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ABSTRACT

BALANCING THE PRODUCTION OF BLOOD BAGS FROM DONATION

THROUGH APPOINTMENT SCHEDULING

Blood is fundamental in several care treatments and surgeries, and plays a crucial role in

the health care system. It is a limited resource as it can be produced only by donors and

its shelf life is short. Blood Donation (BD) system aims at providing an adequate supply

of blood units to transfusion centers and hospitals. Its main phases are blood collection,

screening, storage, distribution and utilization. An effective collection of blood units from

donors, through a suitable scheduling of donations, is fundamental for adequately feeding

the entire BD system and optimizing blood usage. However, despite its relevance, to the best

of our knowledge, donor scheduling is only marginally addressed in the literature. In this

dissertation, we consider the Blood Donation Appointment Scheduling (BDAS) problem,

which aims at balancing the production of the different blood types among days in order

to provide a quite constant feeding of blood units to the BD system and avoid periodic

overtimes. Deterministic models and corresponding stochastic versions are formulated.

For the deterministic model a two-stage architecture is proposed and it consists of an

offline Mixed Integer Linear Programming (MILP) model for preallocating time slots to

blood types and an online prioritization policy to assign a preallocated slot when the donor

calls to make the reservation. In order to establish the impact of the uncertainty in the

model, we formulate both risk-neutral and risk-averse stochastic programming models and

compare them with each other. Moreover, Conditional Value at Risk (CVaR) risk measure is

analyzed in the stochastic models with either only risk terms or with mean-risk terms for the

preallocation (offline) phase. We conduct an extensive computational study for the proposed

deterministic and stochastic models with the use of real case of the Milan Department of the

Associazione Volontari Italiani Sangue (AVIS), which is the main BD association in Italy.
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ÖZET

BAĞIŞLARDAN ÜRETİLEN KAN TORBALARININ RANDEVU ÇİZELGELEME

İLE DENGELENMESİ

Kan birçok tıbbi işlemde hayati önem taşıması sebebiyle, sağlık sisteminde önemli bir rol

oynamaktadır. Kan insan vücudu dışında üretilemeyen ve raf ömrü kısa olan sınırlı bir

kaynaktır. Kan bağışı (KB) sistemi, transfüzyon merkezlerine ve hastanelere yeterli sayıda

kan torbası tedarik etmeyi hedeflemektedir. Kan bağış sisteminin ana fazları kan toplama,

tarama, depolama, dağıtım ve kullanımdan oluşmaktadır. Kan bağış sistemini yeterli

şekilde beslemek ve kan kullanımını eniyilemek için, bağışçılardan gelecek olan kanın etkin

bir şekilde toplanması ve bağışçılara uygun bir şekilde randevu verilmesi gerekmektedir.

Bildiğimiz kadarıyla mevcut çalışmalar dahilinde bağışçı randevu çizelgeleme konusu

yeterince ele alınmamıştır. Bu tezde, kan bağış sistemine sabit akış sağlayacak, farklı kan

türleri üretimini günler arası dengeleyecek ve periyodik mesaiden kaçınacak bir kan bağışçı

randevu çizelgeleme (KBRÇ) modeli geliştirilmiştir. Deterministik ve ilgili stokastik

modeller formüle edilmiştir. Deterministik modellerde yapı iki fazdan oluşmaktadır,

ilk fazda çevrimdışı olarak tamsayılı doğrusal programlama modeli, kan tipleri için

önatama yapmaktadır. İkinci fazda ise çevrimiçi olarak, önceliklendirme politikası

ile rezervasyon yaptırmak için arayan bağışçılar, önataması yapılan zaman dilimlerine

yerleştirilmektedir. Modeldeki belirsizliğin üstesinden gelebilmek için risk-nötr ve risk-

yanlı stokastik programlama modelleri ele alınıp, karşılaştırmaları yapılmıştır. Buna ek

olarak, sadece risk terimleri ve ortalama risk terimleri içeren stokastik modeller koşullu

riske maruz değer (Conditional Value at Risk, CVaR) risk ölçütü ile çevrimdışı faz için

analiz edilmiştir. Önerilen deterministik ve stokastik programlama modelleri ile İtalya’nın

ana kan bağış kurumlarından biri olan Associazione Volontari Italiani Sangue (AVIS)’in

Milan şubesinde gerçek bir vakaya kapsamlı analiz yapılmıştır.
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1. INTRODUCTION

Blood is a fundamental component for several care treatments, and it plays a crucial role

in the health care system. For example, in 2012, the annual need for blood was about 10

million units in the USA, 2.1 million units in Italy, and 2 million units in Turkey [1]. Blood

is also a limited resource because, at present, it cannot be produced in laboratory but only by

humans. Thus, blood is usually collected from donors, i.e., unpaid individuals who donate

their blood voluntarily. Furthermore, its short shelf life limits the period between donation

and utilization, thus preventing long term storage.

Blood is provided through Blood Donation (BD) system, which is in charge of providing

an adequate supply of blood units to transfusion centers and hospitals. Due to the short

shelf life, BD system should meet the overall blood demand from hospitals and transfusion

centres, but at the same time it should follow the temporal profile of the demand to avoid

blood shortage and wasted units. The BD supply chain can be divided into four steps, as

shown in Figure 1.1: collection, transportation, storage and utilization [2]. In short, blood

is first collected: donors are registered and served by a physician to assess their eligibility

for donation and, if eligible, they make the donation. Once the blood is gathered, tests are

performed on each blood unit to prevent infectious diseases. Afterwards, blood units are

transported and stored. Blood components are then distributed to hospitals and transfusion

centers based on their inventory levels. Finally, blood is transferred to the end users (the

patients) for transfusion.

Figure 1.1. Steps of the BD supply chain.
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In this dissertation, we focus on the blood collection step, which represents the first and

the most critical step of the BD supply chain. Not only increasing the number of donations

improves the throughput of the BD system, but also an effective management of donors’

arrivals among the days may improve the performance of the system and provide a reliable

supply of blood units considering the storage requests. In fact, the role of a blood collection

center is to provide a reliable supply of blood units to the storage, in agreement with the

storage request. There are two main storage policies, i.e., to store enough blood units to

cope with any blood demand at any time, or to satisfy the demand from a hospital or a

medical center while keeping the stored amount of blood units limited. When the second

storage policy is considered, the goal might be to balance the production. Balancing the

production, i.e., producing a constant number of blood units over the days, is the main goal

in several cases when the customer is a large hospital with several elective patients.

Several blood collection centers are starting to implement a reservation system. In fact,

reserving the donation appointment can reduce donors’ waiting time and, thus, guarantee

a better service to donors, which may help in increasing the number of donors and the

frequency of donation. Moreover, by appropriately addressing donors to a suitable day,

reservation may also balance the production of blood units among the days. In any case,

centers also accept donors without reservation not to refuse any possible donation, because

of the high need for blood units and to prevent donors from feeling that their donation is

not important. Thus, generally speaking, both booked and non-booked donors are usually

present in the collection centers, even though the effort is to increase the rate of booked

ones. So far, appointments are manually assigned in the majority of collection centers where

reservation is possible. Manual management may be able to reduce donors’ waiting times

and to take their preferences (donation day and hour) into account; however, it is a short

term solution and may prevent effectively balancing blood production.

In this dissertation, we propose an appointment scheduling system for blood donation to

balance the production of blood units of the different types (a combination of group and

Rhesus factor) among days and to avoid periodic overtimes due to possible accumulation

of donors within periods of the day, while taking into account both booked and non-booked

donors. We first develop the deterministic models and then the corresponding stochastic
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versions are formulated in order to analyze the effect of random arrivals of non-booked

donors. Since this is a real life application, uncertainty of the system is inevitable and it must

be handled carefully. For the deterministic case a two-stage architecture is proposed and it

consists of two phases, i.e., an offline preallocation of time slots for donation and an online

allocation of the preallocated slots, where a time slot is as an operational interval or service

time interval suitable for a donor. The preallocation phase is responsible of reserving slots to

the blood types, while the allocation phase is responsible of assigning a suitable preallocated

slot to each donor when he/she calls for reservation. In other words, the preallocation phase

prepares a number of spare slots for the different blood types, which are then used for

the successive online booking phase. The architecture is based on a Mixed Integer Linear

Programming (MILP) model for the preallocation phase and a prioritization policy for the

allocation phase. In particular, stochastic versions of the deterministic models are proposed

with risk-neutral and risk-averse methodologies for the preallocation (offline) phase.

Although the problem shares some features with other health care related appointment

scheduling problems (see Section 2.3), balancing the production is not a common objective.

Moreover, the characteristics of the BD system make the donation scheduling different from

other appointment scheduling systems of different fields. Thus, to the best of our knowledge,

this dissertation is the first attempt to deal with the Blood Donation Appointment Scheduling

(BDAS) problem.

In this study, we particularly consider the case of the Milan Department of the Associazione

Volontari Italiani Sangue (AVIS), denoted as AVIS Milan, which serves a large hospital

with a quite constant demand for blood. AVIS was founded in 1927 and is the largest blood

donors’ association in Italy today, bringing together over one million of volunteer blood

donors across the country. AVIS Milan covers the territory of Milan and is in charge of

collecting blood for one of the main hospitals in Milan, i.e., the Niguarda hospital; in the

last 4 years, it provided an average about 50 whole blood donations per day, with a total

of about 18000 donations per year. AVIS is the largest network of BD collection centers in

Italy, and AVIS Milan is one of the largest centers in the network. AVIS Milan is willing

to implement a reservation system and currently accepts donors with (booked) and without

(non-booked) reservation. Even the booked donors are the majority at the moment, AVIS
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Milan still aims at increasing their rates. Its goal is to produce a constant amount of blood

units for each blood type along with the days. In fact, Niguarda is a large hospital with

a lot of elective surgeries and a quite constant amount of emergency requests. Thus, the

request from Niguarda hospital is to feed the system with a constant (and possibly high)

daily amount of units of the different blood types, even if unpredictable demand peaks may

occur in specific periods and conditions. On the contrary, the lack of a constant feeding

is the actual bottleneck of the entire system in practice, as explained by the AVIS Milan

staff. Hence, the main goal of this thesis is to formulate and analyze alternative solutions

for AVIS Milan blood collection center in order to balance the daily blood production while

minimizing the dispersion amount. Dispersion amount term is used in stead of overtime

because periodic accumulation of the donors has to be dispersed in the underutilized parts

of the day. Moreover, it can be considered as a typical blood center, since it shares common

features in terms of donors, activities and management with several other centers. Thus, the

approach proposed in this dissertation can be considered as general and applicable to other

blood collection centers [4].

1.1. CONTRIBUTIONS

There are several contributions of this work. The first one is to present a detailed research

on BD supply chain literature and highlight the gaps in the literature. As a result, it is seen

that the blood collection phase has not been adequately addressed so far. Particularly, an

appointment scheduling for the collection phase that jointly considers nature of its service

provider and its role in terms of production is still lacking in the literature. More details are

presented in Chapter 2.

Following this point, it can be concluded that an effective management of a collection

center must include the production of blood units in addition to its internal organization

as a service provider. Principally, an effective management of blood collection is necessary

to increase the throughput and keep the costs sustainable. However, a more general view

should include an effective management of donors’ arrivals throughout the days to optimize

the daily production of blood units with respect to the storage requests. Neglecting this point

may result in an imbalanced feeding of blood units to the rest of the BD supply chain, with
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consequent blood shortage or wasted units. Although, throughput and costs are addressed

in the literature, more structured strategies that also include the impact on the whole BD

chain are still underrepresented. Thus, the second contribution is to propose an effective BD

appointment scheduling system to fill the gap in the literature. We propose a deterministic

model in which the aim is to balance the production of blood units of each type among the

days, while also avoiding dispersion amounts associated with overtime and donor waiting

times. Details are presented in Chapter 3.

Uncertainty is an unavoidable part of real life problems. The most important parameter

that creates uncertainty in the BD system is the non-booked donors. While scheduling

the appointments for the donors, random arrivals of the non-booked donors should also

be considered. Therefore, third contribution is based on the development of risk-neutral and

risk-averse stochastic programming models to provide an efficient appointment schedule,

which balances the production and avoids overtime of the physician’s while considering the

uncertainty in the non-booked donor information (see Chapter 4).

These contributions have already been or will be published in journals and conference

publications as follows:

• The presented literature review in Chapter 2 is published in Health Care Systems

Engineering for Scientists and Practitioners, Springer conference proceeding with

the title “Management of blood donation system: literature review and research

perspectives” [4].

• Considering the highlighted gaps of the literature (Chapter 2), some research

directions are presented in the journal publication of Production Planning & Control

with the title “Unaddressed Problems and Research Perspectives in Scheduling Blood

Collection from Donors” [5].

• The deterministic model for BDAS system (Chapter 3) is published in European

Journal of Operational Research journal with the title “An Appointment Scheduling

Framework to Balance the Production of Blood Bags from Donation”, [6] and in

IMATI-CNR technical report with the same name [7].

• Stochastic programming models that are presented in Chapter 4 will be considered for
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journal publication.

1.2. OUTLINE

The structure of the thesis is presented in Figure 1.2 below:

Figure 1.2. The structure of the dissertation.

In Chapter 2 a detailed literature review on BD supply chain echelons is presented and open

issues in the literature are discussed with a particular focus on the appointment scheduling

systems. The details of the proposed architecture for the BDAS problem is explained in

Chapter 3, including the deterministic MILP preallocation model and the prioritization

policy. Moreover, sub-problems and valid inequalities are discussed and lower bounds

are presented in order to increase the computational efficiency. Lastly, the computational

tests that are performed for the offline and online procedure and the corresponding results

are reported. In Chapter 4, the approaches for handling uncertainty are described. The

stochastic programming models for donor appointment scheduling problem are presented

and the related numerical results are discussed. Finally, the comparison of the proposed

models and the driven conclusions together with the future perspectives are presented in

Chapter 5.
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2. LITERATURE REVIEW

In this chapter, we first review the literature dealing with the blood donation supply chain,

focusing on the blood collection step and then we survey the literature on appointment

scheduling systems. Blood collection is the first and most important step of the BD supply

chain to maintain sustainability of the entire system. In BD system, to provide adequate

supply of blood units to transfusion centers and hospitals with respect to the storage requests

is significantly important. To enhance the stability of the BD system it is important to

manage the first step of the chain which is the donor arrivals with an appointment scheduling

model.

Many optimization problems are present in managing the BD supply chain, from donors’

arrival and registration to final utilization of blood units. Most of them have been largely

addressed in the literature, as underlined by recent surveys; e.g., Beliën and Forcé [8]

reviewed the literature up to 2010, and Osorio et al. [9] presented a structured review on

quantitative modeling for BD supply chain. Different problems related to the BD supply

chain management have received attention in the literature: a high number of papers are

related to storage and distribution, whereas other problems, such as donation scheduling,

are not adequately addressed. In particular, even though blood collection step is one of the

most important step in the chain at the operational level, the Blood Donation Appointment

Scheduling (BDAS) problem has never been addressed so far to the best of our knowledge.

In order to highlight unexplored issues and to point out alternative perspectives and possible

future research opportunities within the scope of this thesis, we review the literature related

to the BD system management and classify the existing research based on the process phase.

A literature analysis on BD supply chain management was conducted by Baş et al. [4] and

in this study we grouped the studies of BD supply chain echelons as a percentage to point

out the lack in the literature.

In the following part (Section 2.1), we first present the literature dealing with the blood

donation supply chain echelons. In Section 2.2 future research directions are discussed



8

considering the lack in the literature for BD supply chain and the classification of donation

scheduling within the appointment scheduling literature is presented in Section 2.3.

2.1. BLOOD DONATION SUPPLY CHAIN

The BD supply chain and the related decisions have been classified in the literature either

based on decision levels or supply chain steps.

Sundaram and Santhanam [2] classified the system based on the main steps of a blood

supply chain while Pierskalla [10] classified the decisions based on the strategic, tactical

and operational decisions and Osorio et al. [9] grouped the decisions as strategic, tactical,

operational decisions and high-level processes. The details of the papers are as follows.

Sundaram and Santhanam [2] divided the BD supply chain into four steps based on

the main phases of a blood unit life: collection, transportation, storage and utilization.

First, blood is collected: donors are checked and, if eligible, they make the donation.

Then, blood undergoes a screening process to search for any infectious diseases, and it

is possibly fractionated into components (erythrocytes, plasma and platelets). Afterwards, it

is transported and stored. Its components are then distributed to hospitals according to their

needs. Finally, blood is transferred to end users (the patients) for transfusion. A scheme of

this chain is shown in Figure 1.1.

Pierskalla [10] classified the decisions based on the strategic and tactical operational

decisions. They defined the strategic decisions such as locations of blood banks, the number

of blood centers in a region and the coordination of supply and demand. Many tactical

operation decisions involved in the paper as blood collection, controlling inventory level

and allocating blood to hospitals.

Osorio et al. [9] classified the echelons of the blood supply chain as collection (including

donors’ arrival and registration, collection, and transportation of blood units to storage

centers), production (including testing, primary fractionation which means separating blood

to its components, secondary fractionation and storage of blood products), inventory
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(including replenishment and management of hospital blood banks) and distribution

(including picking and delivery to care units and patients).

With respect to the Figure 1.1, the details of each blood donation supply chain echelon

and related studies are presented in detail as follows. For the sake of simplicity, the figure

structure is used in the following sections.

2.1.1. Collection: Donors, Donation and Screening

BD process starts with the arrival of the donor at the blood center. Donors can be divided

in returning donors who donate on an almost regular basis, and walk-in donors, who are

entering the system for the first time. If the blood collection center has a reservation system,

donors can be further classified as booked and non-booked donor. In any case, donations

can be made after a defined rest period from the previous one, which is defined by law. For

example in Italy, the rest period is defined as 90 days after the previous donation for men

and 180 days for women and for Turkey it is 90 days for men and 120 days for women. As

donors have a crucial importance in the system, their availability, frequency and motivation

have been studied from both a statistical and a social perspective. After blood collection,

some tests are performed on each blood unit and all the details with respect to the phases is

defined in the next sections.

In the following parts, firstly donor arrival and registration step is defined and the related

papers are detailed. Secondly blood collection and screening processes are defined.

2.1.1.1. Donor Arrival and Registration

When a donor enters in the system for the first time, they are requested to provide personal

(e.g., name, address, age, job, gender) and medical/health (e.g., diagnosis, lab results,

treatments) information, which are digitally or manually collected. Digital registration

provides a good traceability of the transfusion cycle, from collection to blood distribution

and transfusion. Furthermore, an effective system integrates with the information systems

of hospitals, and interacts with the collection units and associations of donors. To be able
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to evaluate the blood donors eligibility, final determination is made by a physicians. The

registration also includes a visit from a physician (brief examination of temperature, pulse,

blood pressure and hemoglobin measures), and it is followed by blood exams. Physicians

discuss donor’s health history as part of the donation process before donation. If the donor

is eligible, blood collection centers check that they make the first donation within few days

from the declaration of eligibility. A fixed number of days must pass between two donations

which is defined in Section 2.1.1.

There are several papers that include social aspects of the donors. The main reasons for

blood donation and their relative importance have been studied by Bani and Giussani [11].

Moreover, it is also documented that the organization of blood collection phase may have an

impact on donors availability. They analyze several reasons for blood donation, such as “to

help others” (56%), “influence of family/friends” (22%), “social/moral obligation” (11.2%)

and evaluate their importance. Poor treatment, poor staff skills, and a bad experience are

the main reasons of not returning to donate [12]. Giving the opportunity to check one’s

own health state also plays an important role for donation (6.9%), exclusively for male

donors. Beside these facts, donation decision is fundamentally a personal choice (41.3%),

also influenced by relatives (21.8%), friends (22.3%), or voluntary organizations (21.8%).

Also prolonged queuing times are negatively correlated to BD satisfaction [13, 14]. Hence, a

well-organized donation management has a strong impact on the availability of blood units,

and also on donors motivation, thus possibly increasing/decreasing their availability.

Winston Churchill affirms that we make a living by what we get, but we make a life by what

we give to expresses that voluntarism is a helping behaviour and it is one of the most essential

parts of human altruism. Hoffman [15] defined altruism as a behaviour such as helping

or sharing without the expectation of reciprocity or compensation for that action. It is a

long-term act and organized activity for the benefits of others. In the recent years, psycho-

sociological studies about voluntarism have incremented, and several theoretical models

have also been developed [16, 17]. Omoto et al. [16] modelled a conceptual framework that

explains psychological and behavioural features of voluntarism. In this study, a field study

constructed to understand volunteer’s motivations, social support and personal satisfaction.

Clary and Snyder [18] designated the theory in order to be able to make a comment on
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different types of motives participation. This theory contains that different people may

have different point of views but in the end they might be volunteer to same activity with

varied intentions at different times. Later on, they focus on six primary motives [19]:

protective (to lessen destructive feelings), values (to express or act on important values),

social (to strengthen social relationships), understanding (to learn about the world), career

(to gain career-related experience) and enhancement (to enhance self-esteem). Furthermore,

Okun and Schultz [20] added a new motivation that was not provided by Clary and Snyder

[18]: establishing friendships. Later on, Ferguson et al. [21] asserted that blood donors

exhibit compassion over donated subject rather than altruism, and declares compassion as a

synthesis of self-interest and selflessness.

Several management problems arise, both at a planning level (e.g., blood collection center

location or staff dimensioning) and at an operational level (e.g., appointment scheduling

[22]). Michaels et al. [22] studied customer service and productivity issues for the

American Red Cross blood mobiles and also proposed a simulation model based on a six-

bed benchmark clinic; then different strategies of setting-up, staff distribution and work

directions is used to improve the system. However, only few papers focus on optimization

issues arising in the registration and donation phase, despite the strong impact of donors’

arrivals on the overall system performance.

Some papers focus on estimating the supply of blood from donations, considering annual

donor retention rates, donor recruitment rates, and mean numbers of donations per donor

and per year [23]. Finally, the online applications and database systems for donors and bags

management are also investigated in this stage [24, 25, 26].

In the following part, blood collection and screening processes are defined and the related

papers are detailed.

2.1.1.2. Blood Collection and Screening

The blood collection process starts when the donor arrives at the blood collection center.

Here, donors are registered and visited (by a physician, a nurse or a qualified personnel) to



12

assess their eligibility for donation; if eligible, donors make the donation [1]. Once the blood

is drawn from an individual, tests are performed on it to search for any infectious diseases

(screening process). The blood units that pass the tests are separated into components, if

required, and sent for storage.

There are two main types of BD collection centers, i.e., centers in a fixed location and mobile

centers that move in the territory. In mobile centers, generally a vehicle is used for BD which

is equipped with everything necessary and these vehicles are located in public places such as

universities and city squares. Moreover, centers are generally subject to regulatory control,

designed to ensure the maximum quality and safety of blood products. They guarantee that

blood units are produced according to standardized procedures to achieve consistency of

each product [27].

In some countries, such as Italy, the vast majority of collection centers are fixed and there

is a small number of complementary mobile centers in the main cities, which are devoted

to specific collection activities for a limited time (e.g., in companies, schools and parishes).

Instead, in other countries like in Turkey, a large number of centers are mobile (Only Turkish

Red Crescent (TRC) performs mobile blood collection in Turkey) and change their location

from time to time (e.g., from day to day or from week to week) and in Turkey there is

also fixed location blood centers (e.g., Red Crescent, public hospitals, university hospitals,

private hospitals and military hospitals).

Some BD centers have a reservation system, and donors may reserve a specific time slot in a

future date to avoid long waiting times and queues. In this case, donors can be divided into

booked donors (donors with reservation) and non-booked donors (walk-in donors without a

reservation). In some centers, reservation is mandatory for all donors but, in general, booked

and non-booked donors coexist.

Despite the importance of this phase, the literature on blood collection system planning is

rare [28, 29, 30]. De Angelis et al. [31] proposed a stochastic methodology to analyse and

certify the optimal configuration of servers by integrating simulation and optimization for

a transfusion center in Rome. As mentioned, management problems that arise in the blood
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collection phase can be classified based on the decision level [9, 10]: planning level (e.g.,

location of fixed and mobile blood collection centers, staff dimensioning) or operational

level (e.g., appointment scheduling, screening policies, donation prediction). Problems at

both levels have an impact on the entire BD chain, and some of them have been addressed

in the literature.

There are several studies in donors and blood collection literature ([32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]) and the details of the related papers are

explained as follows. Pratt and Grindon [32] developed a simulation model to study work

flow and queueing problems, and to compare different donor scheduling strategies. Brennan

et al. [33] studied customer service and productivity issues through simulation for the

Red Cross blood mobile centers. Michaels et al. [22] developed a simulation study to

evaluate scheduling strategies for donors who arrive at the Red Cross blood mobile centers,

and compared these strategies in terms of mean transit time to find out the most effective

one. Bretthauer et al. [34] considered a capacity planning problem which involves the

number of required donor beds and the size of the nursing and support staff. Flegel et

al. [35] developed a logistic regression model to compute the donation probability within

a given time frame, considering different regression coefficients for the different types of

donors. Ferguson and Bibby [36] used a prospective design to predict the number of future

blood donations. Blake et al. [37] proposed a desktop tool for planners to schedule staff

and donors; they also developed a discrete event simulator to evaluate the proposed clinic

schedules. More recently, Raven et al. [23] estimated the blood supply from donations using

annual donor retention rates and mean numbers of donations per donor and year. Testik et

al. [38] adopted clustering method, classification methods and regression trees to identify

donor arrival patterns; then, they applied a queuing network model of the donation process

to dimension the workforce. Boonyanusith and Jittamai [39] investigated donor behavior

patterns and the factors that influence donation decision. Alfonso et al. [40] addressed

the modelling and simulation of blood collection process for fixed blood collection sites;

indeed, they proposed formal Petri net models to describe all relevant donor flows of various

blood collection systems. Ritika [41] examined different classification algorithms to find

out a fair classification technique for donation prediction. Van Dongen et al. [42] analyzed

the factors that affect the intention to continue donating in new donors. Blake and Shimla
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[43] presented a method that incorporates cost control and impact on donor experience, and

calculated staffing requirements to minimize costs and optimize donor wait time metrics.

Mobasher and Özener [44] coordinated appointment and pick-up times at blood donation

sites to maximize platelet production while considering processing time requirements for

platelet production. Alfonso et al. [46] presented a simulation-optimization approach based

on mathematical programming representation of event dynamics for capacity planning and

appointment scheduling in blood collection systems. Elalouf et al. [47] improved the

structure of a three-echelon blood sample collection chain, which includes clinics, centrifuge

centers, and a centralized testing laboratory. Osorio et al. [48] worked on a multi-objective

stochastic optimization model for technology selection and donor assignment. Rabbani et al.

[49] investigated two mathematical models for mobile blood collection system. While the

first model is a multi-objective fuzzy mathematical programming that maximize the amount

of blood collection and minimize the operational cost, the second model is a vehicle routing

problem. Gunpinar and Centeno [50] proposed a vehicle routing problem which focused on

the number of bloodmobiles to operate while minimizing the travelled distance.

After collection, screening phase starts with few tests performed against infectious diseases,

e.g., HIV, Hepatitis B and C, and syphilis. They are repeated on each gathered blood sample,

and are generally the same all around the world. Based on the screening results, the blood

bag is either released for clinical and manufacturing use or discarded [28]. An effective,

well- organized screening program and a good quality system are essential for provisioning

safe blood units to patients and meeting the transfusion requirements.

2.1.2. Transportation and Storage of Blood Products

Once blood is collected from donors at regional or community blood centers, blood must

be stored in storage centers or TC before it perishes. These locations serve as a depot until

the blood is distributed to the demand points and sometimes deal with testing of the blood

products.

If collection and storage or TC do not coincide, blood must be transported. Transportation

is a rather simple task in this phase because all collected units are usually addressed to a
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big TC or storage center from all BD centers in the related territory. Transportation must

be carefully performed as the blood must be stored before perishing and requires particular

transportation conditions. Inefficient and inadequate transportation may reduce the quality

of end user care and increase costs. There is not much literature available about blood

transportation between collection and storage centers; on the contrary, many papers on blood

transportation focus on the distribution to hospitals. Ghandforoush and Sen [51] used a

deterministic non-convex integer optimization model to schedule the shuttle transportation

of whole blood products from the collection points to the regional processing centers.

The presence of blood collection vehicles is also considered in blood bag transportation.

Ekici and Ozener [52] defined a variant of the Vehicle Routing Problem (VRP), with respect

to the availability of collection vehicles and they aimed to maximize the amount of collected

blood. There is no capacity limitation on the vehicles due to small size of the blood

collection bags [53, 54]. Donated blood has to be delivered to the processing center within

a certain amount of time. Certain standards are set for the collection and processing of each

blood product. Whole blood cells and red blood cells are both kept refrigerated at 1.0 to 6.0
oC, with maximum permitted storage periods (shelf lives) of 35 and 42 days respectively.

More attention has been paid to the storage of blood products. During the past 20 years

significant progresses have been made in the technology of blood component preparation

and storage [55, 56]. Beliën and Forcé [8] included several works in their survey. Literature

is mainly focused on inventory management problems [57, 58, 59, 60, 61, 62, 63], from

both a deterministic [30, 57, 58, 59, 64] and a stochastic perspective [31, 60, 65, 66,

67, 68, 69, 70, 71, 72, 73]. First, some of the related stochastic inventory problems is

detailed as follows. Dillon et al. [62] proposed a two-stage stochastic programming

model to minimize operational costs while considering blood shortage, wastage and demand

uncertainty. Sirelson and Brodheim [65] built a stochastic simulation model as a function of

base stock levels to manage inventory level, outdated performance measures and shortage

rates. Pereira [66] built a stochastic model for a hospital blood bank inventory system, in

which the remaining shelf life of blood units and the number of days between consecutive

shipments were analysed according to the daily transfusion mean and variation impact.

Katsaliaki [67] used a stochastic simulation model for a cost-effective management of blood
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in the UK: valuable recommendations are provided to the stakeholders for cost reductions

and for increasing the level of services and safety of the processes. Pierskalla and Roach

[74] grouped stock level into categories according to shelf age; to satisfy the current

(deterministic) demand, a First-In First-Out (FIFO) optimal policy was then applied issuing

the oldest unit. Kopach et al. [68] revisited a queuing model and, using level crossing

techniques, determined an optimal policy to support the modeling of several trade-offs;

the model was also combined with the current control techniques using simulation and the

effectiveness of the model was verified with real data. Hemmelmayr et al. [75] evaluated

the impact of switching from their present vendee (customer) managed inventory system to

a vendor (supplier) managed inventory system by a stochastic integer programming-based

approach.

Secondly, some of the deterministic inventory problems is detailed as follows. Some

researchers extended inventory models like the Economic Order Quantity (EOQ) policy

for including perishable products. For example, Giri and Chaudhuri [57] proposed an

inventory model for a perishable product where the demand rate is a function of the on-hand

inventory, and the holding cost is non-linear. Axsater [58] used an economic order quantity

model with deterministic demand. Then, he found the optimal reorder point under uncertain

demand with the use of the order quality. Kazemi et al. [63] used a mixed integer linear

programming model for solving blood inventory-routing problem while applying older-

first policy. Padmanabhan and Vrat [59] proposed a stock-dependent selling rate model

where the backlogging function was assumed to be dependent on the amount of demand

backlogged. Dye and Ouyang [61] extended their model by introducing a time-proportional

backlogging rate.

The next echelon of the BD supply chain is blood distribution and utilization and it is defined

in the following section.

2.1.3. Blood Distribution and Utilization

The last step of the BD chain includes distribution and utilization, which involves several

management problems as detailed below. Distribution is highly important for efficient
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blood usage and should meet the demand, which is often uncertain and requires accurate

predictions. Distribution and utilization echelons includes demand prediction for blood

products, supply management of blood products, distribution to users and usage which are

detailed in the following sections.

2.1.3.1. Demand Prediction for Blood Products

In many countries, people still die because of inadequate supply of blood products [1].

Thus, the main issue in BD is improving blood availability to save lives and to meet the

needs. Moreover, predicting the demand for blood products is crucial for BD process.

However, meeting the demand may not be easy since also the number of donors is difficult

to foresee. One of the most used strategy is holding each blood type in the inventory to

meet the demand. Since there can be shift in donors or demand levels, different inventory

management strategies can be applied as well.

Several works include an evaluation of the demand, even if papers that only focus on a

stochastic prediction of the demand are not available. They can mainly classified based

on the demand structure: deterministic [51, 74, 76, 77, 78, 79, 80, 81] or stochastic

[66, 67, 68, 72, 76, 82, 83, 84, 85, 86, 87, 88]. Moreover, some of the works can also

be classified with respect to the aggregation level: single hospital [66, 71, 72, 82, 86, 90, 91]

or regional level [51, 68, 72, 82, 84, 92, 93, 94, 95, 96, 97]. Although both deterministic

and stochastic demand prediction models have been widely traced in the literature, most of

these works have been devoted to the stochastic ones since they better reflect the realistic

situations. In the following, papers that are published in recent years (considering last 5

years) are explained in detail. For example, Kaspi and Perry [87] considered a system in

which both arrival of blood products and demand are modelled via stochastic process as

independent Poisson processes. Silva et al. [80, 81] developed a demand forecasting tool

to make decisions about the weekly demand required by hospitals. Furthermore, they also

improved the planning of the inventory balance process by forecasting the demand of blood

components. Forecasting the monthly demand was also investigated in [68] by univariate

time-series methods. Lau et al. [98] predicted the future blood demand of thalassemia major

patients for the next 10 years for long-term management of blood supply. Osorio et al.
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[88] proposed a multi-objective stochastic integer linear programming model to minimize

the total cost while optimizing the total number of donors required by sample average

approximation and the augmented epsilon-constraint algorithms. Zahiri and Pishvaee et

al. [89] proposed a bi-objective mathematical programming model to minimize total cost

considering maximum unsatisfied demand in blood donation supply chain.

