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ABSTRACT

A NSGA-II BASED SENSOR SELECTION SCHEME FOR TARGET TRACKING

IN WIRELESS SENSOR NETWORKS

In this thesis, we study the sensor selection problem in target tracking for a wireless sensor

network (WSN). The target emits energy and the sensors transmit their measurments from

the target to the Fusion Center (FC). FC estimates the location of the target by using these

measurements. Since a WSN may have limited resources, it is critical to gather measurements

only from the most informative sensors rather than all the sensors in the WSN. Our aim is to

find the sensor selection strategy at each time step of tracking by the joint minimization of

objective functions representing the estimation error and total number of sensors transmitting

to the FC, where we use a Non-dominated Sorting Genetic Algorithm - II (NSGA-II) to

determine the solutions between the two conflicting objectives. Different from the existing

results in the literature, our aim is to get the solutions of NSGA-II accurate and fast by setting

right parameters. Firstly, rather than randomly initializing the initial population of NSGA-II

at each time step of tracking, we use the solutions of the previous time step in the initial

population of the current time step. Secondly, rather than executing NSGA-II for excessive

generations to observe the near Pareto-optimal front, we define a stopping rule by using the

Generational Distance metric. We further compare the solutions proposed Multi-objective

optimization problem under different population sizes and crossover operators as well as

under target trajectories with different process noise parameters, and different total number of

sensors in the WSN.
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ÖZET

KABLOSUZ ALGILAYICI AĞLARINDAKİ HEDEF TAKİBİ İÇİN BSGA-II

TABANLI SENSÖR SEÇİM YÖNTEMİ

Bu tezde, kablosuz algılayıcı ağında (KAA) hedef takip problemi üzerinde çalışıyoruz. Hedef

enerji yayar ve algılayıcılar bu enerjiyi ölçüp, ölçümlerini Tümleştirme Merkezi (TM)’ne

gönderir. TM bu ölçümlere göre hedefin yerini tahmin eder. Bir KAA’nın kaynakları sınırlı

olduğundan, bütün algılayıcıları kullanmak yerine, yalnızca en bilgilendirici algılayıcılardan

ölçümler almak önemlidir. Amacımız, Baskınlanmamış Sıralayan Genetik Algoritma-II

(BSGA-II)’yi kullanarak, iki ayrı ve birbirileriyle ters orantılı görev fonksiyonları olan tahmin

hatasını ve gönderim yapan algılayıcıların toplam sayısını her zaman adımında minimize

etmek için bir algılayıcı seçme stratejisi bulmaktır. Litaratürde bulunmuş sonuçlardan farklı

olarak, hedefimiz doğru değişkenleri kullanarak BSGA-II’den sonuçları daha hızlı ve hatasız

alabilmektir. İlk olarak, giriş popülasyonunu her zaman adımında rastgele oluşturmak yerine,

önceki zaman adımının sonucundaki çözümleri kullanarak şimdiki zaman adımındaki giriş

popülasyonunu oluşturuyoruz. İkinci olarak, BSGA-II’yi en iyi sonuçları içeren listeyi

(Pareto- Optimal Front) elde etmek için gereğinden fazla nesille çalıştırmak yerine, Nesilsel

Uzaklık ölçüsünü kullanarak bir durdurma kuralı tanımlıyoruz. Buna ek olarak, KAA’da farklı

popülasyon miktarları, geçiş operatörleri, işlem gürültüsü katsayıları ve toplam algılayıcı

sayıları kullanarak elde ettiğimiz çözümleri karşılaştırıyoruz.
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1. INTRODUCTION

A typical wireless sensor network (WSN) consists of a large number of sensors where

each sensor is assumed to be a simple battery-powered device with some limited signal

processing capabilities. If sensors are are well programmable and have sufficient connections,

a WSN is useful for variant applications such as battlefield surveillance , target tracking and

environmental monitoring , industrial applications and health monitoring [1–5] .

Limited signal processing and energy capacity constraints in a WSN lead to the development of

adaptive management of sensor strategies. Terms such as sensor selection and bit allocation are

examples in adaptive sensor management, and these methods provide the most effective ways

of obtaining results by retrieving data from the most informative sensors rather than retrieving

data from all sensors in the WSN. For sensor selection, only the most informative sensors

transmit their data and the others stay silent not only keeps the estimation error small, but also

decreases the number of transmissions and energy spent on each transmission. Transmission

bandwidth can be useful for providing better estimation performance for the selection of

sensors [6]. In this thesis, we assume that all the WSN’s sensors receive measurements

from an energy emitting target and send their data to the Fusion Center (FC). FC is not

only responsible for statistical inference based on received sensor measurements, but also

responsible for adaptive sensor management, i.e., it decides the informative sensors and

gathers their data in the next query. In the bit allocation problem, total number of bits in a

WSN is limited and FC has another object that addition to the selecting sensors, it distributes

the available bits dynamically and optimally among the selected sensors. An example of target

tracking application in a WSN is given in Fig. 5.1, where sensors are deployed randomly in a

given region of interest (ROI).

Target tracking can be performed by using various algorithms under different situations. The

non-linear version of KF, Extended Kalman Filter (EKF), is an algorithm that estimates

the unknown states by set of measurements observed over time with considering additive

Gaussian noise [7]. In the original algorithm, EKF predicts the location of the target when all

sensors transmit their complete measurements. On the other hand, if we force the columns
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Figure 1.1. Diagram of the target tracking process

of the ”Kalman Gain Matrix” to be all zero vectors, then the most informative sensors can

be further determined [8]. In order to better handle the non-linear process and measurement

models of target tracking, particle filters can be also used instead of using an EKF [9]. Using

a particle filter, the performance of target tracking with a pre-specified number of selected

sensors was demonstrated for both analog and quantized sensor measurements [10, 11].

Rather than setting a fixed number of sensors selected at each time step of tracking, we can let

the system to determine the number of informative sensors automatically. To do so, we can

use Multi-objective Optimization (MOO), where the objectives are typically the minimization

of error in estimation and minimization of resources used for transmissions [12–20]. The

objectives are typically conflicting to each other and the result of the MOO yields us a trade-off

curve between the objective functions.

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is a multi-objective evolutionary

algorithm and typically used when the analytical result of the MOO is hard to obtain [21].

NSGA-II is an elitist method, which promotes the solutions dominating the others and yields

the pareto-optimal front. NSGA-II was used for sensor selection in target tracking with a

specified number of population and fixed number of generations [19, 20]. On the other hand,

NSGA-II parameters may affect the results. As an example, a large number of population

size may cause the process to slow down, but reduce the error in estimation. In this study,
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we demonstrate several methods that form the population that is used at the beginning of the

algorithm. Using such adaptations, we can both reduce estimation error and save processing

time. Once we have the trade-off curve between the conflicting objectives, we have to select a

solution that is employed for the next step of tracking.

1.1. LITERATURE SURVEY

Sensors are typically located in a wide region of interest to observe a phenomenon of interest.

Since the WSN resources such as their energy and transmission bandwidth are assumed to

be limited, it may bring challenges such as node failure, limited lifetime, or limited node

coverage. In a given ROI, it is not desired to gather all sensor measurements, specifically

from the uninformative nodes which are far away from the phenomenon of interest. In other

words, if uninformative sensors are used for transmission, they consume energy, even if they

do not have a significant contribution on the error in estimation. In order to handle such

an issue, sensor selection methods have been developed, where the aim is to find the most

informative sensor set [22]. The selection of most informative sensors reducing the estimation

error and provide the necessary information were discussed [10, 11, 23–31]. The methods

considering the mutual information (MI) or entropy were addressed where the aim is to

determine the sensor set maximizing the mutual information between the target of interest

and sensor measurements [24–27]. In Fisher Information (FI) based methods, the aim is to

minimize the error in estimation by maximizing the FI between the target of interest and

sensor measurements [10, 11]. Maximizing the FI also minimizes the posterior Cramer-Rao

lower bound (PCRLB) on estimation, where PCRLB is basically the trace of the inverse

Fisher Information (FI) matrix. Based on quantized sensor measurements, MI and PCRLB

are two main methods to be used for sensor selection and were compared [28]. It was shown

that, under perfect transmission channels, with using PCRLB, the results have similar mean

square error (MSE) with the ones observed under MI and more importantly PCRLB had less

mathematical complexity than that of MI [28].

