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ABSTRACT 

 

 

APPLICATION OF MACHINE LEARNING TECHNIQUES ON PREDICTION OF 

FUTURE PROCESSOR PERFORMANCE  

 

Today, processors utilize many data path resources with various sizes. In this study, we focus 

on single thread microprocessors, and apply machine learning techniques to predict 

processors’ future performance trend by collecting and processing processor statistics. This 

type of a performance prediction can be useful for many ongoing computer architecture 

research topics. Today, these studies mostly rely on history- and threshold-based prediction 

schemes, which collect statistics and decide on new resource configurations depending on 

the results of those threshold conditions at runtime. The proposed offline training-based 

machine learning methodology is an orthogonal technique, which may further improve the 

prediction accuracy of such existing algorithms. We show that our neural network based 

prediction mechanism achieves around 70 per cent accuracy for prediction performance 

trend (gain or loss in the near future) of applications.   



v 

 

 

ÖZET 

 

 

GELECEK İŞLEMCİ PERFORMANSININ TAHMİNİNDE MAKİNE ÖĞRENME 

TEKNİKLERİNİN UYGULANMASI 

 

Günümüzde, işlemciler çeşitli boyutlarda birçok veriyolu kaynağını kullanmaktadır. Bu 

çalışmada, tek iş-parçacıklı mikroişlemciler üzerinde durmakta ve çalışan bir uygulamanın 

gelecekteki performans trendini tahmin etmek için makine öğrenme tekniğini 

uygulamaktayız. Bunu yaparken işlemci istatistiklerini toplamakta ve işlemekteyiz. Bu tür 

bir performans tahmini süregelen bilgisayar mimarisi araştırma konuları için de yararlı 

olacağını öngörmekteyiz. Bugün, bu çalışmalar çoğunlukla işlemci istatistikleri toplayan ve 

programın çalışma süresince eşik durumlarına bağlı olarak yeni kaynak konfigürasyonlarına 

karar veren, eşik tabanlı tahmin yöntemlerine dayanmaktadır. Önerilen çevrimdışı eğitim 

tabanlı makine öğrenme metodolojisi, mevcut algoritmalarının tahmin doğruluğunu daha da 

arttırabilecek ortogonal bir tekniktir. Yapay sinirsel ağ tabanlı tahmin mekanizmamız 

tahmini işlemci performans eğilimi (yakın gelecekte kazanç ya da kayıp) için yüzde 70 

doğruluk oranına ulaşmaktadır.        
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1. INTRODUCTION 

 

Today, computer architecture research focuses on prediction mechanisms for adaptive and 

reconfigurable components that are resized and/or restructured according to runtime 

requirements of applications. This kind of adaptation might be especially helpful for 

improving the energy savings that are realizable on a given system. When, an application 

does not require all the data- and control-path structures within a processor, unused portions 

of those structures might be especially helpful for improving the energy savings that are 

realizable on a given system. When, an application does not require all the data- and control-

path structures within a processor, unused portions of those structures might be gated off, 

resulting in energy and power savings on the entire system. However, a microprocessor 

consists of many structures that either directly or indirectly effect the overall system 

performance, and, the worst of all, not all of these structures have an effect on the 

performance at all times. Sometimes, the Issue Queue (IQ) may be full, and it might be the 

structure that is responsible for stalling the front-end of the processor pipeline and degrading 

performance. Sometimes, the L1 cache may take the full responsibility for such performance 

drop, since the working set of a running application may be quite large to fit into such small 

cache. In other occasions, the branch predictor, the Re-Order Buffer (ROB), the Load/Store 

Queue (LSQ), L2 shared cache and many other data path structures can play a role on 

processor performance drop, solitary or altogether. As a result, nondeterministic nature of a 

microprocessor makes accurate prediction of performance a hard problem, which must be 

attacked very wisely. 

Today, the main strategy to accurately predict the future performance of a running 

application is to rely on history- and threshold-based algorithms. For instance, to predict the 

future resource requirements of an application, its most recent indicators for resource usage 

are collected and analyzed at runtime. When those indicators are above a certain, empirically 

decided, threshold, then a decision algorithm may predict that the same behavior might be 

observed in the near future, as well. However, such prediction mechanisms have two major 

weaknesses. First, they must be designed with both power and latency concerns, since they 

are required to periodically run on hardware. In our proposed design, since we train our 

prediction model offline, we can train it as long as and as much as we like, and we do not 

have such concerns. Secondly, since online prediction algorithms need to work on a limited 
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window of historical data, they may fail seeing the big picture. For instance, when an 

application shows an oscillating behavior, their prediction may almost always miss its target. 

In our proposed offline learning method, we can analyze any amount of data in any window 

size, and this gives us greater flexibility for generating prediction functions with a higher 

accuracy, as long as we train it well. However, due to its offline nature, our method has its 

own limitations especially originating from its training mechanism. Today, we see that 

processor companies are also in the discovery phase of this new research path. For instance, 

AMD’s the most recent processor Ryzen is utilizing a neural network predictor for 

improving the accuracy of its branch prediction mechanism [1]. 