In the following section, BD supply chain management process and the related papers are

explained in detail.

2.1.3.2. Supply Management of Blood Products

Some papers deal with the decision making support in BD supply chain management, and

on how to maintain or increase the supply of blood products [51, 72, 76, 84, 86, 96, 99,

100, 101]. Recent studies in the literature are summarized as follows. Sahin et al. [76]

established several deterministic mathematical models to solve the location problem of

blood services. Hemmelmayr et al. [84] used an integer programming model to generate

low costs and robust delivery routes for the supply of blood products to hospitals by a blood

bank, and showed the impact of the uncertain demand on the resulting routes. Van Dijk et al.

[72] combined stochastic dynamic programming and computer simulation for the inventory

management problem; the first approach is used to obtain optimal solutions whereas the

latter to investigate various what-if questions as extending the shelf life, changes in the cost

ratio, delivering policy, errors in the demand estimates, and uncertain supply by donors.

Ramezanian and Behboodi [99] proposed a mixed integer linear programming model and

the aim is to increase utility and motivation of the donors to donate blood. First they propose

a deterministic location-allocation model and than proposed a robust optimization approach

that takes into account the stochastic nature of demand and cost parameters with scenario-

based solution methods. Salehi et al. [100] proposed a robust two-stage multi-period

stochastic model for the blood supply network design considering possible natural disasters.

Fazli-Khalaf et al. [101] proposed a multi-objective mathematical model for emergency

blood supply chain network design. The aim of the model is to minimize total supply chain

costs and transportation time between facilities while maximizing total testing reliability of

the donated blood in the laboratories. Arvan et al. [102] designed a bi-objective, multi-
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product supply chain network for blood supply and the aim is to minimize the cost of

the supply chain while minimizing the time of the blood products before it is consumed.

Fahimnia et al. [103] presented a stochastic bi-objective supply chain design model with

the aim of cost minimization and delivery time minimization in a case of disasters. Finally,

Elalouf et al. [104] formulated a mixed-integer programming to obtain the optimal number

of vehicles to be deployed and the scheduling of the pickup process.

In the following part, the last echelon of the BD supply chain is defined and the related

papers in the literature is summarized.

2.1.3.3. Distribution to Users and Usage

Distribution starts with the delivering of components to hospitals, where they are transfused

into patients. TCs are usually responsible for the provisioning of blood products to hospitals,

and the delivered quantities are limited by the shelf-life of blood products as well as by

the holding capacity. In the BD distribution literature, models for determining the number

of distribution centers and their locations are studied. Some of the papers ignore demand

uncertainty [77, 79, 105, 106] while some of them not [107].

Two types of blood distribution systems were outlined by Hirsch and Cazal [77]: the

reactive type, where the inventory level of the hospital is managed with respect to demand,

and the predictive type, where the demand is fixed on schedule. Prastacos [79] focused

on a deterministic mathematical programming model, whose target is to streamline the

distribution of the regional blood resources while viewing plan commitments. It is

characterized by a centralized management of blood, rather than management by individual

hospitals, pre-scheduled deliveries, and a distribution system according to which blood is

rotated among the hospitals.

Generally, redistributing the blood among hospitals is equally important for preventing out

dating. In the event that there is a pressing need of a particular blood type in a clinic,

they may use the blood with the closest decay date from an alternative facility to avoid

spoilage of blood units. Kendall and Lee [105] focused on this redistribution problem with
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goal programming: their model has distinctive goals, e.g., anticipation blood shortages and

overages in hospitals, minimization of the quantity of old units, and minimization of the

working expenses.

Recently, Le et al. [106] combined inventory and routing management into one model: they

proposed a column generation-based heuristic to solve the problem, and showed significant

savings when using their model. Shen et al. [107] presented a joint location-inventory model

for blood distribution system, with non-linear working-inventory costs and non-linear safety

stock inventory costs.

As out literature review indicates, there is a considerable body of work related to BD,

however, not all phases of the BD supply chain have been adequately investigated in the

literature so in Section 2.2, we have highlighted relevant lacks and proposed some research

directions in this field.

2.2. OPEN ISSUES IN LITERATURE

The BD supply chain should meet the overall blood demand from hospitals and transfusion

centers, and at the same time the blood supply should take into account the temporal profile

of the overall demand. In fact, as mentioned, blood is a limited resource and its short shelf

life limits the period between donation and utilization; thus, imbalanced feeding of blood

units could trigger alternate periods of blood shortage and wastage. Blood collection, as

the first stage of the BD supply chain (see Figure 1.1), has a great impact on the entire

system in terms of blood units flow. Moreover, it is responsible for the perceived quality of

service from the donors viewpoint. Unfortunately, this phase is not adequately addressed in

the literature. Table 2.1 summarizes a literature analysis on BD supply chain management

conducted by Baş et al. [5]. Percentage of the existing work for each phase are calculated

based on the 229 papers on blood management (papers on social and physiological aspect

neglected) that are available on Scopus and on the other main scientific databases. This

research is based on Baş et al. [5] which is updated in February 2018. It shows that only the

3% of the research deals with the first step of a blood unit life, i.e. with donors’ arrival and

scheduling.
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In particular, as in other domains, an effective application system is also needed in the

BD domain, in order to combine the registration system with donors’ and physicians’

preferences and their points of view. Such an application system (e.g., an online system)

could be a solution to join donors and physicians at the same platform and to encourage

volunteer donation.

Table 2.1. Percentage of the existing works for each phase on blood management that are
available in the literature and this research is based on Baş et al. [5].

Phase Process Percentage

Collection arrival and registration 3%

donation 11%

screening 3%

Transportation 0%

Storage 30%

Utilization demand prediction 18%

supply management 19%

distribution 16%

Another important issue of the BD system is the management of donors’ appointments and

visits, as it has a significant impact on the effectiveness of the entire BD chain and on donors’

motivation. Also this point has been slightly studied in the literature (Fig. 2.1) and it can be

improved. Definitely, increasing the number of donations improves the performance of the

system, but also an effective management of donor arrivals among the days may optimize

the daily production of units with respect to the demand in order to have better management

of BD system. For instance, booked donors’ appointments could be scheduled in advance,

but not all donors are willing to accept prescheduled appointments, or they often require

appointments at the beginning or at the ending of the day rather than at noon. Thus, an

important lack in the literature is the development of mathematical models and techniques

for providing an efficient appointment scheduling.
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In the following section, first the related appointment scheduling systems in the literature is

discussed and then an appointment scheduling for blood donation system is proposed.

2.3. APPOINTMENT SCHEDULING SYSTEMS IN THE LITERATURE

Scheduling is the decision making process to determine when, where and with which

resources to produce a set of products, or to provide a set of services. Generally

speaking, scheduling an operation includes deciding when and how to process and deliver

the product/service, in order to achieve the maximum benefit according to an objective

[108, 109, 110, 111].

Scheduling problems are widely studied in the literature and have been classified according

to several criteria (e.g., number and sequence of machines, processing times, job arrival

rates and objective function) for both manufacturing and service (including health care)

systems [112]. Usually, scheduling problems deal with limited resources and some other

requirements (e.g., compatibility, prioritization) over a specific time period. Typical

objectives are: minimizing time and cost, maximizing the total amount of work completed,

reducing inventory, increasing efficiency, etc.

Effective schedules are widely studied in manufacturing [113, 114, 115]. However,

scheduling in service systems is different than in manufacturing, mainly because the system

capacity in manufacturing may exploit inventories. On the other hand, in service systems, a

service is provided together with its utilization; thus, service capacity cannot be stored and

it is lost if unused [116, 117]. In service systems, customers want to spend the minimum

waiting time and receive good quality service, whereas service providers want to perform

the schedule at the minimum cost. In particular, service systems try to satisfy the demand

through appointments. Thus, appointment scheduling represents the interface between

demand and service provider, and balances between the needs of the two stakeholders.

In health care services, the appointment scheduling process allocates service times to

individual patients [118] while pursuing two main goals. The first one is to provide a good

quality of service to customers, e.g., by assigning them a short service time window during
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which they are guaranteed to receive the service. The second goal is to protect the system

from daily fluctuations of demand, which may result in low utilization levels in some days

and overloads in others [119].

Researchers focused on several objectives while designing appointment scheduling

frameworks in health care systems [120]; reducing waiting times, improving the continuity

of care, optimizing clinical resource utilization, improving patient satisfaction and reducing

costs are widely applied objectives. Examples of applications are medical patient

scheduling, scheduling systems for ambulatory care services, home care scheduling,

physician coverage scheduling, appointment scheduling in outpatient clinics, and operating

room scheduling. For instance, Cayirli et al. [121] investigated scheduling systems

for ambulatory care services; they highlighted the great impact of patient sequencing on

ambulatory performance and showed that panel characteristics (such as walk-in patients, no-

shows, punctuality and numerousness) strongly influence the effectiveness of appointment

systems. Alvarado and Ntaimo [122] developed three (chemotherapy patients, chairs,

and nurses) different mean-risk stochastic integer programming (SIP) models, to schedule

individual chemotherapy patient appointments and resources. Appointment scheduling in

outpatient clinics is also widely studied. The negative effects of no-shows are studied in

terms of provider underutilization and delayed patient access [123, 124, 125, 126, 127, 128,

129, 130]. In such case, most of the applied solutions use overbooking in order to increase

the utilization; the goal is to maximize the number of visited patients while minimizing

waiting times, physician idle times and overtimes [131, 132]. Finally, Muthuraman and

Lawley [125] showed that the near-term schedule tends to be fully utilized for outpatient

clinics when the health care service provider works close to capacity.

In practice, appointment scheduling decisions in BD systems are made by hand (physicians

and/or support staff spend a lot of time to assign donors to slots) or supported by tools.

Since the papers in the literature generally deals with the social and physiological aspects,

quantitative models are still missing in the donation scheduling literature. However, to the

best of our knowledge, the available systems do not include an analysis of the daily blood

production with respect to storage requests while allocating time slots to donors. Moreover,

integrating the production point of view makes the scheduling problem more complex and
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almost impossible to consider any manual scheduling made by the physicians or the support

staff. Hence, the main goal and benefit of new effective scheduling systems will be to

combine these contrasting needs: to improve the operational level while optimizing the

produced blood units based on storage request, its pattern and storage capacity (free and

occupied).

Unfortunately, several issues complicate developing such an effective system and prevent

from using solutions imported from other health care services. One of these issues is

the uncertainty related to donor arrivals. While scheduling the appointment for a donor,

unexpected arrivals of additional non-booked donors and the other future reservations should

be also considered. Hence, the system should predict these arrival rates while assigning

time slots to donations. Another issue is the uncertainty of blood demand, strongly affecting

storage levels, which can be only partially predicted due to daily and weekly fluctuations.

The fluctuations depend on the institution structure; for example, the demand is highly

variable for blood collections centers that serve emergency departments.

To summarize, appointment scheduling in BD systems is different from all of the presented

cases, since blood collection includes both the features of a service system (time windows,

operators’ capacity, possibility of no show-up) and those of a production system (supply

of blood units to the rest of the BD supply chain). For this reason, the blood donation

scheduling problem cannot be strictly classified within the existing literature, and this may

also explain the lack in the literature on BD appointment scheduling systems that include

both system and production points of view.

From the service provider point of view, there are some priorities to consider. The first

priority is to reduce waiting times for booked donor, to improve the quality of service

perceived by them. The second priority is to satisfy donors’ preferences while making a

reservation, in terms of desired donation day and time, and possibly place where to make

the donation. In fact, donors are more willing to donate if they are satisfied with the service

[133], e.g., if the BD collection center is in a suitable location, the donation day and time

fit with donors’ needs, and/or the waiting time is limited. Thus, optimizing the donation

phase can increase the donation frequency, but it must involve several planning levels and
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decisions to coordinate.

As mentioned, an important issue in optimizing the blood collection phase is the uncertainty

associated with some inputs of the system. One of the most uncertain parameters is the

number of non-booked donors, whose uncertainty must be considered when scheduling the

appointments. More in general, donor arrival rates may highly vary according to the time

of the day, the day of the week, etc. Thus, predicting the numbers of booked and non-

booked donors and their temporal patterns is necessary to evaluate the number of needed

appointments and to get more effective appointment solutions. Moreover, predicting the

number of donors is also useful for managing and dimensioning the system. Thus, an

appointment scheduling system that includes these priorities and a fair prediction of the

arrivals would certainly improve the BD collection phase.

In Section 3, the proposed architecture for the blood donation scheduling problem is

presented which include both system and production points of view. The architecture

is based on a deterministic Mixed Integer Linear Programming (MILP) model for the

preallocation phase and a prioritization policy for the allocation phase.
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3. DETERMINISTIC MODEL

3.1. INTRODUCTION

In this dissertation, we propose a new architecture for AVIS Milan in the BDAS problem.

In the following section, primarily the current architecture of the AVIS Milan scheduling

system is explained and then the proposed architecture is defined.

The current architecture of the AVIS Milan scheduling system is shown in Figure 3.1, which

also shares many features with several blood collection centers. Some donors call to book

the donation day and time slot beforehand, and slots are assigned (booked) until a maximum

percentage of the daily capacity is reached, regardless of blood type. The daily capacity is

expressed in terms of the total physician working time without incurring overtime. While

AVIS Milan has a large donation room where a seat is almost always available when a donor

arrives, the physician’s service before donation is the bottleneck of the system that generates

the queue; thus, we consider the physician working time as the scarce resource and the time

slot refers to the time spent for serving a donor.

Figure 3.1. Current architecture of AVIS Milan.

Another problem is related with the allocation of time slots to the booked donors without
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considering the arrival of non-booked donors. This generally creates unavoidable overtime

for the physicians at the end of the day. Furthermore, as it is discussed in 1, the actual

problem of the entire system is an imbalanced production. In order to reduce the outdated

blood units and blood shortages, it is important to balance the daily blood production. The

daily donations are given by the amount of booked and non-booked donors who show up

at the blood collection center. Historical data from AVIS Milan show that the number of

produced units is not constant among days.

Figure 3.2. Daily number of whole blood donations in 2013 and 2014 according to the

historical information of AVIS Milan: total number of donations (a) and percentage of type

A Rh+ (b).

Figure 3.2 (a) reports the daily number of whole blood units produced per day, and Figure

3.2 (b) gives the relative percentage of units with type A Rh+ (data refer to 2013 and 2014,

i.e., two years in which production balancing was not considered). It is observable that

the number of blood units is not evenly balanced among the days, despite the goal of

flattening the production both in terms of total number of units per day and for the different

blood types. In particular, AVIS Milan would like to avoid high frequency oscillations,
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while low frequency oscillations do not depend on scheduling and cannot be avoided. For

example, the decreased production around days 220-240 in Figure 3.2 (a) corresponds to

August when people are usually on holiday and do not donate. In some days no donation

occurs because of the holidays. In current practice, the appointment scheduling decisions

are manually made or supported by short-sighted tools. Even though these tools are able

to reduce donor waiting times and physician overtime, and/or optimize other operational

issues, they do not include any analysis of the daily blood production with respect to the

storage while allocating time slots to donors. Hence, a comprehensive scheduling system

must accommodate these contrasting aspects: improving operational level while providing

a reliable supply of blood units in agreement with the storage requests.

To overcome these drawbacks, this dissertation proposes an architecture for planning the

donations that consists of two phases, i.e., an offline preallocation of time slots for donation

based on the blood type, and an online allocation. The output of the preallocation acts as

an input for the allocation, in which the daily layout of prereserved slots is filled while

the donors call for booking. Infact, when a donor calls for reservation, the allocation phase

assigns a preallocated slot to him/her, among those slots prepared in the preallocation phase.

The first reason of such decomposition into two phases is to balance the daily production of

all blood types while assigning the slots to different blood types. The second reason is to

assign these slots to the donors with their specific blood types.

The list of preallocated slots is refreshed (regenerated) after a certain number of reservations

are received and/or at a fixed frequency (e.g., each day). The number of preallocated slots

which have been converted into reserved slots is fed back to the preallocation phase (the

assigned slots are no longer available and have to be considered as occupied) and the process

is repeated. As a result, the plan for each day is given by the list of booked donors for that

day, together with the number of empty slots that are left free for the non-booked donors

who may arise to donate.

Besides the goal of production balancing, the daily layout of prereserved slots should

meet some other requirements: the total number of slots should be around the expected

number of donors, the slots should respect the proportions of the blood types, and an
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appropriate number of spare slots should be preserved for non-booked donors. To meet

these requirements, the future number of donors (both booked and non-booked) is required

and should be predicted, e.g., based on the available historical data.

The proposed architecture is summarized in Figure 3.3. The preallocation phase receives the

expected number of booked and non-booked donors, together with the number of occupied

(already booked) slots, and provides the preallocated slots. Then, the allocation phase uses

these preallocated slots to respond to the phone calls for reservation, and updates the list of

occupied slots.

Figure 3.3. Proposed architecture for AVIS Milan.

As mentioned in the Introduction, the preallocation phase is based on an MILP model

whereas the allocation phase assigns a prereserved slot to each donor with a prioritization

policy. The developed model is presented by Baş et al. [6, 7]. They are presented in detail in

the following subsections. The proposed deterministic model is described in Section 3.2.Iin

Section 3.3 some valid inequalities are added to the model in order to reduce computational

times, the prioritization policy is defined in Section 3.4, the overall framework for the

deterministic model is defined in Section 3.5.3 and the numerical results for the deterministic

model is presented in Section 3.5.
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3.2. PROPOSED MODEL

The preallocation of the slots is optimized through an MILP model, whose aim is to

preallocate a balanced number of slots for each blood type close to the expected number

of booked donors in the considered time horizon. While doing so, some spare time slots

are left empty for non-booked donors, physicians’ peak loads are dispersed within each day

by means of periodic physician capacities, and the total system capacity is restricted by

considering maximum daily physician capacities.

A set of days T represents the considered time horizon, and all days t ∈ T are divided into a

setK of periods. Moreover, the set of blood types is denoted asB. We consider for each day

t and each blood type b a number of slots xbt to preallocate (non-negative integer decision

variable) and a number of already allocated slots abt coming from previous reservations.

We assume an expected number db of booked donors for blood type b over T . Ideally,

for each blood type, the summation over T of the already booked slots and the slots to

preallocate should be equal to db, i.e.,
∑

t∈T
(
xbt + abt

)
= db. However, as mentioned, we

do not know the exact number of booked donors in advance. Thus, we include a flexibility

degree in complying with the summation by imposing that
∑

t∈T
(
xbt + abt

)
can lie in the

interval from (1− ε) db to (1 + ε) db for each blood type b. Parameter ε (0 ≤ ε ≤ 1)

is an index of the associated flexibility: small ε values close to 0 refer to low flexibility,

whereas higher values can be assumed in case of highly unknown donor arrivals. Forcing the

system to allocate a given number of slots (actually a number in a range) is necessary in the

presence of an objective function that aims at balancing the production of blood units among

days and at avoiding periodic accumulation of donors. In fact, a perfect balancing with no

overtime can be obtained with a null production. Furthermore, preallocating a number of

slots higher than the necessary amount will lead to several empty slots because of fewer calls

for reservation; thus, even though the preallocated slots are balanced, the actually occupied

slots could be imbalanced. Hence, an appropriate selection of ε value is crucial, and too high

values are not of interest for a practical application, meaning no information about the db

parameters. In particular, we remark that high values of ε close to 1 may nullify the number

of preallocated slots or generate an unnecessary higher number of slots.
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As indicated above, a certain amount of slots should be left empty for non-booked donors,

which is represented by nbt for blood type b and day t. Since non-booked donors may arrive

in any period k of the day (k ∈ K), the fraction of nbt for period k is denoted with αk (same

or different fractions ∀t ∈ T can be assumed).

The standard time r required for the service of a donor (considered while allocating new

slots xbt) is assumed to be constant and equal for all donors. In addition, for the already

booked slots abt , a specific service duration can be set for each donor; we denote by Rtk the

total time for the already allocated donors in period k of day t. Note that, on each day t, the

number of already allocated slots abt are grouped by blood type b, while the associated times

Rtk are grouped by period k.

The overall capacity of the physicians in period k of day t is denoted by ctk, and the service

time required at day t and period k above the capacity ctk is denoted by ptk. We refer to ptk

as a dispersion amount rather than overtime because overtime is generally considered as the

time beyond the overall daily capacity, while we consider periodic overtime due to possible

accumulation of donors within periods of the day (e.g., in the morning). Hence, rather than

penalizing the overall overtime, it may be useful to penalize the periodic accumulations of

donors (i.e., the overtime in each period of the day) in order to disperse them towards the

underutilized parts of the day. This also compensates for the higher arrival of non-booked

donors in certain periods by allocating the booked donors in the others. Let us consider two

examples that motivate the implementation of the periodic dispersion. In the first example,

assume that no donors arrive at period k = 1 and that the overall service time in the other

periods k = 2, . . . , K exceeds the corresponding periodic capacities (i.e.,
∑

k=2,...,K ctk),

while the overall system capacity (
∑

k=1,...,K ctk) is not exceeded. We might not have daily

overtime according to the classical definition, even though we observe periodic ones. Thus,

focusing on the daily overtime is not accurate since additional service time is actually

required to serve donors arriving from k = 2. In the second example, assume that the

service time required in the first period k = 1 is higher than the corresponding capacity ct1

and that the service times required in the other periods are not over their periodic capacities.

Even though this situation does not result in daily overtime, it is not desirable since waiting

times in the first period might be high. Hence, a dispersion amount for each period helps to
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both balance service times among periods and reduce waiting times.

Table 3.1. Sets, parameters and decision variables for the preallocation model.

Sets

B set of blood types

T time horizon

K set of time periods in a day (same ∀t ∈ T )

Parameters

db expected number of booked donors over T with blood type b

ε flexibility degree associated with db (same ∀b ∈ B)

abt number of already booked donors at day t with blood type b

nbt expected number of non-booked donors at day t with blood type b

αk fraction of nbt in period k (same ∀t ∈ T )

ctk overall capacity of physicians (time) in period k of day t

r standard time required for serving a donor

Rtk time amount for serving the already booked donors in period k of day t

µ maximum fraction of the total dispersion amount in a day with respect

to the overall capacity in the same day

η maximum variation weight (for the objective function)

δk weight of the dispersion amount in period k

(same ∀t ∈ T , for the objective function)

Decision variables

xbt number of preallocated slots for blood type b in day t

wbtk number of preallocated slots for blood type b in period k of day t

ybt number of planned units for blood type b in day t

zbt absolute variation of ybt with respect its average value over T

v maximum of the variations zbt ∀t ∈ T, b ∈ B

ptk dispersion amount in period k of day t



33

Variables are subject to the following constraints:

ybt = xbt + nbt + abt ∀t ∈ T, b ∈ B (3.1)

∑
τ∈T

ybτ − ybt |T | ≤ zbt |T | ∀t ∈ T, b ∈ B (3.2)

ybt |T | −
∑
τ∈ T

ybτ ≤ zbt |T | ∀t ∈ T, b ∈ B (3.3)

v ≥ zbt ∀t ∈ T, b ∈ B (3.4)

(1− ε) db ≤
∑
t∈T

(
xbt + abt

)
∀b ∈ B (3.5)

∑
t∈T

(
xbt + abt

)
≤ (1 + ε) db ∀b ∈ B (3.6)

xbt =
∑
k∈K

wbtk ∀t ∈ T, b ∈ B (3.7)

r
∑
b∈B

(
wbtk + αkn

b
t

)
+Rtk ≤ ctk + ptk ∀k ∈ K, t ∈ T (3.8)

∑
k∈K

ptk ≤ µ
∑
k∈K

ctk ∀t ∈ T (3.9)

xbt ∈ N ∀t ∈ T, b ∈ B (3.10)

ybt ∈ N ∀t ∈ T, b ∈ B (3.11)

ptk ≥ 0 ∀k ∈ K, t ∈ T (3.12)

zbt ≥ 0 ∀t ∈ T, b ∈ B (3.13)
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wbtk ∈ N ∀k ∈ K, t ∈ T, b ∈ B (3.14)

v ≥ 0 (3.15)

Some additional decision variables are finally included to model the preallocation problem.

The number of preallocated slots for blood type b in day t and period k is represented by a

non-negative integer variable wbtk, whose sum over k ∈ K provides xbt . The overall number

of planned donations for blood type b at day t is ybt , which is given by xbt + abt + nbt . The

absolute variation of ybt with respect to its average value over the days t is denoted as zbt ;

thus, the summation and the maximum of zbt over t are linear terms to represent the variance

of ybt . Sets, parameters and decision variables are summarized in Table 3.1.

Constraints (3.1) compute the number of blood units ybt for each day t and blood type b.

Constraints (3.2) and (3.3) calculate the absolute variation zbt between ybt and its average

value over T , and constraints (3.4) compute the maximum of such absolute variations.

Constraints (3.5) and (3.6) force the total number of slots of type b to be around db, with

tolerance ε; obviously, the number of slots is an integer number, so that the effect of these

constraints is to bound
∑

t∈T
(
xbt + abt

)
between d(1− ε)dbe and b(1 + ε)dbc. Constraints

(3.7) calculate, for each blood type b, the total number of preallocated slots xbt in day t based

on the wbtk amounts. Constraints (3.8) calculate the dispersion amount ptk based on service

times and physicians’ capacities. Constraints (3.9) limit the total dispersion amount in a

day to be at most a given fraction of the overall capacity in the same day, where µ is such

fraction.

In this formulation, we assume that all arriving donors make a donation, that all booked

donors show up at the right period and day, and we do not consider different types of

donations other than the whole blood donation (e.g., apheresis).

The primary objective of the model is to balance the production of each blood type b among

the days, which corresponds to obtaining low zbt values. Moreover, the secondary goal is to

minimize the dispersion amounts ptk, where the amount of each period k ∈ K is weighted
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through a specific parameter δk. Hence, the following objective function is considered,

which is composed by three terms:

min

{∑
b∈B

∑
t∈T

zbt + ηv|T ||B|+
∑
t∈T

∑
k∈K

δkptk

}
(3.16)

The first two terms (named OF1 and OF2, respectively) balance the production among days

by reducing the absolute variations zbt ; OF1 minimizes the total absolute variation with

respect to the average production, while OF2 minimizes the maximum absolute variation

among all days and all blood types. The third term (named OF3) minimizes the total

weighted dispersion amount. The objective function may contain all three terms, as reported

in (3.16), or alternatively it may include only one or two of them. If OF2 is neglected,

constraints (3.4) can be removed from the model, while constraints (3.8) and (3.9) can be

removed if OF3 is not considered.

Let us focus on the first two terms OF1 and OF2, which both aim at balancing the production.

η is a positive parameter that represents the relative weight of the maximum absolute

variation with respect to the total one: a low value of η favors the total variation, whereas

higher values favor controlling the maximum variation. Decision variable v is multiplied

by |T | and |B| to obtain, with η = 1, the same order of magnitude for the two terms. It is

common in optimization problems that both the summation and the maximum of a set of

decision variables are optimized. But, in our case, these two terms may lead to allocate a

different number of slots xbt , since ybt is given by xbt+n
b
t+a

b
t and the summation

∑
t∈T x

b
t+a

b
t

is not constrained to a value but to a range, due to (3.5) and (3.6). On the contrary, in several

other problems, the overall amount is generally fixed and just differently allocated. Further

details will be provided in Section 3.3.

We finally underline that our framework assigns a day t and a period k to each donor, and

we can tune the granularity of the assignments based on the number K of periods in a day.

For example, with K = 3, the donor is assigned to a period that is obviously longer than the

actual duration of the slots; thus, for a practical application, the appointment can be further

refined considering a real scheduling within such period. Alternatively, with higher values
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of K, the length of the periods could be comparable with that of slots and the assigned

period could also refer to the scheduled time.

3.3. SUBPROBLEMS AND VALID INEQUALITIES

In this section some subproblems are analyzed for some particular cases of the preallocation

problem, to show the different behaviors of OF1 and OF2, and to derive valid inequalities

that could speed up the computational times (See Section 3.3.1). In case of unavoidable

imbalance, it can be time consuming to close the gap between the integer solution and

the continuous relaxation in commercial solvers (e.g., CPLEX solver). In mixed integer

programming, some variables are required to be integer and to be able to solve the mixed

integer programming problems by the branch-and-bound method, the approach branches

only the variables that are required to be integer. Branch-and-bound procedure solves the

linear relaxation of the problem and stops if the solution is integer. If not, the branch-

and-bound procedure continues, systematically generating sub problems to analyze and

discarding those that do not improve the objective lower bound.

Subproblem 1: Let us first consider the case of one blood type b∗ alone (|B| = 1), no

preallocated slots (ab∗t = 0), a constant number of non-booked donors (nb∗t = n̄b
∗ , ∀t), and

infinite capacities (ctk →∞, ∀t, k).

Definition 1: Given a time horizon T and two values Mmin and Mmax, the Subproblem 1

consists of finding an integer value N ∈ [Mmin,Mmax] and an allocation of slots to days xb∗t

(t ∈ [1, . . . , |T |]) such that
∑

t∈T x
b∗
t = N and

∑
t∈T

∣∣∣∣∣∣xb∗t −
N

T

∣∣∣∣∣∣ is minimized. The range

for M =
∑

t∈T x
b∗
t + ab

∗
t =

∑
t∈T x

b∗
t is constrained between Mmin = d(1− ε)db∗e and

Mmax = b(1 + ε)db∗c because of constraints (3.5) and (3.6).

If there exists a multiple of |T | in [Mmin,Mmax], then a perfect balancing with zbt = 0, ∀t

is possible. Otherwise, the best possible balancing is given by allocating blocks of |T | time

slots (one slot for each day t ∈ T ) until the remaining number of slots to allocate is lower

than |T |. This remaining number N (with 0 < N < |T |) is responsible of an unavoidable
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imbalance because, at the optimum, N slots are allocated in N days (one for each day),

while no slots are allocated in the other |T | − N days. The remaining number N must

be decided within the range [Nmin, Nmax], where Nmin and Nmax are the remaining parts

of Mmin and Mmax, respectively. Consequently, zb∗t = 1 −
N

|T |
in the N days in which a

remaining slot is allocated, while zb∗t =
N

|T |
in the |T |−N days in which no remaining slots

are allocated. In the best case, the objective function (OF1) is:

∑
t∈T

zb
∗

t = N(1−
N

|T |
) + (|T | −N)

N

|T |
= 2(N −

N2

|T |
) (3.17)

Figure 3.4. Demonstration of a concave parabola in (a) and a v-shaped function in (b).

The expression in (3.17) is a concave parabola (see Figure 3.4 (a)) with maximum in N =

|T |
2

and null value in N = 0 and N = |T |.

If we consider the second objective function term (OF2):

v = max
{
zb

∗

t , t ∈ T
}

=

0 N = {0; |T |}

max
{

1− N
|T | ;

N
|T |

}
N ∈ [1, |T | − 1]

(3.18)
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The expression in (3.18) assumes a null value for N = 0 and N = |T | while for N ∈

[1, |T | − 1] it is a V-shaped function (see Figure 3.4 (b)) with minimum value 0.5 inN = |T |
2

.

The flexibility ε is responsible of the different behaviors between OF1 and OF2 in terms of

allocated xbt . By constraining the domain of N to [Nmin, Nmax], the minimum of (3.17) is in

the farthest point from the maximum of the parabola, i.e., in Nmin if Nmin < |T | − Nmax,

or in Nmax if Nmin > |T | − Nmax. As a consequence, OF1 prefers to allocate a number of

M slots as close as possible to a multiple of |T |. On the contrary, if a perfect balance is not

possible, the minimum of (3.18) is obtained by allocating a number of slots M as close as

possible to the intermediate value between two consecutive multiples of |T |.

Intermediate behaviors can be obtained when both OF1 and OF2 are present, which can be

adjusted by varying the relative weight η.

Let us consider the given numerical example with T = 7, ε = 0.25 and db = 4 in Figure

3.5.

Figure 3.5. Numerical example for the valid inequalities.

The domain of N is constrained to [Nmin = 3, Nmax = 5]. Best possible balance is given
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by allocating a first slot for each day until the remaining number N of slots is lower than

T . When we consider Mmin = 3, three slots are allocated one by one for each day and

for the remaining four days, no slot is assigned to the day. So, the variate part with respect

to the mean value of yb∗t is given by N
|T | . Consequently, zbt = 1 −

3

|7|
in the 3 days in

which a remaining slot is allocated (actual value minus the average value), while zbt =
3

|7|
in the |7| − 3 days in which no remaining slots are allocated. The expression in (3.17) is

calculates as follows: 3(1 −
3

|7|
) + (|7| − 3)

3

|7|
= 2(3 −

32

|7|
) = 3.429. Furthermore, since

the remaining part N = 3, the expression in (3.18) is calculated as: max
{

1− 3
|7| ;

3
|7|

}
. The

minimum of (3.17) is in the farthest point from the maximum of the parabola (in Nmax = 5

if Nmin = 3 > |T | = 7 − Nmax = 5). In contrast, the minimum of (3.18) is obtained by

allocating a number of slots M as close as possible to the intermediate value (see Figure 3.4

(b)).

Subproblem 2: Let us consider again one blood type b∗ alone (|B| = 1), a constant number

of non-booked donors (nb∗t = n̄b
∗ , ∀t), and infinite capacities (ctk → ∞, ∀t, k). But, now,

let us consider some preallocated slots ab∗t ≥ 0. Two cases may occur:

• Subproblem 2a: if ab∗t ≤ ξb
∗
t , where ξb∗t denotes the optimal value of xb∗t in the

corresponding Subproblem 1 where ab∗t = 0, ∀t the same considerations derived for

Subproblem 1 still hold, and (3.17) and (3.18) are valid. Indeed, slots either belong to

ab
∗
t or xb∗t , but the constraint on the summation

∑
t∈T x

b∗
t + ab

∗
t acts in the same way

and the same values of OF1 and OF2 are reached.