The overall Fisher Information matrix at each time step of tracking can be decomposed

into sums of Fisher Information corresponding to each individual sensors and the Fisher

Information of the prior time step [6]. Then, if the number of sensors that need to be
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selected is known in advance, convex optimization can be used to obtain the best sensor

selection strategy [23]. The sensor selection problem was first formulated as an integer

programming problem and then relaxed by replacing the binary variables with their continuous

counterparts [23]. In such approach the number of selected sensors were given in advance.

In previous studies, it is necessary to know in advance how many sensors that need to be

selected in each time step of tracking [10, 11, 23, 28]. However, in practice, it is usually not

known to the end user how many sensors that need to be selected at each time step of tracking,

since the number of informative sensors may vary in time. As an example, when the target

passes through a densely deployed area, more sensors become informative, and when the

target passes through an area with few sensors, a limited number of sensors may become

informative [19].

In previous studies on sensor management, it was assumed that the sensors were not subjected

to interference. However, sensor measurements may be uncertain in some situations [32–

36]. In some cases, some sensors may not work effective temporarily, sudden changes in

environmental influences may affect the measurements or interruptions, such as the passage

of living beings or objects, may affect the information received by the sensors [34, 35]. In

addition, random interference may enter the communication channel, or a jammer may be

used to disrupt the waves by the enemy [36]. Due to such uncertainties, there might be

errors on sensor measurements, which may further adversely affect the statistical inference

in the FC. In other words, in such uncertain conditions, sensor readings may only include

actual measurement about the target with a certain probability. For these reasons, it is also

crucial to study the selection of sensors in an uncertain environment as well. There are

some studies on such a situation where the sensors cannot correctly locate the target due to a

barrier. Considering this type of uncertainty, a stochastic model for sensor measurements was

shown [32, 33]. In addition, it was assumed that the sensors have different uncertainties at

different time steps and the same model was generalized [34, 35]. There are studies in the

literature using Kalman filter for uncertain WSN cases [33, 37–39]. In addition, studies were

done for target localization in communication channels which are not ideal [40,41]. For target

tracking in a WSN, the study of sensor selection in an uncertain measurement environment

using multi-objective optimization is further studied [20].
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WSN design involves simultaneous consideration of multiple and usually conflicting

objectives, such as minimizing the error in estimation, minimization of transmission power,

or lifetime maximization of the WSN [13–20, 42]. Such circumstances have been formulated

as a Multiobjective Optimization Problem (MOPs) where the solutions of the MOP reflect

different trade-offs between several objectives. Mobile agent routing problem was solved by

formulating a MOP where the objectives are selected as minimization of energy consumption,

minimization of path loss, and maximization of total detected signal energy [15]. Distributed

detection problem was formulated as a MOP that the sensor decision thresholds were used as

decision variables which jointly determine the probability of decision error and the overall

energy consumption of the WSN [17]. The binary quantizer designer problem for detection in

ths work was then extended to target tracking [18]. Assuming that sensors transmit quantized

measurements over ideal channels, the MOP found the sensor selection strategy which jointly

minimizes the error in estimation by minimizing the FI gap and minimize the number of

selected sensors [19]. The authors extended their previous results in in addition to the above

situation, the uncertainty in WSN is added and the selection problem is tried to be solved under

uncertainty on sensor measurements [20]. The error in estimation was seeked to be minimized

by using two alternative metrics namely FI selection scheme (FI-SS) and MI selection scheme

(MI-SS). Under measurement uncertainties, FI-SS selected sensors close to the target, while

MI-SS selected sensors with high sensing probability. Although MI-SS was more successful in

performance, it introduced higher computational complexity. A simplified version of MI-SS,

that is MI upper bound (MIUB)’s complexity is the same as FI but yielded near optimal results

as in MI-SS [20]. Moreover, the MOP problem was solved using Non-dominating Sorting

Genetic Algorithm-II (NSGA-II) , which is a multiobjective evolutionary algorithm [20, 21].

Other selection methods,e.g.,convex optimization and weighted sum method were also used

in conjunction with NSGA-II, and the results obtained from all methods were compared.

Evolutionary multi-objective optimization (EMO) is the general name of the methods that

maximize or minimize the objective functions with respect to users need. NSGA-II is one of

the EMO algorithm. EMO methods have been used in many applications since 1993, when it

was developed. Examples can be found in the related books and conferences [43–49]. Many

different crossover operators are used to implement the NSGA-II algorithm [50]. There are

metrics that can be used to set the number of generations created in the NSGA-II algorithm
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such as generational distance, spread and domination metrics [51].

Upon having the all the solutions on the Pareto-optimal front, there are two main methods to

determine the solution best reflecting the trade-offs between the objective functions. The first

one is the calculation of the pseudo-weight of the related solution [52]. The second one is to

select the point closest to the utopia point (the point corresponding to the minimum values of

all objectives) of the problem [20]. The performance of different multiobjective evolutionary

algorithms can be defined based on metrics mentioned.

1.2. LIST OF CONTRIBUTIONS

In this thesis, we study sensor selection for target tracking in a WSN based on an Extended

Kalman Filter similar to the framework presented before [8]. The sensor selection problem is

a combinatorial problem and it is hard to solve by using brutte force search [23]. In literature,

the MOP problem was solved by turning the bi-objective problem into a single objective

problem by defining appropriate weight coefficients to each objective functions [8]. The

single objective problem was first relaxed and then solved by Alternating Directions Method

of Multipliers Method (ADMM). On the other hand, in a practical scenario such weights per

each objective might not be clear to the user in advance.

In this study, we formulate a MOP problem for sensor selection similar to the ones presented in

related works [19,20]. In previous works, the authors employed particle filters and used Fisher

Information at each time step of tracking [19,20]. However in our work, we employ Extended

Kalman Filter and used trace of posterior error covariance matrix to quantify the estimation

error in the first objective. The second objective is to minimize the total number of sensors

selected at each time step of tracking. Our results can be directly extended to the particle

filtering scenario given in previous studies [19, 20]. In these, at each time step of tracking, the

initial population was determined randomly and independent from the final population of the

previous time step. Furthermore, at each time step of tracking the NSGA-II generations were

executed G = 100 times, where NSGA-II might have converged earlier. Among the solutions

on the Pareto-Optimal front, the solution for sensor selection was determined based on the

knee-point solution and the compromise solution.
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The list of contributions of this thesis as compared to the previous literature can be listed as

follows:

• Using an Extended Kalman Filter framework, we force the columns of the ”Kalman

Gain Matrix” to be all zero vectors, then the non-zero columns of the Kalman Gain

Matrix represents the sensors to be selected at each time step of tracking. We define a

binary vector of sensor selections whose size is equal to the total number of sensors

in the WSN. If the vector element is one than the corresponding column of Kalman

Gain Matrix becomes non-zero, and the sensor transmits its measurement; otherwise

the corresponding column of Kalman Gain Matrix becomes zero and the sensor stays

silent. The binary vector of sensor selections is then obtained using NSGA-II algorithm

where the objectives are minimization the error in estimation by minimizing the trace

of the posterior error Covariance matrix and minimization the total number of sensors

transmitting at each time step of tracking.

• Upon completing the NSGA-II generations, we select the sensor selection vector on the

Pareto-optimal front based on knee-point solution and minimum distance solutions as

well as the Pseudo-Weight solution [20, 52].

• Rather than initializing NSGA-II with totally randomly generated populations at each

time step of tracking, we propose to use two alternative initialization populations as in

Dynamic NSGA-II [52]. In the first case, we use the final population of the previous

time step entirely as the initial population of the current time step. In the seconds case,

we first fill the initial population of the current time step with the unique final solutions

of the previous time step, rest of the solutions in the population are then determined

randomly.

• In previous works, for each execution of NSGA-II, the algorithm was executed for

an excessive predetermined number of generations, where it was quite possible that

NSGA-II was converged in an earlier generation [19, 20]. In order to terminate the

algorithm in an earlier generation, we utilize the generational distance as a stopping

metric. We present the performance of the stopping metric under different population

sizes.

• We also compare the performance of NSGA-II algorithm under two different crossover

operators, namely uniform crossover and simple crossover.
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We tested the performance of sensor selection for single target target tracking under target

trajectories with different process noise parameters, and different number of sensors in the

WSN. Our numerical results show that rather than achieving the Pareto-optimal front after

excessive generations generational distance metric can be used as a good metric for stopping

as long as the population size is relatively large. Furthermore rather than initializing the

NSGA-II iterations with random solutions, the final unique solutions of the previous time step

can be added to the initial population of the current time step to help NSGA-II terminate at an

earlier generation.