Since last decade, the machine learning algorithms are proven to be useful in many computer 

science domains. In computer architecture research, there are a variety of studies, which may 

get benefit from these learning techniques. Our main motivation in this study is to accurately 

predict the future performance of applications by offline analysis and training using 

regression models and Artificial Neural Networks (ANNs). There are only a few studies in 

the literature targeting similar topics. However, our proposed study is a unique one, which 

targets better accuracy on prediction of processor performance. If this prediction is made 

accurate enough, then behavior of running applications can be better tracked, and, thus, 

processor resources can be better utilized, resulting in higher energy savings. Here, we show 

that application of regression models and ANNs for supervised learning is a promising land 

for this research domain. As a result, we believe that offline training has its merits compared 

to existing prediction models that depend on mere runtime statistics, and it might help us 

further improve the prediction accuracy of processor performance. 
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2. RELATED WORK 

 

The most related study to our work builds linear regression models to relate processor 

performance to micro-architectural parameters for design space exploration [2]. Similarly, 

the authors use a detailed cycle-accurate superscalar processor simulator to collect runtime 

statistics. However, the main motivation of the study is quite different. They try to predict 

processor performance for any given micro-architectural parameters. In contrast, here, we 

focus on predicting applications’ performance for a fixed processor configuration. Our major 

goal is to provide highly accurate performance predictions to algorithms with various 

motivations. For instance, a resource partitioning algorithm can make use of such accurate 

predictions for better resource utilization and higher power savings. There are many other 

motivating studies that can make use of such precious information [3][4][5][6][7]. 

Another similar study predicts processor performance by building empirical functions that 

integrate micro-architectural parameters for a typical superscalar processor [8]. Again, the 

main goal is faster design space exploration as in [2]. This earlier study aims to accurately 

predict the Instructions Per Cycle (IPC) at the end of the completion of an application. The 

authors claim that the predicted IPC is within 5.8 per cent range of the actual IPC, on the 

average. Though, in this study, our main motivation is to accurately predict IPC values in 

certain time periods in the near future, so that an existing algorithm can benefit from such 

prior knowledge adapting itself to either an unavoidable performance drop or a performance 

increase. Besides, instead of building hand-made empirical functions, we let machine 

learning techniques to discover such functions by applying regression models. 

Finally, there is a study on performance prediction for parallel applications, which is similar 

to our neural network approach [10]. The authors consider that it is difficult to construct 

analytical predictive models even though they are useful. Similarly, they build multi-layer 

neural networks trained on input data, that is, there is a hidden layer, which transforms a 

single-layer structure into multi-layer structure. However, in our study, we focus on single 

thread of M-Sim instead of parallel applications SMG2000. They gather performance 

samples from application, which is executed and use those data in their constructed training 

neural network system. The author claims that some studies on SMG2000 have been carried 

out, but the code’s variations in execution time are not well understood [10]. Thus, they 

focused on avoiding noise in their data set and collecting appropriate sampling techniques. 
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However, our main motivation is to accurately predict trend of IPC in the near future, so that 

existing algorithms can adapt itself to unpredictable increase or decrease of processor 

performance. 
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J value is calculated with a formula represented in Eq.3.3. Finally, at line 10, we iteratively 

calculate a new theta value according to the function given in Eq.3.6. 

 

Algorithm 3.1. Pseudo code of the gradient descent 

 

 1: Initialize-parameters 

 2: X  training data, y  testing data 

 3: X  featureNormalization(X) 

 4: alpha  0.1, 0.01 or 0.001 

 5: maxIters  50  

 6: theta  0 

 7: m  length of y 

 8: for ( i  0, i < maxIters, i++) do 

 9:   J  1/(2 * m)* 2 *( XT * X * theta - XT * y) 

10:   theta  theta - alpha * J 

11: end for 

 

3.3. NEURAL NETWORK MODEL 

A Neural Network (NN) model enables a computer to learn from a set of training data as in 

the regression models. They are used to solve a large variety of machine learning problems. 

Regression models have already been used and accurate results were obtained. Thus, why 

we need ANNs learning? At Fig.3.1, supervised learning classification problem is 

represented with a training data set. It is called supervised learning because it is the process 

of teaching from a training data set. When the learning process reaches an acceptable level, 

learning stops. In the figure, the method works well only if there are two features x1 and x2. 

However, many machine learning problems have a lot more features than just two.  
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Algorithm 3.3. Pseudo code of prediction accuracy 

 

 1: Initialize-parameter 

 2: featureNormalize(X) 

 3: Initialize-weights 

 4: data = testing data 

 5: trend = testing data of DIPC trend 

 6: m = size of data 

 7: success = 0 

 8: for ( i = 1 : m) do 

 9:   pred = predict(Theta1, Theta2, data(i, :)) 

10:  if ((trend(i)+1) == pred) do 

11:   success = success + 1 

12:  end if 

13: end for 

 

First, a few parameters are set to use for neural network accuracy prediction. Input layer size, 

hidden layer size, and number of labels, which represents output nodes, are determined in 

Algorithm 3.3. These parameters show diversity according to how many features are used in 

ANNs. Second, the featureNormalize function is called in order to return add normalized 

version of X or input variables. In the 3rd line of the Algorithm 3.3, weights of neural network 

are initialized randomly. A randomly initialized function is used to do so. After training 

neural network, testing data is used to predict the labels, which are determined by num_label 

parameter. In the 8th line of the Algorithm 3.3, for loop iterates all testing inputs one by one. 

