in PC-LDA 

classification model. The sensitivity, specificity and accuracy of classification results 

belongs to healthy tissues and tumor biopsies was obtained 100 per cent using PC 

components of the bands at 425, 610, 860, 1005, 1170, 1382 and 1452 cm-1 while the 

tumorous and healthy tissues were classified with the sensitivities of 92, 99, 97, 95, 100, 99, 

99, and 90 per cent and the specificities of 100, 100, 99, 98, 98, 99, 98 and 90 per cent, and 

accuracy of 96, 100, 98 96, 99, 99, 98 and 90 per cent for the bands at 675, 860, 1058, 1100, 

1278, 1397, 1536 and 1656 cm-1, respectively. 
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Table 4.34. Probability of predicted classification results obtained using LOO-CV method 

for tumorous and healthy tissue differentiation. 

 

PC-LDA 

Classification 

Results 

Healthy Tissue versus Benign and Malignant Tumors 

in situ Original Case Cross-validation Case 

Wavenumber 

(cm-1) 
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

400-1800 92 81 87 92 81 87 

425 100 100 100 100 100 100 

610 100 100 100 100 100 100 

675 100 100 100 92 100 96 

860 100 100 100 99 100 100 

1005 100 100 100 100 100 100 

1058 100 99 100 97 99 98 

1100 97 98 98 95 98 96 

1170 100 100 100 100 100 100 

1278 100 99 99 100 98 99 

1382 100 100 100 100 100 100 

1397 99 99 99 99 99 99 

1452 100 100 100 100 100 100 

1536 99 99 99 99 98 98 

1656 91 91 91 90 90 90 

 

The two class predictions were also applied for the subgroups of tumor (benign and 

malignant) and healthy tissues. Table 4.35 gives the PC-LDA classification results for 

malignant, benign and healthy tissue biopsy samples at the spectral bands of 425, 610, 675, 

687, 1005, 1058, 1100, 1170, 1278, 1397, 1452, 1536 and 1656 cm-1. 

The probability of correctly predicted performance of using PC-LDA classification 

algorithm for differentiation of tumorous and healthy tissues was resulted in the sensitivities 

of 94, 92 and 100 per cent and the specificities of 79, 88 and 99 per cent, and accuracy of 
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87, 91 and 100 per cent by using the spectral range of 400 to 1800 cm-1 between benign and 

malignant; benign and healthy, malignant and healthy tissues, respectively. 

The sensitivity, specificity and accuracy of classification results belongs to the healthy 

tissues and tumor biopsies for each diagnostic combination was obtained 100 per cent using 

PC components of the bands at 425, 610, 1005, 1170, 1382 and 1536 cm-1.  

 

Table 4.35. Predicted values of classification results for malignant, benign and healthy 

tissues using PC-LDA algorithms. 
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0
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 94 92 100 SN 100 100 100 

1170 
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ig
n

 T
u

m
o

r 

79 88 99 SP 100 100 100 

87 91 100 AC 100 100 100 

425 

100 100 100 SN 100 100 100 

1278 100 100 100 SP 97 100 100 

100 100 100 AC 99 100 100 

610 

100 100 100 SN 100 100 100 

1382 100 100 100 SP 100 100 100 

100 100 100 AC 100 100 100 

675 

95 81 100 SN 100 100 99 

1397 100 94 100 SP 100 97 100 

97 87 100 AC 100 99 100 

860 

100 100 81 SN 100 100 100 

1452 100 98 100 SP 99 99 100 

100 99 87 AC 100 100 100 

1005 

100 100 100 SN 100 100 100 

1536 100 100 100 SP 100 100 100 

100 100 100 AC 100 100 100 

1058 

100 97 100 SN 100 100 90 

1656 100 97 100 SP 100 100 95 

100 97 100 AC 100 100 93 

1100 

100 95 100 SN 

Malignant  Benign  

   

100 100 100 SP    

100 98 100 AC    

   Benign  Malignant        

 

The discrimination results of the PC components derived from the significant bands at 675, 

1278 and 1452 cm-1 for the classification of benign and malignant tumors were achieved 
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with the sensitivity of 95, 100 and 100 per cent, the specificity of 100, 97 and 99 per cent, 

and accuracy of 97, 99 and 100 per cent, respectively.  

After REGR factors of the bands at 860, 1058, 1100, 1397 and 1452 cm-1 used in PC-LDA 

algorithms, the benign tumors were well differentiated from the healthy tissues with the 

diagnostic sensitivity of 81, 100, 97, 95, 100 per cent, the specificities of 100, 94, 98, 97, 

100, 97 and 99 per cent, and accuracy of 87, 99, 97, 98, 99 and 100 per cent, respectively. 

 Finally, the malignant tumors and healthy tissues was classified with the sensitivities of 99 

and 90 per cent, the specificities of 100 per cent and 95 per cent, and accuracy of 100 and 

93 per cent for the SERS bands at 1397 an 1656 cm-1, respectively.  

4.4. CRASHED-LIQUEFIED METHOD 

The Crashed-liquefied method developed in our laboratory earlier, which was used to 

differentiate brain [152] and kidney tissues [128], was also applied on the thyroid biopsies 

in this thesis. In our previous studies, the colloidal c-AgNP suspension was used. In this 

thesis, colloidal h-AgNP suspension was used for the reasons why explained above [132, 

133]. The concentration of colloidal AgNP suspension used in this thyroid study was 

optimized before evaluating with the real biopsy samples. 

 Diagnosis of Kidney Tumors 

The identification and the classification of 40 normal and 40 abnormal pathologically 

evaluated tissue samples obtained from kidney cancer patients at different stages were 

evaluated. The pattern recognition algorithm, PC-LDA was used for the evaluation of the 

tissue samples. The accuracy of the classification results was predicted using LOO-CV 

method.  

SERS spectra were recorded from each type of normal and cancerous tissues. The mapping 

method of WIRE 2.0 software was applied to collect at least 10 spectra from randomly 

selected points from the dried sample composed of homogenized tissue and the colloidal 

AgNPs. The pathological stages of the cancer tissues according to TNM (tumor, node, and 

metastasis) classification were T1a, T1b, T2a, T2b, and T3a for RCC and T3 for TCC. The 
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mean spectra of RCC tissue from the different stages T1a (120), T1b (160), T2a (30), T2b 

(10), T3a (60) with the mean spectra of TCC tissue from the T3 (20) stage tumor and the 

mean spectra of normal tissues (400) were normalized to the integrated area under the curve 

in the 400-1800 cm-1 range to enable a better comparison of the spectral shapes and the 

relative band intensities among the different tissue samples. Figure 4.52 shows the 

comparison of the normalized average SERS spectra from the normal, T1 (T1a-T1b), T2 

(T2a-T2b), and T3 (T3a) stage cancer tissues. The major SERS bands, which can be 

attributed to biochemical constituents such as nucleic acids (478, 560, 723, 1086, 1334 cm-

1), proteins (524, 657, 804, 1031, 1050, 1214, 1300, 1395, 1443, 1585, 1704 cm-1), 

carbohydrates (905 cm-1) and lipids (961, 1128, 1443 cm-1), were obtained from normal and 

abnormal tissue subjects.  

 

 

 

Figure 4.52. Mean SERS spectra obtained from normal tissues and cancerous tissues at T1 

(T1a-T1b), T2 (T2a-T2b), T3 (T3a) stages. 

 

Figure 4.54 shows that the normalized intensities of SERS bands at 478, 560, 723, 961, 1031, 

1086, 1128, 1214, 1334, 1443, 1585 and 1704 cm-1 are higher for the tumor tissues than 

those of the normal tissues while the intensities of the SERS bands at 657, 1050, and 1395 

cm-1 are higher on the spectra obtained from the normal tissues. The statistical significance 

of differences in the band intensities between the different pathology groups and normal 

group were identified using one-way ANOVA with a Tukey post-hoc test (significance level 
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p < 0.05). Error bars represent the standard deviation for SERS spectra obtained from each type of 

tissue. Abbreviated tentative assignments of Raman bands was placed under each column chart. 

The significant decrease and increase in the amount of individual biomolecules is relative to 

the total SERS active components in the different tissue groups. These spectral intensity 

differences for the different pathological tissues and normal tissues could be evaluated for a 

better understanding of molecular changes between malignant and normal tissue types. As 

the detailed tentative assignments of Raman bands was established in Table 4.24. The band 

intensities at 478, 723, and 1334 cm-1, which are primarily related to nucleic acids, were 

found to be increased in cancer groups, indicating that the uncontrolled fast replication of 

DNA in cancer cells is associated with an increased nucleic acid content in cancer cells, and 

the band intensity at 560 and 1086 cm-1 was obtained more intense in T3 stage of tumor 

tissues than the normal and T1-T2 stage of tumor tissues [153]. The SERS band at 961 cm-

1, which is associated with cholesterol, was found more intense for cancer tissues, especially 

T3 stage tumor sample. This increased intensity may be attributed to an increased cholesterol 

synthesis in cancer tissues.[154, 155] Phenylalanine related Raman bands at 1031, 1214, 

1585 and 1704 cm-1 in cancer groups are associated with an increased amount in the 

phenylalanine contents relative to the total Raman-active components in cancer tissues [156, 

157]. Thus, the study about the rate of uptake of amino acids, which is higher in cancer cells 

than normal supports the increased amino acids contents in malignant tissue [158]. The 

increased band intensity at 1128 cm-1 in cancer groups may be attributed to a higher 

percentage of fatty acid and lipid concentration in tumor tissue. The studies comprising the 

high levels of fatty acid synthesis related to tumor aggressiveness is consistent with our study 

results [159-161]. The SERS band of 1443 cm-1, which is probably characteristic of collagen 

and phospholipids show a higher intense signal in malignant tissues, indicating that the 

collagen synthesis significantly increased in the cancerous tissue [162]. The SERS bands at 

657, 1050, and 1395 cm-1, enhanced in normal tissue are assigned to protein, and the SERS 

band of 524, 804 and 1300 cm-1, which are probably defined as proteins or lipids, were 

obtained more intense in normal tissues compared to T1 and T3 stage tumor tissues even 

though the cancerous tissue in T2 stage was the most intense one. These results can be 

explained as the same SERS bands but different tentative assignments (serine, glutamic acid 

or lipids) for each tissue groups. In addition, the intensity of SERS band at 905 cm-1, which 

is associated with protein or glycogen, was greater for normal tissues than tumor tissues in 
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T3 stage, whereas the greatest SERS band intensity was obtained in T1 and T2 stage of 

tumor tissues.  