1.3. THESIS ORGANISATION

The organisation of this thesis is summarized as given below,

In Chapter 2, we present the theoretical foundations of this work in detail. Firstly, we present

the definitions of expected value, correlation and covariance matrices of random variables.

In addition, we clarify the definition of minimum square error (MSE) that determines the

target tracking performance in the Kalman filter. Using the previous definitions, we next give

information about how optimal filters are formed, and explain the orthogonality condition.

Such definitions form the basis of Kalman filters. After explaining the basic equations and

terms, we introduce 1-D Kalman filter. In addition, we also explaing the Vector Kalman filter

and the Extended Kalman filter used in our target tracking application.

In Chapter 3, we describe our WSN system model and the target tracking problem that we

are trying to solve. The description of the variables and matrices used in EKF and how the

sensors make the measurements are explained in detail. In this application, we show that the

Kalman gain matrix is modified by considering the selected sensors.

In Chapter 4, we explain that optimum sensor selection is performed by using NSGA-II. We

clarify all the steps of the NSGA-II algorithm in detail. We describe the types of populations

and how to create initial and offspring populations accordingly. When producing populations,

we describe tournament selection, non-domination sorting, crowding distance methods. We

define the two methods used in decision making, pseudo-weight calculation, minimum



9

distance to origin. We further introduce the crossover and mutation operators, as well as the

generational distance metric which is used as a stopping rule.

In Chapter 5, we present our numerical results. The algorithms developed throughout the

thesis describe what kind of changes depend on which variables. In the target tracking

application, how the NSGA-II algorithm is made more effective and faster, what criteria it

depends and the comparisons between them are explained.

In Chapter 6, we summarize the applications made in the thesis, their results and benefits.

In addition, we give advice on what can be done in the future to develop more advanced

algorithms for this application.
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2. PRELIMINARIES

This chapter describes the applications of Kalman filter and how it works. Some equations

and values need to be defined before starting to describe the Kalman filter. Characterization

of a vector random variable can be done by using Expected values. It is done by mean vector

and covariance matrix.

2.1. EXPECTED VALUES, CORRELATION & COVARIANCE MATRICES OF

RANDOM VARIABLES

Expected value refers to mean of a random variables x that occur from an event X and its

formula is given below,

mx = E[X] =
∑
x∈Sx

xpx(x) =
∑
k

xkpx(xk) (2.1)

where mx is mean of x, the set Sx of random variables that x can be, px(xk) is the probability

of a random event X equals to random variable xk. If the random variable is a function that

Z = g(x), then it’s expected value or mean becomes,

E[Z] = E[g(X)] =
∑
k

g(xk)px(xk) (2.2)

where Z or g(X) is a function of random variable. Variance value can be found as follows,

σ2
x = V AR[X] = E[(X −mx)

2]

= E[X2]−m2
x (2.3)

These values give us information about how the random variable oscillates around which

point. If there are more than one random variables the formula changes. Expected values of a
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function of two discrete random variables are found by,

E[XjY k] =
∑
i

∑
n

xjiy
k
npX,Y (xi, yn) (2.4)

where pX,Y (xi, yn) is the joint probability of x and y. The relationship of two random variables

is determined by covariance. If they are independent, then their covariance will be zero but

the opposite is not always true. According to this, we cannot say they are independent if their

covariance is zero for every situation. Covariance formula is given below,

COV (X, Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY ]− E[X]E[Y ] (2.5)

If random variables are vector, their expected values are shown by,

mx = E[X] = E


X1

X2

...

Xn

 =


E[X1]

E[X2]
...

E[Xn]

 (2.6)

The relationship between the elements of the vector is shown by the correlation matrix which

is given below,

Rx =


E[X2

1 ] E[X1X2] · · · E[X1Xn]

E[X2X1] E[X2
2 ] · · · E[X2Xn]

...
... . . . ...

E[XnX1] E[XnX2] · · · E[X2
n]



Rx = E[XXT ] (2.7)
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If the elements are independent to each other, Rx’s diagonal elements will be zero. There is

also one more matrix definition to understand the Kalman filter. It is called Covariance matrix

which includes expected values of units in vectors minus their means. The matrix is written

by,

COV(X) =



E[(X1 −m1)
2] E[(X1 −m1)(X2 −m2)] · · · E[(X1 −m1)(Xn −mn)]

E[(X2 −m2)(X1 −m1)] E[(X2 −m2)
2] · · · E[(X2 −m2)(Xn −mn)]

...
...

. . .
...

E[(Xn −mn)(X1 −m1)] E[(Xn −mn)(X2 −m2)] · · · E[(Xn −mn)
2]



COV(X) = Rx −mxmx
T (2.8)

As seen in (2.8), covariance matrix’s diagonal elements are variances of the elements that

related with the row.

2.1.1. Minimum Mean Square Error

Minimum mean square error is used for developing Kalman Filter. Estimator of a random

variable X is x̂ = g(Y ) where Y is the observations, then mean square error (MSE) becomes,

e = E[(X − g(Y ))2] (2.9)

If Y is a vector of observations that Y = (Y1, Y2, ..., Yn)
T and g(Y ) is estimation vector of

observations X , then it can be written as

x̂ = g(Y ) =
n∑
k=1

wkYk (2.10)

where wk set of constants. For this situation, finding g(Y ) value that minimizes error gives us

the value of the best estimation of X .
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2.2. OPTIMUM LINEAR SYSTEMS & ORTHOGONALITY CONDITION

A discrete time random process X(t) must be wide-sense stationary(WSS) to be applied to

the optimum linear filter. The rule of that is random process’ mean is constant for all t and

autocorrelation function depends only on t1 − t2 which equals τ . Mean and autocorrelation

of X(t) formulas given below,

mx(t) = E[X(t)] = c (2.11)

RX(t1 − t2) = E[X(t1)X(t2)] (2.12)

RX(τ) = E[X(t)X(t+ τ)] (2.13)

RX(t1, t2) = E[X(t1)X(t2)] = RX(τ) (2.14)

where c is a constant. The structure for an optimal linear filter is shown in Figure 2.1. A

zero mean, discrete time random process Xα is observed in time interval I = t− a, ..., t+ b.

a+ b+ 1 resulting every element of the observation Xt−a, Xt−a+1, ..., Xt+b is multiplied by

appropriate contants ha, ha−1, ..., hb and their summation Yn will be our estimation for zero

mean process Zt which is shown by,

Yt =
t+b∑

β=t−a

ht−βXβ =
a∑

β=−b

hβXt−β (2.15)

Mean square error equals to,

E[e2t ] = E[(Zt − Yt)2] (2.16)

To minimize the mean square error, optimum hβ have to be found. The error et is orthogonal

to all Xα if the filter is optimum filter. The rule is named as orthogonality condition.
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Figure 2.1. Optimal linear filter structure [53]

Orthogonality condition where α ∈ I and new equation is given below,

E[etXα] = 0

E[(Zt − Yt)Xα] = 0

E[ZtXα] = E[YtXα] (2.17)

Substituting (2.15) and (2.2) we get,

E[ZtXα] = E

[
a∑

β=−b

hβXt−βXα

]

=
a∑

β=−b

hβE[Xt−βXα]

E[ZtXα] =
a∑

β=−b

hβRx(t− α− β) (2.18)
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As seen on (2.2), E[ZtXα] depends only on t− α that means these two random processes are

jointly WSS processes [53]. Thus the equation can be written,

RZ,X(t− α) =
a∑

β=−b

hβRx(t− α− β) t− a ≤ α ≤ t+ b

If we let m = t− α, then we get,

RZ,X(m) =
a∑

β=−b

hβRx(m− β) − b ≤ m ≤ a (2.19)

Thus, the filter which minimizes the mean square error E[(Zt − Yt)2] must satisfy (2.19).

Additionally, to determine MSE, we will benefit from one more orthogonal condition which

includes the error et and the estimate Yt by,

E[etYt] = 0 (2.20)

Then MSE becomes,

E[e2t ] = E[et(Zt − Yt)] = E[etZt]− E[etYt]

E[e2t ] = E[etZt] (2.21)
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While we continue substituting et, we get,

E[e2t ] = E[etZt] = E[(Zt − Yt)Zt] = E[ZtZt]− E[YtZt]

= Rz(0)− E[ZtYt]

= Rz(0)− E

[
Zt

a∑
β=−b

hβXt−β

]

E[e2t ] = Rz(0)−
a∑

β=−b

hβRZ,X(β) (2.22)

2.3. 1-D KALMAN FILTER

Kalman filter is an algorithm that estimates unknown variables by set of measurements

observed over time with considering noise. The objective is finding MSE of the true signal Zt

for every time step, with considering observations X0, X1, ..., Xt−1. t is the time step here.

