A FAIR AND SECURE CACHE ARCHITECTURE
FOR MULTI-THREADED PROCESSORS

by

Sercan Sar1

Submitted to Graduate School of Natural and Applied Sciences
in Partial Fulfillment of the Requirements
for the Degree of Master of Science in

Computer Engineering

Yeditepe University
2019

A FAIR AND SECURE CACHE ARCHITECTURE FOR MULTI-THREADED

PROCESSORS

APPROVED BY:

Assist. Prof. Dr. Onur Demir

(Thesis Supervisor)
(Yeditepe University)

Assoc. Prof. Dr. Giirhan Kiiciik

(Thesis Co-Supervisor)
(Yeditepe University)

Prof. Dr. Fatih Ugurdag
(Ozyegin University)

Assist. Prof. Dr. Alp Arslan Bayrakgi
(Gebze Technical University)

Assist. Prof. Dr. Gokhan Sahin
(Yeditepe University)

DATE OF APPROVAL: /.... /2019

11

ACKNOWLEDGEMENTS

First of all, I would like to express my deep gratitude to Professor Onur Demir and
Professor Giirhan Kiigiik, my research supervisors, for their patient guidance, enthusiastic
encouragement and useful critiques of this research work. I also would like to thank jury

members for their guidance and interest.

Since the doors of the professors are always open to us, the pursuit of knowledge throughout

my life becomes one of the purposes of life.

Most especially, I would like to thank my father Veli, my mother Aysen, and my wife Bur¢in,

for their endless love and support, which makes everything beautiful and meaningful.

v

ABSTRACT

A FAIR AND SECURE CACHE ARCHITECTURE
FOR MULTI-THREADED PROCESSORS

Hardware security gained more attention due to the widespread use of cloud computing
and remote execution, where multiple executions share a computer’s resources. It is
possible to extract confidential information such as cryptographic keys through cache-based
side-channel attacks as in Meltdown and Spectre attacks, and as a result, secure cache
architectures have become one of the hot research topics in the computer architecture
field, today. These architectures come with an inevitable performance penalty since
there is always an overhead for hiding information from the attackers. Subsequently, the
performance degradation is traded off with the improvement in security. In this thesis,
we analyze cache-based side-channel attacks, and the performance deterioration of the
existing architectures and come up with a new solution which improves the fairness of the
general framework. We propose a secure cache mechanism that respects fairness among
the competing threads within a processor. We evaluate FairSDP architecture in 4-threaded
and 8-threaded processors. As a result, we show that we can achieve up to 8.7 percent
performance improvement over the baseline and 9.2 percent better performance compared
to the static partitioning on the average, in an 8-threaded system. We also achieve almost
identical results in terms of the fairness metric compared to a non-secure dynamic cache

partitioning scheme.

OZET

COKLU ISPARCACIKLI ISLEMCILER ICIN
ADALETLI VE GUVENLI BiR ONBELLEK MIiMARISi

Bulut bilgi islemin yaygin kullanimi ve bir bilgisayarin kaynaklarinin birden fazla bilgisayar
tarafindan paylasildigi uzaktan calistirma nedeniyle donanim giivenligi daha fazla 6nem
kazanmaya baglamistir. Meltdown ve Spectre saldirilarinda oldugu gibi onbellek tabanh
yan kanal saldirilar1 yoluyla sifreleme anahtarlar: gibi gizli bilgileri ¢ikarmak miimkiindiir.
Sonug olarak, giivenli onbellek mimarileri iizerine yapilan ¢alismalar daha derin bir odak
noktasi haline geldi. Giivenli onbellek mimarileri kaginilmaz bir performans cezasiyla
birlikte gelir, ¢iinkii her zaman saldirganlardan bilgi gizleme yiikii vardir. Performansin
diismesi giivenlikteki iyilesme ile birlikte islem gormektedir. Bu tez ile birlikte, mevcut
mimarilerin performans bozulmalarimi analiz ediyoruz ve genel cercevenin adaletliligini
artiran yeni bir ¢6ziim sunuyoruz. Bir islemci i¢indeki rakip igparcaciklari arasinda adalete
saygt duyan giivenli bir dnbellek mekanizmasi 6neriyoruz. FairSDP mimarisini 4 digli ve 8
digli islemcilerde degerlendiriyoruz. Sonug olarak, 8 disli bir sistemde ortalama bazda yiizde
8.7’ye varan performans artis1 ve ortalama statik boliimlemeyle karsilastirildiginda yiizde
9.2 daha iyi performans saglayabilecegimizi gosteriyoruz. Ayrica, giivenli olmayan dinamik
onbellek boliimleme semasina kiyasla, adalet 6lciisii acisindan neredeyse ayni sonuglari elde

ediyoruz.

vi

TABLE OF CONTENTS
ACKNOWLEDGEMENTS ...ttt st il
ABSTRACT ..ottt sttt ettt st et b e eeees v
OZET oottt et v
LIST OF FIGURES ... e viii
LIST OF TABLES ...ttt st X
LIST OF SYMBOLS/ABBREVIATIONS ... xi
1. INTRODUCTIONoiiiiiiiiie ettt et e e e eanas 1
L1, MOTIVATION. ...t 3
1.2, SCOPE AND AIMS ... 4
1.3. THESIS CONTRIBUTIONS.... oo 4
2. BACKGROUND ..ot 6
2.1, CPU CACHESo e 6
2.1.1. Direct-mapped CaChecceeviiiiiiriiiieiiiieeeeeee e 8
2.1.2. Set-assoCiative CaChesueeviiiiiiiiiiiiiiiieeteeeeee e 8
2.2. CACHE-BASED SIDE-CHANNEL ATTACKSccoiiiiiiiiiiiieeceeen, 9
2.2.1. Classification of Cache-based Side-channel Attacksc..ccccceevierieeniencene. 9
2.2.1.1. Prime-Probe Attackcooeuiiiiiiiiiiiii 10
2.2.1.2. Evict-Time Attackcoooiiiiiiiiii e 12
2.2.1.3. Flush-Reload Attackccooouiiiiiiiiiiiii e 12
2.3. SECURE CACHE ARCHITECTURES ..ot 13
2.3.1. Partitioning the Cacheccccoviriiiiiiiiiiiiiceee e 13
2.3.1.1. Partition Locked (PL) Cachecccccoovveiiiiiiinieieiicceeeieeeee e, 14
2.3.1.2. Non-Monopolizable (NOMO0) Cacheccceevureiiriiiiiiiiieeeeiieeeee, 14
2.3.1.3. SecVerilog Cachecccceuviriiiiiiiiiiiieiieeieeeee e 15
2.3.1.4. SECDCP CaChEcvouimeieieeieeeeeeeere et 15
2.3.2. Randomizing Memory-to-cache Mappingccceeevueervveeenveeriueesnveenneennnes 15
2.3.2.1. RP CAChC ..t 16
2.32.2. NeWCAChE ... ccuiiiiiiiii e 16
2.3.2.3. Random Fill Cachecccccoeeviiiniiiiiiiiiiiiicccceceee e 17

2.3.2.4. CEASER CaCheccooeiiiiiiiiiiiiiiiiciiccceceeee e 17

vil

3. DESIGN .o 18
3.1. UTILITY BASED CACHE PARTITIONING.......c.ccciiiiiiiiiiiiieiieeiecan, 18
3.1 1. Uty MODIEOTS ..eeeeniiiieiiieieietee ettt ettt ettt e et e st e e sabee et e esanes 18
3.1.2. Original Lookahead AlgOTithmcccccoeriiiiiniiiiiiieiieccecee e 19

3.2. STATIC PARTITIONINGE oottt 21
3.3. SECURE AND DYNAMIC PARTITIONINGcccuiiiiiiiiniieiieiieeieeanen 21
3.4. FAIR CACHE SHARING AND SECURE DYNAMIC PARTITIONING........ 22
3.4.1. Proposed Lookahead AlgOrithmcccoeeerviiiiiiiniiiiiiiieecieeeeeeeeen 23
3.4.2. Proposed Replacement POIICYcccccecueeniiiiiiiiniiiiiiiiiccececceccee 24

4. EXPERIMENTAL METHODOLOGYccoitiuiiiiiiiiiiiiiiiiii e 27
4.1. PROCESSOR SPECIFICATIONS. ...ttt 27
4.2. BENCHMARKS e 27
4.3, METRICS.ttt e e e 29
5. RESULTS AND DISCUSSION ..ot 30
5.1. PERFORMANCE ON THROUGHPUT METRICcc..ccooeiiiiiiin. 30
5.2. PERFORMANCE ON FAIRNESS METRICccooiiiiiiiiiiiiiieeeee, 31
5.3. PERFORMANCE ON WEIGHTED SPEEDUP METRICc........... 32

6. CONCLUSIONS AND FUTURE WORK ..ot 35
REFERENCES ... et 37
APPEN DX A 41

APPENDIX B ..o 44

LIST OF TABLES

Table 2.1. Classification of cache-based side-channel attacksccooevemevvveveeeeeennn..

