
APPLICATION OF MACHINE LEARNING TECHNIQUES ON PREDICTION OF

FUTURE PROCESSOR PERFORMANCE

by

Göktuğ İnal

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Engineering

Yeditepe University

2018

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Gürhan Küçük for his extraordinary support in

this thesis process. Pursuing my thesis under his supervision has been an experience, which

broadens the mind and presents an unlimited source of learning. This thesis would have been

impossible without the patience and the support of my friends.

Finally, I would like to thank my family for their endless love and support, which makes

everything more beautiful and easy.

iv

ABSTRACT

APPLICATION OF MACHINE LEARNING TECHNIQUES ON PREDICTION OF

FUTURE PROCESSOR PERFORMANCE

Today, processors utilize many data path resources with various sizes. In this study, we focus

on single thread microprocessors, and apply machine learning techniques to predict

processors’ future performance trend by collecting and processing processor statistics. This

type of a performance prediction can be useful for many ongoing computer architecture

research topics. Today, these studies mostly rely on history- and threshold-based prediction

schemes, which collect statistics and decide on new resource configurations depending on

the results of those threshold conditions at runtime. The proposed offline training-based

machine learning methodology is an orthogonal technique, which may further improve the

prediction accuracy of such existing algorithms. We show that our neural network based

prediction mechanism achieves around 70 per cent accuracy for prediction performance

trend (gain or loss in the near future) of applications.

v

ÖZET

GELECEK İŞLEMCİ PERFORMANSININ TAHMİNİNDE MAKİNE ÖĞRENME

TEKNİKLERİNİN UYGULANMASI

Günümüzde, işlemciler çeşitli boyutlarda birçok veriyolu kaynağını kullanmaktadır. Bu

çalışmada, tek iş-parçacıklı mikroişlemciler üzerinde durmakta ve çalışan bir uygulamanın

gelecekteki performans trendini tahmin etmek için makine öğrenme tekniğini

uygulamaktayız. Bunu yaparken işlemci istatistiklerini toplamakta ve işlemekteyiz. Bu tür

bir performans tahmini süregelen bilgisayar mimarisi araştırma konuları için de yararlı

olacağını öngörmekteyiz. Bugün, bu çalışmalar çoğunlukla işlemci istatistikleri toplayan ve

programın çalışma süresince eşik durumlarına bağlı olarak yeni kaynak konfigürasyonlarına

karar veren, eşik tabanlı tahmin yöntemlerine dayanmaktadır. Önerilen çevrimdışı eğitim

tabanlı makine öğrenme metodolojisi, mevcut algoritmalarının tahmin doğruluğunu daha da

arttırabilecek ortogonal bir tekniktir. Yapay sinirsel ağ tabanlı tahmin mekanizmamız

tahmini işlemci performans eğilimi (yakın gelecekte kazanç ya da kayıp) için yüzde 70

doğruluk oranına ulaşmaktadır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

LIST OF SYMBOLS/ABBREVIATIONS .. x

1. INTRODUCTION .. 1

2. RELATED WORK ... 3

3. MACHINE LEARNING MODELS... 5

3.1. REGRESSION MODELS ... 5

3.2. BUILDING A LINEAR MODEL ... 6

3.3. NEURAL NETWORK MODEL .. 8

4. ARCHITECTURAL DESIGN ... 18

5. EXPERIMENTAL FRAMEWORK .. 27

6. TEST AND RESULTS... 31

6.1. RESULT OF THE REGRESSION MODEL .. 31

6.2. RESULT OF THE NEURAL NETWORK MODEL ... 36

6.3. COMPARISON BETWEEN REGRESSION AND NN MODELS 40

7. CONCLUSION .. 44

REFERENCES .. 45

vii

LIST OF FIGURES

Figure 3.1. Classification of two different features ... 9

Figure 3.2. The image of a dog .. 10

Figure 3.3. Illustration of the neural network model .. 11

Figure 4.4. Superscalar datapath …………………………………………………………19

Figure 5.4. Collected statistics for the L1 cache .. 28

Figure 5.5. Collected statistics for the L2 cache .. 28

Figure 6.6. Prediction accuracy for the linear regression model ... 31

Figure 6.7. Prediction accuracy of normal equation – first testing data 32

Figure 6.8. Prediction accuracy of normal equation – second testing data 33

Figure 6.9. Prediction accuracy of gradient descent – first testing data 33

Figure 6.10. Prediction accuracy of gradient descent – second testing data 34

Figure 6.11. Prediction accuracy of normalization – first testing data 35

Figure 6.12. Prediction accuracy of normalization – second testing data 35

Figure 6.13. Prediction accuracy for 4 features – with normalization 36

Figure 6.14. Prediction accuracy for 4 features – without normalization 37

Figure 6.15. Prediction accuracy for 10 features – with normalization 37

Figure 6.16. Prediction accuracy for 10 features – without normalization 38

Figure 6.17. Prediction accuracy for 18 features – with normalization 38

Figure 6.18. Prediction accuracy for 18 features – without normalization 39

viii

Figure 6.19. Comparison between regression and NN models .. 40

Figure 6.20. Prediction accuracy for the NN model with and without normalization applied

on features .. 41

Figure 6.21. Prediction accuracy for various number of hidden layers 42

Figure 6.22. Prediction accuracy for various lambda values ... 42

ix

LIST OF TABLES

Table 5.1. Configuration of the simulated processor ... 27

Table 5.2. List of features ... 29

1

1. INTRODUCTION

Today, computer architecture research focuses on prediction mechanisms for adaptive and

reconfigurable components that are resized and/or restructured according to runtime

requirements of applications. This kind of adaptation might be especially helpful for

improving the energy savings that are realizable on a given system. When, an application

does not require all the data- and control-path structures within a processor, unused portions

of those structures might be especially helpful for improving the energy savings that are

realizable on a given system. When, an application does not require all the data- and control-

path structures within a processor, unused portions of those structures might be gated off,

resulting in energy and power savings on the entire system. However, a microprocessor

consists of many structures that either directly or indirectly effect the overall system

performance, and, the worst of all, not all of these structures have an effect on the

performance at all times. Sometimes, the Issue Queue (IQ) may be full, and it might be the

structure that is responsible for stalling the front-end of the processor pipeline and degrading

performance. Sometimes, the L1 cache may take the full responsibility for such performance

drop, since the working set of a running application may be quite large to fit into such small

cache. In other occasions, the branch predictor, the Re-Order Buffer (ROB), the Load/Store

Queue (LSQ), L2 shared cache and many other data path structures can play a role on

processor performance drop, solitary or altogether. As a result, nondeterministic nature of a

microprocessor makes accurate prediction of performance a hard problem, which must be

attacked very wisely.