The linear estimator is given below,

Yt =
t∑

j=1

h
(t−1)
j Xt−j (2.23)

Zt is assumed to be unknown and it’s structure is shown in Figure 2.2. Xt is the observation

signal and is generated by adding observation noise Nt to the actual signal. Nt has zero mean

and time-varying variances E[N2
t ]. There is also another noise type called process noise Wt

which also has zero mean and time-varying variances E[W 2
t ]. Finally, at is a known set of

constants.

As seen in the structure signal model as obtained as,

Zt = at−1Zt−1 +Wt−1 (2.24)
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Figure 2.2. 1-D Kalman Filter signal structure [53]
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Xt = ctZt +Nt (2.25)

where ct is a known set of constants. We apply orthogonality rule to the this filter,

E[(Zt − Yt)Xl] = 0 l = 0, 1, ..., t− 1

E[ZtXl] = E[YtXl]

RZ,X(t, l) = E

[
t∑

j=1

h
(t−1)
j RX(t− j, l)

]
(2.26)

If we substitute Zt , RZ,X(t, l) also equals to,

Zt =
Xt −Nt

ct

RZ,X(t, l) = E

[(
Xt −Nt

ct

)
Xl

]

=
E[XtXl] + E[XtNl]

ct
(2.27)

Xt and Nl are independent from each other, thus E[XtNl] equals to zero and we get,

=
E[XtXl]

ct
=
RX(t, l)

ct

RZ,X(t, l) =
RX(t, l)

ct
(2.28)

Yt+1, the estimation of Zt+1 becomes,

Yt+1 =
t+1∑
j=1

h
(t)
j Xt+1−j (2.29)
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Now, we apply orthogonality condition for the next time step t+ 1 with using (2.24),

E[(Zt+1 − Yt+1)Xl] = 0 l = 0, 1, ..., t− 1

RZ,X(t+ 1, l) = E

[
t+1∑
j=1

h
(t)
j RX(t+ 1− j, l)

]

RZ,X(t+ 1, l) = E[Zt+1Xl] = E[(atZt +Wt)Xl]

= atE[ZtXl] + E[WtXl] = atE[ZtXl]

RZ,X(t+ 1, l) = atE[ZtXl]

RZ,X(t+ 1, l) = atRZ,X(t, l) (2.30)

If we substitute (2.28) with (2.3),

atRZ,X(t, l) = h
(t)
1 ctRZ,X(t, l) +

t+1∑
j=2

h
(t)
j RX(t+ 1− j, l) (2.31)

RZ,X(t, l) =
t∑

j=1

(
h
(t)
j+1

at − cth1(t)

)
RX(t− j, l) (2.32)

Equaling (2.31) with (2.3), we get,

h
(t)
j+1 = (at − cth(t)1 )h

(t−1)
j (2.33)

After mathematical substitutions are done to (2.29) and (2.33), we get another equation where

Yt+1 is equal. Yt+1 equation also equals to,

Yt+1 = atYt + h
(t)
1 (Xt − ctYt) (2.34)
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According to these, optimum h
(t)
1 , later called kt which refers to ”Kalman gain” has to be

found for every time step. With using the prediction error εt = (Zt − Yt), next time step’s

prediction error becomes with substituting (2.34) with (2.24),

εt+1 = (at − ktct)εt +Wt − ktNt (2.35)

Thus, mean square prediction error E[ε2t+1] is equal to,

E[ε2t+1] = at(at − ctkt)E[ε2t ] + k2tE[N
2
t ] (2.36)

We have to find optimum kt that minimizes the MSE, this method is provided by taking the

derivative of the equation and then equalizing to 0. Finally kt equation is found as,

kt =
ctatE[ε

2
t ]

c2tE[ε
2
t ] + E[N2

t ]
(2.37)

2.4. VECTOR KALMAN FILTER

A number of changes in the use of kalman filter with vectors are based on the current prior

situation. If we show time step as t, we will accept xt as true signal and zt as observation

signal in current equations. In the Kalman filter, it is supposed that true state signal xt is

developed by the previous state signal xt−1 by the formula below,

xt = Ftxt−1 +Btut +wt (2.38)

where Ft refers to state transition model, Bt is the control-input model which is multiplied by

control vector ut, wt is process noise like before and assumed to has zero mean gaussian with

the covariance matrix Qt. Observation signal’s model is given as,

zt = Htxt + vt (2.39)



21

where Ht is the model of observation that transfers true state space to observed space and

vt is the observation noise has zero mean, gaussian with covariance Rt. The new state is

got with using the previous estimation and the current measurements. Kalman filter has 2

steps which are ”priori” or ”predict” and ”posteriori” or ”update”. Priori state estimations are

notated as x̂t|t−1 and update states as x̂t|t. Pt|t−1 and Pt|t are covariance matrices that reflect

the covariance of estimates in priori and posteriori state, respectively as seen below,

Pt|t = cov(xt − x̂t|t) (2.40)

Pt|t−1 = cov(xt − x̂t|t−1) (2.41)

Prediction state consists of 2 equations given by,

x̂t|t−1 = Ftx̂t−1|t−1 +Btut−1 (2.42)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt (2.43)

ŷt is defined as innovation or measurement pre-fit residual that obtained by,

ŷt = zt −Htx̂t|t−1 (2.44)
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There is also one more covariance matrix St which is innovation covariance that equals to

cov(ŷt). Then the update state without innovation becomes,

St = HtPt|t−1H
T
t +Rt (2.45)

Kt = Pt|t−1H
T
t S
−1
t (2.46)

x̂t|t = x̂t|t−1 +Ktŷt (2.47)

Pt|t = (I−KtHt)Pt|t−1 (2.48)

ŷt|t = zt −Htx̂t|t (2.49)

where Kt is the Optimal Kalman gain that minimizes the residual error and ŷt|t is the

measurement post-fit residual. Substitutions on (2.40) gives another equation of Pt|t.

Derivation of Kt is gotten from minimizing MSE that equals to E[xt − x̂t|t]. This is also

equals to minimize the trace (a square matrix is defined to be the sum of diagonal elements)

of Pt|t. The related equations are given below,

Pt|t = Pt|t−1 −KtHtPt|t−1 −Pt|t−1H
T
t K

T
t +Kt(HtPt|t−1H

T
t +Rt)K

T
t

= Pt|t−1 −KtHtPt|t−1 −Pt|t−1H
T
t K

T
t +KtStK

T
t (2.50)

∂tr(Pt|t)

∂Kt

= −2(HtPt|t−1)
T + 2KtSt = 0 (2.51)

Kt = Pt|t−1H
T
t S
−1
t

After finding the current states, the filter moves to the next time step and continues iterative

operations, so that the next states are found using the previous ones. Finally, this filter applies

to linear systems, and for non-linear ones we will move to the next section, EKF.
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2.5. EXTENDED KALMAN FILTER

The extended kalman filter is a more advanced version of the kalman filter, designed for

nonlinear situations. xt and zt models become differentiable functions. The models are given

by,

xt = f(xt−1,ut) +wt (2.52)

zt = h(xt) + vt (2.53)

The function can vary according to the system, the model we use will be mentioned later. The

functions h and f are used to find predict states as before, but the difference here they don’t

directly affect covariance, the partial derivatives of them need to be calculated. Prediction

state equations are given below,

x̂t|t−1 = f(x̂t−1|t−1,ut) (2.54)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt (2.55)

And the update state formulas are given below,

ŷt = zt − h(x̂t|t−1) (2.56)

St = HtPt|t−1H
T
t +Rt (2.57)

Kt = Pt|t−1H
T
t S
−1
t (2.58)

x̂t|t = x̂t|t−1 +Ktŷt (2.59)

Pt|t = (I−KtHt)Pt|t−1 (2.60)
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where Ft and Ht are the Jacobian matrices that defined as,

Ft =
∂f

∂x
|x̂t−1|t−1,ut (2.61)

Ht =
∂h

∂x
|x̂t|t−1,ut (2.62)

The values of all these variables and functions will be given in the next section when describing

our system model. Thus, it will be clearly stated how extended kalman filter is applied to our

system.