By using the predict function, trend of DIPC is calculated and it is compared to the current 

trend data so that rate of the successful or accurate predictions can be statistically computed.  
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Algorithm 3.4. Pseudo code of feedforward 

 

 1: nnCostFunction(nnparameters, inputl_size, 

hiddenl_size, num_labels, X, y, lambda) 

 2: Initialize-parameters 

 3: Reshape-Theta1 and Theta2 

 4: J = 0 

 5: K = num_labels 

 6: for (i : m) do 

 7:   X_i = X(i : m) 

 8:   h_of_Xi = sigmoid ([1 sigmoid(X_i * Theta1’)] 

* Theta2’) 

 9:   y_i = zeros(1,K) 

10:   y_i(y(i) + 1) = 1  

11:   J = J + sum(-1 * y_i .* log(h_of_Xi - (1-y_i) 

.* log(1 - h_of_Xi))) 

12: end for 

13: J = 1/m *J 

14: J = J + (lambda / (2*m) * 

(sum(sumsq(Theta1(:,2:inputl_size+1))) + 

sum(sumsq(Theta2(:,2:hiddenl_size+1))))) 

15: return J 

 

The NN cost function computes the cost and the gradient of the neural network. In the neural 

network structure, the parameters are unrolled vector of the partial derivatives of the neural 

network. Thus, those parameters are reshaped into Theta1 and Theta2, which are the weights 

of our two-layer neural network. 

The Feedforward algorithm returns the cost variable J as an output. y_i is a vector contains 

0’s as much as the number of K. K represents number of output units. In our NN structure, 

we have two output units which shows increase or decrease trend (K = 2). Then, first or 

second slot of K vector is set to 1 according to output of y. If y(i) is equal to 0, then y_i = [1 

0]. On the other hand, if y(i) is equal to 1, then y_i = [0 1]. By the help of y_i vector, 

computation of J minimum is carried out.      
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4. ARCHITECTURAL DESIGN 
 

Instructions Per Cycle (IPC), which reflects computer performance, expresses the average 

number of instructions executed for each clock cycle. In our approach, we focus on Dynamic 

Instructions Per Cycle (DIPC). The DIPC represents the average number of instructions 

executed during a period, which we call epoch. Here, the epoch size is empirically set to one 

million clock cycles throughout this study. We tried shorter or longer durations for the epoch 

size, and shorter durations give us too many redundant data whereas longer durations do not 

successfully capture phase changes of running benchmark applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 4.  Superscalar datapath  

 

Fig.4.4 depicts the superscalar datapath that we considered for this study. Here, instructions 

are fetched and decode stage starts. Some instructions are located in Issue Queue (IQ) and 

load/store instructions are hold in Load/Store Queue (LSQ). Thus, instructions are stored to 

physical registers in function units. The Re-Order Buffer (ROB) entry set up for an 

instruction at the time of dispatch contains a field to hold the result produced by the 

instruction. A dispatched instruction attempts to read operands from the Architectural 

Register File (ARF) directly when the operand is committed. Otherwise, the operand is 

IQ 
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LSQ 

FU 1 

ROB ARF 

PRF 
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generated but not committed so that it is read from the ROB. The operand values are hold in 

physical register file (PRF) when they are not committed. If the operand values are no longer 

used, they are forwarded to squashed stage. 

L1 and L2 data caches are used to reduce the average time to access memory. They are 

located within the processing unit of the computer. These two caches are directly related to 

performance of processor. Firstly, Central Processing Unit (CPU) starts to execute some 

instructions when a request or an access reaches to system. Then, CPU uses level 2 cache to 

cut down delay. L1 cache is too small in comparison to L2. It is the first destination for 

memory instructions. However, CPU looks in the level 2 cache, which has some latency and 

large area, when addresses are not found inside the level 1 cache. You can see the calculation 

of L1 and L2 caches below in Algorithm 4.5. When a request reaches to system, d1_access 

or dl2_access parameters are increased. If event is missed, dl1_miss or dl2_miss parameters 

are increased.  

 

Algorithm 4.5. Pseudo code of the calculation of L1 and L2 caches 

 

 1: initialize-parameters 

 2: counter_t dl1_miss = 0 

 3: counter_t dl1_access = 0 

 4: counter_t dl2_miss = 0 

 5: counter_t dl2_access = 0 

 6: if (cache_dl1) do 

 7:   if (lat > cache_dl1_lat)  

 8:      dl1_miss++ 

 9:   end if 

10:   dl1_access++ 

11: end if 

12: if (cache_dl2) do 

13:  if (lat > cache_dl2_lat) do 

14:  dl2_miss++ 

15:   end if 

16:   l2_access++ 

17: end if 

18: L1miss = dl1_miss/dl1_access 

19: L2miss = dl2_miss/dl2_access 

 

Instruction-level parallelism (ILP) expresses the average number of operations that can be 

simultaneously executed in a system. In Algorithm 4.6, we initialized ILPCount parameter 

to collect the number of operands in each period. In addition to this parameter, simulator 

At initialize 

Every cycle at 
decode 

At the end of a 
period 
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holds the number of total ILP calculations with the parameter of TotalILPCalculations. This 

variable is accumulated during the process of simulator. To gather statistic of the number of 

ILP, we divide ILPCount to TotalILPCalculations. By doing this calculation, DTABLE is 

checked to determine the number of operands.  