Table 4.1. Processor specifications

LIST OF FIGURES

Figure 2.1. Memory hierarchycooiiiiiiiiiiiiie e 6
Figure 2.2. Von Neumann and Hardvard architectures.................cccocoeeiviiinninnennnnn. 7
Figure 2.3. Direct-mapped cache [1].......cceiiniiiiiiiiiiii e 8
Figure 2.4. 2-Way set-associative cache [1]ccocevivieriieiiiiiieieeeieeeeie e 9
Figure 2.5. Prime: Fills the cache Setcooviiiiiiiiiiii e 11
Figure 2.6. Waits for vICtim Programcoeeuiiniiiiiiniiniiniiiieie e, 11
Figure 2.7. Probe: Determines cache 0CCUPAtiONc.uiuniiniiiiiiiiiiiiiiiiiicieann, 11
Figure 2.8. Partitioning the cacheccoiiiiiiiiiiii e 13
Figure 3.1. Framework for UDCP cachecc..coviiiiiiiiiiiiiiiiiiece, 19
Figure 3.2. Framework for static partitioning............c.cvevuieuniinneiineiineiineinenneenneen. 21
Figure 3.3. Framework for SecDCP cache...........c..cooeiiiiiiiiiiiiiiie, 22

Figure 3.4.

viil

Framework for FairSDP cacheoovvviniiiiiiiiii e 23

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

X

Overall IPC sum on a 4-threaded system............ccvevuviniiiiniiniininiinennen. 30
Overall IPC sum on an 8-threaded Systemcceveiiiiiiiiininiinnnnen. 31
FairSDP on fairness metric on a 4-threaded system..............c..ccoeeveeneen. 32
FairSDP on fairness metric on an 8-threaded system 32
FairSDP and SecDCP on fairness metric on an 8-threaded system.......... 33
Results over all 70 workloads on a 4-threaded system 33

Results over 25 workloads on an 8-threaded system..............c....c.......... 34

LIST OF SYMBOLS/ABBREVIATIONS

FairSDP
H

IPC

1Q

L

L2
LLBC
LRU
LSQ
QoS
ROB
SMT
UDCP
UMON

Fair and secure dynamic cache partitioning
High

Instruction per cycle

Issue queue

Low

Level two of cache

Low-Latency Block-Cipher

Least recently used

Load/Store queue

Quality of service

Re-order buffer

Simultaneous multi-threading
Utility-based dynamic cache partitioning

Utility monitors

X1

1. INTRODUCTION

In today’s world, one of the major concerns for users of the computer system is protecting
the confidentiality o f s ecret i n formation. T his c oncern h as r evealed i tself, e specially after
the use of cloud computing. The users of cloud computing have to share their hardware with

the other parties where there are not enough guarantees over the mutual trust.

When the hardware is isolated, meaning the users do not share common hardware for their
computing, this concern might be a research area of cryptographic methods. These methods
ensure that even the data has been compromised the contents are still not readable by
adversaries [1]. However, when the hardware is shared, there might be breaches of data

that depends on hardware-based attacks.

A recent hardware-based attack type is a side-channel attack. Side-channel attacks use
information gained from the implementation of the computer system, rather than weakness
in the implemented algorithm itself [2]. They collect side-channel information such as
electromagnetic leaks, power consumption, timing information or even sound produced by
a system. These types of attacks are so strong even cryptographic keys can be extracted. For
example, the secret RSA key was extracted from a smart card by looking at the amount of

power used during the decryption [3].

While side-channel attacks mostly focused on physical implementation in hardware, it can
be argued that cache-based side-channel attacks have a more impact area than physical side-
channel attacks. From this point on, we are going to refer cache-based side-channel attacks
as cache attacks.While side-channel attacks mostly focused on physical implementation
in hardware, it can be argued that cache-based side-channel attacks have a more impact
area than physical side-channel attacks. From this point on, we are going to refer cache-
based side-channel attacks as cache attacks. One of the reasons is cache exists almost
all processors. Second of them is the cache attacks can be performed without physical
proximity to the actual hardware. This is because physical side-channel attacks need

physical access or proximity. Cache attacks simply use timing information for cache hits

and misses. For example, if two processes share L2 cache, a process can validate every
single location of the cache. After yielding to other processes, the attacker process can
check the whole cache to see if any location is invalidated by measuring the access times of
the locations. Since this timing information varies for all caches, cache attacks are hard to

eliminate. In Section 2.1, a more comprehensive explanation of these attacks is provided.

There are some countermeasures to prevent this kind of attacks at different abstraction levels.
Several recent work [4] propose secure caches against cache-based side-channel attacks.
Almost all solutions rely on confiscating the timing information by two alternative methods:
either partitioning the whole cache, such as PL cache [5], SecVerilog cache [4] and
SecDCP cache [6], or randomizing the timing data, such as RP cache [7], CEASER
cache [8], and NewCache [9].

The former method classifies data as secret or public and then restricts the caching locations
of secret information so that the timing information is not visible to other parties. The latter
method uses extra measures such as new lookup schemes that use encryption or hashing to

randomize the memory-to-cache mapping.

Restricting processes on certain cache partitions reduces the performance significantly,
in static cache partitioning [6]. To solve this issue, in [10], dynamic cache partitioning
is proposed. With this approach, it is possible to change the partition size dynamically
according to the demands of processes. However, this approach is still vulnerable
to cache side-channel attacks. Previous work [6] proposes secure dynamic cache
partitioning. Although this scheme eliminates cache side-channel attacks with dynamic
cache partitioning, it still restricts sharing partitions of the cache among processes, even if
they have the same security level. Therefore, each process can only interact with its own

region of the cache.

While these techniques eliminate cache attacks, none of these techniques consider fairness
among the processes. Fairness metric measures the equality of all threads and treating
all threads equally is not straightforward while adjusting the partitions on the cache.

Partitioning based solutions do a good job of isolating the secret information, while they

suffer from performance loss which is visible by fairness metric which explained in detail

in Section 4.3.

We re-evaluate and re-design the partition based solutions for the cache attacks by taking
fairness as a measure of performance in multi-threaded systems. In this thesis, we present
secure and fair cache sharing with dynamic partitioning, a new approach, FairSDP (Fair
and Secure Dynamic Cache Partitioning) cache, which considers fairness among processes

while eliminates cache attacks.

1.1. MOTIVATION

Due to the recent attacks Meltdown [11] and Spectre [12], it has been shown that it
is possible to extract confidential information such as cryptographic keys through cache
attacks. To prevent this vulnerability, a lot of secure cache architecture designs are proposed
in academic literature. However, in earlier studies there is a lack of evaluation of secure
cache architectures in terms of fairness metric. In this thesis, we are going to evaluate some
of these secure cache architectures in terms of fairness metric. Also, we propose a secure
and fair dynamic cache partitioning scheme. We evaluate the new cache architecture in

4-threaded and 8-threaded systems.

With cloud computing and multi-threading, the cache becomes a shared resource, and it is
becoming more important to manage it even more efficiently and safely than before. For
example, IBM’s Power9 processor [13] supports up to 12 cores with 96 threads (SMT8) or
up to 24 cores with 96 threads (SMT4). Consequently, the fairness and the quality of service
(QoS) metrics also become invaluable metrics next to performance and power metrics on
SMT-based platforms. There are already some studies to improve the fairness metric [10].

However, as we have mentioned earlier these solutions are still vulnerable to cache attacks.

As we have discussed, although there are ample research studies in the literature, none
of them considers both security and fairness. Fairness may be ignored while focusing on
performance. However, it leads to unfair situations among multi-threads. To cope with this

problem we present a new solution, FairSDP.

We consider that confidential threads should have a priority over public threads because
they are security-critical threads. We have observed that while adjusting partition size,
just looking for public threads will cause unfair situations even in 2-threaded systems.
Since observing the demand of confidential threads cause vulnerability to cache attacks,
we reserve a static partition for confidential threads and the rest of the cache is adjusted to
be shared between public threads. Thus, we achieved fair cache sharing and secure dynamic

cache partitioning. We are going to discuss the new scheme in detail in Section 3.3.