Renal cell carcinoma staging has been used as a significant prognostic factor for kidney 

cancer patients because the survival rate of patients with renal cancer is reduced from early 

stage to the late stage. PCA-LDA model was built to predict classification of tissue types 

and to improve the diagnostic utility of kidney cancer patients. The SERS spectra acquired 

from normal and abnormal tissues were processed for PCA-LDA analysis after the intensity 

of SERS spectra was scaled within a similar range using min-max normalization method to 

compare in a more precise manner relative band intensities among normal and cancerous 

tissue samples with different tumor stages. The significant PCs obtained using one-way 

ANOVA comparison test (p< 0.05) was used in LDA to generate a diagnostic assay. The 

scatter plot of the posterior probabilities based on the linear discriminant scores of the normal 

and the cancerous tissues using PCA-LDA diagnostic algorithm is provided on Figure 4.53 

and Figure 4.55. 

 

 

 

Figure 4.53. Scatter plot of posterior probabilities for the classification of tumor tissues and 

normal tissues. 
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Figure 4.54. Column plots of the night teen significant SERS band intensities for the four tissue 

types (normal, T1, T2 and T3 stage cancer) (a) 478 cm-1, (b) 524 cm-1, (c) 560 cm-1, (d) 657 cm-1, 

(e) 723 cm-1, (f) 804 cm-1, (g) 905 cm-1, (h) 961 cm-1, (i) 1031 cm-1, (j) 1050 cm-1, (k) 1086 cm-1,(l) 

1128 cm-1,(m) 1214 cm-1, (n) 1300 cm-1, (o) 1334 cm-1, (p) 1395 cm-1, (r) 1443 cm-1, (s) 1585 cm-1 

and (t)1704 cm-1. 
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Figure 4.55. 3-D scatter plot of diagnostic probabilities of normal tissues and tumor tissues 

in T1, T2, and T3 stages. 

 

The 3-D scatter plot of the diagnostic probabilities of LD1, LD2 and LD3 discriminants were 

shown in the Figure 4.61, illustrating a good classification among the different tumor stages 

and the normal tissue groups. Each dot on the plot is associated with the SERS spectra 

acquired from each type of tissue. The LDA scatter plot of the classification model 

developed to differentiate the cancerous and the normal tissue samples shows a good 

discrimination among normal and abnormal tissues in different tumor stages. The diagnostic 

performance of PCA-LDA models on the classification of tissue types has obtained with an 

improved accuracy by the selection of significant PCs and difference SERS bands (p<0.05). 

The discrimination results based on SERS spectra using LOO-CV method to evaluate the 

performance of the PCA-LDA models for the classification of different tumor stages in terms 

of sensitivity, specificity and 95 per cent confidence interval of accuracy was displayed in 

Table 4.36.  
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Table 4.36. LOO-CV Classification results of normal tissues and tumor tissues (T1a, T1b, 

T2a, T2b, T3a stages of RCC; T3 stage of TCC). 

 

 T1b T2a T2b T3 T3a Normal 
LOOCV-

CR 

T1a 

100 100 65 89 100 65 SN 

100 100 100 100 100 70 SP 

100 100 88 93 100 69 AC 

 T1b 

100 100 100 100 100 SN 

100 100 100 100 100 SP 

100 100 100 100 100 AC 
  

T2a 

100 100 100 100 SN 
  100 100 100 100 SP 
  100 100 100 100 AC 
  

 

T2b 

88 100 80 SN 

Classification Results  

(CR) 

43 100 84 SP 

57 100 83 AC 

Sensitivity % (SN) 

 

T3 

100 70 SN 

98 60 SP 

Specificity % (SP) 
98 62 AC 

 T3a 

100 SN 

Accuracy     (AC) 
100 SP 

100 AC 

 

The T1a stage tumors related to PCs, which were subtracted from SERS spectra, were well 

differentiated from T1b, T2a, T2b and T3a stage of RCC, T3 stage of TCC and the normal 

tissues with the diagnostic sensitivities of 100 per cent , 100 per cent , 65per cent , 100per 

cent , 8 9per cent  and 65 per cent , the specificities of 100 per cent  from all type of tumor 

stages and 70 per cent  from the normal subjects, and the accuracy of 100 per cent , 100 per 

cent , 88 per cent , 93 per cent , 100 per cent  and 69 per cent , respectively. The 

discrimination results of the diagnostic combinations of T1b stage tumor versus T2a, T2b 

and T3a stage of RCC, T3 stage of TCC and normal tissues, and T2a stage tumor versus 

T2b, T3a stage of RCC, T3 stage of TCC and the normal tissues were achieved with the 

sensitivity, specificity and accuracy of 100 per cent  while the posterior probabilities of T2b 

stage tumor sample versus T3a stage of RCC, T3 stage of TCC and normal tissues were 
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obtained with the sensitivities of 88 per cent , 100 per cent  and 80 per cent , the specificities 

of 43 per cent , 100 per cent  and 84 per cent  , and the accuracy of 57 per cent, 100 per cent  

and 83 per cent , respectively. The T3a stage tumor subjects versus normal samples were 

diagnosed with the sensitivity, specificity, and accuracy of 100 per cent , and T3 stage tumors 

of TCC were classified with the sensitivity of 100 per cent and 70 per cent, the specificity 

of 98 per cent and 60 per cent, and the accuracy of 98 per cent and 62 per cent. 

The T1, T2, and T3 stage tumors with normal tissue were also differentiated using PC-LDA 

models of the spectral data obtained from the normal and the abnormal tissue samples. As 

compared to the classification results in Table 4.37 were obtained  among the different tissue 

classes with a diagnostic sensitivity of 89, 96, 94, 70, 97 and 98 per cent, specificity of 100, 

100, 96, 83, 94 and 77 per cent, and accuracy of 99, 97, 95, 81, 95 and 85 per cent, 

respectively, for the classification between T1 and T2 stage cancer; T1 and T3 stage cancer; 

T1 stage cancer and normal tissues; T2 and T3 stage cancer; T2 stage cancer and normal 

groups; T3 stage cancer and normal tissue, respectively.  

 

Table 4.37. LOO-CV classification results of normal and cancerous tissues in T1, T2 and 

T3 tumor stages. 

 

 T1 T2 

Sensitivity % (SN) 

T3 T2+T3 Specificity % (SP) 

Accuracy % (AC) 

Normal 

94 97 SN 98 98 

96 94 SP 77 86 

95 95 AC 85 90 

 T1 

89 SN 96 93 

100 SP 100 100 

85 AC 97 91 

 

 T2 

SN 70 

  SP 83 

 AC 81 

 

The classification of tumor tissues in advanced tumor stages (T2-T3) with tumor tissues in 

early stage (T1), and normal tissues was obtained with the sensitivities of 93 and 100 per 
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cent and the specificities of 98 and 86 per cent, and the accuracy of 91, and 90 per cent, 

respectively, indicating that the classifying of normal tissues, early stage of tumor tissues 

and advanced stage of tumor tissues is possible with a high diagnostic efficacy.  

 Diagnosis of Thyroid Tumors 

The concentration of colloidal h-AgNP suspension needed to be optimized before evaluating 

with thyroid biopsies. The final suspension concentration obtained by using the 

hydroxylamine chloride reduction method was named as 1×. Then, the suspension was 

concentrated to 8×, 16× and 32×, and each concentrated suspension was mixed with the 

same volume of the homogenized tissue suspension. Figure 4.56 shows the comparison of 

the SERS spectra obtained at increasing colloidal suspension concentration.  

Table 4.38 shows type of tissues, the number of tissue samples and spectra collected from 

each tissue sample 

 

Table 4.38. Pathological evaluation of the specimens, number of biopsies, and number of 

spectra obtained per biopsy 

 

Sample type Samples Spectra 

Normal thyroid tissue 31 310 

Adenomatous nodule 16 160 

Follicular Adenoma 3 30 

Papillary Thyroid Carcinoma 9 90 

Hürthle cell adenoma 3 30 

Multifocal Papillary Thyroid Carcinoma 1 10 

Minimally Invasive Follicular Carcinoma 1 10 

Total 64 640 
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Figure 4.56. SERS spectra of tissue using 8× (a), 16× (b), and 32× (c) concentrated 

colloidal AgNP suspension. 

 

A high quality SERS spectra with the use of 32× concentrated suspension was obtained. 

Thus, 32× concentrated AgNP suspension was used during for the rest of the study.   