 

Algorithm 4.6. Pseudo code of the calculation of Instruction-level parallelism (ILP) 

 

1:  initialize-parameters 

2:  counter_t ILPCount = 0 

3:  counter_t TotalILPCalculations = 0 

4:  TotalILPCalculations++ 

5:  if (DTABLEo[i] == DTABLEi1[j]) do 

6:  ILPCount++ 

7:  end if 

8:  if (DTABLEo[i] == DTABLEi2[j]) do 

9:  ILPCount++ 

10: end if 

11: ILP = ILPCount/TotalILPCalculations; 

12: ILPCount = 0 

13: TotalILPCalculations = 0 

 

We initialize parameters at first line of Algorithm 4.7. Then, total number of Fetch Queue 

(FQtot), which holds instructions in fetch phase, is set to 0. To calculate Fetch Queue 

Occupancy (FQocc), which is the ratio of fullness of fetch with instructions, it is divided by 

epoch size. In order to accumulate FQtot parameter, it is set to 0 in each iteration. By 

accumulating FQtot, context[0].FQ_num structure, which belongs to zeroth thread, is 

implemented because here, we focus on single thread processors.  

Algorithm 4.7. Pseudo code of the calculation of fetch queue 

 

1: FQtot = 0 

2: for each cycle do 

3:   FQtot is increased by one 

4:   if end of epoch is reached then 

5:      FQocc =  FQtot / epoch size 

6:      Save FQocc to statistics 

7:      FQtot = 0; 

8:   end if 

9: end for 

 

At 

initialize 

Every cycle 

at decode 

At the end 

of a perdiod 
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An instruction is decoded or executed in the execution unit. For next instruction, six bytes 

are kept by instruction queue when it is busy to decode or execute an instruction. These bytes 

are stored in a first in first out register set. Thus, IQ occupancy directly effects speed of 

processor by increasing overall efficiency and reduces waiting time for the memory access 

operations.  

 

We initialize parameters at first line of Algorithms 4.8 through 4.11. Here, IQtot is set to 0 

at the beginning of the Algorithm 4.8, and it is divided by epoch size in order to obtain 

average IQ occupancy (i.e. IQocc). By doing this, contexts[0].icount is implemented because 

we work with a single thread processor. 

Algorithm 4.8. Pseudo code of the calculation of instruction queue occupancy 

 

1: IQtot = 0 

2: for each cycle do 

3:   IQtot+ = contexts[0].icount 

4:   if end of epoch is reached then 

5:      IQocc = IQtot / epoch size 

6:      Save IQocc to statistics 

7:      IQtot = 0; 

8:   end if 

9: end for 

 

Re-order buffer controls whether instructions are committed or not. If an instruction is 

successfully predicted, then it is committed. Otherwise, ROB is flushed. Thus, ROB 

occupancy is strictly effects on processor performance.  

In Algorithm 4.9, the total number of Re-Order Buffer (ROBtot), which holds all in-flight 

instructions in program order, is set to 0 at the beginning of the code. To calculate Re-Order 

Buffer occupancy (ROBocc), which is the ratio of buffer utilization by instructions, it is 

divided by epoch size. In order to accumulate ROBtot parameter, it is set to 0 in each 

iteration. By accumulating ROBtot parameter, context[0].ROB_num structure, which 

belongs to zeroth thread, is implemented because here, we focus on single thread processors. 
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Algorithm 4.9.  Pseudo code of the calculation of re-order buffer occupancy 

 

1: ROBtot = 0 

2: for each cycle do 

3:   ROBtot+ = contexts[0].ROB_num 

4:   if end of epoch is reached then 

5:      ROBocc =  ROBtot / epoch size 

6:      Save ROBocc to statistics 

7:      ROBtot = 0; 

8:   end if 

9: end for 

 

In Algorithm 4.10, the total number of Load/Store Queue (LSQtot), which holds memory 

instructions, is set to 0. To calculate Load/Store Queue Occupancy (LSQocc) which is the 

ratio of fullness of load/store queue, it is divided by epoch size. In order to accumulate 

LSQtot parameter, it is set to 0 in each iteration. By accumulating LSQtot, 

context[0].LSQ_num structure, which belongs to zeroth thread, is implemented because 

here, we focus on single thread processors. 

