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ABSTRACT 

 

 

ANALYSIS OF A CANTILEVER BEAM TYPE VIBRATION ENERGY 

HARVESTER WITH A LEVER MECHANISM 

 

This thesis focuses on the energy harvesting efficiency of piezoelectric-based cantilever 

beam type vibration energy harvesters. The aim is to increase efficiency by homogenizing 

the axial stress along the beam. For this purpose, a counter mass is attached to the beam via 

a simple lever mechanism. This way, an inertial force is applied on the beam, having a 

direction opposite of the inertia force of the tip mass, thereby obtaining a loading close to 

pure moment. This structure is investigated in two methods; a detailed analytical model and 

numerical model are constructed. The analytical model and finite element analysis are used 

to assess the effect of two design parameters on efficiency, which are ratio of counter and 

tip masses, and lever beam length ratio. Modal analysis and harmonic response analyses are 

performed for both methods and compared with each other. The obtained results are 

compared with the strain distribution in a standard cantilever beam. It is shown that 

efficiency increases by means of the proposed method. As a result of analytical work, strain 

distribution greater than 0.53 was obtained. As a result of the test, strain distributions over 

0.74 were obtained in a certain frequency bandwidth by altering with different mass and 

leverage ratios.  



v 

 

 

ÖZET 

 

 

ANKANSTRE TİPİ TİTREŞİM KALDIRAÇ MEKANİZMALI ENERJİ 

DEPOLAYICISI ANALİZİ 

 

Bu makale, piezoelektrik tabanlı ankastre kiriş tipi titreşim enerjili depolama makinelerinin 

enerji depolama verimliliğine odaklanmaktadır. Amaç, kiriş boyunca eksenel gerilimi 

homojenize ederek verimliliği artırmaktır. Bu amaçla, basit bir ankastre mekanizması ile 

kirişe bir karşı kütle tutturulur. Bu şekilde, kiriş üzerine, uç kütlenin eylemsizlik kuvvetinin 

tersi yönde bir eylemsizlik kuvveti uygulanır ve böylece saf momente yakın bir yükleme 

elde edilir. Bu yapı iki yöntemle incelenir; detaylı bir analitik model ve sayısal model 

oluşturulmuştur. Analitik model ve sonlu eleman analizi, iki tasarım parametresinin, karşı 

ve uç kütlelerinin oranına ve kaldıraç kiriş uzunluğu oranına dayalı olarak verimlilik 

üzerindeki etkisini değerlendirmek için kullanılır. Her iki yöntem için modal analiz ve 

harmonik yanıt analizi yapılır ve birbirleriyle karşılaştırılır. Elde edilen sonuçlar, standart 

bir kaldıraç kirişteki gerinim dağılımı ile karşılaştırılır. Önerilen yöntem sayesinde 

verimliliğin arttığı gösterilmiştir. Analitik çalışma sonucunda 0.53 ve üzeri gerinim dağılımı 

elde edilmiştir. Test sonucunda da farklı kütle ve kaldıraç oranlarıyla oynanılarak,  belirli bir 

frekans aralığında 0.74 üzerinde gerinim dağılımları elde edilmiştir. 
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1. INTRODUCTION 

 

1.1. AIM OF THE STUDY 

Vibration energy harvesting research has been increased in recent years. Portable electronic 

devices, sensor networks, and body sensor networks can be shown as examples of 

applications of vibration energy harvesters (VEH). There are several methods to generate 

energy from vibration which are electromagnetism, electrostatics, and piezoelectricity. 

Among vibration energy harvesting methods, piezoelectric cantilever beam is a trend topic. 

Mechanical energy which is a result of vibration is transduced into electrical energy by using 

a suitable circuitry if base excitation is applied to a piezoelectric unimorph or bimorph 

cantilever beam. Converting the strain on it into electrical displacement is a feature of 

piezoelectric material. Because of that, the harvested energy depends on the average stress 

or strain on the piezoelectric element which is on the cantilever beam surface. The surface 

stress will decrease linearly from the base to the tip which will be mainly in axial direction, 

when a static force is applied to the tip of a rectangular cantilever beam. Thus, the average 

stress on the beam surface is half of the maximum stress and base stress is an example of 

that.  

Therefore, in energy harvesting, only half of the piezoelectric layer potential is used. There 

are numerous researches in order to increase the efficiency of piezoelectric-based cantilever 

beam VEHs. Generating more energy by obtaining uniform stress distribution along the 

beam is the objective. However, a small amount of improvement has been seen in many 

results aimed increase of stress distribution. Hence, some solution suggestions do not apply 

to standard piezoelectric beams. 
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1.2. LITERATURE SURVEY 

There is considerable research on increasing the harvesting efficiency of piezoelectric-beam 

based vibration energy harvesters. Typical current and prospective applications of vibration 

energy harvesters (VEH) comprise wireless sensor networks, body sensor networks, 

implanted biomedical devices and portable electronics [1,2]. Three main transduction 

methods have been the focus of vibration energy harvesting research: electromagnetic [3], 

electrostatic [4] and piezoelectric [5].  

There is a great effort on increasing the efficiency of piezoelectric-based cantilever beam 

VEHs. During vibration, voltage is generated on the piezoelectric layer at the surface of the 

beam, and this voltage is proportional to average axial stress on the beam surface [6]. In a 

typical cantilever beam with uniform width, the axial stress is maximum at the base of the 

cantilever beam and is close to zero at the beam tip [7]. This situation poses a serious 

limitation on the energy harvesting efficiency, due to the non-uniform stress distribution 

along the cantilever beam surface. 

Kong et al. researched a microelectromechanical system piezoelectric cantilevered vibration 

energy harvester on c-axis tilted  AlN thin film (Figure 1.1). Kong et al investigated geometry 

parameters effects and c-axis tilted angle effects. Kong et al produced micro-sized cantilever 

beams with piezoelectric thin films, at which the polarization of the piezoelectric layer is 

tilted from the out-of-plane direction [8]. Although this method increases the overall 

efficiency, it cannot be applied to batch fabricated piezoelectric patches. Introducing cavities 

into the beam cross-section also resulted in improved stress profile, but posed difficulty in 

fabrication [9,10]. 

 

 

 

Figure 1.1. MEMS piezoelectric beam where the polorization axis makes an angle θ with 

the vertical axis: (a) side view, (b) top view  [8] 
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A method which is piezoelectric energy harvester with multiple rectangular cavities at a 

single and two sections is built up by Raju et al who are researcher interested in cantilever 

piezoelectric energy harvesting. According to results of the research, two cavities result in 

producing maximum voltage and more voltage is generated with single cavity section if two 

cavity sections are compared. Yet, both methods are impractical [10]. 

Different piezoelectric beam shapes are investigated by Roundy et al. Using a varying beam 

width profile to improve stress distribution was first proposed by Roundy et al. It was 

suggested to use a tapered beam, i.e. a beam with linearly decreasing width profile from the 

base to the tip. Although more than twice the energy can be gained from a trapezoidal 

geometry than the rectangular geometry [7]. However, no theoretical or experimental study 

was presented. Recently, it was shown via theory [14,15], finite element analysis [16] and 

experiments [15] that tapered beams exhibit higher efficiency compared to beams with 

uniform width. 

 

 

 

Figure 1.2. Strain profiles for different geometries [7] 

 

In order to improve stress distribution along beam, a compliant hinge mechanism at the tip 

of cantilever beam is attached by Ma et al and proof mass is attached at the tip of the link     

(Figure 1.3). With the proposed mechanism, it has been possible to obtain a more 

homogeneous stress distribution on the beam surface by affecting the dynamic load at the 

beam end. As a result of the compliant mechanism at the tip, increases the tip displacement 

therefore large motion of the proof mass is produced [11]. 
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Figure 1.3. Cantilever beam with proff mass (a) Design and (b) Model [11]. 

 

Yoon et al investigated curved piezoceramic unimorphs’ optimization in order to generate 

more charge as a result of mechanical loading (Figure 1.4). The response of a pre-stressed 

piezoelectric beam to vertical impact loads have been analyzed. In the research, PZT unimorph 

(lead zirconate titanate) structure is located as horizontal. This is because to generate surface 

charge when vertically loaded and to collect charge. However, generating energy from 

vibration is not sufficient in this methods due to applying pressure load which is applied on 

the top surface [12]. In a recent study, the stress distribution is homogenized by using a 

mechanical amplifier [13]. Both of these researches resulted in improved stress distribution, 

but the proposed devices are suitable to harvest energy only from impact type excitations. 
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Figure 1.4. Pre-stressed piezoelectric energy generator [12] 

 

Halvorsen et al analyzed and found out piezoelectric energy harvesters with tapered 

unimorph cantilever beams extended proof mass’s models. This research includes long and 

short beam. The result of the work done to taper the beam does not conclude that it creates 

a more uniform stress. Also, there are no performance benefits when these harvesters are 

optimized for single frequency [14]. 

Tapered two-layer piezoelectric vibration energy harvesters are investigated by Xiong et al 

(Figure 1.5). While two masses are attached to each layer, base and upper cantilever beams 

are attached to each other. Due to change in masses positions, resonance frequencies can be 

generated by the convergent and divergent tapered harvesters [16]. 
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Figure 1.5. Piezoelectric beam generator (a) Two layer and one mass (b) Two layer and 

two masses [16]. 

  

Kianpoor et al also worked on energy harvesting which is from trapezoidal bimorph 

piezoelectric cantilever beams with proof mass. The research concluded that harvester’s 

performance is excessively affected by geometrical parameters which are width, thickness, 

the dimensions of proof mass, and length of the beam. As a result of comparison of energy 

gains from direct and reverse trapezoidal and rectangle beams, more electrical power and 

voltage can be produced from the reverse trapezoidal geometry than other geometries [19]. 

To obtain more efficient piezoelectric energy harvesters, Hosseini et al studied on unimorph 

trapezoidal V-shaped cantilever beams. Triangular tapered cantilever beam, rectangular 

piezoelectric cantilever beam and trapezoidal V-shaped cantilever beam are compared for 

their energy efficiency. The study concluded that the deformation, strain and voltage of the 

triangular vibration energy collector are higher than the rectangular and trapezoidal 

beams.[20] 

Hollow triangular piezoelectric cantilever beam harvesters by vibration to store more energy 

harvester is worked by Wang et al (Figure 1.6).  A comparison of obtaining voltage from 

rectangular, trapezoidal, triangular, and hollow piezoelectric cantilever beams are made. A 

hollow triangular piezoelectric cantilever beam designed. Having more hollow in a beam 

result in more resonant frequency points, on the other hand, this leads to increase of length 

of substrate and beam’s weight. As a result of that more deformation and fracture formed. 

New hollow triangular model which has no uniform thickness has varied resonant 
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frequencies. They are in the low frequency range broadens the resonance frequency 

bandwidth. However, production process of hollow cantilever beam is hard [21]. 

 

 

 

Figure 1.6. Hollow triangular piezoelectric [21] 

 

Izadgoshasb studied on optimized shape of cantilever beam. The work aimed to increase 

performance of a Multiresonant Piezoelectric Energy Harvester (MRPEH) for low frequency 

vibrations. A cantilever beam which one piezoelecric patch attached to with two triangular 

brances and weight of tip mass consist of a model which is optimized by varying design 

parameters. Obtaining more energy with minimum weight of material and volume is the 

main aim of the research. As a result of the study overall efficiency of the MRPEH is higher 

tan the piezoelectric energy harvesters cantilever beams, it is independent of the excitation 

frequency [22]. 

C. V. Karadag study is about finding the optimal width profile for uniform strain distribution. 

Moreover, optimal width profile is affected by tip mass value which is a important parameter 

and there is no research on tip mass effect. Karadag et al in this study, a curved width profile 

is assumed and finite element based optimization is used to find optimized parameters for 

the highest strain uniformity. The optimized shapes, rectangular and triangular shapes were 

fabricated to compare stress distribution ratios and experimental results show that The stress 

distribution of the optimized-shaped beams are more than other convential beams [23]. 
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Figure 1.7. Optimization of width profile [23] 

 

In this study a force, in opposite direction of inertial force due to tip mass motion, is applied 

to the beam during oscillation. Thus, it is aimed to obtain approximately a pure moment as 

the net load acting on the beam. Because of this, a counter mass is used with a simple lever 

mechanism, connected to the beam with a hinge. The inertial force affecting the counter 

mass is applied to the beam by changing direction, with the help of the lever mechanism. In 

this paper, a comprehensive analytical model of the proposed approach is explained and the 

preliminary results are presented. 
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2. PROPOSED METHOD 

 

The main goal of the proposed method is to obtain a more uniform stress distribution on the 

cantilever beam during harmonic excitation. To achieve this goal, a counter mass is 

connected to the beam with a lever mechanism. The counter mass is located at the left end 

of the lever beam, and the other end of the lever beam is pin connected to a rigid link, which 

is pin-connected to the beam. The lever is also connected to the support with an L-shaped 

frame. A simple schematic of the mechanism is shown in Figure 2.1. 