Figure 4.57 and Figure 4.58 show the mean spectra from the collected spectra of benign, 

malignant and health tissues. Cosmic ray filtering and normalization of the data between the 

0 and 1 were obtained through the WIRE.4.1 software. The inspection of Figure 4.57 reveal 

that the spectral patterns of benign and healthy tissues within the same sample are similar 

while the variations in the pattern were increasing among the samples.  

 

. 
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Figure 4.57. Mean SERS spectra of benign tumors (n=22) and healthy tissue specimen (n= 

22) prepared using Crashed-liquefied tissue sampling method. 
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Figure 4.58. Mean SERS spectra of malignant tumors (n=11) and healthy tissue specimen 

(n= 11) prepared using crashed-liquefied tissue sampling method. 

 

Malignant Tumor

Healthy Tissue

Malignant Tumor

Healthy Tissue
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Before using that multidimensional data in PCA to reduce the dimension, there is a prior 

question to be answered similar to the question asked in the previous section. “Would be a 

biopsy sample represented by the ten spectra or a mean of ten spectra in the classification 

model?” Thus, a comparison of using one averaged spectrum and ten spectra for Crashed-

liquefied sampling method was also performed using PCA-LDA classification model. The 

multidimensional spectral dataset represented both by the ten spectra (10 spectra for each, 

totally 640 spectra, 640x1714) and by the average spectrum (64x1714) was reduced into 

new relative variants as PCs.  Nineteen significant PC components (eigenvalues greater than 

> 1) (for 640x1714 dimension) and eighteen PC components (for 62x1714 dimension) were 

extracted by using the PCA as illustrated in Table 4.39 and Table 4.40. 

 

Table 4.39. Total variance explained PC vectors with percentage of explained variation of 

PCs for 620x1714 dimensional spectral data set. 

 

Total Variance Explained 

PC Total 
%  of 

Variance 

Cumulative 

% 
PC Total 

%  of 

Variance 

Cumulative 

% 

1 934.29 54.51 54.51 7 13.85 0.81 93.19 

2 422.58 24.65 79.16 8 10.74 0.63 93.81 

3 121.57 7.09 86.26 9 7.12 0.42 94.23 

4 58.09 3.39 89.65 10 5.6 0.33 94.56 

5 25.56 1.49 91.14 11 4.14 0.24 94.8 

6 21.29 1.24 92.38 12 3.64 0.21 95.01 

7 13.85 0.81 93.19 13 2.6 0.15 95.16 

8 10.74 0.63 93.81 14 2.42 0.14 95.3 
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Table 4.40. Total variance explained PC vectors with percentage of explained variation of 

PCs for 64x1714 dimensional spectral data set. 

 

Total Variance Explained 

PC Total 
%  of 

Variance 

Cumulative 

% 
PC Total 

%  of 

Variance 

Cumulative 

% 

1 1010.32 59.08 59.08 10 5.93 0.35 98.21 

2 421.00 24.62 83.7 11 4.28 0.25 98.46 

3 111.24 6.51 90.21 12 3.62 0.21 98.67 

4 50.93 2.98 93.19 13 2.65 0.15 98.82 

5 27.94 1.63 94.82 14 2.06 0.12 98.94 

6 17.79 1.04 95.86 15 1.83 0.11 99.05 

7 14.34 0.84 96.7 16 1.33 0.08 99.13 

8 11.2 0.66 97.35 17 1.16 0.07 99.20 

9 8.64 0.51 97.86 18 1.12 0.07 99.26 

 

The three REGR factors derived by using PCA performing on the spectra in the range of 400 

to 1800 cm-1 were scatter plotted as shown in Figure. 4.59.  
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Figure 4.59. PCA scatter plots of two spectral data set (d=640x1714 and d=64x1714, 

respectively) 

 

The PC clusters of each SERS data were not separated well, which might be due to the 

increased variances within the clusters. Then, LDA classification algorithm was applied on 

PCs with LOO-CV method to provide a predicted classification result explained with the 

terms of sensitivity, specificity and accuracy. The LDA scatter plots as shown in Figure 4.60 

was obtained for each SERS data set. 

 

 

 

Figure 4.60. 2-D LDA scatter plots for the spectral data set represented by one averaged 

spectrum (left), and ten spectra (right). 



126 

 

 

The predicted classification results of using PC-LDA differentiation model on the spectral 

data represented by one averaged spectrum and ten spectra were obtained as detailed in Table 

4.41 and Table 4.42, respectively. The number of 1, 2 and 3 are the labels healthy tissue, 

benign tumor and malignant tumor, respectively. 

 

Table 4.41. Classification results of using PC- LDA discrimination algorithms performed 

on the PCs extracted from the spectral data (d=62x1714). 

 

 

Predicted Group  

Membership 
Total 

1.00 2.00 3.00 

Original 

Count 

1.00 22 6 3 31 

2.00 6 15 1 22 

3.00 0 1 10 11 

% 

1.00 71.0 19.4 9.7 100.0 

2.00 27.3 68.2 4.5 100.0 

3.00 0.0 9.1 90.9 100.0 

Cross- 

validated 

Count 

1.00 22 6 3 31 

2.00 6 15 1 22 

3.00 0 1 10 11 

% 

1.00 71.0 19.4 9.7 100.0 

2.00 27.3 68.2 4.5 100.0 

3.00 0.0 9.1 90.9 100.0 
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Table 4.42. Classification results of using PC- LDA discrimination algorithms performed 

on the PCs extracted from the spectral data (d=620x1714). 

 

 

Predicted 

Group  

Membership Total 

1.00 2.00 3.00 

Original 

Count 

1.00 191 83 34 308 

2.00 37 169 11 217 

3.00 16 9 84 109 

% 

1.00 62.0 26.9 11.0 100.0 

2.00 17.1 77.9 5.1 100.0 

3.00 14.7 8.3 77.1 100.0 

Cross- 

validated 

Count 

1.00 191 83 34 308 

2.00 37 169 11 217 

3.00 16 9 84 109 

% 

1.00 62.0 26.9 11.0 100.0 

2.00 17.1 77.9 5.1 100.0 

3.00 14.7 8.3 77.1 100.0 

 

73.4 per cent of original grouped cells and 73.4 per cent of cross-validated grouped cells are 

correctly classified for the data with an average spectrum per biopsy sample, and 70 per cent 

of original grouped cells and 70 per cent of cross-validated grouped cells are correctly 

classified for SERS data with ten spectra per biopsy sample. The predicted classification 

results with an average spectrum per biopsy sample have a higher degree of accuracy than 

the spectral data with ten spectra per biopsy sample. Thus, an average spectrum representing 

the each sample prepared by using Crashed-liquefying method was selected as the optimum 

parameter for the next coming applications.  

The first eight loading PC vectors as seen in Figure 4.61 and Figure 4.62 were extracted 

using PCA to figure out the variances between the variables (wavenumber) in the SERS data 

for tumorous and healthy tissues coloring rows to indicate the most important diagnostic 

variables related to differences in the spectra.  
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Figure 4.61. First four loading PC vectors calculated by PCA. 
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Figure 4.62. Last four PC loading plots. 

 

The prominent spectral variations on the loadings can be assigned to the biochemical 

components such as nucleic acids (732, 805, 1410 and 1578 cm-1), proteins (830, 905, 1002, 

1047, 1180 and 1285) and 1506 cm-1), metabolites (1126 cm-1), and lipids (548, 1126 and 

1448 cm-1).  After the REGFR factors extracted by using PCA applied on the specific bands 

at 475, 548, 732, 805, 830, 905, 1002, and 1047 cm-1 were  used in the PC -LDA 
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classification algorithms, and the scatter plot of PCA and LDA were obtained as seen in 

Figure 4.63- 4.65. 

 

 

 

Figure 4.63. 3-D PCA scatter plot belongs to SERS bands at 475, 548, 732, 805, 830, 905, 

and 1002 cm-1. 
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Figure 4.64. 3-D PCA scatter plot belongs to SERS bands at 1047, 1126, 1180 and 1224 

cm-1. 
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Figure 4.65. 3-D PCA and 2-D LDA scatter plots related to SERS bands at 1295, 1342, 

1410 and 1448 cm-1. 



133 

 

 

The classification of original and cross-validation cases of tumorous and healthy tissues 

using PC-LDA methods on the SERS data set in the spectral rage of 400 to 1800 cm-1was 

obtained with the sensitivities of 79 and 79 per cent and the specificities of 70 and 70 per 

cent, and the accuracy of 73 per cent, and 73, respectively. Thus, the PC components of 

sigificant SERS bands obtained from the tissue samples was used in PC-LDA classification 

model to increase the classification accuracy. Table 4.43 shows the performance results after 

using specific spectra regions belong to the biopsies. 

 

Table 4.43. Probability of predicted classification results obtained using LOO-CV method 

for tumorous and healthy tissue differentiation. 

 

PCA-LDA 

Classification 

Results 

Benign and Malignant Tumors vs.  Healthy Tissue 

Crashed-Liquefied 

Method 
Original Case Cross-validation Case 

Spectral Range/ 

Raman bands (cm-1) 
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

400-1800 79 70 73 79 70 73 

548 100 100 100 100 100 100 

732 100 100 100 100 100 100 

805 100 100 100 100 100 100 

830 100 100 100 100 100 100 

905 96 88 93 96 88 93 

1002 100 100 100 100 100 100 

1047 100 100 100 100 100 100 

1126 91 78 86 91 78 86 

1180 99 95 97 99 95 97 

1224 95 78 88 95 78 88 

1295 100 100 100 100 100 100 

1342 100 100 100 100 100 100 

1410 100 100 100 100 100 100 

1448 100 100 100 100 100 100 

1578 89 95 91 89 95 91 
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The PCs of the bands at 548, 732, 805, 830, 1002, 1047, 1295, 1342, 1410 and 1448 cm-1 

were discriminated with the accuracy of 100 per cent while the tumorous and healthy tissues 

was classified with the sensitivities of 96, 91, 99, 89 and 95 per cent and the specificities of 

88, 78, 95, 95 and 78 per cent, and accuracy of 93, 86, 97, 91 and 88 per cent for the bands 

at 905, 1126, 1180, 1578 and 1224 cm-1, respectivly. 