• Subproblem 2b: if ab∗t ≤ ξb
∗
t , it is not possible to reach the same balancing of

Subproblem 2a, and higher values of OF1 and OF2 are obtained. Even though we

allocate the slots xb∗t in a balanced way with xb∗t = 0, the higher value of yb∗t with

respect to the mean daily production remains, thus giving an imbalanced solution. In

this subproblem, an analytical expression cannot be deriven as for Subproblem 1, but

the best possible balancing can be derived with an algorithm (which is out the scope

of this dissertation).
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Subproblem 3: Let consider again infinite capacities (ctk → ∞, ∀t, k) but more than one

blood type, i.e., |B| > 1. Due to the presence of unlimited capacity without overtime, the

problem can be decomposed by balancing the blood types individually. Hence, for each

blood type b ∈ B, a Subproblem 1 or Subproblem 2 can be considered.

Other problems: To move towards the complete problem, the assumption of infinite

capacities (while also including OF3 in the objective function) is removed or a variable

amount of non-booked donors nbt among days t are considered. In the most general case,

both these aspects can be included.

By removing the assumption of infinite capacity, the slots of the different blood types cannot

be preallocated individually, and we cannot decompose the problem anymore. Due to

the competing blood types and the resulting dispersion amount costs, the best balancing

previously obtained with Subproblem 1 or Subproblem 2a could not be achieved. Indeed,

while improving the balancing, the additional dispersion amount cost in OF3 could be more

expensive than the corresponding reduction of OF1 and/or OF2, and the system would prefer

more imbalanced solutions.

As for variable nbt values, an expression for the best possible balance can be derived while

considering blood types individually, but a close analytical formula does not exist and an

algorithm is required, as for the ab∗t > ξb
∗
t case of Subproblem 2.

In the following part, lower bound formulation for improving computational efficiency is

derived.

3.3.1. Lower Bounds for Improving Computational Efficiency

The described problems that are explained in Section 3.3, can be used to derive some

lower bounds on the value of OF1 and OF2. Valid inequalities can be added to reduce

computational times, i.e., additional cuts that reduce the admissible region of only the

continuous relaxation by bounding the values of OF1 and OF2.
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In particular, in case of constant nbt , we bound OF1 and OF2 with the best possible balancing

obtained for Subproblem 1 and Subproblem 2a, respectively, in a closed analytical form

which correspond to the minimum of (3.17) and (3.18).

The lowest value of OF1 for a given blood type b∗ is given by (see Subproblem 1):

LBOF1 = 2 min

{(
Nmin −

N2
min

|T |

)
;

(
Nmax −

N2
max

|T |

)}

Its summation over the blood types, assuming a null value for those types where a perfect

balancing is possible, gives the lower bound LBOF1. Hence, the following lower bound

constraint LB1 can be added to the model:

∑
b∈B

∑
t∈T

zbt ≥ LBOF1 (3.19)

We remark that LBOF1 is computed from the available data before the model is run and,

thus, it is another model parameter.

The lowest value of OF2 for a given blood type b∗ is given by (see (3.18)):

LBOF2 = max



0 Nmin = 0 or Nmax = |T |

1− Nmax

|T | Nmin > 0 and Nmax ≤ |T |
2

Nmin

|T | Nmin ≥ |T |
2

and Nmax < |T |

1
2

0 < Nmin <
|T |
2

and |T |
2
< Nmax < |T |

Then, the highest of the values among the blood types b gives the lower bound LBOF2.

Hence, the following lower bound constraint LB2 can be added to the model:

v ≥ LBOF2 (3.20)

We remark that also LBOF2 is computed from the available data and it is another model

parameter.
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We underline that, due to the opposite behaviors of OF1 and OF2, the lower bounds

LBOF1 and LBOF2 cannot be reached at the same time (when greater than 0). Though, the

lower bound of their summation is for sure higher than LBOF1 + η|T ||B|LBOF2. Another

constraint could be introduced to bound such summation; however, no closed formula are

possible in this case.

We should compute min
∑

b∈B
∑

t∈T z
b
t + ηv|T ||B| for each possible combination of the

values N of the different blood types, between their respective Nmin and Nmax; the

minimum of the computed values is the lower bound for the summation.

In case of variable nbt , the absolute variations zbt also depend on the temporal patterns of

nbt and the lower bounds cannot be computed by exploiting (3.17) and (3.18). They can be

again computed for individual blood types with simple algorithms that search for the most

balanced pattern yb∗t , t ∈ T among the possible ones; however, in this thesis we only focus

on lower bounds that can be analytically expressed.

3.4. PRIORITIZATION POLICY FOR THE ONLINE ALLOCATION OF SLOTS

The goal of the prioritization policy is to decide the best preallocated slot to propose when

a donor calls to make a reservation. However, proposing only one day to the donor is not

enough because the donor may have other constraints and could not accept the proposal.

Thus, it is preferable to propose a list of possible days t and periods k, and let the

donor choose among them. This might increase the donation frequency and the perceived

usefulness of the donation from the donor. Hence, the goal of this second phase is to assign a

score to each slot of the donor’s blood type, such that the slots can be proposed one by one to

the donor in a decreasing order of score until a slot is accepted. This is a good compromise

between donor’s needs (propose several alternatives) and production needs (propose the best

alternative).

Basically, there are two points behind the prioritization of the slots and the assignment of

the score: to fill the first available day and to keep the flexibility of the reservation system.

The first point requires assigning the donor in the first available day according to his/her
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blood type. In fact, keeping the first available slots empty may negatively affect the system

if no further donors of the same blood type will ask to reserve a donation slot, because

such slots will remain empty. The second point requires not to fill all of the preassigned

slots of a day; otherwise, the range of choice for the next calling donor is reduced. Hence,

flexibility means to assign donors in the day with the highest number of preallocated slots

still available. Both points are taken into account while assigning scores, each one weighted

by a value. The score Stkb of slots wbtk is computed (∀t, k, b) by the following linear formula:

Stkb = λfw
b
tk − λdt (3.21)

where t represents, according to the MILP model, the day in the time horizon, starting from

the current one in which reservations are arriving (t = 1).

The first term generates higher scores for higher values of wbtk, i.e., when the flexibility

remains higher if the donor of blood type b is allocated to t and k; the second term, due to

the minus sign, generates higher scores when the donor is allocated to as low as possible

values of t (i.e., to a closer day). λf is the weight of the flexibility term, while λd is the

weight of the early allocation term.

Preallocated time slots are thus sorted and proposed one by one in a decreasing order of

score. If the donor accepts the first proposed slot, this maximizes the goals of the system. In

any case, we remark that every request for reservation is accepted: if no slots are available

in the donor’s suitable days, an additional slot is forced in addition to the preallocated ones.

Each time a reservation is made, the corresponding value xbt is reduced by 1 in view of the

next calls, in order to respect the capacity. Moreover, before rerunning the preallocation

model, all abt values are updated with the new reservations.

Alternative scoring schemes have been also considered. However, the one we propose

includes the two priorities highlighted by the staff of AVIS Milan (i.e., filling the first

available day and keeping the flexibility of the reservation system) which are also common

to several other blood collection centers.
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When a donor calls to make a reservation, it might happen that either no more slots are

available for his/her blood type, or slots are available only in days that are not accepted by

the donor. In these cases, the donation slot is chosen considering the slots still available

from the other blood types. In addition, in case no existing slots are accepted by the donor,

a new slot is added to the plan. In this way, no donor is rejected. This choice may create an

imbalance in the plan; however, due to the cyclic approach (Figure 3.3), this local imbalance

is quickly reabsorbed. Anyway, we would like to mention that this situation is extremely

rare in the case of well dimensioned db. If such an event happens, this means that the BD

collection center has to revise the values of parameters db.

3.5. NUMERICAL RESULTS

In this section, we first present the results of the numerical experiments that analyze the

behavior of the preallocation model, considering the impact of the modeling assumptions

and the related parameters (Section 3.5.1). Moreover, further experiments to test

computational aspects of the preallocation model and additional figures related to the overall

framework are presented in the Section 3.5.2. Then, we evaluate the performance of the

overall framework in Section 3.5.3 (preallocation model and prioritization policy) over a

period of time with realistic instances derived from the AVIS Milan case (Section 3.5.3.1)

and randomly generated instances (Section 3.5.3.2).

The preallocation model is implemented in IBM ILOG OPL and solved via CPLEX 12.

The overall framework is implemented in Microsoft Visual Basic, and the developed

solution integrates the data and the prioritization policy with the input and the output of

the OPL model. All experiments are run on a Windows OS installed on a server with CPU

Intel R© CoreTM i3, 2.40 GHz, and 12 GB of dedicated RAM.

3.5.1. Modeling Assumptions and Parameters

We test our modeling assumptions (i.e., the impact of db flexibility through ε, dispersion

amount weights δk, and maximum fraction µ) and the behavior of the model in response to

different parameter values. Tests are conducted with two classes of instances, namely, class
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A and B; a time limit of 5400 seconds and a memory limit of 3 GB have been imposed in

all experiments.

Instances of class A (to test ε and ptk) are divided in two groups, denoted by A.1 and A.2,

respectively, where the differences between the groups refer to the number of non-booked

donors (nbt) for each day and blood type. Group A.1 includes the balanced instances, in

which each nbt is randomly generated close to a nominal value, and the summation
∑

t n
b
t

over the days is the same for each blood type b. Group A.2 includes the imbalanced

instances, in which the summation
∑

t n
b
t is again the same for each blood type b as in

Group A.1. But, in this group, an imbalance among the days is included by considering

higher values in the first days of the planning horizon and lower values in the last days. The

goal is to replicate practical cases, where there can be more non-booked donors than usual

in some days, especially after holiday periods.

Table 3.2. Summary of the instances in Group A.

Group
Non-booked

level
db, ∀b

∑
t n

b
t , ∀b

Null (N) 51 0

A.1 & A.2 Medium (M) 34 17

High (H) 17 34

In both groups we further consider three levels for the fraction of non-booked donors with

respect to the total number of donors: Null (N), Medium (M), and High (H). The list of the

instances is reported in Table 3.2. Note that in all cases, for the sake of simplicity, booked

donors are not considered (abt = 0, ∀t, b). All instances are generated by considering 8 blood

types (|B| = 8), 7 days of time horizon (|T | = 7) with 3 periods (|K| = 3), and capacities

ctk equal to 240, 300 and 180 minutes for k = 1, 2, 3, respectively, in all days t. Service

durations are assumed to be 15 minutes (r = 15) and αk fractions are considered equal to

0.5, 0.3 and 0.2 for k = 1, 2, 3, respectively. Equal fractions are also tested, moreover these

parameter values are chosen to fit the tested case and to show the impact and accumulation



46

of non-booked donors.

Several experiments are conducted by varying ε and δk values, to test db flexibility and the

weights of the dispersion amount with respect to the production balancing (OF1 and OF2).

For each instance group and level of non-booked donors, 20 different combinations of ε and

δk values are tested. In all these cases, we have considered the entire objective function

(OF1 + OF2 + OF3) while setting η = 1. Moreover, as we want to exclude constraints (3.9)

in the analysis, we assume a high µ value equal to the 100%, which is never reached in the

considered instances.

Results are reported in Tables 3.3 and 3.4. It can be observed that, for higher δ = [δ1 δ2 δ3]

values (i.e., δ = [8 6 3] and δ = [0.8 0.6 0.3]), the dispersion amount term OF3 is privileged,

with consequent higher OF1 and OF2 values (meaning an imbalanced system) for lower ε

values. For higher ε values, as expected, the system remains balanced also with high δk

values, because of the flexibility given by the larger range around db.

Furthermore, lower δk values (i.e., δ = [0.08 0.06 0.03] and δ = [0.008 0.006 0.003])

result in completely balanced solutions as long as ε > 0, which also show decreasing

OF3 values while increasing ε. Only for Level H of Group A.2, the high imbalanced

arrival of non-booked donors always prevents from a perfect balancing (OF1 6=0 and OF26=0,

∀ε) and determines increased OF3 values with ε, because the system tries to compensate

the imbalance by adding slots. When ε = 0.25 case is considered for Level H of

Group A.2, OF1 and OF2 values are decreased while δk values are decreased. But when

ε = 0.5 case is considered, for lower values of δk values (i.e., δ = [0.08 0.06 0.03]

and δ = [0.008 0.006 0.003]), OF1 and OF2 term values are increased and the system

allocated more slots in order to compensate the imbalancing. But the total objective function

(summation of the three terms) value is reduced, although the terms (OF1 and OF2) in the

objective function are increased.

CPU times for Group A.1.1 and Group A.1.2 instances are presented in Appendix A (CPU

times of the Tables 3.3 and 3.4). In the tables, the first two columns show non-booked donor

levels with five different ε values respectively.
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The remaining columns show the corresponding CPU times with four different δk values.

While non-booked donor level is increased, CPU times are increased in parallel.

Table 3.5. Impact of η on the objective function terms for Group A.1; * indicates that the
run is terminated because the memory limit has been reached.

Non-booked η = 0.1 η = 1 η = 10

level ε OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3

Medium 0.00 22.86 4.00 32.49 22.86 40.00 32.49 22.86 400.00 32.49

0.25 13.71 4.80 3.69 0.00 0.00 25.29 0.00 0.00 25.29

0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

High 0.00 22.86 4.00 50.58 22.86 40.00 50.58 22.86* 400.00* 50.58*

0.25 0.00 0.00 43.38 0.00 0.00 43.38 0.00 0.00 43.38

0.50 0.00 0.00 43.38 0.00 0.00 43.38 0.00 0.00 43.38

0.75 0.00 0.00 28.98 0.00 0.00 28.98 0.00 0.00 28.98

1.00 0.00 0.00 28.98 0.00 0.00 28.98 0.00 0.00 28.98

Table 3.6. Impact of η on the objective function terms for Group A.2; * indicates that the
run is terminated because the memory limit has been reached.

Non-booked η = 0.1 η = 1 η = 10

level ε OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3

Medium 0.00 22.86 4.00 36.66 22.86 40.00 36.66 22.86 400.00 36.66

0,25 13.71* 4.80* 7.86* 0.00 0.00 29.46 0.00 0.00 29.46

0,50 0.00 0.00 4.80 0.00 0.00 4.80 0.00 0.00 4.80

0,75 0.00 0.00 4.80 0.00 0.00 4.80 0.00 0.00 4.80

1,00 0.00 0.00 4.80 0.00 0.00 4.80 0.00 0.00 4.80

High 0.00 54.86 15.20 64.02 54.86 152.00 64.02 54.86 1520.00 64.02

0.25 45.71 13.60 71.22 41.14 120.00 78.42 41.14 1200.00 78.42

0.50 32.00 11.20 82.02 27.43 96.00 89.22 34.29 880.00 92.82

0.75 32.00 11.20 82.02 16.00 56.00 107.22 16.00 560.00 107.22

1.00 32.00 11.20 82.02 13.71 48.00 110.82 27.43* 320.00* 118.02*
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The realization of memory limit started at this point. The gap between the integer solution

and the continuous relaxation could not close from a computational point of view in some of

the instances. The impact of the two terms related to production balancing in the objective

function (OF1 and OF2) is analyzed by varying the relative weight η.

Indeed, three different values of η (0.1, 1, and 10) are tested, considering the same values

of ε used for the previous analysis, fixing δk = {0.08; 0.06; 0.03}, and including all of the

three terms in the objective function. Results in terms of the values obtained for the terms

of the objective function are reported in Tables 3.5 and 3.6 for the medium and high levels

of non-booking donors, respectively.

Figure 3.6. Allocated slots (
∑

t

∑
b x

b
t) over demand (

∑
b db) for 5 different ε values and 3

non-booked donor levels: null (N), medium (M) and high (H). Subfigure (a) refers to

Group A.1 and subfigure (b) to Group A.2.

Figure 3.6 shows the ratio between the number of allocated slots (
∑

t

∑
b x

b
t) and the total
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number of expected donors (
∑

b db) as a function of ε for both groups and all levels of non-

booked donors (for δ = [0.08 0.06 0.03]). It can be seen that, as expected, the number of

allocated slots decreases while ε increases (obtaining a null production with ε = 0), except

in level H of Group A.2.

Thus, better balancing and lower dispersion amounts for higher ε values are observed due

to the reduced number of assigned slots. On the contrary, as for level H of Group A.2,

the model allocates more slots to partially compensate the imbalance given by the high and

imbalanced amount of non-booked donors. Anyway, as mentioned in Section 3.2 too high

values of ε are not of interest for a practical application, meaning no information about the

db parameters.

Figure 3.7. Average utilization for 3 different periods, namely early morning (k = 1), late

morning (k = 2), and afternoon (k = 3). Subfigure (a) refers to Group A.1 and subfigure

(b) to Group A.2, both including the 3 levels of non-booked donors.

Other analyses are conducted to investigate how the dispersion amount is divided among
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periods k ∈ K (Figure 3.7), how booked and non-booked donors are scheduled in a

day (Figure 3.8), and how many units per day are produced while trying to balance the

production (Figure 3.9). All figures refer to the case with all terms in the objective function

(OF1, OF2 and OF3), and with parameters δ = [0.08 0.06 0.03], η = 1 and ε = 0.25.

Figure 3.7 shows the average utilization among days t for each period k, where utilization

in t and k is given by
(
r
∑

b∈B
(
wbtk + αkn

b
t

)
+Rtk

)
/ctk, and for the 3 levels of non-

booked donors (N, M and H). In general, results show the possibility of shifting the donor

accumulation to the period k with the lowest weight δk. However, for level H, over-

utilization is also present in the most weighted period of the day (i.e., k = 1 in our

case) because of the high and imbalanced number of non-booked donors, which are not

controllable.

Figure 3.8. Daily workload for the 3 levels of non-booked donor: N (first column in each

day), M (second column in each day), and H (third column in each day). Subfigure (a)

refers to Group A.1 and subfigure (b) to Group A.2.

Figure 3.8 shows the daily workload (compared with the capacity) for each day t. It can be

seen that the model equally divides the total workload among days, as production balancing
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is the primary objective. Moreover, equal proportions of booked and non-booked donors

are found in all days for Group A.1, while the proportions vary from day to day in Group

A.2. This means that, in the presence of balanced non-booked donors, the system equally

allocates slots in the days to keep the situation balanced, while slots are preallocated to

compensate the imbalanced input in the presence of imbalanced non-booked donors.

Lastly, Figure 3.9 shows the minimum, average and maximum daily production of blood

units among days t for a given blood type b (values are the same for all blood types, as

the same db values are used ∀b). The model perfectly balances the daily production; the

only difference is again due to the imbalanced number of non-booked donors that affects the

production in the H case of Group A.2.

Figure 3.9. Minimum, average and maximum daily production for a blood type (same

values for all types) for the 3 levels of non-booked donors: null (N), medium (M) and high

(H). Subfigure (a) refers to Group A.1 and subfigure (b) to Group A.2.

It can be seen from the analyses that the amount of non-booked donors, in the presence of

imbalanced arrivals, has a great impact on the system, both in terms of utilization dispersion

and balancing (see in particular level H of Group A.2). However, with an appropriate set
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of parameters, the model is able to find a good trade-off between production balancing and

accumulation reduction also in this case. Thus, the decision maker can choose the preferred

set of parameters based on his/her priorities and the features of the blood collection center.

Another parameter with a high impact is ε, which models the flexibility degree associated

with db. As shown, high values of ε may deteriorate the quality of the solution and, in

particular, reduce the amount of produced units. Thus, the decision maker should accurately

set this value not to constrain the solution on a number of donors different from the actual

one, but also not to reduce the production without a real motivation coming from the data.

Instances of class B (to test µ and its relationship with ctk and δk) are divided in two groups,

namely, B.1 and B.2. Instances of Group B.1 are derived from the balanced Group A.1,

with non-booked level M and ε = 0.25, while instances of Group B.2 from the imbalanced

Group A.2, again with non-booked level M and ε = 0.25. The alternative values for the

parameters in both B.1 and B.2 are reported below:

• µ: equal to either 0, 0.5, or 1;

• ct = [ct1 ct2 ct3]: equal to either [240 300 180] ∀t (with
∑

k ctk = 720), or

[270 330 210] ∀t (with
∑

k ctk = 810);

• δ = [δ1 δ2 δ3]: equal to either [0.095 0.05 0.005], [0.08 0.06 0.03], or

[0.055 0.05 0.045].

Instances of class B outcomes are reported in Table 3.7. All tests have been solved to

optimality and the optimal solutions always show OF1 = OF2 = 0 in all cases. Results

show that the preallocation model successfully takes into account the dispersion of donors,

i.e., it first allocates slots to fill all periodic capacities ctk and then allocates slots in the

periods with lower δk values. Moreover, as expected, infeasibilities can be removed by

increasing the parameter µ. Finally, we can observe that, in the balanced Group B.1, the

slots are assigned in such a way to first saturate the capacity of the period with the lowest δk

(k = 3 in our case) and then the capacity of the period with the second last δk (k = 2 in our

case). On the contrary, in the imbalanced Group B.2, slots above the capacity are exploited

in k = 1 and k = 2 at the same time.
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3.5.2. Run Times and Lower Bounds

As it is discussed in Section 3.3, some valid inequalities are derived and in Subsection

3.3.1, lower bound equations are formulated to speed up the computational times. In this

section, different model formulations (i.e., with alternative objective functions) are solved

both neglecting and including LB1 and LB2, to analyze their impact on the computational

times.

Eight test instances are considered, to give a wide range of situations, which have been

generated as follows. The time horizon T is set either equal to 14 or 28 days, and each day

is divided in |K| = 3 parts; the set B includes 8 blood types; db vector for the 8 blood types

is assumed to be [140 28 56 5 14 4 140 42] for T = 14 and [280 56 112 10 28 9 280 84] for

T = 28; two flexibility values ε are chosen, i.e., 0.1 and 0.25; dispersion amount weights

δk are selected to be 0.08, 0.06 and 0.03 for k = 1, 2, 3, respectively; αk fractions are taken

equal to 0.4, 0.3 and 0.3 for k = 1, 2, 3; respectively; the number of non-booked donors nbt

is assumed constant over the days and the values for the different blood types are set equal to

[2 0 1 0 0 0 2 1]; the capacity ctk is assumed equal to 450 minutes for each day t and period

k; service duration r is assumed to be 20 minutes and such value is also used to compute

Rtk when required. Finally, the maximum variation weight η in the objective function and

µ in constraints (3.9) are set equal to 1% and to the 5%, respectively.

Different values are considered for abt , to evaluate both the case without (abt = 0, ∀t, b)

and with previously allocated slots. In the latter case, each allocated slot abt is randomly

generated within the 40%-80% range of the corresponding optimal values ξbt of xbt obtained

without previously booked donors (abt = 0). Moreover, the corresponding Rtk values are

generated by randomly splitting abt over the |K| periods within the day t. Names and

characteristics of the instances are summarized in Table 3.8.

A total of 8 configurations of objective functions and LBs have been analyzed for each

instance, thus obtaining 64 combinations for the pair instance-configuration. A 5400

seconds time limit and a 3 GB memory limit have been set in all cases.
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Results are reported in Tables 3.9–3.11 in terms of CPU time (second), objective function

(OF) value, and lower bound value of the objective function (OFlow), i.e., best bound given

by CPLEX.

Table 3.8. Instances for the analysis of computational times and LBs.

Instance T ε ab
t

I.1 14 0.1 0

I.2 14 0.1 40-80%

I.3 14 0.25 0

I.4 14 0.25 40-80%

I.5 28 0.1 0

I.6 28 0.1 40-80%

I.7 28 0.25 0

I.8 28 0.25 40-80%

Tables also compare the case with and without LB by showing the time reduction and the

per cent OFlow increase when LB is included.

Table 3.9. Results for the cases OF1+OF3; * indicates that the run is terminated because
the memory limit has been reached.

OF1+OF3 OF1+OF3 with LB1 Time OFlow

Inst. CPU time OF OFlow CPU time OF OFlow reduction improvement

I.1 0.27 12.14 12.14 0.24 12.14 12.14 0.03 0.00%

I.2 0.18 12.14 12.14 0.17 12.14 12.14 0.02 0.00%

I.3 16.67 10.43 10.43 0.14 10.43 10.43 16.54 0.00%

I.4 0.21 12.14 12.14 0.20 12.14 12.14 0.01 0.00%

I.5 17.10 24.43 24.43 0.40 24.43 24.43 16.69 0.00%

I.6 0.30 24.43 24.43 0.24 24.43 24.43 0.07 0.00%

I.7 3352.40* 21.93* 20.12* 0.97 21.93 21.93 3351.44 9.01%

I.8 0.49 24.43 24.43 2.04 24.43 24.43 -1.55 0.00%
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We first observe very low computational times, which increase with the number of days in

T , with parameter ε, and in the absence of preallocated slots (abt = 0 ∀t, b). In particular,

the absence of preallocated slots introduces symmetries among days, which result in longer

computational times.

Table 3.10. Results for the cases OF2+OF3.

OF2+OF3 OF2+OF3 with LB2 Time OFlow

Inst. CPU time OF OFlow CPU time OF OFlow reduction improvement

I.1 0.47 80.00 80.00 0.46 80.00 80.00 -0.01 0.00%

I.2 0.23 80.00 80.00 0.18 80.00 80.00 0.05 0.00%

I.3 1.95 72.00 72.00 0.26 72.00 72.00 1.69 0.00%

I.4 0.19 72.00 72.00 0.34 72.00 72.00 -0.16 0.00%

I.5 0.67 152.00 152.00 1.70 152.00 152.00 -1.03 0.00%

I.6 0.27 152.00 152.00 0.28 152.00 152.00 -0.01 0.00%

I.7 15.74 136.00 136.00 0.37 136.00 136.00 15.37 0.00%

I.8 0.24 136.00 136.00 0.22 136.00 136.00 0.01 0.00%

In most of the cases, the problem is solved in few seconds or even in less than 1 second.

This guarantees the applicability of the model and allows refreshing the preallocation of the

slots with a high frequency. Even though we suggest a daily refresh, higher frequencies

are possible, which may be useful when a high number of reservation calls arrive. Longer

computational times and memory or time limit stops are observed in instances I.7 and I.8,

which are the most demanding instances in terms of higher variability ε and longer horizon

T .

Comparing the results with and without LB, we can see the benefit of including LBs in terms

of CPU time reduction. As for OF1+OF3, the respective LB guarantees to get the optimum

also in instance I.7 for which a memory limit is reached without LB.

Moreover, both in OF1+OF3 and OF2+OF3, the presence of LB makes almost all CPU

times lower than one second. Concerning OF1+OF2+OF3, LBs generally improve the CPU
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times but none of the alternatives (LB1, LB2 or LB1+LB2) seems to be the best one, e.g.,

Table 3.11. Results for the cases OF1+OF2+OF3 without LBs and with LB1 (a), with LB2
(b), and with both LB1 and LB2 (c); * indicates that the run is terminated because the

memory limit has been reached; TL indicates the time limit has been reached.

OF1+OF2+OF3 OF1+OF2+OF3 with LB1 Time OFlow

Inst. CPU time OF OFlow CPU time OF OFlow reduction improvement

I.1 0.37 92.14 92.14 0.27 92.14 92.14 0.10 0.00%

I.2 0.16 92.14 92.14 0.15 92.14 92.14 0.01 0.00%

I.3 501.95 84.86 84.86 60.21 84.86 84.86 441.74 0.00%

I.4 0.29 84.86 84.86 0.28 84.86 84.86 0.01 0.00%

I.5 3095.13* 176.43* 172.75* 0.51 176.43 176.43 3094.62 2.13%

I.6 0.34 176.43 176.43 0.20 176.43 176.43 0.14 0.00%

I.7 4653.57* 162.71* 147.99* TL 162.71 158.36 NA 7.01%

I.8 45.08 162.71 162.71 164.00 162.71 162.71 -118.92 0.00%
(a)

OF1+OF2+OF3 with LB2 Time OFlow

Inst. CPU time OF OFlow reduction improvement

I.1 0.16 92.14 92.14 0.21 0.00%

I.2 0.17 92.14 92.14 -0.01 0.00%

I.3 19.20 84.86 84.86 482.76 0.00%

I.4 0.28 84.86 84.86 0.01 0.00%

I.5 183.05 176.43 176.43 2912.08 2.13%

I.6 0.33 176.43 176.43 0.00 0.00%

I.7 TL 162.71 160.72 NA 8.60%

I.8 111.98 162.71 162.71 -66.90 0.00%
(b)

OF1+OF2+OF3 with LB1+LB2 Time OFlow

Inst. CPU time OF OFlow reduction improvement

I.1 0.25 92.14 92.14 0.12 0.00%

I.2 0.16 92.14 92.14 0.00 0.00%

I.3 49.78 84.86 84.86 452.17 0.00%

I.4 0.28 84.86 84.86 0.01 0.00%

I.5 0.29 176.43 176.43 3094.84 2.13%

I.6 0.20 176.43 176.43 0.13 0.00%

I.7 TL 162.71 157.93 NA 6.72%

I.8 139.51 162.71 162.70 -94.43 0.00%
(c)
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LB1 is the best alternative for I.5 while LB2 is the best alternative for I.3.

Also, LB1+LB2 does not seem to improve the performance with respect to the single LB

cases. Negative time reductions are sometimes observed. Most of them are lower than 1

second, and due to the randomness of the Windows OS. As for the higher ones, we remark

that we did not fix any branch and bound strategy in CPLEX; thus, the chosen strategy to find

a solution can be different with or without LBs, and this originates the negative reductions.

Anyway, the worsening in terms of negative reduction with LBs is limited in front of the

improvement observed in other instances (I.7).

We remind that we respect the assumptions of Section 3.3.1 in the 8 instances, because

we are considering constant nbt values over t for each blood type b and because, when we

include already booked donors, we are assuming that abt > 0 values are always lower than

the ξbt values of the corresponding instance with non-booked donors (abt = 0, ∀t, b). For this

reason, the value of the objective function does not change within each pair of corresponding

instances with non-booked and previously booked donors (e.g., I.1 and I.2).

3.5.3. Overall Framework

The numerical results for the overall framework is discussed for two cases. In Section

3.5.3.1, the numerical results for AVIS Milan case are presented while in Section 3.5.3.2 the

results for randomly generated instances are represented.

In this section, the structure of overall framework for the deterministic model is described.

Experiments are conducted over a rolling horizon; the preallocation model is run, at each

rolling day, considering the previously assigned slots (abt), and then the newly arriving calls

for reservation are assigned to one of the preallocated slots xbt . The corresponding value xbt

is reduced by 1 after each reservation is made; moreover, abt values are updated at the end

of the day with the new reservations, and the day t is shifted to t+ 1. On the first day of the

horizon, we start from an initial condition without booked donors (abt = 0, ∀t, b). Then, the

two phases are repeated, and so forth.
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3.5.3.1. AVIS Milan Case

We test the effectiveness of the overall framework on a realistic instance derived from AVIS

Milan case. The considered rolling period consists of 200 days, and the preallocation model

is run at each rolling day with a planning period of |T | = 28 horizon days. At the first

rolling day, we start from a null booked donors (abt = 0, ∀t, b) condition.

The number of donors at each rolling day and their blood types are directly taken from the

historical data of AVIS Milan, considering the whole blood donations over 200 days, from

April 6 to October 22, 2014. In the dataset, the daily list of donations with the associated

donor ID (from which all other information can be extracted) are available. Over these

days, about 51 whole blood donations were made on average per day with a total of 10124

donations. The percentages of blood groups and Rhesus factor were as follows: 33.67% for

A Rh+, 5.49% for A Rh-, 10.25% for B Rh+, 1.71% for B Rh-, 3.68% for AB Rh+, 0.56%

for AB Rh-, 37.60% for 0 Rh+, and 7.02% for 0 Rh-. The historical data show that the

number of produced units over these 200 days is highly variable among the days, as shown

in Figure 3.2.

To create the instance for the test, we have simulated the subsets of booked and non-

booked donors, as the possibility of reserving a donation in AVIS Milan is quite new and no

significant historical information are available. Thus, to generate the portion of booked

donors, existing donors in the historical data are randomly assigned to booked or non-

booked class. From a discussion with the managers of AVIS Milan, they declared that a good

percentage of booked donors should be at least the 80%. Thus, each donor is independently

considered to be booked with probability 0.8, and non-booked with probability 0.2.

For the non-booked donors, we assume that they arrive in the same day as in the historical

data. For each booked donor, we use the previous donation date and we compute the

first available donation day (90 days after the previous donation for men and 180 days for

women); then, date of the reservation call is generated by adding a random number of days,

uniformly distributed between 0 and 30, to the first available day.
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As for the preallocation model, we consider an appropriate parametric setting from the

analysis made in Section 3.5.1; moreover, we analyze the impact of the coefficients λd and

λf for the prioritization policy of the allocation phase.