Today, the main strategy to accurately predict the future performance of a running

application is to rely on history- and threshold-based algorithms. For instance, to predict the

future resource requirements of an application, its most recent indicators for resource usage

are collected and analyzed at runtime. When those indicators are above a certain, empirically

decided, threshold, then a decision algorithm may predict that the same behavior might be

observed in the near future, as well. However, such prediction mechanisms have two major

weaknesses. First, they must be designed with both power and latency concerns, since they

are required to periodically run on hardware. In our proposed design, since we train our

prediction model offline, we can train it as long as and as much as we like, and we do not

have such concerns. Secondly, since online prediction algorithms need to work on a limited

2

window of historical data, they may fail seeing the big picture. For instance, when an

application shows an oscillating behavior, their prediction may almost always miss its target.

In our proposed offline learning method, we can analyze any amount of data in any window

size, and this gives us greater flexibility for generating prediction functions with a higher

accuracy, as long as we train it well. However, due to its offline nature, our method has its

own limitations especially originating from its training mechanism. Today, we see that

processor companies are also in the discovery phase of this new research path. For instance,

AMD’s the most recent processor Ryzen is utilizing a neural network predictor for

improving the accuracy of its branch prediction mechanism [1].

Since last decade, the machine learning algorithms are proven to be useful in many computer

science domains. In computer architecture research, there are a variety of studies, which may

get benefit from these learning techniques. Our main motivation in this study is to accurately

predict the future performance of applications by offline analysis and training using

regression models and Artificial Neural Networks (ANNs). There are only a few studies in

the literature targeting similar topics. However, our proposed study is a unique one, which

targets better accuracy on prediction of processor performance. If this prediction is made

accurate enough, then behavior of running applications can be better tracked, and, thus,

processor resources can be better utilized, resulting in higher energy savings. Here, we show

that application of regression models and ANNs for supervised learning is a promising land

for this research domain. As a result, we believe that offline training has its merits compared

to existing prediction models that depend on mere runtime statistics, and it might help us

further improve the prediction accuracy of processor performance.

3

2. RELATED WORK

The most related study to our work builds linear regression models to relate processor

performance to micro-architectural parameters for design space exploration [2]. Similarly,

the authors use a detailed cycle-accurate superscalar processor simulator to collect runtime

statistics. However, the main motivation of the study is quite different. They try to predict

processor performance for any given micro-architectural parameters. In contrast, here, we

focus on predicting applications’ performance for a fixed processor configuration. Our major

goal is to provide highly accurate performance predictions to algorithms with various

motivations. For instance, a resource partitioning algorithm can make use of such accurate

predictions for better resource utilization and higher power savings. There are many other

motivating studies that can make use of such precious information [3][4][5][6][7].

Another similar study predicts processor performance by building empirical functions that

integrate micro-architectural parameters for a typical superscalar processor [8]. Again, the

main goal is faster design space exploration as in [2]. This earlier study aims to accurately

predict the Instructions Per Cycle (IPC) at the end of the completion of an application. The

authors claim that the predicted IPC is within 5.8 per cent range of the actual IPC, on the

average. Though, in this study, our main motivation is to accurately predict IPC values in

certain time periods in the near future, so that an existing algorithm can benefit from such

prior knowledge adapting itself to either an unavoidable performance drop or a performance

increase. Besides, instead of building hand-made empirical functions, we let machine

learning techniques to discover such functions by applying regression models.

Finally, there is a study on performance prediction for parallel applications, which is similar

to our neural network approach [10]. The authors consider that it is difficult to construct

analytical predictive models even though they are useful. Similarly, they build multi-layer

neural networks trained on input data, that is, there is a hidden layer, which transforms a

single-layer structure into multi-layer structure. However, in our study, we focus on single

thread of M-Sim instead of parallel applications SMG2000. They gather performance

samples from application, which is executed and use those data in their constructed training

neural network system. The author claims that some studies on SMG2000 have been carried

out, but the code’s variations in execution time are not well understood [10]. Thus, they

focused on avoiding noise in their data set and collecting appropriate sampling techniques.

4

However, our main motivation is to accurately predict trend of IPC in the near future, so that

existing algorithms can adapt itself to unpredictable increase or decrease of processor

performance.

8

J value is calculated with a formula represented in Eq.3.3. Finally, at line 10, we iteratively

calculate a new theta value according to the function given in Eq.3.6.

Algorithm 3.1. Pseudo code of the gradient descent

 1: Initialize-parameters

 2: X  training data, y  testing data

 3: X  featureNormalization(X)

 4: alpha  0.1, 0.01 or 0.001

 5: maxIters  50

 6: theta  0

 7: m  length of y

 8: for (i  0, i < maxIters, i++) do

 9: J  1/(2 * m)* 2 *(XT * X * theta - XT * y)

10: theta  theta - alpha * J

11: end for

3.3. NEURAL NETWORK MODEL

A Neural Network (NN) model enables a computer to learn from a set of training data as in

the regression models. They are used to solve a large variety of machine learning problems.

Regression models have already been used and accurate results were obtained. Thus, why

we need ANNs learning? At Fig.3.1, supervised learning classification problem is

represented with a training data set. It is called supervised learning because it is the process

of teaching from a training data set. When the learning process reaches an acceptable level,

learning stops. In the figure, the method works well only if there are two features x1 and x2.

However, many machine learning problems have a lot more features than just two.