The two class predictions were also applied for the subgroups of tumorous tissue, benign 

and malignant, and healthy tissues. Table 4.44 gives the PC-LDA classification results for 

malignant, benign and healthy tissue biopsy samples performed on the SERS data in the 

spectral range in which bands at 548, 732, 805, 830, 1002, 1047, 1126, 1180, 1224, 1295, 

1342, 1410, 1448 and 1578 cm-1. 

The probability of correctly predicted performance of using PC-LDA classification 

algorithm for differentiation of tumorous and healthy tissues was resulted with the 

sensitivities of 94, 79 and 100 per cent and the specificities of 79, 71 and 77 per cent, and 

accuracy of 93, 76 and 91 per cent for by using the SERS data set in spectral range of 582 

to 1563 cm-1 between benign and malignant; benign and healthy, malignant and healthy, 

respectively.  

The sensitivity, specificity and accuracy of classification results belongs to the healthy 

tissues and tumor biopsies for each diagnostic combination was obtained 100 per cent using 

PCs of the bands at 543, 732, 805, 830, 1002 and 1047 cm-1.  After REGR factors of SERS 

bands at 1295, 1342, 1410, 1448 and 1578 cm-1 used in PC-LDA algorithms, the benign 

tumors were well differentiated from the healthy tissues with the diagnostic sensitivity of, 

92, 90, 74, 73 and 78 per cent, the specificities of, 100, 100,100,   60 and 95 per cent, and 

the accuracy of 96, 95, 86, 66 and10 86 per cent, respectively.  

Finally, diagnostic combinations of malignant tumors and healthy tissues was classified with 

the sensitivities of 76 and 91 per cent, the specificities of 83 per cent and 97 per cent, and 

accuracy of 80 and 94 per cent for the SERS bands at 905 an 1224 cm-1, respectively. 
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Table 4.44. Predicted values of classification results for malignant, benign and healthy 

tissues using PC-LDA algorithms. 

 

 

 R
am

an
 B

an
d

s 
(c

m
-1

) Crashed-Liquefied Method 

R
am

an
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an
d

s 
(c

m
-1

) 

 

Malignant  

Tumor 

Surrounding  

(Healthy) Tissue 

Sensitivity %  

(SN) 

Surrounding  

(Healthy) Tissue 

Malignant 

Tumor 

 

Specificity %  

(SP) 
 

Accuracy %  

(AC) 
 

B
e
n

ig
n

 T
u

m
o

r 

(400-1800) 

94 79 100 SN 100 100 76 

1126 

B
e
n

ig
n

 T
u

m
o

r 

91 71 77 SP 100 100 83 

93 76 91 AC 100 100 80 

548 

100 100 100 SN 100 100 91 

1180 100 100 100 SP 100 100 97 

100 100 100 AC 100 100 94 

732 

100 100 100 SN 100 75 100 

1224 100 100 100 SP 100 90 100 

100 100 100 AC 100 82 100 

805 

100 100 100 SN 100 92 100 

1295 100 100 100 SP 100 100 100 

100 100 100 AC 100 96 100 

830 

100 100 100 SN 100 90 100 

1342 100 100 100 SP 100 100 100 

100 100 100 AC 100 95 100 

905 

100 88 100 SN 100 74 100 

1410 100 93 100 SP 100 100 100 

100 90 100 AC 100 86 100 

1002 

100 100 100 SN 100 73 100 

1448 100 100 100 SP 100 60 100 

100 100 100 AC 100 66 100 

1047 

100 100 100 SN 100 78 100 

1578 100 100 100 SP 100 95 100 

100 100 100 AC 100 86 100 

   Benign  

Tumor 

Malignant  

Tumor 
 Benign  

Tumor 

Malignant  

Tumor 
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4.5. COMPARISON OF METHODS 

The two developed SERS-based cancer diagnosis methods, Cryosectioned-PDMS, in situ, 

were compared to the previously developed method of Crashed-liquefied.  

 Intra-and Inter Method Reproducibility 

The spot-to-spot variations were obtained with the maximum difference between 5 and 11 

per cent, 3 and 10 percent and 20 and 25 per cent while sample-to-sample variations were 

between 2 and 4 per cent, 3 and 4 per cent and 20 and 25 per cent for Cryosectioned-PDMS, 

in situ and Crashed-liquefied method, respectively, are presented in Table 4.45.  

 

Table 4.45. CV values for three types of sampling method [152]. 

 

Methods 

Averaged CV Values 

Spot-to-Spot  Sample-to-Sample  

Cryosectioned-PDMS 5-11 2-4 

in situ 3-10 3-4 

Crashed-Liquefied 20-25 20-25 

 

The CV values for the developed methods are quite lower than the previous tissue sampling 

method. The CV values between 3 and 10 per cent, and 5 and 11 per cent demonstrate that 

CV values of SERS measurements are quite low among the spots which indicates the high 

intra-method reproducibility of in situ and Cryosectioned-PDMS methods. Moreover, the 

CV values between 3 and 4, and 2 and 4, which shows the sample-to-sample variation is 

quite low for the methods of in situ and Cryosectioned-PDMS, respectively, pointing to high 

inter-method reproducibility of in situ and Cryosectioned-PDMS methods . 
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 A Preliminary Study 

The methods with the optimized parameters were applied on a benign thyroid tumor and 

healthy tissue surrounding the tumor. The diagnosis of benign tumors is also parallel with 

the aim of this thesis study because benign tumors, which are the non-cancerous abnormal 

growth but have a potential to become malignant. However, this preliminary comparison 

study of the new developed sampling methods with Crashed-liquefied method mainly 

focused on method dependent PC-LDA classification accuracy and spectral patterns due to 

the differences in bringing tissue components together with the SERS active substrates. All 

sampling methods were evaluated for PC-LDA model performance testing.  

4.5.2.1. Method Dependent PC-LDA Classification 

The spectra obtained by using in situ approach were used in PCA method. The nineteen PCs 

were extracted using the factor analysis to reduce the spectral dimension (d=1715). The first 

five PCs including 80.40 per cent of the variance were used in PCA classification algorithm 

as detailed in Table 4.46. Then, the PCA and LDA scatter plot of PCs constructed from the 

spectra of benign tumor and healthy tissue were obtained as shown in Figure 4.66.   

 

Table 4.46. Eigenvalues and the percentage of explained variation of PCs. 

 

PC Eigenvalue 
Explained 

Variation % 

1st PC 5.61E+01 56.07 

2nd PC 6.87E+01 68.67 

3rd PC 7.57E+01 75.71 

4th PC 8.04E+01 80.4 

5th PC 1.81E+00 83.41 
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Figure 4.66. 2-D PCA and LDA scatter plots constructed from the spectra acquired from 

benign tumor and healthy tissue. 

 

The clustering differences from the scatter plots are clear. LDA provided an increased 

classification of the groups within variables. The classification accuracy was obtained as 100 

per cent to differentiate healthy and benign tumor tissues. 

The method of Crashed-liquefied was also applied on the benign and healthy tissues. 

Spectral dimension (d=1715) were reduced to twenty three PCs extracted by using the factor 

analysis. First five PCs including 73.51 per cent of the variance was used in PCA 

classification algorithms as detailed in Table 4.47. 

 

Table 4.47. Eigenvalues and the percentage of explained variation of PCs. 

 

PC Eigenvalue Explained Variation % 

1st PC 2.95E+01 29.51 

2nd PC 4.92E+01 49.20 

3rd PC 6.10E+01 61.01 

4th PC 6.80E+01 67.97 

5th PC 7.35E+01 73.51 

 

Then, the PCA and LDA scatter plot of PCs related to the SERS spectra of benign and 

healhyt tissue were obtained as shown in Figure 4.67.  
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Figure 4.67. 2-D PCA and LDA scatter plots constructed from SERS spectra acquired from 

benign tumor and healthy tissue. 

 

The clusters in the PCA scatter plot was not separated well but the clusters were classified 

well in LDA scatter plot. Finally, the Cryosectioned-PDMS method was applied to the tissue 

samples. The thirteen PCs were extracted using the factor analysis to reduce the spectral 

dimension. First, the two PC components including 91.59 per cent of the variance were used 

in PCA classification algorithms as detailed in Table 4.48. Then, the PCA and LDA scatter 

plot of two PC components were obtained as shown in Figure 4.68. 

 

Table 4.48. Eigenvalues and the percentage of explained variation of PCs. 

 

PC Eigenvalue Explained Variation % 

1st PC 7.23E+01 72.32 

2nd PC 9.16E+01 91.59 
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Figure 4.68. 2-D PCA and LDA scatter plots constructed from SERS spectra acquired from 

benign tumor and healthy tissue. 

 

Finally, the performance measurements were obtained using PC-LDA classification 

algorithms with LOO-CV method in the spectra obtained by using three methods of in situ, 

Cryosectioned-PDMS and Crashed-liquefied as shown in Table 4.49.  