Algorithm 4.10.  Pseudo code of the calculation of load/store queue occupancy 

 

1: LSQtot = 0 

2: for each cycle do 

3:   LSQtot+ = contexts[0].LSQ_num 

4:   if end of epoch is reached then 

5:      LSQocc =  LSQtot / epoch size 

6:      Save LSQocc to statistics 

7:      LSQtot = 0; 

8:   end if 

9: end for 

 

An arithmetic logic unit is the part of the processor so that it effects processor performance 

by carrying out arithmetic and logic operations on the operands. In Algorithm 4.11, the total 

number of Arithmetic Logic Unit (ALUtot), which holds arithmetic and logic operations, is 

set to 0. To calculate Arithmetic Logic Unit Occupancy (ALUocc), which is the ratio of 

fullness of operands, it is divided by epoch size. In order to accumulate ALUtot parameter, 

it is set to 0 in each iteration. By accumulating ALUtot, context[0].ALU_num structure, 

which belongs to zeroth thread, is implemented because here, we focus on single thread 

processors. 
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Algorithm 4.11.  Pseudo code of the calculation of arithmetic logic unit occupancy 

 

1: ALUtot = 0 

2: for each cycle do 

3:   ALUtot is increased by one 

4:   if end of epoch is reached then 

5:      ALUocc =  ALUtot / epoch size 

6:      Save ALUocc to statistics 

7:      ALUtot = 0; 

8:   end if 

9: end for 

 

A CPU using branch prediction only executes statements if a predicate is true and thus, 

branch predictors play a critical role in achieving high effective processor performance. In 

our study, we also integrate the branch misprediction rate as one of the features training our 

model. 

Instructions are executed when they are ready in an instruction window. Here, the number 

of ready instructions is calculated by checking ready queue, which is a queue of all 

instructions waiting to be scheduled on a processor. In Algorithm 4.12, we show how we 

account the average number of ready instruction in the ready queue. Thanks to if/else 

structure, we check whether integer or floating instructions are ready or not at destination 

register. Then, ready_inst[0] (integer  instructions) and ready_inst[1] (floating instructions) 

are increased by one. In each period, these arrays are divided by epoch size to calculate the 

number of them and again, ready_inst[0] and ready_inst[1] are set to 0 in order to gather 

dynamic result of parameters.  
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Algorithm 4.12.  Pseudo code of the calculation of ready instruction 

 

 1: initialize-parameters 

 2: counter_t ready_inst[2] = {0, 0} 

 3: structure RS_link *link 

 4: for (link = ready_queue; link!=NULL; link=link-    

>next) do 

 5:   if (RSLINK_VALID(link)) then 

 6:  struct ROB_entry *rs = RSLINK_RS(link); 

 7:  if (rs->dest_format == REG_INT) then 

 8:   ready_inst[0]++ 

 9:  end if 

10:       else if (rs->dest_format == REG_FP) then 

11:   ready_inst[1]++ 

12:  end if 

13:    end if 

14: end for 

15: readyi_int = ready_inst[0]/epoch_size 

16: readyi_fp = ready_inst[1]/epoch_size 

17: ready_inst[0] = 0 

18: ready_inst[1] = 0 

 

In general, register allocation is the process of stating a large number of program variables 

onto a small number of processor registers. Processor runs faster and has better performance 

when more variables can be in CPU. Instead of memory, processor uses registers so that it 

fetches faster. However, registers are limited in many processors. Therefore, compiler must 

decide how to allocate variables. Here, calculation of how many instructions are allocated in 

register file is crucial to observe the effect of it on processor performance.       

We implement Algorithm 4.13 below that PRF_allocated and Total_PRF_allocated arrays 

are set to 0 at the beginning of the algorithm. Then, allocated instructions are determined by 

checking dest_format and pyhs_reg. After arithmetic calculations, Total_PRF_allocated 

array is divide by epoch size so that we collect accumulated allocated integer and floating 

instructions. 
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Algorithm 4.13.   Pseudo code of the calculation of register file allocation 

 

 1: initialize-parameters 

 2: counter_t PRF_allocated[2] = {0, 0} 

 3: counter_t Total_PRF_allocated[2] = {0, 0} 

 4: if (rs->dest_format == REG_INT) then 

 5:   PRF_allocated[0] -- 

 6: else if (rs_dest_format == REG_FP) then 

 7:   PRF_allocated[1] -- 

 8: end if 

 9: if (ex_phys_reg == REG_INT) then 

10:  PRF_allocated[0] -- 

11: else if (ex_phys_reg == REG_FP) then 

12:   PRF_allocated[1] -- 

13: end if 

14: allc_int = Total_PRF_allocated[0]/epoch_size 

15: allc_fp = Total_PRF_allocated[1]/epoch_size 

16: Total_PRF_allocated[0] = 0 

17: Total_PRF_allocated[1] = 0 

18: Total_PRF_allocated[0]+=PRF_allocated[0] 

19: Total_PRF_allocated[1]+=PRF_allocated[1] 

 

There are two differences to calculate valid integers and floating points in Algorithm 4.14 

when it compares to register file allocation. Firstly, at the 8th and 11th line of the algorithm, 

instructions, which go through the writeback stage, are controlled so that we determine the 

valid ones. Secondly, if they are within writeback stage, PRF_valid array is increased by 

one. Therefore, we collect statistics about register file validation.  
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Algorithm 4.14.  Pseudo code of the calculation of register file validation 

 