During oscillation, the inertia forces exerted by the tip mass and the counter mass will have 

the same direction (Figure 2.1). Due to the lever mechanism, the counter mass inertia force 

on the beam will have a direction opposite to the inertia force of the tip mass. This way, 

these two forces acting on the cantilever beam will have a moment effect, which in turn will 

result in a more uniform stress distribution on the beam. 

 

 

 

Figure 2.1. Concept of model 

 

To assess the effect of geometrical parameters on the stress uniformity and demonstrate the 

improvement on stress uniformity with the proposed mechanism, a mathematical model is 

constructed, which is presented next. 
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2.1. RIGID BEAM MODEL- DETERMINATION OF OPTIMUM DIMENSIONS 

L1, L2 and L3 are determined as rigid beams that does not deform or change shape. L is 

flexible beam. of 𝛽 is considered to be the small angle. The effect of horizontal force is 

neglected. The rigid beam that connects the lever  is assumed to remain vertical during 

oscillation. The diagram below shows the oscillation image of the model at any moment. 

 

 

 

Figure 2.2. Kinematic scheme of model 
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2.1.1. Kinematic Solution 

In the kinematic solution, the aim is to find the dimensions of the connecting beam 

perpendicular to the elastic and lever beam and to select the smallest Hy value within the 

perpendicularity limits. 

Required lengths between angles and points are obtained by trigonometric calculations 

(Figure 2.2).  In the following calculations are determined the positions and angles of model 

connection. 

 

                  𝐿3 = √𝐻𝑦
2 + (𝐻𝑥 + 𝐿2 − 𝜀𝐿)2      (2.1) 

   

  𝐸𝑥 = 𝐻𝑥 + 𝐿2𝑐𝑜𝑠𝛽 (2.2) 

   

 𝐸𝑦 = 𝐻𝑦 − 𝐿2𝑐𝑜𝑠𝛽 (2.3) 

   

 
𝐴𝐸 = √𝐸𝑥

2 + 𝐸𝑦
2 (2.4) 

 

Angles are found with trigonometric calculation: 

 
𝜃1 = tan−1(

𝐻𝑥

𝐻𝑦
) 

(2.5) 

   

 
𝜃2 = cos−1

((𝐻𝑥
2 + 𝐻𝑦

2 + 𝐴𝐸2 − 𝐿2
2)

2𝐴𝐸√(𝐻𝑥
2 + 𝐻𝑦

2

) (2.6) 

   

 
𝜃3 = cos−1

((𝐴𝐸2 + 𝜀𝐿2 − 𝐿3
2)

2𝐴𝐸𝑒𝐿
) (2.7) 

   

 
𝛾 = cos−1

(𝐻𝑦
2 + 𝑒𝐿2 − 𝐴𝐸2)

2𝐿3𝜀𝐿
) (2.8) 
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𝛾𝑎𝑛𝑔𝑙𝑒 =

180

𝜋
𝛾 (2.9) 

   

  𝛼 = 𝜃1 + 𝜃2 + 𝜃3 −
𝜋

2
   (2.10) 

   

Points are also calculated with trigonometric calculation: 

 𝐴𝑥  =  0   (2.11) 

   

 𝐴𝑦 = 0 (2.12) 

   

 𝐵𝑥  =  𝐿𝑐𝑜𝑠𝛼 (2.13) 

   

 𝐵𝑦 = −𝐿𝑠𝑖𝑛𝛼  (2.14) 

   

 𝐷𝑥  =  𝐻𝑥 − 𝐿1𝑐𝑜𝑠𝛽 (2.15) 

   

   𝐷𝑦  =  𝐻𝑦 + 𝐿1𝑠𝑖𝑛𝛽 (2.16) 

   

 𝐶𝑥 =  𝜀𝐿𝑐𝑜𝑠𝛼 (2.17) 

   

 𝐶𝑦 = −𝜀𝐿𝑠𝑖𝑛𝛼 (2.18) 

 

Since the value of 𝛽 is considered to be the small angle, it is considered to range between 

∓20°.  

The default input parameter is below in mm: 
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Table 2.1. Input parameter (mm) 

 

Hx L εL L1 L2 

60 120 100 40 40 

 

In the graph of  90 − 𝛾 vs 𝛽, 4 different 𝐻𝑦 values ( from 40 to 70 in 10 increments) are 

examined so that  𝛾 are as narrow angle range as possible. 

          

 

Figure 2.3. Perpendicularity condition to 𝐻𝑦 

 

As the value of 𝐻𝑦 increases, angle range of 90 − 𝛾  in -20 to 20 decrease. 𝐻𝑦. In other 

words, When 𝐻𝑦 is 40 mm , the range value is greater than  𝐻𝑦 is 70 mm. That is, as the 

value of  𝐻𝑦 increases, 𝐿3 is considered perpendicular. However, smallest 𝐻𝑦 value within 

the perpendicularity limits is 70 mm.  
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3. MATHEMATICAL MODELING 

 

An extensive model of the proposed design is given in this section. The model includes the 

lever mechanism model, modal analysis of the beam and finally the harmonic response 

analysis based on modal expansion method. 

Some assumptions are used to facilitate the modelling process; which are listed below:  

 The piezoelectric beam is modelled using the Euler-Bernoulli beam theory, so the 

length to thickness ratio of the beam is assumed to be large. In addition, it is assumed 

that the beam consists of a single homogenous material. The effect of piezoelectric 

layer on beam response is neglected. 

 The links that form the mechanism are assumed to be rigid and massless. All the 

joints that form the mechanism are assumed to be frictionless hinges. The tip mass 

and the counter mass are assumed to be point masses. 

 The beam has rectangular cross section. Therefore, it is assumed that the stress on 

the beam does not vary in the z (i.e. width) direction. 

 The damping on the beam is assumed to be viscous and to depend on the beam 

deflection rate with respect to the beam base. The damping effects on the lever 

mechanism are neglected. 

 The rigid link that connects the lever to the beam is assumed to remain vertical 

during oscillation. As a result of this assumption, the force transmitted to the beam 

by this link will be in the transverse direction. 

 The beam possesses small deformations, and the angle of rotation of the lever is 

assumed to be small. 

 The stress induced on the beam in the static case is neglected. 
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3.1. MODELING OF THE LEVER MECHANISM 

The model of the harvester, as can be remembered from Figure 2.1, consists of a flexible 

beam at the bottom, a connecting beam and a lever beam at the top. During vibration, it is 

aimed to transfer a force opposite to the inertia force of the tip mass to the harmonic beam 

with the help of the lever beam, so that the force applied to the harmonic beam from the tip 

reaches the pure moment. 

 

 

                                                              (a)    (b) 

 

Figure 3.1. The design parameters of the lever and the beam (a); The free-body diagram (b) 

The kinetic diagram of the lever. 

 

The mathematical model begins with the creation of free body and dynamic diagrams of the 

lever beam under harmonic vibration. It is assumed that both the lever beam and the 

connecting beam are weightless. Since the connector beam is a rigid element and only 

transfers forces, no diagram has been drawn for it. The free body and kinetic diagrams of the 

lever beam under harmonic base excitation are shown in Figure 3.1. 

Determining force Ry is critical since the vertical force to be transferred to the elastic beam 

is Ry. The effect of force Rx is neglected since angle β is assumed small. The weight of 

counter mass is the only external force affecting the system in kinetic state. Centripetal and 

tangential accelerations create inertial force due to both vertical base excitation and the 

harmonic rotation of counter mass around point H. 

In order to find force Ry, moment around point H , moment sum about H is taken both in the 

free-body and kinetic diagrams. 
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 ↺ ∑𝑀𝐻 =  ∑(𝑀𝐻)𝐾 
(3.1) 

 

 cos β(𝑀′𝑔𝐿1 + 𝑅𝑦𝐿2) − 𝑅𝑥𝐿2 sin β = − 𝑀′ (β̈𝐿1
2
)

− 𝑀′(𝑌0ω
2 cosω𝑡)𝐿1 cos β 

(3.2) 

 

Since angle β is assumed to be small, (  cos β~1 ,   𝑠𝑜 β  ~0,  𝑅𝑥~0), the moment equilibrium 

equation is re-arranged as follows. 

 𝑀′𝑔𝐿1 + 𝑅𝑦𝐿2 = −𝑀′(𝑌0ω
2 cosω𝑡)𝐿1 − 𝑀′ (β̈𝐿1

2
) (3.3) 

 

The following expression for 𝑅𝑦 can be found. 

 
𝑅𝑦 =

𝐿1

𝐿2
𝑀′(−𝑔 − β̈𝐿1 − 𝑌0ω

2 cosω𝑡) 
(3.4) 

 

Assuming β to be small, 𝑅𝑦 can be found. 

 β = y(ε𝐿, 𝑡)/𝐿2 (3.5) 

   

 β̈ = �̈�(ε𝐿, 𝑡)/𝐿2 (3.6) 

   

 
𝑅𝑦(𝑡) =

𝐿1

𝐿2
𝑀′ (−𝑔 − 𝑌0ω

2 cosω𝑡 − �̈�(ε𝐿, 𝑡)
𝐿1

𝐿2
) 

(3.7) 

 

Ry is the sum of three terms. The first term comes from the weight of the counter mass and 

it is neglected in the analysis since it has no dynamic effect on the system. The second term 

is proportional with base acceleration, and it can be modeled as harmonic external force. The 

third term is proportional with acceleration of elastic beam at point  𝑥 = 𝜀𝐿. Using third term 

in the Euler-Bernoulli equation leaves the system insoluble. Therefore, in order to model 

third term, a virtual mass (Mv) is placed at 𝑥 = 𝜀𝐿 on harmonic beam and the system can be 

solved. Now, Ry can be written as 𝑅𝑦
′  as shown below: 
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𝑅𝑦

′ (𝑡) =
𝐿1

𝐿2
𝑀′𝑌0ω

2 cosω𝑡 
(3.8) 

 

Finally, the value of the virtual mass located at 𝑥 = 𝜀𝐿 should be: 

 𝑀𝑣 = (𝐿1 𝐿2⁄ )2𝑀′ (3.9) 

 

3.2. MODAL ANALYSIS 

A simple representation of harmonic beam is shown in Figure 3.2.  The force 𝑅𝑦
′   expressed 

in the previous section equation (3.8) affects x=εL. At the same point, there is the virtual 

mass, Mv expressed by equation (3.9). M represents the tip mass, L represents the length of 

the harmonic beam and y(t) represents the base excitation. Both tip mass and virtual mass 

are considered as point masses. 

 

 

 

Figure 3.2. Simple representation of elastic beam 

 

It can be said that the beam consists of two different parts (0<x<εL and εL<x<L) with 

different expressions of motion. The equation of motion is written for each piece based on 

the Euler-Bernoullli beam theory. Since modal analysis is performed, the equation of motion 

for free vibration and undamped state is written as: 

 𝐸𝐼𝑦𝑖
′′′′(𝑥, 𝑡) + ρ𝐴�̈�𝑖(𝑥, 𝑡) = 0 ,      i = 1,2 (3.10) 
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The boundary conditions for both beam parts (0 < 𝑥 < 𝜀𝐿 and 𝜀𝐿 < 𝑥 < 𝐿)  are expressed 

as: 

 𝑦1(0, 𝑡) = 0 (3.11) 

   

 𝑦1
′(0, 𝑡) = 0 (3.12) 

   

 EI𝑦2
′′(𝐿, 𝑡) = 0 (3.13) 

   

 EI𝑦2
′′′(𝐿, 𝑡) = M�̈�2(𝐿, 𝑡)   (3.14) 

 

Continuity conditions are expressed at the merged of the two parts: 

 𝑦1(ε𝐿, 𝑡) = 𝑦2(ε𝐿, 𝑡) (3.15) 

   

 𝑦1
′(ε𝐿, 𝑡) = 𝑦2

′(ε𝐿, 𝑡) (3.16) 

   

 𝑦1
′′(ε𝐿, 𝑡) = 𝑦2

′′(ε𝐿, 𝑡) (3.17) 

   

 EI𝑦1
′′′(ε𝐿, 𝑡) − 𝑀𝑣�̈�(ε𝐿, 𝑡) − EI𝑦2

′′′(ε𝐿, 𝑡) = 0 (3.18) 

 

The first three equations express a complete continuity due to unity of the beam. In the last 

equation, it is seen that the shear force changes due to the inertia effect of the virtual mass. 

With the method of separation of variables, the bending function for both parts is expressed 

as the product of temporal and spatial components. 

