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ABSTRACT

DYNAMICS OF CLASSICAL YANG MILLS FIELDS COUPLED TO HIGGS

FIELD

Classical Yang Mills fields are analyzed in the context of nonlinear dynamical systems.

Although the theory is described by complicated set of coupled partial differential equations,

under specific ansatzes it is possible to obtain simpler dynamical system whose equations

of motion can be represented by coupled ordinary differential equations. It is numerically

shown that the reduced system possesses chaotic behaviour. On the other hand, the coupling

of Higgs field stabilizes chaotic behavior of Yang Mills fields. This stabilization can be

attributed to the additional harmonic oscillator part appearing in the Hamiltonian. It is

numerically verified that the coefficient of harmonic oscillator term dramatically changes the

behavior of the system corresponding to two different Yang-Mills-Higgs systems. For fixed

energy, a small increase in the coefficient suppresses the chaos and the system is dominated

with quasiperiodic and periodic solutions. Even if the reduced mechanical systems are

simpler than the original ones, still it is not possible to express the solutions with elementary

functions. But using perturbation theory one can make good prediction for dynamics of the

system. For this purpose, Lie Transform perturbation theory is used which is a very efficient

tool especially for Hamiltonian systems. With the implemented algorithm approximate

integrals are constructed beside the normalized solutions. Those solutions and integrals

are expressed as a series, and they are used to simulate the mechanical system. Although

the convergence of series is not guaranteed they turn out to be in good agreement with the

numerical results, especially for the periodic and quasiperiodic regimes.
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ÖZET

KLASİK YANG MİLLS HİGGS ALANLARININ DİNAMİĞİ

Klasik Yang Mills alanları lineer olmayan dinamik sistemler öğesinde incelenmiştir.

Teorinin karmaşık kismi diferansiyel denklem setlerinden oluşmasına karşın, bazı özel

durumlarda bu denklemlerden basit bir dinamik sistem elde etmek mümkün, ve bu sistemin

hareket denklemleri sıradan diferansiyel denklemlerle tarif edilebilir. Nümerik olarak

yapılan araştırmalar sonucunda Yang Mills alanlarından elde edilen indirgenmiş sistemde

kaosun varlığı saptanmıtır. Öte yandan Yang Mills alanlarına bağlanan Higgs alanı,

kaosu stabilize etmektedir. Higgs alanın kaosu stabilize etmesindeki temel etken, Higgs

alanının sistemin enerji denkleminde oluşturduğu harmonik salınıcı terimidir. Nümerik

olarak görülmüştür ki bu terimin katsayısı değiştirildiğinde sistemin davranışında ani

bir değişim meydana gelmektedir. Öyle ki sabit bir enerjide bu katsayıdaki küçük bir

artışın sistemdeki kaosu bastırdığı gibi periyodik ve periyodiğe yakın hareketler meydana

getirmektedir. Yang Mills alanlarından elde edilen indirgenmiş sistem her ne kadar basit

olsa da, çözümlerini sıradan fonksiyonlarla belirtmek mümkün değildir. Fakat pertürbasyon

teorisi kullanılarak sistemin hareketi ile ilgili tahminler yapmak mümkündür. Bu amaçla

Lie Dönüşüm pertürbasyon teorisi kullanılmıştır ki bu araç özellikle enerji korunumlu

sistemler için idealdir. Uygulanan algoritma ile normalize edilmiş çözümlerin yanı sıra

yaklaşık integraller bulunmuştur. Bu çözümler ve integraller seri açılımı ile ifade edilmiştir

ve incelediğimiz sistemin simülasyonunda kullanılmıştır. Seri ifadelerin yakınsaklığının

garantisi olmamasına rağmen, özellikle sistemde periyodik ve periyodiğe yakın hareketlerin

hakim olduğu durumlarda nümerik sonuçlarla uyumlu neticeler elde edilmiştir.
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1. INTRODUCTION

In recent years there has been much attention on the dynamics of Yang Mills theories, which

belong to nonabelian gauge theories, and they play important role in the construction of the

standard model of particle physics. This has been a primer to understanding of chaotic

dynamics in field theories. The study originally grew out with an aim of understanding the

structure of the field-theoretic vacuum and the asymptotic states of the theory with reference

to strong interaction physics. This was motivated by the belief that there was a connection

between color confinement and chaos in quantum chromodynamics. Further interest in

such investigations arose because some gauge theories support solitons, and these non-

trivial topological structures[1] and chaos are examples of opposite extremes in nonlinear

dynamics, so their coexistence needs to be understood[2].

The systems considered are simplified version for the classical limits of SU(2) Yang Mills

theory, assuming the gauge fields are time dependent and spatially homogeneous. This

choice reduces the degrees of freedom in the theory and yield a dynamical system whose

equation of motions are governed by coupled ordinary differential equations. By this way

one simplifies the complicated set of partial differential equations described by the theory.

It has been verified that pure SU(2) Yang Mills fields possesses chaotic nature, especially

using numerical methods namely Lyapunov exponent[3] and Poincaré sections. Analytical

methods also support this result. In terms of Liouville integrability[4] there should be two

constants of motion, but in the dynamics of Yang Mills fields only Hamiltonian is conserved,

and the system does not have an additional first integral[5, 6].

On the other hand, extensive investigations has been made on stabilizing mechanisms on

Yang Mills fields. Numbers of field theoretical and topological models described for this

purpose but the most prominent has been the Higgs mechanism. The Yang-Mills-Higgs

system has much significance in the theory of particle physics, since the theory incorporates

spontaneous symmetry breaking[7], and has been successfully applied for the unification of

the fundamental forces in nature. It appears that addition of Higgs term exhibits chaos order
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transitions for specific values of parameter and regular motion becomes dominant.

Since the systems under investigation are non-linear dynamical systems reduced by using

special ansatz, detailed study can be made using the theory of non-linear dynamics in order

to obtain qualitative information about the system such as equilibrium solutions, stability

and non-stability of these solutions, bifurcation curves, periodic and chaotic solutions,

and so on[8, 9]. However in many cases the procedure is complex to carry out without

making some reductions. One way to simplify the analysis is localization. Instead of

considering the whole phase space, one chooses a small neighborhood of special points

and then carry out the analysis to determine the behavior of the system at these points. One

another method is perturbation theory[10]. One can bring the system more amenable or

put it simpler form (normal form) with suitable coordinate transformation. There have been

variety of approaches to do so, starting from the pioneering work of Poincaré[11]. In the case

of Hamiltonian[12] systems the procedure is exploited with Birkhoff-Gustavson[13, 14]

normalization, which is originally implemented for the perturbed harmonic oscillator.

Further improvements have been made with the Lie Transform method. The method uses

Lie algebraical relations to reduce the system to simpler form step by step. The approach

becomes more popular for its practical implementation, and it provides better understanding

on the algebraic and geometric structure of the Hamiltonian systems.

The results obtained from the normalized system is also valid for the original system since

they are connected with a near identity coordinate transformation. However, the expressions

for the normalized system usually do not converge, this is the case expected when dealing

with non-integrable systems. Hopefully one can get meaningful information without going

to higher orders of normalization and there is an optimal order of normalization where

the original system can be reproduced with high accuracy[15]. The motivation behind

this results comes from the famous perturbation theory for Hamiltonian systems known

as KAM[16, 17] theorem which states that perturbed integrable systems have qualitatively

the same dynamics with the unperturbed ones, namely quasi-periodic motions are retained

in the phase space.
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The aim of the study is to obtain analytical results using classical perturbation to describe

the dynamical system resulting from SU(2) Yang-Mills-Higgs system, and comparing them

with numerical methods. Representing the system with normal forms as far as chaos starts

to exhibit, gives better understanding on the effect of Higgs term introduced, and on the

route of chaos order transitions.
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2. CLASSICAL YANG-MILLS FIELDS

Today’s modern description of the elementary particles and their interactions are based

on gauge theory. The developments of the gauge theories have their roots in quantum

mechanics where the principle of the gauge invariance was discovered. The principle

become apparent when Yang and Mills introduced the first nonabelian gauge theory in

1954.Then gauge theories began to describe all known fundamental interactions, from

electromagnetism, weak interactions to the strong interactions and even gravity.

In this study we consider Yang-Mills fields in 3+1 dimensional Minkowski space-time with

internal degrees of freedom respecting an SU(2) symmetry. The equations of motion are

∂µFµν + gεabcAaµF c
µν = 0 (2.1)

where

F a
µν = ∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν (2.2)

is the field strength tensor, Aaµ is the vector potential and g is the coupling constant. The

latin indices a, b, c correspond to internal degrees of freedom and take the values of 1, 2, 3

while Greek indices correspond to spacetime components taking values 0, 1, 2, 3.

The procedure to study dynamical systems require the reduction of partial differential

equations to ordinary differential equations. This reduction is done by the assumption that

the gauge potentials are only time dependent and homogenous in space coordinates i.e

Aaµ = Aaµ(t) (2.3)

Using this condition and fixing the gauge by Aa0 = 0 eq(2.1) can be written as

Äai − g2(AajAbjAbi − AbjAbjAai ) = 0 (2.4)
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2.1. CHAOS IN HOMOGENEOUS YANG-MILLS FIELDS

In order to expect chaotic behavior in a dynamical system it must include at least two degrees

of freedom. Using x = gA1
1 and y = gA2

2 as two nonzero gauge potential components the

system is reduced to mechanical system having non-linear coupling with two degrees of

freedom. The equations of motion are

ẍ+ xy2 = 0, ÿ + x2y = 0 (2.5)

with the following Hamiltonian

H =
1

2
ẋ2 +

1

2
ẏ2 +

1

2
x2y2 (2.6)

The system describes oscillators coupled with quartic x2y2 potential. Despite its simplicity

the system is non-integrable and exhibits chaotic dynamics. For numerical investigation of

this chaoticity, Lyapunov characteristic exponents are calculated with the Fortran program

which uses Wolf Algorithm[3].The exponents are plotted up to a timescale of 1000 which is

shown in Figure 2.1.
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Figure 2.1. Lyapunov exponents for system (2.5).