1.2. SCOPE AND AIMS

Main objectives of this thesis are as follows:

e We aim to focus on cache attacks and secure cache architectures.

e We aim to perform a survey of current solutions for the cache attacks and model them
using a simulator.

e We aim to investigate the impact of partitioning over multi-threaded systems by
several different scenarios.

e We aim to propose a fairness based partitioning and analyze its impact over
performance.

e We aim to provide our results from several experiments and highlight the use cases

where fairness based solution outperform the other solutions.

The following subjects are out of our scope:

e The physical side-channel attacks are out of our scope in this work.

e The randomness based solutions are out of the scope of this work.

1.3. THESIS CONTRIBUTIONS

We make the following contributions:

e In this thesis, we propose a fair and secure dynamic cache partitioning scheme that

prevents timing-channel attacks.

o In this thesis, we evaluate existing secure cache architectures against on cache attacks
and evaluates the fairness metric.

e In this thesis, we evaluate our new architecture in 4-threaded and 8-threaded systems.
Although recent works claim that their approach is expandable with four applications,

these works do not evaluate their architecture in 4-threaded and 8-threaded systems.

2. BACKGROUND

In this chapter, we are going to discuss the background information necessary to understand
cache attacks and secure cache architectures. In section 3.1, we will give a detailed
understanding of CPU caches. Section 3.2 will explain various techniques of cache attacks.
Then we focus on different secure cache architectures, which are closely related to this

thesis.

2.1. CPU CACHES

A CPU cache is hardware that reduces the average cost of data accessing from memory. A
CPU cache is smaller, faster and closer to the processor core compared to main memory.
Frequently used data or the most recent data is stored in the processor cache. The reason for
storing frequently used data or the most recent data in the processor cache is to eliminate
latency of memory access delays. Since memory operations are a bottleneck compared to
CPU operations a hierarchy of memory to make memory operations faster is employed as

shown in Figure 3.1.

registers

L1 cache

L2 cache

L3 cache

main memory

Figure 2.1. Memory hierarchy

The memory hierarchy is divided into multiple levels where each level that is closer to
CPU is faster, smaller and more expensive. As seen in Figure 3.1, the first level cache(L1)
is connected to the core logic directly because of performance issues. Although a Von
Neumann architecture has a single cache for instruction and data, the Hardvard architecture
uses two separate buses for instruction and data as seen in Figure 2.2. Since it has two

caches, this allows memory operations to be performed on both buses and increases to

performance.
Program
Memory Program
< Data < - <
CPU <> S;\:‘Ja Memory > CPU <—>» Memory
Memory
(a) Von Neumann architecture (b) Harvard architecture

Figure 2.2. Von Neumann and Hardvard architectures

Programs prefer to use data and instructions close or equivalent to the addresses they have
previously used. For example, if a program uses a loop, the same code is executed over and
over again. Therefore, recent and often used data is stored to make the memory faster. This
has significant importance for CPU performance. However, this cannot be possible in a core
without caches. The cache just keeps some of the contents of the main memory. Therefore,
it must store both data and the address of the data in the memory. When the processor needs
to read or write a specific address, it will look into the cache. If the data is not found in
the cache, the data is fetched from a lower level in the memory hierarchy which can be L2
cache or the main memory. Because of performance issues cache lines or blocks are moved
at the same time since they are needed together due to locality. This reduces access times

for subsequent loads and stores.

Byte
Memory Tag Set Offset
Address —; [|00]
27 3
V Tag Data
| Set7
Set6
Set5 8-entry x
geM (14+27+32)-bit
| et3
== Set 2 SHaM
Set 1
Set0
32
Hit Data

Figure 2.3. Direct-mapped cache [1]

2.1.1. Direct-mapped Cache

Within the cache, there are some basic types of the organization where the simplest one is
a direct-mapped cache. Direct-mapped cache has each block mapped to exactly one cache
memory location. If a line is previously occupied by a memory block, when a new block

needs to be loaded, the old block is flushed.

2.1.2. Set-associative Caches

By providing N blocks in each set where data mapping to that set can be found, the number
of conflicts reduces, which is known as N-way set-associative ¢ ache. M odern caches are
organized in sets of cache lines. If the cache is fully associative, then the replacement policy
can choose any entry in the cache to place the data. Set associative caches tends to have

lower miss rates than direct mapped caches of the same capacity.

Byte
o — -0
Address —— Way 1 Way 0
28 2 1T]
V Tag Data V Tag Data
‘ ‘ Set3
Set 2
Set 1
Set0
32 128 32

e
38 L.

Hit Data

Figure 2.4. 2-way set-associative cache [1]

2.2, CACHE-BASED SIDE-CHANNEL ATTACKS

Cache attacks are serious vulnerability for all processors with caches. This essentially

includes all computers from embedded systems to smartphones to cloud servers.

Cache attacks can be performed by using micro-architectural time differences when data is
loaded from the cache instead of the main memory. This can lead to severe information

leakage such as revealing of secret keys.

2.2.1. Classification of Cache-based Side-channel Attacks

The most common classes of cache attacks are access-driven attacks and timing-driven
attacks [14]. These types of attacks use the information which is obtained by measuring
hardware-based channels such as the access times. In the access-driven attacks, the attacker
measures the impact of the victim’s cache accesses to the attacker’s own accesses so that
the attacker can reveal the confidential information. In the time-driven accesses, the attacker

can measure the execution time of the victim process.

10

In [15], it is argued that this classification can be improved for identifying main factors
and countermeasures to prevent them. Based on the method of identifying the memory
addresses, the attacks are classified as contention-based and reuse-based attacks. This new

classification of all known cache attacks can be seen in Table 2.1 [15].

Table 2.1. Classification of cache-based side-channel attacks

Contention-based | Reuse-based

Access-driven Prime-Probe Flush-Reload

Timing-driven Evict-Time Cache collision

2.2.1.1. Prime-Probe Attack

In [16] and [17], they proposed detailed explanations of memory accesses to the CPU cache
and formalized two concepts which are Evict-Time and Prime-Probe. The main point of

these two attacks is to determine which specific cache sets are accessed by a victim.

Algorithm 2.1. Prime-Probe

1: The attacker fills the specific cache sets with his/her own data.
2: The attacker waits for victim program.

3: The attacker determines which cache sets are still occupied.

Algorithm 2.1 explains the operations behind this type of attack. In the first step, one or
more specific cache sets are filled by the attacker with his/her own data. In the second step,
the attacker waits for the victim program. Finally, the same process is run again and time is
measured by the attacker to load each set of attacker’s data. Measuring the execution time
for accessing the addresses the attacker used to fill the cache set in the first step causes a
longer load time. Some of the attacker’s cache lines in these cache sets will be evicted if
some cache sets are used by the victim process during the interval. This leads to a much

longer load time during the final step because of cache misses.

Victim address space

Cache

Altacker address space

Figure 2.5. Prime: Fills the cache set

e

Victim address space

Cache

Altacker address space

Figure 2.6. Waits for victim program

Slow access

Fast access

/

B

Victim address space

Cache

Allacker address space

Figure 2.7. Probe: Determines cache occupation

11

12

2.2.1.2. Evict-Time Attack

Evict-Time is the second attack described in [17]. The key point is to determine which cache
set is used during the victim’s accesses. Therefore, these attacks considered contention-

based attacks in [15].

Algorithm 2.2. Evict-Time

1: The attacker measures execution time of victim program.
2: The attacker evicts a specific cache set.

3: The attacker measures execution time of victim program again.

Algorithm 2.2 outlines the steps of this kind of attack. Firstly, the execution time of the
victim process is measured by the attacker. In the second step, one specific cache set with
the attacker’s own data and victim’s data is evicted in that cache set by the attacker. In the
third step, the execution time of the victim program is measured again and used the timing
difference between the two measurements by the attacker. Therefore, it can be inferred how

much the specific cache set is used while the victim’s program is running.

2.2.1.3. Flush-Reload Attack

In contrast to Prime-Probe and Evict-Time attacks Flush-Reload [18] attack technique

requires shared some address space between the attacker and the victim process.

Algorithm 2.3. Flush-Reload

1: The attacker flushes a cache line(security-critical data from the cache).
2: The attacker waits for victim program.
3: The attacker checks whether the corresponding cache line from step 1 has been loaded

by the victim’s program.

