ANALYSIS OF A CANTILEVER BEAM TYPE VIBRATION ENERGY HARVESTER
WITH A LEVER MECHANISM

by
Seyda Ertarla

Submitted to Graduate School of Natural and Applied Sciences
in Partial Fulfillment of the Requirements
for the Degree of Master of Science in
Mechanical Engineering

Yeditepe University
2021



ANALYSIS OF A CANTILEVER BEAM TYPE VIBRATION ENERGY HARVESTER
WITH A LEVER MECHANISM

APPROVED BY:

Assoc. Prof. Dr. Nezih Topaloglu
(Thesis Supervisor)
(Yeditepe University)

Assoc. Prof. Dr. Mehmet Selguk ARSLAN
(Y1ldiz Technical University)

Assist. Prof. Dr. Fethi Okyar
(Yeditepe University)

DATE OF APPROVAL: ....[....[12021



ACKNOWLEDGEMENTS

I would like to express my very great gratitude to my advisor Assoc. Prof. Dr. Nezih
Topaloglu. His important advice helped me deal with critical points.

I would also thank to Volkan Karadag with his grateful help.
Also, I would like to thank to TUBITAK and Department of Mechanical Engineering for

education and opportunity to complete my master degree.



ABSTRACT

ANALYSIS OF A CANTILEVER BEAM TYPE VIBRATION ENERGY
HARVESTER WITH A LEVER MECHANISM

This thesis focuses on the energy harvesting efficiency of piezoelectric-based cantilever
beam type vibration energy harvesters. The aim is to increase efficiency by homogenizing
the axial stress along the beam. For this purpose, a counter mass is attached to the beam via
a simple lever mechanism. This way, an inertial force is applied on the beam, having a
direction opposite of the inertia force of the tip mass, thereby obtaining a loading close to
pure moment. This structure is investigated in two methods; a detailed analytical model and
numerical model are constructed. The analytical model and finite element analysis are used
to assess the effect of two design parameters on efficiency, which are ratio of counter and
tip masses, and lever beam length ratio. Modal analysis and harmonic response analyses are
performed for both methods and compared with each other. The obtained results are
compared with the strain distribution in a standard cantilever beam. It is shown that
efficiency increases by means of the proposed method. As a result of analytical work, strain
distribution greater than 0.53 was obtained. As a result of the test, strain distributions over
0.74 were obtained in a certain frequency bandwidth by altering with different mass and

leverage ratios.



OZET

ANKANSTRE TiPi TITRESIM KALDIRAC MEKANIZMALI ENERJI
DEPOLAYICISI ANALIiZi

Bu makale, piezoelektrik tabanli ankastre kiris tipi titresim enerjili depolama makinelerinin
enerji depolama verimliligine odaklanmaktadir. Amag, kiris boyunca eksenel gerilimi
homojenize ederek verimliligi artirmaktir. Bu amagla, basit bir ankastre mekanizmasi ile
kirige bir kars1 kiitle tutturulur. Bu sekilde, kiris {izerine, ug kiitlenin eylemsizlik kuvvetinin
tersi yonde bir eylemsizlik kuvveti uygulanir ve boylece saf momente yakin bir yiikleme
elde edilir. Bu yap1 iki yontemle incelenir; detayli bir analitik model ve sayisal model
olusturulmustur. Analitik model ve sonlu eleman analizi, iki tasarim parametresinin, karsi
ve ug Kkiitlelerinin oranina ve kaldira¢ kiris uzunlugu oranina dayali olarak verimlilik
tizerindeki etkisini degerlendirmek i¢in kullanilir. Her iki yontem i¢in modal analiz ve
harmonik yanit analizi yapilir ve birbirleriyle karsilastirilir. Elde edilen sonuglar, standart
bir kaldirag kiristeki gerinim dagilimi ile Karsilastiriir. Onerilen ydntem sayesinde
verimliligin arttig1 gosterilmistir. Analitik ¢alisma sonucunda 0.53 ve tizeri gerinim dagilim1
elde edilmistir. Test sonucunda da farkli kiitle ve kaldirag oranlariyla oynanilarak, belirli bir

frekans araliginda 0.74 {izerinde gerinim dagilimlar elde edilmistir.
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1. INTRODUCTION

1.1. AIM OF THE STUDY

Vibration energy harvesting research has been increased in recent years. Portable electronic
devices, sensor networks, and body sensor networks can be shown as examples of
applications of vibration energy harvesters (VEH). There are several methods to generate
energy from vibration which are electromagnetism, electrostatics, and piezoelectricity.

Among vibration energy harvesting methods, piezoelectric cantilever beam is a trend topic.
Mechanical energy which is a result of vibration is transduced into electrical energy by using
a suitable circuitry if base excitation is applied to a piezoelectric unimorph or bimorph
cantilever beam. Converting the strain on it into electrical displacement is a feature of
piezoelectric material. Because of that, the harvested energy depends on the average stress
or strain on the piezoelectric element which is on the cantilever beam surface. The surface
stress will decrease linearly from the base to the tip which will be mainly in axial direction,
when a static force is applied to the tip of a rectangular cantilever beam. Thus, the average
stress on the beam surface is half of the maximum stress and base stress is an example of
that.

Therefore, in energy harvesting, only half of the piezoelectric layer potential is used. There
are numerous researches in order to increase the efficiency of piezoelectric-based cantilever
beam VEHSs. Generating more energy by obtaining uniform stress distribution along the
beam is the objective. However, a small amount of improvement has been seen in many
results aimed increase of stress distribution. Hence, some solution suggestions do not apply

to standard piezoelectric beams.



1.2. LITERATURE SURVEY

There is considerable research on increasing the harvesting efficiency of piezoelectric-beam
based vibration energy harvesters. Typical current and prospective applications of vibration
energy harvesters (VEH) comprise wireless sensor networks, body sensor networks,
implanted biomedical devices and portable electronics [1,2]. Three main transduction
methods have been the focus of vibration energy harvesting research: electromagnetic [3],

electrostatic [4] and piezoelectric [5].

There is a great effort on increasing the efficiency of piezoelectric-based cantilever beam
VEHs. During vibration, voltage is generated on the piezoelectric layer at the surface of the
beam, and this voltage is proportional to average axial stress on the beam surface [6]. In a
typical cantilever beam with uniform width, the axial stress is maximum at the base of the
cantilever beam and is close to zero at the beam tip [7]. This situation poses a serious
limitation on the energy harvesting efficiency, due to the non-uniform stress distribution
along the cantilever beam surface.

Kong et al. researched a microelectromechanical system piezoelectric cantilevered vibration
energy harvester on c-axis tilted AIN thin film (Figure 1.1). Kong et al investigated geometry
parameters effects and c-axis tilted angle effects. Kong et al produced micro-sized cantilever
beams with piezoelectric thin films, at which the polarization of the piezoelectric layer is
tilted from the out-of-plane direction [8]. Although this method increases the overall
efficiency, it cannot be applied to batch fabricated piezoelectric patches. Introducing cavities
into the beam cross-section also resulted in improved stress profile, but posed difficulty in
fabrication [9,10].

Figure 1.1. MEMS piezoelectric beam where the polorization axis makes an angle 6 with
the vertical axis: (a) side view, (b) top view [8]



A method which is piezoelectric energy harvester with multiple rectangular cavities at a
single and two sections is built up by Raju et al who are researcher interested in cantilever
piezoelectric energy harvesting. According to results of the research, two cavities result in
producing maximum voltage and more voltage is generated with single cavity section if two

cavity sections are compared. Yet, both methods are impractical [10].

Different piezoelectric beam shapes are investigated by Roundy et al. Using a varying beam
width profile to improve stress distribution was first proposed by Roundy et al. It was
suggested to use a tapered beam, i.e. a beam with linearly decreasing width profile from the
base to the tip. Although more than twice the energy can be gained from a trapezoidal
geometry than the rectangular geometry [7]. However, no theoretical or experimental study
was presented. Recently, it was shown via theory [14,15], finite element analysis [16] and
experiments [15] that tapered beams exhibit higher efficiency compared to beams with

uniform width.

Strain
Strain
Strain

N
IRNEIRN

Length Length Length

Figure 1.2. Strain profiles for different geometries [7]

In order to improve stress distribution along beam, a compliant hinge mechanism at the tip
of cantilever beam is attached by Ma et al and proof mass is attached at the tip of the link
(Figure 1.3). With the proposed mechanism, it has been possible to obtain a more
homogeneous stress distribution on the beam surface by affecting the dynamic load at the
beam end. As a result of the compliant mechanism at the tip, increases the tip displacement

therefore large motion of the proof mass is produced [11].
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Figure 1.3. Cantilever beam with proff mass (a) Design and (b) Model [11].

Yoon et al investigated curved piezoceramic unimorphs’ optimization in order to generate
more charge as a result of mechanical loading (Figure 1.4). The response of a pre-stressed
piezoelectric beam to vertical impact loads have been analyzed. In the research, PZT unimorph
(lead zirconate titanate) structure is located as horizontal. This is because to generate surface
charge when vertically loaded and to collect charge. However, generating energy from
vibration is not sufficient in this methods due to applying pressure load which is applied on
the top surface [12]. In a recent study, the stress distribution is homogenized by using a
mechanical amplifier [13]. Both of these researches resulted in improved stress distribution,

but the proposed devices are suitable to harvest energy only from impact type excitations.
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Figure 1.4. Pre-stressed piezoelectric energy generator [12]

Halvorsen et al analyzed and found out piezoelectric energy harvesters with tapered
unimorph cantilever beams extended proof mass’s models. This research includes long and
short beam. The result of the work done to taper the beam does not conclude that it creates

a more uniform stress. Also, there are no performance benefits when these harvesters are

optimized for single frequency [14].