25

3. SYSTEM MODEL

We assume that a moving target emits a signal at each time step t at its location (xt, yt)

and randomly distributed N sensors measure this signal and attempt to estimate the target’s

location and velocity (ẋ, ẏ) [8]. Where the sensors are located does not affect the operation of

the system, but only if their locations are known. There are two objectives in this application

for us, minimize selected sensors number and MSE which states target tracking error.

The status of the target is indicated by a matrix of 4× 1 which is,

xt =
[
xt yt ẋt ẏt

]T
(3.1)

Next time step’s state has a formula given below,

xt+1 = Fxt + vt (3.2)

where vt is the white gaussian process noise signal with zero mean and covariance matrix Q.

Q and state transition model F are both matrices with 4 × 4 sizes. Their details are given

below,

F =


1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1

 ,Q = τ


∆3

3
0 ∆2

2
0

0 ∆3

3
0 ∆2

2

∆2

2
0 ∆ 0

0 ∆2

2
0 ∆

 (3.3)

where τ is the process noise parameter. We assume observation vector as zt , [z1,t, ..., zN,t]
T ,

which has the equation,

zt = h(xt) +wt (3.4)

wt is the measurement noise simulates the errors in signal parameters’ models and background
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noise [8]. It is like process noise with white gaussian zero-mean, in contrast, its covariance

matrix is R = σ2IN×N . I represents the identity matrix. The noisy signal amplitudes which

are units of zt detected by the sensors are shown below by the equation of zi,t,

zi,t =

√
P0

1 + (di,t)n
+ wi,t (3.5)

where P0 is the power of the signal source, n is the decay exponent and di,t represent the

distance of ith sensor to the target [8]. It is determined that the location of ith sensor is (xi, yi)

and n is assumed to be 2. Then di,t becomes,

di,t =
√
(xi − xt)2 + (yi − yt)2 (3.6)

In the predicted state, priori estimation x̂t|t−1 is found by,

x̂t|t−1 = Fx̂t−1|t−1 (3.7)

For the update step, Ht equals to derivative of h(xt) with respect to x̂t|t−1. Then, h(xt) and

its derivative Ht becomes like below,

hi(xt) =

√
P0

1 + (di,t)2
(3.8)

Ht =


∂h1
∂xt
|x̂t|t−1

∂h1
∂yt
|x̂t|t−1

0 0

∂h2
∂xt
|x̂t|t−1

∂h2
∂yt
|x̂t|t−1

0 0
...

...
...

...
∂hN
∂xt
|x̂t|t−1

∂hN
∂yt
|x̂t|t−1

0 0

 (3.9)

Other equations same with the Extended Kalman Filter which are obtained by (2.56) - (2.60).
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3.1. SENSOR SELECTION

Kalman gain Kt matrix contains 4 rows and N columns which is the total sensor number.

Each column contains the data of the related sensor, and if a column is all zero, it means that

the sensor associated with the column is in off mode at that time step. Using this, we are able

to ensure that the sensors operate as optional.

We will compare the results obtained when all the sensors work together with the results

obtained when best 1,2,3,4 and 5 sensors are selected which ensures the minimum error rate.

When making these sensor selections, we make a decision by examining the calculated Pt|t at

the end of the each time step we will compare. The lower sum of the diagonal elements of the

matrix Pt|t means that the error is smaller. For example, let’s say we select the best 3 sensors

that minimize the error and let these sensors be 1st, 2nd and 3rd sensors. In this case we create

a binary matrix of the same size as the Kt matrix and write 1 to the first, second and third

columns which are related selected sensors and write 0 to the others. When we calculate the

entrywise product or Hadaward product of this matrix with Kt, the process is continued with

the newly formed Kt
∗, thus eliminating unnecessary sensors.
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The example of matrix operations are given below,

K∗t = Kt ◦ selection matrix (3.10)

=



a1,1 a1,2 a1,3 · · · a1,N

a2,1 a2,2 a2,3 · · · a2,N
...

...
...

...
...

aN,1 aN,2 aN,3 · · · aN,N


◦



1 1 1 0 0 · · · 0

1 1 1 0 0 · · · 0
...

...
...

...
...

...
...

1 1 1 0 0 · · · 0



=



a1,1 a1,2 a1,3 · · · 0

a2,1 a2,2 a2,3 · · · 0
...

...
...

...
...

aN,1 aN,2 aN,3 · · · 0



After performing all time step estimations, we will use the MSE which is mentioned before to

see how is the system’s performance. To do that, we will have the help of this equation,

MSE(t) ,
1

Ttrials

Ttrials∑
c=1

(xc(t)− x̂c(t))2 + (yc(t)− ŷc(t))2 (3.11)

The closer the result of MSE to zero, the more successful the system is. In the next chapter

we will see details of the NSGA-II algorithm and how it is adapted to EKF(Extended Kalman

Filter).
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4. NONDOMINATED SORTING GENETIC ALGORITHM-II

Creating an optimal solution list at all time steps is provided by an algorithm. We use a

MOO algorithm which is named as NSGA-II. The best sensor selections are saved from all

the selection combinations by this algorithm. After that, one of the best results is chosen

and how the process is going will be explained in the next sections. In this method, at first,

a graph is drawn in which two objective forms the x and y axes. There are two objectives

we use and try to minimize, these are the Minimum Square Error(MSE) by minimizing the

trace of estimation error covariance matrix and the total number of sensors selected for all

combinations.

Let us consider two separate points in this graph, and let them be called A and B. In order

for point A to dominate B, at least one of the two points in the x and y axis for A must be

lower than B, and the other value must be equal to or lower than the other value of B. The

x-axis values will be compared to the x-axis values of the other point, and the y-axis values

will be compared to the y-axis values of the other point. For each point or solution p there are

two values have to be calculated which are: 1) Domination count(np) which is the number

of solutions that dominate p solution, 2) A set of solutions(Sp) which includes points that

p dominates [21]. Non-dominated solutions(a solution p has np=0) are selected first and

written to first front list (F1). Then the domination count of the solutions in the Sp list of any

p solution is reduced by one. By doing so, we temporarily remove the first front from the

population to find the second front(F2) with using the same method we did on the first front.

This operation goes on until all fronts are found. Before making these applications, we need

to create the solution population we will use. Let’s call Pt to the initial population containing

some solutions in one generation.

Population number (Npop) may vary according to our preference. According to this number

we stated, Npop solutions are chosen randomly from all of the sensor selection combinations

in a time step which include all possibilities about which sensors are open and which are

closed. An offspring population Qt with the same number Npop of individuals is added to this

population, and the new list containing these two is called Rt. Additionally to Nondomination
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Figure 4.1. A basic flowchart of NSGA-II algorithm [54]

sorting, there is an operator which is called Crowded-Comparison Operator used when

creating this Qt.

Initially, random two individuals are selected from Pt, then this two are compared for their

rank. The rank is the same number of the individual’s front and lower rank is the first factor

affecting the selection. If the ranks are equal, the second operator mentioned will be useful

which uses the crowding distance of an individual that can be found by the cuboid formed

using the distance of the two closest individuals in the same front to each other on the x

and y axis. The side lengths of cuboid should be normalized before the calculations. The

crowding distance of a point which has maximum or minimum value corresponding to each

objective is considered infinite. For the other individuals, these lengths for each objective,

gives us the crowding distance and the sum of individual distance values by each objective

becomes the overall crowding distance. An individual which has the overall crowding distance

higher which means an individual in a less crowded area will be parent for the next step. A

second parent is obtained using the same method. This parent selection method is called

as Tournament Selection. Additionally to this, one of the crossover methods which will be

explained later and a mutation are used to modify the parents selected and added to Qt.

Finally, we create Rt which is the population we will use for non domination sorting by

combining Pt and Qt. After determining the fronts and ranks for all individuals, we need
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to halve Rt, which has 2 times more individuals than Pt. To do that, those with a better

rank (lower rank) will be kept at Rt. After passing the population number Npop, if there are

elements in the same front (with the same rank) with the last selected individuals, they will

be retained or deleted according to their overall crowding distance. The remaining fronts

will be completely removed from the list. The new Rt, which consists of the rest, is called

Pt+1 and is used in a new generation (one cycle of NSGA-II) as an initial population. If the

last generation is reached, this last set is called Pareto optimal front and thus the NSGA-II

algorithm is finalized. In which generation the application will end depends on the user’s

preference. In this thesis, how the algorithm ends automatically according to the results of the

generations will be explained in the following sections.