 1: initialize-parameters 

 2: counter_t PRF_valid[2] = {0, 0} 

 3: vld_int = PRF_valid[0]/epoch_size 

 4: vld_fp = PRF_valid[1]/epoch_size 

 5: PRF_valid[0] = 0 

 6: PRF_valid[1] = 0 

 7: for (i = 0; i < rf_size; i++) do 

 8:   if (int_reg_file[i].state == REG_WB) then 

 9:   PRF_valid[0]++ 

10:  end if 

11:  if (fp_reg_file[i].state == REG_WB) then 

12:  PRF_valid[1]++ 

13:   end if 

14: end for 
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5. EXPERIMENTAL FRAMEWORK 

 

We use the M-Sim simulator to run SPEC CPU2006 benchmarks on a 4-way out-of-order 

superscalar processor [9]. Data is collected in every one million cycle. As suggested in the 

literature, we divide our data set into two portions [11]. First 80 per cent of the data is 

selected as the training set and the remaining 20 per cent of the data is used for testing the 

function, which we obtain by running the algorithm described in the previous section. As a 

result, we run benchmarks at different program regions by fast-forwarding simulations from 

80 million to 2 billion cycles, and collect around 2500 training and 800 testing data. 

 

The linear, quadratic, and cubic regression models are applied to first three and first four 

features, separately in Table 5.2. The algorithms of mathematical functions are implemented 

in C language using Octave environment. The details of the simulated processor are given 

in Table 5.1. 

 

Table 5.1. Configuration of the simulated processor 

 

Parameter Configuration 

Machine Width 4-wide fetch/dispatch/issue/commit 

L/S Queue size 48 Load/Store queue 

ROB & IQ size 128 entry ROB, 32-entry IQ 

L1 I-cache 64KB, 2-way set-associative 64-byte line 

L1 D-cache 64KB, 4-way set-associative 64-byte line, write-back,  

1-cycle access latency 

L2 Cache unified 512KB, 16-way set-associative 64-byte line, write-back, 

10-cycle access latency 

BTB 512 entry, 4-way set-associative 

Branch Predictor Bimod: 2K entry 

Memory 32-bit wide, 300 cycles access latency 
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Fig.5.4 and Fig.5.5 show the collected statistics for L1 and L2 caches, respectively. From 

this figure, we can vaguely identify the relation between the DIPC and L1/L2 cache miss 

rates. Fig.5.4 also shows that with only one or two features, the machine learning algorithm 

would not be that successful, since there is a huge variation in DIPC for the same level of 

cache miss rate. These two figures prove that we need more distinct features to train our 

model to be more successful in our performance predictions. 

 

Figure 5.4. Collected statistics for the L1 cache 

 

 

Figure 5.5. Collected statistics for the L2 cache 

 

As a result, we collect 18 processor features that are related to the behavior of running 

applications. Table 5.2 lists all these features that are used in our machine learning models. 

Here, ILP is measured as the number of instructions that can be run in parallel in a single 
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cycle. It is collected from the dependency checking logic, which is run at the processor 

decode stage. Features 6 through 10 are average occupancy levels of Fetch Queue (FQ), 

Issue Queue (IQ), Re-Order Buffer (ROB), Load/Store Queue (LSQ) and Arithmetic Logic 

Units (ALU). Then, we collect the number of ready instruction in IQ for both integer and 

floating-point instructions, separately. Features 13 through 16 are collected from Physical 

Register File (PRF). First, we collect the average number of allocated PRF entries for integer 

and floating-point instructions. Then, we also collect the average number of valid PRF 

entries, as well. Final, two features show the success of speculation done in hardware. 

Basically, the average number of squashed instructions from the ROB structure shows the 

efficiency of the processor. When these two values are high, we see a huge drop in IPC, 

since the speculation mechanism starts throwing all mispredicted instructions into thrash 

rather than completing them. 

Table 5.2.  List of features 

 

No Feature 

1 L1 miss rate 

2 L2 miss rate 

3 Dynamic instruction per cycle (DIPC) 

4 Instruction per cycle (IPC) 

5 Instruction Level Parallelism (ILP) 

6 Average Fetch Queue (FQ) occupancy 

7 Average Issue Queue (IQ) occupancy 

8 Average Re-Order Buffer (ROB) occupancy 

9 

10 

Average Load/Store Queue (LSQ) occupancy 

Average Arithmetic Logic Unit (ALU) occupancy 

11 Average number of ready instructions (integer) 

12 Average number of ready instructions (float) 

13 Average number of allocated PRF (integer) 

14 Average number of allocated PRF (float) 
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15 Average number of valid PRF (integer) 

16 Average number of valid PRF (float) 

17 Average number of ROB squashed (integer) 

18 Average number of ROB squashed (float) 
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6. TEST AND RESULTS 

 

In this section, we present the results for both the regression and the neural network models 

that we proposed in this study. 

6.1. RESULT OF THE REGRESSION MODEL 

We used linear, quadratic, and cubic regression models to accurately estimate the DIPC. 