Tapered two-layer piezoelectric vibration energy harvesters are investigated by Xiong et al
(Figure 1.5). While two masses are attached to each layer, base and upper cantilever beams

are attached to each other. Due to change in masses positions, resonance frequencies can be

generated by the convergent and divergent tapered harvesters [16].
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Figure 1.5. Piezoelectric beam generator (a) Two layer and one mass (b) Two layer and

two masses [16].

Kianpoor et al also worked on energy harvesting which is from trapezoidal bimorph
piezoelectric cantilever beams with proof mass. The research concluded that harvester’s
performance is excessively affected by geometrical parameters which are width, thickness,
the dimensions of proof mass, and length of the beam. As a result of comparison of energy
gains from direct and reverse trapezoidal and rectangle beams, more electrical power and

voltage can be produced from the reverse trapezoidal geometry than other geometries [19].

To obtain more efficient piezoelectric energy harvesters, Hosseini et al studied on unimorph
trapezoidal V-shaped cantilever beams. Triangular tapered cantilever beam, rectangular
piezoelectric cantilever beam and trapezoidal V-shaped cantilever beam are compared for
their energy efficiency. The study concluded that the deformation, strain and voltage of the
triangular vibration energy collector are higher than the rectangular and trapezoidal
beams.[20]

Hollow triangular piezoelectric cantilever beam harvesters by vibration to store more energy
harvester is worked by Wang et al (Figure 1.6). A comparison of obtaining voltage from
rectangular, trapezoidal, triangular, and hollow piezoelectric cantilever beams are made. A
hollow triangular piezoelectric cantilever beam designed. Having more hollow in a beam
result in more resonant frequency points, on the other hand, this leads to increase of length
of substrate and beam’s weight. As a result of that more deformation and fracture formed.

New hollow triangular model which has no uniform thickness has varied resonant



frequencies. They are in the low frequency range broadens the resonance frequency

bandwidth. However, production process of hollow cantilever beam is hard [21].

\ Extension of substrate:
»\“’\ 320mm Y direction

\ -
-7 A Piezoelectric plate

_
Metal substrate

Figure 1.6. Hollow triangular piezoelectric [21]

Izadgoshasb studied on optimized shape of cantilever beam. The work aimed to increase
performance of a Multiresonant Piezoelectric Energy Harvester (MRPEH) for low frequency
vibrations. A cantilever beam which one piezoelecric patch attached to with two triangular
brances and weight of tip mass consist of a model which is optimized by varying design
parameters. Obtaining more energy with minimum weight of material and volume is the
main aim of the research. As a result of the study overall efficiency of the MRPEH is higher
tan the piezoelectric energy harvesters cantilever beams, it is independent of the excitation

frequency [22].

C. V. Karadag study is about finding the optimal width profile for uniform strain distribution.
Moreover, optimal width profile is affected by tip mass value which is a important parameter
and there is no research on tip mass effect. Karadag et al in this study, a curved width profile
is assumed and finite element based optimization is used to find optimized parameters for
the highest strain uniformity. The optimized shapes, rectangular and triangular shapes were
fabricated to compare stress distribution ratios and experimental results show that The stress
distribution of the optimized-shaped beams are more than other convential beams [23].
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Figure 1.7. Optimization of width profile [23]

In this study a force, in opposite direction of inertial force due to tip mass motion, is applied
to the beam during oscillation. Thus, it is aimed to obtain approximately a pure moment as
the net load acting on the beam. Because of this, a counter mass is used with a simple lever
mechanism, connected to the beam with a hinge. The inertial force affecting the counter
mass is applied to the beam by changing direction, with the help of the lever mechanism. In
this paper, a comprehensive analytical model of the proposed approach is explained and the

preliminary results are presented.



2. PROPOSED METHOD

The main goal of the proposed method is to obtain a more uniform stress distribution on the
cantilever beam during harmonic excitation. To achieve this goal, a counter mass is
connected to the beam with a lever mechanism. The counter mass is located at the left end
of the lever beam, and the other end of the lever beam is pin connected to a rigid link, which
IS pin-connected to the beam. The lever is also connected to the support with an L-shaped

frame. A simple schematic of the mechanism is shown in Figure 2.1.

During oscillation, the inertia forces exerted by the tip mass and the counter mass will have
the same direction (Figure 2.1). Due to the lever mechanism, the counter mass inertia force
on the beam will have a direction opposite to the inertia force of the tip mass. This way,
these two forces acting on the cantilever beam will have a moment effect, which in turn will

result in a more uniform stress distribution on the beam.

Counter So e
Mt Rigid Links
1
Piezo Patch . Tip
o L) Mass

Figure 2.1. Concept of model

To assess the effect of geometrical parameters on the stress uniformity and demonstrate the
improvement on stress uniformity with the proposed mechanism, a mathematical model is

constructed, which is presented next.
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2.1. RIGID BEAM MODEL- DETERMINATION OF OPTIMUM DIMENSIONS

L1, L2 and Ls are determined as rigid beams that does not deform or change shape. L is
flexible beam. of g is considered to be the small angle. The effect of horizontal force is
neglected. The rigid beam that connects the lever is assumed to remain vertical during

oscillation. The diagram below shows the oscillation image of the model at any moment.

Figure 2.2. Kinematic scheme of model
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2.1.1. Kinematic Solution

In the kinematic solution, the aim is to find the dimensions of the connecting beam
perpendicular to the elastic and lever beam and to select the smallest Hy value within the
perpendicularity limits.

Required lengths between angles and points are obtained by trigonometric calculations
(Figure 2.2). In the following calculations are determined the positions and angles of model

connection.

Ly = \/Hf + (Hy + L, — €L)? (2.1)
E,=H, + Lycosp (2.2)
E, = H, — Lycosp (2.3)

AE = /Exz +E)° (2.4)

Angles are found with trigonometric calculation:

H
= -1X
0; = tan™ (. 0 )

Y (2.5)
H2 +H,22 + AE? — L,?
0, = cos™! (CHx Y 2 )) (2.6)
24E /(sz + H,?
2 2 _ 2
6, = cos-1 ((AE? + €I? — L3%) 2.7)

2A4Eel

L (H)? +el? — AE?)
2Ll (2.8)

Y = cos”~
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180
Yangle = T Y (2.9
T

2

Points are also calculated with trigonometric calculation:

A, =0 (2.12)

A, =0 (2.12)

B, = Lcosa (2.13)
B, = —Lsina (2.14)
D, = H, — Licosp (2.15)
D, = H, + Lysinf (2.16)
C, = €Lcosa (2.17)
C, = —eLsina (2.18)

Since the value of g is considered to be the small angle, it is considered to range between
+20°.

The default input parameter is below in mm:



Table 2.1. Input parameter (mm)

Hx

el

L1

L2

60

120

100

40

40

13

In the graph of 90 —y vs B, 4 different H,, values ( from 40 to 70 in 10 increments) are

examined so that y are as narrow angle range as possible.

Perpendicularity Condition to Hy

10 -
H. =40

<

H =50

90-Gama(degree)

-10
-20 -15 -10 -5 0

Beta(degree)

Figure 2.3. Perpendicularity condition to H,,

As the value of H,, increases, angle range of 90 —y in -20 to 20 decrease. H,,. In other
words, When H,, is 40 mm , the range value is greater than H,, is 70 mm. That is, as the

value of H,, increases, L is considered perpendicular. However, smallest H,, value within

the perpendicularity limits is 70 mm.
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3. MATHEMATICAL MODELING

An extensive model of the proposed design is given in this section. The model includes the
lever mechanism model, modal analysis of the beam and finally the harmonic response

analysis based on modal expansion method.
Some assumptions are used to facilitate the modelling process; which are listed below:

e The piezoelectric beam is modelled using the Euler-Bernoulli beam theory, so the
length to thickness ratio of the beam is assumed to be large. In addition, it is assumed
that the beam consists of a single homogenous material. The effect of piezoelectric
layer on beam response is neglected.

e The links that form the mechanism are assumed to be rigid and massless. All the
joints that form the mechanism are assumed to be frictionless hinges. The tip mass
and the counter mass are assumed to be point masses.

e The beam has rectangular cross section. Therefore, it is assumed that the stress on
the beam does not vary in the z (i.e. width) direction.

e The damping on the beam is assumed to be viscous and to depend on the beam
deflection rate with respect to the beam base. The damping effects on the lever
mechanism are neglected.

e The rigid link that connects the lever to the beam is assumed to remain vertical
during oscillation. As a result of this assumption, the force transmitted to the beam
by this link will be in the transverse direction.

e The beam possesses small deformations, and the angle of rotation of the lever is
assumed to be small.

e The stress induced on the beam in the static case is neglected.
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3.1. MODELING OF THE LEVER MECHANISM

The model of the harvester, as can be remembered from Figure 2.1, consists of a flexible
beam at the bottom, a connecting beam and a lever beam at the top. During vibration, it is
aimed to transfer a force opposite to the inertia force of the tip mass to the harmonic beam
with the help of the lever beam, so that the force applied to the harmonic beam from the tip

reaches the pure moment.

(@) (b)

Figure 3.1. The design parameters of the lever and the beam (a); The free-body diagram (b)
The kinetic diagram of the lever.

