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ABSTRACT

ON THE BLOW-UP SOLUTIONS TO SOME QUASI-LINEAR BI-HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATION UNDER DYNAMICAL BOUNDARY
CONDITIONS

In this thesis, we show the non-existence of the global solutions as a class of initial boundary
value problem by considering various dissipative terms in the boundary conditions for quasi-
linear bi-hyperbolic equations. In particular, we obtain blow-up solutions for the positive
initial energy. This work is inspired by the paper of V.Bayrak-M.Can in [11] in which they
studied the same problem for the non-positive initial energy. While their result is achieved by
applying O.Ladyzhenskaya-V.K. Kalantarov lemma, called generalized convexity method,

our approach is based on the blow-up lemma by M. O. Korpusov.



OZET

DINAMIK SINIR KOSULLARI ALTINDA BAZI QUASI-LINEER
BI-HIPERBOLIK KISMi DIFERANSIYEL DENKLEMLER iCiN COZUMLERIN
PATLAMASI UZERINE

Bu tezde, baslangic sinir deger problemlerinin bir sinifi olarak, sinir kosullarinda bazi
yayillim terimlerinin diisiiniilmesiyle, quasi-lineer c¢ift-hiperbolik denklemlerin kiiresel
coziimlerinin olmadig1 gosteriliyor. Bilhassa, pozitif baglangic enerjisi icin patlayan
¢oziimler elde ediyoruz. Bu tez [11]’de ayn1 problemi negatif baslangic enerjisi i¢in ¢aligan
V. Bayrak ve M. Can’in makalesinden esinlenmistir. Onlarin sonucu, genellestirilmis dis
biikeylik metodu olarak adlandirilan O. Ladyzhenskaya ve V.K. Kalantarov’un lemmasi
kullanilarak elde edilirken, bizim yaklagtmimiz M.O. Korpusov’un patlama lemmasina

dayamyor.
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1. INTRODUCTION

Initial-boundary value problems for quasi-linear bi-hyperbolic partial equations provide
powerful and flexible tools for modelling problems in physics, engineering, and other fields.
Many researchers have worked on the problems of such equations. There are great number
of articles on the global non-existence of solutions to quasi-linear hyperbolic type equations

of order two, see [1, 2, 3].

The non-existence of solutions of quasi-linear hyperbolic equations for lack of dissipative
terms on the boundary conditions have been studied by many authors among which we refer

to and the references therein, [1, 4, 5, 6, 7] .

We must mention that many books on blow-up of solutions of non-linear partial differential
equations have been published for the last decades: The books of Samarskii, Galaktinov,
Kurdyumov and Mikhailov [8] and Hu [9] are devoted to the study of blow-up of solutions
of non-linear parabolic equations and systems, and the book of Pokhozhaev and Mitidieri
[10] is devoted to problems of solutions of non-linear parabolic and hyperbolic equations

and inequalities.

In the last decades, the studies of dynamical boundary conditions of hyperbolic equations
have been appeared in many articles. Majority of them are devoted the second order
equations. In addition, hyperbolic equations of fourth-order have been studied by M. Can-
V. Bayrak [11] , I. Lasiecka [12], F. Maksudov- F. Aliev [13]. The mathematical tool that M.
Kirane [14] and M. Can [11] used in their work is the blow-up lemma which is so called O. A.
Ladyzhenskaya-V. K. Kalantarov lemma [15]. The important point in applying of the above
argument is to find appropriate function that includes dissipation of boundary in the proof
of the hypotheses of this lemma. The goal of this thesis is to work on blow-up solutions for
bi-hyperbolic quasi-linear equations under different type of boundary conditions when the

initial energy is positive.



The following is an organization of this thesis: Chapter 2 is devoted to literature; in Chapter
3 notations and auxiliary propositions are given; in Chapter 4 our main results and their
proofs are given; The final chapter is devoted to an initial boundary value problem of a
second order hyperbolic partial differential equation and its blow-up solutions under the

positive initial energy.



2. PREVIOUS RESULT

We recall a blow-up lemma which is so called O. A. Ladyzhenskaya-V. K. Kalantarov lemma

15].

Lemma 1 Suppose that @ (t) € C* ([0, T]), @ (t) > 0 satisfies the inequality

O () D (t) — (L+7) (& ()° = —2C1D (1) & () — Cod (1) 2.1)

where v > 0, Cy, Cy> 0, then the following hold

a) If
D(0) >0, D(0)>—y ' d(0) and Cy+Cy>0 (2.2)
then,
_ 19(0)+19/ (0)
(1) = +oo as té“£®“m§mfn©@®gwmy
where

71:—é1+\2/6'12+76'2 ,’72:—01—\2/6'12—1-7@2-

b) If
$(0)>0, ¢0)>0 and C,=0Ch=0, (2.3)

2(0)

then @ (t) = +oo as t—ty <ty = 5 -



The below two initial and boundary value problems were studied by M. Kirane, S. Kouachi

and N. Tatar [14] .

The first problem:

)
wy + A*w=f(w), ze€0 te(0,T),

0Aw B owy

W—O, Aw__a&()8197 :1:'68(2, tE(O,T),
wie,0) =wp(x), S (@0)=w (), ze

where (2 C R"” is a bounded domain with regular boundary 02 := I', T > 0 is any real

number, the function a(x) > O is smooth on I" ; ¢ = (¥4,...,9,) is the unit outward

normalto I' and —— = ZZ 1 8 ¥); is the normal derivative of w on I".
Assume that the functlon f(w) and its primitive F' (w) = [,° f (€) d have the following
property:

wf(w) >2(2v+42) F (w) — Cp. (2.4)

Herey > 0, Cy > 0 and w are real numbers .