16

Algorithm 3.3. Pseudo code of prediction accuracy

 1: Initialize-parameter

 2: featureNormalize(X)

 3: Initialize-weights

 4: data = testing data

 5: trend = testing data of DIPC trend

 6: m = size of data

 7: success = 0

 8: for (i = 1 : m) do

 9: pred = predict(Theta1, Theta2, data(i, :))

10: if ((trend(i)+1) == pred) do

11: success = success + 1

12: end if

13: end for

First, a few parameters are set to use for neural network accuracy prediction. Input layer size,

hidden layer size, and number of labels, which represents output nodes, are determined in

Algorithm 3.3. These parameters show diversity according to how many features are used in

ANNs. Second, the featureNormalize function is called in order to return add normalized

version of X or input variables. In the 3rd line of the Algorithm 3.3, weights of neural network

are initialized randomly. A randomly initialized function is used to do so. After training

neural network, testing data is used to predict the labels, which are determined by num_label

parameter. In the 8th line of the Algorithm 3.3, for loop iterates all testing inputs one by one.

By using the predict function, trend of DIPC is calculated and it is compared to the current

trend data so that rate of the successful or accurate predictions can be statistically computed.

17

Algorithm 3.4. Pseudo code of feedforward

 1: nnCostFunction(nnparameters, inputl_size,

hiddenl_size, num_labels, X, y, lambda)

 2: Initialize-parameters

 3: Reshape-Theta1 and Theta2

 4: J = 0

 5: K = num_labels

 6: for (i : m) do

 7: X_i = X(i : m)

 8: h_of_Xi = sigmoid ([1 sigmoid(X_i * Theta1’)]

* Theta2’)

 9: y_i = zeros(1,K)

10: y_i(y(i) + 1) = 1

11: J = J + sum(-1 * y_i .* log(h_of_Xi - (1-y_i)

.* log(1 - h_of_Xi)))

12: end for

13: J = 1/m *J

14: J = J + (lambda / (2*m) *

(sum(sumsq(Theta1(:,2:inputl_size+1))) +

sum(sumsq(Theta2(:,2:hiddenl_size+1)))))

15: return J

The NN cost function computes the cost and the gradient of the neural network. In the neural

network structure, the parameters are unrolled vector of the partial derivatives of the neural

network. Thus, those parameters are reshaped into Theta1 and Theta2, which are the weights

of our two-layer neural network.

The Feedforward algorithm returns the cost variable J as an output. y_i is a vector contains

0’s as much as the number of K. K represents number of output units. In our NN structure,

we have two output units which shows increase or decrease trend (K = 2). Then, first or

second slot of K vector is set to 1 according to output of y. If y(i) is equal to 0, then y_i = [1

0]. On the other hand, if y(i) is equal to 1, then y_i = [0 1]. By the help of y_i vector,

computation of J minimum is carried out.

18

4. ARCHITECTURAL DESIGN

Instructions Per Cycle (IPC), which reflects computer performance, expresses the average

number of instructions executed for each clock cycle. In our approach, we focus on Dynamic

Instructions Per Cycle (DIPC). The DIPC represents the average number of instructions

executed during a period, which we call epoch. Here, the epoch size is empirically set to one

million clock cycles throughout this study. We tried shorter or longer durations for the epoch

size, and shorter durations give us too many redundant data whereas longer durations do not

successfully capture phase changes of running benchmark applications.

Figure 4. 4. Superscalar datapath

Fig.4.4 depicts the superscalar datapath that we considered for this study. Here, instructions

are fetched and decode stage starts. Some instructions are located in Issue Queue (IQ) and

load/store instructions are hold in Load/Store Queue (LSQ). Thus, instructions are stored to

physical registers in function units. The Re-Order Buffer (ROB) entry set up for an

instruction at the time of dispatch contains a field to hold the result produced by the

instruction. A dispatched instruction attempts to read operands from the Architectural

Register File (ARF) directly when the operand is committed. Otherwise, the operand is

IQ

Fetch Decode

LSQ

FU 1

ROB ARF

PRF

SQUASHED

FU 2

FU n

Function

units

Architectural

register file

19

generated but not committed so that it is read from the ROB. The operand values are hold in

physical register file (PRF) when they are not committed. If the operand values are no longer

used, they are forwarded to squashed stage.

L1 and L2 data caches are used to reduce the average time to access memory. They are

located within the processing unit of the computer. These two caches are directly related to

performance of processor. Firstly, Central Processing Unit (CPU) starts to execute some

instructions when a request or an access reaches to system. Then, CPU uses level 2 cache to

cut down delay. L1 cache is too small in comparison to L2. It is the first destination for

memory instructions. However, CPU looks in the level 2 cache, which has some latency and

large area, when addresses are not found inside the level 1 cache. You can see the calculation

of L1 and L2 caches below in Algorithm 4.5. When a request reaches to system, d1_access

or dl2_access parameters are increased. If event is missed, dl1_miss or dl2_miss parameters

are increased.

Algorithm 4.5. Pseudo code of the calculation of L1 and L2 caches

 1: initialize-parameters

 2: counter_t dl1_miss = 0

 3: counter_t dl1_access = 0

 4: counter_t dl2_miss = 0

 5: counter_t dl2_access = 0

 6: if (cache_dl1) do

 7: if (lat > cache_dl1_lat)

 8: dl1_miss++

 9: end if

10: dl1_access++

11: end if

12: if (cache_dl2) do

13: if (lat > cache_dl2_lat) do

14: dl2_miss++

15: end if

16: l2_access++

17: end if

18: L1miss = dl1_miss/dl1_access

19: L2miss = dl2_miss/dl2_access

Instruction-level parallelism (ILP) expresses the average number of operations that can be

simultaneously executed in a system. In Algorithm 4.6, we initialized ILPCount parameter

to collect the number of operands in each period. In addition to this parameter, simulator

At initialize

Every cycle at
decode

At the end of a
period

20

holds the number of total ILP calculations with the parameter of TotalILPCalculations. This

variable is accumulated during the process of simulator. To gather statistic of the number of

ILP, we divide ILPCount to TotalILPCalculations. By doing this calculation, DTABLE is

checked to determine the number of operands.

Algorithm 4.6. Pseudo code of the calculation of Instruction-level parallelism (ILP)

1: initialize-parameters

2: counter_t ILPCount = 0

3: counter_t TotalILPCalculations = 0

4: TotalILPCalculations++

5: if (DTABLEo[i] == DTABLEi1[j]) do

6: ILPCount++

7: end if

8: if (DTABLEo[i] == DTABLEi2[j]) do

9: ILPCount++

10: end if

11: ILP = ILPCount/TotalILPCalculations;

12: ILPCount = 0

13: TotalILPCalculations = 0

We initialize parameters at first line of Algorithm 4.7. Then, total number of Fetch Queue

(FQtot), which holds instructions in fetch phase, is set to 0. To calculate Fetch Queue

Occupancy (FQocc), which is the ratio of fullness of fetch with instructions, it is divided by

epoch size. In order to accumulate FQtot parameter, it is set to 0 in each iteration. By

accumulating FQtot, context[0].FQ_num structure, which belongs to zeroth thread, is

implemented because here, we focus on single thread processors.