Algorithm 3 summarizes the Flush-Reload attack technique. In the first step, the attacker
flushes a cache line. In the second step, the attacker waits for the victim’s program and the

third step attacker accesses the same cache line flushed in the first step. Execution time is

13

measured by the attacker to decide whether the access has been loaded from the cache or the
main memory. Reload time of the attacker depends on whether the victim program accesses
some security-critical data during the interval. The attacker will get a much lower reload

time, because of the cache hit.

Gullasch et al. [18] proposed this attack technique to attack OpenSSL implementation of
AES. Yarom et al. applied the first last-level cache attack using the Flush-Reload technique
[19].

2.3. SECURE CACHE ARCHITECTURES

Designing secure caches is one of the solutions to mitigate cache attacks. In [15], it is
argued that this solution provides much higher performance and often greater security than
software solutions. While designing secure caches, there can be different approaches such
as preserving victim cache lines, randomizing memory-to-cache mapping and encrypting

memory-to-cache mapping.

Protected
e

Cache

Figure 2.8. Partitioning the cache

2.3.1. Partitioning the Cache

Partitioning is intended to remove the cache contention between the attacker and the victim

processes. For different processes, the cache is partitioned into different zones, and each

14

process can access only the cache blocks in its zone. It is possible to achieve partitioning

statically or dynamically.

2.3.1.1. Partition Locked (PL) Cache

Rather than statically partitioning, PL cache [5] locks a protected cache line into the cache
and prevents it from being evicted through another process. By adding a process ID and
a lock status bit to the tag-store entry, it extends each cache block. Load instructions are
extended as (ld.lock/ld.unlod) and store instructions are extended as (sd.lock/sd.unlo) to
control process ID and the lock status bit. This allows the compiler to control what data to
lock. Replacement policy of PL cache as follows, for a cache hit, the routine procedure is
performed and the process ID and the lock status bits are updated by the new instructions
with locking or unlocking capability while the hit occurs. When a cache miss occurs, data
that is locked cannot be evicted by data that is not locked, and even locked data cannot be
evacuated from each other between different processes. In this situation, it either loads or

stores the new data without caching.

2.3.1.2. Non-Monopolizable (NoMo) Cache

NoMo cache [20] reserves cache lines for active threads and prevents the eviction of reserved
lines by other co-executing threads. They proposed a simple cache replacement policy
modification that restricts an attacker to use no more than a predetermined number of lines
in each set of an associative cache. As a result, the victim’s data cannot be replaced by
the attacker in the protected cache lines of each cache set. This prevents the attacker from
observing those memory accesses through the side-channel. They guarantee that at least
Y lines are reserved exclusively in each cache set for each running thread. Y’s possible
values are in the N/M range, where N is the cache’s associativity, and the M is number of

the simultaneous multi-threading (SMT) threads.

15

2.3.1.3. SecVerilog Cache

SecVerilog cache [4] statically divides cache lines between Low (L) and High (H) security
levels. There is a timing label associated with each source program statement and represents
confidential information and this label communicates with the hardware level. In [4], it says
high partition cannot affect the timing label of L instruction, H instruction cannot change
the low partition, and H partition cache lines cannot affect L partition cache lines. Basically,
it statically divides cache ways between security levels L and H. H instructions are therefore
unable to write lines to L partition. When the line is in H partition, it will result in cache
miss for L instructions in cache read, but this line will be moved from H to L partition in
order to preserve consistency. On the other hand, if the timing label of instruction is H,
both H and L partitions will be searched. For cache writing, there is strictly a partition that
H instruction can write only to H partition, and L instruction can write only to L partition
except if the actual cache line is in H partition. Moreover, to avoid inconsistency, these are

only one copy of data in the cache and TLB.

2.3.1.4. SecDCP Cache

SecDCP [6] relies on SecVerilog Cache [4]. Instead of statically partitioning, it partitions
the cache ways dynamically. At least two security classes Low (L) and High (H) can be
supported. SecDCP adjusts the ways assigned to L by monitoring percentage of cache
misses that is reduced or increased when the partition size of L is increased or decreased.
When adjusting cache ways, if there is a change from L’s to H’s, cache line is flushed before
reusing it. However, if there is a change from H’s to L’s, H lines remain unmodified. This

will not allow L to deduct the cache lines that are previously allocated to H.

2.3.2. Randomizing Memory-to-cache Mapping

The cache partitioning disadvantage is under utilization of the cache. Other processes
cannot use cache lines that are locked or belong to a private partition, even if these cache
lines are unused. Randomizing memory-to-cache mapping may prevent under utilization

of the cache. The approach to randomization still allows cache contention, but no useful

16

information can be extracted from the contention by the attacker. One of the drawbacks of
randomizing memory-to-cache mapping is that it can cause huge mapping tables. Because

in some cases it should be needed to map all entries in the cache.

2.3.2.1. RP Cache

RP cache [5, 7] is proposed by Wang and Lee to randomize memory-to-cache mapping [5,
7]. This strategy allows cache storage while randomizing the subsequent interference so
that no helpful data about which row of cache has been evicted can be inferred.
Permutation of memory-to-cache mapping is an essential procedure performed by the
RPcache. In RPcache, a permutation table (PT) stores the memory-to-cache mapping for a
process. The number of entries in the table is the same with the number of cache sets.
Randomization of list entry data offers full randomization of the mapping of memory-to-
cache. A P bit and ID fields are added to each cache line to specify the memory region to
be protected from the attacker. When a cache hit, it behaves similar as a normal cache hit
but P-bit of the cache line needs to be updated. If a cache miss occurs with data D of a
cache set S, normal cache replacement policy chooses a line R in set S. If R and D belong
to the same process and have the same protection bit normal replacement policy handles
the procedure. If they do not have the same protection bit, a random data of a random
cache set S’ is evicted and D is accessed without accessing the cache. If they do not
belong to the same processes, a random set S’ is selected. The new line D replaces R’ in S’

and the memory-to-cache mapping for S’ and S is swapped.

2.3.2.2. NewCache

NewCache [9] proposes dynamic randomization for memory-to-cache mapping. It
introduces a ReMapping Table (RMT). While the mapping between this RMT and memory
addresses adopts the direct mapped architecture, the mapping between the actual cache and
the RMT is fully associative. The mapping from the index bits of the address to a real
cache line is stored in ReMapping Table. They also propose the security-aware replacement
algorithm to update and randomize the remapping table dynamically. Instead of holding a

fixed set of cache lines, the proposed cache stores the most useful cache 1ines. Each cache

17

block has a protection bit if it is and the process ID which are stored in RMT. It is very much

alike to RP cache in terms of the cache replacement policy.

2.3.2.3. Random Fill Cache

Random Fill Cache [15] uses random filling t echnique t o d e-correlate ¢ ache fi lls with

memory access. It divides data accesses into three categories and can check whether the
requested data belongs to a normal request or a random fill request by using new instructions.
If data accesses are not security critical, Normal request will be utilize to execute routine
replacement policy. When the confidential data accesses of victim occurs, a Nofill request
is executed, the requested data access is brought without accessing the cache and a Random
Fill request is executed and arbitrary data will be brought to the cache from the range
of addresses. In [15], the authors claim that random spatial data filling d oes n ot affect

performance.

2.3.2.4. CEASER Cache

CEASER cache [8] mitigates conflict-based c ache a ttacks u sing t he e ncrypted address
and dynamic remapping. It accesses the cache with encrypted address and changes the
encryption key periodically to prevent key reconstruction. CEASER cache employs Low-

Latency Block-Cipher (LLBC) to convert physical line address to encrypted line address.

18

3. DESIGN

This chapter discusses the design of FairSDP architecture which is implemented in the M-
Sim simulation suite for evaluation. Moreover, it describes the underlying utility based
cache partitioning and utility monitoring in Section 3.1, static cache partitioning in Section
3.2, secure and dynamic partitioning in Section 3.3 and finally, fair and secure dynamic

cache partitioning in Section 3.4.

3.1. UTILITY BASED CACHE PARTITIONING

Utility Based Cache Partitioning (UDCP) [10] is a run-time mechanism which partitions a
shared cache between multiple threads according to the demands of the running threads.
This scheme uses utility monitors (UMON) for each thread at run-time to fairly share
cache resources between threads. UMON obtains utility information for each thread and
the partitioning algorithm utilizes the information collected by the UMON to decide the
number of ways to allocate in cache. Figure 3.1 shows the framework for UDCP cache. In
order to monitor the utility information of a thread, the number of misses for all possible
number of ways should be recorded. According to this information, optimal number of ways
for each cache can be adjusted. In the subsections, building blocks of UDCP is explained in

detail.