Their result for this problem is given below:

Theorem 1 Let wy (x), wy (z) enjoy the initial functions with properties below

A::[ng(x)dx+La($) (%(w)>2d0>0,

B = /Q(Qwo (z) wy (x) + vy wi (x))do >0,

(2v+1) /Q(w% (z) 4+ |Awg (z) |?) dz + Cymeasure (£2) < 2(2y + 1) /Q F(wy (x)) dx .



Then

}Lrg (/Quﬂ (z) dx+Atﬁa($) (g—:;) (93)>2d0d5) =400, forsome

<ty = 1 n 71A+B
A A YA+ B
24/CE+C3 2

In the proof of this result they use the following function:
t 8 2 a 2
D (t) = / w? (z) do + / / a(x) & (x) | dods+ / a(x) ) (x) ) do. (2.5)
2 o Jr e r o
and then, they obtained a lower estimate for the function
X () = "D — (1+7) (P (2.6)
which they proved
X () > —(v+2)0* — 4(1 + )PP . (2.7)

Hence, from the Lemma 1 for C; = 2(14+7~), Co=2+ ~y gives the result.

The second problem:

)
wy + A%w=f(w), xeN te(0,T),

A
Aw = 0, oz(:zc)wt—aa—q}}uz(), r e, te(0,T),
kw(x,O)zwo(yc), aa—ltu(x,O):wl(x), x € (.

Here {2 C R" is a bounded domain with regular boundary 02 := I'. T > 0 is any real

number, ¥ is the outward normal to I" and the function « (z) > 0 is smooth on .



Assume that f (w) satisfies (2.4). For the second problem, their conclusion is:

Theorem 2 Let wy (x) , wy () enjoy the initial functions with properties below

Lw%(m)dw+£a(z)w§(x)da>0,
/9 (2uwo (2) wr (2) + 7oy~ "0 () de > 0,

(14 27) /Q(wf (z) + |Awg () |?) dz + Co measure (£2) < 2(1 + 27) /Q F(wy (z)) dx.

Then

As in the previous proof they used the functional,

@(t):/ng (x)dx—l—/(f/;x(x)uﬂ (x)dads—l—/Foz(a:)wg () do (2.8)

and obtain similar estimates as (2.6) and (2.7).

Hence, from the Lemma 1 for C’l =2(1+7), C’Q =2+ v gives the conclusion.



M. Can and V. Bayrak [11] studied some variations of the following problem:

p

ug + A%u=Au+ f(—Au), te(0,T), z€ (2UN),
—Au =0, % = A%y, te (0, 7), x €012,
u(z,0) =wug (z), g—?(x,()):ul(x), x € (2.

\

where (2 is a bounded domain in R" and its boundary 02 := [ is regular, 7" > 0 is any real
number, and 1 is the outward normal to [

They used the function,

& (1) = uwn%/ﬂt/Fa(x) (%)Qdads+/Fa(x) (%)Zda. 2.9

And, use the Lemma 1, to prove:

Theorem 3 Asumme that f (u) and its primitive F (u) = [ f (£) d€ enjoy the restrictions:

f(0)=0, uf(u) >22y+1) F(u), forallu e R (2.10)

with some real number vy > 0. Let ug (z) , uy (x) are functions satisfying
e @ and its derivative ' satisfy (2.2) of Lemma 1.

® The energy att = 0
E(0) = |yvu1||2+/ yVAu0|2da;+/ |Au0|2dx—2/ F (Aug)dz < 0.  (2.11)
[0} (9} 9]

For ty > 0 is given in Lemma 1, then there exists 0 <t <ty such that

limt_mT @(t) = +00.



Our main tool in this work is the blow-up lemma by M. O. Korpusov [26] :

Lemma 2 Assume that

(@) ¢(t)€CH0,T]), T>0, ¢(t)>0, ©(0)>0, ¢(0)>0.

This implies the existence of ty > 0 with ¢’ (t) > 0 on [0,ty) and
@ (t) > ¢ (0) = 00n[0,)

a>1, pg>0.

(ag) Assume (¢'(0))? > 25&@(0) holds for the solution of the differential inequality

@' (t)e(t) — () (t)* + Be(t) > 0. (2.12)
Then

p(t) > (¢'7%(0) — At)*T  and lim (1) = +oo.



3. NOTATIONS AND AUXILIARY PROPOSITIONS

Throughout the thesis we are using the following notations:
e 1% (2) is a usual Lebesgue space with the inner product (.,.) and the norm || . ||.
e H' (£2)is a Sobolev space of functions v € L? ({2) whose weak derivatives also belong to

L? (£2). This space is a Hilbert space with the inner product
(U, 0) g1 () = /Q (u (x)v () + Vu (z) Vo (x) )dx (3.1)
and the norm
0l = (1017 + 11 V0 ). (32)

e [} (02) is the Sobolev space obtained by completion of C§° (£2) with respect to the norm

of H' (£2) . The inner product and the norm in this space are defined as follows

<u,v>H01(Q):/QVu(x) Vo (z)dx (3.3)

and

| v HH&(Q) = [| Vo] (3.4)
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We will need the following inequalities:

e Cauchy-Schwartz Inequality:

Let (2 is a region in R™ and u (x) and v (=) be two integrable vectors in (2

< (/Qm(x)\%)5(/!2;@(95)\261:3)5. (3.5)

/Qu(:c)v(x) dx

e Holder’s Inequality:

J @9 dsl < 1l Tl (6)
which holds for each f € L (£2) and g € L (12) the inequality and 1/p 4 1/p’ = 1.
e Young’s Inequality:

For a,b>0and p,q>0 with1/p+ 1/q =1, we have

4 q
<@ Y (3.7)
p q
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e Green’s Formula:

Letu, ) € C? ((_2) Then

/VﬁVudx:—/uAﬁdx—i—/ a—79ud0 (3.8)
o} 0 20 On

where 7 is the outward normal vector to the boundary of (2.
e Poincare- Friedrichs Inequality:
1
[w]l < Af [V 3.9)

which holds for each w € H} (£2). Here 2 C R" is a bounded domain, ) is the first

eigenvalue of the problem

—AY=Np, T ED

=0, xe€df

Ifwe H?(2) () Hy (£2) , then Poincare- Friedrichs Inequality implies that

[Vw] < Ay * [ Aw]]. (3.10)
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3.1. THE INITIAL AND BOUNDARY VALUE PROBLEM UNDER VARIOUS
DYNAMICAL BOUNDARY CONDITIONS

In this case and the following cases 2 is a bounded domain in R" and its boundary 02 := I"
is regular, 7' > 0 is any real number, and 7 is the outward normal of /' and the function
a (z) > 0is smooth on I.

3.1.1. CASE:1

We consider the following initial and boundary value problem as our first problem:

v + A% = Av + bf (—Av), v€ N, te(0,7), (3.11)
8vt 2
Av =0, a(w)a—n:Av, zel, te(0,T), (3.12)
ov
v (z,0) =1 (), pn (,0) = vy (2), x € 1. (3.13)

To prove the existence of blow-up solution we use the Lemma 2 for the solution v (x,t) of
(3.11) — (3.13) as our first result.

Assume that f (v) and its primitive F' (v) = [ f (£) d€ enjoy the following restrictions:

f(0)=0, vf(v) >22y+1)F(v), forallv € R (3.14)

for reals v > 0.

Firstly, we start by obtaining an estimate for the energy function £ (¢) defined by

E(t) = Vo | + | Av| + |V Av|]® — 26 (F (—Av) 1) . (3.15)
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Multiplying the equation (3.11) in L? (£2) by —2Aw; gives us the equality:

—2/ vttAvtda:—l—Q/ AvAv, dz —2/ A Avy dx = —Qb/ f(—Av) Avydx (3.16)
Q Q Q Q

—~ —~ N ~

I II I v

By using Green’s Formula and the boundary conditions we get,

I= —2/ UttAUt dl'
(9}

= 2/ VvttVUt de‘ -2 %/Utt dU
2] r on

d 2 8’Ut
= — dr —2 | —uvud
o /Q |Vuy|” dx o vy do

II= 2/ AvAv, dx
Q

d 2
— 2 [ avPd
dt/Q’ v|”dx

I = —2 / Av, Ao dx
(%}

0Av

Av, do
r on '

:2/V(Avt)V(Av) dz — 2

d / 2 aA'U
= — VAv|" dx — 2 Av, do
ai [, VA roon

IV = —Qb/ f(=Av) Avydx
0

d
=—2 F(-A .
o b/Q (—Av) dx



Plugging them into (3.16) we have,

d
7 [IVoell” + | Aol + |V Avl|* — 26 (F (= Av) , 1)]

=2 _Utt do + 2/ —Avt do.

Restricting the differential equation to 02 we get,

=0-A%+0=—-A% and a (1) — = A%
a9 on

Ut

for all (z,t) € 02 x (0,T). Hence,

d v, 0 (Av)
2 | —vydo+ 2 Avg d
th ( ) 87’] (Y + /I; an Vs A0

= —2/ %A%da

It is obvious from (3.17) that E(t) < E(0) forall ¢ > 0.

Define the following function

_ |]VvH2+/Ot/Fa(as) (%)2dads+ﬁa(x) (%—1;70)2610.

Differentiating the equation (3.18) with respect to ¢ we obtain,

¢ ov v Ovo 2
¢ (t) =2(Vv, Vv +2/ /a ) ———do ds +/ (—) do.
0 =2ve w2 [ [a@7 [(ao) (5

14

(3.17)

(3.18)

(3.19)
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Differentiating once more,

P (t) =2 242 2 —~do.
(1) |Vo]|” + 2 (Vv, Vo) + /Fa(:t) o 877d0

By the help of Green’s Formula and the boundary conditions on the partial differential

equation (3.11), we conclude the following from integrals second and third

Ov Ov v
' (t) = 2|V |* + (v, —2A +2/ —Z1q +2/— d
(t) = 2|[Voe||” + (vs v) Foz(x) o0 o7 | Gt do

=2 ||V’Ut||2 —+ <Utt7 —2AU> -+ / g—z <2vtt -+ 2A2U) do
r

=9 vat”2 + <Utt; —2Av> .
(*)

since
v+ A% = Av+bf (—Av) | =wvy—0+a(z)=— =0
implies that
vy = —a(r) — = 2uy = —24A%.
By substituting vy as in the equation (3.11) and using the inequality (3.14) we get,
(%) = (v, —2A0) = =2 Av|)* + 2 (A%, Av) +2b(f (—Av), —Av)