The mathematical model begins with the creation of free body and dynamic diagrams of the
lever beam under harmonic vibration. It is assumed that both the lever beam and the
connecting beam are weightless. Since the connector beam is a rigid element and only
transfers forces, no diagram has been drawn for it. The free body and kinetic diagrams of the

lever beam under harmonic base excitation are shown in Figure 3.1.

Determining force Ry is critical since the vertical force to be transferred to the elastic beam
is Ry. The effect of force Rx is neglected since angle B is assumed small. The weight of
counter mass is the only external force affecting the system in kinetic state. Centripetal and
tangential accelerations create inertial force due to both vertical base excitation and the

harmonic rotation of counter mass around point H.

In order to find force Ry, moment around point H , moment sum about H is taken both in the
free-body and kinetic diagrams.
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o Z My = Z(MH)K (3.1)

cos B(M'gLy + RyL;) = RyLysinp =— M’ (BL,") (3.2)

— M'(Yyw? cos wt)L, cos B

Since angle B is assumed to be small, ( cos ~1, so  ~0, R,~0), the moment equilibrium

equation is re-arranged as follows.

M'gL; + RyL, = —M'(Yow?® cos wt)L, — M’ (BLIZ) (3.3)

The following expression for R,, can be found.

L A
R, = L—lM’(—g — BL; — Yyw? cos wt) (34)
2
Assuming B to be small, R,, can be found.
B=y(eL,t)/L, (3.5)
B=J(eL,t)/L, (3.6)
3.7)

Ll I} 2 . Ll
R, (t) = L_M (—g — Yyw* cos wt — y(eL, t) L_)
2 2

Ry is the sum of three terms. The first term comes from the weight of the counter mass and
it is neglected in the analysis since it has no dynamic effect on the system. The second term
is proportional with base acceleration, and it can be modeled as harmonic external force. The
third term is proportional with acceleration of elastic beam at point x = ¢L. Using third term
in the Euler-Bernoulli equation leaves the system insoluble. Therefore, in order to model
third term, a virtual mass (Mv) is placed at x = €L on harmonic beam and the system can be

solved. Now, Ry can be written as R;, as shown below:
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L
Ry(t) = L—lM’YOm2 cos wt (3:8)
2
Finally, the value of the virtual mass located at x = L should be:
M, = (L1/L2)2M' (3.9)

3.2. MODAL ANALYSIS

A simple representation of harmonic beam is shown in Figure 3.2. The force R;, expressed
in the previous section equation (3.8) affects x=¢L. At the same point, there is the virtual
mass, Mv expressed by equation (3.9). M represents the tip mass, L represents the length of
the harmonic beam and y(t) represents the base excitation. Both tip mass and virtual mass

are considered as point masses.

vix,t)

— L —);(I-S)LE

Figure 3.2. Simple representation of elastic beam

It can be said that the beam consists of two different parts (0<x<eL and gL<x<L) with
different expressions of motion. The equation of motion is written for each piece based on
the Euler-Bernoullli beam theory. Since modal analysis is performed, the equation of motion

for free vibration and undamped state is written as:

Ely;""(x,t) + pAy;(x,t) =0, i=1.2 (3.10)
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The boundary conditions for both beam parts (0 < x < eL and eL < x < L) are expressed

as:
y:1(0,£) = 0 (3.11)

y1'(0,t) =0 (3.12)

Elyy (L,t) = 0 (3.13)

Elyy" (L, t) = My, (L, t) (3.14)

Continuity conditions are expressed at the merged of the two parts:

y1(eL, t) = y,(eL, 1) (3.15)
y1'(eL,t) = v, (eL, 1) (3.16)
yi' (L, t) = yj (gL, t) (3.17)
Ely!" (eL, t) — M, 3 (eL, t) — Ely}' (eL, t) = 0 (3.18)

The first three equations express a complete continuity due to unity of the beam. In the last
equation, it is seen that the shear force changes due to the inertia effect of the virtual mass.
With the method of separation of variables, the bending function for both parts is expressed

as the product of temporal and spatial components.

yi(x,t) = 0;(x)T;(t) (3.19)

In the above equation, i is the index expressing the part of the beam, the first part of the beam
incasei = 1 expressed by 0 < x < €L, and in the case of i = 2, the second part of the beam
is expressed by €L < x < L. If the variable separation expressed by (3.19) is applied to the
beam motion equation, the following expression is obtained.



E10;" (xX)T;(t) + pA@;(x)T;(t) = 0

19

(3.20)

When the temporal and spatial components are separated, the following expression is

obtained.

, 0@ T©
“ 00 T M

¢ denotes the wave velocity and is formulated as follows.

c=+EI/pA

The spatial and temporal coordinate equations are written as follows.
0" (x) — B{@;(x) = 0
T;y(t) + w{T;(t) = 0

The relationship between 8, w and c is given below:

Biz = w;/c

The solution for (3.23) is given below:
?1(x) = ¢;sin(B1x) + cycos(Byx) + cgsinh(Byx) + cocosh(Byx)
?,(x) = cssin(B,yx) + cgcos(B,x) + c;sinh(B,x) + cgcosh(B,x)

The solution of the temporal equation (3.24) is as follows:

T,(t) = Eycos(w,t) + F;sin(w;t)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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T,(t) = E;cos(w,t) + Fysin(w,t) (3.29)

Boundary conditions given by (3.11)-(3.12) are rewritten with (3.19), (3.26), and (3.27).

c;+c, =0 (3.30)
ci+c3=0 (3.31)
—cssin(B,L) — cgcos(B,L) + c;sh(B,L) + cgch(B,L) =0 (3.32)

—cscos(B,L) + cgsin(B,L) + c;ch(B,L) + cgsh(B,L)
N2

w‘M
= ————=(cssin(B,L) + cgcos(B,L) + c;sh(B,L) (3.33)
EIB3

+ cgch(B,L) )

Here, ch and sh are used instead of cosh and sinh for abbreviation, respectively.

If the first of the continuity equations (3.15) is expressed again using temporal and spatial

coordinates:

01(eL)T1(t) = @,(eL) T, (¢) (3.34)
This equation can be valid for every t moment if the following condition is obtained.

T, () = T,(b) (3.35)

In this case,

0,(eL) = @,(eL) (3.36)

is obtained and thus it is concluded that the eigenvalues of the first and second part of the

beam are the same.
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Bi=B2=8B (3.37)

W] = Wy, =W (3.38)

Therefore, using the continuity equations (3.15)-(3.18) four new expressions given below in

terms of the coefficient of the spatial function are obtained.

c,sin(Bel) + c,cos(BeL) + c3sh(Bel) + c,ch(BeL) (3.39)
= cssin(Bel) + cgcos(BeL) + c,sh(Bel) + cgch(BeL)

c,cos(Bel) — c,sin(Bel) + csch(BeL) + c,sh(BeL) (3.40)
= cscos(BeL) — cgsin(BeL) + c,ch(BeL) + cgsh(BeL)

—cysin(Bel) — c,cos(BeL) + c3sinh(BeL) + c,cosh(BeL) (3.41)
= —cgsin(BeL) — cos(BeL) + c;sh(BeL) + cgch(BeL)

—c;cos(BeL) + c,sin(Bel) + czch(Bel) + c4sh(BeLl) + cscos(Bel)  (3.42)
— cgsin(BeL) — c,ch(Bel) — cgsh(BeL)

w?*M,,

- _ Tﬁs [cisin(BeL) + c,cos(BeL) + c3sh(BeL)

+ c,ch(Bel)]

It is now possible to convert all these boundary condition and contunity equations into an

eigenvalue problem expressed in matrix format.

AR =b (3.43)
i = [C1 Cz b C8]T (3.44)
b= [0 0 - 0] (3.45)

The following unitless states of the tip mass and virtual mass are used in matrix A.
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0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0
A= I sin(BeL) cos(Bel) sh(BeL) ch(BeL)
| cos(BelL) —sin(Bel) ch(BeL) sh(BeL)
l —sin(Bel) —cos(Bel) sh(Bel) ch(BelL)
BLMsin(BeL) — cos(BeL) PLMcos(BeL) + sin(BeLl) PLMsh(BeL) + cos(Bel) PLMch(BeL) + sh(BeL)
(3.46)
0 0 0 0
0 0 0 0
—sin(BL) —cos(BL) sh(BL) ch(BL)
BLMsin(BL) — cos(BL) BLMcos(BL) + sin(BL) PBLMsh(BL) + ch(BL) PBLMch(BL) + sh(BL)
—sin(BeL) —cos(BeL) —sh(BeL) —ch(BeL)
—cos(BeL) sin(BeL) —ch(BeL) —sh(BeL)
sin(BeL) cos(BeL) —sh(BeL) —ch(BeL)
cos(BeL) —sin(BeL) —ch(BeL) —sh(BeL)
M = Mc?/EIL (3.47)
M = M,c?/EIL (3.48)

The eigenvalues and eigenvectors of the system can be found when the determinant of matrix
A is set to zero. The spatial function representing the mode shape number r, can be written

in the following format:
D1y = c1Sin(Brx) + cycos(Brx) + c3sh(Brx) + cuoch(Brx) (3.49)
D, = cssin(Brx) + cgcos(Brx) + c;sh(Brx) + cgch(B-x) (3.50)
The functions @,,- and @,, here represent the mode shape of the r mode for the first and

second part of the beam respectively. The Heaviside step function is used to express the rth

mode shape of the whole beam with a single function.