Algorithm 4.7. Pseudo code of the calculation of fetch queue

1: FQtot = 0

2: for each cycle do

3: FQtot is increased by one

4: if end of epoch is reached then

5: FQocc = FQtot / epoch size

6: Save FQocc to statistics

7: FQtot = 0;

8: end if

9: end for

At

initialize

Every cycle

at decode

At the end

of a perdiod

21

An instruction is decoded or executed in the execution unit. For next instruction, six bytes

are kept by instruction queue when it is busy to decode or execute an instruction. These bytes

are stored in a first in first out register set. Thus, IQ occupancy directly effects speed of

processor by increasing overall efficiency and reduces waiting time for the memory access

operations.

We initialize parameters at first line of Algorithms 4.8 through 4.11. Here, IQtot is set to 0

at the beginning of the Algorithm 4.8, and it is divided by epoch size in order to obtain

average IQ occupancy (i.e. IQocc). By doing this, contexts[0].icount is implemented because

we work with a single thread processor.

Algorithm 4.8. Pseudo code of the calculation of instruction queue occupancy

1: IQtot = 0

2: for each cycle do

3: IQtot+ = contexts[0].icount

4: if end of epoch is reached then

5: IQocc = IQtot / epoch size

6: Save IQocc to statistics

7: IQtot = 0;

8: end if

9: end for

Re-order buffer controls whether instructions are committed or not. If an instruction is

successfully predicted, then it is committed. Otherwise, ROB is flushed. Thus, ROB

occupancy is strictly effects on processor performance.

In Algorithm 4.9, the total number of Re-Order Buffer (ROBtot), which holds all in-flight

instructions in program order, is set to 0 at the beginning of the code. To calculate Re-Order

Buffer occupancy (ROBocc), which is the ratio of buffer utilization by instructions, it is

divided by epoch size. In order to accumulate ROBtot parameter, it is set to 0 in each

iteration. By accumulating ROBtot parameter, context[0].ROB_num structure, which

belongs to zeroth thread, is implemented because here, we focus on single thread processors.

22

Algorithm 4.9. Pseudo code of the calculation of re-order buffer occupancy

1: ROBtot = 0

2: for each cycle do

3: ROBtot+ = contexts[0].ROB_num

4: if end of epoch is reached then

5: ROBocc = ROBtot / epoch size

6: Save ROBocc to statistics

7: ROBtot = 0;

8: end if

9: end for

In Algorithm 4.10, the total number of Load/Store Queue (LSQtot), which holds memory

instructions, is set to 0. To calculate Load/Store Queue Occupancy (LSQocc) which is the

ratio of fullness of load/store queue, it is divided by epoch size. In order to accumulate

LSQtot parameter, it is set to 0 in each iteration. By accumulating LSQtot,

context[0].LSQ_num structure, which belongs to zeroth thread, is implemented because

here, we focus on single thread processors.

Algorithm 4.10. Pseudo code of the calculation of load/store queue occupancy

1: LSQtot = 0

2: for each cycle do

3: LSQtot+ = contexts[0].LSQ_num

4: if end of epoch is reached then

5: LSQocc = LSQtot / epoch size

6: Save LSQocc to statistics

7: LSQtot = 0;

8: end if

9: end for

An arithmetic logic unit is the part of the processor so that it effects processor performance

by carrying out arithmetic and logic operations on the operands. In Algorithm 4.11, the total

number of Arithmetic Logic Unit (ALUtot), which holds arithmetic and logic operations, is

set to 0. To calculate Arithmetic Logic Unit Occupancy (ALUocc), which is the ratio of

fullness of operands, it is divided by epoch size. In order to accumulate ALUtot parameter,

it is set to 0 in each iteration. By accumulating ALUtot, context[0].ALU_num structure,

which belongs to zeroth thread, is implemented because here, we focus on single thread

processors.

23

Algorithm 4.11. Pseudo code of the calculation of arithmetic logic unit occupancy

1: ALUtot = 0

2: for each cycle do

3: ALUtot is increased by one

4: if end of epoch is reached then

5: ALUocc = ALUtot / epoch size

6: Save ALUocc to statistics

7: ALUtot = 0;

8: end if

9: end for

A CPU using branch prediction only executes statements if a predicate is true and thus,

branch predictors play a critical role in achieving high effective processor performance. In

our study, we also integrate the branch misprediction rate as one of the features training our

model.

Instructions are executed when they are ready in an instruction window. Here, the number

of ready instructions is calculated by checking ready queue, which is a queue of all

instructions waiting to be scheduled on a processor. In Algorithm 4.12, we show how we

account the average number of ready instruction in the ready queue. Thanks to if/else

structure, we check whether integer or floating instructions are ready or not at destination

register. Then, ready_inst[0] (integer instructions) and ready_inst[1] (floating instructions)

are increased by one. In each period, these arrays are divided by epoch size to calculate the

number of them and again, ready_inst[0] and ready_inst[1] are set to 0 in order to gather

dynamic result of parameters.

24

Algorithm 4.12. Pseudo code of the calculation of ready instruction

 1: initialize-parameters

 2: counter_t ready_inst[2] = {0, 0}

 3: structure RS_link *link

 4: for (link = ready_queue; link!=NULL; link=link-

>next) do

 5: if (RSLINK_VALID(link)) then

 6: struct ROB_entry *rs = RSLINK_RS(link);

 7: if (rs->dest_format == REG_INT) then

 8: ready_inst[0]++

 9: end if

10: else if (rs->dest_format == REG_FP) then

11: ready_inst[1]++

12: end if

13: end if

14: end for

15: readyi_int = ready_inst[0]/epoch_size

16: readyi_fp = ready_inst[1]/epoch_size

17: ready_inst[0] = 0

18: ready_inst[1] = 0

In general, register allocation is the process of stating a large number of program variables

onto a small number of processor registers. Processor runs faster and has better performance

when more variables can be in CPU. Instead of memory, processor uses registers so that it

fetches faster. However, registers are limited in many processors. Therefore, compiler must

decide how to allocate variables. Here, calculation of how many instructions are allocated in

register file is crucial to observe the effect of it on processor performance.