 𝑦𝑖(𝑥, 𝑡) = ∅𝑖(𝑥)𝑇𝑖(𝑡) (3.19) 

   

In the above equation, i is the index expressing the part of the beam, the first part of the beam 

in case 𝑖 = 1 expressed by 0 < 𝑥 < 𝜀𝐿, and in the case of 𝑖 = 2, the second part of the beam 

is expressed by 𝜀𝐿 < 𝑥 < 𝐿. If the variable separation expressed by (3.19) is applied to the 

beam motion equation, the following expression is obtained.  
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 EI∅𝑖
′′′′(𝑥)𝑇𝑖(𝑡) + ρ𝐴∅𝑖(𝑥)�̈�𝑖(𝑡) = 0 (3.20) 

 

When the temporal and spatial components are separated, the following expression is 

obtained. 

 
𝑐2  

∅𝑖
′′′′(𝑥)

∅𝑖(𝑥)
= −

�̈�𝑖(𝑡)

𝑇𝑖(𝑡)
= ω𝑖

2 
(3.21) 

 

c denotes the wave velocity and is formulated as follows. 

 c = √𝐸𝐼 ρ𝐴⁄  (3.22) 

 

The spatial and temporal coordinate equations are written as follows. 

 ∅𝑖
′′′′(𝑥) − β𝑖

4∅𝑖(𝑥) = 0 (3.23) 

   

 �̈�𝑖(𝑡) + ω𝑖
2𝑇𝑖(𝑡) = 0 (3.24) 

 

The relationship between β, ω and c is given below: 

 β𝑖
2 = ω𝑖 𝑐⁄  (3.25) 

 

The solution for (3.23) is given below: 

 ∅1(𝑥) =  𝑐1sin(β1𝑥) + 𝑐2cos(β1𝑥) + 𝑐3sinh(β1𝑥) + 𝑐4cosh(β1𝑥) (3.26) 

   

 ∅2(𝑥) = 𝑐5sin(β2𝑥) + 𝑐6cos(β2𝑥) + 𝑐7sinh(β2𝑥) + 𝑐8cosh(β2𝑥) (3.27) 

 

The solution of the temporal equation (3.24) is as follows: 

 𝑇1(𝑡) = 𝐸1cos(ω1𝑡) + 𝐹1sin(ω1𝑡) (3.28) 
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 𝑇2(𝑡) = 𝐸2cos(ω2𝑡) + 𝐹2sin(ω2𝑡) (3.29) 

 

Boundary conditions given by (3.11)-(3.12) are rewritten with (3.19), (3.26), and (3.27). 

 

 

𝑐2 + 𝑐4 = 0 (3.30) 

   

 𝑐1 + 𝑐3 = 0 (3.31) 

   

 −𝑐5sin(β2𝐿) − 𝑐6cos(β2𝐿) + 𝑐7sh(β2𝐿) + 𝑐8ch(β2𝐿) = 0 (3.32) 

   

 

 

−𝑐5cos(β2𝐿) + 𝑐6sin(β2𝐿) + 𝑐7ch(β2𝐿) + 𝑐8sh(β2𝐿)

=
−ω2𝑀

𝐸𝐼β2
3

(𝑐5sin(β2𝐿) + 𝑐6cos(β2𝐿) + 𝑐7sh(β2𝐿)

+ 𝑐8ch(β2𝐿) ) 

(3.33) 

 

Here, ch and sh are used instead of cosh and sinh for abbreviation, respectively. 

If the first of the continuity equations (3.15) is expressed again using temporal and spatial 

coordinates: 

 

 

∅1(ε𝐿)𝑇1(𝑡) = ∅2(ε𝐿) 𝑇2(𝑡) (3.34) 

This equation can be valid for every 𝑡 moment if the following condition is obtained. 

 𝑇1(𝑡) =  𝑇2(𝑡) (3.35) 

 

In this case, 

 ∅1(ε𝐿) =  ∅2(ε𝐿) (3.36) 

 

is obtained and thus it is concluded that the eigenvalues of the first and second part of the 

beam are the same.  
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 β1 = β2 = β (3.37) 

   

 ω1 = ω2 = ω (3.38) 

 

Therefore, using the continuity equations (3.15)-(3.18) four new expressions given below in 

terms of the coefficient of the spatial function are obtained. 

 𝑐1sin(βε𝐿) + 𝑐2cos(βε𝐿) + 𝑐3sh(βε𝐿) + 𝑐4ch(βε𝐿)

= 𝑐5sin(βε𝐿) + 𝑐6cos(βε𝐿) + 𝑐7sh(βε𝐿) + 𝑐8ch(βε𝐿) 

(3.39) 

   

 𝑐1cos(βε𝐿) − 𝑐2sin(βε𝐿) + 𝑐3ch(βε𝐿) + 𝑐4sh(βε𝐿)

= 𝑐5cos(βε𝐿) − 𝑐6sin(βε𝐿) + 𝑐7ch(βε𝐿) + 𝑐8sh(βε𝐿) 

(3.40) 

   

 −𝑐1sin(βε𝐿) − 𝑐2cos(βε𝐿) + 𝑐3sinh(βε𝐿) + 𝑐4cosh(βε𝐿)

= −𝑐5sin(βε𝐿) − cos(βε𝐿) + 𝑐7sh(βε𝐿) + 𝑐8ch(βε𝐿) 

(3.41) 

   

 −𝑐1cos(βε𝐿) + 𝑐2sin(βε𝐿) + 𝑐3ch(βε𝐿) + 𝑐4sh(βε𝐿) + 𝑐5cos(βε𝐿)

− 𝑐6sin(βε𝐿) − 𝑐7ch(βε𝐿) − 𝑐8sh(βε𝐿)

= −
ω2𝑀𝑣

𝐸𝐼β3
[𝑐1𝑠𝑖𝑛(βε𝐿) + 𝑐2𝑐𝑜𝑠(βε𝐿) + 𝑐3𝑠ℎ(βε𝐿)

+ 𝑐4𝑐ℎ(βε𝐿)] 

(3.42) 

 

It is now possible to convert all these boundary condition and contunity equations into an 

eigenvalue problem expressed in matrix format. 

 Ax⃗ = �⃗�  (3.43) 

   

 x⃗ = [𝑐1 𝑐2 ⋯ 𝑐8]𝑇 (3.44) 

   

 b⃗ = [0 0 ⋯ 0]𝑇 (3.45) 

 

The following unitless states of the tip mass and virtual mass are used in matrix 𝐴. 
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𝐴 =

[
 
 
 
 
 
 
 
 

0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0

𝑠𝑖𝑛(𝛽𝜀𝐿) 𝑐𝑜𝑠(𝛽𝜀𝐿) 𝑠ℎ(𝛽𝜀𝐿) 𝑐ℎ(𝛽𝜀𝐿)

𝑐𝑜𝑠(𝛽𝜀𝐿) −𝑠𝑖𝑛(𝛽𝜀𝐿) 𝑐ℎ(𝛽𝜀𝐿) 𝑠ℎ(𝛽𝜀𝐿)

−𝑠𝑖𝑛(𝛽𝜀𝐿) −𝑐𝑜𝑠(𝛽𝜀𝐿) 𝑠ℎ(𝛽𝜀𝐿) 𝑐ℎ(𝛽𝜀𝐿)

𝛽𝐿𝑀𝑠𝑖𝑛(𝛽𝜀𝐿) − 𝑐𝑜𝑠(𝛽𝜀𝐿) 𝛽𝐿𝑀𝑐𝑜𝑠(𝛽𝜀𝐿) + 𝑠𝑖𝑛(𝛽𝜀𝐿) 𝛽𝐿𝑀𝑠ℎ(𝛽𝜀𝐿) + 𝑐𝑜𝑠(𝛽𝜀𝐿) 𝛽𝐿𝑀𝑐ℎ(𝛽𝜀𝐿) + 𝑠ℎ(𝛽𝜀𝐿)

⋯  

  (3.46) 

 

 

0 0 0 0
0 0 0 0

−𝑠𝑖𝑛(βL) −𝑐𝑜𝑠(βL) 𝑠ℎ(βL) 𝑐ℎ(βL)

βL𝑀𝑠𝑖𝑛(βL) − 𝑐𝑜𝑠(βL) βL𝑀𝑐𝑜𝑠(βL) + 𝑠𝑖𝑛(βL) βL𝑀𝑠ℎ(βL) + 𝑐ℎ(βL) βL𝑀𝑐ℎ(βL) + 𝑠ℎ(βL)

−𝑠𝑖𝑛(βεL) −𝑐𝑜𝑠(βεL) −𝑠ℎ(βεL) −𝑐ℎ(βεL)

−𝑐𝑜𝑠(βεL) 𝑠𝑖𝑛(βεL) −𝑐ℎ(βεL) −𝑠ℎ(βεL)

𝑠𝑖𝑛(βεL) 𝑐𝑜𝑠(βεL) −𝑠ℎ(βεL) −𝑐ℎ(βεL)

𝑐𝑜𝑠(βεL) −𝑠𝑖𝑛(βεL) −𝑐ℎ(βεL) −𝑠ℎ(βεL) ]
 
 
 
 
 
 
 
 

  

   

 𝑀 = 𝑀𝑐2 𝐸𝐼𝐿⁄  (3.47) 

   

 𝑀 = 𝑀𝑣𝑐
2 𝐸𝐼𝐿⁄  (3.48) 

The eigenvalues and eigenvectors of the system can be found when the determinant of matrix 

𝐴 is set to zero. The spatial function representing the mode shape number 𝑟, can be written 

in the following format:  

 ∅1𝑟 = 𝑐1𝑠𝑖𝑛(𝛽𝑟𝑥) + 𝑐2𝑐𝑜𝑠(𝛽𝑟𝑥) + 𝑐3𝑠ℎ(𝛽𝑟𝑥) + 𝑐4𝑐ℎ(𝛽𝑟𝑥) (3.49) 

   

 ∅2𝑟 = 𝑐5𝑠𝑖𝑛(𝛽𝑟𝑥) + 𝑐6𝑐𝑜𝑠(𝛽𝑟𝑥) + 𝑐7𝑠ℎ(𝛽𝑟𝑥) + 𝑐8𝑐ℎ(𝛽𝑟𝑥) (3.50) 

 

The functions ∅1𝑟 and ∅2𝑟 here represent the mode shape of the r mode for the first and 

second part of the beam respectively. The Heaviside step function is used to express the rth 

mode shape of the whole beam with a single function.  

 ∅𝑟(𝑥)    = ∅1𝑟(𝑥)[𝑢(𝑥) − 𝑢(𝑥 − 𝜀𝐿)]+∅2𝑟(𝑥)𝑢(𝑥 − 𝜀𝐿) (3.51) 

 

The modal analysis is  completed by finding the determinant of the 𝐴  matrix numerically 

and equating it to zero and as a result finding the roots (𝛽)  and factors (𝑐𝑖). 

3.3. HARMONIC FREQUENCY RESPONSE 

In this section, the response of the system to harmonic base excitation with the mode addition 

method has been found. It is assumed that the base excitation is harmonic and its amplitude 
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is  Y0cos𝜔𝑡. In the harmonic response analysis, the force applied to the harmonic beam by 

the connecting beam and the damping on the beam are included in the equation of motion. 

The equation of motion is given below: 

  𝐸𝐼𝑦′′′′(𝑥, 𝑡) + 𝜌𝐴�̈�𝑡(𝑥, 𝑡) + 𝛾�̇�(𝑥, 𝑡) = 𝐹(𝑥, 𝑡) (3.52) 

 

𝛾 is damping coefficient, 𝑦𝑡(𝑥, 𝑡) represents the transverse displacement of a point in the 

beam with respect to the ground. The relationship between the beam displacement 

𝑦𝑡(𝑥, 𝑡)relative to the ground and displacement 𝑦(𝑥, 𝑡)  relative to the beam root is given 

below:  

 𝑦𝑡(𝑥, 𝑡) = 𝑦(𝑥, 𝑡) + 𝑌0cos𝜔𝑡 (3.53) 

 

If the second derivative of the expression with respect to time is taken 

 �̈�𝑡(𝑥, 𝑡) =  �̈�(𝑥, 𝑡) − 𝑌0 𝜔2cos𝜔𝑡 (3.54) 

 

When this expression is used in the equation of motion of the beam, 

 𝐸𝐼𝑦′′′′(𝑥, 𝑡) + 𝜌𝐴�̈�(𝑥, 𝑡) + 𝛾�̇�(𝑥, 𝑡) = 𝐹(𝑥, 𝑡) + 𝑅𝑑𝑖𝑠𝑡(𝑡) (3.55) 

 

In this equation, forces affecting the system externally are shown as 𝐹(𝑥, 𝑡) 

 𝐹(𝑥, 𝑡) = 𝑅𝑐(𝑡)𝛿(𝑥 − 𝜀𝐿) + 𝑅𝑡𝑖𝑝(𝑡)𝛿(𝑥 − 𝐿) (3.56) 

 

Two external forces act on the harmonic beam. One of them is the force (𝑅𝑐(𝑡)), acting by 

the connecting beam at the point 𝑥 = ε𝐿, and the other is the force (𝑅𝑡𝑖𝑝(𝑡)) consisting of 

the inertia of the tip mass. 𝑅𝑑𝑖𝑠𝑡(𝑡), shows the distributed harmonic force generated by the 

harmonic vibration of the distributed mass forming the beam. 