0,(x) = D1 (O)[ulx) —ulx — eL)]+0, ()ux — L) (3.51)

The modal analysis is completed by finding the determinant of the A matrix numerically

and equating it to zero and as a result finding the roots (8) and factors (c;).

3.3. HARMONIC FREQUENCY RESPONSE

In this section, the response of the system to harmonic base excitation with the mode addition

method has been found. It is assumed that the base excitation is harmonic and its amplitude
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is Yycos wt. In the harmonic response analysis, the force applied to the harmonic beam by
the connecting beam and the damping on the beam are included in the equation of motion.

The equation of motion is given below:

Ely"" (x,t) + pAy:(x,t) + yy(x,t) = F(x,t) (3.52)

y is damping coefficient, y,(x,t) represents the transverse displacement of a point in the
beam with respect to the ground. The relationship between the beam displacement
y:(x, t)relative to the ground and displacement y(x, t) relative to the beam root is given

below:

ye(x,t) = y(x,t) + Yycoswt (3.53)

If the second derivative of the expression with respect to time is taken

ye(x, t) = y(x,t) — Yy w?cos wt (3.54)

When this expression is used in the equation of motion of the beam,

EIy””(X, t) + pAy(x’ t) + ]/Y(x; t) = F(X, t) + Rdist(t) (355)

In this equation, forces affecting the system externally are shown as F(x, t)

F(x,t) = R.(t)6(x — L) + R, ()6 (x — L) (3.56)

Two external forces act on the harmonic beam. One of them is the force (R.(t)), acting by

the connecting beam at the point x = €L, and the other is the force (R.;,(t)) consisting of

the inertia of the tip mass. R ;4. (t), shows the distributed harmonic force generated by the

harmonic vibration of the distributed mass forming the beam.

Rgist(t) = pAYyw?cos wt (3.57)
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Before finding the R.(t) and Ry;,(t) forces, the processes to obtain harmonic response and
the application of the orthogonality principle are shown. The harmonic function of the
harmonic beam consists of the infinite sum of different mode responses. This sum where r

index is the mod number is shown in the following equation:

Y0 =) 0.T© (3.58)

When this infinite sum is placed in the equation of motion (3.55), the following equation is

obtained.

. Z 8.""T. + pA z 0.7 + yZ 0.T. 59
= Rgist(t) + R.(t) 6(x — €L) + Ry, (t) 6(x — L)

In order to solve (3.59) it is necessary to eliminate the total symbol expressions and to benefit

from the orthogonality condition.
Orthogonality application:

Since the modal shape function is a sum of trigonometric and hyperbolic terms, the following

expressions can be easily obtained.

(Z)lr””(x) = ﬁr4®1r(x) (3-60)
®2r””(x) = Br4®2r(x) (361)
If two sides of (3.60) are multiplied by @, and integral between][0, L]

o . [ (3.62)
j 0., By dx = B, j 01,01 dx
0 0

In this equation, partial integration is applied to the left side twice and the following equation

is obtained.
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€L
¢1s(5L)®1rm(€L) - ®’1s(5L)@1r” (eL) + f @1r”(x)®”1s(x) dx
. 0 (3.63)
= .Br4f D17045 dx
0

When the same procedure is applied by changing the places of r and s modes, the following

equation is obtained.

EL
@1, (eL)Pys" (eL) — @1, (eL)By5" (eL) + f B1s" (0)0",, (x) dx
. ° (3.64)
= .Bs4f ®15®1r dx
0

Then, (3.64) is subtracted from (3.63) and orthogonality condition is obtained for the first
part of the beam.

B15(eL)By, " (eL) — @' 15 (eL)Dy," (eL) — @1, (eL) D15 (eL)

17; 4 4 e (365)
10D (L) = (B, — BsH) f 0140, dx
0

If the same operations are done for the second part of the beam, the following orthogonality
condition is obtained.

_®2r(L)®25m(L) + QZS(L)QZrm(L) - QIZS(L)(DZr”(L)
+ 05, (LB (L) + 8’55 (eL) B, (eL)
— B (eL) Dy, (€L) + By (eL) B " (eL) (3.66)

L
0, ()85 (L) = (B — B f Bz 0,6 dx
&L

When two orthogonality conditions are added together, the following equation is obtained.
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(=02 (002" () + B (XD, (x) = 05 (X) D" ()
+ QIZT(X)Q)ZS”(X))

xX=

+ (0,001, () - 81,0, ()

— 01, ()85 () + 01, ()85 (%) (3.67)
+ 055085, (1) = P () D2, (%)

+ B2 (B35 () — 8/, (182" ()

X=E&

eL L
= (B - B ( f 01301, dx + f ®2r®25dx>
0 EL

Continuity and boundary conditions should be used to simplify this equation. When
boundary conditions and continuity equations are applied, the following equation is

obtained.

M M, .
(,ﬂ Dy (L)D,s (L) + p—A@1s(€L)@1r(€L) + jo DO dx) = Woys (3.68)

In this equation, W,., is an unknown constant, while the function 6, is 1 for r = s and O for

r #S.

L
f ®S®T dx = LP(STS + Qrs (369)
0
— M Mv
Qs = = | 5702 (1B26(L) + 2015 (e1) By (eL) (3.70)

Complementary orthogonality conditions can also be written as follows.

L A (3.71)
J Q);”m@s dx = BrWo,s + Ay
0

Ars = QIS(SL)QS.,‘)','(‘SL) - QZS(SL)Q)’ZI;(‘C:L) + QZS(L)mlzlr,'(L) (372)
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L (3.73)
f 00 dx = BRWS,,
0

In order to use the orthogonality equations in the equation of motion (3.59) it is necessary to

multiply the equation by @¢(x) and integrate it along the beam.

L & L >
j El Z TTQ/"'@S dx + j pA Z Q)rTrQ)sdx
0 r=1 0 r=1

L L
— [ Rase@0sdx+ [ R0 8- e)0dx 379
0 0
L
+ J Reip(t) 6(x — L)@y dx
0
As seen here, the damping part is not included in the equation. This part will be added to the

equation when the temporal part will be found. The equation of motion becomes below,

using the orthogonality equations.

D BT (B8 + M) + ) TpACS, +0r)
r=1 r=1

L L
= [Run® 0t + [ RO G- crpuax  GT9)
0 0

L

+ fo Reip(t) 6(x — L)@gdx

If A, and Q,, expressions are put into the obtained equation, the following equation is

obtained.
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oo

3 [ (M, (1)820(L) + M, 01, (LB, (eL)

r=1

+ EIT, (015 (eL) 077 (eL) — Bp(eL) D77 (L)
+ 025 (L)05(L))]
> (3.76)
= 0,(eL) ) [T, M,0,,(eL)
r=1
+ EIT, (0} (L) — @5/ (eL))]

+ 0,.(L) Z[—TTM%(L) + EIT,@.(L)] = 0
r=1

Here, some terms are equal to zero due to boundary conditions and the following basic

expression is obtained.

pAwg? ..
| EIT, + pAT | w

L €L

= f Rise(t) Bodx + f R.(t) 6(x — eL)Pdx (3.77)
0 0

L
+ j Rtip(t) 6(x — L)@y dx
0

Integrals containing Dirac-Delta function on the right hand side of the equation can be found

as follows.

fL6(x —eL)Pydx = @ (el) (3.78)

0

chS(x — L)@,dx = @4(L) (3.79)
0

For the integral of the mode shape along the beam, the function @,,,; is defined.
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L
Dine = f Psdx (3.80)
0

To solve (3.77) , Ry, () and R, (t)) must be determined. (For R, (t) see (3.57). Ry, (t) is
the inertia force seen in the tip mass as a result of the harmonic base excitation and is

expressed as

Riip () = MY, w?cos wt (3.81)

Another inertia force will be seen in the virtual mass at connecting point and will form a
component of R.(t). The other component of R.(t) is the harmonic force applied by the

lever.

This force was found in (3.8) as Ry,(t). In this case, R.(t) expression will be as follows.

R il Ll ’ 2 Ll
At) = L_M Yow? cos(wt) .- 1 (3.82)
2 2

In this case, adding the damping, the following equation is obtained.

14

EIBs"Ts() + ﬁTs(t) + To(0)

Yow?coswt Ly Ly
_ | e 3.83
+ @S(L)M>

The steady-state response can be obtained as;

Vow? [pAB e + Os(el) 1M (72— 1) + 0, (L) M |
T,(t) = 2 2 cos(wt
pAY./ (w2 — w?)? + (2{;wsw)? (3.84)

- 05)
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_1 20w (3.85)
0, = tan 10)52 —
(s =v/2pAws (3.86)

Finally, as written in equation 8, to obtain the bending function of the beam, T,(t) is

multiplied by @;(x) given in (3.51) and the infinite mode sum is made.

(e, t) = z 0. (OT.(t) (3.87)



31

4. FINITE ELEMENT METHOD

Finite Element analysis program (FEAP) is used to verify the analytical model computations.
The advantages of Finite Element Analysis Program (FEAP) are listed below:

o Feap is open source software.
o Matlab interface to FEAP is proper.

o It is possible to obtain stress distribution per node on the beam surface.

4.1. MODELING

The modal and harmonic analysis is performed in the FEAP program. The raw data obtained
with FEAP was transferred to MATLAB in Paraview (VTU) format, the next operations are
performed in MATLAB.