= —2||Av|]* = 2||VA||* + 2b (f (—Av) , — Av) .
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Therefore,
@ (t) = 2|V |* — 2| Av||* = 2|V Av||* + 4b (27 + 1) (F (= Av) , 1)

= 227+ 1) E@)+4(v+ 1) ||V + 47 || Av|]> + 47 |V Av|>. (3.20)

Thanks to (3.17) we have,

E(t):E(O)—Q/Ot/Fa(x) (%)Zdads (3.21)

Thus, we obtain from the inequality (3.20) that

@"(t)2—2(27+1)E(0)+4(27+1)/0t/Foc(x) <aa—?:;)2dads

+4 (v + 1) [ Vorl* + 4y [ Av]|” + 47 |V Av|?

v |F+/t/ <>%2dd+1/ @ (22 o | - d
Uy OFozx n ods 2F04m an o 0

>4(y+1)

where

do ::2(27+1)E(O)—|—2(7—|—1)/Fa(:v) (%—?)2&7.

Theorem 4 For any solution v (x,t) problem (3.11) — (3.13) we obtain the following

inequality

(1) D(t) — (v+ 1) [P ()] > —do® (t).



e Proof: Multiplying both sides of

P (t) 2 4(y+1)

N

17

|V ||2—|—/t/oz($) Jv: Zdads—kl/oz(x) 9y 2da —d
' 0oJr on 2Jr In "

-

A

by @ (t) we attain,
G (1) D (1) > 4(1+7) AD () — do (1) .
From (3.19) we have,
(L+7) [ @ )] =

t ov Ouy 1
Vv, Vo) + ——dod -I——/ (
(Vv, V) /O/Fa(x) a0 o ods+ 3 Foz(m)

By Schwartz’s inequality

/watg (/QWUF)% </Q|wt|2)é

4(147)

and

[ [ o) 2% 0 < {/Ot [/N (g_;)zdg] dS}Q{/Ot [/N(

Let us write into (3.23)

(L+) [ @ (0] <4(1+7)

on

2
%) dcr] .

(3.22)

(3.24)
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Let us introduce the following notations:

Xy = Vo, X = {/Ot [/Fa(af) (2—2)2@—] ds}é ,

Hence, from (3.24) we have,

Z
X1 Yi+Xo Yot =

4(1+47) 5

=4(1+7)

Z? Z Z
(X%-YHXS-YQHI)+2(X1-Y1-X2-Y2+X1-Y1-5+X2-Y2-§>].

By Cauchy’s inequality

X2 y?
. Z~X1-Y1§Z-(71+71>

X2 y2
. Z.Xg-yggz-(72+72)

On the other hand,

4(1+~) Ad (t) =

2

Z Z Z
4(147) Xf-YerXf-YerXf-§+X§-YE+X§-Y§+X§-§+Z-Y12+Z-Y22+7
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and we also have,
2
XP- Y9+ X5-Y) = (X«YQ—XQ%) +2- XY Xo o 1
so, we get
(14+9)[@ ()] <4(1+~) AD (). (3.25)

As a result, by subtracting (3.25) from (3.22) we find,

&' (6) D (1) = (1+7) [@ (1)) > —do (1)

as we desired.
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3.1.2. CASE:2

In this part, we shall study the initial and boundary value problem below as our second

problem:

vy + A%v = Av 4+ bf (—Av), r€ 2, te(0,T), (3.26)
0 OA
a—z — 0, an” — —a(x)Av, zeT, te(0,T), (3.27)
ov

— (2,0) = vy (x), x € {. (3.28)

To obtain the blow-up solution we will use the Lemma 2 for the solution v (z,t) of
(3.26) — (3.28) as our second result.

Assume that (3.14) is satisfied.

First of all, we start by obtaining an estimate for the energy function F (t) defined by

E (t) == |V |* + [|Av|]” + [|[VAv|]> = 2b (F (—Av) , 1) . (3.29)

Multiplying the equation (3.26) in L? (£2) by —2Aw, gives us the equality:

—2/ vttAvtdx+2/ AvAv, dx —2/ A Av, dx = —26/ f(=Av) Avgdx  (3.30)
0 Q Q 17,

AN S
-~ ~~ -~ -~

I 1I III v




By using Green’s Formula and the boundary conditions, we get

I= —2/ UttA’Ut dx
0

= 2/ V'Uttvvt dr — 2 %'Utt do
2 an

r

d 2 8Ut
= — V de —2 [ —uvud
dt/9| vl d r 877% g

II= 2/ AvAv, dx
Q

d 9
— 2 [ avPd
dt/9| v|”dx

= -2 / Av A% dx
(0]

0Av
r on

:2/QV(AUt)V(Av) dx — 2

d / 2 aAU
= — VAv|"de —2 | —Av,do
dt Q| | roon

IV = —26/ f(—Av) Avydx
7

d
=—2 F(-A .
o b/Q (—Av) dz

21
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Plugging them into (3.30) we have,

d
7 [IVoell” + | Aol + |V Avl|* — 26 (F (= Av) , 1)]