Based on these methods, we measured four different prediction schemes: (i) DIPC trend (i.e. 

is performance increasing or decreasing?), (ii) 3 per cent DIPC range (i.e. performance 

prediction is assumed to be correct if the predicted DIPC is still within 3 per cent range of 

the actual DIPC), (iii) 5 per cent DIPC range, and (iv) 10 per cent DIPC range (same 

prediction scheme for 5 per cent and 10 per cent range, respectively). In Fig.6.6, we show 

our prediction results for linear, quadratic, and cubic regression models. Here, the 

configurations for the predictions are represented by X/Y notation, where X represents the 

prediction scheme and Y represent the number of features. As we see from the figure, 

increasing the number of features has a positive effect on prediction accuracy (number of 

correct guesses/number of total guesses). Secondly, as we expected, the width of the DIPC 

range has an important role on the prediction accuracy, as well. As we relax the range, we 

observe higher prediction accuracy.  

 

Figure 6.6. Prediction accuracy for the linear regression model 
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An important observation might be the insensitivity of the accuracy results to different 

regression models. We see that quadratic regression model performs slightly better than the 

other models. However, even the simplest linear model works fine. We do not see a radical 

change when we change our regression model from linear to polynomial. 

Here, we closely focus on graphs of three different models on prediction accuracy; normal 

equation, gradient descent and normalization. According to prediction results above Fig.6.6, 

we obtain quadratic regression model is very slightly better than linear and cubic regression 

models. We acquire utmost prediction results for quadratic regression model by applying 

normal equation in Fig.6.7 and Fig.6.8, as well. Fig.6.7 is the graph, which is obtained by 

testing on first 20 per cent part of the whole data. 

 

Figure 6.7. Prediction accuracy of normal equation – first testing data 

 

On the other hand, in Fig.6.8, prediction results are gathered by testing on the last 20 per 

cent part of the whole data. As you see from graphs, the number of features has significantly 

effects on processor performance. Secondly, prediction accuracy rises with an increasing in 

width. Common point of two graphs is to reach top accuracy score for 4 features quadratic 

regression model. 
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Figure 6.8. Prediction accuracy of normal equation – second testing data 

 

 

Figure 6.9. Prediction accuracy of gradient descent – first testing data 
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Figure 6.10. Prediction accuracy of gradient descent – second testing data 

 

In Fig.6.9 and Fig.6.10, graphs of prediction results are formed by applying gradient descent 

model to NN system. It is clear that in both graphs, we obtain high processor performance 
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for 3 features and 0.1 width range. As you see from graphs, we get better accurate results 

with the last 20 per cent of testing data in Fig.6.10 by using gradient descent model. 

There is a considerable diversity in Fig.6.11 and Fig.6.12, which are obtained by 
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prediction accuracy in as positive way. In contrast, here, prediction accuracy slightly 
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to observe how prediction accuracy changes while the number of features increase and the 

whole data normalize.  

 

Figure 6.11. Prediction accuracy of normalization – first testing data 

 

 

Figure 6.12. Prediction accuracy of normalization – second testing data 
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6.2. RESULT OF THE NEURAL NETWORK MODEL 

NN graphs, which are obtained by iterating or processing the NN system, from 100 to 1500 

iterations show prediction results for 4, 10, and 18 features. Each iteration contains 16 

prediction accuracy results with different regularization parameters, lambda values and 

various number of hidden nodes. Results with lambda value of 0 are represented by yellow, 

with lambda value of 0.1 are represented by green, with lambda value 0.5 are represented by 

dark blue, and, finally, with lambda value of 1.0 are represented by magenta colored nodes. 

As shown in Fig.6.13, when we consider 100 iterations experiment, it is divided into four 

regions including aforementioned lambda values for four various hidden layer nodes (1, 2, 

4 and 6). For the sake of clarity, we only show these regions for 100 iteration results on the 

graph. The same presentation method is also applied to Figures 6.13 through 6.18.  

When we consider Fig.6.13 and 6.14, it is clear that normalization method has a positive 

effect on processor performance for 4 features. In Fig.6.13, we acquire the widest range of 

prediction accuracy results and reach to a peak accuracy at 67 per cent with 300 iterations, 

6 hidden nodes and lambda value of 0 configuration. At all points in Fig.6.13, percentage of 

prediction accuracy is better than without normalization method. 

 

Figure 6.13. Prediction accuracy for 4 features – with normalization 
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Figure 6.14.  Prediction accuracy for 4 features – without normalization 

 

In Fig.6.15 and Fig.6.16, normalized and non-normalized NN systems work fine for 10 

features for 5, 9, 10 and 12 hidden layer nodes. However, there are some obvious differences 

when we compare these two graphs.  

 

 

 

Figure 6.15.  Prediction accuracy for 10 features – with normalization 
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Firstly, we observe that the NN system outputs advanced prediction results at 300 iterations. 

It is sufficient to use 10 hidden units in order to reach to 68 per cent of accuracy with 

normalization method. Secondly, fluctuation of each iteration in Fig.6.16 stays growing 

positon in contrast to Fig.6.15 that has a decrease trend after 300 iterations. NN system 

reaches to pick point within 1500 iterations for without normalization as 66 per cent. 