Since the system is energy conservative the sum of the characteristic exponents is zero. At
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least one positive exponent is an indication of chaotic behavior, therefore it can be asserted

that this system is chaotic. On the other hand, the phase portraits depicting pure Yang Mills

mechanics is shown below.
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Figure 2.2. Phase portraits showing (a) x− px . (b) x− y

2.2. HIGGS MECHANISM

In gauge theories the realization of different phases is important, since confining phases

usually associated with a disordered field configuration and the Higgs phase is associated

with globally ordered field configuration. In this part dynamical system involving Higgs

field coupled Yang-Mills fields is worked.

The system possesses again gauge group of SU(2) and the corresponding lagrangian is

L = −1

4
F a
µνF

µνa +
1

2
(Dµφ)

∗(Dµφ)− V (φ) (2.7)

where Dµ is the covariant derivative defined by

(Dµφ) = ∂µφ− igAbµT bφ (2.8)
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whith T b = σb/2, b = 1, 2, 3 are the generators of the SU(2) algebra, and the Higgs potential

is the following

V (φ) = µ2|φ|2 + λ|φ|4 (2.9)

In order to work in dynamical system framework some reductions must be made. We

consider a (2+1)-dimensional Minkowski space µ = 0, 1, 2 and homogenous field

configuration for both Yang-Mills field and Higgs field[18].

∂iA
a
µ = ∂iφ = 0, i = 1, 2 (2.10)

Fixing gauge Aa0 = 0 and using reel triplet representation for the Higgs field yields

L =
1

2
( ~̇A1

2

+ ~̇A2

2

) + ~̇φ
2

− g2[1
2
~A1

2 ~A2

2
− 1

2
( ~A1 · ~A2)

2 + ( ~A1

2
+ ~A2

2
)~φ2

− ( ~A1 · ~φ)2 − ( ~A2 · ~φ)2)]− V (φ)

(2.11)

where ~φ = (φ1, φ2, φ3), ~A1 = (A1
1, A

2
1, A

3
1) and ~A2 = (A1

2, A
2
2, A

3
2).

For µ2 > 0 V has minimum at φ = 0 but for µ2 < 0 the minimum is

| ~φ0| =
√
−µ2

4λ
= v (2.12)

which is the non-zero Higgs vacuum. This vacuum is degenerate and after spontaneous

symmetry [19] breaking the physical vacuum can be chosen ~φ0 = (0, 0, v).With the choice

ofA1
1 = x,A2

2 = y as the non-vanishing components of gauge fields, following Hamiltonian

is deduced.

H =
1

2
(ẋ2 + ẏ2) + g2v2(x2 + y2) +

1

2
g2x2y2 (2.13)
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One of the parameters in the above Hamiltonian can be eliminated with the following scale

transformation

x→ λx, y → λy, t→ 1

λ
t (2.14)

which gives

H =
1

2
(ẋ2 + ẏ2) +

a2

2
(x2 + y2) +

1

2
x2y2 (2.15)

where a =
√
2v
λ

. According to physical intuition at high energies associated with strong

fields, the quadratic part generated by the Higgs mechanism becomes unimportant and the

motion is chaotic. But for weak fields, or sufficiently large values of a in the system(18) the

influence of the x2y2 gets smaller, so that regular motions become dominant [20, 21].

For numerical investigation Lyapunov exponents are analyzed with the following initial

condition for numerical integration x = 0.1, y = 0.1, ẋ = 0.2, ẏ = 0.2. They show a

convergence to zero especially for large values of a which is shown below
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Figure 2.3. Maximal Lyapunov exponents for 0 < a < 1

On the other hand, for small values of a the system still has positive Lyapunov exponent but

there should be a threshold value for a beyond which the system is regular. For this purpose,

the variation of maximal lyapunov exponent is analyzed . The parameter a is increased
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Figure 2.4. Torus for a = 1.

from 0 to 1 with a increment of 0.01 and corresponding maximal lyapunov exponents are

plotted which is shown in Figure 2.3. In order to avoid possible truncation errors, sufficient

integration time is used for each value of a. It is observed that after a = 0.40 the largest

Lyapunov exponent stays almost constant and is very close to zero. It can be asserted that

the non-vanishing Higgs field is responsible for the suppression of chaotic behavior of Yang-

Mills fields.

Another important model which exploits Higgs mechanism is the SO(3) Georgi-Glashow

model. This model is originally proposed to unify weak and electromagnetic interactions

where Higgs mechanism creates massive and massless bosons. However the model is

incorrect to describe weak interaction and the correct description is a bit more complicated.

The equaition of motions for the model is[20]

(DvF
µν)a =− gεabcφb(Dµφ)

c

(DµD
µφ)a =− λφa(φbφb − m2

λ
)

(2.16)
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where Dab
µ = δab∂µ + gεabcAcµ is the covariant derivative. Using the following ansatz

Aai = εaijaj(t), φa =
√
2ba(t) (2.17)

using the gaugeAa0 = 0 and setting ai = x and ba = y, yields following simplified equations

of motion

g−2ẍ =− 6y2x− 3x3

g−2ÿ =− 6x2y − 6λg−2y3 +m2g−2y

(2.18)

These equations can be further simplified, using the suitable scale transformations.

Introducing t → αt, x → βx, and y → βy where α = 1/m and β = m/g
√
6 reduce

to following system of equations.

ẍ =− xy2 − 1

2
x3

ÿ =− x2y − py3 + y

(2.19)

where p = λ/g2. The corresponding Hamiltonian is

H =
1

2
(ẋ2 + ẏ2)− 1

2
y2 +

1

2
x2y2 +

1

8
x4 +

1

4
py4 (2.20)

For numerical investigation Lyapunov characteristic exponents are analysed with varying

p. Numerical results indicating that this system exhibits chaotic motion for wide range of

values of parameter p which is shown in Figure 2.5, for small intervals of p system shows

hyperchaos[22, 23], with second Lyapunov exponent close to 0.011. It is also remarkable

that chaos order transtions take place for some p where largest lyapunov exponents changes

dramatically, which is again depicted in Figure 2.5, this behavior is attributed to the Higgs

field.



11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Ly
ap

un
ov

 e
xp

on
en

ts

L
1

L
2

L
3

L
4

Figure 2.5. Lyapunov exponents for 0 < p < 5

On the other hand some of the phase portraits indicating chaotic motions in the system are

shown below

Figure 2.6. Trajectory of x− px for p = 0.2
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Figure 2.7. Trajectory of y − py for p = 0.2

Figure 2.8. Trajectory of y − px for p = 0.2

2.2.1. Chaos Suppression with Harmonic Oscillator

The system described in eq(2.20) depends strongly on the Higgs parameter p for constant

energies. Although for some values of p regular motion is dominant, in general chaotic

motion persists for large values of p. From our previous experience in system (2.15) we add
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harmonic terms to eq(2.20) . The corresponding Hamiltonian is

H =
1

2
(ẋ2 + ẏ2) +

1

2
g2(x2 + y2)− 1

2
y2 +

1

2
x2y2 +

1

8
x4 +

1

4
py4 (2.21)

To check the chaoticity of the system (2.21) the corresponding equation of motions are

integrated with fixed initial conditions of (0.1, 0.2, 0.1, 0.2) and Largest Lyapunov exponents

are calculated. Those exponents are then plotted as a surface plot with changing parameters

g and p which is shown in Figure 2.9.

0
0
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Figure 2.9. Largest Lyapunov exponents

In order to obtain the diagram above, we let parameters change between 0 < p < 5 and

0 < g < 1.5. In order to avoid possible truncation errors sufficient integration time is

used to obtain Largest Lyapunov exponents. It is remarkable that increasing g suppress the

chaotic behaviour since the exponents gets smaller and after g = 0.75 they are almost 0.

Below there is summary for phase portraits and power spectra plots, which are obtained for

changing g.
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Figure 2.10. Phase portraits of x− px for (a) g = 0 (b) g = 0.8 (c) g = 1.5
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Figure 2.11. Phase portraits of y − py for (a) g = 0 (b) g = 0.8 (c) g = 1.5
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Figure 2.12. Phase portraits of x− py for (a) g = 0 (b) g = 0.8 (c) g = 1.5
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Figure 2.13. Phase portraits of y − px for (a) g = 0 (b) g = 0.8 (c) g = 1.5
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Figure 2.14. Power spectrum for (a) g = 0 (b) g = 0.8 (c) g = 1.5

Beside Lyapunov spectrum, phase portraits and power spectra density plots also give clear

indication of stabilizing effect of increasing coefficient of harmonic term in the system. For

g = 0 chaotic dynamics is dominant which is apparent in power spectra as random peaks

are distributed. For g = 0.8 quasiperiodic motion becomes dominant in phase portraits, in

the power spectrum plot smaller number of peaks observed. Further increasing g up to 1.5

periodic motions take place over the phase portraits and one large peak can be seen in power

spectrum.



17

3. LIE TRANSFORM

Lie Transform[24] is a basic tool for analyzing Hamiltonian Systems in the field of

perturbation theory. The technique consists of successive canonical transformation, with

manipulation of Lie algebraic methods to bring the Hamiltonian simpler form called

normal form. All Hamiltonian perturbation theories are based on performing infinitesimal

transformations. The oldest is the Poincaré-Von Zeipel method[25]. The method

consists of brute force ordering of the function F (q, P, t) namely the generating function

and the Hamilton Jacobi equation. Modified version of this method is constructed by

Kolmogorov[26]. By means of successive small transformations rather than a single

transformation, Kolmogorov found quadratic expressions. This means that the Hamiltonian

can be transformed successively to orders of ε, ε2, ε4, ε8...

Great improvement in Hamiltonian perturbation theory was brought with the introduction

of Lie Transforms by Hori[27]. Lie Transform technique is simpler since no functions of

mixed variables needed, and all the terms are generated with Poisson brackets, making this

theory canonically invariant. Deprit[28] improved the method to obtain expressions for nth

order term of an expansion of the transformation in a power series of in ε. Lie Transform

method has been used to study magnetic moment invariance in a dipole field by Dragt

and Finn[29, 30]. The technique is based on infinite product of Lie transformations and

is particularly effective for higher order calculations.
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3.1. METHOD OF DRAGT AND FINN

In this section we briefly introduce the methodology to normalize a given Hamiltonian over

an example which is structurally similar to the cases that we used in section 2.