We implement Algorithm 4.13 below that PRF_allocated and Total_PRF_allocated arrays

are set to 0 at the beginning of the algorithm. Then, allocated instructions are determined by

checking dest_format and pyhs_reg. After arithmetic calculations, Total_PRF_allocated

array is divide by epoch size so that we collect accumulated allocated integer and floating

instructions.

25

Algorithm 4.13. Pseudo code of the calculation of register file allocation

 1: initialize-parameters

 2: counter_t PRF_allocated[2] = {0, 0}

 3: counter_t Total_PRF_allocated[2] = {0, 0}

 4: if (rs->dest_format == REG_INT) then

 5: PRF_allocated[0] --

 6: else if (rs_dest_format == REG_FP) then

 7: PRF_allocated[1] --

 8: end if

 9: if (ex_phys_reg == REG_INT) then

10: PRF_allocated[0] --

11: else if (ex_phys_reg == REG_FP) then

12: PRF_allocated[1] --

13: end if

14: allc_int = Total_PRF_allocated[0]/epoch_size

15: allc_fp = Total_PRF_allocated[1]/epoch_size

16: Total_PRF_allocated[0] = 0

17: Total_PRF_allocated[1] = 0

18: Total_PRF_allocated[0]+=PRF_allocated[0]

19: Total_PRF_allocated[1]+=PRF_allocated[1]

There are two differences to calculate valid integers and floating points in Algorithm 4.14

when it compares to register file allocation. Firstly, at the 8th and 11th line of the algorithm,

instructions, which go through the writeback stage, are controlled so that we determine the

valid ones. Secondly, if they are within writeback stage, PRF_valid array is increased by

one. Therefore, we collect statistics about register file validation.

26

Algorithm 4.14. Pseudo code of the calculation of register file validation

 1: initialize-parameters

 2: counter_t PRF_valid[2] = {0, 0}

 3: vld_int = PRF_valid[0]/epoch_size

 4: vld_fp = PRF_valid[1]/epoch_size

 5: PRF_valid[0] = 0

 6: PRF_valid[1] = 0

 7: for (i = 0; i < rf_size; i++) do

 8: if (int_reg_file[i].state == REG_WB) then

 9: PRF_valid[0]++

10: end if

11: if (fp_reg_file[i].state == REG_WB) then

12: PRF_valid[1]++

13: end if

14: end for

27

5. EXPERIMENTAL FRAMEWORK

We use the M-Sim simulator to run SPEC CPU2006 benchmarks on a 4-way out-of-order

superscalar processor [9]. Data is collected in every one million cycle. As suggested in the

literature, we divide our data set into two portions [11]. First 80 per cent of the data is

selected as the training set and the remaining 20 per cent of the data is used for testing the

function, which we obtain by running the algorithm described in the previous section. As a

result, we run benchmarks at different program regions by fast-forwarding simulations from

80 million to 2 billion cycles, and collect around 2500 training and 800 testing data.

The linear, quadratic, and cubic regression models are applied to first three and first four

features, separately in Table 5.2. The algorithms of mathematical functions are implemented

in C language using Octave environment. The details of the simulated processor are given

in Table 5.1.

Table 5.1. Configuration of the simulated processor

Parameter Configuration

Machine Width 4-wide fetch/dispatch/issue/commit

L/S Queue size 48 Load/Store queue

ROB & IQ size 128 entry ROB, 32-entry IQ

L1 I-cache 64KB, 2-way set-associative 64-byte line

L1 D-cache 64KB, 4-way set-associative 64-byte line, write-back,

1-cycle access latency

L2 Cache unified 512KB, 16-way set-associative 64-byte line, write-back,

10-cycle access latency

BTB 512 entry, 4-way set-associative

Branch Predictor Bimod: 2K entry

Memory 32-bit wide, 300 cycles access latency

28

Fig.5.4 and Fig.5.5 show the collected statistics for L1 and L2 caches, respectively. From

this figure, we can vaguely identify the relation between the DIPC and L1/L2 cache miss

rates. Fig.5.4 also shows that with only one or two features, the machine learning algorithm

would not be that successful, since there is a huge variation in DIPC for the same level of

cache miss rate. These two figures prove that we need more distinct features to train our

model to be more successful in our performance predictions.

Figure 5.4. Collected statistics for the L1 cache

Figure 5.5. Collected statistics for the L2 cache

As a result, we collect 18 processor features that are related to the behavior of running

applications. Table 5.2 lists all these features that are used in our machine learning models.

Here, ILP is measured as the number of instructions that can be run in parallel in a single

29

cycle. It is collected from the dependency checking logic, which is run at the processor

decode stage. Features 6 through 10 are average occupancy levels of Fetch Queue (FQ),

Issue Queue (IQ), Re-Order Buffer (ROB), Load/Store Queue (LSQ) and Arithmetic Logic

Units (ALU). Then, we collect the number of ready instruction in IQ for both integer and

floating-point instructions, separately. Features 13 through 16 are collected from Physical

Register File (PRF). First, we collect the average number of allocated PRF entries for integer

and floating-point instructions. Then, we also collect the average number of valid PRF

entries, as well. Final, two features show the success of speculation done in hardware.

Basically, the average number of squashed instructions from the ROB structure shows the

efficiency of the processor. When these two values are high, we see a huge drop in IPC,

since the speculation mechanism starts throwing all mispredicted instructions into thrash

rather than completing them.

Table 5.2. List of features

No Feature

1 L1 miss rate

2 L2 miss rate

3 Dynamic instruction per cycle (DIPC)

4 Instruction per cycle (IPC)

5 Instruction Level Parallelism (ILP)

6 Average Fetch Queue (FQ) occupancy

7 Average Issue Queue (IQ) occupancy

8 Average Re-Order Buffer (ROB) occupancy

9

10

Average Load/Store Queue (LSQ) occupancy

Average Arithmetic Logic Unit (ALU) occupancy

11 Average number of ready instructions (integer)

12 Average number of ready instructions (float)

13 Average number of allocated PRF (integer)

14 Average number of allocated PRF (float)

30

15 Average number of valid PRF (integer)

16 Average number of valid PRF (float)

17 Average number of ROB squashed (integer)

18 Average number of ROB squashed (float)

31

6. TEST AND RESULTS

In this section, we present the results for both the regression and the neural network models

that we proposed in this study.