 𝑅𝑑𝑖𝑠𝑡(𝑡) = 𝜌𝐴𝑌0𝜔
2cos𝜔𝑡  (3.57) 
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Before finding the 𝑅𝑐(𝑡) and 𝑅𝑡𝑖𝑝(𝑡) forces, the processes to obtain harmonic response and 

the application of the orthogonality principle are shown. The harmonic function of the 

harmonic beam consists of the infinite sum of different mode responses. This sum where 𝑟 

index is the mod number is shown in the following equation: 

 
𝑦(𝑥, 𝑡) = ∑∅𝑟(𝑥)𝑇𝑟(𝑡)

∞

𝑟=1

 (3.58) 

 

When this infinite sum is placed in the equation of motion (3.55), the following equation is 

obtained. 

 𝐸𝐼 ∑∅𝑟
′′′′𝑇𝑟 + 𝜌𝐴∑∅𝑟�̈�𝑟 + 𝛾 ∑∅𝑟𝑇�̇� 

= 𝑅𝑑𝑖𝑠𝑡(𝑡) + 𝑅𝑐(𝑡) 𝛿(𝑥 − 𝜀𝐿) + 𝑅𝑡𝑖𝑝(𝑡) 𝛿(𝑥 − 𝐿) 

(3.59) 

 

In order to solve (3.59) it is necessary to eliminate the total symbol expressions and to benefit 

from the orthogonality condition. 

Orthogonality application: 

Since the modal shape function is a sum of trigonometric and hyperbolic terms, the following 

expressions can be easily obtained. 

 ∅1𝑟
′′′′(𝑥) = 𝛽𝑟

4∅1𝑟(𝑥) (3.60) 

   

 ∅2𝑟
′′′′(𝑥) = 𝛽𝑟

4∅2𝑟(𝑥) (3.61) 

   

If two sides of (3.60) are multiplied by ∅1𝑠 and integral between[0, 𝜀𝐿] 

 
∫ ∅1𝑟

′′′′∅1𝑠

𝜀𝐿

0

𝑑𝑥 = 𝛽𝑟
4 ∫ ∅1𝑟∅1𝑠

𝜀𝐿

0

𝑑𝑥 
(3.62) 

 

In this equation, partial integration is applied to the left side twice and the following equation 

is obtained. 
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∅1𝑠(𝜀𝐿)∅1𝑟

′′′(𝜀𝐿) − ∅′
1𝑠(𝜀𝐿)∅1𝑟

′′ (𝜀𝐿) + ∫ ∅1𝑟
′′(𝑥)∅′′

1𝑠
(𝑥)

𝜀𝐿

0

𝑑𝑥

= 𝛽𝑟
4 ∫ ∅1𝑟∅1𝑠

𝜀𝐿

0

𝑑𝑥 

(3.63) 

 

When the same procedure is applied by changing the places of 𝑟 and 𝑠 modes, the following 

equation is obtained. 

 
∅1𝑟(𝜀𝐿)∅1𝑠

′′′(𝜀𝐿) − ∅′
1𝑟(𝜀𝐿)∅1𝑠

′′ (𝜀𝐿) + ∫ ∅1𝑠
′′(𝑥)∅′′

1𝑟
(𝑥)

𝜀𝐿

0

𝑑𝑥

= 𝛽𝑠
4 ∫ ∅1𝑠∅1𝑟

𝜀𝐿

0

𝑑𝑥 

(3.64) 

 

Then, (3.64) is subtracted from (3.63) and orthogonality condition is obtained for the first 

part of the beam. 

 ∅1𝑠(𝜀𝐿)∅1𝑟
′′′(𝜀𝐿) − ∅′

1𝑠(𝜀𝐿)∅1𝑟
′′ (𝜀𝐿) − ∅1𝑟(𝜀𝐿)∅1𝑠

′′′(𝜀𝐿)

+ ∅′
1𝑟(𝜀𝐿)∅1𝑠

′′ (𝜀𝐿) = (𝛽𝑟
4 − 𝛽𝑠

4) ∫ ∅1𝑠∅1𝑟

𝜀𝐿

0

𝑑𝑥 
(3.65) 

 

If the same operations are done for the second part of the beam, the following orthogonality 

condition is obtained. 

 −∅2𝑟(𝐿)∅2𝑠
′′′(𝐿) + ∅2𝑠(𝐿)∅2𝑟

′′′(𝐿) − ∅′
2𝑠(𝐿)∅2𝑟

′′(𝐿)

+ ∅′
2𝑟(𝐿)∅2𝑠

′′(𝐿) + ∅′
2𝑠(𝜀𝐿)∅2𝑟

′′(𝜀𝐿)

− ∅2𝑠(𝜀𝐿)∅2𝑟
′′′(𝜀𝐿) + ∅2𝑟(𝜀𝐿)∅2𝑠

′′′(𝜀𝐿)

− ∅′
2𝑟(𝜀𝐿)∅2𝑠

′′(𝜀𝐿) = (𝛽𝑟
4 − 𝛽𝑠

4)∫ ∅2𝑟∅2𝑠

𝐿

𝜀𝐿

𝑑𝑥 

(3.66) 

 

When two orthogonality conditions are added together, the following equation is obtained. 
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 (−∅2𝑟(𝑥)∅2𝑠
′′′(𝑥) + ∅2𝑠(𝑥)∅2𝑟

′′′(𝑥) − ∅′
2𝑠(𝑥)∅2𝑟

′′(𝑥)

+ ∅′
2𝑟(𝑥)∅2𝑠

′′(𝑥))
𝑥=𝐿

+ (∅1𝑠(𝑥)∅1𝑟
′′′(𝑥) − ∅′

1𝑠(𝑥)∅1𝑟
′′ (𝑥)

− ∅1𝑟(𝑥)∅1𝑠
′′′(𝑥) + ∅′

1𝑟(𝑥)∅1𝑠
′′ (𝑥)

+ ∅′
2𝑠(𝑥)∅2𝑟

′′(𝑥) − ∅2𝑠(𝑥)∅2𝑟
′′′(𝑥)

+ ∅2𝑟(𝑥)∅2𝑠
′′′(𝑥) − ∅′

2𝑟(𝑥)∅2𝑠
′′(𝑥))

𝑥=𝜀𝐿

= (𝛽𝑟
4 − 𝛽𝑠

4) (∫ ∅1𝑠∅1𝑟

𝜀𝐿

0

𝑑𝑥 + ∫ ∅2𝑟∅2𝑠

𝐿

𝜀𝐿

𝑑𝑥) 

(3.67) 

 

Continuity and boundary conditions should be used to simplify this equation. When 

boundary conditions and continuity equations are applied, the following equation is 

obtained.   

 
(

𝑀

𝜌𝐴
∅2𝑟(𝐿)∅2𝑠(𝐿) +

𝑀𝑣

𝜌𝐴
∅1𝑠(𝜀𝐿)∅1𝑟(𝜀𝐿) + ∫ ∅𝑠∅𝑟

𝐿

0

𝑑𝑥) = Ψ𝛿𝑟𝑠 
(3.68) 

 

In this equation, Ψ𝑟𝑠 is an unknown constant, while the function 𝛿𝑟𝑠 is 1 for 𝑟 = 𝑠 and 0 for 

𝑟 ≠ 𝑠. 

 
∫ ∅𝑠∅𝑟

𝐿

0

𝑑𝑥 = Ψ𝛿𝑟𝑠 + Ω𝑟𝑠 
(3.69) 

   

 
Ω𝑟𝑠 = −(

𝑀

𝜌𝐴
∅2𝑟(𝐿)∅2𝑠(𝐿) +

𝑀𝑣

𝜌𝐴
∅1𝑠(𝜀𝐿)∅1𝑟(𝜀𝐿)) 

(3.70) 

 

Complementary orthogonality conditions can also be written as follows. 

 
∫ ∅𝑟

′′′′∅𝑠

𝐿

0

𝑑𝑥 = 𝛽𝑟
4Ψ𝛿𝑟𝑠 + Λ𝑟𝑠 

(3.71) 

   

 Λ𝑟𝑠 = ∅1𝑠(𝜀𝐿)∅1𝑟
′′′(𝜀𝐿) − ∅2𝑠(𝜀𝐿)∅2𝑟

′′′(𝜀𝐿) + ∅2𝑠(𝐿)∅2𝑟
′′′(𝐿) (3.72) 
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∫ ∅𝑟

′′∅𝑠
′′

𝐿

0

𝑑𝑥 = 𝛽𝑟
4Ψ𝛿𝑟𝑠 

(3.73) 

   

In order to use the orthogonality equations in the equation of motion (3.59) it is necessary to 

multiply the equation by ∅𝑠(𝑥) and integrate it along the beam.  

 
∫ 𝐸𝐼 ∑𝑇𝑟∅𝑟

′′′′∅𝑠

∞

𝑟=1

𝐿

0

𝑑𝑥 + ∫ 𝜌𝐴∑∅𝑟�̈�𝑟∅𝑠𝑑𝑥

∞

𝑟=1

𝐿

0

= ∫ 𝑅𝑑𝑖𝑠𝑡(𝑡)
𝐿

0

∅𝑠𝑑𝑥 + ∫ 𝑅𝑐(𝑡) 𝛿(𝑥 − 𝜀𝐿)∅𝑠𝑑𝑥
𝐿

0

+ ∫ 𝑅𝑡𝑖𝑝(𝑡) 𝛿(𝑥 − 𝐿)∅𝑠𝑑𝑥
𝐿

0

 

(3.74) 

 

As seen here, the damping part is not included in the equation. This part will be added to the 

equation when the temporal part will be found. The equation of motion becomes below, 

using the orthogonality equations. 

 
∑𝐸𝐼𝑇𝑟(𝛽𝑟

4Ψ𝛿𝑟𝑠 + Λ𝑟𝑠)

∞

𝑟=1

+ ∑�̈�𝑟𝜌𝐴(Ψ𝛿𝑟𝑠 + Ω𝑟𝑠)

∞

𝑟=1

= ∫ 𝑅𝑑𝑖𝑠𝑡(𝑡)
𝐿

0

∅𝑠𝑑𝑥 + ∫ 𝑅𝑐(𝑡) 𝛿(𝑥 − 𝜖𝐿)∅𝑠𝑑𝑥
𝐿

0

+ ∫ 𝑅𝑡𝑖𝑝(𝑡) 𝛿(𝑥 − 𝐿)∅𝑠𝑑𝑥
𝐿

0

 

(3.75) 

 

If Λ𝑟𝑠 and Ω𝑟𝑠 expressions are put into the obtained equation, the following equation is 

obtained. 
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∑[−�̈�𝑟(𝑀∅2𝑟(𝐿)∅2𝑠(𝐿) + 𝑀𝑣∅1𝑠(𝜀𝐿)∅1𝑟(𝜀𝐿))

∞

𝑟=1

+ 𝐸𝐼𝑇𝑟(∅1𝑠(𝜀𝐿)∅1𝑟
′′′(𝜀𝐿) − ∅2𝑠(𝜀𝐿)∅2𝑟

′′′(𝜀𝐿)

+ ∅2𝑠(𝐿)∅2𝑟
′′′(𝐿))]

= ∅𝑠(𝜀𝐿)∑[−�̈�𝑟𝑀𝑣∅1𝑟(𝜀𝐿)

∞

𝑟=1

+ 𝐸𝐼𝑇𝑟(∅1𝑟
′′′(𝜀𝐿) − ∅2𝑟

′′′(𝜀𝐿))]

+ ∅2𝑠(𝐿)∑[−�̈�𝑟𝑀∅2𝑟(𝐿) + 𝐸𝐼𝑇𝑟∅2𝑟
′′′(𝐿)]

∞

𝑟=1

= 0 

(3.76) 

 

Here, some terms are equal to zero due to boundary conditions and the following basic 

expression is obtained. 