3.1.1. Utility Monitors

The number of cache misses for all possible number of ways should be tracked in order
to monitor the utility information of an application. To compute the utility information for
the 16-way cache in [10], they propose a monitoring circuit to track misses for the sixteen
different cases according allocated ways of threads. They keep this information by having
sixteen tag directories. Each tag category has the same number of sets as the shared cache.
They use dynamic set sampling [21] to reduce hardware overhead of UMON. The main
concept behind dynamic set sampling is that only a few pairs can approximate the cache’s

activity by sampling.

19

PARTITIONING
ALGORITHM
UMON
A v
ICACHE
SHARED
CORE > L2
CACHE
DCACHE

!

MAIN
MEMORY

Figure 3.1. Framework for UDCP cache

3.1.2. Original Lookahead Algorithm

Lookahead Algorithm is proposed in [10]. With this algorithm, the marginal utility is
considered for all possible number of blocks that the application can receive. Algorithm
3.2 shows the pseudo code for the lookahead algorithm. Here, N represents the
cache associativity, the output vector, allocations, stores the maximum number of allocated
cache ways to each process. The aim of this algorithm is to optimize the number of ways

to be allocated to the threads using run-time statistics.

In [10], they calculate the maximum marginal utility (max mu) and the minimum number of
blocks at which the max muoccurs. The calculation is repeated for each application at each
iteration. Algorithm 3.1 shows the calculation process. The application with the highest
value for max mu is assigned the number of blocks it needs to obtain max mu. Until all
blocks are assigned, iterations are repeated. In each iteration, the lookahead algorithm can

appoint a different number of blocks.

While UDCP achieves to divide the cache among the competing threads fairly, it does not
consider security at all. We are going to propose both secure and fair cache architecture for

multi-threaded processors.

Algorithm 3.1. Get_mu value and get_max_mu functions [10]

20

10:

11:

12:

13:

14:

15:

: Function get_mu_value(p,w,y)

U = when the number of ways assigned to it change in misses for app p
increases from w to y

return U/(y-w)

EndFunction

Function get_max_mu(p,alloc,balance)

: max_mu=0

: for j = 0;j < balance; j + + do

mu = get_mu_value(p, alloc, alloc+j)
if mu > max_mu then
max_mu=mu
end if
end for
return max_mu

EndFunction

Algorithm 3.2. Original lookahead algorithm [10]

10:

11:

12:

13:

: balance = N

allocations[i] = 0 for each process i

: while (balance) do

for each app i, do
alloc = allocations|i]
max_mul[i] = get_-max_mu(i, alloc, balance)
blocks_req[i] = min blocks to get max_mu for i
end for
winner_app = app with max value of max_mu
allocations[winner_app] += blocks_req[winner_app]
balance — = blocks_req[winner_app]
end while

return allocations

21

3.2. STATIC PARTITIONING

In the static cache partitioning, the victim and attacker have different cache ways. This
approach basically partitions the cache for the victim and the attacker. Although it is a
cheap and effective method to mitigate cache side-channel attacks, restricting processes on

certain cache partitions significantly reduces processor performance [22].

LOwW HIGH
e e
Ad
ICACHE >
SHARED
CORE L2
CACHE
DCACHE

I

MAIN
MEMORY

Figure 3.2. Framework for static partitioning

3.3. SECURE AND DYNAMIC PARTITIONING

As we already mentioned earlier, SecDCP relies on SecVerilog. Instead of statically
partitioning, it partitions the cache ways dynamically. At least two security classes Low
(L) and High (H) are supported. SecDCP adjusts the ways assigned to L. by monitoring
the percentage of cache misses that are reduced or increased when the partition size of L is
increased or decreased. When adjusting cache ways, if there is a change from L’s to H’s,
the cache line is flushed before reusing it. However, if there is a change from H’s to L’s, H
lines remain unmodified. This will not allow L to deduct the cache lines that are previously

allocated to H.

Although this scheme eliminates cache side-channel attacks with dynamic cache

partitioning, it still restricts sharing partitions of the cache among processes, even if they

22

have the same security level. Therefore, each process can only interact with its own region
of the cache. This can create an unfair situation when both public processes and secure
processes need the cache extensively. Although it reserves at least one cache way for the
secure process, this does not guarantee fairness since each secure process may receive only
one cache way. For example, when there are many cache- needed public processes running
on the system, SecDCP distributes all the cache ways among those public processes leaving
insufficient cache resources for the remaining secure processes. We try to eliminate this
problem by the proposed scheme which is explained in Section 3.4. While they said that
SecDCP is scalable, they do not evaluate their scheme on SMT systems with more than 2

threads.

PARTITIONING
ALGORITHM with
THRESHOLDS
UMON for L1
THREAD Low HIGH
A s
ICACHE
CORE > !L2 CACHE
DCACHE
L1 L2 L3 I
MAIN
MEMORY

Figure 3.3. Framework for SecDCP cache

3.4. FAIR CACHE SHARING AND SECURE DYNAMIC PARTITIONING

FairSDP aims to eliminate cache side-channel attacks by using dynamic cache partitioning
while considering the fairness among processes in a multi-threaded environment. As shown
in Figure 3.1, FairSDP divides the shared cache into two regions. We assume the public
data, which does not require any confidentiality, is labeled L (LOW) and secret data is
labeled H (HIGH). The cache is partitioned such that no L data and H data can coincide and
reside on the same cache line. Hence, it will be impossible for a thread to deduct the timing
information on secret data. Besides, the partitioning has to be done cleverly so that both L

and H data regions have a fair amount of space.

23

FAIR and SECURE
PARTITIONING

LOW HIGH
P -
UMON for LOW
PARTITION
A

SHARED
L2
CACHE

!

MAIN
MEMORY

ICACHE

CORE

\4

DCACHE

Figure 3.4. Framework for FairSDP cache

We assume processes either have H data or L data exclusively. We can collect cache
statistics and predict the demand of L processes, however, it is not possible to do the same
for H processes due to security reasons. L processes can adjust their partitions according
to their instantaneous demand on the cache. Meanwhile, we reserve a fixed partition
for an H process and for measuring the demand of L processes, we use utility monitors
(UMON) described in [10]. Utility curves for each thread are generated by dedicated
UMON structures. These curves enable us to calculate the number of misses for all possible
cache sizes in cache-way granularity. Then, we use this information to adjust the partition

space to make a fair sharing of resources.

This framework tries to eliminate the unfair situation that can occur when L processes and
H processes are both memory-intensive. Adjusting cache partitioning only by collecting the
demand of L processes and by disregarding the cache requirements of security-critical H

processes could cause performance problems on running secure applications.

3.4.1. Proposed Lookahead Algorithm

Our algorithm is derived from the lookahead algorithm proposed in [10]. As seen in
Algorithm 3.3, we reserve an m-way static partition for each H process, and, then, we

apply the original lookahead algorithm for the remaining L processes to adjust optimal

24

partitioning on the rest of the cache. Here, N represents the cache associativity, Hcount
represents the number of H processes and Lcount represents the number of L processes. The
output vector, alloc, stores the maximum number of allocated cache ways to each process.
Note that the algorithm starts by allocating at least one cache way to each L process as

in the original algorithm.

Algorithm 3.3: The proposed lookahead algorithm

1: balance = N — (m x Hcount + 1 % Lcount)
2: alloc[i] = m for each high process i
3: alloc[j] = 1 for each low process j

4: call original lookahead algorithm for all low processes

5: return alloc

3.4.2. Proposed Replacement Policy

We also made some changes on the replacement policy to ensure secure and fair
partitioning, as shown in Algorithm 3.4. We add a bit to the tag-store entry of each line to
define the core that installed the line in the cache to implement the way partitioning. On
a cache miss, first, we count the number of cache lines of the miss pending process i on
the current cache set, and store it in the occupancy vector. If the process is an L process and
its occupancy on that set is less than the number of lines allocated to the process, then the
Least Recently Used (LRU) line among all the lines that do not belong to the process is
evicted. If this number reaches its maximum value or if it is an H process, the LRU line

among all the lines of the miss causing process is evicted.