In the finite element model (FEM), all beams are modeled using a three-dimensional shell
element. The reason for choosing a shell element is as follows: Since the thickness (2 mm)
to length (200 mm) ratio in the beams is low, the transverse shear deformation is negligible.
If three dimensional solid elements were used, it would be necessary to use very small size
elements in order to keep the width, height and height of the elements close to each other.
As aresult, the number of elements that creates the mesh would have increased significantly.
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FEAP:s

Figure 4.1. FEM mesh of the model

Aluminum material is used for the elastic beam (elastic modulus 69 GPa, density 2.7 g /
cm3, Poisson's ratio 0.33) and very high elastic modulus and very low density for the lever
and connecting beams to meet the weightless and rigid condition in the analytical model.
(elastic modulus 2100 GPa, density 7.8e-3 g / cm3, Poisson ratio 0.29) The aim here is to
prevent the lever and connecting beam from flexing and to try to impart pure moment effect
only to the base beam. The boundary condition in the base beam is cantilever beam. In order
to achieve this, nodes are restricted in 1 and 2 directions shown in Figure 4.1. Since applying
restriction in excess direction while applying the boundary condition will cause rigidity of
the system and locally high stresses, only one node in the direction 3 is restricted and the
others are released. In addition, rotational movements in both direction 1, 2 and 3 are

restricted.

At the support point of the lever beam, it is necessary to apply a boundary condition to reveal
the rotary joint. For this purpose, translation movement in direction 1 and 2 is restricted in
all nodes shown in red in the lever beam in Figure 4.1. In the direction 3, only one node is
restricted and the other nodes are released. In order to give this limit a rotational joint feature,
no restriction in the direction of rotation in direction 3 is applied to any node. The rotation
in the other two directions is completely restricted. To see how these boundary conditions
are applied in the FEAP environment, the annotated code dumps in Appendix A can be

viewed.

In order to realize the rotary joint or hinge-like connections between the beams, all the joints
at the edges where the connecting beam intersects with the elastic beam and the lever beam

are associated with the LINK command. In order for both connections to act as hinges, 3
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directions of the displacement axes are kept closed. 1-way rotation axis is limited and 2-way
and 3-way rotation axes are released. The reason for the release of the 2-way rotation axis is
to make the model less rigid, preventing its natural frequency from increasing, and
preventing local high stresses from occurring.

-
hinge joint

Figure 4.2. Link Command- connection point

The tip mass and the counter mass are placed in the form of point masses at the end middle
node of the base beam and lever beam in order not to disturb the symmetry. The locations

of these nodes are given in Figure 4.2.

1845

FEAP::

Figure 4.3. Nodes with tip and counter mass in FEM
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After the meshing process is completed, modal and harmonic analysis is performed. In modal
analysis, eigenvalues and eigenvectors are calculated and natural frequency and mode shapes
are obtained. Figure 4.4 shows the first and second mode shape obtained for an example
configuration (M'/M = 0.5 and L, /L,=1). When the first mode shape is examined (Figure
4.4(a)), the right end of the base beam moves upward in the direction of 2, while the left end
of the lever beam moves downward. The connecting beam is also raised. This shows that the
system is modeled correctly and the initial mode shape is as expected. The second mode
figure is seen in Figure 4.4(b). The natural frequency of both modes is indicated below the

corresponding Figure 4.4.

e

(a) (b)

Figure 4.4. Mod shapes obtained by FEM (a) First mod shape (b) Second mod shape.

In harmonic analysis, the system is subjected to 1 mm amplitude harmonic base excitation.
Using the CXSOLVE command, the frequency range and damping ratio are entered, and the
displacement and stresses of the harmonic system are calculated. In the example given in
Figure 4.5, the system is shaken at a frequency close to its natural frequency. The light blue
figure shows the position of the undeformed beam. The amount of displacement caused by
the base excitation appears as a contour. In this analysis, the maximum displacement is
negative since the end of the elastic beam moves downward. Regions with boundary
condition (yellow colored) appear about 1 mm. This result shows that the analysis works as

expected, since the base excitation given to the system is 1 mm.
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REAL

DISPLACEMENT 2

9.8104E+00
B8.0456E+00
6.2608E+00
4.5160E+00
2.7512E+00
9.8636E-01
-7.7844E-01
-2.5432E+00
-4.3080E+00
-6.0728E+00
-7.8376E+00
-9.6024E+00
-1.1367E+01

FEAP:s

/\

. EETEEEEN |

Figure 4.5. Sample harmonic analysis result node displacements

It is more convenient to perform the necessary operations to calculate the strain distribution
in MATLAB. Therefore, node positions, displacements, and stresses for each frequency are
saved in the VTU file format. Then, saved VTU files are opened with MATLAB and
variables are defined in MATLAB environment. The MATLAB code performing this
process can be seen in Appendix A. Graphical representation of the finite element model
results is given Figure 4.6. Here, the blue color shows the displacement and the colored
contour image shows the axial strain. As a result of the analysis, the stress and position
values at the nodes on the elastic beam surface are used and the strain distribution is

calculated using the (Figure 4.7).
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Figure 4.6. Representation of FEM results for the model in Matlab

The strain distribution parameter is found in MATLAB using the position (X, y) and axial
strain values for each node on the beam surface. The strain distribution is equal to the average
axial strain in the beam surface area divided by the peak strain value. The challenge is to
calculate the average axial strain across the surface. A geometric method is used for
calculating the average strain. Here, the horizontal axes show the position (X, y) of the node
point on the beam surface, while the vertical axis is the strain value of the related node. In
this case, the average strain distribution in the quadrilateral consisting of the nodes (x1, y1),
(X2, y2), (X3, y3) and (X4, ya) is that the volume of the polyhedra in Figure 4.7 is equal to the
surface area of the quadrant formed by the nodes. The strain distribution is calculated by
applying this geometric method to every four adjacent nodes.
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(X3, V3 53)

(xn v sy

Figure 4.7. Beam surface area average strain calculation method

4.2. FEM SOFTWARE AND VERIFICATION

Before | model proposed method, known cantilever beam with tip force is modelled to FEAP
program in both statics and complex forms in order to compare and verify with mathematical

model.

4.2.1. Basic Mathematical Model

End Load On Cantilever Beam.

Cantilever beam acts as a spring under force, Figure 4.8 shows beam deflection
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Figure 4.8. Tip deflection of cantilever beam

According to Euler-Bernoulli Beam Theory, tip deflection is found by following equation:

FL® (4.1)

Y =38

Cantilever beam is modelled with below parameters.

Table 4.1. Geometric parameters

Geometric Parameters (mm)

b (width)

h (thickness)

L (Length)

20

2

100

Table 4.2. Young’s modulus, density, Poisson ratio

E(GPa)

p(kg/m?)

69

2700

0.33

Moment of inertia is found with below equation:

1—1bh3
12

Transverse tip force is determined as F is 10 kN

(4.2)
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4.2.2. Verification of Feap

Before | model proposed method, known cantilever beam with tip force (see code form in
Appendix A) is modelled to FEAP program in order to compare and verify with
mathematical model. Analysis is done for transverse tip force in Y direction. Transverse

force, F is 10 kN are determined.

135. 1

FEAP;:

Figure 4.9. Feap statics analysis of tip deflection of cantilever beam

All models, tip force location are determined at middle point of tip of beam. While maximum

deflection is 3.6231 mm in the analytical model, and 3.5348 mm in feap statics.

Table 4.3. Comparison of theory and FEM

Analytics Feap Statics
3.6231 mm 3.5348 mm
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5. COMPARISON OF METHODS

In order to compare the finite element model (FEM) results with the analytical model, firstly,
fundamental natural frequency values in different design parameters are compared. These
results can be seen in Figure 5.1. As can be seen, FEM results and analytical model results
are very close. Also, as expected, both the increase in lever ratio and the increase in
dimensionless mass cause a decrease in natural frequency; because in both cases the

equivalent inertia of the system increases.

R — L1/L2 =1, analytical model
160 —e— L1/L2 = 2, analytical model
—e—L‘/LZ =4, analytical model

X L/L,=1FEM

x L/L,=2FEM
x L/L,=4FEM

=
S
T

N
o
T

Natural Frequency (Hz)
)
o
T

®
o
T

60 -

40 L 1 1 1
0.5 1 1.5 2

Dimensionless Counter Mass

Figure 5.1. Analytical model and FEM comparison

Another parameter for analytical model and FEM comparison is the frequency response of
the tip mass in the harmonic beam obtained as a result of harmonic analysis. As can be seen,
FEM and analytical model results are compatible with each other. Also, analytical model
and FEM comparison is made in cases where the leverage ratio is greater than one. These
results are given in Figure 5.2, Figure 5.3 and Figure 5.4 for the cases where leverage ratio
1, 2 and 4 respectively. It is seen that the differences between results become significant,
especially when the leverage ratio is increased. When the differences between the finite
element model and the analytical model are examined, it is seen that the finite element model

is made using shell elements and includes high deformation. In the analytical model, Euler-
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Bernoulli beam theory is used and it is accepted that the beam deformations are low. In
addition, it is assumed that the connecting beam is always vertical and does not transmit
horizontal force to the harmonic beam. It is assumed that the angle p formed by the horizontal
beam of the lever beam during vibration is small and small angle approach is made while
writing the equation of motion. As a result of all these, it is thought that there are differences
between the analytical model and FEM. Another important point is that while the natural
frequencies obtained as a result of modal analysis are very close to each other, the difference
is in the harmonic response analysis. While the modal analysis module in the FEAP program
is a stable module developed a long time ago, the complex solution (CXSOLVE) module
used for harmonic response is a module still under development. Especially, problems were
experienced in the operation of LINK command, which provides the connection between
beams, with CXSOLVE, and the problems were solved by getting support from the
developers in the user forum of the FEAP software. This situation is thought to be the cause
in the harmonic response analysis and the strain distribution results obtained from it

compared to the analytical model.