Indeed, the preallocation model has been solved considering either the configuration

OF1+OF3 (including LB1 in the formulation) and the configuration OF2+OF3 (including

LB2 in the formulation), to evaluate the two opposite cases in terms of balancing. Two

levels for the flexibility parameter ε are also considered, i.e., either ε = 0 or ε = 0.25

(the latter to model the observed fluctuations). Moreover, the following parameters have

been considered: each day divided in |K| = 3 parts; set B made of 8 blood types;

δ = [0.08 0.06 0.03] and µ = 0.05; fractions αk equal to 0.4, 0.3 and 0.3 for k = 1, 2, 3,

respectively; capacity ctk equal to 450 minutes ∀t, k; all service durations equal to 20

minutes (for both r and Rtk). As for abt and Rtk, they are daily updated by the rolling

approach, starting from no preassignments at the first day. Differently from Section 3.5.2

where the time associated with each abt is randomly split among the corresponding Rtk,

here we exactly track the assigned period k and each preallocated slot directly determines

both abt and Rtk. Finally, a longer time horizon T equal to 28 days is taken. The remaining

parameters are chosen to fit the tested case: the vector of db values for the 8 blood types with

|T | = 28 is assumed as [503 76 151 22 50 8 602 98]; the number of non-booked donors nbt

is assumed to be constant over the days (no trend is observed but just noise) and the vector

for the different blood types is set equal to [3 1 1 0 0 0 4 1]. To simulate the real functioning

of the BD collection center, the adopted values of parameters db and nbt have been set to

replicate the historical data of the same period (April – October) in previous years (up to

2013). The blood type index b in db and nbt is intended as follows: b = 1 for A Rh+, b = 2

for A Rh-, b = 3 for B Rh+, b = 4 for B Rh-, b = 5 for AB Rh+, b = 6 for AB Rh-, b = 7

for 0 Rh+, b = 8 for 0 Rh-.

Three different configurations for the prioritization policy are considered. Either we include

only the system flexibility (with λd = 0 and λf = 1) or the first available slot policy (with

λd = 1 and λf = 0), or we consider both of them together with equal weights (λd = 0.5 and

λf = 0.5). The scores Stkb are recomputed after each reservation call is accepted.
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A time limit of 1800 seconds and a memory limit of 3 GB have imposed set in each single

run of the preallocation model. The lower time limit with respect to the previous analyses

has been chosen because of the overall framework, to fasten the process. Outcomes show

that the preallocation model always provides the optimal solution when ε = 0.25, while with

ε = 0 the model does not always find the optimal solution in 3 experiments, for a total of 20

out of 600 overall runs. Anyway, even in these cases, the maximum observed optimality gap

is 1.18%; thus, we can assess that the considered time limit is enough to derive conclusions.

Results are reported in Figures 3.10–3.15 for the six cases with ε = 0.25, while in the

Appendix B for the six cases with ε = 0. In all figures, subfigures (a) report, for the

200 rolling days, the number of donations (total number, booked and non-booked) and the∑
b x

b
t+a

b
t values for the first day of the respective planning horizon (with t = 1). Subfigures

(b) report the comparison between the total number of donations in the test case and in the

historical data. Moreover, the waiting times between the reservation call and the donation

are reported in Table 3.12.

Figures show that the approach is able to balance the production of blood units among days.

The part related to the booked donations, which can be optimized, is highly balanced in all

of the tests. On the contrary, the part related to non-booked donations obviously fluctuates

as in the historical data. Globally, comparing the outcomes with the historical data, daily

fluctuations are reduced even despite the remaining 20% of uncontrolled non-booked donor

arrivals. We remark that the 80% of booked donors was considered because this represents

the first goal of AVIS Milan while introducing the reservation system. However, our results

show that, despite the good behavior of the approach, a remaining detriment of the balancing

is present due to the 20% of non-booked donors. Thus, our suggestion is to implement all

promotion policies to bring the highest number of donors to reserve the donation in advance.

We also remark that some zeros are present in the historical data, related to holiday days

(e.g., Christmas, Easter) that are not considered in our experiments. Anyway, also neglecting

these days, we can confirm the reduced fluctuations in our results.

Results presented above refer to all blood types together. However, a similar balancing is

obtained while considering each blood type singularly. For instance, we report in Figure
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3.16 the number of booked donations and the total number of donations, divided by blood

type, for the case OF1+OF3 with λd = 1 and λf = 0.

Figure 3.10. Number of donations per day for objective function OF1+OF3, ε = 0.25, and

λd = 1 and λf = 0: (a) total number of donations, booked donations, non-booked

donations, and
∑

b x
b
1 + ab1; (b) comparison between the total number of donations in the

test case and in the observed historical data.

Figure 3.11. Number of donations per day for objective function OF1+OF3, ε = 0.25, and

λd = 0 and λf = 1: (a) total number of donations, booked donations, non-booked

donations, and
∑

b x
b
1 + ab1. Reported data are as in Figure 3.10.
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Even though the variability among days is slightly higher than in the total amount of

donations, the balancing is mainly guaranteed.

With the first available slot policy, the preallocation model is able to serve most of the donors

within the first week, while with the system flexibility policy they are shifted towards the

end of the planning period (as shown in Table 3.12). Moreover, it can be observed that

decreasing ε slightly decreases the waiting times of donors. Thus, keeping the flexibility of

the system without prioritizing the first available slot is not very effective, with significantly

longer waiting times between reservation call and donation. This has a negative impact on

the amount of donations, as longer waiting times reduce the donation frequency. Moreover,

without weighting the first available slot, the closest slots might remain empty, thus reducing

the daily throughput of the system.

Figure 3.12. Number of donations per day for objective function OF1+OF3, ε = 0.25, and

λd = 0.5 and λf = 0.5: (a) total number of donations, booked donations, non-booked

donations, and
∑

b x
b
1 + ab1. Reported data are as in Figure 3.10.

It is worth remarking that, in our tests, we assume that donors always accept the first

suggested slot (with the highest score Stkb) without evaluating donors’ preferences, who

might also ask to donate in a day without any empty preallocated slots. This evaluation

requires data that are not included in the AVIS Milan database.
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The two weights λd and λf also affect the ramp-up period. The number of booked donations

are not stabilized until about the 40th day for the cases with λd = 0 and λf = 1.

Figure 3.13. Number of donations per day for objective function OF2+OF3, ε = 0.25, and

λd = 1 and λf = 0: (a) total number of donations, booked donations, non-booked

donations, and
∑

b x
b
1 + ab1. Reported data are as in Figure 3.10.

Figure 3.14. Number of donations per day for objective function OF2+OF3, ε = 0.25, and

λd = 0 and λf = 1: (a) total number of donations, booked donations, non-booked

donations, and
∑

b x
b
1 + ab1. Reported data are as in Figure 3.10.
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As mentioned, flexibility spreads the donation days over the time horizon, thus letting some

slots empty, while on the contrary assigning slots based only on the first available day fills

Figure 3.15. Number of donations per day for objective function OF2+OF3, ε = 0.25, and

λd = 0.5 and λf = 0.5: (a) total number of donations, booked donations, non-booked

donations, and
∑

b x
b
1 + ab1. Reported data are as in Figure 3.10.

Figure 3.16. Number of donations per day, divided by blood type, for objective function

OF1+OF3 with λd = 1 and λf = 0: (a) booked donations and (b) total number of

donations. Labels of blood types are reported in increasing order of the associated index b.
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the slots from early beginning, thus avoiding empty slots in the first days when the system

starts with abt = 0.

Table 3.12. Waiting time in days between reservation call and donation for booked donors:
average and distribution in the last 160 days (excluding the initial ramp-up period of 40

days).

Waiting days distribution

Case Average 0-7 8-14 15-21 ≥22

OF1+OF3, ε = 0.25, λd = 1 and λf = 0 0.48 98.94% 0.99% 0.05% 0.02%

OF1+OF3, ε = 0.25, λd = 0 and λf = 1 22.49 10.15% 6.42% 6.92% 76.50%

OF2+OF3, ε = 0.25, λd = 1 and λf = 0 1.02 98.31% 1.61% 0.08% 0.00%

OF2+OF3, ε = 0.25, λd = 0 and λf = 1 22.60 8.63% 6.00% 9.42% 75.94%

OF1+OF3, ε = 0.25, λd = 0.5 and λf = 0.5 4.93 72.36% 26.73% 0.91% 0.00%

OF2+OF3, ε = 0.25, λd = 0.5 and λf = 0.5 5.27 70.17% 27.85% 1.98% 0.00%

OF1+OF3, ε = 0, λd = 1 and λf = 0 0.30 99.83% 0.17% 0.00% 0.00%

OF1+OF3, ε = 0, λd = 0 and λf = 1 22.27 10.25% 6.42% 8.04% 75.28%

OF2+OF3, ε = 0, λd = 1 and λf = 0 0.33 99.78% 0.22% 0.00% 0.00%

OF2+OF3, ε = 0, λd = 0 and λf = 1 22.42 9.65% 5.89% 8.84% 75.61%

OF1+OF3, ε = 0, λd = 0.5 and λf = 0.5 4.52 75.51% 24.08% 0.41% 0.00%

OF2+OF3, ε = 0, λd = 0.5 and λf = 0.5 4.46 76.81% 22.84% 0.35% 0.00%

In all cases, after the ramp-up period,
∑

b x
b
1 + ab1 at the first day of the planning horizon

is really close to the number of booked donations (equal or slightly higher). This indicates

both that the db parameters have been appropriately set and that, once a fair prediction of db

is considered, our system does not leave many empty preallocated slots. A slightly higher

number of empty slots is present with OF1+OF3, but this amount is anyway limited.

3.5.3.2. Randomly Generated Instances

We also test the effectiveness of the overall framework on randomly generated instances. We

consider a subset of the configurations tested in Section 3.5.3.1, to show the effectiveness of
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the overall framework on other cases through the random generation of scenarios. Indeed,

both OF1+OF3 and OF2+OF3 alternatives are considered, with only ε = 0.25 and one

configuration for the prioritization policy (equal weights λd = 0.5 and λf = 0.5). All other

parameters (e.g., |T |, |K|, δk) are set at the same value than in the previous section.

Table 3.13. Mean daily number of booked and non-booked donors (for the Poisson
distribution) and db vector for the 8 blood types in Groups C.1 and C.2.

A A B B AB AB 0 0

Instance Rh+ Rh- Rh+ Rh- Rh+ Rh- Rh+ Rh- Total

C.1 Mean daily booking 15 3 1 1 3 1 18 3 45

C.1 Mean daily non-booking 4 1 0 0 1 0 5 1 12

C.1.1 db 418 70 43 20 82 29 461 75 1198

C.1.2 db 451 90 28 32 83 20 492 77 1273

C.1.3 db 433 74 28 40 85 24 511 98 1293

C.1.4 db 413 82 24 33 69 28 526 85 1260

C.2 Mean daily booking 13 3 3 1 1 1 15 3 40

C.2 Mean daily non-booking 3 1 1 0 0 0 4 1 10

C.2.1 db 340 75 83 29 28 23 429 73 1080

C.2.2 db 365 83 75 33 22 29 464 83 1154

C.2.3 db 403 73 102 21 28 29 445 90 1191

C.2.4 db 366 85 97 33 24 17 469 97 1188

The data generation mechanism is as follows. The number of booking donors who call

at each day and the number of non-booking donors who arrive at each day are randomly

generated for each blood type according to a Poisson distribution. Different mean values are

considered for each blood type and booking/non-booking alternative, while the mean values

of the Poisson distributions are the same for each day. Alternative values are considered

to generate different layouts. In all cases, the common proportion among the blood types

all around the world is respected, being the mean amount of donors belonging to groups A

Rh+ and 0 Rh+ about the 70-80% of the total amount. Moreover, we assume that booked

donors are about the 80% of the total, while non-booked ones the remaining 20%. Given a

realization of booked and non-booked donors, db values are generated with another random
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process. Indeed, for each blood type b, the sum of the generated booked donors over the

rolling days (200 days) is scaled by the ratio between the time horizon T (28 days) and the

rolling days.

Figure 3.17. Number of donations per day in Group C.1.1 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5: total number of donations,

booked donations, non-booked donations, and
∑

b x
b
1 + ab1.

Figure 3.18. Number of donations per day in Group C.1.2 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5. Reported data are as in

Figure 3.17.
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The scaled value is assumed as the mean value of another Poisson distribution, and the value

of db is drawn from this distribution.

Figure 3.19. Number of donations per day in Group C.1.3 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5. Reported data are as in

Figure 3.17.

Figure 3.20. Number of donations per day in Group C.1.4 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5. Reported data are as in

Figure 3.17.
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Two groups of instances are defined with this mechanism (as shown in Table 3.13) and 4

random generations are extracted, each one is characterized by specific db values.

Figure 3.21. Number of donations per day in Group C.2.1 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5. Reported data are as in

Figure 3.17.

Figure 3.22. Number of donations per day in Group C.2.2 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5. Reported data are as in

Figure 3.17.
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The number of donations per day for all of the 8 instances are reported in the Figures 3.17

to 3.24.

Figure 3.23. Number of donations per day in Group C.2.3 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5. Reported data are as in

Figure 3.17.

Figure 3.24. Number of donations per day in Group C.2.4 for objective function OF1+OF3

(a) and OF2+OF3 (b), with ε = 0.25, λd = 0.5 and λf = 0.5. Reported data are as in

Figure 3.17.
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These figures show that also in this case the proposed approach is able to balance blood

production over the 200 days.

Table 3.14. Average, minimum and maximum values of booked donors (overall over the
blood types) in the last 160 days (excluding the initial ramp-up period of 40 days) for

Groups C.1 and C.2.

Instance Objective function Average Minimum Maximum

C.1.1 OF1+OF3 45.03 40 50

C.1.1 OF2+OF3 45.20 38 51

C.1.2 OF1+OF3 45.96 40 51

C.1.2 OF2+OF3 46.09 40 51

C.1.3 OF1+OF3 45.05 40 50

C.1.3 OF2+OF3 45.24 39 50

C.1.4 OF1+OF3 45.44 40 51

C.1.4 OF2+OF3 45.23 39 51

C.2.1 OF1+OF3 39.23 35 43

C.2.1 OF2+OF3 39.16 34 44

C.2.2 OF1+OF3 38.48 33 42

C.2.2 OF2+OF3 38.91 33 44

C.2.3 OF1+OF3 39.11 33 43

C.2.3 OF2+OF3 39.04 32 44

C.2.4 OF1+OF3 39.53 34 43

C.2.4 OF2+OF3 39.64 33 44

Indeed, compared to the outcomes of the AVIS Milan case (previous section), we even

observe slightly lower deviations for the total number of donations. In both cases, production

imbalance remains due to the uncontrolled arrivals of non-booked donors.

To briefly compare the 8 instances, we show in Table 3.14 the number of booked donors for

each instance in terms of average, minimum and maximum values. Results shows that in all

cases the approach is able to allocate slots according to the mean number of booked donors,

which is 45 or for Group C.1 and 40 for Group C.2, respectively (Table 3.13). Moreover, the

small minimum to maximum ranges confirm once again the effectiveness of the proposed
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approach on production balancing.

As for the waiting times, we observe slightly higher values with respect to the AVIS Milan

case.

Table 3.15. Waiting time in days between reservation call and donation for booked donors:
average and distribution in the last 160 days (excluding the initial ramp-up period of 40

days).

Objective Waiting days distribution

Instance terms Average 0-7 8-14 15-21 ≥22

C.1.1 OF1+OF3 6.99 54.92% 39.75% 5.01% 0.32%

C.1.1 OF2+OF3 6.90 55.84% 39.53% 3.49% 1.14%

C.1.2 OF1+OF3 6.40 60.43% 36.04% 3.53% 0.00%

C.1.2 OF2+OF3 6.34 59.09% 38.35% 2.53% 0.04%

C.1.3 OF1+OF3 6.96 57.52% 33.07% 8.68% 0.73%

C.1.3 OF2+OF3 6.24 61.13% 35.18% 3.68% 0.00%

C.1.4 OF1+OF3 6.48 61.02% 34.58% 4.28% 0.12%

C.1.4 OF2+OF3 6.97 56.75% 37.01% 5.50% 0.73%

C.2.1 OF1+OF3 6.53 57.24% 39.53% 3.23% 0.00%

C.2.1 OF2+OF3 6.63 55.62% 41.47% 2.91% 0.00%

C.2.2 OF1+OF3 6.60 61.81% 30.62% 6.82% 0.75%

C.2.2 OF2+OF3 5.45 69.34% 27.53% 2.11% 1.02%

C.2.3 OF1+OF3 5.44 68.07% 28.79% 2.37% 0.77%

C.2.3 OF2+OF3 5.48 69.63% 27.99% 1.62% 0.76%

C.2.4 OF1+OF3 5.24 69.04% 29.13% 1.83% 0.00%

C.2.4 OF2+OF3 4.97 72.53% 27.06% 0.40% 0.02%

As shown in Table 3.15 even though the system is able to serve most of the donors within

14 days as in the AVIS Milan case, here we observe that the ratio of donors served in the

first week decreases and donors are shifted to the second week.
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3.6. CONCLUSION

In this chapter, we define and formalize the first BDAS problem to the best of our knowledge,

and we propose an appointment scheduling framework to solve it.

Our framework for planning the assignments consists of two phases: an MILP model to

preallocate time slots of the different blood types, and a prioritization policy to assign the

preallocated slots. The goal is to balance the production of blood units of each type among

the days, while also avoiding dispersion amounts associated with dispersion amount and

donor waiting times. The main points of our framework are, besides the decomposition in

two phases, the presence of both booked and non-booked donors and the degree of freedom

for the number of slots to preallocate (due to the flexibility associated with db). The latter

point makes our preallocation model different from the allocation and scheduling models

available in the literature, since here the amount of entities to allocate is another decision

variable, whereas it is fixed in several other cases.

The proposed approach has been successfully applied to the real case of a large blood

collection center operating in Italy, the AVIS Milan, and the results confirm the capability

of the approach to balance the production of each blood type among days.

To improve the quality of the solution, we investigate the possibility of creating a stochastic

version of the preallocation model. At present, db variation is modeled through the flexibility

parameter ε, but the model is deterministic. On the contrary, a stochastic version would

include uncertain parameters, at least for nbt . In the proposed deterministic model, the

number of non-booked donors nbt is assumed to be constant over the days. In deterministic

models the model output is determined by the given parameter values. On the contrary,

in stochastic models, there is unavoidable randomness and the model has the capacity to

handle the uncertainty. In real life problems, all of the necessary information is not known in

advance at the beginning of planning horizon. As it is discussed, the amount of non-booked

donors has a great impact on the entire system. Therefore, it is important to consider the

uncertainty created by the non-booked donors.
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In the following chapter, the stochastic programming approaches for handling the

uncertainty in optimization problems are defined. First, risk-neutral and risk-averse

stochastic programming models are defined and then the proposed BDAS models are

formulated.

Different model formulations with alternative objective functions are solved both neglecting

and including LB1 and LB2, to analyze their impact on the computational times. OF1

minimizes the total absolute variation with respect to the average production, while OF2

minimizes the maximum absolute variation among all days and all blood types. The benefits

of including LBs in terms of CPU time reduction is observed while comparing the results

with and without LBs. Furthermore, both in OF1+OF3 and OF2+OF3, almost all CPU times

are lowered with the presence of LB. But when OF1+OF2+OF3 is considered, none of the

LB alternatives seems to be the best one. When both terms are taken into consideration,

there is no benefit in terms of CPU time. As it is discussed, it is common in multi-

objective optimization problems that both the summation and the maximum of a set of

decision variables are optimized in order to prevent multi-optimal solutions. But, in our

case, these two terms may lead to allocate a different number of slots and different lower

bound calculations are driven for OF1 and OF2 as it is discussed in Section 3.3. OF1 prefers

the farthest point from the maximum of the parabola which means OF1 prefers to allocate a

number of slots as close as possible to multiple of time horizon. But OF2 prefers to allocate

a number of slots as close as possible to the intermediate value of the time horizon. In the

stochastic programming models the OF2 term is not included for the sake of simplicity.
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4. STOCHASTIC PROGRAMMING MODELS

4.1. INTRODUCTION

In this chapter, we define the approaches for handling uncertainty. The optimization

problems based on real case applications are subjected to uncertainty and the decision maker

generally makes a decision without knowing the effect in the future. According to the

context of a problem, several parameters can be considered uncertain and treated as random

variables. The current decisions that are given against these uncertain parameters may lead

to undesirable consequences in the future. Therefore it is important to identify the impact

of random variables on a future decision in a given problem.

In this dissertation, we address BDAS model where the uncertainty is realized through non-

booked donor information. In this study, the demand variation is considered through the

flexibility parameter ε. However, the random arrival of non-booked donors has not been

considered yet. Unpredictable non-booked donor arrivals introduce a variability in the entire

schedule and thus variations in the non-booked donor arrivals must be considered in the

proposed framework.

Over the past decades the majority of the research on data uncertainty has focused

on different techniques (such as recourse-based stochastic programming, robust

programming, chance-constraint programming, fuzzy programming, and stochastic

dynamic programming) but in this study, we consider two families of techniques, robust

optimization and stochastic programming.

Robust optimization is used to process optimization problems in which the data is

uncertain and the only acquired information is that the data belongs to some uncertainty set

[134]. Robust optimization provides probabilistic guarantee on the feasibility of solutions

obtained from an uncertainty set for any realization of uncertain coefficients [135]. Robust

optimization tries to find a feasible solution against all data variations.
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The history of robust optimization starts with the use of worst case analysis as a tool for the

uncertainty by the establishment of modern decision theory in the 1950s. The aim of robust

optimization is to produce solutions that remain feasible with respect to the parameters that

take values in the uncertainty region. It takes into account a solution that is acceptable

under most realizations of the uncertain inputs. However, there are several assumptions

made on the probability distribution of the uncertain parameters, and the region defining

all of their possible realizations is supposed to be completely known. If the optimization

problem minimizes the robust value of the objective among all robust feasible solutions,

it is called the robust counterpart of the uncertain linear optimization problem. It is a

conservative, worst-case oriented methodology. Researchers evolve robust counterparts of

the nominal problem to eliminate over-conservatism through estimation processes for some

of the uncertain parameters.

The main contributors to robust optimization approaches who deal with the uncertainty

are, Ben-Tal et al., Charnes & Cooper, Soyster, Mulvey et al. and Bertsimas & Sim

[136, 137, 138, 139, 140, 141]. Soyster [138] proposed a model which is very conservative

in the sense that the approach protects against the worst-case scenario so that each parameter

can deviate. The solution of the model has an objective function value much worse than

the solution of the nominal linear optimization problem. Mulvey et al. [142] proposed

a model to avoid an over-conservative worst-case solution that combines problem data

which is described as scenario-based with goal programming. In order to handle over-

conservatism, they introduced a penalty function but unfortunately scenario generation

increases the computational effort to solve the problem. Ben-Tal et al. [139, 143] guarantee

the feasibility of the solution only if, for each row, the data lie within an ellipsoidal set. By

the help of this assumption parameters arising in the same row are restricted from taking

their worst values. Ben-Tal et al.’s [139] model is less conservative. This is like changing

a random quantity with its expectations minus a constant (two or three) times its standard

deviation. The assumption is that, the random data will not take the worst possible values

simultaneously. The biggest problem for Ben-Tal et al. [139] is finding the appropriate

uncertainty set. In that case, they choose a solution that minimizes the objective function

value. Since Ben-Tal et al.’s [139] approach is a conic quadratic problem which is nonlinear

and not suitable for large sized optimization problems, they proposed an uncertain linear
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optimization problem that can be reformulated with the robust counterpart and it has the

same objective.

Considering these approaches chronologically, in robust optimization there is significant

improvement starting from 1973 by Ben-Tal et al. and Soyster [134, 138, 139, 143]. Over

conservatism issue is addressed in the cited papers. Furthermore, these papers proposed

uncertain linear problems with ellipsoidal uncertainties that are less conservative models

concerned with conic quadratic form problems of the robust counterparts of the nominal

problems [134, 138, 139, 143].

Bertsimas and Sim [141] proposed a new method to reduce the over-conservatism in the

method of Soyster [138]. Instead of allowing all of the coefficients to deviate, they limit the

number of coefficient deviations. The main idea behind the approach is that, given a row

of the constraint matrix, the coefficients are not likely to take worst values simultaneously.

Considering this, they introduce a parameter for each row, which can be set in a continuous

range and rather than protecting against the case where each parameter can deviate, as in

the original model of Soyster [138], they allow at most decided coefficients to deviate.

Since this approach is a worst case analysis, we search for the coefficient that results in the

maximum variation. The index of maximum variation is seeked for a preselected set of rows.

Furthermore, it is assumed that only these parameters will be affected by the variation. For

a detailed comparison, see Li and Lerapetritou [144] who explains the difference between

robust optimization formulations.

In our BDAS problem, uncertainty is based on non-booked donors. As discussed before,

in robust optimization the objective function is determined under the worst-case condition

with a protection function which is obtained through the duality. Duality is used in

the linearization of the protection function which has to be defined over the constraints.

According to Bertsimas and Sim [141], we have to select the parameters for each constraint

independently. Since the main objective in the BDAS model is to minimize the total

variation, the protection function should be written for the first objective function term,

total variation, zbt . So a subset of the parameters in the constraints (3.2) and (3.3) should be

selected such that they reach the maximum value. The aforementioned variable zbt computes
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the variation between the average and the daily production by the index t in the constraints

(3.2) and (3.3). However, obtaining a protection function in robust optimization requires

independency among the constraints. In order to calculate the total variation, the overall

schedule has to be done for the given time horizon. So that, the average production values of

the entire schedule for the blood types can be found. In this case, independency assumption

is violated. So our model is not suitable for the robust optimization approach.

Stochastic programming involves data that is not certainly known. These uncertain

parameters can follow a probability distribution that is known or can be estimated.

Furthermore, uncertain parameters are modeled as random variables. The aim of the

stochastic programming is to minimize the expected value of the objective. So, the key idea

is to solve the optimization model considering all possible realizations that are generated

from a probability distribution of uncertain variables. Therefore, it incorporates all possible

future realizations into the model through the generated scenarios.

The traditional stochastic programming approaches are commonly based on expected value

calculation in their objective functions. Usually in stochastic programming, risk preferences

can be risk-seeking, risk-neutral and risk-averse. Risk-seeking method is attracted to risk,

therefore, greater risk and lower expected returns are preferable. In the risk-neutral case, the

decision maker focuses only on the expected total objectives. The standard deviation of the

outcomes are high in risk-neutral models and any decision policy will result in high recourse

objectives. The objective function of the risk-neutral stochastic programming model is

calculated based on the expected value of each realization. On the other hand, in risk-averse

stochastic programming, it is important to consider the effect of unpredictable variability.

More precisely, it involves maximizing the profit or minimizing the loss under the worst

conditions. With risk-averse models, the solutions provide more protection, although there

might be an increase in the expected objective values [145]. Risk-averse models can provide

solutions which may perform better under different realizations of uncertain parameters.

In the following section risk-neutral (see Section 4.2) and risk-averse (see Section

4.3) stochastic programming approaches are presented. The advantage of stochastic

programming is to produce solutions that are usually not as over-conservative as their robust
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counterpart but they are still protective against the most likely realizations.

4.2. RISK-NEUTRAL STOCHASTIC PROGRAMMING MODELS

In this section, a special focus is given to risk-neutral stochastic programming approaches to

model stochastic optimization problems. There are several solution techniques presented in

the literature but the most applied ones are Expected Value (EV), Evaluation of the Expected

Value (EEV), Here and Now (HN) and Wait and See (WS) approaches [146].

Expected Value approach: EV method optimizes the model by replacing the random

parameters with their respective average values [147]. Simply, the deterministic version of

the considered model is solved while replacing the stochastic parameters with their average

values and the objective function value is defined as OFEV .

Evaluation of the Expected Value approach: EEV stands for expected result of the EV

approach, such that OF ∗EV is the solution for a scenario s in the corresponding deterministic

model where the solution for the deterministic model has been fixed to the obtained solution

from the EV model. Let’s consider S different scenarios swith probability ps to occur. Once

the decision of x∗ is obtained, objective function OF ∗s for each scenario s is post calculated

with x∗. The decision of x∗ is evaluated for all possible realization. There can be feasible

solutions to a scenario that is not feasible for another scenario. So, the overall value of the

objective function value is computed by the weighted average over all scenarios’ objective

function values (expected total objective):

OFEEV =
S∑
s=1

OF ∗s ps (4.1)

Wait and See approach: In WS approach, before implementing the optimal decisions, it

is assumed that the decision maker can wait until the resolution of uncertainty [146]. In the
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literature, it is referred as scenario analysis which actually delays all the decisions before all

uncertainties have been solved [148]. The deterministic model is solved for each scenario s

and s decision variables are obtained independently. Objective function OFs in scenario s is

directly computed by solving the deterministic model. The objective function values that are

obtained from the deterministic model is multiplied with the probabilities of the scenarios

to post calculate the overall objective function value of the WS approach. Therefore, the

overall value of the objective function is post calculated with:

OFWS =
S∑
s=1

OFsps, (4.2)

Here and Now approach (Two-stage Problem): The third approach is HN in which

the optimization model is solved once by expanding original LP problem with the set

of constraints corresponding to all generated scenarios. In other words, the model is

solved by considering all the possible scenarios together. In this approach the obtained

solution takes precaution against all the possible events that may happen in the future [146].

Consequently, the solution is feasible against all the realizations of scenarios. It is basically

a two-stage optimization technique. In two-stage stochastic programming models, the first

stage decisions must be taken before uncertainty is taken into account and the second stage

decisions are provided considering the set of scenarios. Obviously there is one unique first

stage decision while in the second stage there can be a one unique decision or decisions as

many as the number of scenarios that is one for each scenario. So the problem is feasible

for each scenario and the decision vector that is obtained from the first stage is feasible over

all scenarios.

To summarize, there are three commonly used modeling and solution approaches for

stochastic LP problems: 1) Expected value which is solved with a single model (the

deterministic model). 2) Wait and see approach in which the deterministic model is

solved for each scenario independently. Post calculation is made to obtain the expected



84

total objective function. The objective functions that are obtained from the scenarios are

multiplied by the scenario probabilities. 3) Here and now approach which optimizes one

expanded model with s constraints. HN approach produce solutions that are usually not as

over-conservative as their robust counterpart but they are still protective against the most

likely realizations.

The relationship between the approaches and the objective function values for the

minimization problems are satisfied [149, 150] with the following inequality (see Figure

4.1):

OFWS ≤ OFHN ≤ OFEEV (4.3)

In the literature, two measures are defined for stochastic solutions that can be used to judge

how well the obtained solution is. Expected Value of Perfect Information (EVPI) is a distance

metric that measures the willingness of decision maker to obtain perfect information about

the future [149]. The EVPI is defined as the difference between WS and the HN solution

[150] (see Figure 4.1).

EV PI = OFHN −OFWS (4.4)

While large EVPI shows that the incomplete information about the future may be costly,

small EVPI may indicate that better forecast will not lead to a considerable amount of

improvement. As it can be seen from the Figure 4.1, the desired objective value to be

reached is WS, so it is important to obtain significant amount of difference.

The second measure is the Value of Stochastic Solution (VSS) which allows to obtain more
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precisely the goodness of the EV solution comparing with the HN solution. It measures

the expected gain from solving a stochastic model rather than its deterministic counterpart.

If the difference between the EEV and HN solution is not large, we may not benefit from

stochastic modeling. So it means no further information is incorporated in the deterministic

model by applying stochastic approaches.

V SS = OFEEV −OFHN (4.5)

Figure 4.1. Ordered relationship between the approaches and measures for the stochastic

solutions.

In the following, the proposed risk-neutral stochastic programming approaches are

formulated for the proposed BDAS model.

4.2.1. Proposed Models

BD centers have a crucial role in feeding the needs of hospitals. The BDAS problem is

stochastic in nature and it is important to model the scheduling process while considering

the unpredictable arrival of non-booked donors. In this work, we consider the source

of uncertainty as the number of non-booked donors. Since the booked donors call for
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reservation, we know the number of booked donors in advance. In contrast to booked

donors, we do not know the exact number of non-booked donors. The BDAS model

described in Section 3.2 includes only the average values for the non-booked donors.

The information about non-booked donor variability is not included in our model, so the

uncertainty is not considered. In summary, the BDAS model is optimized only for a specific

scenario in which the average values for non-booked donors are used. In order to obtain

preallocated slots that account for stochastic nature of non-booked donors, we have to

consider more than one possible outcome for the future.

To be able to analyze the effect of stochastic parameter (non-booked donors) on decision

variables, we analyze either OF1 or OF1+OF3 objective terms for the sake of simplicity. In

the following stochastic programming approaches, S indexes the set of scenarios where ps

is the probability of s scenario s ∈ S.

EV approach for OF1+OF3: Here, the deterministic BDAS model is used as it is explained

in Section 3.2 which includes only one scenario (i.e., the average values of the non-booked

donors). The considered scenario is given by the expected values. Since we consider the

first and third objective function terms, OF1+OF3, we remove Constraints (3.4) and (3.15).

Evaluation of the Expected Value for OF1+OF3: EEV is the way to evaluate the obtained

solution of the EV approach. That means fixing the solution of the EV problem, (xb∗t ) for

constraint (3.1) and evaluating the result against each scenario. Normally, it is important to

check the feasibility of the obtained solution for each scenario since a feasible solution to a

given scenario might not be feasible for another one. Since there is not a binding capacity

constraint in the model, here we do not have to check the feasibility for each scenario.

First, in Equation (4.6), the summation of the total absolute variation with respect to the

average request for all blood types for scenarios, φs is calculated as follows:

φs =
∑
b∈B

∑
t∈T

zbst ∀s ∈ S (4.6)
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In equation (4.7), the summation of the total dispersion amount for each scenario, ψs is

calculated as follows:

ψs =
∑
t∈T

∑
k∈K

δkp
s
tk ∀s ∈ S (4.7)

Since xb∗t is the EV solution, this solution is fixed and then the overall expected value of

the objective function is post calculated by multiplying the objective function terms of each

scenario with the scenario probabilities.

(
∑
s∈S

φs +
∑
s∈S

ψs)ps (4.8)

EV approach for OF1: The deterministic BDAS model is used in EV approach which is

explained in Section 3.2. Since the first objective function term is considered, OF1, the

Constraints (3.4), (3.7), (3.8), (3.12), (3.14) and (3.15) are removed.