25

Algorithm 3.4 : The proposed replacement policy

1: occupancy[i] = Count(i, set)
2. if all cache lines are valid then

3: if process = L and occupancy[i] < alloc[i] then

4: evict LRU line j which belongs to other L processes
5: else

6: evict LRU line j which belongs to current process i
7: endif

8: else

9: if occupancy[i] < alloc[i] then

10: select an invalid line j

11: else

12: evict LRU line j which belongs to current process 1
13: endif

14: end if

15: insert new cache line on line j

We propose FairSDP cache, which prevents cache timing-channel attacks while still
considering fairness among threads. In this study, we focus on the design and evaluation
of the partition-based solutions targeting cache attacks by taking performance and fairness
as two major metrics. Although our proposed mechanism has similarities with the SecDCP,

our main differences over the current state of the art [6] are as follows:

e We evaluate our new mechanism in a 4-threaded and in an 8-threaded SMT system.
Although recent works claim that their approach is scalable, they do not evaluate their
scheme on SMT systems with more than 2 threads.

e Although SecDCP scheme eliminates cache side-channel attacks with dynamic cache
partitioning, it still restricts sharing partitions of the cache among processes, even if
they are at the same security level. Therefore, each process can only interact with its
own region of the cache. In FairSDP, we relax this restriction by allowing threads in

the same security level to share cache regions among them.

26

e We try to eliminate the unfair situation that can occur when both public processes
and the secure process need the cache extensively. SecDCP reserves at least one way
for the secure process. However, this does not guarantee fairness since each secure
process may receive only one cache way. For instance, when there are many cache-
hungry public processes running on the system, SecDCP distributes all the cache ways
among those public processes leaving insufficient cache resources for the remaining
secure processes. In contrast, FairSDP reserves a fixed number of cache ways to each
of the secure processes to guarantee fairness and, hence, achieves similar fairness

results as reported by the UDCP scheme.

27

4. EXPERIMENTAL METHODOLOGY

Throughout this chapter, we are going to explain the experimental methodology that we use
while evaluating the proposed scheme. In Section 4.1, processor specifications that we test
our proposed design can be seen. Benchmarks that we use to test the performance of the
proposed design are described in Section 4.2. Lastly, in Section 4.3, metrics that we use to

evaluate and compare the proposed scheme is described.

4.1. PROCESSOR SPECIFICATIONS

We use an architecture simulator, M-Sim [23], to evaluate secure cache architectures and
our design. M-Sim is a micro-architectural simulation environment. It provides to measure
processor performance under both single and multi-threaded with a detailed cycle-accurate
model for the key pipeline structures. It is based on SimpleScalar [24]. SimpleScalar is a
set of tools that model the CPU, cache and memory hierarchy of a virtual computer system.
Using SimpleScalar tools, users are able to create architecture systems for modeling that

simulate real benchmarks running on a range of modern processors and systems.

4.2. BENCHMARKS

We use 8 SPEC CPU2006 benchmarks to form our test cases. The selected benchmarks are

hmmer, libquantum, mcf, milc, namd, omnettpp, sjeng and zeusmp.

We tested all possible combinations of 8 benchmarks(70 workloads for 4-thread mixtures).
We fast-forward the simulation 10 million instructions and the simulation terminates after

250 million instructions.

Table 4.1. Processor specifications

Decode / Issue / Commit bandwidth

8 instructions / cycle

Register file 256 int point, 256 floating point
Reorder buffer (ROB) size 64 entries
Issue Queue (1Q) size 40 entries
Load / Store queue (LSQ) size 32 entries
Number of integer ALUs 6

Number of integer multiplier / dividers 3

Number of floating point ALUs 3

Number of floating point multiplier / dividers | 3

L1 instruction cache 2-way

L1 data cache 4-way

L2 unified cache 8-way

L1 cache hit time 1 cycle
L2 cache hit time 20 cycles
Main memory access time 300 cycles

28

29

4.3. METRICS

We use some metrics to evaluate and compare the proposed scheme. These metrics are IPC,
Weighted Speedup and Harmonic Mean of IPC. IPC metric is used to indicate the throughput
of the processor but IPC alone may not be fair to a low IPC thread. The formula calculating

IPC of N threads can be seen in Equation 4.1.

1PC — Z Number of instructions committed by thread; @1

Number of cycles

The harmonic mean of IPC is the second metric that we use in our study. It takes the
harmonic mean of IPCs as shown in Equation 4.2. This metric provides a fair balance of
throughput because both the speed of threads and the standalone performance of each thread

affect it.

(4.2)

The third metric that we use is Weighted speedup. With this metric, reduction in execution

time is indicated.

IPC;

_ 4.3
singlel PC; (4.3)

Weighted Speedup = Z

S. RESULTS AND DISCUSSION

In this chapter, we are going to present and discuss the test results.

30

In Section 5.1,

performance on throughput metric will be discussed, we will also argue about performance

on fairness metric in Section 5.2, lastly, in Section 5.3 we will present weighted speedup

metrics.

5.1. PERFORMANCE ON THROUGHPUT METRIC

Figure 5.1 shows the overall IPC sum in a 4-threaded system. While we provide a

secure cache, we show that our proposed mechanism has almost the same performance

as the UDCP. As shown in Figure 5.2, results indicate that our mechanism has 8.7 percent

performance improvement over the baseline and 9.2 percent better performance compared

to the static partitioning on the average, on an 8-threaded system. Workloads can be seen in

Appendix A and Appendix B in detail.

IPC

2.5

@ baseline M static @ UDCP FairSDP
|/ / v\

f\J'\ jx‘/’\/"
f Yy

>

20 30 40 50 60 70

Workloads

Figure 5.1. Overall IPC sum on a 4-threaded system

31

@ baseline M static @ UDCP FairSDP

|

2.5

IPC

Workloads

Figure 5.2. Overall IPC sum on an 8-threaded system

5.2. PERFORMANCE ON FAIRNESS METRIC

We compare FairSDP with UDCP[10] in terms of the fairness metric. Figure 5.3 and Figure
5.4 show the performance of FairSDP relative to UDCP on 4-threaded and 8-threaded
systems. In [25], the harmonic mean of the normalized IPCs is claimed to consider both
fairness and performance. UDCP claims around 10 percent fairness improvement over the
static partitioning approach, and our results show that our proposed mechanism is almost as

fair as the UDCP scheme while still providing a secure cache.

We also compare SecDCP with UDCP in terms of the fairness metric in order to show how
much we can improve fairness among threads. Figure 5 shows the performance of SecDCP
relative to UDCP on an 8-threaded system. As we have mentioned in the paragraph above,
UDCEP claims around 10 percent fairness improvement over the static partitioning approach.

However, SecDCP results do not show that it is fair as FairSDP as seen in Figure 5.5.

Hmean of Normalized IPC

B UDCP vs FairSDP
1.02

0.98

0.96

0.94
10 20 30 40

Workloads

50

60

70

Figure 5.3. FairSDP on fairness metric on a 4-threaded system

Hmean of Normalized IPC

B UDCP vs FairSDP

1.02

1.01

0.99

0.98
5 10 15

Workloads

20

25

Figure 5.4. FairSDP on fairness metric on an 8-threaded system

5.3. PERFORMANCE ON WEIGHTED SPEEDUP METRIC

32

Figure 5.5 and Figure 5.6 summarize the performance results across 70 workloads on a 4-

threaded system and 25 workloads on an 8-threaded system, respectively. We normalized

the throughput results to a baseline processor with an 8-way set-associative cache using the

LRU replacement policy. Workloads are sorted according to their performance over the

baseline processor.

B UDCPvs FairSDP == UDCP vs SecDCP

1.2
o
o
— 1
(D)
N
©
E 08
(@]
z
2 06
©
(&)
=
T 04

5 10 15 20 25
Workloads

Figure 5.5. FairSDP and SecDCP on fairness metric on an 8-threaded system

== static == UDCP FairSDP
1.05
o 1.025
=
Ko)
w
©
P ——
> 1
5
o
.C
(@)
3 /
= 0975
|_
0.95

10 20 30 40 50 60 70

Workloads

Figure 5.6. Results over all 70 workloads on a 4-threaded system

33

34

While there is no significant difference on performance in a 4-threaded system as shown
in Figure 5.6, in an 8-threaded processor, we encounter a win-win situation for dynamic
partitioning mechanisms. We surpass the performance of the static partitioning while
still protecting the cache against time-channel attacks. As a result, we show that we can
achieve up to 8.7 percent performance improvement over the baseline and 9.2 percent better

performance compared to the static partitioning on the average, on an 8-threaded system.

== static == UDCP FairSDP

1.15
) 1.1
£
Ko)
(%)
©
m
2 105
5
Q.
_C
(@)
3
= 1
|_.

0.95

5 10 15 20 25
Workloads

Figure 5.7. Results over 25 workloads on an 8-threaded system

We also applied a t-test to IPC results to make sure whether our sampling workloads
represent all benchmarks. Looking at the t-test results, we observe IPC results of workloads
on the FairSDP cache is significantly different from the baseline (p < 0.0001), static
partitioning (p < 0.0001) and UDCP (p < 0.001). These results support that our sampling

workloads represent the whole system.