Considering a class of systems given by the Hamiltonian

H(p,q) =
1

2
(px

2 + py
2) + V (x, y) (3.1)

where V is the potential of the system possessing an absolute minimum and reflection

symmetries in both coordinates

x −→ −x, y −→ −y,

which is also present in the whole Hamiltonian. The potential can be expanded as

V (x, y) =
∞∑
n=0

εnVn(x, y) (3.2)

and the Hamiltonian can be transformed to

K(P,Q) =
∞∑
n=0

εnKn(P,Q) =M−1
g H(p,q) (3.3)

where P,Q are the new coordinates resulting from a Canonical Transformation

(P,Q) =Mg(p,q) (3.4)

The linear differential operator Mg is defined by a succession of Lie transformation

Mg = e−εLg1e−ε
2Lg2 · · · e−εnLgn · · · (3.5)

where gn’s are the generating functions of the corresponding canonical transformation, and

the linear differential operator LS is the Lie Derivative defined by the following way.
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Given two real and analytic functions f and S in Ω, bounded domain of the 2n-dimensional

manifold {(p,q)} = M2n, the Lie Derivative of the function f with respect to S, the Poisson

bracket (S, f), which is also denoted by the symbol

LSf = (S, f) =
n∑
l=1

(
∂S

∂ql

∂f

∂pl
− ∂S

∂pl

∂f

∂ql

)
(3.6)

The Lie series associated to S or to (LS) applied to f is defined by

eεLSf =
∞∑
k=0

εk

k!
LkSf (3.7)

where LkSf is defined inductively by

L0
Sf = f , LnSf = LS

(
Ln−1S f

)
(3.8)

The transformation introduced by Dragt and Finn given in equation (6) can be written as

Mg = I +
∞∑
n=1

εnMn (3.9)

By inspection of equation (6) the terms in the series become

Mn =
∑

m1+2m2+···+nmn=n

(−1)m1+m2+···+mn
Lm1
g1
Lm2
g2
· · ·Lmn

gn

m1!m2! · · ·mn!
(3.10)

On the other hand, the inverse transformation given by

M−1
g = eεLg1eε

2Lg2 · · · eεnLgn · · · (3.11)

can also be written as

Mg = I +
∞∑
n=1

εnM−1
n (3.12)
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The coefficients in the inverse transformation becomes

M−1
n =

∑
m1+2m2+···+nmn=n

Lmn
gn L

mn−1
gn−1

· · ·Lm1
g1

mn!mn−1! · · ·m1!
(3.13)

By expanding in power series the new Hamiltonian in equation (3) and equating the

coefficients of the same order one obtains a set of equations

K0 =H0

· · ·

Kn =LgnH0 +Rn

· · ·

· · ·

(3.14)

where

Rn = Hn +
∑

m1+2m2+···+(n−1)mn−1=n

Lmn−1
gn−1

· · ·Lm2
g2
Lm1
g1

mn−1! · · ·m2!m1!
+

n−1∑
k=1

MkHn−k (3.15)

The nth equation of (14) the so called homological equation which can be written as

LH0gn +Kn = Rn (3.16)

The rest of Rn contains terms which are known if the preceding n− 1 equations have been

solved.

The new Hamiltonian is in ”normal form” up to degree n if

{H0, Kr} = 0 (3.17)
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satisfied ∀r 6 n. This means that the homological equation(14) must be solved with the

condition (17) at any order.

3.2. APPLICATION TO SPECIFIC PROBLEMS

In this part the methodology described above is applied to our system (2.15) and system

(2.21). But for the sake of simplicity we describe the procedure over system(2.15) step

by step and not for (2.21) since similar algebra is involved. On the other hand the results

obtained from the analysis and numerical results are presented for both case.

First system that we use to study normalization scheme is system (2.15).

H =
1

2

(
p2x + p2y

)
+
a2

2

(
x2 + y2

)
+

1

2
x2y2 (3.18)

which describes the central part of elliptical galaxies without escape.

The system can be considered as the Hamiltonian of two coupled harmonic oscillators and

a quartic nonlinearity as a perturbation term[31], where a describes the mass of gauge

fields acquired by Higgs mechanism. The coefficient of perturbation term is relatively

small so that the system is amenable to analysis with perturbation theory. Structurally

similar Hamiltonian was studied by Contopoulos[32], that is also known as Contopoulos

Hamiltonian which describes the central part of elliptical galaxies without escape.

Hamiltonian(3.18) can be expanded as a series

H (x, y, px, py) =
∞∑
n=0

εnHn (x, y, px, py) (3.19)

The components Hn are the following

H0 =
1

2

(
p2x + w2

1x
2
)
+

1

2

(
p2y + w2

2y
2
)

(3.20)

H2 =
1

2
x2y2 (3.21)
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Hn = 0 ∀n 6= 0, 2 (3.22)

where w1 = w2 = v.

With the aid of following scale transformations

x =
q1√
w1

, y =
q2√
w2

px = p1
√
w1, py = p2

√
w2

Hamiltonian (3.18) can be put in more convenient form

H (p,q) =
1

2

2∑
l=1

wl
(
p2l + q2l

)
+

1

2w1w2

q21q
2
2 (3.23)

With a symplectic change of variables given by

xl =
1√
2
(ql + ipl)

yl =
i√
2
(ql − ipl)

(3.24)

H0 becomes

H0 = −i
2∑
l=1

wlxlyl (3.25)

and the Lie operator becomes

LH0 = i
2∑
l=1

wl

(
xl

∂

∂xl
− yl

∂

∂yl

)
(3.26)
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for l = 1, 2 The action of LH0 on any monomial is given by

LH0(x
λ1
1 x

λ2
2 y

κ1
1 y

κ2
2 ) =

2∑
l=1

(wlλl − wlκl)xλ11 xλ22 yκ11 yκ22 (3.27)

Monomials that appear in the normal form must be in the Kernel of LH0 , this implies right

hand side of equation (3.27) is equal to zero, or using inner product notation

ω. (λ− κ) = 0 (3.28)

The rest of the calculations are done considering w1 = w2 = 1 with the values of parameters

g = 1 and a = 1√
2
.

Regarding 1-1 resonance relation of frequencies ω = (1, 1) equation(3.28) becomes

λ1 + λ2 = κ1 + κ2 (3.29)

Any monomials satisfying condition (3.29) are called resonant monomials and they appear

in the normalized Hamiltonian. The other monomials can be eliminated with the proper

choice of generating function .

For n = 0 we have

K0 = H0 (3.30)

For n = 1 we must have K1 = 0, g1 = 0 due to symmetric structure of the problem[33].

For the case n = 2 we must solve

K2 + LH0g2 = H2 (3.31)
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In the new variables the second order terms in the Hamiltonian becomes

H2 =
1

8
(x21x

2
2 − 2ix21x2y2 − x22y21 − 2ix21x2y2 − 4x1x2y1y2+

2ix2y
2
1y2 − x21y22 + 2ix1y1y

2
2 + y21y

2
2)

(3.32)

The only monomials that cannot be eliminated in K2 are

K2 = −
1

8
(4x1x2y1y2 + x21y

2
2 + x22y

2
1) (3.33)

The details of the procedure for the normalization can be found in [9, 34].

By applying the procedure above to the Hamiltonian, we have found the normal forms up to

order 6. The normalized Hamiltonian has the form

K = K0 + ε2K2 + ε4K4 + ε6K6 +O(ε8) (3.34)

One advantage of this algorithm is that one can construct approximate integral beside the

normalization process. In the new Hamiltonian H0 is an integral of motion due to equation

(3.17). So, one can choose the function

I = K −H0 (3.35)

as a second integral of motion conveying approximate information of the dynamics in

original system. Denoting it as power series

I =
∞∑
n=0

εnIn (3.36)

The terms of the integral are given by[9]

In = Hn −Kn +
n−1∑
m=1

Mn−m[Hm − Im], n > 1. (3.37)
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The integral of motion has the same structure of the normalized Hamiltonian.

I = I0 + ε2I2 + ε4I4 + ε6I6 +O(ε8) (3.38)

We do not present here the explicit forms of expressions for the normalized Hamiltonian

and approximate integrals since they are algebraically cumbersome and they take so much

place, but the reader can find the approximated expressions up to order 6 in the appendix.

3.3. TIME DEPENDENCE OF APPROXIMATE INTEGRALS

An important issue for those integrals obtained above is their asymptotic behaviour.

The algorithm to obtain approximate integrals does not give any information about the

convergence of the obtained series. Indeed, for higher order of truncations the series turn

out to be divergent. Although it is analytically difficult to obtain a result for which order of

truncation is most suited, instead time variation of truncated series is analyzed numerically.

Some of them particularly have smaller fluctuations then the other ones.

3.3.1. Integrals for System (2.15)

Before performing numerical analysis, it is more convenient to use action angle coordinates.

Using canonical equation of motions new equation of motions are obtained and then

integrated numerically with suitable initial conditions. In terms of action angle coordinates

given by

q1 =

√
2J1
w1

cos θ1, p1 = −
√
2J1w1 sin θ1

q2 =

√
2J2
w2

cos θ2, p1 = −
√
2J2w2 sin θ2

(3.39)

Hamiltonian (2.15) can be written in terms of action angle coordinates as

H = J1 + J2 + 4αJ1J2 cos
2 θ1 cos

2 θ2 (3.40)
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where the frequencies are w1 = w2 = 1, and α corresponds to the parameter of the quartic

term in the original system which is α = 1
2

for our specified values of parameters.

Using the canonical equation of motions

J̇i = −
∂H

∂θi
, θ̇i =

∂H

∂Ji
(3.41)

following equation of motions are derived.

J̇1 = 8αJ1J2 cos θ1 sin θ1 cos
2 θ2

J̇2 = 8αJ1J2 cos θ2 sin θ2 cos
2 θ1

θ̇1 = 4αJ2 cos
2 θ1 cos

2 θ2 + 1

θ̇2 = 4αJ1 cos
2 θ1 cos

2 θ2 + 1

(3.42)

Above equations are integrated numerically for initial conditions of J1(0) = 1.0, J2(0) =

1.0, θ1(0) = 0.0, θ2(0) = 0.5. Some of the important results are shown below.