 
((

𝜌𝐴𝜔𝑠
2

𝐸𝐼
)𝐸𝐼𝑇𝑠 + 𝜌𝐴�̈�𝑠)Ψ

= ∫ 𝑅𝑑𝑖𝑠𝑡(𝑡)
𝐿

0

∅𝑠𝑑𝑥 + ∫ 𝑅𝑐(𝑡) 𝛿(𝑥 − 𝜖𝐿)∅𝑠𝑑𝑥
𝜖𝐿

0

+ ∫ 𝑅𝑡𝑖𝑝(𝑡) 𝛿(𝑥 − 𝐿)∅𝑠𝑑𝑥
𝐿

0

 

(3.77) 

 

Integrals containing Dirac-Delta function on the right hand side of the equation can be found 

as follows. 

 
∫ 𝛿(𝑥 − 𝜀𝐿)∅𝑠𝑑𝑥

𝐿

0

= ∅𝑠(𝜀𝐿) (3.78) 

   

 
∫ 𝛿(𝑥 − 𝐿)∅𝑠𝑑𝑥

𝐿

0

= ∅𝑠(𝐿) (3.79) 

 

For the integral of the mode shape along the beam, the function ∅𝑖𝑛𝑡 is defined. 
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∅𝑖𝑛𝑡 = ∫ ∅𝑠𝑑𝑥

𝐿

0

 (3.80) 

 

To solve (3.77) , 𝑅𝑡𝑖𝑝(𝑡) and 𝑅𝑐(𝑡)) must be determined. (For 𝑅𝑑𝑖𝑠𝑡(𝑡) see (3.57). 𝑅𝑡𝑖𝑝(𝑡) is 

the inertia force seen in the tip mass as a result of the harmonic  base excitation and is 

expressed as 

 𝑅𝑡𝑖𝑝(𝑡) = 𝑀𝑌0 𝜔2cos𝜔𝑡 (3.81) 

 

Another inertia force will be seen in the virtual mass at connecting point and will form a 

component of 𝑅𝑐(𝑡). The other component of  𝑅𝑐(𝑡) is the harmonic force applied by the 

lever. 

This force was found in (3.8) as 𝑅𝑦
′ (𝑡). In this case, 𝑅𝑐(𝑡) expression will be as follows. 

 
𝑅𝑐(𝑡) =

𝐿1

𝐿2
𝑀′𝑌0𝜔

2 cos(𝜔𝑡) (
𝐿1

𝐿2
− 1) (3.82) 

 

In this case, adding the damping, the following equation is obtained. 

 𝐸𝐼𝛽𝑠
4𝑇𝑠(𝑡) +

𝛾

𝜌𝐴
𝑇�̇�(𝑡) + �̈�𝑠(𝑡)

=
𝑌0𝜔

2cos𝜔𝑡

𝜌𝐴Ψ
(𝜌𝐴∅𝑖𝑛𝑡 + ∅𝑠(𝜖𝐿)

𝐿1

𝐿2
𝑀′ (

𝐿1

𝐿2
− 1)

+ ∅𝑠(𝐿)𝑀) 

(3.83) 

 

The steady-state response can be obtained as; 

 

𝑇𝑠(𝑡) =
𝑌0𝜔

2 [𝜌𝐴∅𝑖𝑛𝑡 + ∅𝑠(𝜖𝐿)
𝐿1
𝐿2

𝑀′ (
𝐿1
𝐿2

− 1) + ∅𝑠(𝐿)𝑀]

𝜌𝐴Ψ√(𝜔𝑠
2 − 𝜔2)2 + (2𝜁𝑠𝜔𝑠𝜔)2

cos(𝜔𝑡

− 𝜃𝑠) 

(3.84) 
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𝜃𝑠 = tan−1

2𝜁𝑠𝜔𝑠𝜔

𝜔𝑠
2 − 𝜔2

 
(3.85) 

   

 𝜁𝑠 = 𝛾 2𝜌𝐴𝜔𝑠⁄  (3.86) 

 

Finally, as written in equation 8, to obtain the bending function of the beam, 𝑇𝑠(𝑡)  is 

multiplied by ∅𝑠(𝑥)  given in (3.51) and the infinite mode sum is made. 

 𝑦(𝑥, 𝑡) = ∑∅𝑠(𝑥)𝑇𝑠(𝑡)        
(3.87) 
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4. FINITE ELEMENT METHOD 

 

Finite Element analysis program (FEAP) is used to verify the analytical model computations.  

The advantages of Finite Element Analysis Program (FEAP)  are listed below: 

 Feap is open source software.   

 Matlab interface to FEAP is proper.  

 It is possible to obtain stress distribution per node on the beam surface. 

 

4.1. MODELING 

The modal and harmonic analysis is performed in the FEAP program. The raw data obtained 

with FEAP was transferred to MATLAB in Paraview (VTU) format, the next operations are 

performed in MATLAB. 

In the finite element model (FEM), all beams are modeled using a three-dimensional shell 

element. The reason for choosing a shell element is as follows: Since the thickness (2 mm) 

to length (200 mm) ratio in the beams is low, the transverse shear deformation is negligible. 

If three dimensional solid elements were used, it would be necessary to use very small size 

elements in order to keep the width, height and height of the elements close to each other. 

As a result, the number of elements that creates the mesh would have increased significantly.  
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Figure 4.1. FEM mesh of the model 

 

Aluminum material is used for the elastic beam (elastic modulus 69 GPa, density 2.7 g / 

cm3, Poisson's ratio 0.33) and very high elastic modulus and very low density for the lever 

and connecting beams to meet the weightless and rigid condition in the analytical model. 

(elastic modulus 2100 GPa, density 7.8e-3 g / cm3, Poisson ratio 0.29) The aim here is to 

prevent the lever and connecting beam from flexing and to try to impart pure moment effect 

only to the base beam. The boundary condition in the base beam is cantilever beam. In order 

to achieve this, nodes are restricted in 1 and 2 directions shown in Figure 4.1. Since applying 

restriction in excess direction while applying the boundary condition will cause rigidity of 

the system and locally high stresses, only one node in the direction 3 is restricted and the 

others are released. In addition, rotational movements in both direction 1, 2 and 3 are 

restricted. 

At the support point of the lever beam, it is necessary to apply a boundary condition to reveal 

the rotary joint. For this purpose, translation movement in direction 1 and 2 is restricted in 

all nodes shown in red in the lever beam in Figure 4.1. In the direction 3, only one node is 

restricted and the other nodes are released. In order to give this limit a rotational joint feature, 

no restriction in the direction of rotation in direction 3 is applied to any node. The rotation 

in the other two directions is completely restricted. To see how these boundary conditions 

are applied in the FEAP environment, the annotated code dumps in Appendix A can be 

viewed. 

In order to realize the rotary joint or hinge-like connections between the beams, all the joints 

at the edges where the connecting beam intersects with the elastic beam and the lever beam 

are associated with the LINK command. In order for both connections to act as hinges, 3 
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directions of the displacement axes are kept closed. 1-way rotation axis is limited and 2-way 

and 3-way rotation axes are released. The reason for the release of the 2-way rotation axis is 

to make the model less rigid, preventing its natural frequency from increasing, and 

preventing local high stresses from occurring.  

 

 

 

Figure 4.2. Link Command- connection point 

 

The tip mass and the counter mass are placed in the form of point masses at the end middle 

node of the base beam and lever beam in order not to disturb the symmetry. The locations 

of these nodes are given in Figure 4.2. 

 

 

 

Figure 4.3. Nodes with tip and counter mass in FEM 
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After the meshing process is completed, modal and harmonic analysis is performed. In modal 

analysis, eigenvalues and eigenvectors are calculated and natural frequency and mode shapes 

are obtained. Figure 4.4 shows the first and second mode shape obtained for an example 

configuration (𝑀′ 𝑀⁄  = 0.5 and 𝐿1 𝐿2⁄ = 1). When the first mode shape is examined (Figure 

4.4(a)), the right end of the base beam moves upward in the direction of 2, while the left end 

of the lever beam moves downward. The connecting beam is also raised. This shows that the 

system is modeled correctly and the initial mode shape is as expected. The second mode 

figure is seen in Figure 4.4(b). The natural frequency of both modes is indicated below the 

corresponding Figure 4.4. 

 

 

 

Figure 4.4. Mod shapes obtained by FEM (a) First mod shape (b) Second mod shape. 

 

In harmonic analysis, the system is subjected to 1 mm amplitude harmonic base excitation. 

Using the CXSOLVE command, the frequency range and damping ratio are entered, and the 

displacement and stresses of the harmonic system are calculated. In the example given in 

Figure 4.5, the system is shaken at a frequency close to its natural frequency. The light blue 

figure shows the position of the undeformed beam. The amount of displacement caused by 

the base excitation appears as a contour. In this analysis, the maximum displacement is 

negative since the end of the elastic beam moves downward. Regions with boundary 

condition (yellow colored) appear about 1 mm. This result shows that the analysis works as 

expected, since the base excitation given to the system is 1 mm. 



35 

 

 

 

 

Figure 4.5. Sample harmonic analysis result node displacements 

 

It is more convenient to perform the necessary operations to calculate the strain distribution 

in MATLAB. Therefore, node positions, displacements, and stresses for each frequency are 

saved in the VTU file format. Then, saved VTU files are opened with MATLAB and 

variables are defined in MATLAB environment. The MATLAB code performing this 

process can be seen in Appendix A. Graphical representation of the finite element model 

results is given Figure 4.6. Here, the blue color shows the displacement and the colored 

contour image shows the axial strain. As a result of the analysis, the stress and position 

values at the nodes on the elastic beam surface are used and the strain distribution is 

calculated using the (Figure 4.7).  
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Figure 4.6. Representation of FEM results for the model in Matlab  

 

The strain distribution  parameter is found in MATLAB using the position (x, y) and axial 

strain values for each node on the beam surface. The strain distribution is equal to the average 

axial strain in the beam surface area divided by the peak strain value. The challenge is to 

calculate the average axial strain across the surface. A geometric method is used for 

calculating the average strain. Here, the horizontal axes show the position (x, y) of the node 

point on the beam surface, while the vertical axis is the strain value of the related node. In 

this case, the average strain distribution in the quadrilateral consisting of the nodes (x1, y1), 

(x2, y2), (x3, y3) and (x4, y4) is that the volume of the polyhedra in Figure 4.7 is equal to the 

surface area of the quadrant formed by the nodes. The strain distribution is calculated by 

applying this geometric method to every four adjacent nodes. 
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Figure 4.7. Beam surface area average strain calculation method 

 

4.2. FEM SOFTWARE AND VERIFICATION 

Before I model proposed method, known cantilever beam with tip force  is modelled to FEAP 

program in both statics and complex forms in order to compare and verify with mathematical 

model. 

4.2.1. Basic Mathematical Model 

End Load On Cantilever Beam.  

Cantilever beam acts as a spring under force, Figure 4.8 shows beam deflection 
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Figure 4.8. Tip deflection of cantilever beam 

According to Euler-Bernoulli Beam Theory, tip deflection is found by following equation: 

 
𝑦 =

𝐹𝐿3

3𝐸𝐼
 

(4.1) 

 

Cantilever beam is modelled with below parameters. 

 

Table 4.1. Geometric parameters 

 

Geometric Parameters (mm) 

b (width) h (thickness) L (Length) 

20 2 100 

 

 

Table 4.2. Young’s modulus, density, Poisson ratio 

 

E(GPa) ρ(kg/m3)  ν 

69 2700 0.33 

 

Moment of inertia is found with below equation: 

 
𝐼 =

1

12
𝑏ℎ3 

 

(4.2) 

 

Transverse tip force is determined as F is 10 kN 
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4.2.2. Verification of Feap 

Before I model proposed method, known cantilever beam with tip force (see code form in 

Appendix A) is modelled to FEAP program in order to compare and verify with 

mathematical model. Analysis is done for transverse tip force in Y direction. Transverse 

force, F is 10 kN  are determined. 

 

 

 

Figure 4.9. Feap statics analysis of tip deflection of cantilever beam 

 

All models, tip force location are determined at middle point of tip of beam. While maximum 

deflection is 3.6231 mm in the analytical model, and 3.5348 mm in feap statics. 

 

Table 4.3. Comparison of theory and FEM 

 

Analytics Feap Statics 

3.6231 mm 3.5348 mm 



40 

 

 

5. COMPARISON OF METHODS 

 

In order to compare the finite element model (FEM) results with the analytical model, firstly, 

fundamental natural frequency values in different design parameters are compared. These 

results can be seen in Figure 5.1. As can be seen, FEM results and analytical model results 

are very close. Also, as expected, both the increase in lever ratio and the increase in 

dimensionless mass cause a decrease in natural frequency; because in both cases the 

equivalent inertia of the system increases. 