DCM = 0.5 DCM =1

50 30
—g Analytic —g
£ 4 £
e e
7] @ 20
§ 30 §
o o
K] K]
& 20 g
o 0 10
8 10 8
= =
o o
F o = 0

50 100 150 50 100 150
Frequency (rad/s) Frequency (rad/s)
DCM=1.5 DCM =2

N
o
o]

Analytic
. FEM

[y
5]
()]

w
N

Tip Mass Displacement (mm)
=
o

Tip Mass Displacement (mm)
B

o
o

w
(=]

100 150 100 150
Frequency (rad/s) Frequency (rad/s)

w
o

Figure 5.2. Comparison of analytical and FEM for Ly /L, = 1

DCM =0.5 DCM =1
—g 30 f - E 10 - -
£ € Analytic
4+ [ Analytic = 8 L FEM ||
< FEM s
£ 20 | =
3 o
- i
o Q 4
& 10] 8
] ]
© ©
= =
a 0 2 - a0
= 50 100 150 = 50 100 150
Frequency (rad/s) Frequency (rad/s)

) DCM=1.5 =y 20 DCM=2
£ - - E -~
S Analytic = Analytic
€ . FEM € . FEM
2 6| 2
9] ]
Q o
8 L]
Q Q
2 2
a B
] A
© O
= =
o Q
= - E : -

50 100 150 50 100 150

Frequency (rad/s) Frequency (rad/s)

Figure 5.3. Comparison of analytical and FEM for L, /L, = 2




43

—_ DCM = 0.5 — DCM =1

g 10 - - £ 25 .

LE, - Analytic é - - Analytic

e g | - FEM = 20 | . FEM

1] 1]

£ £

S 6] g 15 |

© ©

a a

a5 4 5 10|

& 2 @ |

s s °

a — a -

E 0| Ae—t— b e TR § R SRS e
40 60 80 100 120 40 60 80 100 120

Frequency (rad/s) Frequency (rad/s)

N DCM =15 . DCM =2

£ Analytic £ Analytic

= FEM = FEM

; 5 60

E 40 | E

g g

8 & 40 |

3 &

a 20 a

Pl o 20 |

= =

E‘ [ =ty E‘ 0 —_———
40 60 80 100 120 40 60 80 100 120

Frequency (rad/s) Frequency (rad/s)
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In this way that the legend on the left graph is valid for all three graphs, the analytical model
Is given in a wide dimensionless frequency range, while the finite element model is run
around resonance. Here, it is seen that the strain distribution obtained by analytical model is
slightly higher than the finite element model. This difference is thought to be due to
differences in the harmonic response analysis results. In addition, numerical errors can be
seen in the strain distribution calculation with FEM, since the curve fitting to the deflection
data depending on the position in the beam and then the second derivation of the obtained
deflection equation are performed. One of the reasons for the high failure of the strain
distribution obtained by finite element analysis is that the average strain is divided by the
maximum strain in the strain distribution formula. In finite element analysis, strain values
can increase significantly, especially in the root parts where stiffness is high. It is thought
that this will cause a decrease in the strain distribution. For all these reasons, the analysis of

high strain distribution continues using the analytical model.
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Examples have been made to see the strain change from root to tip. For DCM and leverage
ratio are 1, system is excited to 138 rad/sec that is near to excitation frequency value (105
percent). DCM 0.5 and leverage ratio are 1, system is excited to 150.15 rad/sec that is near
to excitation frequency value (105 percent). For DCM 1.5 and leverage ratio are 1, system
is excited to 131.25 rad/sec that is near to excitation frequency value (105 percent). The
nodes in the midpoint where the beam will be along a line from root to tip were viewed. Aim
Is to examine strain value change from root parts to tip. It is seen that strain decreases from
root to tip. (Figure 5.5). The variation of the root to tip strain at the midpoint node is shown
in the graphs respectively (Figure 5.6, Figure 5.7 and Figure 5.8). While there is a decrease
in the strain from the root to the tip in the graph, a jump is observed at the point where the
connecting beam is connected to the base beam in the model (160 mm). It is observed that
the strain suddenly increases as the root of the beam is approached. In this situation, this will
cause a decrease in the strain distribution. As an example if we assume that the strain does
not make a sudden change at the root of the beam (as shown by the red dashed line), then for
Figure 5.6 strain distribution will increase from 0.46 to 0.57. If a same update is performed
for Figure 5.7 and Figure 5.8. New strain values will be from 0.46 to 0.58 and from 0.45 to

0.56. This values are closer to the analytical results.
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Figure 5.5. Strain graph for FEM of the model for DCM and leverage ratio are 1
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Figure 5.9. Strain distributions for analytical model and FEM of the model
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In order to obtain a high strain distribution, a load close to the inertial load that the tip mass
creates on the beam must be created by the counter mass. It is obvious that both the
dimensionless counter-mass and the leverage ratio values are important for this. However,
in the experimental study, it is not practical to adjust the leverage ratio precisely because it
is necessary to produce a new leverage, hence the experimental setup, for each new leverage
ratio experiment. However, it is possibe to precisely adjust the counter mass with nuts
attached to a bolt. For this reason, the analytical model is used again to obtain high strain
distribution by changing the dimensionless counter mass precisely and for three different
leverage ratios (0.5, 1, and 2), the frequency response of the strain distribution is found by

changing the DCM precision. Results are given in Figure 5.10, Figure 5.11 and Figure 5.12.
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Figure 5.10. Strain distribution when DCM is fine-tuned for L; /L, = 0.5
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Figure 5.12. Strain distribution when DCM is fine-tuned for L, /L, = 2
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As can be seen in the figures, increasing the DCM generally improves the strain distribution
in the non-resonance region, while decreasing the strain distribution in the resonance region.
However, considering that there are many different parameters that affect the system
dynamics and that the analytical model is created with many pre-assumptions and

simplifications, it is obvious that the most reliable result is a sensitive experimental study.
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6. EXPERIMENTAL VERIFICATION

The experimental procedure for measuring the strain distribution is described. Model is

assembled, measuring setup is manufactured and experimental results are obtained.

6.1. EXPERIMENTAL SETUP

There are some solid models used in the production of the model mechanisms and the

measurement setup and some photographs taken during the production.

Joint 2

Joint 1

Figure 6.1. Concept design image and joint locations for the model



Figure 6.2. Preliminary prototype for model flexible mechanism approach

Z

(@) (b)

Figure 6.3. Joint 1 for model solid model. (a) Initial state and (b) Last state.
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Figure 6.4. Solid model of the state of the shrink-fit frame for the model.

(a) First model and (b) Last model.

(@) (b)

Figure 6.5. Joint 2 solid model. (a) Initial state and (b) Last state.

@ ®

Figure 6.6. Joint 3 solid model. (a) Initial state and (b) Last state.
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Figure 6.7. Joints and frames for the model

Figure 6.8. Model prototype created for testing joints
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Figure 6.9. Model assembly

Figure 6.10. Image of the manufactured version of the beam holder designed for the model
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6.2. MEASUREMENT SETUP

A mechanism is designed and the general skeletal structure of the linear working mechanism

IS preserved.

S

Figure 6.11. Isometric view of the solid model of the part that changes the height and angle

s

Figure 6.12. Solid model of the part that changes the angle
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Figure 6.13. Isometric view of the assembled solid model of the linear transport assembly

Figure 6.14. Isometric view of the final measuring setup

SICK ODS5 brand laser displacement sensor in the measurement setup can accurately read
the displacement data without contact and sample with high frequency. The laser

displacement sensor can be moved linearly at a constant speed on a line with the help of a
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ball screw, stepper motor and controller. The deflection function of the beam can be obtained
by the movement of the sensor from the base to the end of the beam under vibration.

Schematic view of the mechanism is given in Figure 6.15.

Laser displacement
Sensor

Stepper \ Ball screw

motor =" Ste
driver motgr 4 A‘/ .................. ] __________ DAQ |-eeeeees E
: ( '
: Fixed tip
) I

Arduino
Shak
Shaker |---- dni/e?-r ..... EE

b

Figure 6.15. Schematic representation of the experimental setup

"
o

Adjustable
profile

|

Experimental procedure flow diagram is given in Figure 6.16. After the beam mechanism
produced is connected to the shaker and the measurement device with laser displacement
sensor is positioned appropriately, the frequency sweep test is performed first, and the
frequency response of the relative position of the end point of the beam relative to the root,
namely the deflection, is obtained and the resonance frequency is determined from there.
Then, vibration data is obtained with the measurement setup by producing a fixed frequency
vibration at frequency values determined according to the resonance frequency. In this way,

raw data is obtained.