Figure 3.1. Oscillation of J1and J2 vs time
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Time dependence of J1and J2 is shown in Figure 3.5. Resonance relation between

unperturbed frequencies generates energy transfer between the two modes, the period of

their oscillation is nearly T ≈ 12 which is close to
(
2π
α

)
. This can be also seen from the

graph in Figure 3.2, where the slow parts of the relative phases are plotted for a time span

of 60.

Figure 3.2. Time dependence of relative phase Ω = θ1 − θ2

From Figure 3.5 one can conclude that J1and J2 can not be considered as constants of

motion separately. But the their sums can be regarded approximately constant[35].
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Figure 3.3. Time dependence of I0

In Figure 3.3 the oscillatory change in I0 = J1 + J2 is depicted. The amplitude of the

oscillation gets small. For Higher orders the formal integrals are also plotted. In general

there is an optimal truncation order, beyond this order the integrals are getting diverge[36].

Figure 3.4 depicts the evolution of I2 and I4. For the problem under consideration 4th order

truncation seems the best candidate in which the amplitude of the oscillation is very small

and it can be considered as a formal constant of motion.
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(a) I2 vs time (b) I4 vs time

Figure 3.4. Time dependence of (a) I2 (b) I4

3.3.2. Integrals for System (2.21)

The Same procedure is used to observe the fluctuations in the truncated integrals of

the system 2.21. The corresponding Hamiltonian is given by in terms of action angle

coordinates as

H = J1 + J2 +
1

2
J2
1 cos

4 θ1 +
1

2
J2
2 cos

4 θ2 + 4αJ1J2 cos
2 θ1 cos

2 θ2 (3.43)

Similar to system 2.15 the frequencies are chosen to be w1 = w2 = 1, and the quartic

coupling coefficient is α = 1
2
. Above Hamiltonian yields the following equations of motion

J̇1 = 8αJ1J2 cos θ1 cos
2 θ2 sin θ1 + 2J2

1 cos
3 θ1 sin θ1

J̇2 = 8αJ1J2 cos
2 θ1 cos θ2 sin θ2 + 2J2

2 cos
3 θ2 sin θ2

θ̇1 = 4αJ2 cos
2 θ1 cos

2 θ2 + J1 cos
4 θ1 + 1

θ̇2 = 4αJ1 cos
2 θ1 cos

2 θ2 + J2 cos
4 θ2 + 1

(3.44)
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Above equations are integrated numerically for initial conditions of J1(0) = 0.5, J2(0) =

0.5, θ1(0) = 1.0, θ2(0) = 0.0. Time dependence of truncated integrals are plotted, results

are shown below

Figure 3.5. Oscillation of J1and J2

(a) I0 vs time (b) I2 vs time

Figure 3.6. Time dependence of (a) I0 (b) I2
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(a) I4 vs time (b) I6 vs time

Figure 3.7. Time dependence of (a) I4 (b) I6

3.4. COMPUTATION OF PERIODIC ORBITS

Normal forms of Hamiltonian system[37, 38] described above are used to compute periodic

orbits. Using “action-angle” like variables J, θ defined by the following coordinate

transformations

Q1 =
√

2J1 cos θ1, Q2 =
√

2J2 cos θ2, (3.45)

P1 =
√

2J1 sin θ1, P2 =
√

2J2 sin θ2, (3.46)

Typical structure of a doubly symmetric Resonance normal form truncated at minimum

order is[32, 39]

K = m1J1 +m2J2 +

m1+m2∑
k=2

P (k)(J1, J2)+

am1m2J
m2
1 Jm1

2 cos [(2m2θ1 − 2m1θ2)]

(3.47)
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where P (k) are homogenous polynomials of order k and am1m2 are coefficients of the

resonant terms. For a non-resonant(Birkhoff) normal form the coefficients am1m2 vanish so

that the normalized Hamiltonian becomes independent from angles. Therefore, J becomes

true conserved action and the solutions become

Q1(t) =
√

2J1 cos θ1, Q2(t) =
√

2J2 cos(θ2 + θ0) (3.48)

and the frequencies can be found by θ̇ = ∂K
∂J

However, in the resonant case, it is not possible to write the solutions in closed form in terms

of elementary functions, but solutions can still be worked in the case of main periodic orbits

for which J, θ are again true action angle variables.

Analytical expressions are found corresponding to each family of periodic orbits with the

inverse transformations for the coordinates. The expressions are in the form of truncated

power series and they can be compared with the numerical solutions with suitable initial

conditions.

Using the generating function the solutions in terms of original coordinates can be obtained

using the inverse transformation(13). The transformation back to original variables can be

expressed as a series

x(t) = x1 + x2 + x3 + · · · (3.49)
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where

x1 = Q

x2 = 0

x3 = L2(Q) = {g2, Q}

x4 = 0

x5 = L4(Q) +
1

2
L2
2(Q) = {g4, Q}+

1

2
{g2, {g2, Q}}

...

(3.50)

For a general system of (41) periodic orbits can be specified as follows[40]

1 - Periodic orbits corresponding to normal modes solutions namely J1 = 0, or J2 = 0

2 - Periodic orbits in general position that corresponds to fixed phase difference between

the two angles, m2θ1 −m1θ2 = θ0

In both cases the solutions retain a form similar to (42).

3.4.1. Periodic Solutions for System (2.15)

For the normal mode solutions, the orbit along the symmetry axes are simple periodic orbits,

they also known as axial orbits[40]. Requiring J1 = 0 or J2 = 0 the normalized Hamiltonian

becomes K = J2 and K = J1 respectively. They represent simple harmonic motion with
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frequency equal to 1, the solutions are

q2 =A sin(θ + φ), q1 = 0 (3.51)

q1 =A sin(θ + φ), q2 = 0 (3.52)

where A = q(0) and φ is phase difference.

Another family of periodic orbit correspond to q1 = ±q2 . This is a special case for m2θ1 −

m1θ2 = θ0 = 0, their solutions represent inclined family of periodic orbits

The expression for K is given up to perturbation order 6 by

K = 2J1 +
3

4
J2
1 −

17

32
J3
1 +

375

512
J4
1 (3.53)

It should be noted that one degree of freedom is removed from the system, and K becomes

independent of one of the J’s. The absence of angular terms gives the possibility to write the

solutions in power series. In terms of nomalized variables the solution will have the form of

Q1 = Q2 = A cos θ. The expressions obtained for the coordinates and the frequency are the

following

q1 = A cos θ − 3

16
A3 cos θ +

1

32
A3 cos 3θ +

303

2048
A5 cos θ − 39

1024
A5 cos 3θ

+
1

1024
A5 cos 5θ − 1263

8192
A7 cos θ +

3219

65536
A7 cos 3θ − 73

32768
A7 cos 5θ

+
1

32768
A7 cos 7θ

q2 =± q1

θ̇ = 2 +
3

4
A2 − 51

128
A4 +

375

1024
A6 (3.54)
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For the quality of the obtained results, comparisons made with the numerical solution.

The resulting systems of differential equations from the original Hamiltonian is integrated

numerically, with initial conditions of q1 = 0.48 and p1 = 0.50, which correspond to

E ≈ 0.50. For the analytic expressions (48) the amplitude A is obtained choosing θ = 0 at

t = 0.

Phase space variables are plotted along the numerical solutions which is depicted in Figure

3.8. On the other hand, time dependence of q1 is plotted along the numerical solution up

to timescale of 20 which is shown in Figure 3.9. There exists a small difference in terms

of amplitude of the motion for corresponding solutions, which becomes even smaller for

lower values of energy. Apart from this good agreement is achieved for the shape and the

frequency of the solutions.

Figure 3.8. Comparison of numerical and normal form solution for E ≈ 0.50
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Figure 3.9. Comparison of numerical and normal form solution for E ≈ 0.50

Another family of periodic orbit is the loop orbit. These orbits correspond tom2θ1−m1θ2 =

θ0 = ±π/2 and they represent in-phase oscillation and antiphase oscillation respectively.

The normalized Hamiltonian takes the form

K =J1 + J2 +
1

4
J1J2 −

1

64
J1J

2
2 −

1

64
J2
1J2 +

11

1024
J1J

3
2

+
11

1024
J3
1J2 −

7

256
J2
1J

2
2

(3.55)

In terms of normalized variables, the form of solution can be written as Q1 = A cos θ, Q2 =

A sin θ. The expressions obtained for coordinates and frequency are the following
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q1 = A cos θ − 5

32
A3 cos θ +

1

16
A3 cos 3θ +

629

6144
A5 cos θ − 179

3072
A5 cos 3θ

− 25

1024
A5 cos 5θ − 55577

589824
A7 cos θ +

4103

65536
A7 cos 3θ +

21971

589824
A7 cos 5θ

− 1025

147456
A7 cos 7θ

q2 = A sin θ − 5

32
A3 sin θ − 1

16
A3 sin 3θ +

629

6144
A5 sin θ +

179

3072
A5 sin 3θ

− 25

1024
A5 sin 5θ − 55577

589824
A7 sin θ − 4103

65536
A7 sin 3θ +

21971

589824
A7 sin 5θ

+
1025

147456
A7 sin 7θ

θ̇ = 1 +
1

8
A2 − 3

256
A4 − 3

2048
A6

(3.56)

For E ≈ 1/8 comparisons are made with numerical integration. With initial conditions of

q1 = 0.34, p1 = 0, q2 = 0, p2 = 0.34. q1 against q2 is plotted along numerical solution in

Figure 3.10. Also, time dependence of q1 and q2 is shown in Figure 3.11 and Figure 3.12

respectively. Up to timescale of 50 very good agreement is achieved with numerical one

especially for the coordinate q1. The results as follows:
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Figure 3.10. Comparison of numerical and normal form solution for E ≈ 0.125

Figure 3.11. Comparison of numerical and normal form solution for E ≈ 0.125
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Figure 3.12. Comparison of numerical and normal form solution for E ≈ 0.125

The normal form solutions obtained for periodic orbits with the use of Lie Transform method

have similar structure with those of [41, 42] where the authors use Poincaré-Lindstedt

method and Poincaré normal forms respectively to obtain periodic solutions of Hamiltonian

systems.