=2 —Uttd0+2 —Avtdo
F

Restricting the differential equation to 0f2 we obtain,

@:O, 8Av+oz(x)Avt:0

ov
2/F 8_7; vpdo =0 and n = —a(z) Ay
~— ~——

we have,

d A
—F (t) =2 %’Utt d0+2/ a( U)Avt do
r

dt r on on
_ 9 / o () (Avy) Avi do
r
_ —2/a(x) (Avy)’ do
r
so, we get the following equality
d 2
—E(t)=-2 [ a(x)(Av)" do. (3.31)
dt r

It is obvious from (3.31) that FE(t) < E(0) forall t > 0.
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Define the following function

o (t) = || Vol +/0 /Fa(:v) (Av)* do ds —{—/Fa(x) (Avy)? do. (3.32)

Differentiating the function ¢ defined in the equation (3.32) for ¢, we obtain

t
D' (t) =2 (Vov, V) + 2/ / a(x) AvAvdo ds + / o () (Avy)? do. (3.33)
0o Jr r
Differentiating once more with respect to t gives

" (t) = 2||Vor||* + 2 (Vu, Vog) + 2 /P a(z) AvAv, do.

By the help of Green’s Formula and the boundary conditions on the partial differential

equation (3.26), we have

D" (1) —2|]Vth2da:+2/ VvVvttd:c+2/a(x) AvAvy do.
0 r

*

By Green’s Formula

/uAvd:U:—/VqudQH—/@uda
Q Q ron

/Vqud:v:—/uAvdx%—/@uda
Q Q ron

(%) turns out to be

2/ VoV de = —2/ vy Av dx—|—2/ @vtt do
2 0 ron



gp// (t) - 2 ||Vvt||2 + <vtta —2AU> + 2/ ? Vit dU + 2/ 8] (J;) AUAUt da
r on r
—~

=0

= 2||Vue||” + (vg, —2A0) +2/ a(x) AvAv, do.
————

r
I

By substituting v4; as in the equation (3.26) we obtain,

1= (vy, —2A0) = =2 Av|)* + 2 (A0, Av) +2b (f (—Av), —Av)
—_———

II

Since
II = 2/ A% Avdx
Q
:—2/ V (Av) V (Av) dm+2/ 9(4%) \\ 4
Q r on
- —2/ IV Avl? dw+2/ 24 1 do
0 r_ on
=—a(zr)Av
= —2/ IV Av|? dx — 2/ a(x) AviAvdo.
Q r
we have,
[=—2]|Av|” = 2||[VAu|]® + 2b (f (—Av), —Av) .
thus, we get

" (1) = 2| Vo ||* = 2| Avl* = 2||V Av||* + 20 (f (= Av) , ~Av) .
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By using the inequality (3.14) we obtain,
D" (t) > 2||Vu > — 2| Av|)* — 2 HVAU||2 +4b(2y + 1) (F (—Av), 1)
22y + 1) E(t) +4 (v + 1) |Vor||” + 4y || Av|)* + 47 [|[VAu|>.  (3.34)
Thanks to (3.31) we attain,

E(t) = —2/ / Avt do ds (3.35)

Thus, we obtain from the inequality (3.34) that
D" (t) > -2(2y+ 1) E(0)+4(2y+1 // ) (Avy)? do ds
+4(7+ ) [[Vorl” + 47 [ Av]* + 4y |V Ao |*

4(y+1) [||wt|| +// ) (Avy) dads+%Aa(z) (Avo)zda} —dy

where

do:=22v+1)E0)+2(y+1) / a () (Avy)? do.

r

Theorem 5 Under the assumptions on the parameter of second problem we have,

& (OB (1) — (v + 1) [@ (1)) > —dob (1).
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e Proof: Multiplying both sides of

P (t) >4(y+1) {thn +// ) (Avy) dads+;/F (x)(Avo)Qda} —dy

by @ (t) we get,
D" ()P (t) > 4(1+~)BP(t) — dy® (1) . (3.36)
From (3.33) we have,

(L+7)[@ O] =

2
4(1+7) {Vv Vo) + / / AvAvtdadS~l—;/a(x) (Avo)2da} . (3.37)
r

By Schwartz’s inequality

/viwtg </Q|W|2)é </Q|wt|2)é

and

/ / z) AvAvdo ds
= {/ot [/ra(x) <Av)2d0] ds}é {/Ot {/Foz(sc) (Avt)Qda} ds}é
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Let us write into (3.37) and we make similar calculations on inequality like the first problem,

we obtain
L+ [@ ) <4(1+7)BD(t). (3.38)
As a result, by subtracting (3.38) from (3.36) we get,
@ () B (t) — (1+7) [ (1)) = —do® (1)

as we desired.



3.1.3. CASE:3

In this case, we consider the below problem:

v + A% = Av + bf (—Av), v€ N, te(0,T),

0Av ov
- AN r T
n , o a(x) vy, xel, te(0,T),
ov
U($,0)2U0($), E(ajvo)zvl(m)v r € 2.

28

(3.39)

(3.40)

(3.41)

To prove the existence of blow-up solution we apply the Lemma 2 for the solution v (x, t)

of (3.39) — (3.41) as our third result.

Assume that (3.14) is satisfied.

To begin with, we start by obtaining an estimate for the energy function £ (¢) defined by

E(t) := |V |* + || Av|)* + [|[VAv||> = 2b (F (—Av) , 1) .