4.1. DECISION MAKING WITH PSEUDO-WEIGHT CALCULATION

After finding the optimal solutions in Pareto - Optimal Front from NSGA-II algorithm, it is

time to choose the best result among them. The first method to do this is to calculate the

pseudo weight [52] for every solution x by,

w1(x) =
(fmax1 − f1(x))/(fmax1 − fmin1 )

(fmax1 − f1(x))/(fmax1 − fmin1 ) + (fmax2 − f2(x))/(fmax2 − fmin2 )
(4.1)

where fmax1 and fmin1 are maximum and minimum values related to the trace of estimation

error covariance matrix from the optimal solutions, with respect to this, fmax2 and fmin2 are

for total number of selected sensors. The pseudo-weight values calculated for each individual

result will be compared according to the specified threshold and the result with the value

closest to that threshold will be selected. Threshold is set to 0.5 like in [52].Results are in the

Simulation Results section.

4.2. DECISION MAKING WITH MINIMUM DISTANCE TO ORIGIN

Another method we use to select the best result is to select the point whose coordinate

is closest to the origin (0,0). The distances are normalized while they are divided by the

maximum value of the respective objective. The results will be compared to the previous
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method using three separate process noise parameters. Each distance is found by,

distance(x) =
√

(f1(x)/fmax1 )2 + (f2(x)/fmax2 )2 (4.2)

We will continue with one of these two methods according to the results which can be found

in Simulation Results section.

4.3. DECISION MAKING WITH KNEE POINT SOLUTION

Last decision making method used in this project is called Knee Point Solution. In this

case, the knee of the trade-off curve is defined as the solution where a small decrease in

one objective is associated with a large increase in the other [20]. In the Pareto-Optimal

Front, let say αa and αb are two solutions which are nearest solutions to each other where

f1(α
a) > f1(α

b) and f2(α
a) < f2(α

b). Then the slope of the curve between these two

solutions can be found as,

slope{αb} = 180−
[
arctan

(
f1(α

a)− f1(αb)
f2(αa)− f2(αb)

)
180

π

]
(4.3)

We assume f1(α1) = fmax1 and f1(αP ) = fmin1 , accordingly f2(α1) = fmin2 and f2(αP ) =

fmax2 . The point that maximizes the slope gives us the Knee Point Solution and that will be

selected from the Pareto-Optimal Front.

4.4. CROSSOVER OPERATORS & MUTATION

As described previously, a crossover operator is used to find the Qt, which is an offspring

population. In this project, 2 separate crossover operators will be used. Accordingly, the

latest results will be observed whether there is a change. The first of these is called uniform
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crossover, where offspring solutions c1 and c2 are found from parents p1 and p2 by,

c1 = ξp1 + (1− ξ)p2

c2 = (1− ξ)p1 + ξp2 (4.4)

where ξ is selected by a random number q between [0,1] [20],

ξ = 1 q ≤ 0.5

ξ = 0 q > 0.5 (4.5)

After that there is also a mutation procedure called uniform mutation. Offspring solution cl is

determined using parent solution pl by,

cl = δ(1− pl) + (1− δ)pl (4.6)

where δ is obtained by the same way with Equation 4.5. There is a second crossover operator

used with the same mutation which is named Simple Crossover [50]. Let i refers to a random

number between {1,..., N -1}. Suppose that p1 and p2 consist of binary sets (a11, ..., a
1
n)

and (a21, ..., a
2
n) where n is the total number of sensors. Then, and the new binary set of

chromosomes created as follows,

c1 = (a11, a
1
2, ..., a

1
i , a

2
i+1, ..., a

2
n) (4.7)

c2 = (a21, a
2
2, ..., a

2
i , a

1
i+1, ..., a

1
n) (4.8)

We are going to examine the effect of these two crossover operators on our results. 6 separate

way of NSGA-II solution on with using these two operators, we will observe what differences

an individual crossover makes. The data obtained will be shown in the Simulation Results

section.
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4.5. INITIAL POPULATION TYPES

In the previous sections it was said that the applications would be done with 6 different NSGA-

II methods,now in this section we will clarify them in detail. First of all, let’s mention their

names which are: Constant generation(30 generations in our application, will be symbolized

as ”G30” thereafter) Random Initial Population, G30: Previous Population, G30: Previous

Unique Solutions + Random Population, Stopping Rule(SR): Random Initial Population, SR:

Previous Population, SR: Previous Unique Solutions + Random Population.

Names are given according to which type of initial population will be used in each time step.

When we consider our system with 16 sensors in any time step, there are 216 combinations

of open or closed state of sensors which are independent to each other. We cannot put that

much population into the NSGA-II algorithm because otherwise the processing time is too

long. After various trials, 250 populations were found to be sufficient, but we wanted to see

how we could achieve results by using 100 populations to push the system a little further.

In the first mentioned method which is G30: Random Initial Population, the 250 or 100

initial populations to be used are randomly selected from 216 possibilities at each time step.

Accordingly, at each time step, algorithm independently creates its own population at the

beginning. On the other hand, the ”G30” says that the program stops at 30th generation and

in the latest generation which has the best solution list (Pareto-Optimal Front) will be used.

In the second method, G30: Previous population, the initial populations to be used are not

independent from the final populations(solutions in Pareto-Optimal front) in previous time

steps. Thus, the solution set that appears at the end of the previous time step is used as

the initial population in the next time step. The amount of elements contained in the list of

solutions in latest Pareto-Optimal front is the same as the initial population. Therefore, if

there are fewer optimal solutions than the stated amount of population, they may repeat and

need to be separated as unique. In the third method which is ”G30: Previous Unique Solutions

+ Random Population” , we will use only unique ones for the next time step instead of the

whole population, and the rest will be randomly selected from 216 possible options. Hence,

instead of using the same elements more than once, we plan to make the algorithm more

effective by simply using the necessary elements once and selecting the rest randomly. The
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remaining 3 methods have population selection variations like the first 3 methods. In contrast,

the program will stop at a constant generation of the first 3 methods but the stopping rule

methods stops at generations according to a metric which will be described later. These 6

methods will be tested using lower (100) and higher (250) initial populations and the results

will be shown in the Simulation Results section. It is our goal that there will be no significant

difference between the use of constant 30 generations and the last methods with the stopping

rule, as well as to avoid to complete of more generations than necessary. This will give us

that we can achieve the same performance in less time.

4.6. STOPPING RULE

After several iterations, the entire population contains only the solutions near or at the Pareto

optimal front. We can then define the generational distance (GD) between two consecutive

generations, generation j and generation j + 1 [51] as,

GD(j + 1, j) =

√√√√ M∑
i=1

g2i (4.9)

measures the distance between the non-dominated solutions obtained at generations j + 1 and

j where M represents the total number of solutions on the pareto-optimal front in generation

j + 1. Then gi represents the Euclidean distance between the solution in generation j + 1 to

its the nearest solution in its previous generation j.

It will be seen that after some generations the generational distance metric will end its

downward trend and then equals to be zero even if new generations are used. New generations

to be used after that point are unnecessary and will result in a waste of time. Thus, if GD

metric becomes 0, it is preferred that the algorithm stop.

Results will be in the Simulation Results section.
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Figure 4.2. Pareto optimal front of NSGA-II after (a) G = 1 , (b) G = 3, (c) G = 6, (d)
G = 10 generations, N = 16 sensors in the WSN
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5. SIMULATIONS RESULTS AND DISCUSSION

In this section, we first present the parameters used in our simulations. Then we present the

performance of NSGA-II under different solution alternatives on the pareto-optimal front,

different population sizes, different crossover operators and finally different number of sensors

in the network.

5.1. SIMULATION PARAMETERS

We first set the number of sensors in the WSN as N = 16, where sensors deployed randomly

in the ROI of size 50m.× 50m. as shown in Fig. 5.1-(a). We generate the initial location of

each target x0 using multivariate Gaussian probability density function p(x0) ∼ N (µ0, P0),

with mean µ0 = [−20,−20, 2, 2] and covariance matrix P 0 = diag[σ2
θ , σ

2
θ , 0.01, 0.01] where

we select 3σθ = 5 so the initial point of the target remains in the ROI with high probability.

Rest of the parameters used in our simulations are summarized in Table 5.1.