3.4.2. Periodic Solutions for System (2.21)

With the same procedure applied above the periodic solutions are obtained for system (2.21)

also. Starting from axial orbits, for J2 = 0 the expression of K is given as;

K = J1 +
3

16
J2
1 −

17

256
J3
1 +

375

8192
J4
1 (3.57)
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Then periodic solution representing q1 and the frequency is given by;

q1 = A cos θ − 3

32
A3 cos θ +

1

64
A3 cos 3θ +

303

8192
A5 cos θ − 39

4096
A5 cos 3θ

− 1

4096
A5 cos 5θ − 1263

65536
A7 cos θ +

3219

524288
A7 cos 3θ − 73

262144
A7 cos 5θ

+
1

262144
A7 cos 7θ

θ̇ = 1 +
3

16
A2 − 51

1024
A4 +

375

16384
A6

(3.58)

The solutions are compared with numerical ones with an initial conditions of q1 =

0.70, p1 = 0.0 which correspond to an energy of E = 0.275. The comparisons of solutions

are shown below

Figure 3.13. Comparison of numerical and normal form solution for E = 0.275
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Figure 3.14. Comparison of numerical and normal form solution for E = 0.275

Figure 3.15. Comparison of numerical and normal form solution for E = 0.275

For the oblique solutions q1 = ±q2 the expressions for normalized Hamiltonian and periodic
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solutions are the following :

K =2J1 +
9

8
J2
1 −

153

128
J3
1 +

10125

4096
J4
1

q1 = A cos θ − 9

32
A3 cos θ +

3

64
A3 cos 3θ +

2727

8192
A5 cos θ − 351

4096
A5 cos 3θ

+
9

4096
A5 cos 5θ − 34101

65536
A7 cos θ +

86913

524288
A7 cos 3θ − 1971

262144
A7 cos 5θ

+
27

262144
A7 cos 7θ

θ̇ = 2 +
9

8
A2 − 459

512
A4 +

10125

8192
A6

(3.59)

The comparisons are made with numerical solutions of initial conditions of q1 = 0.70, p1 =

0.0 with an energy of E = 0.67.

Figure 3.16. Comparison of numerical and normal form solution for E = 0.67
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Figure 3.17. Comparison of numerical and normal form solution for E = 0.67

Figure 3.18. Comparison of numerical and normal form solution for E = 0.67
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On the other hand for loop orbits the obtained solutions are the following

K =J1 + J2 +
3

16
J2
1 +

3

16
J2
2 +

1

4
J1J2 −

17

256
J3
1 −

17

256
J3
2 −

1

8
J2
1J2 −

1

8
J2
2J1

+
375

8192
J4
1 +

375

8192
J4
2 +

473

4096
J3
1J2 +

473

4096
J3
2J1 +

73

512
J2
1J

2
2

(3.60)

q1 = A cos θ − 1

4
A3 cos θ +

5

64
A3 cos 3θ +

6625

24576
A5 cos θ − 197

1536
A5 cos 3θ

− 19

1024
A5 cos 5θ − 114917

294912
A7 cos θ +

117793

524288
A7 cos 3θ +

33391

589824
A7 cos 5θ

− 8897

1179648
A7 cos 7θ

q2 = A sin θ − 1

4
A3 sin θ − 5

64
A3 sin 3θ +

6625

24576
A5 sin θ +

197

1536
A5 sin 3θ

− 19

1024
A5 sin 5θ − 114917

294912
A7 sin θ − 117793

524288
A7 sin 3θ +

33391

589824
A7 sin 5θ

+
8897

1179648
A7 sin 7θ

θ̇ = 1 +
5

16
A2 − 147

1024
A4 +

1905

16384
A6

(3.61)
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Figure 3.19. Comparison of numerical and normal form solution for E = 0.257

Figure 3.20. Comparison of numerical and normal form solution for E = 0.257
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Figure 3.21. Comparison of numerical and normal form solution for E = 0.257

Regarding comparisons it can be concluded that good agreement is achieved, especially for

lower energies. It is also important to note that approximation in oblique solutions get more

deviated from numerical ones. This is mostly due to increasing coefficient of nonlinear term

in the system, secondly higher energies remove the periodicity of motions, and system rather

tend towards quasiperiodic and chaotic motion. It is obvious that the solutions obtained with

Inverse Transforms are compatible with respect to numerical solutions although the obtained

series do not converge. Better approximations could be obtained by including higher order

terms in series.

3.5. POINCARÉ SECTIONS AND LEVEL CURVES OF APPROXIMATE

INTEGRALS

The construction of convergent series for approximate integrals[43, 44] is important issue

for usefulness of those integrals. Asymptotic behavior of these series that give rise the

convergence depends on truncation order. For higher order of truncations, the series turn

out to be divergent, so there exist an optimal truncation order where the variation of the

truncated integral along particular orbit of the system is minimal [36]. It is expected that the
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level curves generated by the approximate integrals are give clues of P.S.S. in the periodic

and quasiperiodic regime.

3.5.1. Poincaré Sections for System (2.15)

Before numerical comparison of integrals and P.S.S, time dependence of the truncated

integrals are taken into account, as in section 3.3.1 4th order truncated integral has the least

fluctuation and seems almost constant for this particular system. So we choose the 4th order

approximate integral as suitable to work with. In order to make a comparison between the

analytical results for the approximate integrals, Poincaré sections are plotted in q1 − p1 axis

for q2 = 0. On the other hand theoretical invariant curves are derived using equation (23).

p22 = 2E − p21 − q21 (3.62)

Then for q2 = 0 the expressions for the integrals become

I = 2E − 1

16
(q21 + 3p21)(2E − p21 − q21) + · · · (3.63)

The elliptical fixed points of the Poincaré Sections correspond to maxima or minima of the

integral on the other hand hyperbolic fixed points correspond to saddle points of the integral.

For our case five fixed points on the Poincaré Section appeared. Three of them correspond to

elliptical fixed points which are at the center, below and above the center, and two hyperbolic

fixed points which are left and right side of the center in the Poincaré plot. For energy level

E = 0.4 up to nearly E = 1 there is a good agreement between approximate and numerical

solutions which is depicted in Figure 3.22 and Figure 3.23, but after E = 1 stochastic

regions [45] appear in Poincaré sections from those unstable hyperbolic fixed points which

is shown in Figure 3.24 and Figure 3.25.
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Figure 3.22. Level curves of approximate integral with E = 0.4

Figure 3.23. Poincaré surface section with E = 0.4
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Figure 3.24. Level curves of approximate integral of order 4 with E = 1.25

Figure 3.25. Poincaré surface section with E = 1.25

3.5.2. Poincaré Sections for System (2.21)

The above procedure is carried out for system 2.21. Again Poincaré sections are plotted in

q1 − p1 axis for q2 = 0 surface. Unlike system 2.15 this Hamiltonian and corresponding

integral depend on parameter p. For fixed energy and varying p, comparisons are done
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between P.S.S and invariant curves generated by truncated integral. For the expression of

Integral, 4th order truncated integral is chosen. In general, good agreement is achieved

between P.S.S. and invariant curves of Integrals. Some of the important results are shown

below.

Figure 3.26. Level curves of approximate integral with E = 2

Figure 3.27. Level curves of approximate integral with E = 2
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Figure 3.28. Level curves of approximate integral with E = 2

Figure 3.29. Level curves of approximate integral with E = 2

While Figure 3.26 and Figure 3.27 are plotted for p = 1/8, Figure 3.28 and Figure 3.29

are plotted for p = 1/20. It can be seen that varying p is producing different KAM

curves. However, integrals are able to mimic these curves. Keeping energy constant, further

decrease in p yields similar diagrams as in Figure 3.28 with small differences. Increasing p

yields periodic orbits in P.S.S, which can be simulated again with those integrals.
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4. CONCLUSIONS

Dynamical properties of Yang Mills mechanics are essential for better understanding of

particle physics and gauge theories. In this respect this thesis concentrated on classical

dynamics of homogeneous Yang Mills fields and Higgs coupling. First part of the work

is devoted to determine complex behavior of the Yang Mills fields with symmetry group

of SU(2). Even if considering simplest case of the fields, in which they are only time

dependent, chaotic dynamics appear in 2 degrees of freedom. Then Higgs mechanism is

considered with two different coupling mechanism to Yang Mills fields. It is numerically

verified that Higgs field is responsible to stabilize the chaotic nature of Yang Mills fields and

chaos order transtions take place instead of purely chaotic motion. This is essentially due

to the fact that in the first model considered with specified field configurations, the Higgs

mechanism generates harmonic terms and for small energies the motion is dominated by

harmonic oscillator terms. With this knowledge, harmonic terms are included in the second

mechanical model in which Hamiltonian involves x4 and y4 terms beside the well-known

x2y2 potential. The additional terms dramatically change the dynamics of the system, and it

is numerically verified that while keeping the energy of the system constant, increasing the

coefficient of harmonic terms stabilize chaotic behaviour of system.

The other part of the work is devoted to obtaining analytical results using perturbation

method. The motivation behind this is mostly the work introduced by Gustavson to construct

formal integrals in the famous Henon Heiles system. To obtain the analytical results Lie

Transform method is used instead of other traditional approaches. Especially the method

introduced by Dragt and Finn is considered to take the advantage of obtaining approximate

integrals while normalizing the Hamiltonian, however one drawback of the method is that

one needs the inverse transformations to obtain original solutions. With the use of symbolic

software, the calculations can be implemented without any problem, but for higher order

perturbations one needs efficient algorithms, since they use greater memory and CPU time.

Especially for small energies where system is dominated with periodic and quasiperiodic

motions, the expressions yields good qualitative predictions on the dynamics appearing in

phase portraits. After normalizing the Hamiltonian, it is more suitable to use action angle

coordinates. To obtain periodic solutions one needs to get rid of resonant terms in the
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expansions. This can be achieved in different ways and each of them is named with different

families of periodic solutions. The expressions have same structure as they are series of

trigonometric functions. Each of them is numerically tested and it can be concluded that

the analytic expressions for coordinates and frequency are in good agreement up to a certain

energy level. On the other hand, the analytical expressions for approximate integrals are

used to simulate Poincaré sections. It is important to note that the series expansion for

integrals may not converge. For this purpose, time dependence of integrals is analyzed,

and the integrals are truncated with least fluctuation. The level curves generated by those

integrals are numerically tested with Poincaré sections and good agreement is obtained up

to some energy. Beyond this energy KAM curves start to break and chaotic regions appear

in the Poincaré section, those regions can not be simulated with approximate integrals.