Evaluation of the Expected Value for OF1: EEV is the way to evaluate the obtained

solution of the EV approach as it is explained. The evaluation of the EEV for OF1 is as

follows: First, the Equation (4.6) is used to calculate the summation of the total absolute

variation with respect to the average request for all blood types for each scenario, φs is

calculated. The expected total objective function is post calculated by multiplying objective

function values obtained from the EV approach with their probabilities, ps against each

scenario. Fixing the obtained solution from EV xb
∗
t , the total expected absolute variation is

calculated as follows.

∑
s∈S

φsps (4.9)

WS approach for OF1+OF3: As mentioned before, in this case for each scenario s, the

deterministic BDAS model is solved independently. Since the first and third objective

function terms are considered, OF1+OF3, the Constraints (3.4) and (3.15) are removed. So



88

all the decision variables are decided for each scenario independently. The expected total

objective is post calculated by multiplying objective function values of the scenarios with

their probabilities, ps. Equations (4.6), (4.7), (4.8) are used to calculate the overall objective

function value.

WS approach for OF1: For each scenario s, the deterministic BDAS model is solved

independently. Since the first objective function term is considered, OF1, the Constraints

(3.4), (3.7), (3.8), (3.12), (3.14) and (3.15) are removed. So all the decision variables are

obtained for each scenario with the perfect information. The overall objective function is

post calculated by multiplying objective function values that are obtained from the scenarios

with their probabilities, ps. Equations (4.6), (4.9) are used to calculate the overall objective

function value.

HN approach for OF1+OF3: In the HN approach, BDAS model is used to plan

preallocated slots considering s scenario. The decision variables in this model can be divided

into two stages. In the first stage, the decision variables are the number of preallocated slots.

Once we observe the number of preallocated slots, we calculate the total number of produced

blood units and then the total variation and total dispersion amount (see Constraints (4.11)-

(4.14)). Hence, the decision variables in the second stage are the total number of produced

blood units for each scenario s. Note that for different set of scenarios, there will be a

different second stage decision and thus a different second stage objective value can be

obtained.

The difference between the deterministic BDAS model and HN model is that the number

of preallocated slots, xbt is decided by taking into account all of the considered scenarios,

which means finding a single solution that satisfies all of the scenarios. The model is:

min

{
(
∑
s∈S

φs +
∑
s∈S

ψs)ps

}
(4.10)
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ybst = xbt + nbst + abt ∀t ∈ T, b ∈ B, s ∈ S (4.11)

∑
τ∈T

ybsτ − ybst |T | ≤ zbst |T | ∀t ∈ T, b ∈ B, s ∈ S (4.12)

ybst |T | −
∑
τ∈ T

ybsτ ≤ zbst |T | ∀t ∈ T, b ∈ B, s ∈ S (4.13)

r
∑
b∈B

(
wbtk + αkn

bs
t

)
+Rtk ≤ ctk + pstk ∀k ∈ K, t ∈ T, s ∈ S (4.14)

φs =
∑
b∈B

∑
t∈T

zbst ∀s ∈ S (4.15)

ψs =
∑
t∈T

∑
k∈K

δkp
s
tk ∀s ∈ S (4.16)

Constraints (3.5)− (3.7) (4.17)

Constraints (3.10), (3.14) (4.18)

φs ≥ 0 ∀s ∈ S (4.19)

ψs ≥ 0 ∀s ∈ S (4.20)

pstk ≥ 0 ∀s ∈ S (4.21)

ybst ∈ N ∀t ∈ T, b ∈ B, s ∈ S (4.22)

zbst ≥ 0 ∀t ∈ T, b ∈ B, s ∈ S (4.23)

The objective function is obtained by multiplying the summation of the total variation
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and total dispersion amounts with the probability of the scenarios for each scenario

independently.

HN approach for OF1: In the HN approach, BDAS model is used with s scenarios

all together to plan preallocated slots. The values in the scenarios are replaced with the

stochastic variables to obtain a solution that is in the feasible region considering all the

scenarios. First stage decision variables are determined and considering the realization of

the scenarios second stage decision variables are specified in order to minimize the objective

function value (total variation and total dispersion amount). The modified BDAS model is:

min

{∑
s∈S

φsps

}
(4.24)

Constraints (3.5) (4.25)

Constraints (3.6) (4.26)

Constraints (4.11)− (4.13) (4.27)

Constraints (4.15) (4.28)

and the non-negativity constrainst are included.

To sum up, the literature on risk-neutral stochastic programming are described in this

section. In the EV approach, the deterministic model is solved using the average value

of the uncertain parameters. In the WS approach the deterministic model is solved after an

observation is made on the random elements. That means, the deterministic model is solved

independently for each scenario and with the obtained objective function values of each

scenario is multiplied with the probabilities of the scenarios. In many real life problems,
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some of the parameters are uncertain at the moment, and the decisions are made in the

presence of this uncertainty as in the HN approach. The only assumption that can be made

is that the random variable is sampled from known probability distribution.

In the following section, the numerical results for the proposed risk-neutral stochastic

programming models are presented.

4.2.2. Numerical Results

In this section, the results of the stochastic programming models are presented. The risk-

neutral stochastic programming models are implemented in GAMS 24.4 and solved via

CPLEX. All experiments are run on a server on Windows OS with CPU Intel R© CoreTM i3,

2.40 GHz, and 3 GB of dedicated RAM.

According to the historical data of AVIS, looking at the donor frequencies, mean values

of the non-booked donor are calculated. We assume that non-booked donors arrive

independently to the BD center, and follow a given probability distribution. First, let us

define the data generation mechanism for the scenarios. We use two different distributions

for the non-booked donor arrivals, namely Poisson and Normal distributions.

Poisson distribution: A Poisson process with a constant rate of λ is used to approximate the

arrival process of donors without reservation. The number of non-booked donors who arrive

at each day are randomly generated for each blood type according to a Poisson distribution.

Different mean values are generated with Monte Carlo (MC) technique for each blood type

and non-booked alternative. MC technique is generally named as probability simulation

which is used to model the probability of different outcomes while the random variables are

not easily predicted. It is important to measure the impact of risk and uncertainty in the

model. For each scenario, these non-booked donor numbers are automatically assigned for

each day and for each blood type. Therefore, for each day a λ value is generated with the

MC technique.

Normal distribution: It is assumed that the defined mean values and the standard deviation
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values of the truncated Normal distributions are used across days. We consider bothN(µ, σ)

and N(µ, 3σ). First of all, uniform random numbers are generated for the number of non-

booked donors who arrive at each day according to a Normal distribution with the mean

values, µ and standard deviation, σ for each blood type separately with MC technique. For

each scenario, the generated non-booked donor numbers are automatically assigned for each

day, and blood type.

The proposed models are solved considering the first term of the objective function, OF1

and the first and the third objective function terms, OF1+OF3 for five random replications.

MC technique is used to create different replications with constant mean values. We

consider different number of scenarios as |S| = [10, 50, 100, 250, 1000]. In these scenarios,

maximum number of scenarios are generated and these generated scenarios are decomposed

as 10, 50, 100, 250. The experiments are repeated for various values of scenarios to evaluate

the impact of the scenarios that are used in the approaches.

Appropriate parameter settings are obtained from the deterministic model computational

analysis. Two levels for the flexibility parameter, ε, are also considered, i.e., either ε = 0

or ε = 0.25. All instances are generated by considering 8 blood types (|B| = 8), 7 days of

time horizon (|T | = 7) with 3 periods (|K| = 3), and capacities ctk equal to 240, 240 and

240 minutes for k = 1, 2, 3, respectively, in all days t. Service duration is assumed to be 20

minutes (r = 20) and αk fractions are considered equal to 0.5, 0.3 and 0.2 for k = 1, 2, 3,

respectively.

The remaining parameters are chosen to fit the tested case: the vector of db values for

the 8 blood types with |T | = 7 is assumed as [80 20 24 5 8 2 73 14]; the number of non-

booked donors nbt mean values are assumed to be constant over the days and the vector

for the different blood types is set equal to [3 1 1 0 0 0 4 1] for Poisson distribution for

each day taking into account the historical data. For the Normal distribution, N(µ, σ),

mean values are assumed to be [3.72 0.56 1.14 0.06 0.35 0.01 4.20 0.75] and the standard

deviation values are assumed to be [1.73 0.55 0.77 0.24 0.50 0.08 1.83 0.56]. For Normal

distribution, N(µ, 3σ), the standard deviations are multiplied by three. Since the result of

Normal distribution are similar to the ones of the Poisson distribution results, so here, we
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present the results of the Poisson distribution. The result tables for Normal distribution is

presented in Appendix C.

Table 4.1. Results for stochastic programming approaches for Poisson distribution with
half-width %95 confidence interval for OF1: (a) is with ε = 0.25, t = 7, (b) is with ε = 0,

t = 7.

Scenario Number OFEEV OFWS OFHN

10 31.62±(0.95) 6.31±(0.06) 30.06±(1.42)

50 31.25±(0.74) 6.37±(0.00) 31.11±(0.78)

100 31.19±(0.70) 6.44±(0.04) 31.19±(0.70)

250 31.19±(0.22) 6.46±(0.00) 31.09±(0.22)

1000 31.11±(0.12) 6.45±(0.01) 31.11±(0.12)
(a)

Scenario Number OFEEV OFWS OFHN

10 35.89±(1.25) 20.48±(0.72) 33.35±(1.48)

50 35.70±(0.73) 20.84±(0.31) 34.53±(0.89)

100 35.61±(0.68) 20.70±(0.14) 34.77±(0.69)

250 35.51±(0.24) 20.59±(0.05) 34.86±(0.33)

1000 35.48±(0.11) 20.67±(0.05) 35.18±(0.12)
(b)

Results for the first objective function term (OF1): Table 4.1 show the half-width %95

confidence interval for OF1 objective term among five repetitions. Two levels for the

flexibility parameter are considered; Table 4.1 (a) is for ε = 0.25 and Table 4.1 (b) is

for ε = 0. We can observe that increasing the number of scenarios proportionally decreases

the confidence interval range. Detailed results for five different random replications and the

CPU times are reported in Appendix D.

Since we use daily λ values for the non-booked donor arrivals, in the EV approach the results

are the same for all the replications. For ε = 0.25 and ε = 0 cases, the objective function
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value,OFEV , is equal to 4.57 and 19.42 respectively. The EVPI represents the willingness to

obtain perfect information for the non-booked donor arrivals in the proposed BDAS model.

According to the table results, maximum willingness is obtained 24.51 unit on the average

over the scenarios for ε = 0.25 and 13.88 unit for ε = 0. In contrast, from Table 4.1 (a),

it can be observed that with ε = 0.25, the value of stochastic solution (V SS = OFEEV −

OFHN ) is too low and by increasing the number of scenarios, the objective function values

for OFEEV and OFHN converge to the same value. If the deterministic solution is far from

the stochastic solution for any given time, that would indicate the value of the stochastic

solution. Table 4.1 (b) is analyzed with ε = 0 and without the flexibility term, ε. The

average VSS values are increased from 0.36 to 1.10 compared to ε = 0.25 for the scenarios.

The reason behind that is, we use the same mean values for each day and low values of VSS

indicates that, ε involves another stochasticity to the problem.

Figure 4.2. Comparison of the average objective function values of the replications with

ε = 0.25, t = 7 for EEV, WS and HN approaches for OF1.

Figures 4.2 and 4.3 demonstrate the average objective function values of the proposed

stochastic programming models. These figures are the summary of the half-width %95

confidence interval tables for OF1. A large difference between OFEEV and OFHN shows

that we are able to resolve the uncertainty or we can improve the solution. As it is discussed,
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while the number of scenarios is increased, OFEEV and OFHN results converges to the

same value. It can also seen from the figures that without the flexibility term, the solution

is improved in terms of VSS. Therefore, we are far from the perfect information and it

means the solution is almost the same with EV (deterministic model) approach. Since the

expected gain is not too high while solving the stochastic model rather than the deterministic

counterpart, the demand flexibility term, ε, is removed from our model in the stochastic

programming analysis. We want to analyze a single randomness in the proposed stochastic

programming models.

Figure 4.3. Comparison of the average objective function values of the replications with

ε = 0, t = 7 for EEV, WS and HN approaches for OF1.

We know that EEV is the average values that are given by EV approach. So all the

feasible solutions of the average value approach is already considered in the HN approach.

Therefore, the optimal solution from HN approach must be better. According to the ordered

relationship between the approaches, our objective function values always follow the order,

(OFWS ≤ OFHN ≤ OFEEV ) as expected.

Furthermore, additional experiments are conducted to see the effect of longer time horizon

(t = 14) . The half-width %95 confidence interval tables are reported in Table 4.2.
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For the detailed results for each replication see Appendix D. For ε = 0.25 and ε = 0 cases,

the objective function value OFEV is equal to 16.71 and 49.28 respectively. Setting the time

horizon to 14 days did not change the previous observations.

Results for the first and the third objective function terms (OF1+OF3): Since the effect

of ε is indicated in the analysis with OF1, the flexibility degree associated with db is not

included for OF1+OF3 cases.

Table 4.2. Results for stochastic programming approaches for Poisson distribution with
half-width %95 confidence interval for OF1: (a) is with ε = 0.25, t = 14, (b) is with ε = 0,

t = 14.

Scenario Number OFEEV OFWS OFHN

10 61.77±(4.21) 9.95±(0.86) 55.31±(3.90)

50 62.08±(1.20) 10.55±(0.18) 59.83±(1.24)

100 62.33±(1.09) 10.65±(0.24) 60.32±(1.18)

250 62.41±(0.47) 10.67±(0.12) 60.75±(0.43)
(a)

Scenario Number OFEEV OFWS OFHN

10 76.87±(3.63) 48.14±(1.84) 70.71±(3.89)

50 77.01±(1.75) 48.21±(1.11) 74.54±(1.45)

100 76.87±(1.49) 48.03±(0.54) 74.92±(1.06)

250 77.21±(0.93) 48.18±(0.55) 75.77±(0.59)
(b)

The results are given in Table 4.3 with the stochastic programming approaches for the

objective function terms, OF1+OF3. When we compare the objective terms, OF1 and

OF1+OF3, the VSS measure improvement for OF1+OF3 is increased from %3.18 to %5.65

considering the combination of two objective function terms, OF1+OF3. High values of

V SS = OFEEV -OFHN is obtained with OF1+OF3 in each replication.



97

The measurably small differences show that the optimal solutions are not sensitive to the

value of random variables. In that case, finding the optimal solution with deterministic

model yields the same result with the stochastic model. Hence if the prediction of non-

booked donor arrivals is good enough, the HN approach does not improve the solution a lot.

To this end, modeling the randomness based on the risk-neutral approach does not play a

significant role on the obtained solutions for BDAS model.

Table 4.3. Results for stochastic programming approaches for Poisson distribution with
half-width %95 confidence interval for OF1+OF3 with ε = 0, t = 7.

Scenario Number OFEEV OFWS OFHN

10 82.19±(2.87) 60.51±(2.62) 75.93±(2.33)

50 81.52±(1.19) 60.71±(0.68) 77.24±(1.19)

100 81.57±(0.88) 60.65±(0.34) 77.53±(0.95)

250 81.36±(0.76) 60.43±(0.41) 77.56±(0.45)

1000 81.30±(0.40) 60.44±(0.15) 77.86±(0.19)

Figure 4.4. Comparison of the average objective function values of the replications with

ε = 0, t = 7 for EEV, WS and HN approaches for OF1+OF3.
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As it can be also seen from the Figure 4.4, the value of stochastic solution is increased with

the combination of two objective term. Since increasing the planning period does not change

the observations, longer planning period analysis is not considered for OF1+OF3.

Since risk-neutral stochastic programming approaches consider the expected values in their

objectives, risk is not taken into account in these approaches. According to the results of

risk-neutral stochastic programming approaches, the solution is far from that of the perfect

information, so it might be better to consider an effective approach that is also aware of

the risk since risk-neutral models cannot capture the risk as explained. To this end, in

the following section we propose a risk-averse stochastic programming approach that also

includes the risk terms.

4.3. RISK-AVERSE STOCHASTIC PROGRAMMING MODELS WITH ONLY

RISK TERMS

The formulation in classical stochastic programing is based on the expected value of an

objective function and such a formulation is assumed as a risk-neutral. So the decision

makers do not account for the large losses in some of the realizations. Therefore, in risk-

neutral stochastic programming models, expectations can be found analytically but these

formulations cannot capture the risk since random variables are replaced with their mean

values. When all certain realizations are considered, decisions based on the expected value

may perform poorly (can be seen from Section 4.2). Therefore, it is important to consider

the effect of variability which is actually defined as the risk concept. More specifically, risk-

averse stochastic programming models imply that the probability for each possible random

outcome is known in advance. So according to the random outcomes we have different

risk preferences. The aim is lowering the effects of undesirable results for the realizations.

Risk-averse models measure risk with different approaches such as value-at-risk, conditional

value-at-risk, mean-risk analysis, expected utility theory, stochastic dominance and chance

constraints [151].

In this dissertation, we consider two types of models that incorporate risk measures; in

Section, 4.3.1 we only consider the risk terms whereas in Section 4.3.2, we consider the
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mean-risk approach. We first introduce the definitions of VaR and CVaR. VaR is used in the

CVaR interpretation, therefore, first VaR definition is presented as follows.

Value-at-risk (VaR) is widely used as a risk measure which calculates the maximum loss

with the confidence level α [152]. VaR does not take into account the size of losses that

may occur when the VaR is exceeded. VaR is a relatively simple risk management concept

and has a clear interpretation. VaR focuses on the part of the distribution specified by the

confidence level and it actually does not consider the properties of the distribution beyond

the confidence level. It is exactly obtained by taking the percentile of the loss distribution

with different α confidence levels. VaR can be formally defined as follows.

Definition 1 Let FZ(.) represent the cumulative distribution function of a random variable

Z. The α-quantile

inf {η : FZ(η) ≥ α} (4.29)

is called the Value-at-Risk (VaR) at the confidence level α and denoted by V aRα(Z), α ∈

(0, 1].

Conditional Value-at-risk (CVaR) is proposed by Rockafellar and Uryasev [152] due to

the limitations of VaR approach. CVaR measure takes into account both the α-quantile

(it takes into account the impacts of all extreme values in the tail of distribution) and the

conditional expectation of the least favorable outcomes. It means the conditional mean value

of the worst 1− α ∗ 100% losses. It is also known as Mean Excess Loss, Mean Shortfall, or

Tail VaR. We consider CVaR as a risk measure which includes the effects of the stochastic

nature of the system.

Definition 2 The Conditional Value-at-Risk (CVaR) of a random variable Z at the

confidence level α is given by
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CV aRα(Z) = infη∈R

η +
1

1− α
E(max[Z − η], 0)

 (4.30)

CV aRα(Z) is the expectation value that exceeds the VaR value at the confidence level α.

VaR provides an upper bound that is exceeded with a small probability of 1− α.

Figure 4.5. The relation between Var and CVaR [151].

The definitions guarantee that VaR cannot be greater than CVaR value. While VaR

calculates a quantile of a loss distribution, CVaR calculates the weighted sum of the

least favorable outcomes that are exceeding VaR. In comparison to VaR, CVaR provides

additional information on the magnitude of the excess loss. CVaR is designed to measure

the risk of extreme losses, so CVaR is an extension of VaR that gives the total amount of

loss.

The relation between VaR and CVaR can be seen from the Figure 4.5 explicitly [151].

According to the preferences, different CVaR objectives with several α-levels can be

tested and that can reshape the loss distribution taking into account the α change. These

preferences are decided with different percentile terms. Actually, α represents risk-aversion
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degree of a decision maker. To express decision makers’ risk preferences, we can specify

various confidence levels that allows higher flexibilities.

In order to model the linear optimization model, Rockafellar and Uryasev [152] also

provided a transformation with the linearization of the CVaR equation. Since the maximum

operator in Equation (4.30) is not linear, we present the linearization of the CVaR equation

which is provided by Rockafellar and Uryasev [152].

Linearization of the CVaR approach: Let Z be a random variable with realizations

z1, . . . , zs and the probabilities s = 1, 2, . . . , S respectively. The probability will not exceed

a threshold η is then given by the VaR equation (4.29) as in {η : FZ(η) ≥ α}. As a function

of η, FZ(η) is the cumulative distribution function for the loss associated with z. By using

dummy variables hs, s = 1, 2, . . . , S, the function FZ(η) can be replaced by the linear

function η +
1

1− α
∑

s∈S hsps where ps are the probabilities of the scenarios. For a given

confidence level α ∈ [0, 1), the linear optimization problem that approximates, CV aRα(Z)

is equal to:

min η +
1

1− α
∑
s∈S

hsps (4.31)

hs ≥ Zs − η ∀s ∈ S (4.32)

hs ≥ 0 ∀s ∈ S (4.33)

where hs = max(Zs−η, 0). Therefore, CVaR risk measure can be written as linear functions

for the optimization problems [151].

As we mentioned, we consider two types of models that incorporate risk measure. In the

CVaR part, we only consider the risk terms in the models, whereas in the following definition
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we consider both the expectation and the risk measure (which is called mean-risk approach).

Mean-risk approach firstly proposed by Markowitz [153] for a portfolio optimization

problem. For the mean-risk approach, the expected outcome of interest is explained as

expected value and the value of a risk measure. Thus, the trade-off between the mean and

the risk is considered in mean-risk approach. Briefly, the aim is to minimize the weighted

combination of these. The general formulation of the mean-risk function with CVaR is as

follows:

E[Z] + θCV aRα[Z] (4.34)

where Z is the random outcome and the parameter θ is a non-negative trade off coefficient.

The overall objective is calculated by the summation of the expected outcome and a weight

multiplied by the CVaR value. E[Z] is denoted as E(.) and CV aRα[Z] is denoted as

CV aR(.) for the rest of the dissertation.

When the health care literature is considered, Noyan [154] presented alternate risk measures

for emergency medical service system design and Chan et al. [155] presented a robust-

CVaR optimization approach with application to breast cancer therapy. To the best of our

knowledge, this study is the first attempt that uses a CVaR approach in a BD system. Since

controlling the random arrival of non-booked donors is not easy in a BDAS system, it

causes an imbalanced production for the entire system. Since CVaR is a policy that embeds

risk, the possible large realizations of non-booked donor numbers for BDAS model may be

considered. Risk may effect the entire BD system and to be able to measure risk, generally

the loss resulting from a donor appointment schedule is measured. In the considered BD

system, the result is an imbalanced production. However, instead of minimizing total

variation and total weighted dispersion amount, we can minimize the expected total variation

and expected total weighted dispersion amount considering the risk measure CVaR. In the

following section, the proposed risk-averse stochastic programming models are presented.



103

4.3.1. Proposed Models

In this study, we develop two-stage risk-averse stochastic programming models for the

considered BDAS problem. The models try to optimize the appointment schedule while

minimizing total variation and/or total weighted dispersion amount, under random non-

booked donor arrivals.

Minimizing OF1+OF3, by Using CVaR (CV aRRA−HN ): In this model, we try to

minimize CV aRα

{∑
b∈B
∑

t∈T z
bs
t +

∑
t∈T
∑

k∈K δkp
s
tk

}
and the corresponding model is

as follows:

min

{
η +

1

1− α
∑
s∈S

pshs

}
(4.35)

hs ≥ φs + ψs − η ∀s ∈ S (4.36)

Constraints (3.5)− (3.7) (4.37)

Constraints (4.11)− (4.23) (4.38)

hs ≥ 0 ∀s ∈ S (4.39)

η ≥ 0 (4.40)

where hs variables are used to compute the CV aRα value on the total variation and total

weighted dispersion amount under different scenarios. Constraints (4.36) and (4.40) are

introduced to linearize the maximum operator in the equation (4.30) under each scenario.

Due to the minimization objective, if the difference in constraint (4.36) is negative, then hs

gets value 0. Furthermore, the non-negativity constraints are included.
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Minimizing OF1, by Using CVaR (CV aRRA−HN ): In this model, we focus on the random

variable, total variation and the model’s aim is to minimize CV aRα

{∑
b∈B
∑

t∈T z
bs
t

}
.

min

η +
1

1− α
∑
s∈S

pshs

 (4.41)

hs ≥ φs − η ∀s ∈ S (4.42)

Constraints (3.5) (4.43)

Constraints (3.6) (4.44)

Constraints (4.11)− (4.13) (4.45)

Constraints (4.15) (4.46)

where hs variables are used to compute the CV aRα value on the total variation under

different scenarios. Constraints (4.42) and (4.40) are introduced to linearize the maximum

operator in the equation (4.30) under each scenario. Due to the minimization objective, if

the difference in constraint (4.42) is negative, then hs gets value 0. Furthermore, the non-

negativity constraints are included.

4.3.2. Numerical Results

In this section, we provide the numerical results for the risk-averse models that are focused

on analyzing how the decisions change by incorporating the risk terms and the effects of the

risk parameters.
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We also provide the relative differences of the risk-averse and risk-neutral models based on

the considered random outcomes. More specifically, for the CV aR(.) values we define the

relative difference (RD) as follows:

RD =
CV aRRA

α − CV aRRN
α

CV aRRN
α

(4.47)

where CV aRRA
α and CV aRRN

α correspond to the risk-averse and the risk-neutral (HN and

EEV approach) models, respectively. CV aRRA
α is the model outcome while CV aRRN

α is

the calculation based on the risk-neutral model outcome. The relative differences of other

indicators (i.e. E(.)) are also calculated similarly.

Several problem instances are considered with different sizes to test risk-averse BDAS

models. The generated instances are described in Section 4.2.2. So we either test for the first

objective function term (OF1) or we test for the first and the third objective function terms

(OF1+OF3) with or without flexibility degree, ε = 0.25 or ε = 0. Previously, analyzed

risk-neutral (HN and EEV apparoaches) solutions (see Section 4.2.2) are compared with the

risk-averse model solutions in the following part. When we calculate CV aR(.), based on

the solutions that are obtained in HN and EEV approaches (without directly optimizing),

they are named as CV aRRN−HN and CV aRRN−EEV , respectively.

For OF1 and OF1+OF3, 2 different flexibility degree ε = 0 or ε = 0.25 are considered. We

consider five different replications and each combination of α = [0.8, 0.9, 0.99], and five

alternative scenario number |S| = [10, 50, 100, 250, 1000]. All the scenario probabilities

are equally likely or sampled from the Uniform distribution on the interval [0.2, 0.6] and

then normalized. We also show the relative differences of E(.) and CV aR(.) values with

respect to their risk-neutral models. The computational study with the proposed models are

conducted by using GAMS 24.4 modeling language. Note that all the numerical experiments

are performed with CPU Intel R© CoreTM i3, 2.40 GHz, and 3 GB of dedicated RAM.

Results for the first objective function term (OF1−CV aRRA): In Table 4.4, we calculate

the relative difference (RD) values of the replications for each number of scenarios with
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ε = 0. At the last column of the table, the presented results are confidence intervals for the

average values over replications.

Table 4.4. Relative difference values of each replication and confidence intervals of the
relative differences for different number of scenarios (OF1−CV aRRA−HN , ε = 0, t = 7),

* indicates the case is solved with an optimality gap< 1.3%.

α=0.8 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -10.24% -4.40% -4.44% -11.53% -5.51% -7.22 ± 4.22

50 -3.09% -1.92% -4.52% -3.37% -3.07% -3.19 ± 1.15

100 -1.90% -1.84% -2.15% -1.96% -3.52% -2.28 ± 0.87

250 -2.14% -1.48% -1.59% -0.87% -1.41% -1.50 ± 0.57

1000 -0.56%* -0.28%* -0.75%* -0.44%* -0.44%* -0.49 ± 0.22

α=0.9 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -10.81% -4.76% -4.44% -11.49% -5.47% -7.39 ± 4.29

50 -5.16% -2.60% -5.91% -6.41% -4.94% -5.01 ± 1.82

100 -3.33% -3.49% -3.43% -3.76% -6.10% -4.02 ± 1.46

250 -3.23% -3.30% -2.59% -1.32% -2.31% -2.55 ± 1.00

1000 -0.69%* -0.40%* -1.02%* -0.77%* -1.02%* -0.78 ± 0.32

α=0.99 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -12.25% -5.97% -4.44% -11.97% -6.65% -8.26 ± 4.48

50 -13.18% -7.78% -10.25% -12.38% -7.84% -10.29 ± 3.10

100 -7.50% -11.88% -8.18% -14.12% -13.75% -11.08 ± 3.84

250 -8.22% -5.82% -6.18% -3.61% -3.60% -5.49 ± 2.42

1000 -4.09%* -3.63%* -2.27%* -4.01%* -3.73%* -3.55 ± 0.92
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For the detailed risk-averse and risk-neutral comparison tables for each replication with

ε = 0 please see Appendix E (Tables E.1-E.7).

As seen from Table 4.4, improvements of the CV aR(.) values are higher with respect to

the risk-neutral cases. We are successful to obtain significant amount of decreases in the

objective function values with CVaR approach. A negative percentage value represents a

lower CV aR(.) value in the objective function. Increasing α, results an increase in the RD

values.

Relative differences which show the level of improvement in CV aR(.) values is generally

data dependent and we are able to achieve on the average up to %11.08 reduction amounts

in the CV aR(.) values with respect to risk-neutral cases for 5 different replication with

ε = 0 and for α = 0.99. When the number of scenarios are increased, there is generally a

reduction in the CVaR improvements due to the correlation between days or because of the

constant λ value that is used to generate scenarios for different days.

Figure 4.6. Cumulative distribution functions of the total variation for different values of α

with |S| = 50, ε = 0.

In addition, we provided the cumulative distribution function (cdf) plots associated with
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risk-neutral and risk-averse models which are presented in the Figure 4.6 with α =

[0.8, 0.9, 0.99]. Risk-averse approach necessarily shapes the cdf according to the decision

makers’ risk preferences. An increase in the α values results with a reduction in the critical

scenarios and results an increase in the importance of the extreme realizations. Because, the

critical values that are exceeding VaR value are decreased while the α value is increased.

Therefore, it principally results with a shift to the left (right tail of the cdf).

The critical scenarios can be calculated easily by (1 − α)|S| that are exceeding VaR value.

Figure 4.6 shows the cdf plot for a replication and for the further figures please see Appendix

F (Figures F.1-F.5). When the cumulative distribution function is considered, there is a trade-

off between E(.) and CV aR(.) improvement. The expectation is increased and as a result,

cdf is shifted to the left with respect to the right tail of the cdf.

In contrast to CV aR(.) improvements, there is an increase in the E(.) values. The reason

behind this trade-off is risk-neutral models are based on the expected value calculation in

their objective functions while considering all the possible realizations. Therefore, an equal

importance is given for each scenario. But in risk-averse models, it is important to consider

the effect of randomness. The importance is given to the values that are exceeding VaR

value and try to minimize these values in the model. The trade-off is obtaining an improved

solution in terms of CVaR while obtaining a higher E(.) values.

We also compare all the results against HN and EEV approaches to see the effect of risk

factor on the corresponding approaches. We know from the risk-neutral models that EEV

is the expected result of EV approach. A post CV aR(.) calculation is done for the EEV

solution. From the analysis made for risk-neutral models, once the number of scenarios is

increased, OFEEV and OFHN results tends to converge to the similar value.

However, as it can be seen from the Tables 4.4 and 4.5, with risk-averse models we are able

to improve the solution ofCV aRRA−HN andCV aRRN−EEV approaches. More specifically,

we are able to achieve on the average up to %14.88 reduction amounts in the CV aR(.)

values with respect to risk-neutral cases (with ε = 0). For instance, when we consider

CV aRRN−EEV calculations with α = 0.8, 0.9, 0.99, we get on the average %13.43, %14.88
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and %14.88 improvement for 10 scenarios respectively.

Table 4.5. Relative difference values of each replication and confidence intervals of the
relative differences for different number of scenarios (OF1− CV aRRN−EEV , ε = 0,

t = 7).

α=0.8 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -8.04% -14.34% -12.54% -14.98% -17.24% -13.43 ± 4.28

50 -4.57% -4.45% -4.84% -9.34% -3.57% -5.35 ± 2.83

100 -2.88% -3.52% -3.69% -6.40% -3.97% -4.09 ± 1.68

250 -2.94% -2.54% -2.04% -4.99% -3.78% -3.26 ± 1.44

1000 -1.68% -0.51% -0.90% -1.44% -1.46% -1.20 ± 0.59

α=0.9 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -8.33% -18.37% -16.23% -14.94% -16.55% -14.88 ± 4.79

50 -5.93% -5.59% -6.77% -10.91% -5.34% -6.91 ± 2.85

100 -3.97% -5.21% -5.09% -7.01% -5.12% -5.28 ± 1.36

250 -4.32% -4.54% -2.67% -5.67% -4.56% -4.35 ± 1.34

1000 -2.01% -0.71% -1.24% -1.80% -2.05% -1.56 ± 0.72

α=0.99 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -8.33% -18.37% -16.23% -14.94% -16.55% -14.88 ± 4.79

50 -9.62% -8.11% -8.28% -12.10% -6.90% -9.00 ± 2.46

100 -9.76% -11.88% -7.01% -7.59% -13.21% -9.89 ± 3.32

250 -12.39% -10.56% -3.47% -5.68% -7.53% -7.93 ± 4.47

1000 -5.42% -2.00% -2.76% -1.71% -2.88% -2.95 ± 1.82
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When we consider CV aRRA−HN results with α = 0.8, 0.9, 0.99, we get on the average

%7.22, %7.39 and %8.26 improvement for 10 scenarios respectively (see Table 4.4

and Table 4.5). When we compare the results for CV aRRN−EEV calculations with

CV aRRA−HN results, the CV aRRN−EEV average improvements are lower than the

CV aRRA−HN results. So in contrast to risk-neutral models, modeling the randomness based

on the risk averse models plays a significant role for BDAS system.