6.1. RESULT OF THE REGRESSION MODEL

We used linear, quadratic, and cubic regression models to accurately estimate the DIPC.

Based on these methods, we measured four different prediction schemes: (i) DIPC trend (i.e.

is performance increasing or decreasing?), (ii) 3 per cent DIPC range (i.e. performance

prediction is assumed to be correct if the predicted DIPC is still within 3 per cent range of

the actual DIPC), (iii) 5 per cent DIPC range, and (iv) 10 per cent DIPC range (same

prediction scheme for 5 per cent and 10 per cent range, respectively). In Fig.6.6, we show

our prediction results for linear, quadratic, and cubic regression models. Here, the

configurations for the predictions are represented by X/Y notation, where X represents the

prediction scheme and Y represent the number of features. As we see from the figure,

increasing the number of features has a positive effect on prediction accuracy (number of

correct guesses/number of total guesses). Secondly, as we expected, the width of the DIPC

range has an important role on the prediction accuracy, as well. As we relax the range, we

observe higher prediction accuracy.

Figure 6.6. Prediction accuracy for the linear regression model

58
62

67
73 72

79 80
86

58
62

68
73 74

79 81
86

59 60

68 71 74 77
81 84

İ / 3 İ / 4 İİ / 3 İİ / 4 İİİ / 3 İİİ / 4 İV / 3 İV / 4

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Prediction Scheme

Linear Quadratic Cubic

32

An important observation might be the insensitivity of the accuracy results to different

regression models. We see that quadratic regression model performs slightly better than the

other models. However, even the simplest linear model works fine. We do not see a radical

change when we change our regression model from linear to polynomial.

Here, we closely focus on graphs of three different models on prediction accuracy; normal

equation, gradient descent and normalization. According to prediction results above Fig.6.6,

we obtain quadratic regression model is very slightly better than linear and cubic regression

models. We acquire utmost prediction results for quadratic regression model by applying

normal equation in Fig.6.7 and Fig.6.8, as well. Fig.6.7 is the graph, which is obtained by

testing on first 20 per cent part of the whole data.

Figure 6.7. Prediction accuracy of normal equation – first testing data

On the other hand, in Fig.6.8, prediction results are gathered by testing on the last 20 per

cent part of the whole data. As you see from graphs, the number of features has significantly

effects on processor performance. Secondly, prediction accuracy rises with an increasing in

width. Common point of two graphs is to reach top accuracy score for 4 features quadratic

regression model.

54

62
68

77

57

64
70

80

54

61

68

76

60

69
74

84

57

64

71

78

60

68
73

83

İ/3 İİ/3 İİİ/3 İV/3 V/4 Vİ/4 Vİİ/4 Vİİİ/4

Prediction Scheme

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Linear Quadratic Cubic

33

Figure 6.8. Prediction accuracy of normal equation – second testing data

Figure 6.9. Prediction accuracy of gradient descent – first testing data

55

65
70

78

62

73
79

85

55

64
70

78

61

71
76

85

55

64
70

78

60

69
75

84

İ/3 İİ/3 İİİ/3 İV/3 V/4 Vİ/4 Vİİ/4 Vİİİ/4

Prediction Scheme

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Linear Quadratic Cubic

55

62

69

78

58

66
71

81

57

64

71

80

59

66
72

81

57

65
71

80

59

66
72

81

İ/3 İİ/3 İİİ/3 İV/3 V/4 Vİ/4 Vİİ/4 Vİİİ/4

Prediction Scheme

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Linear Quadratic Cubic

34

Figure 6.10. Prediction accuracy of gradient descent – second testing data

In Fig.6.9 and Fig.6.10, graphs of prediction results are formed by applying gradient descent

model to NN system. It is clear that in both graphs, we obtain high processor performance

for 4 features and 0.1 width range though percentage of prediction accuracy is almost equal

for 3 features and 0.1 width range. As you see from graphs, we get better accurate results

with the last 20 per cent of testing data in Fig.6.10 by using gradient descent model.

There is a considerable diversity in Fig.6.11 and Fig.6.12, which are obtained by

normalization method. Increasing the number of features from 3 to 4 has effects on

prediction accuracy in as positive way. In contrast, here, prediction accuracy slightly

decreases when the number of features is raised to 4. Secondly, it is reached to top point with

cubic regression model unexpectedly and there is no crucial difference between figures apart

from the percentage of quadratic regression model. The prediction accuracy of quadratic

regression model stays under expectation in Fig.6.11 though it is almost close to linear and

cubic regression models in Fig.6.12. Normalization algorithm cannot adequately capture the

underlying structure of our last feature data so that under-fitting occurs in Fig.6.11.

Normalization is the method that we receive low prediction accuracy results in almost each

model when we compare to normal equation and gradient descent. However, it is important

57

67
72

80

62

73
79

86

58

68
74

81

62

73
79

85

59

68
74

81

62

71
77

84

İ/3 İİ/3 İİİ/3 İV/3 V/4 Vİ/4 Vİİ/4 Vİİİ/4

Prediction Scheme

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Linear Quadratic Cubic

35

to observe how prediction accuracy changes while the number of features increase and the

whole data normalize.

Figure 6.11. Prediction accuracy of normalization – first testing data

Figure 6.12. Prediction accuracy of normalization – second testing data

48

58
64

72

46

57
63

71

53

63
69

76

54

61
65 67

60

70
76

82

54

64
69

80

İ/3 İİ/3 İİİ/3 İV/3 V/4 Vİ/4 Vİİ/4 Vİİİ/4

Prediction Scheme

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Linear Quadratic Cubic

51

58

65

72

51

59
64

73

55

63
69

76

49 49 49 49

56

65
71

81

49

58
64

77

İ/3 İİ/3 İİİ/3 İV/3 V/4 Vİ/4 Vİİ/4 Vİİİ/4

Prediction Scheme

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Linear Quadratic Cubic

36

6.2. RESULT OF THE NEURAL NETWORK MODEL

NN graphs, which are obtained by iterating or processing the NN system, from 100 to 1500

iterations show prediction results for 4, 10, and 18 features. Each iteration contains 16

prediction accuracy results with different regularization parameters, lambda values and

various number of hidden nodes. Results with lambda value of 0 are represented by yellow,

with lambda value of 0.1 are represented by green, with lambda value 0.5 are represented by

dark blue, and, finally, with lambda value of 1.0 are represented by magenta colored nodes.