Throughout the thesis classical dynamics of Yang Mills mechanics is considered, however

there is deep relation to quantum mechanical properties of Yang Mills fields[46]. The

findings in this thesis can also be useful also in the quantum counterpart. With the use of

quantum perturbation theory similar results can be obtained, this will enlighten the unknown

parts of Yang Mills mechanics, and perhaps quantum normal forms can be constructed and

quantum properties may become more tractable.
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APPENDIX A: RESULTS FOR SYSTEM (2.15)

The terms in the normalized Hamiltonian are given by

K0 =
P1

2

2
+
P2

2

2
+
Q1

2

2
+
Q2

2

2

K2 =
3P1

2P2
2

16
+
P1

2Q2
2

16
+
P1P2Q1Q2

4
+
P2

2Q1
2

16
+

3Q1
2Q2

2

16

K4 = −
17P1

2P2
4

512
− P2

4Q1
2

512
− P1

2Q2
4

512
− 17P1

4P2
2

512
− P1

4Q2
2

512

− P2
2Q1

4

512
− 9P1

2P2
2Q2

2

256
− 9P2

2Q1
2Q2

2

256
− 9P1

2P2
2Q1

2

256

− 9P1
2Q1

2Q2
2

256
− 17Q1

2Q2
4

512
− 17Q1

4Q2
2

512
− P1P2

3Q1Q2

16

− P1P2Q1Q2
3

16
− P1

3P2Q1Q2

16
− P1P2Q1

3Q2

16

K6 =
57P1P2Q1

5Q2

4096
+

49P1
3P2

3Q1Q2

512
+

49P1P2Q1
3Q2

3

512

+
57P1P2

5Q1Q2

4096
+

57P1P2Q1Q2
5

4096
+

57P1
5P2Q1Q2

4096

+
17P1

3P2Q1Q2
3

512
+

123P1
2P2

2Q1
2Q2

2

1024
+

17P1P2
3Q1

3Q2

512

+
57P1P2

3Q1Q2
3

2048
+

57P1
3P2Q1

3Q2

2048
+

125P1
4P2

4

4096
+

125P1
2P2

6

16384

+
125P1

6P2
2

16384
− 7P2

4Q1
4

4096
+

11P2
6Q1

2

16384
+

11P2
2Q1

6

16384

− 7P1
4Q2

4

4096
+

11P1
2Q2

6

16384
+

11P1
6Q2

2

16384
+

125Q1
6Q2

2

16384
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+
125Q1

2Q2
6

16384
+

125Q1
4Q2

4

4096
+

147P1
2P2

2Q1
4

16384
+

261P1
4P2

2Q1
2

16384

+
27P1

2P2
4Q1

2

2048
+

147P1
2P2

2Q2
4

16384
+

27P1
4P2

2Q2
2

2048
+

261P1
2P2

4Q2
2

16384

+
147P1

4Q1
2Q2

2

16384
+

261P1
2Q1

4Q2
2

16384
+

27P1
2Q1

2Q2
4

2048

+
147P2

4Q1
2Q2

2

16384
+

27P2
2Q1

4Q2
2

2048
+

261P2
2Q1

2Q2
4

16384

(A.1)

The terms in the generating function are given by

g1 = 0

g2 =
3P1

2P2Q2

32
+

3P1P2
2Q1

32
+

5P1Q1Q2
2

32
+

5P2Q1
2Q2

32

g3 = 0

g4 = −
13P1P2

4Q1

768
− 19P1Q1Q2

4

768
− 13P1

4P2Q2

768
− 19P2Q1

4Q2

768

− 13P1
2P2

3Q2

384
− 5P1

2P2Q2
3

384
− 5P2

3Q1
2Q2

384
− 19P2Q1

2Q2
3

384

− 13P1
3P2

2Q1

384
− 5P1

3Q1Q2
2

384
− 5P1P2

2Q1
3

384
− 19P1Q1

3Q2
2

384

− 7P1P2
2Q1Q2

2

64
− 7P1

2P2Q1
2Q2

64

g5 = 0
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g6 =
407P1

3P2
2Q1Q2

2

4096
+

15679P1P2
4Q1Q2

2

589824
+

407P1
2P2

3Q1
2Q2

4096

+
15679P1

4P2Q1
2Q2

589824
+

441P1P2
2Q1

3Q2
2

4096
+

20929P1P2
2Q1Q2

4

589824

+
441P1

2P2Q1
2Q2

3

4096
+

20929P1
2P2Q1

4Q2

589824
+

2749P1P2
2Q1

5

589824

+
4709P1

3P2
2Q1

3

294912
− 121P1P2

4Q1
3

24576
+

211P1
3P2

4Q1

8192

+
3773P1

5P2
2Q1

589824
+

3823P1P2
6Q1

589824
+

4709P1
2P2

3Q2
3

294912
+

3823P1
6P2Q2

589824

− 121P1
4P2Q2

3

24576
+

211P1
4P2

3Q2

8192
+

2749P1
2P2Q2

5

589824
+

3773P1
2P2

5Q2

589824

+
3419P1

3Q1
3Q2

2

294912
+

8003P1Q1
5Q2

2

589824
+

4369P1Q1Q2
6

589824
− 103P1

3Q1Q2
4

24576

+
2755P1

5Q1Q2
2

589824
+

1031P1Q1
3Q2

4

24576
− 103P2

3Q1
4Q2

24576
+

3419P2
3Q1

2Q2
3

294912

+
8003P2Q1

2Q2
5

589824
+

1031P2Q1
4Q2

3

24576
+

4369P2Q1
6Q2

589824
+

2755P2
5Q1

2Q2

589824

I0 =
p1

2

2
+
q1

2

2
+
p2

2

2
+
q2

2

2

I2 = −
3p1

2p2
2

16
− p1

2q2
2

16
− p1p2q1q2
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2
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2
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(A.2)
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I4 =
35 p1

2p2
4

512
− 5 p2

4q1
2

512
+

11 p1
2q2

4

512
+

35 p1
4p2

2

512
− 5 p1

4q2
2

512

+
11 p2

2q1
4
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+

15 p1
2p2

2q2
2
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+

15 p2
2q1

2q2
2

256
+

15 p1
2p2

2q1
2

256

+
15 p1

2q1
2q2

2
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− 13 q1

2q2
4

512
− 13 q1

4q2
2

512
+

5 p1p2
3q1q2

32
+
p1p2q1q2

3

32

+
5 p1

3p2q1q2
32

+
p1p2q1

3q2
32

I6 = −
275 p1p2q1

5q2
12288

− 175 p1
3p2

3q1q2
512

− 15 p1p2q1
3q2

3

512
− 595 p1p2

5q1q2
12288

− 275 p1p2q1q2
5

12288
− 595 p1

5p2q1q2
12288

− 35 p1
3p2q1q2

3

512
− 315 p1

2p2
2q1

2q2
2

1024

− 35 p1p2
3q1

3q2
512

− 105 p1p2
3q1q2

3

2048
− 105 p1

3p2q1
3q2

2048
− 1645 p1

2p2
2q1

4

49152

− 2275 p1
4p2

2q1
2

49152
− 35 p1

2p2
4q1

2

2048
− 1645 p1

2p2
2q2

4

49152
− 35 p1

4p2
2q2

2

2048

− 2275 p1
2p2

4q2
2

49152
− 1085 p1

4q1
2q2

2

49152
+

205 p1
2q1

4q2
2

49152
− 75 p1

2q1
2q2

4

2048

− 1085 p2
4q1

2q2
2

49152
− 75 p2

2q1
4q2

2

2048
+

205 p2
2q1

2q2
4

49152
− 385 p1

2p2
6

16384

− 385 p1
6p2

2

16384
− 385 p1

4p2
4

4096
− 365 p2

2q1
6

49152
+

35 p2
6q1

2

49152

+
35 p2

4q1
4

4096
+

35 p1
6q2

2

49152
− 365 p1

2q2
6

49152
+

35 p1
4q2

4

4096

+
47 q1

6q2
2

16384
+

47 q1
2q2

6

16384
+

47 q1
4q2

4

4096

(A.3)
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APPENDIX B: REDUCE PROGRAM FOR GENERATING

VARIATIONAL EQUATIONS

This program generates the variational equations needed for the calculation of Lyapunov

exponents in the Wolf algorithm which is given in the next appendix.

operator aa,v,y;

Yang-Mills-Higgs system equations

n:=4;

v(1):=y(3);

v(2):=y(4);

v(3):=-a**2*y(1)-y(1)*y(2)**2;

v(4):=-a**2*y(2)-y(1)**2*y(2);

nd:=n**2+n;

for j:=1:n do

for k:=1:n do

aa(j,k):=df(v(j),y(k));

for i:=1:n do

for k:=1:n do

v(i+n*k):=for j1:=1:n sum aa(k,j1)*y(n*j1+i);

load package gentran;

load package scope;

GENTRANLANG!* := FORTRAN

FORTLINELEN!* :=72;

on fort;

off period;
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off getdecs;

off gendecs;

out”wolf.rf”;

write ” subroutine FCN(t,y,v) ”

write ” implicit real*8(a-h,o-z)”;

write ”* subroutine for wolf integration”

write ” dimension y(20),v(20) ”

for i:=1:nd do write v(i):=v(i)

write ” RETURN”

write ” END”

SHUT”wolf.rf”;

;end;;
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APPENDIX C: FORTRAN PROGRAM FOR CALCULATION

OF LYAPUNOV EXPONENT SPECTRUM USING THE WOLF

ALGORITHM

Program liapode

implicit real*8(a-h,o-z)

N = No of nonlnear equations, NN= total No of equations

PARAMETER (N =4)

PARAMETER (NN=20)