Furthermore, we also analyze the first objective function term with ε = 0.25, but as it is

discussed ε involves another stochasticity to the problem.

For the results with ε = 0.25 please see Appendix E (Tables E.8-E.14) for the tables and

Appendix F (Figures F.6-F.8) for the figures for the total variation (OF1).

As it is explained, we test with equal scenario probabilities and with different scenario

probabilities that are drawn from a Uniform distribution. Since the CV aR(.) relative

differences with equal scenario probability cases are similar to the different scenario

probability cases, the results are demonstrated in the Appendix E.

Results for the first and third objective function terms (OF1OF3−CV aRRA): We also

analyze the objective function terms OF1+OF3 with ε = 0. The results are represented in

Table 4.6 for different replications and the cdf plot is shown in Figure 4.7.

We are able to observe same comments as in OF1 with ε = 0. We are able to achieve on the

average up to %9.26 reduction amounts in the CV aR(.) values with respect to risk-neutral

cases. For instance when we consider 10 scenario case, we get on the average up to %4.6,

%5.58 and %7.28 improvement for α = [0.8, 0.9, 0.99], respectively.

When CV aRRN−EEV calculations with α = [0.8, 0.9, 0.99] are considered, we get on the

average %13.82, %15.58 and %15.58 improvement for 10 scenarios respectively. When

CV aRRA−HN results are considered with α = [0.8, 0.9, 0.99], we get on the average %4.60,

%5.58 and %7.28 improvement for 10 scenarios respectively (see Table 4.6 and Table 4.7).
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As a result of the conducted computational study we observe that the proposed risk-averse

Table 4.6. Relative difference values of each replication and confidence intervals of the
relative differences for different number of scenarios (OF1OF3− CV aRRA−HN , ε = 0,

t = 7), * indicates the case is solved with an optimality gap< 0.3%.

α=0.8 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -3.31%* -4.87%* -4.58%* -5.82%* -4.40%* -4.6 ± 1.12

50 -2.45%* -1.15% -2.93% -3.42% -2.70% -2.53 ± 1.05

100 -1.12% -1.70% -1.68% -1.96%* -1.94% -1.68 ± 0.42

250 -1.56% -2.06% -1.86% -1.66% -1.45%* -1.72 ± 0.30

1000 -0.88%* -1.00%* -1.13%* -1.13%* -1.36% -1.10 ± 0.22

α=0.9 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -3.57%* -5.62%* -6.03%* -6.52%* -6.16%* -5.58 ± 1.45

50 -3.56%* -3.16% -3.47%* -6.15% -4.77%* -4.22 ± 1.54

100 -1.71%* -3.29% -2.44% -3.70% -2.78%* -2.79 ± 0.95

250 -2.16% -3.02% -2.48% -2.77% -1.68%* -2.42 ± 0.65

1000 -1.35%* -1.56%* -1.44%* -1.56%* -1.89%* -1.56 ± 0.25

α=0.99 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -4.05%* -7.05%* -8.39%* -7.79%* -9.12%* -7.28 ± 2.43

50 -7.52% -10.47%* -7.21%* -13.94%* -7.31%* -9.29 ± 3.64

100 -3.24%* -6.26%* -3.07%* -6.93%* -9.21%* -5.74 ± 3.23

250 -6.55%* -7.71%* -8.59%* -6.87%* -4.88%* -6.92 ± 1.72

1000 -3.45%* -2.43%* -2.35%* -4.37%* -4.70%* -3.46 ± 1.35
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models are successful to achieve a better OF1+OF3 values and the previous observations

did not change.

Table 4.7. Relative difference values of each replication and confidence intervals of the
relative differences for different number of scenarios (OF1OF3− CV aRRN−EEV , ε = 0,

t = 7).

α=0.8 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -7.28% -13.88% -13.46% -15.45% -19.01% -13.82 ± 5.28

50 -9.72% -9.24% -9.18% -9.78% -10.17% -9.62 ± 0.51

100 -8.39% -8.56% -8.23% -8.40% -9.32% -8.58 ± 0.53

250 -8.02% -7.85% -7.96% -7.47% -9.05% -8.07 ± 0.73

1000 -7.63% -7.15% -6.98% -7.22% -7.75% -7.34 ± 0.41

α=0.9 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -9.56% -14.37% -14.35% -19.75% -19.87% -15.58 ± 5.38

50 -11.65% -10.65% -9.55% -12.53% -12.98% -11.47 ± 1.73

100 -5.96% -6.75% -6.05% -4.24% -5.36% -5.67 ± 1.17

250 -8.90% -8.55% -8.47% -8.94% -9.88% -8.95 ± 0.70

1000 -7.92% -8.05% -7.50% -7.96% -8.56% -8.00 ± 0.47

α=0.99 with equal probability

Number of RD - RD - RD - RD - RD - Confidence

Scenarios Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Interval

10 -9.56% -14.37% -14.35% -19.75% -19.87% -15.58 ± 5.38

50 -12.72% -14.33% -10.38% -17.01% -16.27% -14.14 ± 3.34

100 -11.18% -13.45% -9.81% -15.94% -13.08% -12.69 ± 2.90

250 -13.78% -10.81% -14.31% -13.56% -12.30% -12.95 ± 1.75

1000 -9.60% -11.09% -9.33% -11.03% -11.84% -10.58 ± 1.33
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For the detailed results of each replication, please see Appendix E for the tables (Tables

E.15-E.19) and see Appendix F for the figures (Figures F.9-F.11).

Furthermore, we provided the cumulative distribution function (cdf) plots associated with

risk-neutral and risk-averse models which are presented in the Figure 4.7 with α =

[0.8, 0.9, 0.99]. When the cumulative distribution function is considered, as it is discussed,

there is a trade-off between E(.) and CV aR(.) improvement. The E(.) is increased and as

a result, cdf is shifted to the left with respect to the right tail of the cdf.

Figure 4.7. Cumulative distribution functions of the total variation and total weighted

dispersion amounts for different values of α with |S| = 50, ε = 0.

In CVaR objective, the values that are not exceeding the VaR value is not considered. The

only thing that changes the CV aR(.) objective value is the values that passes the VaR value.

Since the two objective function terms, OF1 and OF3 are conflicting, the effect of CV aR(.)

on the objective function terms converge to the same value once we analyze Figure 4.7.

Thus, to better analyze this situation, we also examine the models with mean-risk terms in

the following section. Two aspects are considered in mean-risk approach: E(.) and the risk.
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Due to the uncertainty in the model, we usually consider its E(.) and risk is represented in

terms of variability. Therefore, the trade-off of these two factors against each other has to

be measured.

4.4. RISK-AVERSE STOCHASTIC PROGRAMMING MODELS WITH MEAN-

RISK TERMS

As it is discussed in Section 4.3, the objective of the mean-risk approach is to minimize the

weighted combination of the mean (E(.)) and the risk measure. The general representation

of the mean-risk function with CV aRα is as follows:

E[Z] + θCV aRα[Z] (4.48)

where θ is the trade-off coefficient. It is also called as a risk coefficient, which is specified

by decision makers according to their risk preferences.

4.4.1. Proposed Models

By using the previously stated two risk-averse models (for OF1, OF1+OF3) that are

explained in Section 4.3, the mean-risk versions are developed as follows:

• Minimizing OF1

E[
∑
s∈S

φs] + θCV aRα[
∑
s∈S

φs] =
∑
s∈S

φspps + θ(η +
1

1− α
∑
s∈S

pshs) (4.49)

where hs, s ∈ S, variables satisfy the constraints (4.42) and (4.39). Exactly the same

model is used which is named as ”CV aRRA−HN” (see Section 4.3.1, Constraints

(4.42) to (4.46)).
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• Minimizing OF1+OF3

E[
∑
s∈S

φs +
∑
s∈S

ψs] + θCV aRα[
∑
s∈S

φs +
∑
s∈S

ψs] =

∑
s∈S

(φs + ψs)ps + θ(η +
1

1− α
∑
s∈S

pshs) (4.50)

where hs, s ∈ S, variables satisfy the constraints (4.36) and (4.39). Exactly the same

model is used which is named as ”CV aRRA−HN” (see Section 4.3.1, Constraints

(4.36) to (4.39)).

Then, the corresponding models can be obtained by changing the objective functions of the

problems that are presented in Section 4.3.1. The effects of risk parameters and comparative

results of the proposed models are presented in the following subsection.

4.4.2. Numerical Results

In this section, we present results for the models of OF1 and OF1+OF3 with mean-risk

terms. Here, we discuss the effect of risk parameters on the solutions and we report the

results for different values of risk parameters: two different α = [0.8, 0.9] values and four

different θ = [0, 0.1, 1, 10] values are used for the analysis.

Results for the first objective function term (OF1): Tables 4.8 and 4.9 show how these

risk parameters effect the obtained solutions for different values of risk parameters α and

θ. These are the results of first replication with ε = 0. For the other analysis please see

Appendix G for the mean-risk term tables.

The Tables that are presented in Appendix G is as follows: G.1-G.8 are for OF1 with ε = 0

and Tables G.9-G.18 are for OF1 with ε = 0.25.

As presented in the tables, increasing the risk parameter, θ, results an increase in the relative
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importance of the risk term, which means more explicitly if we increase θ, we may obtain

higher CVaR improvements.

Table 4.8. Replication 1 results for the mean-risk model for each number of scenarios
(OF1, ε = 0, α = 0.8).

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.86 34.69 CVaRα Exp.

0.1 39.86 34.80 -4.78% 0.33%

1 37.71 35.49 -9.90% 2.31%

10 37.57 35.80 -10.24% 3.21%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 40.66 35.26 CVaRα Exp.

0.1 40.06 35.26 -1.48% 0.00%

1 39.46 35.38 -2.95% 0.36%

10 39.40 35.53 -3.09% 0.78%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.26 35.47 CVaRα Exp.

0.1 41.11 35.48 -0.35% 0.02%

1 40.71 35.71 -1.32% 0.68%

10 40.47 36.03 -1.90% 1.57%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.31 35.21 CVaRα Exp.

0.1 41.31 35.21 0.00% 0.00%

1 40.42 35.47 -2.14% 0.75%

10 40.42 35.47 -2.14% 0.75%
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Because, giving a higher importance to CV aR(.) term decreases the importance of the E(.)

term in Equation (4.48). So with larger θ values, we obtain more risk-averse policies.

Table 4.9. Replication 1 results for the mean-risk model for each number of scenarios
(OF1, ε = 0, α = 0.9).

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.29 34.69 CVaRα Exp.

0.1 40.29 34.80 -4.73% 0.33%

1 37.71 35.49 -10.81% 2.31%

10 37.71 35.49 -10.81% 2.31%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.06 35.26 CVaRα Exp.

0.1 40.40 35.31 -3.94% 0.16%

1 39.89 35.37 -5.16% 0.32%

10 39.89 35.37 -5.16% 0.32%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.86 35.47 CVaRα Exp.

0.1 42.57 35.48 -0.67% 0.02%

1 41.46 35.89 -3.27% 1.19%

10 41.43 36.02 -3.33% 1.55%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 43.13 35.21 CVaRα Exp.

0.1 42.78 35.24 -0.82% 0.07%

1 41.74 35.50 -3.23% 0.82%

10 41.74 35.50 -3.23% 0.82%
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In E(.), equal importance is given to each scenario but in CV aR(.), the importance is given

to the values that are exceeding VaR value. For instance, the CVaR improvement is reached

up to %10.24 with θ = 10 (see Table 4.8).

Table 4.10. Replication 1 results for the mean-risk model (OF1+OF3, ε = 0, α = 0.8), *
indicates the case is solved with an optimality gap < 0.2%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 82.43 75.89 CVaRα Exp.

0.1 81.67 75.91 -0.92% 0.02%

1 80.04* 76.36 -2.90% 0.61%

10 79.69* 77.43 -3.31% 2.03%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 87.59 78.02 CVaRα Exp.

0.1 86.97 78.08 -0.71% 0.07%

1 85.67 78.49 -2.20% 0.59%

10 85.45* 78.81 -2.45% 1.01%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 87.63 78.48 CVaRα Exp.

0.1 87.47 78.48 -0.18% 0.01%

1 86.71 78.86 -1.05% 0.49%

10 86.65* 78.93 -1.12% 0.58%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 88.62 77.98 CVaRα Exp.

0.1 88.62 77.98 0.00% 0.00%

1 87.26 78.42 -1.53% 0.55%

10 87.23 78.44 -1.56% 0.59%
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As the θ is increased, we reach the solutions that are presented in Section 4.3.2.

Table 4.11. Replication 1 results for the mean-risk model (OF1+OF3, ε = 0, α = 0.9), *
indicates the case is solved with an optimality gap < 0.2%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 82.69 75.89 CVaRα Exp.

0.1 81.69 75.93 -1.21% 0.05%

1 80.05* 76.36 -3.19% 0.61%

10 79.74* 77.27 -3.57% 1.81%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 89.84 78.02 CVaRα Exp.

0.1 88.87 78.10 -1.07% 0.10%

1 86.64 78.81 -3.56% 1.01%

10 86.64 78.81 -3.56% 1.01%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 87.04 78.48 CVaRα Exp.

0.1 89.18 78.50 -0.54% 0.03%

1 88.37 78.73 -1.45% 0.33%

10 88.13 79.14 -1.71% 0.85%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 91.33 77.98 CVaRα Exp.

0.1 91.33 77.98 0.00% 0.00%

1 89.37 78.46 -2.15% 0.61%

10 89.37 78.46 -2.15% 0.61%
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In addition to that, increase in the α values results with a reduction in the critical scenarios

and results an increase in the importance of the extreme realizations. Because, the critical

values that are exceeding VaR value are decreased while the α value is increased (see Table

4.9).

Results for the first objective function term (OF1+OF3): Tables 4.10 and 4.11 show how

these risk parameters effect the obtained solutions for different values of risk parameters α

and θ.

For the other analysis please see Appendix G, Tables G.19-G.26 G.19-G.26 are for

OF1+OF3 with ε = 0. The observations for the θ parameter is similar to the ones that

are presented in OF1.

Figure 4.8. Cumulative distribution functions of the OF1+OF3 with different θ values

(|S| = 50, α = 0.8, ε = 0).

Figures 4.8 and 4.9 show the cumulative distribution functions with mean-risk terms for

different θ values. In CVaR objective, the values that are not exceeding the VaR value

is not considered as it is explained. The only contribution for the objective is the ones

that are exceeding the VaR value. As it is discussed in Section 4.3.2, the two objective

function terms, OF1 and OF3 are conflicting and objective function terms converged to the

same value. After two new terms have been added to the objective (CV aR(.) and E(.)),
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we cannot observe similar figures as in Section 4.3.2. When the figures are taken into

consideration, it is observed that the model is able to balance the production and minimize

the dispersion amounts at the same time with mean-risk approach. As a result, the added

E(.) term provided a contribution in mean-risk analysis for OF1+OF3.

Furthermore, increasing θ increases the relative importance of the risk term, thus it is

obvious to observe a left shift in the right tail of the cdfs. In addition, increasing α, results

a shift to the left as it can be seen from the Figure 4.9 (the graphs are overlapped for both

values of θ = 0 and θ = 1). All of the values after VaR value remain on the left when it is

compared to the risk-neutral solution.

Figure 4.9. Cumulative distribution functions of the OF1+OF3 with different θ values

(|S| = 50, α = 0.9, ε = 0).

To summarize, according to the risk-averse result with only risk term and with mean-risk

terms together, CVaR help us to obtain improvements in the objective functions with respect

to the risk-neutral cases. We also obtain significant amount of reduction amounts in the risk-

averse cases and it shows the improvement in the production balancing and minimization of

total weighted dispersion amounts.
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4.5. CONCLUSION

In this chapter, we applied the BDAS model in which there are uncertainties associated

with the non-booked donor arrivals and considered two different stoctastic programming

approaches, namely risk-neutral and risk-averse approaches. Different possible scenarios

of non-booked donor arrivals are generated using Monte Carlo sampling technique. We

sampled number of non-booked donor arrivals from Poisson and Normal distributions that

are parameterized by the historical data of AVIS.

Since the risk-neutral objectives are based on the expected value of the realizations,

significant improvements have not been achieved. Thus, risk-averse stochastic programming

approaches are formulated in order to analyze the effect of risk. Moreover, risk measures are

introduced to be able to incorporate the risk behaviour of decision makers. In Section 4.3,

only the risk terms are considered in the models, whereas in Section 4.4 both the expectation

and the risk measure in mean-risk approach of the two different objective functions are

considered, OF1 and OF1+OF3. The risk terms and mean-risk terms are investigated on

the total variation and total weighted dispersion amounts. These are also compared with the

risk-neutral models in order to analyze the impact of incorporating the risk measures.

Finally, a comprehensive computational study is conducted to analyze the effects of

different policies and present comparative results for the proposed alternative models. Risk

incorporated production balancing models (CV aRRA−HN ) provided significant reduction

in the OF1 and OF1+OF3 over the risk-neutral models. The risk-averse models with mean-

risk terms demonstrated a more conservative behavior which means better objective function

values. In mean-risk approach it can be achieved by increasing the weight of CVaR part (θ)

and decreasing the value of α in CVaR.

In conclusion, we compared the risk-neutral stochastic programming models with the risk-

averse stochastic programming models and showed that the model with risk aversion take

precaution against the uncertainty that is created by the random non-booked donor arrivals.

Since risk-neutral models include only the expectation in their objectives, risk-averse models

are considered in order to show the effects of the variability of random outcomes. To the
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best of our knowledge, in the literature two-stage stochastic optimization with CVaR risk

measure is formulated and analyzed for the first time.
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5. CONCLUSIONS AND PERSPECTIVES

In this thesis, we first define and formalize a framework for the BDAS problem whose goal

is to balance the production of blood units of each type across the days, while also avoiding

dispersion amounts associated with overtime. The framework for the BDAS problem is both

a real life problem and an advancement with respect to the state of the art. Our framework

consists of two phases: an MILP model to preallocate time slots of the different blood types,

and a prioritization policy to assign the preallocated slots. Since the amount of entities to

allocate is fixed and known in several cases, for our framework it is another decision variable

due to the flexibility associated with db. Therefore, our preallocation model is different

from the allocation and scheduling models usually available in the literature. Two phases

(offline and online) are analyzed for the deterministic model and the proposed approach

is successfully applied for the historical data of AVIS. Considering the goal of balanced

production, the results confirm the capability of the approach.

In real life problems we cannot ignore the uncertainties in the systems. In this dissertation,

risk-neutral stochastic programming approaches are formulated in order to schedule the

appointments of the donors while considering the non-booked donor uncertainty. Moreover,

to improve the quality of the deterministic solution, initially risk-neutral stochastic

programming approaches are implemented. In this stochastic context, the uncertain non-

booked donor arrivals are represented by random variables and different realizations are

generated by sampling from a set of scenarios from historical data of AVIS. Traditional

two-stage stochastic programming for analysis of the risk-neutral solutions is implemented

where only the expectation of random variables is considered in the objective functions.

When all certain realizations are considered, decisions based on the expected value

performed poorly and no significant improvement is observed. In order to analyze and

improve the solution of risk-neutral stochastic programming approaches, it is important to

consider the risk caused by the uncertainties in the system.

Therefore, risk-averse two-stage stochastic programming models are formulated. In order to

incorporate risk measures into the objective functions, the two models are formulated. The
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first one includes only the risk measures while the second one considers the expectations

together with the risk measures. In our formulation, we have considered the risk aversion

in the objective function using the CVaR risk measure with non-booked donor arrivals as

the random parameter and compared it against the risk-neutral formulations. Numerical

examples are designed and solved both for risk-neutral and risk-averse models. For the

models incorporating the risk, we succeeded to obtain significant amount of improvement

with respect to the risk-neutral models.

Future work can be listed as follows:

• The model can be extended, such as donations different other than whole blood can

be included to the model.

• No-show donations can be considered.

• Different scenario generation techniques can be developed to analyze the performance

of the proposed models.

• Furthermore, stochastic programming models may be applied for the overall

framework (using a rolling horizon mechanism).

• The first step of the BD supply chain can be integrated with the other steps of the

chain, e.g., getting the demand information from the next steps and optimizing the

next level driving the production of blood units (a feedback mechanism).

• Finally, since the first objective function term is not common in the literature, it might

be useful to model the variation minimization in other real life applications, e.g., other

systems which produces perishable products.
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APPENDIX A: NUMERICAL RESULTS FOR MODELING

ASSUMPTIONS AND PARAMETERS

Table A.1. CPU times (in seconds) for Group A.1.1, objective function OF1+OF2+OF3.

Non-booked level ε δ = [8 6 3] δ = [0.8 0.6 0.3] δ = [0.08 0.06 0.03] δ = [0.008 0.006 0.003]

Null 0.00 0.40 0.45 1.96 1.96

0.25 0.15 0.15 0.16 0.16

0.50 0.17 0.16 0.17 0.17

0.75 0.16 0.15 0.16 0.16

1.00 0.11 0.12 0.11 0.11

Medium 0.00 0.52 0.44 0.50 81.29

0.25 59.30 23.43 0.36 0.16

0.50 0.15 0.14 0.15 0.15

0.75 0.16 0.15 0.16 0.17

1.00 0.12 0.12 0.12 0.14

High 0.00 0.73 0.61 5399.82 2081.73

0.25 8.08 2063.60 0.17 0.17

0.50 2873.94 2414.34 0.58 0.17

0.75 0.16 0.14 0.15 0.14

1.00 0.15 0.15 0.15 0.14

Table A.2. CPU times (in seconds) for Group A.1.2, objective function OF1+OF2+OF3.

Non-booked level ε δ = [8 6 3] δ = [0.8 0.6 0.3] δ = [0.08 0.06 0.03] δ = [0.008 0.006 0.003]

Null 0.00 0.41 0.50 2.07 2122.30

0.25 0.15 0.16 0.15 0.17

0.50 0.15 0.15 0.36 0.16

0.75 0.16 0.16 0.16 0.16

1.00 0.12 0.12 0.12 0.13

Medium 0.00 1.49 2.73 9.05 1225.58

0.25 3.27 22.38 0.66 0.17

0.50 0.16 0.14 0.14 0.14

0.75 0.17 0.17 0.19 0.17

1.00 0.17 0.16 0.16 0.16

High 0.00 0.28 0.29 0.28 0.18

0.25 2663.27 90.93 5399.69 2420.77

0.50 2955.22 75.27 1.19 56.96

0.75 2753.70 2242.97 0.22 0.22

1.00 2632.92 1102.01 4314.94 1776.50
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APPENDIX B: NUMERICAL RESULTS FOR OVERALL

FRAMEWORK (AVIS MILAN CASE)

Additional figures for the analysis of the overall framework for the AVIS Milan case are

reported here. In particular, those with ε = 0.25 are reported in the dissertation, while we

show here those with ε = 0.

Figure B.1. Number of donations per day for objective function OF1+OF3, ε = 0, and

λd = 1 and λf = 0: (a) total number of donations, booked donations, non-booked

donations, and
∑

b x
b
1 + ab1; (b) comparison between the total number of donations in the

test case and in the observed historical data.
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Figure B.2. Number of donations per day for objective function OF1+OF3, ε = 0, and

λd = 0 and λf = 1. Reported data are as in Figure B.1.

Figure B.3. Number of donations per day for objective function OF1+OF3, ε = 0, and

λd = 0.5 and λf = 0.5. Reported data are as in Figure B.1.
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Figure B.4. Number of donations per day for objective function OF2+OF3, ε = 0, and

λd = 1 and λf = 0. Reported data are as in Figure B.1.

Figure B.5. Number of donations per day for objective function OF2+OF3, ε = 0, and

λd = 0 and λf = 1. Reported data are as in Figure B.1.
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Figure B.6. Number of donations per day for objective function OF2+OF3, ε = 0, and

λd = 0.5 and λf = 0.5. Reported data are as in Figure B.1.
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APPENDIX C: NORMAL DISTRIBUTION RESULTS FOR RISK-

NEUTRAL STOCHASTIC PROGRAMMING MODELS

Table C.1. Results for stochastic programming approaches for N(µ, σ) with OF1, t = 7

and ε = 0.25.

Scenario Replication 1 Replication 2 Replication 3

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

50 35.96 5.54 35.56 36.29 5.50 35.98 36.23 5.41 35.97

100 36.46 5.53 36.18 36.59 5.58 36.50 36.62 5.58 36.54

250 36.39 5.52 36.34 36.39 5.53 36.36 36.35 5.50 36.32

1000 36.15 5.51 36.15 36.18 5.53 36.18 36.44 5.49 36.43

Table C.2. Results for stochastic programming approaches for N(µ, 3σ) with OF1, t = 7

and ε = 0.25.

Scenario Replication 1 Replication 2 Replication 3

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

50 76.08 12.02 75.28 78.02 11.97 77.44 77.08 11.96 75.99

100 75.70 11.62 75.52 77.34 11.92 76.90 77.02 11.62 76.40

250 75.85 11.90 75.77 76.44 11.41 76.36 76.18 11.52 75.89

1000 75.63 11.71 75.60 76.18 11.67 76.17 76.54 11.65 76.52

Figure C.1. Comparison of the average objective function values of the replications with

ε = 0.25, t = 7 for EEV, WS and HN approaches for OF1, N(µ, σ).
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Table C.3. Results for stochastic programming approaches for N(µ, σ) with OF1, t = 7

and ε = 0.

Scenario Replication 1 Replication 2 Replication 3

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

50 40.42 20.49 38.13 40.34 20.23 39.04 40.40 20.96 38.94

100 40.53 20.75 39.13 40.32 20.46 39.86 40.75 20.92 39.92

250 40.49 20.91 39.77 40.38 20.84 39.93 40.43 20.81 39.88

1000 40.10 20.75 39.93 40.34 20.76 39.96 40.42 20.74 40.24

Table C.4. Results for stochastic programming approaches for N(µ, 3σ) with OF1, t = 7

and ε = 0.

Scenario Replication 1 Replication 2 Replication 3

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

50 77.95 26.29 76.21 79.00 26.04 77.85 78.67 26.40 76.72

100 77.27 25.60 76.40 78.83 25.83 77.57 78.29 25.79 77.27

250 77.57 25.81 76.86 77.70 25.28 77.21 77.59 25.49 77.03

1000 77.35 25.85 76.96 77.69 25.74 77.44 78.01 25.76 77.86

Figure C.2. Comparison of the average objective function values of the replications with

ε = 0.25, t = 7 for EEV, WS and HN approaches for OF1, N(µ, 3σ).
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Figure C.3. Comparison of the average objective function values of the replications with

ε = 0, t = 7 for EEV, WS and HN approaches for OF1, N(µ, σ).

Figure C.4. Comparison of the average objective function values of the replications with

ε = 0, t = 7 for EEV, WS and HN approaches for OF1, N(µ, 3σ).
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Table C.5. Results for stochastic programming approaches for N(µ, σ) with OF1+OF3,
t = 7 and ε = 0.

Scenario Replication 1 Replication 2 Replication 3

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

50 80.48 55.93 77.77 80.25 54.97 78.21 81.35 56.14 78.56

100 80.75 56.07 78.60 81.16 55.43 79.22 80.85 55.53 78.85

250 81.32 56.34 79.40 81.21 56.28 79.53 80.79 55.87 79.09

1000 81.01 55.99 79.47 80.96 55.95 79.47 81.09 55.88 79.54

Table C.6. Results for stochastic programming approaches for N(µ, 3σ) with OF1+OF3,
t = 7 and ε = 0.

Scenario Replication 1 Replication 2 Replication 3

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

50 179.40 110.43 165.64 181.38 109.97 166.82 182.47 11.82 167.66

100 177.02 108.11 164.22 179.81 109.19 166.06 180.39 109.58 166.76

250 177.53 108.56 164.98 178.67 108.39 165.62 176.81 107.31 164.32

1000 176.41 107.78 164.14 177.94 108.36 165.47 178.40 108.53 166.09

Figure C.5. Comparison of the average objective function values of the replications with

ε = 0, t = 7 for EEV, WS and HN approaches for OF1, N(µ, 3σ).
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Figure C.6. Comparison of the average objective function values of the replications with

ε = 0, t = 7 for EEV, WS and HN approaches for OF1, N(µ, 3σ).
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APPENDIX D: NUMERICAL RESULTS FOR RN STOCHASTIC

PROGRAMMING MODELS WITH OF1 AND OF1+OF3

Table D.1. Results for stochastic programming approaches with OF1, ε = 0.25, t = 7.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 32.94 6.28 31.14 31.20 6.29 29.54 31.57 6.28 30.54 31.31 6.29 30.77 31.06 6.40 28.31

50 31.93 6.37 31.85 31.32 6.37 31.13 31.72 6.37 31.58 30.57 6.37 30.32 30.72 6.37 30.68

100 32.02 6.46 32.02 31.08 6.46 31.08 31.47 6.46 31.47 30.67 6.46 30.67 30.7 6.38 30.7

250 31.33 6.46 31.33 31.15 6.46 31.15 31.13 6.46 31.13 30.85 6.46 30.85 30.99 6.46 30.99

1000 31.19 6.46 31.19 31.13 6.45 31.13 31.18 6.45 31.18 30.95 6.45 30.95 31.08 6.46 31.08

Table D.2. Results for stochastic programming approaches with OF1, ε = 0, t = 7.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 37.51 20.17 34.69 35.63 19.71 32.31 35.51 20.57 33.89 36.00 21.26 33.97 34.80 20.69 31.89

50 36.29 20.78 35.25 35.79 20.94 34.41 36.18 21.23 35.30 35.40 20.67 33.76 34.85 20.59 33.94

100 36.43 20.56 35.47 35.31 20.62 34.49 35.73 20.81 35.25 35.61 20.80 34.46 34.97 20.70 34.18

250 35.77 20.64 35.21 35.45 20.56 34.81 35.31 20.62 35.07 35.64 20.56 34.62 35.36 20.56 34.61

1000 35.63 20.64 35.25 35.43 20.65 35.19 35.45 20.67 35.29 35.41 20.73 35.06 35.48 20.65 35.11

Table D.3. CPU times of stochastic programming approaches with OF1, ε = 0.25, t = 7.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 0.02 0.23 0.19 0.00 0.34 0.20 0.00 0.30 0.30 0.01 0.23 0.17 0.00 0.27 0.17

50 0.03 1.17 2.02 0.03 1.36 2.33 0.03 1.17 3.62 0.01 1.22 2.05 0.03 1.25 2.13

100 0.06 3.37 9.03 0.08 3.98 24.70 0.06 3.33 6.96 0.06 3.60 7.16 0.06 3.33 13.71

250 0.17 20.98 33.21 0.16 22.00 41.81 0.12 19.17 39.68 0.15 19.23 40.34 0.17 18.97 38.17

1000 0.57 79.06 615.72 0.66 89.88 570.28 0.59 94.74 542.47 0.63 81.31 577.05 0.61 70.87 623.37

Table D.4. CPU times of stochastic programming approaches with OF1, ε = 0, t = 7.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 0.00 0.39 0.20 0.00 0.47 0.19 0.02 0.55 0.13 0.01 0.53 0.14 0.02 0.53 0.16

50 0.03 1.13 0.46 0.03 1.08 0.44 0.00 1.10 0.53 0.03 1.16 0.43 0.03 1.69 0.58

100 0.06 2.41 0.66 0.06 2.26 0.71 0.05 2.29 0.69 0.06 2.24 0.61 0.03 2.32 0.66

250 0.16 8.08 1.48 0.16 8.27 1.62 0.14 8.01 1.67 0.17 8.06 1.59 0.17 7.68 1.70

1000 0.68 56.11 8.74 0.60 54.56 8.02 0.60 54.93 7.58 0.61 54.23 7.54 0.64 50.76 8.07
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Table D.5. Results for stochastic programming approaches with OF1, ε = 0.25.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 59.51 10.79 53.56 66.77 9.77 59.37 63.84 8.97 58.00 59.41 9.83 52.64 59.30 10.39 52.96

50 60.74 10.54 58.41 63.26 10.62 61.07 62.60 10.66 60.39 62.22 10.63 59.79 61.59 10.31 59.49

100 61.81 10.76 59.75 63.20 10.71 61.25 63.22 10.81 61.36 62.20 10.63 60.02 61.21 10.33 59.21

250 62.27 10.56 60.57 62.66 10.64 61.05 62.91 10.72 61.17 62.25 10.61 60.61 61.95 10.81 60.34

Table D.6. Results for stochastic programming approaches with OF1, ε = 0, t = 14.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 73.86 47.03 67.87 80.56 50.43 74.54 78.33 48.29 72.86 73.93 46.64 67.27 77.67 48.30 71.01

50 75.49 46.67 72.70 78.98 48.69 75.54 77.77 48.54 75.35 75.92 48.21 74.09 76.87 48.92 75.03

100 76.58 47.53 74.13 78.65 48.24 75.56 77.42 48.54 76.08 75.60 47.62 74.34 76.09 48.23 74.48

250 77.34 47.85 75.27 77.21 48.06 75.96 78.36 48.67 76.49 76.34 47.70 75.51 76.83 48.61 75.63

Table D.7. CPU times of stochastic programming approaches with OF1, ε = 0.25, t = 14.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 0.00 1.33 0.91 0.01 1.25 3.04 0.02 1.22 0.92 0.02 1.09 2.87 0.01 1.19 1.05

50 0.06 10.34 55.63 0.06 7.26 90.35 0.04 9.51 73.87 0.06 9.48 93.90 0.05 5.37 77.69

100 0.12 36.56 211.47 0.14 42.76 1000.09 0.10 40.64 395.76 0.11 47.83 899.20 0.10 45.83 216.31

250 0.28 515.98 1000.19 0.33 116.56 7811.87 0.28 117.20 13916.16 0.30 502.17 9013.45 0.29 98.00 3712.22

Table D.8. CPU times of stochastic programming approaches with OF1, ε = 0, t = 14.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 0.02 1.28 0.29 0.00 0.76 0.20 0.02 0.63 0.33 0.02 0.77 0.28 0.01 1.83 0.41

50 0.06 2.19 0.81 0.06 2.46 0.91 0.04 2.20 0.82 0.06 2.62 0.75 0.04 2.15 0.82

100 0.11 4.99 1.70 0.14 4.85 1.70 0.13 4.80 1.64 0.11 5.29 1.64 0.11 5.00 1.66

250 0.33 15.52 3.70 0.31 16.14 3.48 0.33 13.78 3.17 0.30 14.90 3.99 0.31 15.60 3.35

Table D.9. Results for stochastic programming approaches with OF1+OF3, ε = 0, t = 7.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 79.35 58.28 75.89 80.60 58.72 74.13 84.45 61.24 77.10 84.56 63.51 78.42 81.98 60.78 74.13

50 81.66 60.44 78.02 81.54 60.42 76.88 82.83 61.58 78.45 80.13 60.21 76.16 81.43 60.92 76.67

100 82.39 60.59 78.47 81.10 60.27 77.03 82.19 60.96 78.26 80.72 60.56 77.05 81.47 60.86 76.86

250 81.62 60.51 77.98 81.48 60.33 77.54 81.19 60.29 77.66 80.43 60.07 76.99 82.09 60.95 77.62

1000 81.44 60.29 77.91 81.66 60.57 78.00 81.26 60.40 77.95 80.78 60.36 77.61 81.34 60.56 77.84
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Table D.10. CPU times for stochastic programming approaches with OF1+OF3, ε = 0,
t = 7.

Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Number OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN OFEEV OFWS OFHN

10 0.00 0.58 0.20 0.00 0.47 0.13 0.02 0.64 0.28 0.01 0.77 0.24 0.00 0.69 0.16

50 0.03 1.84 0.59 0.04 1.77 0.60 0.02 2.20 0.64 0.02 2.43 0.73 0.03 2.28 0.61

100 0.06 3.60 0.94 0.06 3.83 1.00 0.08 4.65 1.20 0.08 4.79 1.21 0.10 4.92 1.22

250 0.12 11.46 4.02 0.14 11.42 3.99 0.16 15.59 4.77 0.18 15.24 5.10 0.20 15.49 5.18

1000 0.51 74.20 49.68 0.58 77.34 49.45 0.75 93.69 66.11 0.71 100.16 66.05 0.78 97.63 71.36



154

APPENDIX E: NUMERICAL RESULTS (TABLES) FOR RISK-

AVERSE MODELS WITH ONLY RISK TERM

The presented results are obtained according to the risk-averse models with only risk term

both with equal probabilities and different scenario probabilities.

Table E.1. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0 for Replication 1, * indicates the
case is solved with an optimality gap< 0.7%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.57 36.69 41.86 34.69 -10.24% 5.77%

50 39.40 35.53 40.66 35.26 -3.09% 0.78%

100 40.47 36.03 41.26 35.47 -1.90% 1.57%

250 40.42 35.55 41.31 35.21 -2.14% 0.95%

1000 40.50* 35.33 40.73 35.26 -0.56% 0.21%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.71 36.77 42.29 34.69 -10.81% 6.01%

50 39.89 35.37 42.06 35.26 -5.16% 0.32%

100 41.43 36.13 42.86 35.47 -3.33% 1.85%

250 41.74 35.52 43.13 35.21 -3.23% 0.88%

1000 41.85* 35.28 42.15 35.26 -0.69% 0.07%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.71 36.77 42.98 34.69 -12.25% 6.01%

50 40.43* 35.81 46.40 35.26 -12.88% 1.56%

100 42.29 36.11 45.71 35.47 -7.50% 1.80%

250 43.66 36.03 47.57 35.21 -8.22% 2.32%

1000 44.91* 35.54 46.83 35.26 -4.09% 0.82%

Table E.2. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0 for Replication 2, * indicates the
case is solved with an optimality gap < 1.3%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.14 33.66 35.71 32.31 -4.40% 4.16%

50 38.00 34.65 38.74 34.41 -1.92% 0.68%

100 38.79 34.74 39.51 34.49 -1.84% 0.72%

250 39.97 34.93 40.57 34.81 -1.48% 0.33%

1000 40.68* 35.31 40.79 35.19 -0.28% 0.35%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.29 33.66 36.00 32.31 -4.76% 4.16%

50 38.57 34.89 39.60 34.41 -2.60% 1.39%

100 39.51 34.87 40.94 34.49 -3.49% 1.09%

250 40.89 35.02 42.29 34.81 -3.30% 0.59%

1000 42.04* 35.35 42.21 35.19 -0.40% 0.45%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.52 33.66 36.46 32.31 -5.34% 4.16%

50 38.86 34.89 42.13 34.41 -7.78% 1.39%

100 40.29 34.97 45.71 34.49 -11.88% 1.39%

250 42.57 35.24 45.20 34.81 -5.82% 1.24%

1000 44.74* 35.54 46.43 35.19 -3.63% 0.99%
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Table E.3. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0 for Replication 1.

α=0.8 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.39 36.53 40.60 34.99 -7.90% 4.38%

50 38.98 35.85 40.57 34.37 -3.92% 4.30%

100 39.62 35.74 40.14 35.35 -1.30% 1.12%

250 39.66 34.59 40.59 34.11 -2.31% 1.41%

α=0.9 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.59 36.79 42.05 34.99 -10.62% 5.14%

50 39.91 35.85 42.58 34.37 -6.28% 4.30%

100 40.28 36.16 41.29 35.35 -2.44% 2.31%

250 40.70 34.92 42.05 34.11 -3.21% 2.37%

α=0.99 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.71 36.89 41.43 34.99 -8.97% 5.43%

50 40.29 35.68 45.14 34.37 -10.76% 3.79%

100 44.48 36.03 47.71 35.35 -6.77% 1.94%

250 44.07 35.37 45.52 34.11 -3.18% 3.70%

Table E.4. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0 for Replication 2.

α=0.8 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.69 32.20 35.57 32.10 -2.49% 0.31%

50 37.94 35.46 38.79 34.74 -2.21% 2.07%

100 38.35 34.46 39.40 33.71 -2.68% 2.20%

250 39.75 35.13 40.22 34.77 -1.16% 1.01%

α=0.9 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 35.03 32.64 36.91 32.10 -5.09% 1.69%

50 38.73 35.20 39.68 34.74 -2.40% 1.33%

100 39.11 34.56 40.29 33.71 -2.93% 2.52%

250 40.90 35.08 42.07 34.77 -2.78% 0.88%

α=0.99 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.29 33.67 37.71 32.10 -9.09% 4.90%

50 38.86 35.58 42.86 34.74 -9.33% 2.43%

100 40.19 34.93 41.94 33.71 -4.18% 3.60%

250 42.58 35.94 47.63 34.77 -10.59% 3.36%

Table E.5. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0 for Replication 3, * indicates the
case is solved with an optimality gap < 1.3%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 36.86 35.51 38.57 33.89 -4.44% 4.81%

50 40.46 35.99 42.37 35.30 -4.52% 1.94%

100 40.30 35.79 41.19 35.25 -2.15% 1.54%

250 40.61 35.40 41.26 35.08 -1.59% 0.91%

1000 40.58* 35.45 40.89 35.30 -0.75% 0.43%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 36.86 35.51 38.57 33.89 -4.44% 4.81%

50 40.91 36.16 43.49 35.30 -5.91% 2.43%

100 41.06 35.95 42.51 35.25 -3.43% 1.97%

250 41.63 35.51 42.74 35.08 -2.59% 1.24%

1000 41.78* 35.55 42.21 35.30 -1.02% 0.72%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 36.86 35.51 38.57 33.89 -4.44% 4.81%

50 41.14 36.27 45.84 35.30 -10.25% 2.74%

100 41.71 35.75 45.43 35.25 -8.18% 1.42%

250 42.91 35.51 45.74 35.08 -6.18% 1.25%

1000 44.29* 35.41 45.31 35.30 -2.27% 0.31%

Table E.6. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0 for Replication 4, * indicates the
case is solved with an optimality gap < 1.2%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.29 35.74 42.14 33.97 -11.53% 5.21%

50 38.54 34.78 39.89 33.77 -3.37% 3.00%

100 39.91 34.80 40.71 34.47 -1.96% 0.95%

250 39.86 34.72 40.21 34.63 -0.87% 0.28%

1000 40.37* 35.15 40.55 35.07 -0.44% 0.24%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.43 35.29 42.29 33.97 -11.49% 3.87%

50 39.20 35.14 41.89 33.77 -6.41% 4.08%

100 40.91 35.00 42.51 34.47 -3.76% 1.53%

250 41.10 34.69 41.65 34.63 -1.32% 0.19%

1000 41.73* 35.22 42.06 35.07 -0.77% 0.44%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.43 35.29 42.52 33.97 -11.97% 3.87%

50 39.43 35.69 45.00 33.77 -12.38% 5.69%

100 41.71 35.12 48.57 34.47 -14.12% 1.88%

250 42.71 35.27 44.29 34.63 -3.55% 1.86%

1000 44.43* 35.36 46.29 35.07 -4.01% 0.84%
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Table E.7. Comparative results of RA solutions against RN (HN) with OF1, t = 7 and
ε = 0 for Replication 5, * indicates the case is solved with an optimality gap < 1.2%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.29 32.66 36.29 31.89 -5.51% 2.42%

50 37.83 34.58 39.03 33.94 -3.07% 1.89%

100 38.39 34.61 39.79 34.19 -3.52% 1.23%

250 39.60 34.95 40.17 34.61 -1.41% 0.96%

1000 40.56* 35.24 40.74 35.12 -0.44% 0.35%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.57 32.66 36.57 31.89 -5.47% 2.42%

50 38.46 35.16 40.46 33.94 -4.94% 3.59%

100 39.14 34.97 41.69 34.19 -6.10% 2.28%

250 40.62 35.07 41.58 34.61 -2.31% 1.33%

1000 41.83* 35.27 42.26 35.12 -1.02% 0.44%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 35.03 32.66 37.03 31.89 -5.40% 2.42%

50 38.57 35.16 41.85 33.94 -7.84% 3.59%

100 39.43 34.76 45.71 34.19 -13.75% 1.68%

250 42.11 35.08 43.69 34.61 -3.60% 1.35%

1000 44.29* 35.29 46.00 35.12 -3.73% 0.47%

Table E.8. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0.25 for Replication 1, * indicates
the case is solved with an optimality gap

< 3.2%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.29 31.66 36.14 31.14 -7.91% 1.65%

50 36.00 32.38 36.46 31.86 -1.25% 1.63%

100 36.86 32.03 36.87 32.02 -0.04% 0.02%

250 36.92 31.33 36.92 31.33 0.00% 0.00%

1000 36.43* 31.19 36.43 31.19 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.43 31.89 36.86 31.14 -9.30% 2.39%

50 36.69 32.38 37.66 31.86 -2.58% 1.65%

100 38.03 32.69 38.46 32.02 -1.11% 2.10%

250 38.62 31.69 38.85 31.33 -0.59% 1.14%

1000 37.91* 31.19 37.91 31.19 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.43 32.00 36.14 31.14 -7.51% 2.75%

50 37.28* 33.03 44.81 31.86 -16.79% 3.68%

100 39.14* 33.21 41.71 32.02 -6.16% 3.72%

250 40.63* 32.33 43.17 31.33 -5.89% 3.18%

1000 41.97* 31.73 41.94 31.19 0.07% 1.72%

Table E.9. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0.25 for Replication 2, * indicates
the case is solved with an optimality gap

< 3.3%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.57 30.54 33.00 29.54 -4.33% 3.38%

50 34.91 31.81 35.46 31.13 -1.53% 2.17%

100 35.49 31.38 35.63 31.08 -0.40% 0.97%

250 36.60 31.15 36.60 31.15 0.00% 0.00%

1000 36.60 31.14 36.60 31.14 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.71* 30.54 33.14 29.54 -4.31% 3.38%

50 35.26 32.09 36.00 31.13 -2.06% 3.08%

100 36.37 31.44 36.83 31.08 -1.24% 1.15%

250 37.91 31.50 38.09 31.15 -0.48% 1.12%

1000 37.88 31.14 37.88 31.14 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.71 30.91 33.37 29.54 -4.97% 4.64%

50 35.85* 32.36 37.70 31.13 -4.90% 3.95%

100 37.14* 31.84 38.86 31.08 -4.41% 2.44%

250 39.54* 32.27 41.74 31.15 -5.27% 3.58%

1000 41.20* 32.01 40.86 31.14 0.84% 2.79%
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Table E.10. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0.25 for Replication 1, * indicates an
optimality gap < 2.8%.

α=0.8 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.15 31.98 37.90 30.53 -12.54% 4.73%

50 35.57 32.15 37.14 31.12 -4.24% 3.33%

100 36.26* 32.46 36.68 32.18 -1.13% 0.87%

250 36.15 30.93 36.44 30.71 -0.79% 0.72%

α=0.9 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.17 32.10 38.32 30.53 -13.42% 5.14%

50 36.40* 32.28 39.30 31.12 -7.38% 3.75%

100 36.95* 33.03 37.95 32.18 -2.63% 2.66%

250 37.68* 31.61 38.20 30.71 -1.36% 2.91%

α=0.99 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.43 32.15 38.57 30.53 -13.33% 5.30%

50 38.57* 32.36 44.29 31.12 -12.90% 4.01%

100 40.29* 33.30 41.68 32.18 -3.33% 3.51%

250 41.27* 32.59 41.98 30.71 -1.68% 6.14%

Table E.11. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0.25 for Replication 2, * indicates an
optimality gap < 3.4%.

α=0.8 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 30.20 29.13 33.38 28.29 -9.53% 2.96%

50 34.55 31.78 35.00 31.23 -1.30% 1.74%

100 35.07* 31.44 36.17 30.79 -3.06% 2.10%

250 36.55 31.60 36.72 31.43 -0.48% 0.55%

α=0.9 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 30.68 29.13 34.19 28.29 -10.26% 2.96%

50 35.03* 32.21 36.05 31.23 -2.83% 3.13%

100 35.83* 31.99 37.45 30.79 -4.33% 3.90%

250 37.67* 32.11 38.45 31.43 -2.04% 2.19%

α=0.99 with different probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.71 30.86 34.57 28.29 -8.26% 9.06%

50 36.00* 32.12 38.29 31.23 -5.97% 2.84%

100 36.89* 32.00 40.11 30.79 -8.04% 3.91%

250 39.77* 31.83 41.44 31.43 -4.04% 1.30%

Table E.12. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0.25 for Replication 3, * indicates an
optimality gap < 3.6%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.29* 32.66 36.29 31.89 -5.51% 2.42%

50 36.80 32.39 37.74 31.59 -2.50% 2.53%

100 36.70 31.53 36.80 31.47 -0.27% 0.18%

250 36.59 31.14 36.59 31.14 0.00% 0.00%

1000 36.29* 31.19 36.29 31.19 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.14* 31.57 36.57 31.89 -9.38% -0.99%

50 37.49* 32.45 39.31 31.59 -4.65% 2.71%

100 37.54* 32.15 37.83 31.47 -0.76% 2.15%

250 37.95* 31.14 37.95 31.14 0.00% 0.00%

1000 37.51* 31.19 37.51 31.19 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.37* 31.31 37.03 31.89 -9.88% -1.79%

50 37.71* 32.45 40.43 31.59 -6.71% 2.71%

100 38.29* 31.85 39.14 31.47 -2.19% 1.21%

250 39.66* 31.70 39.86 31.14 -0.50% 1.79%

1000 40.34* 31.19 40.34 31.19 0.00% 0.00%

Table E.13. Comparative results of RA
solutions against RN (HN) with OF1, t = 7

and ε = 0.25 for Replication 4, * indicates an
optimality gap < 3.7%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 32.86 32.14 38.29 30.77 -14.18% 4.46%

50 35.69* 31.86 37.17 30.32 -4.00% 5.09%

100 36.74* 32.08 37.46 30.67 -1.91% 4.58%

250 36.73* 31.31 36.83 30.86 -0.26% 1.46%

1000 36.18* 30.96 36.18 30.96 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 32.86* 32.20 39.14 30.77 -16.06% 4.64%

50 36.17* 32.49 39.60 30.32 -8.66% 7.14%

100 37.69* 31.91 38.74 30.67 -2.73% 4.04%

250 38.02* 31.37 38.27 30.86 -0.66% 1.67%

1000 37.68* 30.96 37.68 30.96 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 32.86* 32.14 39.14 30.77 -16.06% 4.46%

50 36.29* 32.62 44.00 30.32 -17.53% 7.60%

100 38.57* 32.19 41.71 30.67 -7.53% 4.97%

250 39.71* 32.52 40.63 30.86 -2.25% 5.41%

1000 40.51* 31.32 40.51 30.96 0.00% 1.18%
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Table E.14. Comparative results of RA solutions against RN (HN) with OF1, t = 7 and
ε = 0.25 for Replication 5, * indicates an optimality gap < 2.3%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.14 29.97 34.57 28.31 -9.92% 5.85%

50 34.51 31.38 35.60 30.69 -3.05% 2.27%

100 34.96 31.27 35.46 30.70 -1.41% 1.87%

250 36.11* 31.14 36.12 31.00 -0.02% 0.46%

1000 36.28* 31.08 36.28 31.08 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.14 29.97 35.43 28.31 -12.10% 5.85%

50 34.91 31.23 36.29 30.69 -3.78% 1.77%

100 35.63 31.31 36.43 30.70 -2.20% 2.00%

250 37.22* 31.15 37.51 31.00 -0.76% 0.49%

1000 37.71* 31.08 37.71 31.08 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.14 29.97 35.43 28.31 -12.10% 5.85%

50 35.43* 31.74 37.43 30.69 -5.34% 3.45%

100 36.57* 31.70 39.14 30.70 -6.57% 3.25%

250 38.51* 31.85 40.86 31.00 -5.73% 2.75%

1000 40.89* 31.86 40.80 31.08 0.21% 2.50%

Table E.15. Comparative results of RA
solutions against RN (HN) with OF1+OF3,
t = 7 and ε = 0 for Replication 1, * an

optimality gap < 0.3%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.69* 79.66 82.43 75.89 -3.31% 4.96%

50 85.45* 84.12 87.59 78.02 -2.45% 7.82%

100 86.65 84.47 87.63 78.48 -1.12% 7.64%

250 87.23 84.26 88.62 77.98 -1.56% 8.05%

1000 87.43* 84.02 88.20 77.92 -0.88% 7.83%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.74* 79.74 82.69 75.89 -3.57% 5.06%

50 86.64* 85.55 89.84 78.02 -3.56% 9.65%

100 88.13* 87.09 87.04 78.48 1.26% 10.98%

250 89.36 87.27 91.33 77.98 -2.16% 11.90%

1000 90.07* 87.04 91.31 77.92 -1.35% 11.71%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.74* 79.74 83.11 75.89 -4.05% 5.06%

50 87.62 87.62 94.75 78.02 -7.52% 12.31%

100 89.17* 89.17 92.15 78.48 -3.24% 13.62%

250 92.35* 92.31 98.83 77.98 -6.55% 18.37%

1000 96.70* 95.45 100.16 77.92 -3.45% 22.50%

Table E.16. Comparative results of RA
solutions against RN (HN) with OF1+OF3,
t = 7 and ε = 0 for Replication 3, * an

optimality gap < 0.2%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.66* 81.61 85.58 77.10 -4.58% 5.85%

50 87.92 85.85 90.57 78.46 -2.93% 9.42%

100 87.54 85.16 89.03 78.27 -1.68% 8.80%

250 87.34 84.88 88.99 77.67 -1.86% 9.28%

1000 87.50* 84.37 88.50 77.96 -1.13% 8.23%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.73* 81.73 86.97 77.10 -6.03% 6.00%

50 89.43* 87.66 92.64 78.46 -3.47% 11.73%

100 89.13 87.30 88.58 78.27 0.61% 11.54%

250 89.43 87.22 91.70 77.67 -2.48% 12.30%

1000 90.04* 87.11 91.35 77.96 -1.44% 11.75%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.73* 81.73 89.21 77.10 -8.39% 6.00%

50 89.72* 89.72 96.69 78.46 -7.21% 14.35%

100 90.29* 90.29 93.15 78.27 -3.07% 15.36%

250 92.05* 91.99 100.70 77.67 -8.59% 18.44%

1000 96.28* 94.48 98.59 77.96 -2.35% 21.19%
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Table E.17. Comparative results of RA
solutions against RN (HN) with OF1+OF3,
t = 7 and ε = 0 for Replication 2, * indicates

an optimality gap < 0.3%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.79* 79.23 83.88 74.13 -4.87% 6.88%

50 84.64 83.53 85.62 76.88 -1.15% 8.65%

100 84.84 83.87 86.31 77.04 -1.70% 8.87%

250 86.78 84.30 88.61 77.55 -2.06% 8.70%

1000 87.74* 84.71 88.63 78.00 -1.00% 8.60%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.92* 79.92 84.68 74.13 -5.62% 7.81%

50 85.12 84.67 87.90 76.88 -3.16% 10.13%

100 85.57 85.06 86.07 77.04 -0.58% 10.41%

250 88.73 86.81 91.48 77.55 -3.02% 11.94%

1000 89.96* 87.40 91.98 78.00 -1.56% 12.05%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.92* 79.92 85.98 74.13 -7.05% 7.81%

50 85.40* 85.40 95.39 76.88 -10.47% 11.08%

100 86.27* 86.27 92.03 77.04 -6.26% 11.99%

250 91.37* 91.29 99.00 77.55 -7.71% 17.72%

1000 94.73* 93.71 97.09 78.00 -2.43% 20.13%

Table E.18. Comparative results of RA
solutions against RN (HN) with OF1+OF3,
t = 7 and ε = 0 for Replication 4, * indicates

an optimality gap < 0.2%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 85.47* 85.40 90.75 78.42 -5.82% 8.91%

50 86.10 83.09 89.14 76.17 -3.42% 9.09%

100 88.56* 84.69 90.33 77.05 -1.96% 9.91%

250 87.90 84.46 89.38 77.00 -1.66% 9.69%

1000 87.51* 84.24 88.51 77.61 -1.13% 8.55%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 85.55* 85.55 91.52 78.42 -6.52% 9.09%

50 87.89 87.04 93.65 76.17 -6.15% 14.28%

100 91.20 89.00 94.70 77.05 -3.70% 15.51%

250 90.72 87.75 93.30 77.00 -2.77% 13.97%

1000 90.15* 86.84 91.58 77.61 -1.56% 11.89%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 85.55* 85.55 91.52 78.42 -6.52% 9.09%

50 88.47* 88.47 100.46 76.17 -11.93% 16.15%

100 92.30* 92.30 99.17 77.05 -6.93% 19.78%

250 93.27* 93.19 100.03 77.00 -6.75% 21.03%

1000 95.36 94.45 99.73 77.61 -4.37% 21.70%

Table E.19. Comparative results of RA
solutions against RN (HN) with OF1+OF3,
t = 7 and ε = 0 for Replication 5, * indicates

an optimality gap < 0.2%.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.92* 81.81 85.69 74.14 -4.40% 10.35%

50 84.76 83.21 87.11 76.67 -2.70% 8.52%

100 85.19 83.12 86.88 76.87 -1.94% 8.14%

250 86.91* 83.71 88.19 77.63 -1.45% 7.83%

1000 87.78 84.29 88.99 77.85 -1.36% 8.28%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 82.06* 82.06 87.45 74.14 -6.16% 10.69%

50 85.46* 85.18 89.74 76.67 -4.77% 11.10%

100 86.96* 85.40 89.45 76.87 -2.78% 11.10%

250 89.25* 87.02 90.77 77.63 -1.68% 12.10%

1000 90.44* 87.33 92.18 77.85 -1.89% 12.19%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 82.06* 82.06 87.45 74.14 -6.16% 10.69%

50 85.75* 85.75 92.03 76.67 -6.82% 11.85%

100 89.02* 89.02 98.05 76.87 -9.21% 15.81%

250 92.60* 92.26 97.29 77.63 -4.83% 18.85%

1000 95.75* 94.44 100.48 77.85 -4.70% 21.32%
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Table E.20. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0 for Replication 1.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.57 36.69 40.86 37.51 -8.04% -2.21%

50 39.40 35.53 41.29 36.30 -4.57% -2.11%

100 40.47 36.03 41.67 36.43 -2.88% -1.11%

250 40.42 35.55 41.65 35.77 -2.94% -0.64%

1000 40.50 35.33 41.19 35.64 -1.68% -0.86%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.71 36.77 41.14 37.51 -8.33% -1.98%

50 39.89 35.37 42.40 36.30 -5.93% -2.55%

100 41.43 36.13 43.14 36.43 -3.97% -0.84%

250 41.74 35.52 43.62 35.77 -4.32% -0.71%

1000 41.85 35.28 42.71 35.64 -2.01% -1.01%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.71 36.77 41.14 37.51 -8.33% -1.98%

50 40.29 35.81 44.57 36.30 -9.62% -1.35%

100 42.29 36.11 46.86 36.43 -9.76% -0.89%

250 43.66 36.03 49.83 35.77 -12.39% 0.72%

1000 44.91 35.54 47.49 35.64 -5.42% -0.26%

Table E.21. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0 for Replication 2.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.14 33.66 39.86 35.63 -14.34% -5.53%

50 38.00 34.65 39.77 35.79 -4.45% -3.21%

100 38.79 34.74 40.20 35.31 -3.52% -1.61%

250 39.97 34.93 41.01 35.45 -2.54% -1.49%

1000 40.68 35.31 40.89 35.44 -0.51% -0.34%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.29 33.66 42.00 35.63 -18.37% -5.53%

50 38.57 34.89 40.86 35.79 -5.59% -2.52%

100 39.51 34.87 41.69 35.31 -5.21% -1.25%

250 40.89 35.02 42.83 35.45 -4.54% -1.24%

1000 42.04 35.35 42.34 35.44 -0.71% -0.24%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.29 33.66 42.00 35.63 -18.37% -5.53%

50 38.86 34.89 42.29 35.79 -8.11% -2.52%

100 40.29 34.97 45.71 35.31 -11.88% -0.95%

250 42.57 35.24 47.60 35.45 -10.56% -0.60%

1000 44.74 35.54 45.66 35.44 -2.00% 0.29%

Table E.22. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0 for Replication 3.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 36.86 35.51 42.14 35.51 -12.54% 0.00%

50 40.46 35.99 42.51 36.19 -4.84% -0.55%

100 40.30 35.79 41.84 35.73 -3.69% 0.18%

250 40.61 35.40 41.45 35.32 -2.04% 0.22%

1000 40.58 35.45 40.95 35.45 -0.90% -0.01%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 36.86 35.51 44.00 35.51 -16.23% 0.00%

50 40.91 36.16 43.89 36.19 -6.77% -0.08%

100 41.06 35.95 43.26 35.73 -5.09% 0.60%

250 41.63 35.51 42.78 35.32 -2.67% 0.54%

1000 41.78 35.55 42.31 35.45 -1.24% 0.28%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 36.86 35.51 44.00 35.51 -16.23% 0.00%

50 41.14 36.27 44.86 36.19 -8.28% 0.22%

100 41.71 35.75 44.86 35.73 -7.01% 0.06%

250 42.91 35.51 44.46 35.32 -3.47% 0.55%

1000 44.29 35.41 45.54 35.45 -2.76% -0.14%

Table E.23. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0 for Replication 4.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.29 35.74 43.86 36.00 -14.98% -0.71%

50 38.54 34.78 42.51 35.41 -9.34% -1.78%

100 39.91 34.80 42.64 35.62 -6.40% -2.30%

250 39.86 34.72 41.95 35.64 -4.99% -2.57%

1000 40.37 35.15 40.96 35.41 -1.44% -0.73%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.43 35.29 44.00 36.00 -14.94% -1.98%

50 39.20 35.14 44.00 35.41 -10.91% -0.74%

100 40.91 35.00 44.00 35.62 -7.01% -1.74%

250 41.10 34.69 43.57 35.64 -5.67% -2.66%

1000 41.73 35.22 42.50 35.41 -1.80% -0.53%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 37.43 35.29 44.00 36.00 -14.94% -1.98%

50 39.43 35.69 44.86 35.41 -12.10% 0.79%

100 41.71 35.12 45.14 35.62 -7.59% -1.40%

250 42.69 35.27 45.26 35.64 -5.68% -1.04%

1000 44.43 35.36 45.20 35.41 -1.71% -0.13%
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Table E.24. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0 for Replication 5.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.29 32.66 41.43 34.80 -17.24% -6.16%

50 37.83 34.58 39.23 34.86 -3.57% -0.79%

100 38.39 34.61 39.97 34.97 -3.97% -1.05%

250 39.60 34.95 41.15 35.36 -3.78% -1.18%

1000 40.56 35.24 41.16 35.48 -1.46% -0.69%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.57 32.66 41.43 34.80 -16.55% -6.16%

50 38.46 35.16 40.63 34.86 -5.34% 0.87%

100 39.14 34.97 41.26 34.97 -5.12% -0.02%

250 40.62 35.07 42.56 35.36 -4.56% -0.82%

1000 41.83 35.27 42.71 35.48 -2.05% -0.60%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 34.57 32.66 41.43 34.80 -16.55% -6.16%

50 38.57 35.16 41.43 34.86 -6.90% 0.87%

100 39.43 34.76 45.43 34.97 -13.21% -0.61%

250 42.11 35.08 45.54 35.36 -7.53% -0.80%

1000 44.29 35.29 45.60 35.48 -2.88% -0.56%

Table E.25. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0.25 for Replication 1.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.29 31.66 36.57 32.94 -8.98% -3.90%

50 36.00 32.38 36.37 31.94 -1.02% 1.38%

100 36.86 32.03 36.87 32.02 -0.04% 0.02%

250 36.92 31.33 36.92 31.33 0.00% 0.00%

1000 36.43 31.19 36.43 31.19 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.43 31.89 37.14 32.94 -10.00% -3.21%

50 36.69 32.38 37.60 31.94 -2.43% 1.40%

100 38.03 32.69 38.46 32.02 -1.11% 2.10%

250 38.62 31.69 38.85 31.33 -0.59% 1.14%

1000 37.91 31.19 37.91 31.19 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.43 32.00 37.14 32.94 -10.00% -2.86%

50 37.14 33.03 41.71 31.94 -10.96% 3.42%

100 39.14 33.21 41.71 32.02 -6.16% 3.72%

250 40.63 32.33 43.14 31.33 -5.83% 3.18%

1000 41.97 31.73 41.94 31.19 0.07% 1.72%

Table E.26. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0.25 for Replication 2.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.57 30.54 36.29 31.20 -12.99% -2.11%

50 34.91 31.81 35.29 31.32 -1.05% 1.55%

100 35.49 31.38 35.63 31.08 -0.40% 0.97%

250 36.60 31.15 36.60 31.15 0.00% 0.00%

1000 36.60 31.14 36.60 31.14 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.71 30.54 36.86 31.20 -13.95% -2.11%

50 35.26 32.09 36.00 31.32 -2.06% 2.46%

100 36.37 31.44 36.83 31.08 -1.24% 1.15%

250 37.91 31.50 38.09 31.15 -0.48% 1.12%

1000 37.88 31.14 37.88 31.14 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.71 30.91 36.86 31.20 -13.95% -0.92%

50 35.71 32.36 36.86 31.32 -3.10% 3.32%

100 37.14 31.84 38.86 31.08 -4.41% 2.44%

250 39.54 32.27 41.66 31.15 -5.08% 3.58%

1000 41.20 32.01 40.86 31.14 0.84% 2.79%

Table E.27. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0.25 for Replication 3.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.00 31.31 36.57 31.57 -9.77% -0.81%

50 36.80 32.39 37.23 31.72 -1.15% 2.11%

100 36.70 31.53 36.80 31.47 -0.27% 0.18%

250 36.59 31.14 36.59 31.14 0.00% 0.00%

1000 36.29 31.19 36.29 31.19 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.14 31.57 38.86 31.57 -14.71% 0.00%

50 37.49 32.45 38.29 31.72 -2.09% 2.29%

100 37.54 32.15 37.83 31.47 -0.76% 2.15%

250 37.95 31.14 37.95 31.14 0.00% 0.00%

1000 37.51 31.19 37.51 31.19 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 33.14 31.31 38.86 31.57 -14.71% -0.81%

50 37.71 32.45 39.14 31.72 -3.65% 2.29%

100 38.29 31.85 39.14 31.47 -2.19% 1.21%

250 39.66 31.70 39.83 31.14 -0.43% 1.79%

1000 40.34 31.19 40.34 31.19 0.00% 0.00%
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Table E.28. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0.25 for Replication 4.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 32.86 32.14 38.29 31.31 -14.18% 2.65%

50 35.69 31.86 37.09 30.57 -3.78% 4.22%

100 36.74 32.08 37.46 30.67 -1.91% 4.58%

250 36.73 31.31 36.83 30.86 -0.26% 1.46%

1000 36.18 30.96 36.18 30.96 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 32.86 32.20 39.71 31.31 -17.27% 2.83%

50 36.17 32.49 39.09 30.57 -7.46% 6.26%

100 37.69 31.91 38.74 30.67 -2.73% 4.04%

250 38.02 31.37 38.27 30.86 -0.66% 1.67%

1000 37.68 30.96 37.68 30.96 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 32.86 32.14 39.71 31.31 -17.27% 2.65%