Multiplying the equation (3.39) in L? (£2) by —2Aw; gives us the equality:

(3.42)

—2/ Ve Ay da:—{—Q/ AvAv, dz —2/ A% Av, dx = —Qb/ f(—Av) Avydx (3.43)
Q Q Q Q

—~ —~ ~ ~

I II I v



By using Green’s Formula and the boundary conditions we find,

I= —2/ UttA’Ut dx
0

= 2/ V'Uttvvt dr — 2 %'Utt do
2 an

r

d 2 8Ut
= — V de —2 [ —uvud
dt/9| vl d r 877% g

II= 2/ AvAv, dx
Q

d 9
— 2 [ avPd
dt/9| v|”dx

= -2 / Av A% dx
(0]

0Av
r on

= 2/ V (Av) V (Av) dx — 2 Avy do
o

0Av

_ 4 IV Av|* de — 2 Avydo
dat Jq

0
L

d 2
= — A
o /Q]V v|” dx

IV = —Qb/ f(=Av) Avy dx
0

d
= Qb/QF(—Av) dzx.

29
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Plugging them into (3.43) we have,

d ov
7 IV |* + [ Av[* + |V Av[* = 26 (F (- Av) , 1)] = 8_7; vy do.
r
~—

Since

ov d (0Ov vy
8—n+a(x)vt—0 = E<8_n+a<x)vt>_0 = (%) a—n——a(x)vtt
we get,

d
g7 [||Vvt||2 + ||Av||2 + ||VAU||2 —2b(F (—Av), lﬂ = —2/ a(x) (vtt)z do.
r

d

G E M) =-2 /F o (z) (vu)” do. (3.44)

It is obvious from (3.44) that E(t) < E(0) forall t > 0.

Define the following function
t
o (t) = ||Vu|? +/ / a(z)v?dods + / o (r) vido. (3.45)
oJr r
Differentiating the function ¢ defined in the equation (3.45) for ¢, we obtain
t
D' (t) =2(Vov, V) + 2/ / a () vy do ds + / a (r) v} do. (3.46)
0oJr r

Differentiating once more,

& (1) = 2||Vou|* + 2 (Vo, Vo) + 2/ o (2) vy do.

r
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By the help of Green’s Formula and the boundary conditions on the partial differential

equation (3.39) we have,

2/ VoV dr = —2/ vttAvdx+2/ @vttda
1) 0 ron

Q" (t)zQHVthQ—Q/vttAv—l—Q/ @vttda+2/a(:c)vtvttda.
Q o ron r

4

~
A

Az?/vtt P + a(x)v | do=0.
r

Therefore,
D" (t) = 2|V — 2/ v Av da.
10
By substituting v4; as in the equation (3.39) we obtain,

" (t) =2 || V|| — 2/Q (Av— A0+ bf (—Av)) Avda

= 2||Vu|)? — 2| Av|)? + 2 (A%, Av) —Qb/ f(—=Av) Avde.
N——’ 0

II

Since

II:2/AQUAvdx:—Q/V(AU)V(AU) da:—|—2/ 0 (Av)
? 2 r_ on
=0

Avdo = —2/ IV Avl? da.
2



we have,

& (1) = 2| Vi[> — 2| Aol — 2|V Av|[® + 20 (f (— Av) , —Av).

By using the inequality (3.14) we get,

" (t) > 2|V ||> = 2| Av||* = 2|V Av|]> + 4b (2 + 1) (F (- Av) , 1)

= —2(2y + D E(t) +4(y + 1) [Vor|” + 4y | Av||* + 47 |V Av*.

Thanks to (3.44) we find,

E(t):E(O)—Q/Ot/Fa(x) (vn)? dor dis

Thus, we get from the inequality (3.47) that
t
B> 22y +1)E(0) +4 (29 + 1)/ / o (2) (ve)? do ds
o Jr

+4 (v + 1) [ Vorl|* + dy [| Av]* + 47 | VAo

! 1
D" >4 (y+1) {HVWHQ +/ / o () (vy)® do ds + 5/ a(z) v} da} —dy
0 r r

where

do ::2(27—1—1)E(0)+2(7+1)/Foz(x)vfda.

Theorem 6 Under the assumption on the parameter of third problem we have,

¢ () (1) = (v + 1) [ (1) = —do® (t) .

32

(3.47)

(3.48)
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e Proof: Multiplying both sides of

t 1
D" >4 (y+1) |:vat||2 +/ / o () (vy)? do ds + 5/ a(z)v? da} —dy
o Jr r

-

<
by @ (t) we attain,
O ()P (t) > 4 (1 + ) OB (t) — do (). (3.49)

From (3.46) we have,

(L+7)[# O =

t 1 2
4(1+47) {(Vv, V) +/ / a () vy do ds + 5 / o (z) v da} (3.50)
o Jr r

By Schwartz’s inequality

/vivvtg (/QWUF)é (/QIWtF)é

and

/Ot /F a (x) vy do ds
A ferorele) { [frerels)
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Let us write into (3.50) and we make similar calculations on inequality like the first problem,

we get
(1+9)[@ O <4(1+7)CD(t). (3.51)
As a result, by subtracting (3.51) from (3.49) we find,
@ () D (t) — (1+7) [ (1) = —do® (1)

as we desired.
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3.14. CASE: 4

Finally, we consider the following initial and boundary value problem:

v + A% = Av + bf (—Av), z €N te(0,T), (3.52)
A
v=0, 8anv = —a(x) Av, xel, te(0,T), (3.53)

v (z,0) =g (), (x,0) = vy (2), x € (2. (3.54)

ot

To obtain the blow-up solution we use the Lemma 2 for the solution v (z, t) of (3.52)—(3.54)
as our final result.