 

Tablo 4.49. Classification performance of PCA and PC-LDA models for each approach. 

 

METHOD PCA 

LDA 

Sensitivity 

% 

Specificity 

% 

Accuracy 

% 

in situ 
Well 

grouped 
100/100 100/100 100/100 

Cryosectioned-PDMS 
Well 

grouped 
100/100 100/100 100/100 

Crashed-Liquefied 
Not well 

grouped 
100/100 100/100 100/100 
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While the PC components belong to the methods of in situ and Cryosectioned-PDMS were 

well separated in PCA scatter plot, the variables obtained by using Crashed-liquefied method 

were not well seperetad, which means the difference in the variables were not significant as 

well as the results obtained by other methods. On the other hand, LDA algorithm provided 

a well clustering with the sensitivity, specificty and accuracy of 100 per cent for each 

method. Finally, the methods were compared based on their spectral patterns. 

4.5.2.2. Method Dependent SERS Spectral Patterns  

The differences in the patterns of the spectra obtained by using each approach also need to 

be evaluated. Even though the experimental optimization were employed for each method, 

the spectra were collected from three spots on the sample surface in this preliminary 

investigation to increase the reliability of the differences in the band locations and intensities 

which could be attributed to the key challenge of SERS signal reproducibility due to the 

chaotic distribution of the AgNPs in the sample. The mean spectra of benign and healthy 

tissues were calculated from the three mean spectra of the spots, and the calculated mean 

spectra belongs to tissue are given in Figure 4.69 with the mean spectra of each spot as a 

comparison for the in situ appoach. The shadow area in the mean spectra (d) shows the 

deviations between three mean spectra (a-c) obtained from the spots. 

The spectral pattern is similar for each tissue type but has differences in the intensity of the 

bands. This might be due to differences in the formation of analyte-AgNPs complex and 

AgNPs aggregates, and the heterogeneity of the tissue structure. Then, the mean spectra were 

calculated from the three mean spectra obtained from the spots.  
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Figure 4.69. Mean SERS spectra of benign tumor and healthy tissue obtained from three 

spots (a-c), and their mean spectra (d) using in situ method.  

 

The final mean spectra of benign and healthy tissues obtained from the Crashed-liquefied 

method are given  in Figure 4.70.As seen in the figure, the increased standard deviation in 

the spectra between the 400 and 500 cm-1 range could be attributed to the applied intelligent 

fitting baseline correction because there were no observable peaks in the 400 to 500 cm-1 

region in the mean spectra of the tumorous tissues. This indicates to why the raw data instead 

of pre-processing with baseline correction and smoothing needs to be used in the 
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classification models. However, if the data is quite noisy to understand the band 

characteristics of the spectra, it would be better to use the process of baseline correction, 

smoothing and noisy reduction. Intelligent fitting of WIRE 4.1 software was progressed by 

cropping the original signal under a given polynomial order; a suitable polynomial is 

obtained by fitting the original signal with the least squares criterion [163]. 

Finally, the Cryosectioned-PDMS method was applied to the thyroid benign tumor and 

healthy tissue samples. The mean spectra of each spot and the mean spectra calculated from 

those are illustrated in Figure 4.71. 

 

  

 

Figure 4.70. Mean spectra of benign tumor and healthy tissue specimen of three spots (a-

c), and their mean spectra (d) using Crashed-liquefied method. The shadowed area in the 

spectra shows the deviations of the intensities related to the mean spectra of the spots. 
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Figure 4.71. Mean spectra of benign tumor and healthy tissue specimen of three spots (a-

c), and their mean spectra (d) using Cryosectioned- PDMS method. The shadow area in the 

spectra shows the deviations of intensities among the mean spectra of each spot. 
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A similar increased standart deviation was observed in the same region that was probably 

due to the same reason related to the diffences in the spectral pattern intensity and shape in 

the spetrum of healhty tissue and benign tumor. The mean spectra of the benign tumor and 

healthy tissue utilized with each sampling method are given as a comparison in Figure 4.72. 

 

 

 

Figure 4.72. Mean spectra of benign tumor and healthy tissue as a comparison. 

 

The four SERS bands at 572, 656, 810 and 1003 cm-1 were significantly different than the 

other bands compared to the column plotted against the band intensities. They can probably 

be assigned to tyrosine, cystein or guanine for 572 cm-1, collagen for 656-675 cm-1, DNA/ 

RNA for 810-820 cm-1, and phenyalanine for 1003-1008 cm-1 [33, 130, 147]. Then, total of 

the twenty-five prominent SERS bands, twelve of them were common for each method were 

obtained from benign tumor and surrounding (healthy) tissues, and the band intensity 

column plots related to three mean spectra for each sampling method are illustrated in Figure 

4.73 to 4.75. 
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Figure 4.73 .Column plots of the SERS band intensities in the spectral region of 470-485 

cm-1  (a), 568-575 cm-1  (b), 622-645 cm-1  (c), 656-675 cm-1 (d), 720-725 cm-1  (e), 738-740 

cm-1 (f), 810-830 cm-1  (g)  and  855 cm-1 (h). 
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Figure 4.74. Column plots of the SERS band intensities in the spectral region of 875-885 

cm-1   (i),914-924 cm-1  (j), 960 cm-1   (k), 1030-1032 cm-1  (l), 1055-1055 cm-1 (m), 1098-

1100 cm-1   (n),  1126-1130 cm-1   (o) and 1155 cm-1  (p). 
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Figure 4.75.Column plots of the SERS band intensities in the spectral region of 1245-1257 

cm-1 (r), 1282 cm-1 (s), 1365-1370 cm-1 (t), 1560-1576 cm-1  (u), 1604-1620 cm-1 (v), 1687-

1692 cm-1 (y) and 1770 cm-1 (z). 

 

It should be noted that prominant SERS bands located in the spectral region of 470 to 485, 

656 to 675, 720 to725, 738 to 740, 875 to 885, 1003 to 1008, 1050 to 1055, 1126 to 1130, 

1155, 1203 to 1210, 1282 to 1285, 1604 to 1620 cm-1 were commonly observed on the 

spectra of benign and healthy tissues studied with each approach. Although one spot spectra 

collection was enough for the optimized conditions of each approach, the spectra were 
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collected from three different spots in this preliminary comparison study of three methods. 

The band intenstiy differences were obtained more for the in situ method compared to other 

methods that means the increased variations between the variables may provide high 

classification accuracy. However, it should be noted that this was a preliminary study 

performed by three methods after their optimizations. It could be used as a preliminary model 

study of possible SERS-biomarkers for diagnosis of benign tumor and healthy tissues. The 

extensive study to compare each method was obtained with sixty four thyroid tissues.  

 An Extensive Study 

Each approach method was applied on thyroid tumor biopsies and healthy tissues. Each 

approach was compared by their spectral pattern, classification accuracy by using PC-LDA 

diagnostic model and method reproducibility. The common prominent bands which are 

presented in each method were determined to compare the classification accuracy related to 

these bands. 

4.5.3.1. Method Dependent SERS Spectral Patterns  

PC loading vectors were extracted performing PCA algorithm on the high dimensional 

spectral data. The loading plots explain the significant variances in the SERS data including 

the spectra obtained from malignant, benign and healthy tissues (64 biopsies). The 

significant variations were in the bands at 667, 724, 740, 760, 854, 920, 960, 1008, 1052, 

1096, 1180, 1210, 1280, 1295, 1315, 1334, 1385, 1415, 1435, 1457 and 1506 cm-1 for 

Cryosectioned-PDMS method; 425, 610, 675, 687, 1005, 1058, 1100, 1170, 1278, 1397, 

1452, 1536 and 1656 cm-1 for in situ method, and 548, 732, 805, 830, 1002, 1047, 1126, 

1180, 1224, 1295, 1342, 1410, 1448 and 1578 cm-1 for the Crashed-liquefied  method. The 

total of 21, 13, and 14 number of characteristic bands originated from the biopsies was 

obtained for the sampling methods of Cryosectioned-PDMS, in situ and Crashed-liquefied, 

respectively. The spectra related to Cryosectioned-PDMS method has the richest spectral 

pattern compared to other methods. The commonly observed SERS bands from three 

methods are given in Table.4.50 as a comparison. 
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Table 4.50. Common SERS bands in the methods. 

 

 Crashed-

Liquefied 

Cryosectioned-

PDMS 
in situ 

Crashed-

Liquefied 

R
a

m
a

n
 B

a
n

d
s 

(c
m

-1
) 

    

 667-675  

724-732   

 854-860  

    

1002-1008  

1044-1058  

 1096-1100  

1170-1180  

1278-1295  

1334-1342   

 1382-1385  

  1397-1410 

  1448-1452 

 

The bands in the spectral range of 667 to 675 cm-1, 854 to 860 cm-1, 1096 to 1100cm-1 and 

1382 to 1385 cm-1 can be assigned to C-S stretch frequencies of the cysteine residue in 

proteins, C-C backbone stretching vibrations, C-N stretch of lipids, and symmetric CH3 

stretching vibration of lipids, respectively, were obtained both in the use of Cryosectioned-

PDMS and in situ method [145, 146]. 

SERS bands in the region of 724 to 732 cm-1 and 1334 to 1342 cm-1 can be assigned to ring 

breathing mode of DNA and RNA bases, and  CH3CH2 wagging mode of collagen & 

polynucleotidechain (DNA purine bases), respectively, for the Crashed-liquefied and 

Cryosectioned-PDMS method [63, 147]. 