Table 5.1. Simulation parameters

Parameters Values

Time interval(∆) 1

Source Power (P0) 104 W

Process noise parameter(τ ) 10−2

Measurement Noise (σ2
n) 1

Number of Trials, Ttrials 100

Total Time Step, T 10

At each time step of tracking t ∈ {1, 2, . . . , T}, we compute the MSE of Estimation between

the real target state xt and estimated target state x̂t as,

MSE(t) =
1

Ttrials

Ttrials∑
j=1

(xt,j(1)− x̂t,j(1))
2 + (xt,j(2)− x̂t,j(2))

2 (5.1)
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where xt,j(1), xt,j(2) and x̂t,j(1), x̂t,j(2) represents the first and second elements of the

unknown state vector and estimated state vector in their jth trials respectively. We select the

total number of trials, i.e., different target trajectories to obtain the MSE as Ttrials = 100.

We perform all the simulations on a personal computer in MATLAB with processor Intel Core

i7 - 4712MQ CPU at 2.30 GHz with 12 GB RAM.

5.2. NUMERICAL RESULTS

In this section, we first examine the MSE performance when a predefined number of sensors

are selected at each time step of tracking. Then, we compare the MSE performance of

MOP under different solution selections, different population sizes, different implementations

considering with and without stopping rules [8, 52].

5.2.1. Effect of Fixed Number of Selected Sensors

Initially, we use an Extended Kalman filter, which receives data from all sensors in the

WSN [7]. Fig. 5.1-(b) shows the change of MSE over each time step over Ttrials = 100

different trials. We observe that the tracking error decreases over time as compared to the

initial steps of tracking and becomes stable to a constant after few time steps.

Next, at each time step of tracking, without any optimization, we choose the best A sensors

which are located nearest to the estimated target location. In Fig. 5.2-(a), we vary the value

of A from 1 to 5. Our numerical results show that when nearest 1 or 2 sensors are selected,

MSE performance poorly diverges. Furthermore, in Fig. 5.2-(b), we present the MSE results

by further excluding A = 1 and A = 2 cases. Our numerical results now show that after

selecting A = 4 sensors, the MSE performance becomes very similar to the case where all

sensors transmit their measurements.
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Figure 5.1. An example WSN model for target tracking where (a) N = 16 sensors are
deployed randomly in the ROI., (b) Target tracking performance while all sensors are active

at all time steps

5.2.2. Effect of Solution Selection on the Pareto-optimal Front

In this subsection, we execute NSGA-II algorithm, by setting the population size Npop = 100,

total number of NSGA-II generations without any stopping rule as G = 30, and we use the 1st

crossover operator, uniform crossover. In Fig. 5.3, for an arbitrary target trajectory, we present

the Pareto-optimal front between the trace of error covariance matrix and total number sensors

selected observed at time steps (a) t = 1, (b) t = 3, (c) t = 6, and (d) t = 9 respectively.

On each sub-figure, we also highlight the solution corresponding to knee-point solution,

pseudo-weight solution, and the minimum distance solution. As seen from these figures, the

knee-point solution typically chooses the solution with one sensor and minimum distance

solution selects more sensors than that of both the knee-point solution and the pseudo-weight

solution.

In Fig. 5.4, we further present the MSE and total number of selected sensors observed at each

time step of tracking averaged over Ttrials = 100 different target trajectories. Consistent with

the above results, knee-point solution usually selects one sensor at a time and yields poor

MSE performance. Pseudo-weight solution selects fewer sensors than the minimum distance

solution and hence minimum distance solution yields better MSE performance as compared
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Figure 5.2. Comparison while all and only the most informative sensors are selected by (a)
MSE with all implementations, (b) MSE without worst implementations

to the pseudo-weight solution.

Next in Fig.5.5-(a) and (b), for pseudo-weight solution and the minimum distance solution

on the pareto-optimal front, we compare the MSE and total number selected sensors at each

time step of tracking under three different process noise parameters τ = 10−1, τ = 10−2 and

τ = 10−3. Note that τ = 10−1 corresponds the case with the largest uncertainty on the target

and τ = 10−3 corresponds the case with the least uncertainty on the target. In other words, as

τ increases, the target’s angle of rotation tends to increase rapidly which is a more challenging

tracking case and leads to a decrease in target tracking performance. The numerical results

show that as the uncertainty of the target increases by increasing τ , the target tracking is

successful as long as more sensors are selected. Since minimum distance solution selects

more sensors than that of pseudo-weight solution, minimum distance solution has much better

MSE performance than the pseudo-weight solution.

5.2.3. Effect of Population Size on Stopping Rule

Fig. 5.6 presents the Generational Distance (GD) Metric over G = 30 generations under two

different NSGA-II population sizes Npop = 100 and Npop = 250. Note that a lower value

of the metric indicates a better convergence, and after a number of generations, where GD



41

0 2 4 6 8 10 12

Sensor Number

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

tr
a

c
e

(P
t|
t)

t=1

Knee Point Sol.

Minimum dist. & Pseudo-weight Sol.

0 2 4 6 8 10 12

Sensor Number

0.5

0.55

0.6

0.65

0.7

0.75

tr
a
c
e
(P

t|
t)

t=3

Knee Point Sol.

Min.dist.Sol.

Pseudo-weight Sol.

(a) (b)

0 2 4 6 8 10 12 14

Sensor Number

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

tr
a

c
e

(P
t|
t)

t=6

Knee Point Sol.

Min.Dist.Sol.

Pseudo-weight Sol.

0 2 4 6 8 10 12

Sensor Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
a

c
e

(P
t|
t)

t=9

Knee Point Sol.

Min.Dist.Sol.

Pseudo-weight Sol.

(c) (d)

Figure 5.3. Pareto-optimal front between the trace of error covariance matrix and total
number sensors selected observed at time steps (a) t = 1, (b) t = 3, (c) t = 6, (d) t = 9

tends to approach zero. Here initially the GD of Npop = 250 is larger than the GD value

of Npop = 100 since Npop = 250 has more solutions in the objective domain. On the other

hand, after few generations GD value of Npop = 250 becomes smaller than the GD value of

Npop = 100. This is due to the fact that increased population size tend to reproduce better

solutions. In our proposed implementation, if the Pareto-optimal fronts at two consecutive

generations is the same, that is GD(j + 1, j) = 0, NSGA-II generations are terminated

instead of moving to another generation since we assume that further generations may have

no significant effect on the new pareto-optimal front.
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Figure 5.4. Comparison when using the knee point sol., pseudo-weight sol. and minimum
distance sol. for τ = 10−2 by (a) MSE, (b) Total number of selected sensors

5.2.4. Effect of Different NSGA-II Implementations

In this thesis, we compare the MSE and total number of selected sensors under the following

6 different NSGA-II implementations:

1. G30-Random Init.: In the first approach, NSGA-II is executed for excessive G = 30

iterations and at the beginning of each NSGA-II executions Npop solutions of the initial

population are randomly selected.

2. G30-Previous Population: In the second approach, we execute NSGA-II for fixed

G = 30 iterations and at the beginning of each NSGA-II execution, the final population

of the previous time step is used as the initial population of the current time step.

3. G30-Previous Unique and Random Init.: As seen from, Fig. 5.3-(a) to 5.3-(d), the

final pareto-optimal front consists of few solutions since, at the end of all generations,

most of the solutions on the pareto optimal front converges to the same solution, i.e.,

the same sensor selection strategy. Therefore as a third approach, we keep executing

NSGA-II for G = 30 iterations, but for the initial population of the current time step,

we only accept the unique solutions in the final population of the previous time step and

rest of the solutions are filled randomly.

4. SR-Random Init.: As a fourth approach, rather than executing NSGA-II excessive
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Figure 5.5. Comparison by multi-objective optimization methods by (a) MSE, (b) Selected
sensor number

number of generations, we use the stopping rule (SR) defined in Section 4.6, aiming to

achieve a similar performance with less number of generations. For the fourth approach,

we fill the initial population randomly at the beginning of each NSGA-II executions.

5. SR-Previous Population: As a fifth approach, we terminate the NSGA-II generations

when the SR is met and initial population at the beginning of each NSGA-II execution

is selected as the final population of the previous time step.

6. SR-Previous Unique and Random Init.: As the last approach, we terminate the

NSGA-II generations when the SR is met and same as the 3rd implementation, initial

population at the beginning of each NSGA-II execution is formed by combining the

unique solutions of the previous time step and randomly selected solutions.