Assume that (3.14) is satisfied.

We start by obtaining an estimate for the energy function £ (¢) defined by

E(t) := |V |* + || Av||* + [|[VAv||> = 2b (F (—Av) , 1) . (3.55)

Multiplying the equation (3.52) in L? (£2) by —2Aw, gives us the equality:

—2/ v Avy dx+2/ AvAv, dz —2/ A2 vAv de = —2b/ f(=Av) Avydx  (3.56)
Q Q Q Q

~ ~~ ~ "

I II I v




By using Green’s Formula and the boundary conditions we get,

I= —2/ UttAUt dx
9]

= 2/ V'UttV’Ut dr — 2 %Utt do
2 an

r

d 2 avt
= — Vo |" do —2 | —
; / | Ut| X » Vit do

II= 2/ AvAvdx
Q

d 2
L
dt/9| v|” dx

= —2 / A% Av, dx
k0]

= U v xr — a(Av) Uy A0
_Q/QV(At)V(A)d z/F 5 Avd

—a(z)Avg

_ 4 / IV Avl? dm—l—Q/a(x) (Avy)? do
dt Jo r

IV = —217/ f(—Av) Avydx
12

d
=—2 F(-A :
= b/Q (—Av) dx
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Plugging them into (3.56) we have,

d 0
pn [||Vvt||2 + || Av|]? + |V Av|)* — 2b (F (- Av), 1] =2 g vy do — 2/ a (z) (Av)* do.
dt r.on r
=0
d 2
%E (t) = —2/ a(z) (Av) do (3.57)
r

It is obvious from (3.57) that FE(t) < E(0) forall t > 0.

Define the following function

o (t) = ||Vl —I—/O /Foz(x) (Av)? do ds +/Foz(x) (Av)? do. (3.58)

Differentiating the function ¢ defined in the equation (3.58) for ¢, we obtain

¢
D' (t) =2(Vu, V) + 2/ / a (z) AvAvydo ds + / o (z) (Avg)? do. (3.59)
o Jr r

Differentiating once more with respect to t gives

D" (t) = 2||Vue|” + 2 (Vo, Vo) + 2/ a(r) AvAv, do.

r

By the help of Green’s Formula and the boundary conditions on the partial differential
equation (3.52), we conclude the following from second and third integrals:

By Green’s Formula:

/uAvdx:—/Vqudx—l—/@uda
Q Q ron

/Vqudx:—/uAvd:E—l—/@uda
Q Q ron
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we have,

2/ VoV, dr = —2/ vttAvd:E—i—Q/ @’Uttda
o} 0 ron

Therefore, we get the following equality

D" (1) —QHVthz—Q/ vttAvdx—i—?/ v vttda—|—2/a(x) AvAv, do.
2 r. on r

=0

By substituting vy; as in the equation (3.52) and using the inequality (3.14), we obtain

D" (t) :2||Vvt||2—2/9(AU—AQU+bf(—Av)) Avdm+2/

a () AvAv, do
r

:2|]Vvt“2—2/ | Avl® dq:+2/ A% Av da:—|—2b<f(—Av),—Av>+2/
7 0

r

a(x) AvAv, do

*

= 2| Vo||* = 2| Av||* = 2[|V Av||* + 2b (f (~Av) , —Av)

+2/—Avda+2/ (x) AvAv, do .
r

J/

—0

where

Avdo

(%) Q/QA%Avd:c:—Q/Qv(Av)v(Av) dHQ/aAU

r on

D" (t) > 2||[Vu||> = 2| Av||> = 2||[VAu||* + 4b (27 + 1) (F (—Av)

1)

227+ D) E ) +4(y+1) ||V |* + 4y || Av||* + 47 ||V Av)| (3.60)
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Thanks to (3.57) we obtain,

E(t)= —2// Avt do ds (3.61)

Thus, we obtain from the inequality (3.60) that

Q"> -22v+1)E(0)+4( 2’y—|—1// ) (Avy)* do ds
+4 (v + 1) | Vorl* + 4y [| Av]* + 47 | VAol |?

4(y+1) {HV%H —l—// ) (Avy) dads+%la(x) (Avo)Qda} — dj

where

do =227+ 1)E0)+2(y+1) /Fa (z) (Avg)? do.

Theorem 7 Under the assumptions on the parameter of finally problem we have,

& (OB (1) — (v + 1) [@ (1)) > —dob (1).
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e Proof: Multiplying both sides of

1
Q" >4 (y+1) [||Vvt|| +// ) (Awy) dads+2/ (x) (Avo)zda} —dy
r

by & (t) we attain,
Q" (t)P(t) > 4(1+~) DD (t) — do® (t). (3.62)
From (3.59) we have,

(L+7)[@ (O] =

2
4(147) { (Vo, V) + / / x) AvAvydo ds + ; / o (z) (Avg)? da] . (3.63)
r

By Schwartz’s inequality

/viwtg </Q|W|2)é </Q|wt|2)é

and

/ / x) AvAv, do ds
< {/ot [/poz(:c) (Av)Qda] ds}é {/Ot [/Fa(x) (Avt)2da] ds}é
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Let us write into (3.63) and we make similar calculations on inequality like the first problem,

we get
(L+7)[@ ()] <4(1+7) DD (t). (3.64)
As a result, by subtracting (3.64) from (3.62) we find,
@ () B (t) — (1+7) [ (1)) = —do® (1)

as we desired.