 

 

 

Figure 5.1. Analytical model and FEM comparison 

 

Another parameter for analytical model and FEM comparison is the frequency response of 

the tip mass in the harmonic beam obtained as a result of harmonic analysis. As can be seen, 

FEM and analytical model results are compatible with each other. Also, analytical model 

and FEM comparison is made in cases where the leverage ratio is greater than one. These 

results are given in Figure 5.2, Figure 5.3 and Figure 5.4  for the cases where leverage ratio 

1, 2 and 4 respectively. It is seen that the differences between results become significant, 

especially when the leverage ratio is increased. When the differences between the finite 

element model and the analytical model are examined, it is seen that the finite element model 

is made using shell elements and includes high deformation. In the analytical model, Euler-
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Bernoulli beam theory is used and it is accepted that the beam deformations are low. In 

addition, it is assumed that the connecting beam is always vertical and does not transmit 

horizontal force to the harmonic beam. It is assumed that the angle β formed by the horizontal 

beam of the lever beam during vibration is small and small angle approach is made while 

writing the equation of motion. As a result of all these, it is thought that there are differences 

between the analytical model and FEM. Another important point is that while the natural 

frequencies obtained as a result of modal analysis are very close to each other, the difference 

is in the harmonic response analysis. While the modal analysis module in the FEAP program 

is a stable module developed a long time ago, the complex solution (CXSOLVE) module 

used for harmonic response is a module still under development. Especially, problems were 

experienced in the operation of LINK command, which provides the connection between 

beams, with CXSOLVE, and the problems were solved by getting support from the 

developers in the user forum of the FEAP software. This situation is thought to be the cause 

in the harmonic response analysis and the strain distribution results obtained from it 

compared to the analytical model. 
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Figure 5.2. Comparison of analytical and FEM for 𝑳𝟏 𝑳𝟐⁄ = 𝟏 

 

 

 

 

Figure 5.3. Comparison of analytical and FEM for 𝐿1 𝐿2⁄ = 2  
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Figure 5.4. Comparison of analytical and FEM for 𝐿1 𝐿2⁄ = 4 

 

In this way that the legend on the left graph is valid for all three graphs, the analytical model 

is given in a wide dimensionless frequency range, while the finite element model is run 

around resonance. Here, it is seen that the strain distribution obtained by analytical model is 

slightly higher than the finite element model. This difference is thought to be due to 

differences in the harmonic response analysis results. In addition, numerical errors can be 

seen in the strain distribution calculation with FEM, since the curve fitting to the deflection 

data depending on the position in the beam and then the second derivation of the obtained 

deflection equation are performed. One of the reasons for the high failure of the strain 

distribution obtained by finite element analysis is that the average strain is divided by the 

maximum strain in the strain distribution formula. In finite element analysis, strain values 

can increase significantly, especially in the root parts where stiffness is high. It is thought 

that this will cause a decrease in the strain distribution. For all these reasons, the analysis of 

high strain distribution continues using the analytical model. 
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Examples have been made to see the strain change from root to tip. For DCM and leverage 

ratio are 1, system is excited to 138 rad/sec that is near to excitation frequency value (105 

percent). DCM 0.5 and leverage ratio are 1, system is excited to 150.15 rad/sec that is near 

to excitation frequency value (105 percent). For DCM 1.5 and leverage ratio are 1, system 

is excited to 131.25 rad/sec that is near to excitation frequency value (105 percent). The 

nodes in the midpoint where the beam will be along a line from root to tip were viewed. Aim 

is to examine strain value change from root parts to tip. It is seen that strain decreases from 

root to tip.  (Figure 5.5). The variation of the root to tip strain at the midpoint node is shown 

in the graphs respectively (Figure 5.6, Figure 5.7 and Figure 5.8). While there is a decrease 

in the strain from the root to the tip in the graph, a jump is observed at the point where the 

connecting beam is connected to the base beam in the model (160 mm). It is observed that 

the strain suddenly increases as the root of the beam is approached. In this situation, this will 

cause a decrease in the strain distribution. As an example if we assume that the strain does 

not make a sudden change at the root of the beam (as shown by the red dashed line), then for 

Figure 5.6 strain distribution will increase from 0.46 to 0.57. If a same update is performed 

for Figure 5.7 and Figure 5.8. New strain values will be from 0.46 to 0.58 and from 0.45 to 

0.56. This values are closer to the analytical results. 

 

 

 

Figure 5.5. Strain graph for FEM of the model for DCM and leverage ratio are 1 
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Figure 5.6. Strain change along the beam for (𝑴′ ⁄ 𝑴 = 𝟏)  and (𝑳𝟏 𝑳𝟐⁄ = 𝟏) 

 

 

 

 

Figure 5.7. Strain change along the beam for (𝑴′ ⁄ 𝑴 = 𝟎, 𝟓)  and (𝑳𝟏 𝑳𝟐⁄ = 𝟏)  

 

 



46 

 

 

 

 

Figure 5.8. Strain change along the beam for (𝑴′ ⁄ 𝑴 = 𝟏, 𝟓)  and (𝑳𝟏 𝑳𝟐⁄ = 𝟏)  

 

 

 

 

Figure 5.9. Strain distributions for analytical model and FEM of the model 
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In order to obtain a high strain distribution, a load close to the inertial load that the tip mass 

creates on the beam must be created by the counter mass. It is obvious that both the 

dimensionless counter-mass and the leverage ratio values are important for this. However, 

in the experimental study, it is not practical to adjust the leverage ratio precisely because it 

is necessary to produce a new leverage, hence the experimental setup, for each new leverage 

ratio experiment. However, it is possibe to precisely adjust the counter mass with nuts 

attached to a bolt. For this reason, the analytical model is used again to obtain high strain 

distribution by changing the dimensionless counter mass precisely and for three different 

leverage ratios (0.5, 1, and 2), the frequency response of the strain distribution is found by 

changing the DCM precision. Results are given in Figure 5.10, Figure 5.11 and Figure 5.12. 

 

 

 

Figure 5.10. Strain distribution when DCM is fine-tuned for 𝑳𝟏 𝑳𝟐⁄ = 𝟎. 𝟓 
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Figure 5.11. Strain distribution when DCM is fine-tuned for 𝑳𝟏 𝑳𝟐⁄ = 𝟏 

 

  

 

 

Figure 5.12. Strain distribution when DCM is fine-tuned for 𝑳𝟏 𝑳𝟐⁄ = 𝟐 
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As can be seen in the figures, increasing the DCM generally improves the strain distribution 

in the non-resonance region, while decreasing the strain distribution in the resonance region. 

However, considering that there are many different parameters that affect the system 

dynamics and that the analytical model is created with many pre-assumptions and 

simplifications, it is obvious that the most reliable result is a sensitive experimental study.  
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6. EXPERIMENTAL VERIFICATION 

 

The experimental procedure for measuring the strain distribution is described. Model is 

assembled, measuring setup is manufactured and experimental results are obtained.  

6.1. EXPERIMENTAL SETUP 

There are some solid models used in the production of the model mechanisms and the 

measurement setup and some photographs taken during the production. 

 

 

 

Figure 6.1. Concept design image and joint locations for the model 
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Figure 6.2. Preliminary prototype for model flexible mechanism approach 

 

 

 

 

Figure 6.3. Joint 1 for model solid model. (a) Initial state and (b) Last state. 
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Figure 6.4. Solid model of the state of the shrink-fit frame for the model.  

(a) First model and (b) Last model. 

 

 

 

 

Figure 6.5. Joint 2 solid model. (a) Initial state and (b) Last state. 

 

 

 

 

Figure 6.6. Joint 3 solid model. (a) Initial state and (b) Last state. 
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Figure 6.7. Joints and frames for the model 

 

 

 

 

Figure 6.8. Model prototype created for testing joints 
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Figure 6.9. Model assembly 

 

 

 

 

Figure 6.10. Image of the manufactured version of the beam holder designed for the model 
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6.2. MEASUREMENT SETUP 

A mechanism is designed and the general skeletal structure of the linear working mechanism 

is preserved. 

 

 

 

Figure 6.11. Isometric view of the solid model of the part that changes the height and angle 

 

 

 

 

Figure 6.12. Solid model of the part that changes the angle 
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Figure 6.13. Isometric view of the assembled solid model of the linear transport assembly 

 

 

 

 

Figure 6.14. Isometric view of the final measuring setup 

 

SICK OD5 brand laser displacement sensor in the measurement setup can accurately read 

the displacement data without contact and sample with high frequency. The laser 

displacement sensor can be moved linearly at a constant speed on a line with the help of a 
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ball screw, stepper motor and controller. The deflection function of the beam can be obtained 

by the movement of the sensor from the base to the end of the beam under vibration. 

Schematic view of the mechanism is given in Figure 6.15. 

 

 

 

Figure 6.15. Schematic representation of the experimental setup 

 

Experimental procedure flow diagram is given in Figure 6.16. After the beam mechanism 

produced is connected to the shaker and the measurement device with laser displacement 

sensor is positioned appropriately, the frequency sweep test is performed first, and the 

frequency response of the relative position of the end point of the beam relative to the root, 

namely the deflection, is obtained and the resonance frequency is determined from there. 

Then, vibration data is obtained with the measurement setup by producing a fixed frequency 

vibration at frequency values determined according to the resonance frequency. In this way, 

raw data is obtained. 

A series of procedures are required to obtain the deflection curve of the beam from the raw 

data obtained. First, a bandpass filter is applied to the data in order to prevent high frequency 

noise and movements caused by the vibration of the low frequency environment. Although 

the signal obtained is cleaner, in order to find the deflection function of the beam, it is 

necessary to subtract the fundamental shake produced by the shaker from this signal. 

Another purpose of this process is to verify that the measurement made is accurately. The 

harmonic displacement observed at the root of the beam is extended synthetically along the 

beam and extracted from the beam displacement raw data. This process is shown in Figure 

6.17. Here, the purple colored part shows the fundamental shake and the light blue signal 
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shows the vibration data from which the fundamental shake is extracted. The extracted basic 

shake is shown in blue. Here, it is seen that both the signal in the raw data and the 

synthetically produced fundamental jolt coincide with the sinus peaks. This shows that the 

laser displacement sensor moves at a constant speed from the root to the tip and the vibration 

frequency remains constant during the measurement. This result showed the reliability of the 

measurement. 

Deflection curve was obtained by combining the peak values of the filtered signal and by 

fitting a fifth-degree polynomial to this curve, the deflection curve could be mathematically 

expressed depending on the axial position on the beam. In order to find the strain, the second 

derivative of the deflection curve with respect to the position must be taken. After 

polynomial fitting, the second derivative of the polynomial with respect to position is simply 

taken, so the strain with respect to the axial position is found. The strain distribution is 

obtained by taking the average of the obtained strain data and dividing it by the maximum 

strain value. 

 

 

 

Figure 6.16. Experimental procedure flow diagram 
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Figure 6.17. Subtracting foundation shake from beam displacement data 

 

6.3. EXPERIMENTAL RESULTS 

The strain distribution on the flexible beam has been measured experimentally. The general 

schematic view of model is given in Figure 2.1. The version of the mechanism connected to 

the shaker is given in Figure 6.18. The fixed parameters of the system are given in Table 6.1. 

 

Figure 6.18. Photograph of Model assembly attached to the shaker 
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Table 6.1. Fixed parameters 

 

 

 

 

 

The effects of two different parameters on the strain distribution is investigated. The first of 

these is the leverage ratio (𝐿1 𝐿2⁄ ) , the other is the dimensionless counter-mass (𝑀′ 𝑀⁄ ) . 

Also, the frequency response of the strain distribution is found by changing the 

dimensionless frequency (𝜔 𝜔1⁄ ) parameter.(ω: force frequency, ω1: fundamental natural 

frequency). Dimensionless counter mass is the ratio of the total weight of the bolt and nut 

used as the counter mass to the total weight of the elastic beam. 

An example of using bolts and nuts as opposing mass is Figure 6.19 

 

 

 

Figure 6.19. Bolts and nuts forming the opposing mass 

 

Before measuring the strain distribution, the frequency response of the beam end 

displacement for different counters of mass is found. Thus, both the system's functioning as 

a resonator is tested and the effect of the opposing mass on the resonance frequency and 

frequency response is observed. The result of this experiment in which the leverage ratio is 

two is given in Figure 6.20 graphically. There are two from each curve, which are increasing 

Flexible beam’s length 200 mm 

Flexible beam’s width 20 mm 

Flexible beam’s thickness 2 mm 

Connecting beam’ s length 154 mm 

Tip mass  10 g 

𝜀 ratio ( Figure 2.1) 0.8 
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frequency (up-sweep) and decreasing frequency (down-sweep). As can be seen, the 

resonance frequency also decreases with the increase of 𝐌′ 𝐌⁄  ratio (Figure 6.20). 