50 36.29 32.62 41.71 30.57 -13.01% 6.71%

100 38.57 32.19 41.71 30.67 -7.53% 4.97%

250 39.71 32.52 40.63 30.86 -2.25% 5.41%

1000 40.51 31.32 40.51 30.96 0.00% 1.18%

Table E.29. Comparative results of RA
solutions against RN (EEV) with OF1, t = 7

and ε = 0.25 for Replication 5.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.14 29.97 36.71 31.06 -15.18% -3.50%

50 34.51 31.38 35.29 30.73 -2.19% 2.14%

100 34.96 31.27 35.46 30.70 -1.41% 1.87%

250 36.11 31.14 36.12 31.00 -0.02% 0.46%

1000 36.28 31.08 36.28 31.08 0.00% 0.00%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.14 29.97 36.86 31.06 -15.50% -3.50%

50 34.91 31.23 35.94 30.73 -2.86% 1.64%

100 35.63 31.31 36.43 30.70 -2.20% 2.00%

250 37.22 31.15 37.51 31.00 -0.76% 0.49%

1000 37.71 31.08 37.71 31.08 0.00% 0.00%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 31.14 29.97 36.86 31.06 -15.50% -3.50%

50 35.43 31.74 36.86 30.73 -3.88% 3.31%

100 36.57 31.70 39.14 30.70 -6.57% 3.25%

250 38.51 31.85 40.86 31.00 -5.73% 2.75%

1000 40.89 31.86 40.80 31.08 0.21% 2.50%

Table E.30. Comparative results of RA
solutions against RN (EEV) with OF1 and

OF3, t = 7 and ε = 0 for Replication 1.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.69 79.66 85.95 79.35 -7.28% 0.39%

50 85.45 84.12 94.65 81.67 -9.72% 3.00%

100 86.65 84.47 94.59 82.40 -8.39% 2.51%

250 87.23 84.26 94.84 81.62 -8.02% 3.24%

1000 87.43 84.02 94.65 81.45 -7.63% 3.15%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.74 79.74 88.17 79.35 -9.56% 0.49%

50 86.64 85.55 98.07 81.67 -11.65% 4.75%

100 88.13 87.09 93.71 82.40 -5.96% 5.70%

250 89.36 87.27 98.08 81.62 -8.90% 6.91%

1000 90.07 87.04 97.82 81.45 -7.92% 6.86%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.74 79.74 88.17 79.35 -9.56% 0.49%

50 87.62 87.62 100.39 81.67 -12.72% 7.29%

100 89.17 89.17 100.39 82.40 -11.18% 8.22%

250 92.35 92.31 107.11 81.62 -13.78% 13.09%

1000 96.70 95.45 106.97 81.45 -9.60% 17.19%

Table E.31. Comparative results of RA
solutions against RN (EEV) with OF1 and

OF3, t = 7 and ε = 0 for Replication 2.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.79 79.23 92.66 80.69 -13.88% -1.81%

50 84.64 83.53 93.25 81.55 -9.24% 2.43%

100 84.84 83.87 92.78 81.11 -8.56% 3.41%

250 86.78 84.30 94.18 81.49 -7.85% 3.45%

1000 87.74 84.71 94.50 81.67 -7.15% 3.72%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.92 79.92 93.34 80.69 -14.37% -0.95%

50 85.12 84.67 95.27 81.55 -10.65% 3.83%

100 85.57 85.06 91.76 81.11 -6.75% 4.87%

250 88.73 86.81 97.02 81.49 -8.55% 6.53%

1000 89.96 87.40 97.83 81.67 -8.05% 7.02%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 79.92 79.92 93.34 80.69 -14.37% -0.95%

50 85.40 85.40 99.68 81.55 -14.33% 4.72%

100 86.27 86.27 99.68 81.11 -13.45% 6.37%

250 91.37 91.29 102.44 81.49 -10.81% 12.02%

1000 94.73 93.71 106.54 81.67 -11.09% 14.74%
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Table E.32. Comparative results of RA
solutions against RN (EEV) with OF1 and

OF3, t = 7 and ε = 0 for Replication 3.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.66 81.61 94.36 84.45 -13.46% -3.36%

50 87.92 85.85 96.81 82.84 -9.18% 3.63%

100 87.54 85.16 95.39 82.20 -8.23% 3.61%

250 87.34 84.88 94.90 81.20 -7.96% 4.53%

1000 87.50 84.37 94.06 81.27 -6.98% 3.82%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.73 81.73 95.42 84.45 -14.35% -3.22%

50 89.43 87.66 98.87 82.84 -9.55% 5.83%

100 89.13 87.30 94.86 82.20 -6.05% 6.21%

250 89.43 87.22 97.70 81.20 -8.47% 7.42%

1000 90.04 87.11 97.34 81.27 -7.50% 7.19%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.73 81.73 95.42 84.45 -14.35% -3.22%

50 89.72 89.72 100.11 82.84 -10.38% 8.31%

100 90.29 90.29 100.11 82.20 -9.81% 9.85%

250 92.05 91.99 107.43 81.20 -14.31% 13.29%

1000 96.28 94.48 106.19 81.27 -9.33% 16.25%

Table E.33. Comparative results of RA
solutions against RN (EEV) with OF1 and

OF3, t = 7 and ε = 0 for Replication 4.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 85.47 85.40 101.08 84.56 -15.45% 1.00%

50 86.10 83.09 95.43 80.14 -9.78% 3.69%

100 88.56 84.69 96.67 80.73 -8.40% 4.91%

250 87.90 84.46 95.00 80.44 -7.47% 5.00%

1000 87.51 84.24 94.31 80.78 -7.22% 4.29%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 85.55 85.55 106.60 84.56 -19.75% 1.17%

50 87.89 87.04 100.48 80.14 -12.53% 8.62%

100 91.20 89.00 95.23 80.73 -4.24% 10.25%

250 90.72 87.75 99.63 80.44 -8.94% 9.09%

1000 90.15 86.84 97.94 80.78 -7.96% 7.50%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 85.55 85.55 106.60 84.56 -19.75% 1.17%

50 88.47 88.47 106.60 80.14 -17.01% 10.40%

100 92.30 92.30 109.79 80.73 -15.94% 14.33%

250 93.27 93.19 107.91 80.44 -13.56% 15.85%

1000 95.36 94.45 107.18 80.78 -11.03% 16.93%

Table E.34. Comparative results of RA solutions against RN (EEV) with OF1 and OF3,
t = 7 and ε = 0 for Replication 5.

α=0.8 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 81.92 81.81 101.15 81.98 -19.01% -0.20%

50 84.76 83.21 94.36 81.43 -10.17% 2.18%

100 85.19 83.12 93.94 81.48 -9.32% 2.02%

250 86.91 83.71 95.56 82.10 -9.05% 1.96%

1000 87.78 84.29 95.15 81.34 -7.75% 3.62%

α=0.9 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 82.06 82.06 102.42 81.98 -19.87% 0.11%

50 85.46 85.18 98.20 81.43 -12.98% 4.60%

100 86.96 85.40 91.89 81.48 -5.36% 4.82%

250 89.25 87.02 99.03 82.10 -9.88% 5.99%

1000 90.44 87.33 98.90 81.34 -8.56% 7.36%

α=0.99 with equal probability

Number of Risk-averse Model Risk-neutral Model Relative Difference

Scenarios CV aRα Exp. CV aRα Exp. CV aRα Exp.

10 82.06 82.06 102.42 81.98 -19.87% 0.11%

50 85.75 85.75 102.42 81.43 -16.27% 5.30%

100 89.02 89.02 102.42 81.48 -13.08% 9.25%

250 92.60 92.26 105.59 82.10 -12.30% 12.38%

1000 95.75 94.44 108.61 81.34 -11.84% 16.10%
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APPENDIX F: NUMERICAL RESULTS (FIGURES) FOR RISK-

AVERSE MODELS WITH ONLY RISK TERM

The figures presented in Appendix E are obtained according to the risk-averse models with

only risk term both with equal probabilities.

Figure F.1. Cumulative distribution functions of the total variation for different values of α

for Replication 1 with ε = 0.
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Figure F.2. Cumulative distribution functions of the total variation for different values of α

for Replication 2 with ε = 0.

Figure F.3. Cumulative distribution functions of the total variation for different values of α

for Replication 3 with ε = 0.
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Figure F.4. Cumulative distribution functions of the total variation for different values of α

for Replication 4 with ε = 0.

Figure F.5. Cumulative distribution functions of the total variation for different values of α

for Replication 5 with ε = 0.
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Figure F.6. Cumulative distribution functions of the total variation for different values of α

for Replication 1 with ε = 0.25.

Figure F.7. Cumulative distribution functions of the total variation for different values of α

for Replication 2 with ε = 0.25.
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Figure F.8. Cumulative distribution functions of the total variation for different values of α

for Replication 3 with ε = 0.25.

Figure F.9. Cumulative distribution functions of the total variation and total weighted

dispersion amounts for different values of α for Replication 1 with ε = 0.
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Figure F.10. Cumulative distribution functions of the total variation and total weighted

dispersion amounts for different values of α for Replication 2 with ε = 0.

Figure F.11. Cumulative distribution functions of the total variation and total weighted

dispersion amounts for different values of α for Replication 3 with ε = 0.
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APPENDIX G: NUMERICAL RESULTS FOR RISK-AVERSE

MODELS WITH MEAN-RISK TERM

Table G.1. Replication 2 results for the
mean-risk model (OF1, ε = 0, α = 0.8).

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 35.71 32.31 CVaRα Exp.

0.1 35.71 32.31 0.00% 0.00%

1 35.00 32.46 -2.00% 0.44%

10 34.14 33.66 -4.40% 4.16%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.74 34.41 CVaRα Exp.

0.1 38.74 34.41 0.00% 0.00%

1 38.00 34.65 -1.92% 0.68%

10 38.00 34.65 -1.92% 0.68%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.51 34.49 CVaRα Exp.

0.1 39.51 34.49 0.00% 0.00%

1 38.79 34.74 -1.84% 0.72%

10 38.79 34.74 -1.84% 0.72%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 40.57 34.81 CVaRα Exp.

0.1 40.14 34.83 -1.04% 0.04%

1 40.03 34.84 -1.32% 0.08%

10 39.97 34.93 -1.48% 0.33%

Table G.2. Replication 2 results for the
mean-risk model (OF1, ε = 0, α = 0.9).

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.00 32.31 CVaRα Exp.

0.1 36.00 32.31 0.00% 0.00%

1 34.57 33.03 -3.97% 2.21%

10 34.29 33.66 -4.76% 4.16%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.60 34.41 CVaRα Exp.

0.1 39.60 34.41 0.00% 0.00%

1 38.69 34.70 -2.31% 0.85%

10 38.57 34.89 -2.60% 1.39%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 40.94 34.49 CVaRα Exp.

0.1 40.74 34.50 -0.49% 0.02%

1 39.66 34.70 -3.14% 0.60%

10 39.51 34.87 -3.49% 1.09%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.29 34.81 CVaRα Exp.

0.1 41.41 34.83 -2.08% 0.04%

1 40.89 35.02 -3.30% 0.59%

10 40.89 35.02 -3.30% 0.59%
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Table G.3. Replication 3 results for the
mean-risk model (OF1, ε = 0, α = 0.8).

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.57 33.89 CVaRα Exp.

0.1 38.57 33.89 0.00% 0.00%

1 37.00 34.43 -4.07% 1.60%

10 36.86 34.60 -4.44% 2.11%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.37 35.30 CVaRα Exp.

0.1 41.74 35.35 -1.48% 0.13%

1 40.46 35.99 -4.52% 1.94%

10 40.46 35.99 -4.52% 1.94%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.19 35.25 CVaRα Exp.

0.1 40.89 35.27 -0.73% 0.06%

1 40.56 35.42 -1.53% 0.49%

10 40.30 35.79 -2.15% 1.54%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.26 35.08 CVaRα Exp.

0.1 41.18 35.08 -0.21% 0.02%

1 40.65 35.23 -1.48% 0.43%

10 40.61 35.40 -1.59% 0.91%

Table G.4. Replication 3 results for the
mean-risk model (OF1, ε = 0, α = 0.9).

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.57 33.89 CVaRα Exp.

0.1 38.57 33.89 0.00% 0.00%

1 37.14 34.43 -3.70% 1.60%

10 36.86 34.94 -4.44% 3.12%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 43.49 35.30 CVaRα Exp.

0.1 42.34 35.38 -2.63% 0.23%

1 41.03 35.90 -5.65% 1.68%

10 40.91 36.16 -5.91% 2.43%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.51 35.25 CVaRα Exp.

0.1 42.51 35.25 0.00% 0.00%

1 41.09 35.65 -3.36% 1.12%

10 41.09 35.65 -3.36% 1.12%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.74 35.08 CVaRα Exp.

0.1 41.99 35.11 -1.76% 0.09%

1 41.76 35.22 -2.30% 0.41%

10 41.63 35.51 -2.59% 1.24%

Table G.5. Replication 4 results for the
mean-risk model (OF1, ε = 0, α = 0.8).

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.14 33.97 CVaRα Exp.

0.1 39.57 34.00 -6.10% 0.08%

1 37.71 34.57 -10.51% 1.77%

10 37.29 35.74 -11.53% 5.21%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.89 33.77 CVaRα Exp.

0.1 39.89 33.77 0.00% 0.00%

1 38.60 34.41 -3.22% 1.90%

10 38.54 34.78 -3.37% 3.00%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 40.71 34.47 CVaRα Exp.

0.1 40.63 34.47 -0.21% 0.01%

1 39.91 34.80 -1.96% 0.95%

10 39.91 34.80 -1.96% 0.95%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 40.21 34.63 CVaRα Exp.

0.1 39.99 34.64 -0.53% 0.03%

1 39.87 34.70 -0.84% 0.21%

10 39.86 34.72 -0.87% 0.28%

Table G.6. Replication 4 results for the
mean-risk model (OF1, ε = 0, α = 0.9).

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.29 33.97 CVaRα Exp.

0.1 39.43 34.06 -6.76% 0.25%

1 37.43 35.09 -11.49% 3.28%

10 37.43 35.09 -11.49% 3.28%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.89 33.77 CVaRα Exp.

0.1 41.31 33.82 -1.36% 0.15%

1 39.54 34.41 -5.59% 1.90%

10 39.20 35.04 -6.41% 3.77%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 42.51 34.47 CVaRα Exp.

0.1 42.34 34.47 -0.40% 0.01%

1 41.09 34.78 -3.36% 0.91%

10 40.91 35.00 -3.76% 1.53%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.65 34.63 CVaRα Exp.

0.1 41.15 34.66 -1.18% 0.10%

1 41.10 34.69 -1.32% 0.19%

10 41.10 34.69 -1.32% 0.19%
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Table G.7. Replication 5 results for the
mean-risk model (OF1, ε = 0, α = 0.8).

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.29 31.90 CVaRα Exp.

0.1 34.86 31.97 -3.94% 0.27%

1 34.86 31.97 -3.94% 0.27%

10 34.29 32.66 -5.51% 2.42%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.03 33.94 CVaRα Exp.

0.1 39.03 33.94 0.00% 0.00%

1 37.83 34.58 -3.07% 1.89%

10 37.83 34.58 -3.07% 1.89%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.79 34.19 CVaRα Exp.

0.1 39.19 34.21 -1.51% 0.08%

1 38.53 34.31 -3.16% 0.36%

10 38.39 34.61 -3.52% 1.23%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 40.17 34.61 CVaRα Exp.

0.1 39.97 34.62 -0.48% 0.03%

1 39.73 34.73 -1.08% 0.33%

10 39.60 34.95 -1.41% 0.96%

Table G.8. Replication 5 results for the
mean-risk model (OF1, ε = 0, α = 0.9).

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.57 31.89 CVaRα Exp.

0.1 35.14 31.97 -3.91% 0.27%

1 34.86 32.14 -4.69% 0.81%

10 34.57 32.66 -5.47% 2.42%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 40.46 33.94 CVaRα Exp.

0.1 39.83 33.95 -1.55% 0.02%

1 38.51 34.66 -4.80% 2.12%

10 38.46 35.16 -4.94% 3.59%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.69 34.19 CVaRα Exp.

0.1 40.31 34.26 -3.29% 0.23%

1 39.31 34.46 -5.69% 0.80%

10 39.14 34.97 -6.10% 2.28%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 41.58 34.61 CVaRα Exp.

0.1 41.39 34.62 -0.44% 0.03%

1 40.74 34.88 -2.01% 0.79%

10 40.62 35.07 -2.31% 1.33%

Table G.9. Replication 1 results for the
mean-risk model (OF1, ε = 0.25, α = 0.8), *

indicates the case is solved with an
optimality gap < 0.3%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.14 31.14 CVaRα Exp.

0.1 35.14 31.14 -2.77% 0.00%

1 33.29 31.66 -7.91% 1.65%

10 33.29 31.66 -7.91% 1.65%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.46 31.86 CVaRα Exp.

0.1 36.46 31.86 0.00% 0.00%

1 36.03 32.02 -1.18% 0.50%

10 36.03 32.02 -1.18% 0.50%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.87 32.02 CVaRα Exp.

0.1 36.87 32.02 0.00% 0.00%

1 36.86 32.03 -0.04% 0.02%

10 36.86 32.03 -0.04% 0.02%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.92 31.33 CVaRα Exp.

0.1 36.92 31.33 0.00% 0.00%

1 36.92 31.33 0.00% 0.00%

10 36.92* 31.33 0.00% 0.00%

Table G.10. Replication 1 results for the
mean-risk model (OF1, ε = 0.25, α = 0.9), *

indicates the case is solved with an
optimality gap < 0.6%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.86 31.14 CVaRα Exp.

0.1 35.43 31.14 -3.88% 0.00%

1 33.43 31.66 -9.30% 1.65%

10 33.43 31.66 -9.30% 1.65%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 37.66 31.86 CVaRα Exp.

0.1 37.66 31.86 0.00% 0.00%

1 36.97 32.02 -1.82% 0.50%

10 36.69 32.38 -2.58% 1.65%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.46 32.02 CVaRα Exp.

0.1 38.46 32.02 0.00% 0.00%

1 38.23 32.20 -0.59% 0.54%

10 38.03* 32.69 -1.11% 2.10%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.85 31.33 CVaRα Exp.

0.1 38.85 31.33 0.00% 0.00%

1 38.70* 31.41 -0.38% 0.23%

10 38.62* 31.69 -0.59% 1.14%
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Table G.11. Replication 2 results for the
mean-risk model (OF1, ε = 0.25, α = 0.8), *

indicates an optimality gap < 0.5%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 33.00 29.54 CVaRα Exp.

0.1 33.00 29.54 0.00% 0.00%

1 31.86 30.03 -3.46% 1.64%

10 31.57 30.54 -4.33% 3.38%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 35.46 31.13 CVaRα Exp.

0.1 35.46 31.13 0.00% 0.00%

1 34.94 31.32 -1.45% 0.61%

10 34.91* 31.43 -1.53% 0.95%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 35.63 31.08 CVaRα Exp.

0.1 35.63 31.08 0.00% 0.00%

1 35.63 31.08 0.00% 0.00%

10 35.49 31.38 -0.40% 0.97%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.60 31.15 CVaRα Exp.

0.1 36.60 31.15 0.00% 0.00%

1 36.60 31.15 0.00% 0.00%

10 36.60* 31.15 0.00% 0.00%

Table G.12. Replication 2 results for the
mean-risk model (OF1, ε = 0.25, α = 0.9), *

indicates an optimality gap < 1.0%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 33.14 29.54 CVaRα Exp.

0.1 33.14 29.54 0.00% 0.00%

1 32.00 30.03 -3.45% 1.64%

10 31.71 30.31 -4.31% 2.61%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.00 31.13 CVaRα Exp.

0.1 36.00 31.13 0.00% 0.00%

1 35.31 31.40 -1.90% 0.86%

10 35.31* 31.40 -1.90% 0.86%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.83 31.08 CVaRα Exp.

0.1 36.83 31.08 0.00% 0.00%

1 36.37 31.44 -1.24% 1.15%

10 36.37* 31.44 -1.24% 1.15%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.09 31.15 CVaRα Exp.

0.1 38.09 31.15 0.00% 0.00%

1 38.09 31.15 0.00% 0.00%

10 37.91* 31.50 -0.48% 1.12%

Table G.13. Replication 3 results for the
mean-risk model (OF1, ε = 0.25, α = 0.8), *

indicates an optimality gap < 0.1%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.29 31.89 CVaRα Exp.

0.1 36.00 30.54 -0.79% -4.21%

1 33.00 31.11 -9.06% -2.42%

10 33.00 31.11 -9.06% -2.42%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 37.74 31.59 CVaRα Exp.

0.1 37.66 31.59 -0.23% 0.00%

1 37.29 31.64 -1.21% 0.16%

10 36.80 32.39 -2.50% 2.53%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.80 31.47 CVaRα Exp.

0.1 36.80 31.47 0.00% 0.00%

1 36.70 31.53 -0.27% 0.18%

10 36.70 31.53 -0.27% 0.18%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.59 31.14 CVaRα Exp.

0.1 36.59 31.14 0.00% 0.00%

1 36.59 31.14 0.00% 0.00%

10 36.59* 31.14 0.00% 0.00%

Table G.14. Replication 3 results for the
mean-risk model (OF1, ε = 0.25, α = 0.9), *

indicates an optimality gap < 0.5%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.57 31.89 CVaRα Exp.

0.1 36.00 30.71 -1.56% -3.67%

1 33.14 31.11 -9.38% -2.42%

10 33.14* 31.11 -9.38% -2.42%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.31 31.59 CVaRα Exp.

0.1 38.97 31.59 -0.87% 0.00%

1 37.71 32.05 -4.07% 1.47%

10 37.49 32.45 -4.657% 2.717%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 37.83 31.47 CVaRα Exp.

0.1 37.83 31.47 0.00% 0.00%

1 37.83 31.47 0.00% 0.00%

10 37.58* 31.85 -0.68% 1.21%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 37.95 31.14 CVaRα Exp.

0.1 37.95 31.14 0.00% 0.00%

1 37.95 31.14 0.00% 0.00%

10 37.95* 31.14 0.00% 0.00%
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Table G.15. Replication 4 results for the
mean-risk model (OF1, ε = 0.25, α = 0.8), *

indicates an optimality gap < 0.6%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.29 30.77 CVaRα Exp.

0.1 36.00 30.91 -5.97% 0.46%

1 32.86 31.69 -14.18% 2.97%

10 32.86 31.69 -14.18% 2.97%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 37.17 30.32 CVaRα Exp.

0.1 36.49 30.37 -1.84% 0.17%

1 36.23 30.51 -2.54% 0.62%

10 35.69* 31.86 -4.00% 5.09%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 37.46 30.67 CVaRα Exp.

0.1 37.23 30.68 -0.61% 0.02%

1 36.87 30.90 -1.56% 0.75%

10 36.76 31.22 -1.87% 1.78%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.83 30.86 CVaRα Exp.

0.1 36.83 30.86 0.00% 0.00%

1 36.83* 30.86 0.00% 0.00%

10 36.73* 31.31 -0.26% 1.46%

Table G.16. Replication 4 results for the
mean-risk model (OF1, ε = 0.25, α = 0.9), *

indicates an optimality gap < 1.0%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.14 30.77 CVaRα Exp.

0.1 36.00 30.91 -8.03% 0.46%

1 32.86 31.69 -16.06% 2.97%

10 32.86 31.69 -16.06% 2.97%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 39.60 30.32 CVaRα Exp.

0.1 38.91 30.37 -1.73% 0.17%

1 37.03* 30.95 -6.49% 2.09%

10 36.17* 31.96 -8.66% 5.41%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.74 30.67 CVaRα Exp.

0.1 38.74 30.67 0.00% 0.00%

1 38.11* 31.09 -1.62% 1.35%

10 37.69* 31.91 -2.73% 4.04%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 38.27 30.86 CVaRα Exp.

0.1 38.27 30.86 0.00% 0.00%

1 38.11* 31.01 -0.42% 0.51%

10 38.02* 31.37 -0.66% 1.67%

Table G.17. Replication 5 results for the
mean-risk model (OF1, ε = 0.25, α = 0.8), *

indicates an optimality gap < 0.5%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 34.57 28.31 CVaRα Exp.

0.1 34.57 28.31 0.00% 0.00%

1 31.29 29.00 -9.50% 2.42%

10 31.14 29.97 -9.92% 5.85%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 35.60 30.69 CVaRα Exp.

0.1 34.66 30.70 -2.65% 0.06%

1 34.66 30.70 -2.65% 0.06%

10 34.51 31.38 -3.05% 2.27%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 35.46 30.70 CVaRα Exp.

0.1 35.46 30.70 0.00% 0.00%

1 35.01 30.98 -1.25% 0.92%

10 34.96 31.27 -1.41% 1.87%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.12 31.00 CVaRα Exp.

0.1 36.12* 31.00 0.00% 0.00%

1 36.12 31.00 0.00% 0.00%

10 36.12* 31.00 0.00% 0.00%

Table G.18. Replication 5 results for the
mean-risk model (OF1, ε = 0.25, α = 0.9), *

indicates an optimality gap < 0.9%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 35.43 28.31 CVaRα Exp.

0.1 33.43 28.51 -5.65% 0.71%

1 31.43 28.91 -11.29% 2.12%

10 31.14 29.97 -12.10% 5.85%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.29 30.69 CVaRα Exp.

0.1 35.49 30.70 -2.20% 0.06%

1 35.09 31.03 -3.31% 1.12%

10 34.91 31.23 -3.78% 1.77%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 36.43 30.70 CVaRα Exp.

0.1 36.43 30.70 0.00% 0.00%

1 35.94 30.98 -1.33% 0.92%

10 35.63 31.31 -2.20% 2.00%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 37.51 31.00 CVaRα Exp.

0.1 37.51 31.00 0.00% 0.00%

1 37.22* 31.14 -0.76% 0.46%

10 37.15* 31.38 -0.94% 1.22%
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Table G.19. Replication 2 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.8), * indicates an optimality gap

< 0.01%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 83.88 74.13 CVaRα Exp.

0.1 83.02 74.13 -1.02% 0.00%

1 80.51 74.87 -4.02% 0.99%

10 79.85 75.75 -4.80% 2.19%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 85.62 76.88 CVaRα Exp.

0.1 85.62 76.88 0.00% 0.00%

1 84.96 77.22 -0.78% 0.44%

10 84.65 78.05 -1.14% 1.51%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 86.31 77.04 CVaRα Exp.

0.1 86.11 77.04 -0.23% 0.01%

1 84.97* 77.57 -1.55% 0.70%

10 84.84 77.87 -1.70% 1.08%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 88.61 77.55 CVaRα Exp.

0.1 87.77 77.57 -0.94% 0.03%

1 86.99 77.99 -1.83% 0.56%

10 86.78 78.20 -2.06% 0.83%

Table G.20. Replication 2 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.9), * indicates an optimality gap

< 0.2%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 84.68 74.13 CVaRα Exp.

0.1 83.07 74.27 -1.90% 0.19%

1 80.53 74.87 -4.90% 0.99%

10 79.92* 76.46 -5.62% 3.14%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 87.90 76.88 CVaRα Exp.

0.1 87.35 76.92 -0.63% 0.04%

1 85.47 77.60 -2.77% 0.93%

10 85.12 78.52 -3.16% 2.13%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 86.07 77.04 CVaRα Exp.

0.1 87.54* 77.08 1.71% 0.06%

1 85.77* 77.57 -0.35% 0.70%

10 85.57 77.84 -0.58% 1.04%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 91.48 77.55 CVaRα Exp.

0.1 90.03 77.58 -1.59% 0.04%

1 88.73 78.15 -3.02% 0.77%

10 88.73* 78.15 -3.02% 0.77%

Table G.21. Replication 3 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.8), * indicates an optimality gap

< 0.1%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 85.58 77.10 CVaRα Exp.

0.1 85.22 77.13 -0.42% 0.04%

1 81.93 78.28 -4.27% 1.53%

10 81.66* 79.58 -4.58% 3.22%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 90.57 78.46 CVaRα Exp.

0.1 89.38 78.51 -1.32% 0.07%

1 88.22 78.99 -2.60% 0.67%

10 87.92 79.68 -2.93% 1.56%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 89.03 78.27 CVaRα Exp.

0.1 88.34 78.31 -0.78% 0.05%

1 87.62 78.67 -1.59% 0.51%

10 87.54 78.95 -1.68% 0.87%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 88.99 77.67 CVaRα Exp.

0.1 88.46 77.68 -0.60% 0.01%

1 87.64* 77.98 -1.52% 0.40%

10 87.34 78.40 -1.86% 0.94%

Table G.22. Replication 3 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.9), * indicates an optimality gap

< 0.2%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 86.97 77.10 CVaRα Exp.

0.1 85.97 77.14 -1.15% 0.05%

1 82.13* 78.16 -5.57% 1.38%

10 81.73* 79.50 -6.03% 3.11%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 92.64 78.46 CVaRα Exp.

0.1 91.55 78.51 -1.18% 0.07%

1 89.43* 79.61 -3.47% 1.47%

10 89.43* 79.61 -3.47% 1.47%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 88.58 78.27 CVaRα Exp.

0.1 90.43* 78.32 2.09% 0.07%

1 89.28 78.70 0.79% 0.557%

10 89.13* 79.21 0.61% 1.20%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 91.70 77.67 CVaRα Exp.

0.1 90.83 77.70 -0.95% 0.04%

1 89.64* 78.15 -2.24% 0.62%

10 89.43 78.43 -2.48% 0.99%
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Table G.23. Replication 4 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.8), * indicates an optimality gap

< 0.02%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 90.75 78.42 CVaRα Exp.

0.1 89.32 78.51 -1.57% 0.11%

1 81.93* 78.28 -9.72% -0.18%

10 81.66* 79.58 -10.01% 1.48%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 89.14 76.17 CVaRα Exp.

0.1 87.95 76.22 -1.34% 0.07%

1 88.22* 78.99 -1.04% 3.70%

10 87.92 79.68 -1.38% 4.61%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 90.33 77.05 CVaRα Exp.

0.1 89.65 77.08 -0.75% 0.03%

1 87.62 78.67 -3.00% 2.09%

10 87.54 78.95 -3.09% 2.45%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 89.38 77.00 CVaRα Exp.

0.1 89.27 77.00 -0.12% 0.00%

1 87.64 77.98 -1.95% 1.28%

10 87.34 78.40 -2.28% 1.82%

Table G.24. Replication 4 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.9), * indicates an optimality gap

< 0.1%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 91.52 78.42 CVaRα Exp.

0.1 90.09 78.45 -1.56% 0.04%

1 82.13* 78.16 -10.26% -0.33%

10 81.73* 79.50 -10.70% 1.37%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 93.65 76.17 CVaRα Exp.

0.1 91.84 76.25 -1.93% 0.11%

1 89.43* 79.61 -4.51% 4.52%

10 89.43 79.61 -4.51% 4.52%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 94.70 77.05 CVaRα Exp.

0.1 93.63 77.08 -1.13% 0.03%

1 89.28* 78.70 -5.73% 2.14%

10 89.13 79.21 -5.89% 2.79%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 93.30 77.00 CVaRα Exp.

0.1 92.93 77.00 -0.40% 0.00%

1 89.64* 78.15 -3.92% 1.49%

10 89.43 78.43 -4.15% 1.87%

Table G.25. Replication 5 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.8), * indicates an optimality gap

< 0.01%.

α=0.8 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 85.69 74.14 CVaRα Exp.

0.1 85.15 74.17 -0.63% 0.05%

1 82.48 74.88 -3.75% 1.00%

10 82.04 76.08 -4.27% 2.61%

α=0.8 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 87.11 76.67 CVaRα Exp.

0.1 87.00 76.68 -0.12% 0.01%

1 85.44 77.24 -1.92% 0.73%

10 84.79* 78.42 -2.66% 2.28%

α=0.8 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 86.88 76.87 CVaRα Exp.

0.1 86.63 76.89 -0.28% 0.03%

1 85.19 77.41 -1.94% 0.70%

10 85.19 77.41 -1.94% 0.70%

α=0.8 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 88.19 77.63 CVaRα Exp.

0.1 88.03 77.63 -0.18% 0.00%

1 87.01 77.99 -1.33% 0.46%

10 86.91 78.12 -1.45% 0.63%

Table G.26. Replication 5 results for the
mean-risk model (OF1+OF3, ε = 0,
α = 0.9), * indicates an optimality gap

< 0.08%.

α=0.9 and Number of Scenarios=10

Trade-off Par. θ CVaRα Exp. Relative Difference

0 87.45 74.14 CVaRα Exp.

0.1 85.42 74.23 -2.32% 0.13%

1 82.48* 75.15 -5.68% 1.37%

10 82.09* 76.32 -6.13% 2.94%

α=0.9 and Number of Scenarios=50

Trade-off Par. θ CVaRα Exp. Relative Difference

0 89.74 76.67 CVaRα Exp.

0.1 87.98 76.76 -1.96% 0.12%

1 85.65* 77.86 -4.55% 1.55%

10 85.46* 78.17 -4.77% 1.95%

α=0.9 and Number of Scenarios=100

Trade-off Par. θ CVaRα Exp. Relative Difference

0 89.45 76.87 CVaRα Exp.

0.1 88.51 76.92 -1.06% 0.07%

1 87.11* 77.42 -2.62% 0.71%

10 87.00* 77.61 -2.74% 0.96%

α=0.9 and Number of Scenarios=250

Trade-off Par. θ CVaRα Exp. Relative Difference

0 90.77 77.63 CVaRα Exp.

0.1 90.15 77.65 -0.69% 0.03%

1 89.26* 78.04 -1.67% 0.53%

10 89.26* 78.04 -1.67% 0.53%