42

3.2. BLOW-UP SOLUTION OF A SECOND ORDER WAVE EQUATION WITH
INITIAL AND BOUNDARY CONDITIONS

In this section, we consider the following initial and boundary value problem. Models of the

following type comes from various areas of mathematical physics 28, 29, 30].

v — (a (2) vg), + by = kvg, + f (V) zel0,1], t € (0,7), (3.65)
v (0,t) = v, (0,1) = v (1,t) = v, (1,) =0, te (0,7), (3.66)

Jv
v (z,0) =g (), a5 (2,0) = vy (2), xz € [0,1]. (3.67)

where a () € C'[0,1] and a(z) > 0, k and b nonnegative constant, f € C".

To obtain the blow-up solution we will use the Lemma 2 for the solution v (z,t) of (3.65)-
(3.67).
Let the function f (v) with its primitive F' (v) = [ f (§) d¢ satisfy the following inequality

vf(v)>2Q2a+1)F (v), Yv e R (3.68)

for some real number o > 0.
As first step, we start by obtaining an estimate for the energy function.
Multiplying the equation (3.65) by 2v; and integrating over (0,1) gives us the energy

equality:

d 1 1
pr ||vt||§+k||vx||§—l—/ a(z)v? dx—?/ F (v) dx] = —2b ||uif5 . (3.69)
0 0



where,

F(U)Z/va(é)dé

So, the energy equation of the initial boundary problem (3.65) is defined by

1 1
B() =l + Kl + [ ale)idde—2 [ F) do
0 0

From the equation (3.69) we obtain,

d
S Et) = —2b [[uf3

It is obvious from (3.71) that FE(t) < E(0) forall ¢ > 0.

Thanks to (3.71) we find,
‘ 2
B0 = 5(0) =2 | Jul}.
Define the following function
2 2
U (t) = llvlly + (E+7)

where v, 7 > 0.

Differentiating the equation (3.73) with respect to t gives us
U (t) =2(u,v) + 2y (t+T)
and

(W (1))" < 4 (|fuill3 +7) -
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(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)
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Differentiating once more,
" () = (v, ve) 4+ 2 + 2 (v, v) = 2 ||vella 4 2 + 2 (v, v) . (3.76)

By substituting vy, as in the equation (3.65) and integrating over [0, 1], using integration by

parts and boundary conditions when necessary, we get

Vi = kv + (a(x)vg), —bvg + f (v),

1 1 1 1
2 (v, v) = 2k:/ VgV dx + 2/ (a(z)vy),vdr — 2b/ vv dx + 2/ fw)vdx
0 0 0 0

1 1 1
= —2k||vx||§—2/ a(x)v? dx—Qb/ Uy dx+2/ vf (v) dx.
0 0 0

we obtain,

1 1 1
" (t) :2||vt||§+27—2k;||vx||g—2/ a(z)v? d:v—Qb/ VU da:+2/ vf (v) dx.
0 0 0

(3.77)

Now,

v (@ = @) (Jol)” = @ +m)y) > —u¢ (3.78)

>
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1
() = ¥ [ 2ol + 2y — 2l =2 [ (o) e? da
0

1 1
—2b/ VU dx+2/ of (v) dz— (44 n) ([[ve]l3 +7) ] (3.79)
0 0
= v | ald+ @+ 2kl
1 1 1
—|—2/ a (z) v dx—i—Qb/ vvtdx—Q/ vf (v) dx 1 (3.80)
0 0 0

where

(= @+ lvl3+ @+ n) v+ 2k|v. 3

1 1 1
+ 2/ a(z)v?dr+ 2b/ vuy dx — 2/ vf (v) dx. (3.81)
0 0 0

By the help of Cauchy-Schwartz’s inequality and Young’s inequality, respectively we have
! ! 1 2 1 2
[ oda < [ el do < ol < 008 + 3l
0

1 1
2b/ vv dr < 26/ [vf[ve] de < 20 ([vll[lvell) < bllv]l3 + bllvell2- (3.82)
0 0



By Poincare’s inequality

1 1 1
/ lv]? do < —/ v, |* dw
0 Kk Jo

bllofl3 < bx™H vl
we have,

—4 2+ b+ ) ol + (2K + br) ol + @ + 1)y

+2/01a(a:)v§dx—4(1+a)/olF(v) dx 1 > —1¢

Thus, we get the following inequality

C< @4b+n) v+ (26 +b57") [Jvall3 + (2 + 1)~

+2/01a(x)u§ dx—4(1+oz)/01F(v) dx

which shows that,

(<UIE(t).
Multiplying both sides of (3.86) by 1 (¢) we find,

() ¢ <y (t) CE()
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(3.83)

(3.84)

(3.85)

(3.86)

(3.87)



Now, multiplying both sides of (3.87) by negative one, we attain

(1) ¢ = =) LE(t) = = (1) LE(0)

Now let,

(=max{(2+n+0b),(2k+bs7"),2,4(1+a)}
Hence, we get
(=(E() and —v (1) ¢ = -y () (E(0)

Thus, (3.78) turns out to be

e - (1+7) @ @) +LEO)w () =0

as we desired.
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(3.88)

(3.89)

(3.90)
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