A series of procedures are required to obtain the deflection curve of the beam from the raw
data obtained. First, a bandpass filter is applied to the data in order to prevent high frequency
noise and movements caused by the vibration of the low frequency environment. Although
the signal obtained is cleaner, in order to find the deflection function of the beam, it is
necessary to subtract the fundamental shake produced by the shaker from this signal.
Another purpose of this process is to verify that the measurement made is accurately. The
harmonic displacement observed at the root of the beam is extended synthetically along the
beam and extracted from the beam displacement raw data. This process is shown in Figure
6.17. Here, the purple colored part shows the fundamental shake and the light blue signal
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shows the vibration data from which the fundamental shake is extracted. The extracted basic
shake is shown in blue. Here, it is seen that both the signal in the raw data and the
synthetically produced fundamental jolt coincide with the sinus peaks. This shows that the
laser displacement sensor moves at a constant speed from the root to the tip and the vibration
frequency remains constant during the measurement. This result showed the reliability of the

measurement.

Deflection curve was obtained by combining the peak values of the filtered signal and by
fitting a fifth-degree polynomial to this curve, the deflection curve could be mathematically
expressed depending on the axial position on the beam. In order to find the strain, the second
derivative of the deflection curve with respect to the position must be taken. After
polynomial fitting, the second derivative of the polynomial with respect to position is simply
taken, so the strain with respect to the axial position is found. The strain distribution is
obtained by taking the average of the obtained strain data and dividing it by the maximum

strain value.
Exe Calculation of
Frequency sweep to Division by X
e .| |——— area-averaged
determine resonance max strain TREG
frequency (w, )

|

- . — ";"
Axial scan with Filtering & I‘» Peak ".',.. =

: base
laser displacement > — g detection & F——

excitation derivative
sensorat Rew . curve fitting
resonance data subtraction
| |
I e s T T U R e
Experiment Post-processing

Figure 6.16. Experimental procedure flow diagram
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Displacement

Axial position

Figure 6.17. Subtracting foundation shake from beam displacement data

6.3. EXPERIMENTAL RESULTS

The strain distribution on the flexible beam has been measured experimentally. The general
schematic view of model is given in Figure 2.1. The version of the mechanism connected to

the shaker is given in Figure 6.18. The fixed parameters of the system are given in Table 6.1.

Figure 6.18. Photograph of Model assembly attached to the shaker
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Table 6.1. Fixed parameters

Flexible beam’s length 200 mm
Flexible beam’s width 20 mm
Flexible beam’s thickness | 2 mm
Connecting beam’ s length | 154 mm
Tip mass 109

€ ratio ( Figure 2.1) 0.8

The effects of two different parameters on the strain distribution is investigated. The first of
these is the leverage ratio (L,/L,) , the other is the dimensionless counter-mass (M'/M) .
Also, the frequency response of the strain distribution is found by changing the
dimensionless frequency (w/w;) parameter.(o: force frequency, wi: fundamental natural
frequency). Dimensionless counter mass is the ratio of the total weight of the bolt and nut

used as the counter mass to the total weight of the elastic beam.

An example of using bolts and nuts as opposing mass is Figure 6.19

Figure 6.19. Bolts and nuts forming the opposing mass

Before measuring the strain distribution, the frequency response of the beam end
displacement for different counters of mass is found. Thus, both the system's functioning as
a resonator is tested and the effect of the opposing mass on the resonance frequency and
frequency response is observed. The result of this experiment in which the leverage ratio is

two is given in Figure 6.20 graphically. There are two from each curve, which are increasing
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frequency (up-sweep) and decreasing frequency (down-sweep). As can be seen, the

resonance frequency also decreases with the increase of M'/M ratio (Figure 6.20).

3 (o
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Figure 6.20. Frequency response of beam tip displacement

First of all, it is tested for the case where the leverage ratio is equal to one. The results of the
experiment are given in Figure 6.21. Here the graph on the left shows the strain distribution
for different dimensionless counter mass values. Each symbol corresponds to a
dimensionless counter-mass value. For example, the blue circle represents the case where
the dimensionless counter-mass is 1.58. The reason there are more than one blue circle is
because each coincides with a different dimensionless frequency. For this reason, for
example, for the frequency response where the dimensionless counter-mass is 1.58, the blue
circle values should be looked at in the graph on the right. Thus, for any dimensionless
counter mass, both the frequency response can be seen on the right graph, and it is possible
to compare it with the other dimensionless counter masses with the graph on the left.
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Figure 6.21. Strain distribution (Li/L2= 1)

As a result of the experiment, it is seen that the strain distribution frequency response
generally peaks in the resonance region and decreases in the regions other than resonance.
But above the resonance, ie the part where the dimensionless frequency is greater than one,
the decrease is greater. When the strain distribution values are examined, it is seen that the
strain distribution exceeds 0.7 for many dimensionless counter mass values. After the
promising results seen in Figure 6.21, the mechanism is produced using different leverage
ratios and new experiments are made. The results of the experimental study for the ratio
L,/L, = 0.5 are given in Figure 6.22. Similar to the case of L,/L, = 1, a situation occurred
in which the strain quickly loses its homogeneity on the resonance. Again, it is seen that the
strain distribution reaches 0.7 levels. However, it is determined that when the dimensionless
counter mass is 3.28, the strain distribution is at 0.57, that is, well below the standard

rectangular beam.
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Figure 6.22. Strain distribution (L1/L2=0.5)

It will not be possible to obtain the desired homogeneous strain distribution if the leverage
ratio cannot produce sufficient counter force against the elastic beam tip mass. For this
reason, it is decided to increase the leverage ratio and the strain distribution tests are
performed for the ratio(L,/L, = 2). Results are given in Figure 6.23. Unlike the previous
two experiments, high strain distribution is obtained here over a wider non-dimensional
counter-mass range. In addition, when the frequency response of the strain distribution is
examined, again a high strain distribution is obtained before and in the resonance region.

Although the findings obtained for the ratio L, /L, = 2 show that this configuration may be
suitable for the energy generator, an experimental study has been carried out for the ratio
L,/L, = 4 in order to see the behavior of the system at a higher leverage ratio. As can be
seen from the results given in Figure 6.24, the strain distributions are quite low compared to
the results obtained in the case of L, /L, = 2. The only high strain distribution is when no
bolts and nuts are put at the end of the lever beam, i.e. the counter mass is zero. In this case,
the moment created by the weight of the lever beam itself constitutes the counter force and
a high strain distribution can be obtained. However, when the counter mass is increased, the

strain distribution starts to decrease again.
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Figure 6.24. Strain distribution (Li/L2=4)



65

6.3.1. Differences of Experimental and Analytical Model

In the analytical model, lever and connecting beams are very high elastic modulus and very
low density, but in experimental method, t-cross section aluminium is chosen for the Lever
and connecting beam. While hinges are produced with a 3D printer and material is
polyurethane in experimental setup, in analytical model lever effect of hinges are neglected.
Besides, tip and counter masses are not point mass in experimental model, but so in the
analytical model. Therefore, it is not expected to be an experimental model with analytical
model and finite element. The aim is to show that it has a better strain distribution than the
conventional cantilever beam. At the same time, it is aimed to show that the strain

distribution can be increased by adjusting DCM.
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7. CONCLUSION

Cantilever beam type vibration energy harvester with a lever mechanism and a counter mass
are modelled as analytically and numerically (FEM).The objective is to increase energy
conversion efficiency by obtaining a more uniform stress distribution within the
piezoelectric cantilever beam. A analytical model is constructed using the Euler-Bernoulli
beam theory. Although, FEM results and analytical model results are very close in natural
frequency, in harmonic analysis it is seen that when the leverage ratio is increased, difference
between the finite element model and the analytical model is increased. Since, finite element
model is made using shell elements and includes high deformation. In the analytical model,
Euler-Bernoulli beam theory is used and it is accepted that the beam deformations are small.
In addition, it is assumed that the connecting beam is always vertical and does not transmit
horizontal force to the harmonic beam. It is assumed that the angle B formed by the horizontal
beam of the lever beam during vibration is small and small angle approach is made while
writing the equation of motion. The effects of counter mass and leverage ratio are seen on
stress uniformity within the excitation frequency. Since, the strain distribution in a
piezoelectric beam with a static transverse load at the end is that the average strain is half
the maximum strain approximately (0.5). In the model it is seen that by changing the design
parameters, the strain distribution increases above 0.53 (Figure 5.9) . In the test results, When
the strain distribution results are examined, high strain distribution has been obtained in
many configurations. It is seen that the strain distribution around the resonance is high. It
gives high strain values on average +2-3 percent of the resonance frequency. The stress
distribution is above 0.7 in all four models at certain DCM. When leverage ratio is 0.5, 1, 2,
4 strain distibution is seen as respectively 0.75 (Figure 6.22), 0.76 (Figure 6.21), 0.77 (Figure
6.23), 0.78 (Figure 6.24). As a result of this study It is shown that DCM by changing the
DCM and leverage ratio values, stress uniformity can be improved compared to a

conventional cantilever beam energy harvester.

Improving the finite element model: Although adding a piezoelectric material layer to the

finite element beam model is one of the improvements that can be made.

Joint modeling: By creating an experimental setup, the spring constant and damping ratios

of the rotary and prismatic joints pressed with flexible thermoplastic materials by additive
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manufacturing methods can be found. If this situation is added to the mathematical model,

it will be possible to obtain more realistic mathematical models.

There are problems that may occur with the use of experimental model in a commercial
product: Experimental model has difficulty aligning and adhering to hinges, tip and counter
masses. Life cycle is shorter to generate energy than conventional cantilever beam.