The major SERS bands in the region of 1397 to 1410 cm-1, assigned to CH2 deformation and 

the ester linkage C=O stretching vibrations in lipids and 1448 to 1452 cm-1, assigned to  CH2 

deformation in lipids, were acquired by using Crashed-liquefied and in situ methods [33, 

47]. 

SERS bands in the region of 1002 to 1008 cm-1, 1044 to 1058 cm-1, 1170 to 1180 cm-1, 1278 

to 1295 cm-1, can be attributed to Phenylalanine, C-O stretching vibrations in protein, 
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Tyrosine, and Amide III, respectively, were acquired common in the use of each method 

[59, 130, 145, 147]. Figure 4.76 shows the spectral relativeness of the common prominent 

bands obtained by using three approaches. 

 

 

 

Figure 4.76. Common spectral bands on the spectra of tissues obtained with both 

approaches.  

 

From the results, the method of Cryosectioning-PDMS and in situ had two more different 

bands, which were not appeared in the spectra obtained by using the Crashed-liquefied 

method. 

The differences in the spectral pattern (band position/ band intensity) are probably related to 

using different tissue sampling methods, mechanical homogenization of snap-frozen tissue 

(Crashed-liquefied method), cryosectioning tissue specimen (Cryosectioned-PDMS 

method), and ultrasonic homogenization of tissue specimen (in situ method), affecting the 

interaction of the intra- and extra-cellular components in the tissue sample with the SERS 

active substrates. The differences in the SERS band intensities could be related to the 

concentration of the assigned biomolecule or/with the chaotic distribution of AgNPs on the 

tissue surface and in the homogenized tissue specimen. 

It is clear that the best approach is expected to have the following properties; high 

reproducibility, rich spectral pattern, low cost, minimal sample preparation steps and high 

classification accuracy. Thus, the developed methods were compared using these 

parameters. The spot-to-spot variations were obtained with the maximum difference 



152 

 

 

between the 5 and 11 per cent, 3 and 10 percent and 20 and 25 per cent while sample-to-

sample variations were 2 and 4 per cent, 3 and 4 per cent and 20 and 25 per cent for 

Cryosectioned-PDMS, in situ and Crashed-liquefied method, respectively. Cryosectioned-

PDMS and in situ has fairly equal benefits with close CV values indicating higher inter-

method reproducibility. However, all methods are similar from the point of minimal sample 

preparation but Cryosectioned-PDMS method requires a qualified person with cryostat 

sectioning.  

4.5.3.2. Method Dependent PC-LDA Classification 

The PC-LDA classification model was applied on the data obtained from the three 

approaches. The diagnostic algorithm of PC-LDA was performed on the data both in full 

spectra region and specific region having characteristic features related to the tissue 

specimen. The validation of the multi-class diagnostic algorithm was calculated by LOO-

CV method. The comparison among the predicted classification results for differentiation of 

malignant, benign and healthy tissue of three approaches are shown in Table 4.51.  

The predicted classification was based on testing one point data while the others were used 

in the training test (LOO-CV). The healthy and disease tissues (benign and malignant tumor) 

were classified according to their coefficients in the factors extracted by using PCA 

algorithm performed on the spectral data. The probability of correctly predicted performance 

of using multi-class PC-LDA diagnostic algorithm for classifying healthy tissues versus 

benign and malignant were resulted with the sensitivities of 94, 79 and 100 per cent and the 

specificities of 79, 71 and 77 per cent, and accuracy of 93, 76 and 91 per cent for by using 

the data set in spectral range of 582 to 1563 cm-1 for the Cryosectioned-PDMS approach. In 

addition, the diagnosis of multiple tissue types was obtained same as the predicted 

performance of PC-LDA model performed on the data obtained by using Crashed-Liquefied 

approach. However, the probability of correctly predicted performance was resulted with the 

sensitivities of 94 per cent, 92 per cent and 100 per cent and the specificities of 79 per cent, 

88 per cent and 99 per cent, and accuracy of 87, 91 and 100 per cent for the in situ approach.  
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Table 4.51. Comparison of the predicted classification performance of PC-LDA diagnostic 

model for healthy versus disease tissues (benign and malignant). 

 

Cryosectioned-PDMS Total Spectra=Sample 

number x Averaged 

Spectrum Count Healthy Benign Malignant 

Healthy 22 6 3 31 

Benign 6 15 1 22 

Malignant 0 1 10 11 

Healthy 71 19,4 9,7 100 

Benign 27,3 68,2 4,5 100 

Malignant 0 9,1 90,9 100 

Cross Validation Results Sensitivity % Specificity %  Accuracy %  

Healthy vs Benign and Malignant  79 70 73 

in situ 
Total Spectra=Sample 

number x Ten Spectra 
Count Healthy Benign Malignant 

Healthy 293 22 1 316 

Benign 28 141 42 211 

Malignant 0 12 97 109 

Healthy 92,7 7 0,3 100 

Benign 13,3 66,8 19,9 100 

Malignant 0 11 89 100 

Cross Validation Results Sensitivity % Specificity %  Accuracy %  

Healthy vs Benign and Malignant 92 81 87 

Crashed-Liquefied Total Spectra=Sample 

number x Averaged 

Spectrum Count Healthy Benign Malignant 

Healthy 22 6 3 31 

Benign 6 15 1 22 

Malignant 0 1 10 11 

Healthy 71 19,4 9,7 100 

Benign 27,3 68,2 4,5 100 

Malignant 0 9,1 90,9 100 

Cross Validation Results Sensitivity % Specificity %  Accuracy %  

Healthy vs Benign and Malignant 79 70 73 
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Two-class model of PC-LDA were performed on the spectra of healthy, benign and 

malignant tissues. The predicted grouping results of the diagnostic algorithm by using LOO-

CV were calculated for two cluster differentiating as benign vs. healthy, healthy vs. 

malignant, and benign vs. malignant. The performance values were detailed in Table 4.52. 

The obtained results indicated that the best clustering was obtained by using the data of the 

in situ approach for classifying healthy vs. malignant tissue with the sensitivity of 100, 

specificity of 99 and accuracy of 100 per cent. In addition, the in situ has the best 

classification performance for healthy vs. benign tissue diagnosis, which is the sensitivity of 

92, specificity of 88, and accuracy of 91 per cent. However, benign vs. malignant 

differentiating was obtained with the sensitivity of 94, specificity of 91, and accuracy of 93 

per cent which is higher in the performance results for the Cryosectioned-PDMS and 

Crashed-liquefied compared to the in situ. Two-class diagnostic classification model was 

also applied on the specific spectra regions related to the prominent SERS bands for each 

approach. The detailed performance results are given in Table 4.53. The predicted 

classifications related to the PC components of SERS bands at 740 and 1385 cm-1 for benign 

and malignant tumors, and malignant tumors and healthy tissues were resulted with the 

accuracy of 97 and 97 per cent, respectively, for the Cryosectioned-PDMS method. On the 

other hand, the PCs related to the other bands were differentiated with the sensitivity, 

specificity and accuracy of 100 per cent for malignant and benign tumors with healthy 

tissues.  

There are eight diagnostic combinations classified with the accuracy under 100 per cent in 

the range of 87 to 98 per cent using in situ based approach while Cryosectioned-PDMS has 

two with the accuracy of 97 per cent. Benign versus healthy tissues were classified based on 

the  bands at 675, 860, 1058, 1100, and 1397cm-1 with the accuracy of 87, 99, 97, 98, and 

99 per cent, respectively while benign versus malignant tumors were differentiated with the 

accuracy of 97 and 99 per cent for 675 and 1278 cm-1, respectively. Malignant tumors and 

healthy tissues were classified with the accuracy of 93 per cent for the band at 1656 cm-1. 

  



 

 

 

 

1
5
5
 

Table 4.52. Comparison of the performance of two-group based classification of PC-LDA model with LOO-CV. 

 

Cryosectioned-PDMS in situ Crashed-Liquefied 

Count Healthy Benign Malignant Count Healthy Benign Malignant Count Healthy Benign Malignant 

Healthy 22 6 3 Healthy 294 21 1 Healthy 22 6 3 

Benign 6 15 1 Benign 25 159 27 Benign 6 15 1 

Malignant 0 1 10 Malignant 0 10 99 Malignant 0 1 10 

Sensitivity % (SN) 

Healthy 

79 100 Sensitivity % (SN) 

Healthy 

92 100 Sensitivity % (SN) 

Healthy 

79 100 

Specificity % (SP) 71 77 Specificity % (SP) 88 99 Specificity % (SP) 71 77 

Accuracy % (AC) 76 91 Accuracy % (AC) 91 100 Accuracy % (AC) 76 91 

% 

SN 

Benign 

94 

% 

SN 

Benign 

94 

% 

SN 

Benign 

94 

SP 91 SP 79 SP 91 

AC 93 AC 87 AC 93 
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Table 4.53. Performance results under the accuracy of 100 per cent by using PC-LDA 

classification model on the specific spectral regions for each approach. 