35

6. CONCLUSIONS AND FUTURE WORK

Cache attacks are serious vulnerability for most of the processors with caches even in today’s
popular products. This essentially includes all computers from embedded systems to cloud
servers. Cache attacks can be performed by using micro-architectural time differences
when data is loaded from the cache instead of the main memory. This can cause serious

information leakage such as revealing of secret keys.

There are some countermeasures to prevent this kind of attacks at different abstraction levels.
Several recent work [4, 5, 6, 7, 8, 20] propose secure caches against cache attacks. Almost
all solutions depend on confiscating the timing information by two methods: either partition

the whole cache or randomizing timing data so that it will not reveal any secret information.

It is argued that restricting processes on certain cache partitions reduces the performance
significantly, in static cache partitioning [6]. To solve this issue, in [10], dynamic cache
partitioning is proposed. With this approach, it is possible to change the partition size
dynamically based on the demands of processes. However, this approach is still vulnerable
to cache attacks. Previous work [6] proposes secure dynamic cache partitioning. Although
this scheme eliminates cache attacks with dynamic cache partitioning, it still restricts sharing
partitions of the cache among processes, even if they have the same security level. Therefore,

each process can only interact with its own region of the cache.

To solve this issue, we present a fair and a secure cache sharing mechanism with dynamic
partitioning, FairSDP cache, which gives a fair way of eliminating cache attacks. Our design
is based on a mechanism which dynamically allocates partitions during run-time respecting
fairness parameters which are calculated using UMON. The proposed architecture is
implemented through a simulation package and its performance is evaluated by using a

number of benchmarks.

We tried to approach the performance and fairness problems of the secure cache

architectures that dynamically allocate cache to competing threads. We have used the run-

36

time statistics that are collected by UMON to decide how to allocate the cache partitions

among competing threads in a more fair manner.

With this framework, we try to eliminate the unfair situation that can occur when public
processes and secure processes are both memory-intensive. We achieve up to 8.7 percent
performance improvement over the baseline and 9.2 percent better performance compared

to the static partitioning on the average.

A non-secure Utility-based Dynamic Cache Partitioning (UDCP) scheme reports around 10
percent improvement over the static partitioning scheme in terms of fairness, on the average.
We show that we achieve similar fairness results over the UDCP scheme, and, therefore, we

claim that FairSDP cache satisfies our performance and security expectations.

Although this thesis has mentioned about performance problems related to secure cache
architectures, different extensions can be worked in the future research. We summarize

them below:

e FairSDP can be extended to support more than one high thread.

e Rather than using a simulation environment, secure cache architectures can be
implemented on hardware such as RISC-V Rocket Chip architecture.

e Designing secure cache architectures is not the only solution to mitigate cache-based
side-channel attacks. To prevent this kind of attacks, other countermeasures can be

applied in different abstraction levels.

37

REFERENCES

1. Harris D, Harris S. Digital design and computer architecture. San Francisco:

Morgan Kaufmann; 2010.

2. Rebeiro C, Mukhopadhyay D, Bhattacharya S. Timing channels in cryptography: a

micro-architectural perspective. New York: Springer; 2014.

3. Messerges TS, Dabbish EA, Sloan RH. Investigations of Power Analysis Attacks on
Smartcards. Smartcard. 1999;99:151-161.

4. Zhang D, Wang Y, Suh GE, Myers AC. A Hardware Design Language for timing-
sensitive information-flow security. ACM SIGARCH Computer Architecture News.
2015;43(1):503-516.

5. Wang Z, Lee RB. New cache designs for thwarting software cache-based side channel

attacks. ACM SIGARCH Computer Architecture News. 2007;35(2):494-505.

6. WangY, Ferraiuolo A, Zhang D, Myers AC, Suh GE. SecDCP: secure dynamic cache
partitioning for efficient timing channel protection. In: Proceedings of the 53rd

Annual Design Automation Conference. ACM; 2016. p. 74.

7. Wang Z, Lee RB. Covert and side channels due to processor architecture. In: 22nd
Annual Computer Security Applications Conference (ACSAC’06). IEEE; 2006.
pp. 473-482.

8. Qureshi MK. CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-
Address and Remapping. In: 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE; 2018. pp. 775-787.

9. Wang Z, Lee RB. A novel cache architecture with enhanced performance and

security. In: Proceedings of the 41st annual IEEE/ACM International Symposium

10.

11.

12.

13.

14.

15.

16.

17.

18.

38

on Microarchitecture. IEEE Computer Society; 2008. pp. 83-93.

Qureshi MK, Patt YN. Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches. In: 39th Annual IEEE/
ACM International Symposium on Microarchitecture (MICRO 06). IEEE; 2006. pp.
423-432.

Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Fogh A, et al. Meltdown: Reading
Kernel Memory from User Space. In: 27th USENIX Security Symposium (USENIX
Security 18); 2018.

Kocher P, Horn J, Fogh A, Genkin D, Gruss D, et al. Spectre Attacks: Exploiting
Speculative Execution. In: 40th IEEE Symposium on Security and Privacy (S&P’19);
2019.

Sadasivam SK, Thompto BW, Kalla R, Starke WJ. IBM Power9 processor
architecture. /EEE Micro. 2017;37(2):40-51.

Page D. Theoretical use of cache memory as a cryptanalytic side-channel. /4CR

Cryptology ePrint Archive. 2002(169).

Liu F, Lee RB. Random fill cache architecture. In: Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society;
2014. pp. 203-215.

Percival C. Cache missing for fun and profit. Ottowa: BSDCan; 2005.

Osvik DA, Shamir A, Tromer E. Cache attacks and countermeasures: the case of

AES. In: Cryptographers’ Track at the RSA Conference. Springer; 2006. pp. 1-20.

Gullasch D, Bangerter E, Krenn S. Cache games—Bringing access-based cache attacks
on AES to practice. In: 2011 IEEE Symposium on Security and Privacy. IEEE; 2011.
pp- 490-505.

19.

20.

21.

22.

23.

24.

25.

39

Yarom Y, Falkner K. FLUSH+ RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: 23rd {USENIX} Security Symposium ({USENIX} Security
14); 2014. pp. 719-732.

Domnitser L, Jaleel A, Loew J, Abu-Ghazaleh N, Ponomarev D. Non-monopolizable
caches: Low-complexity mitigation of cache side channel attacks. ACM Transactions

on Architecture and Code Optimization (TACO). 2012;8(4):35.

Qureshi MK, Lynch DN, Mutlu O, Patt YN. A case for MLP-aware cache
replacement. In: 33rd International Symposium on Computer Architecture (ISCA’06).
IEEE; 2006. pp. 167—-178.

Sari S, Demir O, Kucuk G. FairSDP: Fair and Secure Dynamic Cache Partitioning.
In: 4th International Conference on Computer Science and Engineering (UBMK).

IEEE; 2019. pp. 469-474.

Sharkey J, Ponomarev A, Ahose K. A-sim: A flexible, multithreaded architectural
simulation environment. Techenical teport, Department of Computer Science, State

University of New York At Binghamton. 2005.

Austin T, Larson E, Ernst D. SimpleScalar: An infrastructure for computer system

modeling. Computer. 2002;(2):59—-67.

Luo K, Gummaraju J, Franklin M. Balancing throughput and fairness in SMT
processors. In: International Symposium on Performance Analysis of Systems and

Software. ISPASS. IEEE; 2001. pp. 164-171.