NNN=No of divisions in the square interval

INTEGER NNN,KKK

common /params/ p,g

FOR THE NUM-REC INTEGRATOR

DIMENSION Y(NN),ZNORM(N),GSC(N),CUM(N),YPRIME(NN),YSCAL(NN)

LGX(N)= Sum of the Nth Lyapunov exponents

pi,pf,gi,gf=initial value of p, final value of p, initial value of g, final value of g of the square

interval

REAL LGX(N),pi,pf,gi,gf

EXTERNAL FCN,RKQC

open(18, file=’traj.dat’, status=’unknown’)

open(19, file=’liap.dat’, status=’unknown’)

open(258, file=’liapmax.dat’, status=’unknown’)

INTEGRATION TOLERANCE, NO OF INTEGRATION STEPS,

TIME PER STEP, AND I/O RATE

STTOL=0

tol=0.00001d0

NNN=50

KKK=10

nstep=20000

stpsze=0.01d0
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io=1

pi=0.1d0

pf=10d0

gi=0d0

gf=1d0

Do-loops for iteration of p and g

DO 251 JJ=0,NNN

p=pi+(pf-pi)*JJ/NNN

DO 252 KK=0,KKK

g=gi+(gf-gi)*KK/KKK

INITIAL CONDITIONS FOR NONLINEAR SYSTEM

Y(1)=0.1 D0

Y(2)=0.2 D0

Y(3)=0.1 D0

Y(4)=0.2 D0

INITIAL CONDITIONS FOR LINEAR SYSTEM (ORTHONORMAL FRAME)

DO 10 I=N+1,NN

10 Y(I)=0

DO 20 I=1,N

Y((N+1)*I)=1.0 D0

CUM(I)=0

LGX(I)=0

20 continue

Initialization for integration

NEQ=NN

X=0.0 D0

IND=1

DO 100 I=1,NSTEP

XEND=STPSZE*FLOAT(I)

Call any ODE Integrator - This is an IMSL routine

in the original
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CALL DVERK(NEQ,FCN,X,Y,XEND,TOL,IND,C,NEQ,W,IER)

replaced by a Numerical Recipes routine

CALL RKQC(Y,YPRIME,NEQ,X,STPSZE,TOL,YSCAL,HDID,HNEXT,FCN)

CALL ODEINT(Y,NEQ,X,XEND,TOL,STPSZE,STTOL,NOK,NBAD,FCN,RKQC)

X=XEND

Construct a new orthonormal basis by Gram-Schmidt method

Normalize first vector

ZNORM(1)=0.0

DO 30 J=1,N

30 ZNORM(1)=ZNORM(1)+Y(N*J+1)**2

ZNORM(1)=SQRT(ZNORM(1))

DO 40 J=1,N

40 Y(N*J+1)=Y(N*J+1)/ZNORM(1)

GENERATE THE NEW ORTHONORMAL SET OF VECTORS

DO 80 J=2,N

GENERATE J-1 GSR COEFFICIENTS

DO 50 K=1,J-1

GSC(K)=0.0

DO 50 L=1,N

GSC(K)=GSC(K)+Y(N*L+J)*Y(N*L+K)

50 CONTINUE

CONSTRUCT A NEW VECTOR

DO 60 K=1,N

DO 60 L=1,J-1

Y(N*K+J)=Y(N*K+J)-GSC(L)*Y(N*K+L)

60 CONTINUE

CALCULATE THE VECTOR’S NORM

ZNORM(J)=0.0 D0
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DO 70 K=1,N

ZNORM(J)=ZNORM(J)+Y(N*K+J)**2

70 CONTINUE

ZNORM(J)=SQRT(ZNORM(J))

NORMALIZE THE NEW VECTOR

DO 80 K=1,N

Y(N*K+J)=Y(N*K+J)/ZNORM(J)

80 CONTINUE

UPDATE RUNNING VECTOR MAGNITUDES

DO 90 K=1,N

90 CUM(K)=CUM(K)+DLOG(ZNORM(K))/DLOG(2.0D0)

NORMALIZE EXPONENT AND PRINT EVERY IO ITERATIONS

IF(MOD(I,IO).EQ.0) THEN

WRITE(*,126) X,(CUM(K)/X,K=1,N)

126 Format(’X= ’,f12.7,’ LE = ’,4(F13.7,1x))

139 FORMAT(f12.7,4(F13.7,1x))

ENDIF

DO 201 K=1,N

201 LGX(K)=LGX(K)+CUM(K)/X

138 FORMAT(1X,F10.2, 4(1X,F14.4))

100 CONTINUE

Write the calculated maximum Lyapunov exponent in a data file as a function of g and p

WRITE(258,250)p,g,(LGX(K)/NSTEP,K=1,N)

250 FORMAT(f12.7,f12.7,4(F13.7,1x))

252 CONTINUE

251 CONTINUE

CLOSE(258)

STOP

END
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USER DEFINED ROUTINE CALLED BY NUMERICAL RECIPES RUNGE KUTTA 4

subroutine fcn(t,y,v)

implicit real*8(a-h,o-z)

subroutine for wolf integration

dimension y(20),v(20)

common /params/ p,g

c generated by the REDUCE code

v(1)=y(3)

v(2)=y(4)

v(3)=(y(1)*(-2*y(2)**2-y(1)**2-2*g**2))/2

v(4)=y(2)*(-y(2)**2*p-y(1)**2-g**2+1)

v(5)=y(13)

v(6)=y(14)

v(7)=y(15)

v(8)=y(16)

v(9)=y(17)

v(10)=y(18)

v(11)=y(19)

v(12)=y(20)

v(13)=(-4*y(9)*y(2)*y(1)-2*y(5)*y(2)**2-3*y(5)*y(1)**2-2*y(5)*g . **2)/2

v(14)=(-4*y(10)*y(2)*y(1)-2*y(6)*y(2)**2-3*y(6)*y(1)**2-2*y(6)* . g**2)/2

v(15)=(-4*y(11)*y(2)*y(1)-2*y(7)*y(2)**2-3*y(7)*y(1)**2-2*y(7)* . g**2)/2

v(16)=(-4*y(12)*y(2)*y(1)-2*y(8)*y(2)**2-3*y(8)*y(1)**2-2*y(8)* . g**2)/2

v(17)=-3*y(9)*y(2)**2*p-y(9)*y(1)**2-y(9)*g**2+y(9)-2*y(5)*y(2) . *y(1)

v(18)=-3*y(10)*y(2)**2*p-y(10)*y(1)**2-y(10)*g**2+y(10)-2*y(6)* . y(2)*y(1)

v(19)=-3*y(11)*y(2)**2*p-y(11)*y(1)**2-y(11)*g**2+y(11)-2*y(7)* . y(2)*y(1)

v(20)=-3*y(12)*y(2)**2*p-y(12)*y(1)**2-y(12)*g**2+y(12)-2*y(8)* . y(2)*y(1)

return

end

SUBROUTINE
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ODEINT(YSTART,NVAR,X1,X2,EPS,H1,HMIN,NOK,NBAD,DERIVS,RK *QC)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (MAXSTP=10000,NMAX=20,TWO=2.0D0,ZERO=0.0D0,TINY=1.D-30)

COMMON /PATH/ KMAX,KOUNT,DXSAV,XP(200),YP(10,200)

DIMENSION YSTART(NVAR),YSCAL(NMAX),Y(NMAX),DYDX(NMAX)

X=X1

H=SIGN(H1,X2-X1)

NOK=0

NBAD=0

KOUNT=0

DO 11 I=1,NVAR

Y(I)=YSTART(I)

11 CONTINUE

XSAV=X-DXSAV*TWO

DO 16 NSTP=1,MAXSTP

CALL DERIVS(X,Y,DYDX)

DO 12 I=1,NVAR

YSCAL(I)=ABS(Y(I))+ABS(H*DYDX(I))+TINY

12 CONTINUE

IF(KMAX.GT.0)THEN

IF(ABS(X-XSAV).GT.ABS(DXSAV)) THEN

IF(KOUNT.LT.KMAX-1)THEN

KOUNT=KOUNT+1

XP(KOUNT)=X

DO 13 I=1,NVAR

YP(I,KOUNT)=Y(I)

13 CONTINUE

XSAV=X

ENDIF

ENDIF

ENDIF
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IF((X+H-X2)*(X+H-X1).GT.ZERO) H=X2-X

CALL RKQC(Y,DYDX,NVAR,X,H,EPS,YSCAL,HDID,HNEXT,DERIVS)

IF(HDID.EQ.H)THEN

NOK=NOK+1

ELSE

NBAD=NBAD+1

ENDIF

IF((X-X2)*(X2-X1).GE.ZERO)THEN

DO 14 I=1,NVAR

YSTART(I)=Y(I)

14 CONTINUE

IF(KMAX.NE.0)THEN

KOUNT=KOUNT+1

XP(KOUNT)=X

DO 15 I=1,NVAR

YP(I,KOUNT)=Y(I)

15 CONTINUE

ENDIF

RETURN

ENDIF

IF(ABS(HNEXT).LT.HMIN) PAUSE ’Stepsize smaller than minimum.’

H=HNEXT

16 CONTINUE

PAUSE ’Too many steps.’

RETURN

END

SUBROUTINE RK4(Y,DYDX,N,X,H,YOUT,DERIVS)

implicit real*8(a-h,o-z)

PARAMETER (NMAX=20)

DIMENSION Y(N),DYDX(N),YOUT(N),YT(NMAX),DYT(NMAX),DYM(NMAX)
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HH=H*0.5

H6=H/6.