 

 

 

Figure 6.20. Frequency response of beam tip displacement 

 

First of all, it is tested for the case where the leverage ratio is equal to one. The results of the 

experiment are given in Figure 6.21. Here the graph on the left shows the strain distribution 

for different dimensionless counter mass values. Each symbol corresponds to a 

dimensionless counter-mass value. For example, the blue circle represents the case where 

the dimensionless counter-mass is 1.58. The reason there are more than one blue circle is 

because each coincides with a different dimensionless frequency. For this reason, for 

example, for the frequency response where the dimensionless counter-mass is 1.58, the blue 

circle values should be looked at in the graph on the right. Thus, for any dimensionless 

counter mass, both the frequency response can be seen on the right graph, and it is possible 

to compare it with the other dimensionless counter masses with the graph on the left.  
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Figure 6.21. Strain distribution (L1/L2 = 1) 

 

As a result of the experiment, it is seen that the strain distribution frequency response 

generally peaks in the resonance region and decreases in the regions other than resonance. 

But above the resonance, ie the part where the dimensionless frequency is greater than one, 

the decrease is greater. When the strain distribution values are examined, it is seen that the 

strain distribution exceeds 0.7 for many dimensionless counter mass values. After the 

promising results seen in Figure 6.21, the mechanism is produced using different leverage 

ratios and new experiments are made. The results of the experimental study for the ratio 

𝐿1 𝐿2⁄ = 0.5 are given in Figure 6.22. Similar to the case of 𝐿1 𝐿2⁄ = 1, a situation occurred 

in which the strain quickly loses its homogeneity on the resonance. Again, it is seen that the 

strain distribution reaches 0.7 levels. However, it is determined that when the dimensionless 

counter mass is 3.28, the strain distribution is at 0.57, that is, well below the standard 

rectangular beam. 
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Figure 6.22. Strain distribution (L1/L2 = 0.5)  

  

It will not be possible to obtain the desired homogeneous strain distribution if the leverage 

ratio cannot produce sufficient counter force against the elastic beam tip mass. For this 

reason, it is decided to increase the leverage ratio and the strain distribution tests are 

performed for the ratio(𝐿1 𝐿2⁄ = 2). Results are given in Figure 6.23. Unlike the previous 

two experiments, high strain distribution is obtained here over a wider non-dimensional 

counter-mass range. In addition, when the frequency response of the strain distribution is 

examined, again a high strain distribution is obtained before and in the resonance region. 

Although the findings obtained for the ratio 𝐿1 𝐿2⁄ = 2 show that this configuration may be 

suitable for the energy generator, an experimental study has been carried out for the ratio 

𝐿1 𝐿2⁄ = 4  in order to see the behavior of the system at a higher leverage ratio. As can be 

seen from the results given in Figure 6.24, the strain distributions are quite low compared to 

the results obtained in the case of 𝐿1 𝐿2⁄ = 2. The only high strain distribution is when no 

bolts and nuts are put at the end of the lever beam, i.e. the counter mass is zero. In this case, 

the moment created by the weight of the lever beam itself constitutes the counter force and 

a high strain distribution can be obtained. However, when the counter mass is increased, the 

strain distribution starts to decrease again. 
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Figure 6.23. Strain distribution (L1/L2 = 2)  

 

 

 

  

Figure 6.24.  Strain distribution (L1/L2 = 4)  
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6.3.1. Differences of Experimental and Analytical Model  

In the analytical model, lever and connecting beams are very high elastic modulus and very 

low density, but in experimental method, t-cross section aluminium is chosen for the Lever 

and connecting beam. While hinges are produced with a 3D printer and material is 

polyurethane in experimental setup, in analytical model lever effect of hinges are neglected. 

Besides, tip and counter masses are not point mass in experimental model, but so in the 

analytical model. Therefore, it is not expected to be an experimental model with analytical 

model and finite element. The aim is to show that it has a better strain distribution than the 

conventional cantilever beam. At the same time, it is aimed to show that the strain 

distribution can be increased by adjusting DCM. 
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7. CONCLUSION 

 

Cantilever beam type vibration energy harvester with a lever mechanism and a counter mass 

are modelled as analytically and numerically (FEM).The objective is to increase energy 

conversion efficiency by obtaining a more uniform stress distribution within the 

piezoelectric cantilever beam. A analytical model is constructed using the Euler-Bernoulli 

beam theory. Although, FEM results and analytical model results are very close in natural 

frequency, in harmonic analysis it is seen that when the leverage ratio is increased, difference 

between the finite element model and the analytical model is increased. Since, finite element 

model is made using shell elements and includes high deformation. In the analytical model, 

Euler-Bernoulli beam theory is used and it is accepted that the beam deformations are small. 

In addition, it is assumed that the connecting beam is always vertical and does not transmit 

horizontal force to the harmonic beam. It is assumed that the angle β formed by the horizontal 

beam of the lever beam during vibration is small and small angle approach is made while 

writing the equation of motion. The effects of counter mass and leverage ratio are seen on 

stress uniformity within the excitation frequency. Since, the strain distribution in a 

piezoelectric beam with a static transverse load at the end is that the average strain is half 

the maximum strain approximately (0.5). In the model it is seen that by changing the design 

parameters, the strain distribution increases above 0.53 (Figure 5.9) . In the test results, When 

the strain distribution results are examined, high strain distribution has been obtained in 

many configurations. It is seen that the strain distribution around the resonance is high. It 

gives high strain values on average ±2-3 percent of  the resonance frequency. The stress 

distribution is above 0.7 in all four models at certain DCM. When leverage ratio is 0.5, 1, 2, 

4 strain distibution is seen as respectively 0.75 (Figure 6.22), 0.76 (Figure 6.21), 0.77 (Figure 

6.23), 0.78 (Figure 6.24). As a result of this study It is shown that DCM by changing the 

DCM and leverage ratio values, stress uniformity can be improved compared to a 

conventional cantilever beam energy harvester. 

Improving the finite element model: Although adding a piezoelectric material layer to the 

finite element beam model is one of the improvements that can be made. 

Joint modeling: By creating an experimental setup, the spring constant and damping ratios 

of the rotary and prismatic joints pressed with flexible thermoplastic materials by additive 
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manufacturing methods can be found. If this situation is added to the mathematical model, 

it will be possible to obtain more realistic mathematical models. 

There are problems that may occur with the use of experimental model in a commercial 

product: Experimental model has difficulty aligning and adhering to hinges, tip and counter 

masses. Life cycle is shorter to generate energy than conventional cantilever beam. 

Maintenance is more difficult. 
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APPENDIX A: CODES 
 

 

Algorithm A.1. FEM code of modal analysis 

 

% MATLAB 

% GEOMETRY PARAMETERS: 

L = 0.1;                                                      %length of the beam in m 

width = 0.02;                                               %width of the beam in m 

thck = 0.002;                                               %thichness of the beam in m 

 

% DENSITY and YOUNGS MODULUS 

E = 69e9;                                                   %Elastic modulus of the beam in GPa 

rho = 2700;                                                 %Density in kg/m^3 

 

%FORCE 

F=20;                                                         %N 

 

% INPUT EXCITATION PARAMETERS: 

w = 400;                                                    %Excitation freq. in rad/s 

N = 5; % Number of mode shapes 

 

% DERIVED PARAMETERS 

A = thck*width;                                              % Cross sectional area 
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Algorithm A.1. Continued  

 

I = (1/12)*width*thck^3;                                %Moment of inertia 

c = sqrt(E*I/(rho*A)); 

betaL = zeros(N,1); 

x_array = linspace(0,L,200); 

 

% MODAL ANALYSIS RESULT (UNDAMPED): 

betaL(1) = 1.87510407; 

betaL(2) = 4.69409113; 

betaL(3) = 7.85475744; 

betaL(4) = 10.99554073; 

betaL(5) = 14.13716839; 

 

if N>5 

    for i = (6:1:N) 

        betaL(i) = (2*i-1)*pi/(2*L) ; 

    end 

end 

beta = betaL./L; 

 

wr=beta.^2*c; % Creating the natural frequency vector 
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Algorithm A.1. Continued  

 

for i = 1:1:N 

    zeta(i) = (sin(betaL(i))-sinh(betaL(i)))/(cos(betaL(i))+cosh(betaL(i))); 

    mode_shape_fun = @(x)(cos(beta(i)*x)-cosh(beta(i)*x) +zeta(i)*(sin(beta(i)*x)-

sinh(beta(i)*x))); 

    mode_shape_sq_fun = @(x)(cos(beta(i)*x)-cosh(beta(i)*x) +zeta(i)*(sin(beta(i)*x)-

sinh(beta(i)*x))).^2; 

    Lambda(i) = integral(mode_shape_fun,0,L); 

    Psi(i)= integral(mode_shape_sq_fun,0,L); 

    for j = 1:length(x_array) 

        xx = x_array(j); 

        modal_magn(i,j) = (cos(beta(i)*xx)-cosh(beta(i)*xx) + zeta(i)*(sin(beta(i)*xx)-

sinh(beta(i)*xx))); 

   square_phi= modal_magn(i,j)^2; 

    end  

end 

  y=(square_phi.*F)./(Psi.*(wr.^2-w^2).*(rho.*A)); 

max(y(:)) 
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Algorithm A.1. Continued  

 

! Modal Analysis FEAP Finite Element Model 

feap ** 

0   0   0   3   6   4 

 

PARA 

  mt    = 0.01      !tip mass 

  me    = 0.5       !!M/M' ratio 

  mc    = me*mt    !counter mass 

  Le    = 1         !Lever ratio 

  L2   = 154/(Le+1)  !L2 

  L1    =154-L2       !L1 

  L     = 200     !elastic beam length 

  ep   = 0.8      !epsilon ratio 

  wt   = 20       !beam width 

  hy   = 70       !connecting beam length 

  Li   = L*ep-L1-L2  !initial position of the lever beam in the x direction 

  bx   = 120      !Number of elastic beam elements in x direction 

  by   = 8        !Number of elastic beam elements in y direction 

  cy   = 8        ! Number of connecting beam elements in the y direction 

  cz   = 14       ! Number of connecting beam elements in the z direction  

  lx   = L1+L2    !Number of lever beam elements in the x direction  
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 Algorithm A.1. Continued  

 

 ly   = 8        !Number of lever beam elements in the y direction 

  ln = (bx+1)*(by+1)+(cy+1)*(cz+1)+L1+1  !Lever beam L1 end node no 

  lm = (bx+1)*(by+1)+(cy+1)*(cz+1) !Total element of elastic and connecting beams 

  cm = (bx+1)*(by+1)+(cy+1)*cz+1  !Connecting beam top point first node 

  bl =  ep*bx+1 !First node in the elastic beam connecting beam connection 

  cl =  lm+lx+1 !First node in the lever beam connecting beam connection 

  bt = (bx+1)*(by+1) !Elastic beam total number of nodes 

  bm =  (by+1+1)/2  !Elastic beam tip mass connection midpoint 

 

% material 1: elastic beam 

MATE  1 

SHELL 

 ELAStic, ISOTropic,  69.0e+6  .330e-0 !Eleastic module ve Poisson ratio 

 THIC,     , 2 !thickness 

 DENS,      ,2.7e-6 ! density 

  

% material 2: connecting beam 

MATE  2            

 SHELL 

 ELAStic, ISOTropic,  210e+10  .290e-0 

 THIC,     , 2 
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Algorithm A.1. Continued  

  

DENS,      ,7.8e-9 

% material 3: lever beam  

MATE  3 

 SHELL ELAStic, ISOTropic,  210e+10  .290e-0 

 THIC,     , 2 

 DENS,      ,7.8e-9 

  

! Creating geometries 

BLOC ! Elastic beam 

 CART bx by 

  QUAD 4 

  MATE 1 

   1 0  0 0  

   2 L  0 0  

   3 L  0 wt 

   4 0  0 wt 

    

BLOC ! Connecting beam 

 CART cy cz 

  QUAD 4 

  MATE 2 
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Algorithm A.1. Continued  

  

  1 Li+L1+L2 0  0 

  2 Li+L1+L2 0  wt 

  3 Li+L1+L2 hy wt 

  4 Li+L1+L2 hy 0 

   

BLOC ! lever beam 

 CART lx ly 

  QUAD 4 

  MATE 3 

   1  Li       hy 0 

   2  Li+L1+L2 hy 0 

   3  Li+L1+L2 hy wt 

   4  Li       hy wt 

 

BOUN ! Elastic beam cantilever support boundary conditions 

  1          bx+1 -1 -1  0 -1 -1 -1 

  by*(bx+1)+1  0   1  1  1  1  1  1 

  

BOUN ! Lever beam support point boundary conditions 

  ln            lx+1  -1 -1 0 -1 -1 0 

  ln+(lx+1)*(ly) 0     1  1 1  1  1 0 
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  Algorithm A.1. Continued  

  

MASS ! Assignment of tip and counter mass 

  (bx+1)*(bm)      0 mt mt mt 0 0 0    even   

  lm+1+(lx+1)*ly/2 0 mc mc mc 0 0 0     

 END 

 