40

APPENDIX A: IPC RESULTS OF 4-THREADED WORKLOADS

Table A.1. Results of 4-threaded workloads

Workloads static | UDCP | FairSDP

hmmer libquantum mcf milc 3.2167 | 3.2274 | 3.2098

hmmer libquantum mcf namd 3.696 | 3.6988 | 3.6879

hmmer libquantum mcf omnetpp 3.3854 | 3.3975 | 3.3902

hmmer libquantum mcf sjeng 3.57 | 3.6127 | 3.5689

hmmer libquantum mcf zeusmp 3.7652 | 3.7742 | 3.7576

hmmer libquantum milc namd 3.6796 | 3.6777 | 3.6762

hmmer libquantum milc omnetpp | 3.3735 | 3.3812 | 3.3746

hmmer libquantum milc sjeng 3.5478 | 3.5874 | 3.544

hmmer libquantum milc zeusmp 3.7347 | 3.749 3.7251

hmmer libquantum namd omnetpp | 3.674 | 3.6762 | 3.6744

hmmer libquantum namd sjeng 3.8282 | 3.8272 | 3.8141

hmmer libquantum namd zeusmp | 3.8331 | 3.8327 | 3.8263

hmmer libquantum omnetpp sjeng | 3.7404 | 3.7487 | 3.7451

hmmer libquantum omnetpp zeusmp | 3.8227 | 3.8306 3.822

hmmer libquantum sjeng zeusmp | 3.8171 | 3.828 3.8106

hmmer mcf milc namd 34312 | 3.436 3.4238
hmmer mcf milc omnetpp 2.8062 | 2.8926 | 2.8415
hmmer mcf milc sjeng 3.0629 | 3.0704 | 3.0137
hmmer mcf milc zeusmp 3.2974 | 3.3154 | 3.2681

hmmer mcf namd omnetpp 3.6091 | 3.6352 | 3.6331

Table A.1. Continued

Workloads static | UDCP | FairSDP
hmmer mcf namd sjeng 3.5497 | 3.5474 | 3.5316
hmmer mcf namd zeusmp 3.7194 | 3.7685 | 3.7161
hmmer mcf omnetpp sjeng 3.2304 | 3.2332 | 3.2237
hmmer mcf omnetpp zeusmp | 3.4934 | 3.5106 | 3.4506
hmmer mcf sjeng zeusmp 3.3088 | 3.3498 | 3.3355
hmmer milc namd omnetpp | 3.6323 | 3.6353 | 3.6114
hmmer milc namd sjeng 3.5497 | 3.5472 | 3.5322
hmmer milc namd zeusmp 3.7671 | 3.7683 | 3.7602
hmmer milc omnetpp sjeng 3.2305 | 3.2329 | 3.2239
hmmer milc omnetpp zeusmp | 3.4485 | 3.511 3.4618
hmmer milc sjeng zeusmp 3.3389 | 3.3496 | 3.3059
hmmer namd omnetpp sjeng | 3.7009 | 3.6999 | 3.6992
hmmer namd omnetpp zeusmp | 3.797 | 3.7955 | 3.7959
hmmer namd sjeng zeusmp 3.7097 | 3.7519 | 3.7038
hmmer omnetpp sjeng zeusmp | 3.5321 | 3.5859 | 3.5774
libquantum mcf milc namd 3.5554 | 3.5556 | 3.5382
libquantum mcf milc omnetpp | 3.1015 | 3.117 3.1004
libquantum mcf milc sjeng 3.1128 | 3.1095 | 3.1001
libquantum mcf milc zeusmp | 3.4316 | 3.4432 | 3.4101
libquantum mcf namd omnetpp | 3.743 | 3.7446 | 3.7392
libquantum mcf namd sjeng | 3.5946 | 3.6381 | 3.5816
libquantum mcf namd zeusmp | 3.8251 | 3.8359 | 3.8146

41

Table A.1. Continued

Workloads static | UDCP | FairSDP

libquantum mcf omnetpp sjeng 3.3322 | 3.3495 | 3.326

libquantum mcf omnetpp zeusmp | 3.573 | 3.6314 | 3.5675

libquantum mcf sjeng zeusmp 34171 | 3.4912 | 3.4776

libquantum milc namd omnetpp | 3.7284 | 3.7293 | 3.7319

libquantum milc namd sjeng 3.6133 | 3.6129 | 3.591

libquantum milc namd zeusmp 3.8079 | 3.8093 | 3.7831

libquantum milc omnetpp sjeng | 3.3164 | 3.3204 | 3.2705

libquantum milc omnetpp zeusmp | 3.5911 | 3.6146 | 3.5607

libquantum milc sjeng zeusmp 34273 | 3.4573 | 3.4195

libquantum namd omnetpp sjeng | 3.7691 | 3.7682 | 3.6925

libquantum namd omnetpp zeusmp | 3.8676 | 3.8683 | 3.8652

libquantum namd sjeng zeusmp | 3.8255 | 3.8267 3.819

libquantum omnetpp sjeng zeusmp | 3.6825 | 3.6906 | 3.6818

mcf milc namd omnetpp 3.2271 | 3.2287 | 3.2298
mcf milc namd sjeng 29168 | 29183 | 2.8728
mcf milc namd zeusmp 3.342 | 3.3484 | 3.3328
mcf milc omnetpp sjeng 2.6104 | 2.6402 2.61
mcf milc omnetpp zeusmp 29876 | 2.9921 | 2.9884
mcf milc sjeng zeusmp 27295 | 2.7441 | 2.7363
mcf namd omnetpp sjeng 3.2258 | 3.225 | 3.2075
mcf namd omnetpp zeusmp 3.5866 | 3.5937 | 3.5796
mcf namd sjeng zeusmp 3.2119 | 3.2474 | 3.2266
mcf omnetpp sjeng zeusmp 29645 | 2.9024 | 2.9636
milc namd omnetpp sjeng 3.2256 | 3.225 3.1739

milc namd omnetpp zeusmp 3.5656 | 3.5938 3.571

milc namd sjeng zeusmp 3.2379 | 3.2475 | 3.1649

milc omnetpp sjeng zeusmp 2.9595 | 2.902 2.9634

namd omnetpp sjeng zeusmp 3.5597 | 3.5966 | 3.5794

43

APPENDIX B: IPC RESULTS OF 8-THREADED WORKLOADS

Table B.1. Results of 8-threaded workloads

Workloads static | UDCP | FairSDP
hmmer libquantum mcf milc namd omnetpp zeusmp hmmer | 1.8549 | 2.0836 | 2.0775
hmmer libquantum mcf milc namd sjeng omnetpp hmmer | 1.9133 | 2.1207 | 2.1158
hmmer libquantum mcf milc namd sjeng zeusmp hmmer | 2.8441 | 2.8731 | 2.8416
hmmer libquantum mcf milc namd zeusmp omnetpp hmmer | 1.8598 | 2.096 | 2.0909
hmmer libquantum mcf milc namd zeusmp sjeng hmmer | 2.8503 | 2.8808 | 2.8474
hmmer libquantum mcf milc omnetpp namd zeusmp hmmer | 1.9098 | 2.1056 | 2.0981
hmmer libquantum mcf milc omnetpp namd sjeng hmmer 1.847 | 2.0735 | 2.0701
hmmer libquantum mcf milc omnetpp sjeng zeusmp hmmer | 1.892 | 2.1278 | 2.1241
hmmer libquantum mcf milc omnetpp sjeng namd hmmer | 1.9323 | 2.2011 2.199
hmmer libquantum mcf milc omnetpp zeusmp sjeng hmmer | 1.8383 | 2.1012 | 2.0946
hmmer libquantum mcf milc omnetpp zeusmp namd hmmer | 1.94 | 2.1763 | 2.1715
hmmer libquantum mcf milc sjeng namd omnetpp hmmer | 1.9273 | 2.1637 | 2.1573
hmmer libquantum mcf milc sjeng namd zeusmp hmmer | 2.8512 | 2.8686 | 2.8338
hmmer libquantum mcf milc sjeng omnetpp namd hmmer | 1.9032 | 2.1609 | 2.1532
hmmer libquantum mcf milc sjeng omnetpp zeusmp hmmer | 1.9462 | 2.2355 | 2.2291
hmmer libquantum mcf milc sjeng zeusmp namd hmmer | 2.8457 | 2.8577 | 2.8335
hmmer libquantum mcf milc sjeng zeusmp omnetpp hmmer | 1.9613 | 2.2653 | 2.2633
hmmer libquantum mcf milc zeusmp namd sjeng hmmer | 1.8692 | 2.1375 | 2.1312
hmmer libquantum mcf milc zeusmp namd omnetpp hmmer | 2.8462 | 2.8756 | 2.8473

Table B.1. Continued

44

Workloads static | UDCP | FairSDP
hmmer libquantum mcf milc zeusmp omnetpp sjeng hmmer | 1.848 | 2.1232 | 2.1163
hmmer libquantum mcf milc zeusmp omnetpp namd hmmer | 1.9541 | 2.2085 | 2.2026
hmmer libquantum mcf milc zeusmp sjeng omnetpp hmmer | 2.845 | 2.8638 | 2.8304
hmmer libquantum mcf milc zeusmp sjeng namd hmmer | 1.9623 | 2.2334 | 2.2305
hmmer libquantum mcf namd milc zeusmp omnetpp hmmer | 1.8404 | 2.0204 | 2.0169
hmmer libquantum mcf milc namd omnetpp sjeng zeusmp | 2.8005 | 2.9113 | 2.8351