 

 

Figure 6.16. Prediction accuracy for 10 features – without normalization 

 

 

Figure 6.17. Prediction accuracy for 18 features – with normalization 
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Figure 6.18. Prediction accuracy for 18 features – without normalization 

 

In Fig.6.17 and 6.18, 9, 13, 18, 20 hidden layer nodes are used. As we expected, we obtain 

utmost result in normalized NN system by testing 18 features as 70 per cent in Fig.6.17. We 

reach to that result at 1000 iterations. It is obvious that there is a significant percentage 

differences between two graphs. For 100 iterations, prediction accuracy of normalized graph 

is almost 64 per cent although it is not even close to 59 per cent in Fig.6.18. 

When we consider al graphs above, increasing the prediction accuracy is systematical that it 

scales from 64 per cent to 67 per cent for without normalization and that rising trend 

maintains its position for normalization, as well (from 67 per cent to 70 per cent). We see 

precise and accurate changes when we modify the number of features and hidden units. Thus, 

it is certain that processor performance is directly proportional to the increase on features 

and hidden units. 
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6.3. COMPARISON BETWEEN REGRESSION AND NN MODELS 

 

Figure 6.19. Comparison between regression and NN models 

 

Fig.6.19 describes the comparison between regression model and neural network in terms of 

prediction accuracy. The highest estimated result between linear, quadratic, and cubic 

regression models are illustrated in this figure and its result compared with normalized neural 

network. As you can see from the figure, prediction accuracy shows a significant rise from 

62 per cent to 70 per cent. We find normalized neural network with twenty features the most 

promising model in this study.  

In Fig.6.19, we predicted the performance accuracies of the baseline algorithms with two or 

five periods of history. We obtained 54 per cent and 59 per cent prediction accuracies by 

considering trends (increasing or decreasing) of two or five periods of data history. Whereas 

results are better than random guess (50 per cent), they are less than regression and NN 

models, as we expected.  

We trained our NN model with a various set of features (4, 10, and 18). First four features, 

which are given in Table 5.2, make the first set of features. Note that these four features are 

also used to train our regression model. Next, we used first ten and all eighteen features to 

train our NN model. Fig.6.20 shows the accuracy results for all these settings with and 
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without normalization of features. As we see from the figure, when the number of features 

is increased, the prediction accuracy of the NN gets better and better. We also find that 

normalization always helps improving the accuracy level of the NN predictor, since there 

are a variety of features with different minimum and maximum ranges. We see that the 

maximum prediction accuracy of 70 per cent is observed when the number of features reach 

to eighteen with the normalization is in effect. 

 

Figure 6.20. Prediction accuracy for the NN model with and without normalization applied 

on features 

 

We try to explore the search space by varying the number of hidden layers, the number of 

iterations, the value of lambda, and the number of features and also by applying 

normalization to the training data. The following Fig.6.21 and Fig.6.22 show the isolated 

effect of each of these parameters on the prediction accuracy. For example, Fig.6.21 shows 

the effect of the number of hidden layer nodes on the prediction accuracy when the other 

parameters are kept constant. From this figure, we see that the prediction accuracy can be 

improved by increasing the number of hidden layer nodes in a neural network. This 

conclusion is not true for all the cases, though. We see that the maximum number of hidden 

layer nodes for 4 and 10 features do not give the best accuracy. 
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Figure 6.21. Prediction accuracy for various number of hidden layer nodes 

 

Fig.6.22 shows the effect of the regularization parameter, lambda, on the prediction accuracy 

when the other parameters are kept constant. We only studied four different values of the 

lambda in our tests, and either 0.1 or 0.5 seems to work fine to achieve the best accuracy 

with different number of features.  

 

 

Figure 6.22. Prediction accuracy for various lambda values 
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Normally, we used two types of data sets to perform supervised neural network. In one 

dataset which is called training data, we have input data together with expected output. This 

dataset is prepared by collecting some data in benchmarks. Here, we have expected output 

for every data row. In second dataset which is called testing data, this is the data in which 

we are interested for the output of our model and thus the data include unexpected dataset. 

Finally, we decided to test our training data with obtained weights in order to estimate how 

well our model has been trained. The accuracy of model depends on the size of our data and 

the value we would like to predict. Thus, we obtained 73 per cent prediction accuracy on 

training dataset, which is, it is slightly accurate than ever the prediction of 18 features and 

20 hidden layer nodes. At some point, NN stops learning useful general features and iteration 

number or regularization parameter might cause that issue. In the future, NN can be trained 

with different regularization coefficients or can be expanded the training and feature dataset. 

Furthermore, NN model might not be sufficient learining capacity so that number of hidden 

layers or number of hidden layer nodes can be altered.     
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7. CONCLUSION 

 

In this study, we focus on the accurate performance prediction of applications running on 

out-of-order superscalar processors. We studied a variety of machine learning methods 

including the normal equation, the gradient descent, the normalization algorithm with linear, 

quadratic and cubic regression models, and, finally, the neural network model with various 

number of processor features. The baseline algorithms with two or five periods of history 

achieve prediction accuracies of 54 per cent and 59 per cent, respectively. We find that the 

best prediction accuracy with a regression model is achieved with the quadratic regression 

model at 62 per cent. Finally, the neural network model achieves much better results even 

with the same number of features, and it seems more suitable to problems similar to the one 

studied in this thesis. The best prediction accuracy (70 per cent) is achieved with a neural 

network trained with 18 normalized features.  
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