 

Sensitivity %  

Crashed-Liquefied 

Sensitivity %  

in situ Specificity %  Specificity %  

Accuracy %  Accuracy %  

WN Malignant  Healthy WN Malignant  Healthy 

B
e
n

ig
n

 T
u

m
o

r 

(400-1800)   

94 79 100 

(400-1800)   

94 92 100 

B
e
n

ig
n

 T
u

m
o

r 

91 71 77 79 88 99 

93 76 91 87 91 100 

548 

100 88 100 

675 

95 81 100 

100 93 100 100 94 100 

100 90 100 97 87 100 

1126 

100 100 76 

1058 

100 97 100 

100 100 83 100 97 100 

100 100 80 100 97 100 

1180 

100 100 91 

1100 

100 95 100 

100 100 97 100 100 100 

100 100 94 100 98 100 

1224 

100 75 100 

1170 

100 100 100 

100 90 100 97 100 100 

100 82 100 99 100 100 

1295 

100 92 100 

1278 

100 100 99 

100 100 100 100 97 100 

100 96 100 100 99 100 

1342 

100 90 100 

1382 

100 100 90 

100 100 100 100 100 95 

100 95 100 100 100 93 

1410 

100 74 100 
Cryosectioned-PDMS 

100 100 100 

100 86 100 

582-1563 

94 79 100 

1448 

100 73 100 91 71 77 

100 60 100 93 76 91 

100 66 100 

740 

100 100 100 

1578 

100 78 100 95 100 100 

100 95 100 97 100 100 

100 86 100 

1385 

100 100 96 

 

   Benign Malignant 100 100 96 

WN: Wavenumber (cm-1) 100 100 97 

 

Malignant Benign  

 

The classification accuracy of tumors and healthy tissues using the Crashed-liquefied 

method was obtained under 100 per cent for the bands at 905, 1224, 1295, 1342, 1410, 1448 

and 1578 cm-1 with the accuracy of 90,  82, 96, 95,86, 66 and 86 per cent for the benign 
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versus healthy tissues, respectively. Malignant tumors and healthy tissue were differentiated 

with the accuracy of 80 and 94 per cent for the SERS bands at 1126 and 1180 cm-1. 

Two-diagnostic combinations for the Cryosectioned-PDMS method, eight and nine 

combinations for the methods of the in situ and Crashed-liquefied, respectively, were 

classified with the predicted accuracy under 100 per cent. As a conclusion, the 

Cryosectioned-PDMS method obviously gave better classification results compared to other 

methods of the in situ and Crashed-liquefied if a specific spectral region was used in the 

model instead of full spectral region. However, the in situ indicated better classification 

accuracy compared to other methods for malignant vs. healthy and benign vs. healthy 

diagnostic combination by using full spectral region while the best classification 

performance for benign and malignant biopsy samples was obtained for with the 

Cryosectioned-PDMS and Crashed-liquefied methods by using the full spectral region. 

It should be reminded that significant PC components were used in LDA method which 

means that significant differences in the variables as component coefficients were grouped 

by using LDA. The commonly observed SERS bands on the spectra for each approach were 

selected, and their band intensity column graphs to make a comparison among the tissue 

types (healthy, benign and malignant) were obtained as seen in Figure 4.77. However, the 

statistical comparison of the methods related to the specific band regions were obtained by 

using PC-LDA and LOO-CV method, and the predicted results of the other specific regions 

clustered with the accuracy of under 100 per cent were detailed in Table 4.53 above. The 

SERS bands in the region of 1002 to 1008, 1044 to 1058, 1170 to 1180 and 1278 to 1295 

cm-1 were commonly appeared as major on the PCA loading vectors for each approach. The 

band intensity column graph belongs to these SERS bands of healthy, benign and malignant 

tissues for each approach are shown in Figure 4.77. The component coefficients in the first 

PC loading related to each type of tissue and approach were used to obtain the graph. The 

standard deviation bars related to each tissue type (malignant, benign and healthy) at the 

specific spectra region were displayed on each column.  

SERS bands in the region of 1002 to 1008 cm-1, 1044 to 1058 cm-1, 1170 to 1180 cm-1, 1278 

to 1295 cm-1, probably assigned to ѵ(C-C) stretching in Phenylalanine, C-O and C-N 

stretching vibrations in protein, C-H bend vibration in Tyrosine and ѵas stretching 
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vibration in nucleic acids, and CH2 twisting mode and CH2 wagging vibrations in Amide III, 

respectively [45, 108, 130, 164-167]. 

 

 

Figure 4.77. Comparison of band intensities in the region of 1002-1008, 1044-1058, 1170-

1180 and 1278-1295 cm-1 for healthy, benign and malignant tumor tissues evaluated by 

three approaches. 

 

The bands in the region of 1002 to 1008 cm-1 region was found more intense for malignant 

tumors rather than benign tumor and healthy tissues. That result is in-line with the result of 

1170-1180 cm-1 region while the lesser band intensity was obtained in the benign tumors. 

The band intensity of 1278-1295 cm-1 region were higher for benign and malignant tumors 

that healthy tissue for the Cryosectioned-PDMS method. That result is in-line with the result 

of a SERS based cancer study in the literature [136]. The different results among the methods 

for the same band are related to the different sample and substrate preparation. The in situ 

and Crashed-liquefied sampling methods are novel methods, which use a different protocol. 

That is why the results of these approaches could not be comprised with the literature studies 
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as well as the results of the Cryosectioned-PDMS method because sectioned tissues are the 

most common tissue sampling type. For instance, the difference for 1278-1295 cm-1 band 

region among the tissue types was similar for the in situ and Crashed-liquefied method while 

it was different for the Cryosectioned-PDMS method. However, the other bands were mostly 

similar for each method. Similarity means that the relation of the band intensities (more/less 

intense) between the tissue types.  

The method dependent classification accuracy using the full spectra and specific spectral 

regions based on each approach were compared to each other in the previous section. The 

specific common prominent bands appeared on the PCA loadings evaluated with sixty four 

biopsy tissues after applying three approaches, were also used in the PC-LDA classification 

algorithm. The performance comparison of using PC-LDA model utilizing the common 

major bands is shown in Table 4.58 below. The richest spectral pattern was obtained 

belonging to the Cryosectioned-PDMS method displaying both high method reproducibility 

and ability to be used in diagnostic models. It also mentioned that the method dependent 

classification accuracy was dependent on the specific band regions that would like to be used 

as SERS-biomarkers regarding to the cancer and tissue type. As a result, the Cryosectioned-

PDMS approach is the best to apply on thyroid biopsies using for specific spectra region 

while the in situ for full spectra region resulted as the best. 

 

Table 4.54. Performance results of PC-LDA diagnostic function applied on the data in the 

specific spectra region. 

 

  (1002-1008)  cm-1 (1044-1058) cm-1 (1170-1180) cm-1 (1278-1295) cm-1 

Cryosectioned-

PDMS 
100% 100% 100% 100% 

in situ 100% 
Benign vs. Healthy 

97% 

Benign vs. Malignant 

99% 

Benign vs. Healthy 

99% 

Crashed-

Liquefied 
100% 100% 

Healthy vs. 

Malignant 94% 

Benign vs. Healthy 

96% 

 

The four band regions were classified with the accuracy of 100 per cent for the 

Cryosectioned-PDMS method while two-class diagnosis of benign and healthy tissues were 

obtained as 97 per cent and 99 per cent for  the in situ approach by using the bands in the 

region of 1044 to 1058 cm-1 and 1278 to 1295 cm-1, respectively. In addition, the loading 

coefficients belong to 1044-1058 cm-1 region were classified with the accuracy of 100 per 
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cent for each two-class diagnostic combination for the Crashed-liquefied method whereas it 

was obtained with the accuracy of 96 per cent for the coefficients regarding to 1278-1295 

cm-1 region for the benign and healthy tissue differentiation. However, benign and healthy 

tissues were classified correctly with the accuracy of 99 per cent for the same region for the 

in situ approach. The performance results were obtained with the accuracy of 99 and 94 per 

cent for the in situ and Crashed-liquefied approach for the diagnosis of benign vs. malignant 

tissues and healthy vs. malignant tissues, respectively. When the approaches were compared, 

the best diagnostic performance was obtained using the data of the Cryosectioned-PDMS 

approach while the second best is the in situ based on the common major SERS bands. If 

these common bands as SERS-biomarkers were used to identify the tissue status, the 

Cryosectioned-PDMS approach would perform generally higher classification accuracy 

compare to the others. 
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5. CONCLUSIONS AND OUTLOOK 
 

In this thesis, the applicability of SERS in cancer diagnosis using a systematic approach was 

presented. Two novel approaches were developed, and three alternative approaches 

including one existing were evaluated using human thyroid biopsies. Finally, the results 

obtained from three approaches were compared with inter- and intra-method reproducibility, 

spectral richness, and classification accuracy.  

With Cryosectioned-PDMS approach, the following parameters were found to be optimal.  

The thickness of the PDMS layer should be at least in 1.8 mm to cover the glass slide to 

prevent the background. A 20 × objective and 830 nm laser with 30 mW power (as adjusted 

in the software) and 2s exposure time were found to be suitable. The minimum thickness of 

the sectioned tissue to place on the glass slide should be 5-µm. The mapping of 10 x 10 

points array using fast StreamHR method, using 16 × concentrated colloidal AgNPs 

suspension, and arranging the Raman shift range with a median value of 1100 (from ~580 

to 1560 cm-1) were necessary. The most striking result to emerge from the observations is 

that placement of a PDMS layer over glass slide works better than CaF2 slide and Al-foil 

with a 2.7 per cent variation indicating higher reproducibility while the variation was 11.7 

and 14.9 upon placing sliced tissue on Al-foil and CaF2 slide, respectively. Finally, this 

sampling approach was used for the classification of 64 biopsy samples involving 22 benign, 

11 malignant and 31 healthy tissue samples. By performing PC-LDA classification 

algorithm on the spectral data in the range of 582 to 1563 cm-1, the sensitivities of 94, 79 

and 100 per cent and the specificities of 79, 71 and 77 per cent, and accuracy of 93, 76 and 

91 per cent for between benign and malignant; benign and healthy, malignant and healthy, 

respectively, were obtained. However, the sensitivity, specificity and accuracy of 

classification of healthy and tumor biopsies was obtained 100 per cent using component 

coefficients of the bands at 617, 667, 724, 760, 854, 920, 960, 1008, 1052, 1096, 1180, 1210, 

1280, 1295, 1315, 1334, 1415, 1435, 1457 and 1506 cm-1 except two SERS bands at 740 

and 1385 cm-1.The results of the Cryosectioned-PDMS approach showed a high inter- and 

intra-method reproducibility and a high classification accuracy using PC-LDA model on the 

full spectra region and specific spectral regions.  