As shown in Fig.6.13, when we consider 100 iterations experiment, it is divided into four

regions including aforementioned lambda values for four various hidden layer nodes (1, 2,

4 and 6). For the sake of clarity, we only show these regions for 100 iteration results on the

graph. The same presentation method is also applied to Figures 6.13 through 6.18.

When we consider Fig.6.13 and 6.14, it is clear that normalization method has a positive

effect on processor performance for 4 features. In Fig.6.13, we acquire the widest range of

prediction accuracy results and reach to a peak accuracy at 67 per cent with 300 iterations,

6 hidden nodes and lambda value of 0 configuration. At all points in Fig.6.13, percentage of

prediction accuracy is better than without normalization method.

Figure 6.13. Prediction accuracy for 4 features – with normalization

56%

58%

60%

62%

64%

66%

68%

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

2
0

0

2
0

0

2
0

0

2
0

0

2
0

0

3
0

0

3
0

0

3
0

0

3
0

0

3
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

P
R

ED
IC

TI
O

N
 A

C
C

U
R

A
C

Y

ITERATION

1 hidden node

2 hidden nodes

4 hidden nodes 6 hidden nodes

37

Figure 6.14. Prediction accuracy for 4 features – without normalization

In Fig.6.15 and Fig.6.16, normalized and non-normalized NN systems work fine for 10

features for 5, 9, 10 and 12 hidden layer nodes. However, there are some obvious differences

when we compare these two graphs.

Figure 6.15. Prediction accuracy for 10 features – with normalization

54%

56%

58%

60%

62%

64%

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

2
0

0

2
0

0

2
0

0

2
0

0

2
0

0

3
0

0

3
0

0

3
0

0

3
0

0

3
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

P
R

ED
IC

TI
O

N
 A

C
C

U
R

A
C

Y

ITERATION

54%

56%

58%

60%

62%

64%

66%

68%

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

2
0

0

2
0

0

2
0

0

2
0

0

2
0

0

3
0

0

3
0

0

3
0

0

3
0

0

3
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

P
R

ED
IC

TI
O

N
 A

C
C

U
R

A
C

Y

ITERATION

38

Firstly, we observe that the NN system outputs advanced prediction results at 300 iterations.

It is sufficient to use 10 hidden units in order to reach to 68 per cent of accuracy with

normalization method. Secondly, fluctuation of each iteration in Fig.6.16 stays growing

positon in contrast to Fig.6.15 that has a decrease trend after 300 iterations. NN system

reaches to pick point within 1500 iterations for without normalization as 66 per cent.

Figure 6.16. Prediction accuracy for 10 features – without normalization

Figure 6.17. Prediction accuracy for 18 features – with normalization

54%

56%

58%

60%

62%

64%

66%

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

2
0

0

2
0

0

2
0

0

2
0

0

2
0

0

3
0

0

3
0

0

3
0

0

3
0

0

3
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

P
R

ED
IC

TI
O

N
 A

C
C

U
R

A
C

Y

ITERATION

58%

60%

62%

64%

66%

68%

70%

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

2
0

0

2
0

0

2
0

0

2
0

0

2
0

0

3
0

0

3
0

0

3
0

0

3
0

0

3
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

P
R

ED
IC

TI
O

N
 A

C
C

U
R

A
C

Y

ITERATION

39

Figure 6.18. Prediction accuracy for 18 features – without normalization

In Fig.6.17 and 6.18, 9, 13, 18, 20 hidden layer nodes are used. As we expected, we obtain

utmost result in normalized NN system by testing 18 features as 70 per cent in Fig.6.17. We

reach to that result at 1000 iterations. It is obvious that there is a significant percentage

differences between two graphs. For 100 iterations, prediction accuracy of normalized graph

is almost 64 per cent although it is not even close to 59 per cent in Fig.6.18.

When we consider al graphs above, increasing the prediction accuracy is systematical that it

scales from 64 per cent to 67 per cent for without normalization and that rising trend

maintains its position for normalization, as well (from 67 per cent to 70 per cent). We see

precise and accurate changes when we modify the number of features and hidden units. Thus,

it is certain that processor performance is directly proportional to the increase on features

and hidden units.

56%

58%

60%

62%

64%

66%

68%

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

2
0

0

2
0

0

2
0

0

2
0

0

2
0

0

3
0

0

3
0

0

3
0

0

3
0

0

3
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

5
0

0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

1
5

0
0

P
R

ED
IC

TI
O

N
 A

C
C

U
R

A
C

Y

ITERATION

40

6.3. COMPARISON BETWEEN REGRESSION AND NN MODELS

Figure 6.19. Comparison between regression and NN models

Fig.6.19 describes the comparison between regression model and neural network in terms of

prediction accuracy. The highest estimated result between linear, quadratic, and cubic

regression models are illustrated in this figure and its result compared with normalized neural

network. As you can see from the figure, prediction accuracy shows a significant rise from

62 per cent to 70 per cent. We find normalized neural network with twenty features the most

promising model in this study.

In Fig.6.19, we predicted the performance accuracies of the baseline algorithms with two or

five periods of history. We obtained 54 per cent and 59 per cent prediction accuracies by

considering trends (increasing or decreasing) of two or five periods of data history. Whereas

results are better than random guess (50 per cent), they are less than regression and NN

models, as we expected.

We trained our NN model with a various set of features (4, 10, and 18). First four features,

which are given in Table 5.2, make the first set of features. Note that these four features are

also used to train our regression model. Next, we used first ten and all eighteen features to

train our NN model. Fig.6.20 shows the accuracy results for all these settings with and

0 10 20 30 40 50 60 70 80

PREDICTION ACCURACY (%)

2 periods of history 5 perdiods of history Regression model Neural network model

41

without normalization of features. As we see from the figure, when the number of features

is increased, the prediction accuracy of the NN gets better and better. We also find that

normalization always helps improving the accuracy level of the NN predictor, since there

are a variety of features with different minimum and maximum ranges. We see that the

maximum prediction accuracy of 70 per cent is observed when the number of features reach

to eighteen with the normalization is in effect.