LINK ! Rotational joint connections 

  bl               bt+1  bx+1  1 0 0 0 0 1 1   

!link1: Between elastic beam connecting beam 

  bl+(bx+1)*by     bt+cy+1 0   0 0 0 0 0 1 1 

  cl                  cm  lx+1 1 0 0 0 0 1 1      

 

!link2: Between connecting beam lever beam 

  lm+(ly+1)*(lx+1)    lm   0   0 0 0 0 0 1 1 

batch 

end 

 

batch 

 plot mesh 

 plot boun 

end 

batch ! Modal analysis 
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Algorithm A.1. Continued  

  

 MASS 

 TANG 

 SUBS,,3 

 EIGV ALL,,1 

END 

INTE 

STOP 
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Algorithm A.2. Harmonic response Analysis FEAP finite element model 

  

! Metot 2 – Harmonic Response Analysis FEAP Finite Element Model 

*COMPLEX 

feap ** 

0   0   0   3   6   4 

 

PARA 

  mt    = 0.01      !Tip mass 

  me    = 0.5       !!M/M' ratio 

  mc    = me*mt    !Counter mass 

  Le    = 1        !Lever ratio 

  L2   = 154/(Le+1)  !L2 

  L1    =154-L2      !L1 

  L     = 200      !Elastic beam length 

  ep   = 0.8       !Epsilon ratio 

  wt   = 20        !beam width 

  hy   = 70        ! connecting beam length 

  Li   = L*ep-L1-L2 !initial position of the lever beam in the x direction 

  bx   = 120      !Number of elastic beam elements in x direction 

  by   = 8        !Number of elastic beam elements in y direction 

  cy   = 8        ! Number of connecting beam elements in the y direction 

  cz   = 14       ! Number of connecting beam elements in the z direction  
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  Algorithm A.2. Continued  

  

 lx   = L1+L2    !Number of lever beam elements in the x direction  

  ly   = 8        !Number of lever beam elements in the y direction 

  ln = (bx+1)*(by+1)+(cy+1)*(cz+1)+L1+1  !Lever beam L1 end node no 

  lm = (bx+1)*(by+1)+(cy+1)*(cz+1) !Total element of elastic and connecting beams 

cm = (bx+1)*(by+1)+(cy+1)*cz+1  !Connecting beam top point first node 

  bl =  ep*bx+1 !First node in the elastic beam connecting beam connection 

  cl =  lm+lx+1 !First node in the lever beam connecting beam connection 

  bt = (bx+1)*(by+1) !Elastic beam total number of nodes 

  bm =  (by+1+1)/2  ! Elastic beam tip mass connection midpoint 

  et =  0.01 ! Damping ratio 

  y  =  1   ! Base excitation amplitude 

 

% material 1: elastic beam 

MATE  1 

SHELL 

 ELAStic, ISOTropic,  69.0e+6  .330e-0 !Elastic modül ve Poisson ratio 

 THIC,     , 2 !thickness 

 DENS,      ,2.7e-6 ! density 

  

% material 2: connecting beam 

MATE  2            
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Algorithm A.2. Continued  

  

 SHELL 

 ELAStic, ISOTropic,  210e+10  .290e-0 

 THIC,     , 2 

 DENS,      ,7.8e-9 

 

% material 2: lever beam  

MATE  3 

 SHELL 

 ELAStic, ISOTropic,  210e+10  .290e-0 

 THIC,     , 2 

 DENS,      ,7.8e-9 

  

! Creating geometries 

BLOC ! Elastic beam 

 CART bx by 

  QUAD 4 

  MATE 1 

   1 0  0 0  

   2 L  0 0  

   3 L  0 wt 

   4 0  0 wt 
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Algorithm A.2. Continued  

  

BLOC ! Connecting beam 

 CART cy cz 

  QUAD 4 

  MATE 2 

  1 Li+L1+L2 0  0 

  2 Li+L1+L2 0  wt 

  3 Li+L1+L2 hy wt 

  4 Li+L1+L2 hy 0 

   

BLOC ! Lever beam 

 CART lx ly 

  QUAD 4 

  MATE 3 

   1  Li       hy 0 

   2  Li+L1+L2 hy 0 

   3  Li+L1+L2 hy wt 

   4  Li       hy wt 

 

BOUN ! Elastic beam cantilever support boundary conditions 

  1          bx+1 -1 -1  0 -1 -1 -1 
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  Algorithm A.2. Continued  

  

by*(bx+1)+1  0   1  1  1  1  1  1 

 

   

BOUN ! Boundary conditions applied to the lever beam support point 

  ln            lx+1  -1 -1 0 -1 -1 0 

  ln+(lx+1)*(ly) 0     1  1 1  1  1 0 

 

DISP ! Base excitation applied to elastic beam cantilever beam 

 1           bx+1 0  y 0 

 (bx+1)*by+1 0    0  y 0 

 

DISP ! Base excitation applied to the lever beam support point 

 ln            lx+1 0 y 0 

 ln+(lx+1)*(ly) 0   0 y 0 

  

MASS ! Assignment of tip and counter mass 

  (bx+1)*(bm)      0 mt mt mt 0 0 0    even   

  lm+1+(lx+1)*ly/2 0 mc mc mc 0 0 0     

 END 

 

LINK ! Rotational joint connections 
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 Algorithm A.2. Continued  

  

 bl               bt+1  bx+1  1 0 0 0 0 1 1   

!link1: Between elastic beam connecting beam 

  bl+(bx+1)*by     bt+cy+1 0   0 0 0 0 0 1 1 

  cl                  cm  lx+1 1 0 0 0 0 1 1      

!link2: Between connecting beam lever beam 

  lm+(ly+1)*(lx+1)    lm   0   0 0 0 0 0 1 1 

batch 

end 

 

batch 

 plot rotate 1 30 

 plot rotate 2 30 

 plot mesh ! Mesh representation 

 plot boun ! Boundary conditions representation 

end 

 

batch 

param w = 147.29 ! Forced frequency (rad/s) 

    CXSOLve,,w,et ! Harmonic solution 

     DISP,,605 ! Node 605 (beam end) displacement 

END 
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Algorithm A.2. Continued  

  

INTE 

batch ! Harmonic response visual representation 

 plot rotate 1 30 

 plot mesh 

 plot boun 

 plot load 

end 

 

INTE 

STOP 

 

 

 

 

 

 

 

 

 

 

 



86 

 

 

Algorithm A.3. Method 2- reading data from FEAP result file 

  

% MATLAB ile Method 2- Reading Data from FEAP Result File 

 

beam_nz = 9; % Number of nodes in y-direction in elastic beam 

beam_nx = 121; % Number of nodes in x-direction in elastic beam 

beam_np = beam_nz*beam_nx;  % Total number of nodes in elastic beam 

file_nm = 'm1_90_158.vtu';% pview file name 

  

[result] = readf_vtu(file_nm); % Assigning data to result variable 

 

nodes_a = reshape(result{1,2},3,size(result{1,2},2)/3); 

% Node location vector 

displ_c = reshape(result{5,2},6,size(result{5,2},2)/6); 

% Displacement vector for each node 

allst_r = reshape(result{6,2},24,size(result{6,2},2)/24); 

% Voltage vector for each node 

 

% x, y, z positions of the elastic beam nodes 

beam_nd = zeros(beam_nx,beam_nz,3); beam_st = beam_nd;% to clear  

beam_nd(:,:,1) = reshape(nodes_a(1,1:beam_np),beam_nx,beam_nz); % p_x 

beam_nd(:,:,2) = reshape(nodes_a(2,1:beam_np),beam_nx,beam_nz); % p_y 

beam_nd(:,:,3) = reshape(nodes_a(3,1:beam_np),beam_nx,beam_nz); % p_z 
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Algorithm A.3. Continued  

  

% Displacement in x, y, z directions for elastic beam 

beam_ds(:,:,1) = reshape(displ_c(1,1:beam_np),beam_nx,beam_nz); % s_x 

beam_ds(:,:,2) = reshape(displ_c(2,1:beam_np),beam_nx,beam_nz); % s_y 

beam_ds(:,:,3) = reshape(displ_c(3,1:beam_np),beam_nx,beam_nz); % s_z 

 

% Axial stress for elastic beam: 

% Element number 20 is used in the stress vector: 

% Normal stress at bottom 

beam_st(:,:,1) = reshape(allst_r(20,1:beam_np),beam_nx,beam_nz);  

 

%vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvv 

 

% Graphing the displacement and stress of the elastic beam in the system: 

figure; hold on; grid; set(gca,'CameraPosition',[819,-75,254]) 

plot3(nodes_a(3,:),nodes_a(1,:),nodes_a(2,:),'r.') % For all nodes 

quiver3(nodes_a(3,:),nodes_a(1,:),nodes_a(2,:),... 

    displ_c(3,:),displ_c(1,:),displ_c(2,:),1) % For all nodes 

pcolor(beam_nd(:,:,3),beam_nd(:,:,1),beam_st(:,:,1)); %Beam stress 

xlabel('z'),ylabel('x'),zlabel('y'),  

title('plot for all nodes and contour for the beam')  
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Algorithm A.3. Continued  

  

%vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvvvv 

% Avarage strain calculation: 

ord_fix = @(x)(x([1,2,4,3])); % Transition from 2D to 1D 

beam_ez = beam_nz-1; % Number of elements in y-direction in a elastic beam 

beam_ex = beam_nx-1; % Number of elements in the x-direction in a elastic beam 

beam_ne = beam_ez*beam_ex;  % Total number of elements in elastic beam 

total_area = 0; total_astr = 0; max_stress = 0; % Initial values 

 

aa_cal_are = 0; aa_cal_str = 0; % "area_avg_calculator" for use with 

for ix = 1:(floor(beam_ex*0.8)) % Calculation is performed for 80% of the elastic beam 

    for iz = 1:beam_ez 

        cr_x = ord_fix(beam_nd(ix:(ix+1),iz:(iz+1),1)); 

        cr_z = ord_fix(beam_nd(ix:(ix+1),iz:(iz+1),3)); 

        st_1 = ord_fix(beam_st(ix:(ix+1),iz:(iz+1),1)); 

 

        for ip = 1:4  

% Area and stress calculation using four nodes 

            ip_area = (cr_x(ip)*cr_z(1+mod(ip,4))-... 

                 cr_x(1+mod(ip,4))*cr_z(ip))/2; % Nth poly area algorithm 

            ip_astr = (st_1(ip)+st_1(1+mod(ip,4)))/2;%  
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         Algorithm A.3. Continued  

  

           max_stress = max(abs(st_1(ip)),max_stress); % Maksimum stress 

            total_astr = total_astr + ip_area*ip_astr; 

            total_area = total_area + ip_area; 

 

        end  

 % Area average of stress: 

        [n_area,n_avgs] = area_avg_calculator2... 

            (cr_x(1),cr_z(1),st_1(1),cr_x(2),cr_z(2),st_1(2),... 

            cr_x(3),cr_z(3),st_1(3),cr_x(4),cr_z(4),st_1(4)); 

        aa_cal_str = aa_cal_str + n_area*n_avgs; 

        aa_cal_are = aa_cal_are + n_area; 

    end  

end;  

dist_astrsd = -abs((aa_cal_str/aa_cal_are)/max_stress) % Strain distribution 

mean_astrs = total_astr/total_area; % Average stress 

 

  title(['Nodes&Disps, contour is ply-str and sum-str and cal-str = ',... 

char(26),num2str((aa_cal_str/aa_cal_are)/max_stress)] 
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Algorithm A.4. Tip deflection of cantilever beam in static form 

  

FEAP * * Tip Deflection of Cantilever beam in Static Form 

0 0 0 3 6 4                  ! 3d 

PARA 

 l = 100                     ! Length of the beam 

 b = 20                  ! Breadth of the beam    

 hd = 40                   ! No. of elements - Horizontal direction  

 vd = 8                     ! No. of elements - Vertical direction   

 t  = (hd+1)*(vd+2)/2 

  

BLOC 1 

 CART hd vd  

  QUAD 4 

   1 0 0 0  

   2 l 0 0  

   3 l 0 b 

   4 0 0 b  

 

EBOUN                        

  1 0 0 1 1 1 1 1 1         ! Fully restraining all dof  

CFORC 

Node  l 0.0 0.0 0.0 -10000 0.0 0.0 0.0 0.0  ! Load of 1000kN and Y-direction  
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Algorithm A.4. Continued 

MATE 1  

 SHEL 

ELAS ISOT  69.0e+6  .330e-0 

 THIC,,  2                        ! Shell thickness 

 

END 

 

BATCH 

  TANG,,1 

  DISP,,t 

  STRE,t 

  REAC,t 

  plot mesh 

  plot node 

  plot boun 

  plot load 

  FORM 

END 

INTE 

STOP 

  