XH=X+HH

DO 11 I=1,N

YT(I)=Y(I)+HH*DYDX(I)

11 CONTINUE

CALL DERIVS(XH,YT,DYT)

DO 12 I=1,N

YT(I)=Y(I)+HH*DYT(I)

12 CONTINUE

CALL DERIVS(XH,YT,DYM)

DO 13 I=1,N

YT(I)=Y(I)+H*DYM(I)

DYM(I)=DYT(I)+DYM(I)

13 CONTINUE

CALL DERIVS(X+H,YT,DYT)

DO 14 I=1,N

YOUT(I)=Y(I)+H6*(DYDX(I)+DYT(I)+2.*DYM(I))

14 CONTINUE

RETURN

END

SUBROUTINE RKQC(Y,DYDX,N,X,HTRY,EPS,YSCAL,HDID,HNEXT,DERIVS)

implicit real*8(a-h,o-z)

PARAMETER (NMAX=20,FCOR=.0666666667d0,

* ONE=1.d0,SAFETY=0.9d0,ERRCON=6.d-4)

EXTERNAL DERIVS

DIMENSION

Y(N),DYDX(N),YSCAL(N),YTEMP(NMAX),YSAV(NMAX),DYSAV(NMAX)

PGROW=-0.20d0

PSHRNK=-0.25d0
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XSAV=X

DO 11 I=1,N

YSAV(I)=Y(I)

DYSAV(I)=DYDX(I)

11 CONTINUE

H=HTRY

1 HH=0.5*H

CALL RK4(YSAV,DYSAV,N,XSAV,HH,YTEMP,DERIVS)

X=XSAV+HH

CALL DERIVS(X,YTEMP,DYDX)

CALL RK4(YTEMP,DYDX,N,X,HH,Y,DERIVS)

X=XSAV+H

IF(X.EQ.XSAV)PAUSE ’Stepsize not significant in RKQC.’

CALL RK4(YSAV,DYSAV,N,XSAV,H,YTEMP,DERIVS)

ERRMAX=0.

DO 12 I=1,N

YTEMP(I)=Y(I)-YTEMP(I)

ERRMAX=MAX(ERRMAX,ABS(YTEMP(I)/YSCAL(I)))

12 CONTINUE

ERRMAX=ERRMAX/EPS

IF(ERRMAX.GT.ONE) THEN

H=SAFETY*H*(ERRMAX**PSHRNK)

GOTO 1

ELSE

HDID=H

IF(ERRMAX.GT.ERRCON)THEN

HNEXT=SAFETY*H*(ERRMAX**PGROW)

ELSE

HNEXT=4.d0*H

ENDIF

ENDIF
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DO 13 I=1,N

Y(I)=Y(I)+YTEMP(I)*FCOR

13 CONTINUE

RETURN

END
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APPENDIX D: MAPLE PROGRAM FOR LIE TRANSFORM

METHOD

This Maple program uses Lie Transform algorithm for normalization of 2d- Hamiltonian

with arbitrary frequencies w1, w2, and construct approximate integrals up to order 6.

with(DifferentialGeometry):

with(LieAlgebras):

DGsetup([x1,x2,y1,y2,M]):

w1:=1: w2:=1:

H:=1/2*w1*(p1**2+q1**2)+1/2*w2*(p2**2+q2**2)+e**2/(2*w1*w2)*q1**2*q2**2;

sys:=x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1),y2=I/sqrt(2)*(q2-I*p2):

T:=solve(sys,q1,q2,p1,p2,’parametric’):

for i from 1 to 2 do

p[i]:=rhs(T[1,i]):

q[i]:=rhs(T[1,i+2]):

od:

p1:=p[1]; p2:=p[2]; q1:=q[1]; q2:=q[2];

Hex:=expand(H):

L:=evalDG(w1*x1*D-x1+w2*I*x2*D-x2-w1*y1*D-y1-w2*I*y2*D-y2);

readlib(mtaylor):

readlib(coeftayl):

Q:=mtaylor(sum(sum(sum(sum(c[j,k,l,m]*x1**j*x2**k*y1**l*y2**m,j=0..4)

,k=0..4),l=0..4),m=0..4),[x1,x2,y1,y2],5):

for j from 0 to 4 do

for k from 0 to 4 do

for l from 0 to 4 do

for m from 0 to 4 do

if j+k+l+m ¡ 4 then
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Q:=subs(c[j,k,l,m]=0,Q)

fi;

od;

od;

od;

od;

Q1:=expand(LieDerivative(L,Q)):

T1:=Hex-Q1:

for j from 0 to 4 do

for k from 0 to 4 do

for l from 0 to 4 do

for m from 0 to 4 do

if j+k+l+m=4 then

c[j,k,l,m]:=solve( coeftayl(T1,[x1,x2,y1,y2]=[0,0,0,0],[j,k,l,m])=0, c[j,k,l,m]);

fi;

od;

od;

od;

od;

H21:=eval(T1):

H0:=mtaylor(H21,[x1,x2,y1,y2],3):

K21:=H21-H0:

H2:=Hex-H0;

for j from 0 to 4 do

for k from 0 to 4 do

for l from 0 to 4 do

for m from 0 to 4 do

if j+k+l+m=4 then

Q:=subs(c[j,k,l,m]=0,Q)

fi;

od;
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od;

od;

od;

unassign(’p1’); unassign(’p2’); unassign(’q1’); unassign(’q2’);

K2:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1),y2=I/sqrt(2)*(q2-I*p2),K21));

g21:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1),y2=I/sqrt(2)*(q2-I*p2),Q)):

g2:=expand(g21);

PB:=proc(f,g)

diff(f,x1)*diff(g,y1)-diff(f,y1)*diff(g,x1)+diff(f,x2)*diff(g,y2)- diff(f,y2)*diff(g,x2)

end:

PB1:=expand(simplify(PB(Q,H2))):

PB2:=expand(simplify(PB(Q,K21))):

PB3:=1/2*(PB1+PB2):

unassign(’j’,’k’,’l’,’m’):

TT:=mtaylor(sum(sum(sum(sum(a[j,k,l,m]*x1**j*x2**k*y1**l*y2**m,j=0..6),k=0..6)

,l=0..6),m=0..6),[x1,x2,y1,y2],7):

for j from 0 to 6 do

for k from 0 to 6 do

for l from 0 to 6 do

for m from 0 to 6 do

if j+k+l+m ¡ 6 then

TT:=subs(a[j,k,l,m]=0,TT)

fi;

od;

od;

od;

od;

TT:

TT22:=expand(LieDerivative(L,TT)):
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NT:=PB3-TT22:

for j from 0 to 6 do

for k from 0 to 6 do

for l from 0 to 6 do

for m from 0 to 6 do

if j+k+l+m=6 then

a[j,k,l,m]:=solve( coeftayl(NT,[x1,x2,y1,y2]=[0,0,0,0],[j,k,l,m])=0,

a[j,k,l,m]);

fi;

od;

od;

od;

od;

K41:=eval(NT):

K42:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1)

,y2=I/sqrt(2)*(q2-I*p2),K41)):

K4:=expand(K42);

for j from 0 to 6 do

for k from 0 to 6 do

for l from 0 to 6 do

for m from 0 to 6 do

if j+k+l+m=6 then

TT:=subs(a[j,k,l,m]=0,TT)

fi;

od;

od;

od;

od;

TT:

TT2:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-
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I*p1),y2=I/sqrt(2)*(q2-I*p2),TT)):

g4:=expand(TT2);

I0:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1),y2=I/sqrt(2)*(q2-I*p2),H0)):

I21:=H2-K21:

I2:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1),y2=I/sqrt(2)*(q2-I*p2),I21));

I3:=H2-I21:

PB44:=expand(simplify(PB(Q,I3))):

I41:=PB44-K41:

I42:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1),y2=I/sqrt(2)*(q2-I*p2),I41)):

I4:=expand(I42);

PB51:=expand(simplify(PB(Q,H0))):

PB52:=expand(simplify(PB(Q,PB51))):

PB53:=expand(simplify(PB(Q,PB52))):

PB61:=expand(simplify(PB(Q,H0))):

PB62:=expand(simplify(PB(TT,PB61))):

PB72:=expand(simplify(PB(Q,PB1))):

PB81:=expand(simplify(PB(TT,H2))):

Q16:=-Q1:

PB511:=expand(simplify(PB(Q,Q16))):

PB513:=expand(simplify(PB(Q,PB511))):

PB611:=expand(simplify(PB(TT,Q16))):

RH:=1/6*PB513+PB611+1/2*PB72+PB81:

unassign(’j’,’k’,’l’,’m’):

BD:=mtaylor(sum(sum(sum(sum(b[j,k,l,m]*x1**j*x2**k*y1**l*y2**m,j=0..8),k=0..8),

l=0..8),m=0..8),[x1,x2,y1,y2],9):

for j from 0 to 8 do

for k from 0 to 8 do

for l from 0 to 8 do
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for m from 0 to 8 do

if j+k+l+m ¡ 8 then

BD:=subs(b[j,k,l,m]=0,BD)

fi;

od;

od;

od;

od;

BD1:=expand(LieDerivative(L,BD)):

NT6:=RH-BD1:

for j from 0 to 8 do

for k from 0 to 8 do

for l from 0 to 8 do

for m from 0 to 8 do

if j+k+l+m=8 then

b[j,k,l,m]:=solve( coeftayl(NT6,[x1,x2,y1,y2]=[0,0,0,0],[j,k,l,m])=0, b[j,k,l,m]);

fi;

od;

od;

od;

od;

K61:=eval(NT6):

K62:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),

y1=I/sqrt(2)*(q1-I*p1),y2=I/sqrt(2)*(q2-I*p2),K61)):

K6:=expand(K62);

for j from 0 to 8 do

for k from 0 to 8 do

for l from 0 to 8 do

for m from 0 to 8 do

if j+k+l+m=8 then

BD:=subs(b[j,k,l,m]=0,BD)
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fi;

od;

od;

od;

od;

BD2:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),y1=I/sqrt(2)*(q1-

I*p1),y2=I/sqrt(2)*(q2-I*p2),BD)):

g6:=expand(BD2);

PB46:=expand(simplify(PB(Q,PB44))):

PB45:=expand(simplify(PB(TT,I3))):

I46:=-I41:

PB111:=expand(simplify(PB(Q,I46))):

I611:=-K61+1/2*PB46+PB45+PB111:

I612:=simplify(subs(x1=1/sqrt(2)*(q1+I*p1),x2=1/sqrt(2)*(q2+I*p2),

y1=I/sqrt(2)*(q1-I*p1),y2=I/sqrt(2)*(q2-I*p2),I611)):

I6:=expand(I612);

save I0,I2,I4,I6, ”C:/Users/Dell Xps/integrals1-1.m”
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