In the second approach, called in situ, the AgNPs were synthesized in the homogenized 

tissue to increase the possibility of molecular components and molecular species forming 
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the tissue with the AgNPs. A biopsy sample about 2x2x2 mm3 was  homogenized, and a 10-

µl from each of 3.55x10-2 M HONH2·HCl,  3x10-2 M NaOH and 4.36x10-1 M AgNO3 was 

added into the homogenized tissue suspension for the reduction of Ag+ into AgNPs. Then, 

the mixture of homogenized tissue and AgNPs was placed onto a CaF2 slide. The point-to-

point, spot-to-spot and sample-to-sample reproducibility referring to intra-and inter-method 

reproducibility were found to be satisfactory by acquiring ten spectra arbitrarily chosen 

points on a dried homogenized tissue-AgNPs mixture.  A laser at 830 nm with 15 mW 

(adjusted power in the software), a 20× objective, and 5s exposure time yielded the best 

spectrum. After the optimization study, the same thyroid biopsy samples mentioned above 

were used for the evaluation of the approach. Ten spectra obtained from each sample were 

collected and used in the PC-LDA model. The probability of correctly predicted 

performance was obtained with the sensitivities of 94, 92 and 100 per cent and the 

specificities of 79, 88 and 99 per cent, and accuracy of 87, 91 and 100 per cent for the benign 

vs. malignant, healthy vs. benign and healthy vs. malignant tissues, respectively. 

The sensitivity, specificity and accuracy of classification results from healthy tissues and 

tumor biopsies were obtained as 100 per cent using PC components of the bands at 425, 610, 

860, 1005, 1170, 1382 and 1452 cm-1 while the eight diagnostic combination of the bands at 

675, 860, 1058, 1100, 1278, 1397 and 1656 cm-1between benign vs. malignant, healthy vs. 

benign and healthy vs. malignant were in the accuracy range of 87 to 99 per cent. The benign 

vs. healthy tissues were classified based on the bands at 675, 860, 1058, 1100, and 1397 cm-

1 with an accuracy of 87, 99, 97, 98, and 99 per cent, respectively, while benign vs. malignant 

tumors were differentiated with an accuracy of 97 and 99 per cent based on the bands at 675 

and 1278 cm-1, respectively. Malignant tumors and healthy tissues were classified with an 

accuracy of 93 per cent for the band at 1656 cm-1. 

The evaluation of the full spectral region from 400 to 1800 cm-1 indicates that the best 

discrimination for healthy vs. benign, and healthy vs. malignant tissues is achieved with the 

in situ approach whereas the best discrimination for benign vs. malignant is achieved with 

the Cryosectioned-PDMS approach. 

In order to compare the performance of the sampling approaches studied in this thesis, the 

Crashed-liquefied approach previously developed by our group was also evaluated. As 

different from our previous study, the colloidal suspension containing h-AgNPs instead of 
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c-AgNPs was used with the homogenized tissue. A 200-µl volume of 32 × concentrated h-

AgNPs was mixed with the homogenized tissue with the same thyroid biopsies used in other 

approaches. Performing PC-LDA classification algorithm on the spectral data in the range 

of 400 to 1800 cm-1 discriminated benign vs. malignant; benign vs. healthy; malignant vs. 

healthy tissues with the sensitivities of 94, 79 and 100 per cent and the specificities of 79, 

71 and 77 per cent, and accuracy of 93, 76 and 91 per cent, respectively. However, 

component coefficients of SERS bands at 548, 732, 805, 830, 1002, 1047, 1295, 1342, 1410 

and 1448 cm-1 for the tumorous and healthy tissues was classified with the sensitivity, 

specificity and accuracy of 100 per cent while the results was obtained with sensitivities of 

96, 91, 99, 89 and 95 per cent and the specificities of  88, 78, 95, 95 and 78 per cent, and 

accuracy of 93, 86, 97, 91 and 88 per cent for the SERS bands at 905, 1126, 1180, 1578 and 

1224 cm-1, respectively. Seven diagnostic combinations between the benign and healthy 

tissues for the bands at 905, 1224, 1295, 1342, 1410, 1448 and 1578 cm-1 were classified 

with an accuracy of  under 100 per cent, which are 90,  82, 96, 95, 86, 66 and 86 per cent, 

respectively. In addition, two diagnostic combinations between the malignant tumors and 

healthy tissues for the bands at 1126 and 1180 cm-1 were differentiated with an accuracy of 

80 and 94 per cent, respectively. 

As a result, a total of nine diagnostic combinations for the Crashed-liquefied approach were 

classified with an accuracy under 100 per cent while it was two and eight for the 

Cryosectioned-PDMS and in situ approaches, respectively. Therefore, the classification 

results of using full spectra region obtained by using the Crashed-liquefied approach for the 

differentation of healthy vs. benign and malignant tissue were close to the results obtained 

with the Cryosectioned-PDMS.  

The CV values between 3 and 10 per cent, and 5 and 11 per cent for in situ and 

Cryosectioned-PDMS approaches, respectively, indicate that SERS measurements have 

high intra-method reproducibility. Moreover, the CV values calculated to evaluate the 

sample-to-sample variations are found between 3 and 4, and 2 and 4 indicate that in situ and 

Cryosectioned-PDMS approaches have high inter-method reproducibility. 

A total of twenty one, thirteen, and fourteen prominent characteristic bands of the tissues 

were obtained for the methods of Cryosectioned-PDMS, in situ and Crashed- liquefied, 

respectively. Based on these results, one can claim that the SERS spectra obtained with the 
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Cryosectioned-PDMS method has the richest SERS spectrum compared to the spectra 

obtained with the other sampling methods.   

The results indicate that the best clustering is obtained with the data from the in situ approach 

for the classification of healthy vs. malignant tissue with a sensitivity of 100, specificity of 

99 and accuracy of 100 per cent. In addition, the in situ method has the best classification 

performance for the diagnosis of healthy vs. benign tissue with a sensitivity of 92, specificity 

of 88, and accuracy of 91 per cent. However, benign vs. malignant differentiating was 

obtained with a sensitivity of 94, specificity of 91, and accuracy of 93 per cent, which were 

higher in the Cryosectioned-PDMS and Crashed-liquefied approaches. However, the 

Cryosectioned-PDMS method obviously gave better classification results compared to other 

methods when a specific spectra region was used in the model instead of the full spectra 

region. It should be noted that only four SERS bands were obtained in common, which 

means that specific spectra region still depends on the observer and the defined SERS-

biomarkers related to the type of cancer tissue.  

Each method is almost similar with their minimum sample preparation steps but the 

Cryosectioned-PDMS method requires a qualified person with cryostat sectioning. On the 

other hand, the methods of Crashed-liquefied and in situ based sampling use CaF2, which is 

fragile and quite expensive to use in routine clinic applications. Multiple samples can be 

process using the same CaF2 slide but still it can be costly for routine use.  

Despite the spectral patterns of tissues are similar, it still seems necessary to arrange the 

Raman shift range based on cancer type to be studied with the Cryosectioned-PDMS 

approach because StreamHR fast mapping method can be adjusted to a reduced spectral 

range.   

The concept of in situ synthesis of AgNPs in homogenized tissue specimen and 

Cryosectioned-PDMS approaches have a potential in clinical cancer diagnosis applications. 

However, more work is needed to clarify whether full spectrum or a certain spectral region 

is necessary for the diagnostic procedure.  The data generated using the all methods studied 

in this thesis should also be evaluated by using different classification algorithms such as 

neural networks, kernel estimation, least squares regression, multinomial logistic regression,  

support vector machines and Bayesian classifications. The important point is that the 

developed methodologies have only been applied to thyroid tumors and other types of 
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tumors should also be studied.  As future study, the evaluation of the metabolites obbtained 

from tisues and tumors can be an important point to consider.  

This study is differing from the literature with being a more comprehensive and systematic 

study that explores the method dependent reproducibility of the approaches. The results 

indicate the method dependent changes in the classification accuracy and spectral patterns. 

Moreover, one research article related to SERS-based sampling method for cancer cell 

differentiation was published, whereas a book chapter on label-free detection of cancer from 

proteins, cells and tissues using SERS was submitted (150). A poster presentation of the 

outcomes related to cryosectioned-PDMS sampling method exploring rat tumors in 

Raman4Clinics Annual Meeting, Leibniz Institute of Photonic Technology was performed. 

Two research articles related to the outcomes of the thesis is in progress. Indeed, throughout 

the study of this thesis, from 2014 to 2017, other groups also reported the potential use of 

SERS in cancer diagnosis (144, 166-175). In conclusion, SERS can be used as an alternative 

or supporting technique for accurate cancer diagnosis. However, it is clear that more 

validation studies using different cancer types are needed.  All of the three alternative SERS 

based cancer diagnosis approaches developed in this thesis are quite comparable and their 

further evaluations can provide new opportunities in cancer. 
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