Table 5.2 shows the number of sensors selected at each time step of tracking averaged over

total tracking time steps T and total number of trials TTrials, number of NSGA-II generations

used to get the Pareto-optimal front with different population sizes Npop, different cross-over

operators (CX1: Uniform Crossover and CX2: Simple Crossover) and different number of

sensors in the WSN, N . The numerical results in Table 5.2 shows that when there are N = 16

sensors in the WSN, the minimum distance solution selects on the average 3 sensors at each

time step of tracking. When we introduce the stopping rule based on GD, with random

initialization NSGA-II iterations typically terminate in about 10 iterations, where if we use



44

0 5 10 15 20 25 30

Generations

0

0.02

0.04

0.06

0.08

0.1

0.12

G
e
n
e
ra

ti
o
n
a
l 
d
is

ta
n
c
e

CX1: N
pop

=250

CX1: N
pop

=100

CX2: N
pop

=250

CX2: N
pop

=100
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the final population of the previous time step as the initial population choice, the generations

tend to terminate around 9 generation.

Figure 5.7 shows the MSE performances 6 different NSGA-II implementations under different

crossover operators. Worst MSE results are obtained under NSGA-II implementation 4 and

NSGA-II implementation 5, which both uses SR and in NSGA-II implementation 4, initial

population is randomly selected and in NSGA-II implementation 5 the final population of

the previous time step t− 1 is solely used as the initial population of the current time step

t. In NSGA-II implementation 4, since NSGA-II is randomly initialized, it can not reach

the near pareto-optimal front when the stopping rule is met in few generations. On the other

hand, in NSGA-II implementation 5, there is a quite limited solution diversity since most of

the solutions in the previous population reflects the same solution. Then, NSGA-II stucks

and unable to produce better solutions. Note that G = 30 is a reasonable generation size for

all NSGA-II implementation 1, NSGA-II implementation 2 and NSGA-II implementation 3

cases, where NSGA-II can reach the optimal or near optimal Pareto-optimal front independent

from the initial population. The use of generational distance based stopping rule then becomes

meaningful when we use NSGA-II implementation 6, where the initial population at each



45

Table 5.2. Average number of sensors selected at each time step of tracking, the total number
of NSGA-II generations used to get the pareto-optimal front, and different total number of

sensors in the WSN

CX Npop N Implementations Number of Selected Generations

Sensors - Mean Mean

1 100 16 1 -G30:Random Init. 3.1070 30

1 100 16 2-G30:Previous Population 3.0570 30

1 100 16 3-G30:Previous Unique + Random Population 3.0030 30

1 100 16 4-SR:Random Init. 3.5300 10.2070

1 100 16 5-SR:Previous Population 3.8560 9.1010

1 100 16 6-SR:Previous Unique + Random Population 3.2410 9.0810

2 100 16 1-G30:Random Init. 2.9420 30

2 100 16 2-G30:Previous Population 3.0900 30

2 100 16 3-G30:Previous Unique + Random Population 3.1400 30

2 100 16 4-SR:Random Init. 3.4580 9.9900

2 100 16 5-SR:Previous Population 3.9330 9.1410

2 100 16 6-SR:Previous Unique + Random Population 3.3060 9.0990

1 250 16 1-G30:Random Init. 3.1070 30

1 250 16 2-G30:Previous Population 3.1750 30

1 250 16 3-G30:Previous Unique + Random Population 3.1750 30

1 250 16 4-SR:Random Init. 4.1620 9.6900

1 250 16 5-SR:Previous Population 3.0980 8.9380

1 250 16 6-SR:Previous Unique + Random Population 3.5510 8.8840

2 250 16 1-G30:Random Init. 3.0490 30

2 250 16 2-G30:Previous Population 3.1410 30

2 250 16 3-G30:Previous Unique + Random Population 3.2260 30

2 250 16 4-SR:Random Init. 3.4000 9.3180

2 250 16 5-SR:Previous Population 3.0790 8.9600

2 250 16 6-SR:Previous Unique + Random Population 3.3210 9.0320

2 250 25 1-G30:Random Init. 3.4640 30

2 250 25 6-SR:Previous Unique + Random Pop. 3.5700 10.2810
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Figure 5.7. Performances of 6 methods by (a) MSE for crossover 1 and 250 populations, (b)
Sensor selections for crossover 1 and 250 populations, (c) MSE for crossover 2 and 250

populations, (d) Sensor selection for crossover 2 and 250 populations

time step is formed with combining the unique solutions of the previous time step with the

random solutions. Therefore when the SR is met, NSGA-II reaches to the near optimal

Pareto-optimal front and the performance of NSGA-II implementation 6 becomes very similar

to the implementations with excessive number of G = 30 generations.

Next, in Fig. 5.8-(a) and Fig. 5.8-(b), we respectively compare the MSE and total number of

selected sensors at each time step of tracking when different population sizes and different

crossover operators are selected. As previously shown in Fig. 5.6, the GD for Npop = 250

becomes smaller than the GD for Npop = 100, where smaller GD indicates better convergence.
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For Npop = 250 case, since CX1 selects more sensors than that of CX2 , the MSE of CX1 is

marginally better than MSE of CX2.
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Figure 5.8. Performances of 6th Implementations by (a) MSE and (b) Total number of
selected sensors

Since the NSGA-II algorithm on the average selects around 3 sensors for N = 16 case, in

Fig. 5.9, we compare the MSE of implementation 6 with the case where A = 3 sensors

closest to the estimated target location is selected. Simulation results show that, the MSE

of implementation 6 is very close to the MSE when all sensors transmit and significantly

better than A = 3 case. Therefore, we can conclude that it is better to use an MOP strategy

rather than selecting nearest A = 3 sensors all the time, since MOP has the flexibility to select

more informative sensors when needed or select few sensors when the number of informative

sensors is few along the target trajectory.

Finally, we increase the total number of sensors to N = 25 as shown in Fig. 5.10 and

compared implementation 1 and implementation 6 with population size Npop = 250 and

using simple crossover (CX2). Fig. 5.11-(a) and (b) then respectively show the MSE and

total number of selected at each time step of tracking. Numerical results show that there is

no significant difference between two methods in terms of MSE and total number of sensors

selected at each time step. On the other hand, implementation 1 uses fixed number of G = 30

while implementation 6 terminates much earlier in about 10 generations as shown in Table 5.2.

Furthermore as compared to NSGA-II implementation 6, N = 16 case, average number of

selected sensors increases from 3.32 to 3.57 and NSGA-II terminate in around 10 generations

rather than 9 generations.
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this thesis, tracking a single energy emitting target based on received sensor measurements

has been studied. Rather than gathering all sensor decisions at the fusion center, only

informative sensors near the target sent measurements to the fusion center and rest of the

sensors stayed silent. The informative sensors selected for transmission were selected as a

solution to a multiobjective optimization problem, where the objectives are minimizing the

trace of the error covariance matrix, in order to minimize the estimation error and minimizing

the total number of sensors selected at each time step of tracking. Formulated MOP were than

solved with NSGA-II algorithm. We than examine the following effects of different MOP

parameters on the performance of target tracking.

We first examined different solution selection strategies on the Pareto-optimal front. Minimum

distance solution selected more sensors as compared to knee-point solution and pseudo-weight

solution. Therefore, MSE with respect to the minimum distance solution was better than the

MSE of both knee-point solution and pseudo-weight solution.

We then defined a stopping rule based on GD between two successive generations. We

observed that as the population size increased, the Pareto-optimal front achieved with the

stopping rule became similar to the Pareto-optimal front achieved with excessive NSGA-II

generations.

Rather than initializing NSGA-II algorithm with random solutions at the beginning of each

time step of tracking, we used the optimal solutions of the previous time step in order to

reduce the total number of NSGA-II generations until the algorithm meets the stopping rule.

Our numerical results showed that when only the final population of the previous time step

was used as the initial of the current time step, NSGA-II might get stuck and unable to find

good trade-off solutions due to the limited number of diverse solutions. On the other hand, if

the initial population of the current time step was combined with the unique solutions of the

previous time step and rest of the solutions were generated randomly, it became possible to

achieve the Pareto-optimal front with less number of generations.
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The Extended Kalman Filtering approach presented in this thesis can be easily extended to

other Bayesian filtering approaches such as the Particle Filter in a straightforward fashion.

Here we did not consider additional constraints while minimizing the two objective functions.

To save resources over time, we can define realistic constraints on sensor selections and

execute a multiobjective evolutinary algorithm with further resource constraints. Furthermore

in this work we assume that sensors track single target send their measurements directly to a

central node, Fusion center. As a future work, we can consider a distributed network without

any fusion center and the task of the WSN might be to track multiple targets in the given ROI.
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