Figure 6.20. Prediction accuracy for the NN model with and without normalization applied

on features

We try to explore the search space by varying the number of hidden layers, the number of

iterations, the value of lambda, and the number of features and also by applying

normalization to the training data. The following Fig.6.21 and Fig.6.22 show the isolated

effect of each of these parameters on the prediction accuracy. For example, Fig.6.21 shows

the effect of the number of hidden layer nodes on the prediction accuracy when the other

parameters are kept constant. From this figure, we see that the prediction accuracy can be

improved by increasing the number of hidden layer nodes in a neural network. This

conclusion is not true for all the cases, though. We see that the maximum number of hidden

layer nodes for 4 and 10 features do not give the best accuracy.

50%

55%

60%

65%

70%

4 10 18 4 10 18

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Not Normalized Normalized
Number of Features

42

Figure 6.21. Prediction accuracy for various number of hidden layer nodes

Fig.6.22 shows the effect of the regularization parameter, lambda, on the prediction accuracy

when the other parameters are kept constant. We only studied four different values of the

lambda in our tests, and either 0.1 or 0.5 seems to work fine to achieve the best accuracy

with different number of features.

Figure 6.22. Prediction accuracy for various lambda values

50%

52%

54%

56%

58%

60%

62%

64%

66%

68%

70%

1 2 4 6 5 9 10 12 9 13 18 20

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

4 features 10 features 18 features
Number of hidden layer nodes

50%

52%

54%

56%

58%

60%

62%

64%

66%

68%

70%

0 0.1 0.5 1.0 0 0.1 0.5 1.0 0 0.1 0.5 1.0

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

4 features 10 features 18 features
lambda

43

Normally, we used two types of data sets to perform supervised neural network. In one

dataset which is called training data, we have input data together with expected output. This

dataset is prepared by collecting some data in benchmarks. Here, we have expected output

for every data row. In second dataset which is called testing data, this is the data in which

we are interested for the output of our model and thus the data include unexpected dataset.

Finally, we decided to test our training data with obtained weights in order to estimate how

well our model has been trained. The accuracy of model depends on the size of our data and

the value we would like to predict. Thus, we obtained 73 per cent prediction accuracy on

training dataset, which is, it is slightly accurate than ever the prediction of 18 features and

20 hidden layer nodes. At some point, NN stops learning useful general features and iteration

number or regularization parameter might cause that issue. In the future, NN can be trained

with different regularization coefficients or can be expanded the training and feature dataset.

Furthermore, NN model might not be sufficient learining capacity so that number of hidden

layers or number of hidden layer nodes can be altered.

44

7. CONCLUSION

In this study, we focus on the accurate performance prediction of applications running on

out-of-order superscalar processors. We studied a variety of machine learning methods

including the normal equation, the gradient descent, the normalization algorithm with linear,

quadratic and cubic regression models, and, finally, the neural network model with various

number of processor features. The baseline algorithms with two or five periods of history

achieve prediction accuracies of 54 per cent and 59 per cent, respectively. We find that the

best prediction accuracy with a regression model is achieved with the quadratic regression

model at 62 per cent. Finally, the neural network model achieves much better results even

with the same number of features, and it seems more suitable to problems similar to the one

studied in this thesis. The best prediction accuracy (70 per cent) is achieved with a neural

network trained with 18 normalized features.

45

REFERENCES

1. Jimenez DA, Lin CT. Dynamic branch prediction with perceptrons. In High-

Performance Computer Architecture. The Seventh International Symposium on; 2001,

February: ACM & IEEE.

2. Joseph PJ, Vaswani K, Thazhuthaveetil MJ. Construction and use of linear regression

models for processor performance analysis. In High-Performance Computer

Architecture. The Twelfth International Symposium on; 2006, February: ACM & IEEE.

3. Lo JL, Parekh SS, Eggers SJ, Levy HM, Tullsen DM. Software-directed register

deallocation for simultaneous multithreaded processors. IEEE Transactions on Parallel

and Distributed Systems; 1999.

4. Monreal T, González A, Valero M, González J, Viñals V. Dynamic register renaming

through virtual-physical registers. Journal of Instruction Level Parallelism; 2000; 2: 4-

16.

5. Choi S, Yeung D. Learning-based SMT processor resource distribution via hill-

climbing. In ACM SIGARCH Computer Architecture News; 2006, June: IEEE

Computer Society.

6. Wang H, Koren I, Krishna CM. An adaptive resource partitioning algorithm for SMT

processors. In Proceedings of the 17th international conference on Parallel

architectures and compilation techniques; 2008, October: ACM.

7. Cazorla F J, Ramirez A, Valero M, Fernandez E. Dynamically controlled resource

allocation in SMT processors. In Proceedings of the 37th annual IEEE/ACM

International Symposium on Microarchitecture; 2004, December: IEEE Computer

Society.

8. Karkhanis TS, Smith JE. A first-order superscalar processor model. In Computer

Architecture. Proceedings. 31stAnnual International Symposium on; 2004, June: IEEE.

9. Sharkey J, Ponomarev D, Ghose K. A flexible, multithreaded architectural simulation

environment. Dept. of CS, SUNY-Binghamton; October, 2005. Technical Report CS-

TR-05-DP01.

46

10. Ipek E, De Supinski BR, Schulz M, McKee SA. An approach to performance prediction

for parallel applications. In European Conference on Parallel Processing; 2005,

August: Springer, Berlin, Heidelb.

11. Reitermanova Z. Data splitting. In WDS; 2010.

12. Balaprakash P, Gramacy RB, Wild SM. Active-learning-based surrogate models for

empirical performance tuning. In Cluster Computing (CLUSTER), International

Conference on; September, 2013: IEEE.

13. Cummins C, Petoumenos P, Wang Z, Leather H. End-to-end deep learning of

optimization heuristics. In Parallel Architectures and Compilation Techniques (PACT),

26th International Conference on; September, 2017: IEEE.

14. Dubach C, Jones TM, O’boyle MF. Exploring and predicting the effects of

microarchitectural parameters and compiler optimizations on performance and energy.

ACM Transactions on Embedded Computing Systems (TECS); 2012.