Maintenance is more difficult.
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% MATLAB
% GEOMETRY PARAMETERS:

L=0.1; %length of the beam in m
width = 0.02; %width of the beam in m
thck = 0.002; %thichness of the beam in m

% DENSITY and YOUNGS MODULUS

E =69e9; %Elastic modulus of the beam in GPa
rho = 2700; %Density in kg/m”3

%FORCE

F=20; %N

% INPUT EXCITATION PARAMETERS:
w = 400; %EXxcitation freq. in rad/s

N =5; % Number of mode shapes

% DERIVED PARAMETERS

A = thck*width; % Cross sectional area




Algorithm A.1. Continued

| = (1/12)*width*thck"3; %Moment of inertia
¢ = sqrt(E*1/(rho*A));
betaL = zeros(N,1);

x_array = linspace(0,L,200);

% MODAL ANALYSIS RESULT (UNDAMPED):
betal (1) = 1.87510407;

betal (2) = 4.69409113;

betal(3) = 7.85475744;

betal (4) = 10.99554073;

betal.(5) = 14.13716839;

if N>5
for i = (6:1:N)
betalL (i) = (2*i-1)*pi/(2*L) ;
end
end

beta = betaL./L;

wr=beta.”2*c; % Creating the natural frequency vector
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fori=1:1:N

zeta(i) = (sin(betaL(i))-sinh(betaL(i)))/(cos(betaL (i))+cosh(betalL(i)));

mode_shape_fun = @(x)(cos(beta(i)*x)-cosh(beta(i)*x) +zeta(i)*(sin(beta(i)*x)-

sinh(beta(i)*x))):

mode_shape_sq_fun = @(x)(cos(beta(i)*x)-cosh(beta(i)*x) +zeta(i)*(sin(beta(i)*x)-

sinh(beta(i)*x)))."2;
Lambda(i) = integral(mode_shape_fun,0,L);
Psi(i)= integral(mode_shape_sqg_fun,0,L);
for j = 1:length(x_array)

xx = x_array(j);

modal_magn(i,j)) = (cos(beta(i)*xx)-cosh(beta(i)*xx) + zeta(i)*(sin(beta(i)*xx)-

sinh(beta(i)*xx)));
square_phi= modal_magn(i,j)"2;
end
end
y=(square_phi.*F)./(Psi.*(wr.A2-w"2).*(rho.*A));

max(y(:))
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I Modal Analysis FEAP Finite Element Model

feap **

000364

PARA
mt =0.01 !tip mass
me =05 HM/M' ratio
mc = me*mt !counter mass
Le =1 ILever ratio
L2 =154/(Le+1) L2
L1 =154-L2 L1
L =200 ‘lelastic beam length
ep =0.8 lepsilon ratio
wt =20  !beam width
hy =70  Iconnecting beam length
Li = L*ep-L1-L2 initial position of the lever beam in the x direction

bx =120 !Number of elastic beam elements in x direction

by =8 INumber of elastic beam elements in y direction
cy =8 I Number of connecting beam elements in the y direction
cz =14 ! Number of connecting beam elements in the z direction

Ix =L1+L2 INumber of lever beam elements in the x direction
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ly =8 INumber of lever beam elements in the y direction

In = (bx+1)*(by+1)+(cy+1)*(cz+1)+L1+1 !'Lever beam L1 end node no

Im = (bx+1)*(by+1)+(cy+1)*(cz+1) !Total element of elastic and connecting beams

cm = (bx+1)*(by+1)+(cy+1)*cz+1 !Connecting beam top point first node
bl = ep*bx+1 !First node in the elastic beam connecting beam connection
cl = Im+Ix+1 !First node in the lever beam connecting beam connection
bt = (bx+1)*(by+1) !Elastic beam total number of nodes

bm = (by+1+1)/2 !Elastic beam tip mass connection midpoint

% material 1: elastic beam

MATE 1

SHELL

ELAStic, ISOTropic, 69.0e+6 .330e-0 !Eleastic module ve Poisson ratio
THIC, , 2 !thickness

DENS, ,2.7e-6! density

% material 2: connecting beam

MATE 2

SHELL

ELAStic, ISOTropic, 210e+10 .290e-0

THIC, 2
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DENS, ,7.8e-9

% material 3: lever beam

MATE 3

SHELL ELAStic, ISOTropic, 210e+10 .290e-0
THIC, ,2

DENS, ,7.8e-9

I Creating geometries
BLOC ! Elastic beam
CART bx by

QUAD 4

MATE 1

1000

2L 0O

3L Owt

40 Owt

BLOC ! Connecting beam
CART cy cz
QUAD 4

MATE 2
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1Li+L1+L20 O
2 Li+L1+L2 0 wt
3 Li+L1+L2 hy wt

4 Li+L1+L2 hy O

BLOC ! lever beam
CART Ix ly
QUAD 4
MATE 3

1L hyo
2 LitL1+L2 hy O
3 Li+L1+L2 hy wt

4 Li hy wt

BOUN ! Elastic beam cantilever support boundary conditions
1 bx+1-1-1 0-1-1-1

by*(bx+1)+1 0 111111

BOUN ! Lever beam support point boundary conditions
In Ix+1 -1-10-1-10

In+(Ix+1)*(ly) 0 1111 10
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MASS ! Assignment of tip and counter mass
(bx+1)*(bm) OmtmtmtO0O0 even
Im+1+(Ix+1)*ly/20mcmcmc 000

END

LINK ! Rotational joint connections
bl bt+1 bx+1 1000011

Ilink1: Between elastic beam connecting beam
bl+(bx+1)*by bt+cy+10 0000011

cl cm Ix+11000011

Ilink2: Between connecting beam lever beam
Im+(ly+1)*(Ix+1) Im 0 0000011
batch

end

batch

plot mesh
plot boun
end

batch ! Modal analysis
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MASS

TANG

SUBS,,3

EIGV ALL,1

END

INTE

STOP
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I Metot 2 — Harmonic Response Analysis FEAP Finite Element Model

*COMPLEX
feap **
000364
PARA
mt =0.01 !Tip mass
me =05 HM/M' ratio
mc =me*mt !Counter mass
Le =1 ILever ratio
L2 =154/(Le+l) L2
L1 =154-L2 L1
L =200 !Elastic beam length
ep =08  !Epsilonratio
wt =20 Ibeam width
hy =70 I connecting beam length
Li = L*ep-L1-L2 linitial position of the lever beam in the x direction
bx =120 INumber of elastic beam elements in x direction
by =8 INumber of elastic beam elements in y direction
cy =8 I Number of connecting beam elements in the y direction
cz =14 I Number of connecting beam elements in the z direction
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Ix =L1+L2 !Number of lever beam elements in the x direction

ly =8 INumber of lever beam elements in the y direction

In = (bx+1)*(by+1)+(cy+1)*(cz+1)+L1+1 !Lever beam L1 end node no

Im = (bx+1)*(by+1)+(cy+1)*(cz+1) !Total element of elastic and connecting beams
cm = (bx+1)*(by+1)+(cy+1)*cz+1 !Connecting beam top point first node

bl = ep*bx+1 !First node in the elastic beam connecting beam connection

cl = Im+Ix+1 !First node in the lever beam connecting beam connection

bt = (bx+1)*(by+1) !Elastic beam total number of nodes

bm = (by+1+1)/2 ! Elastic beam tip mass connection midpoint

et = 0.01 ! Damping ratio

y = 1 ! Base excitation amplitude

% material 1: elastic beam

MATE 1

SHELL

ELAStic, ISOTropic, 69.0e+6 .330e-0 !Elastic modiil ve Poisson ratio
THIC, , 2 !thickness

DENS, ,2.7e-6! density

% material 2: connecting beam

MATE 2
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SHELL
ELAStic, ISOTropic, 210e+10 .290e-0
THIC, ,2

DENS, ,7.8e-9

% material 2: lever beam

MATE 3

SHELL

ELAStic, ISOTropic, 210e+10 .290e-0
THIC, ,2

DENS, ,7.8e-9

I Creating geometries
BLOC ! Elastic beam
CART bx by
QUAD 4

MATE 1

1000

2L 0O

3L Owt

40 Owt
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BLOC ! Connecting beam
CART cy cz

QUAD 4

MATE 2

1Li+L1+L20 0

2 Li+L1+L2 0 wt

3 Li+L1+L2 hy wt

4 Li+L1+L2hy 0

BLOC ! Lever beam
CART Ix ly
QUAD 4
MATE 3
1Li hyo
2 LitL1+L2 hy O
3 Li+L1+L2 hy wt

4 Li hy wt

BOUN ! Elastic beam cantilever support boundary conditions

1 bx+1-1-1 0-1-1-1
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by*(bx+1)+1 0 111111

BOUN ! Boundary conditions applied to the lever beam support point
In Ix+1 -1-10-1-10

In+(Ix+1)*(ly)0 111110

DISP ! Base excitation applied to elastic beam cantilever beam
1 bx+10 yO0

(bx+1)*by+10 0 yO

DISP ! Base excitation applied to the lever beam support point
In IXx+10y O

In+(Ix+1)*(ly) 0 0y 0

MASS ! Assignment of tip and counter mass
(bx+1)*(bm) Omtmtmt0O0O0 even
Im+1+(Ix+1)*ly/20mcmecmc000

END

LINK ! Rotational joint connections
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bl bt+1 bx+1 1000011

Ilink1: Between elastic beam connecting beam
bl+(bx+1)*by bt+cy+10 0000011

cl cm Ix+11000011

Ilink2: Between connecting beam lever beam
Im+(ly+1)*(Ix+1) Im 0 0000011

batch

end

batch

plot rotate 1 30

plot rotate 2 30

plot mesh ! Mesh representation

plot boun ! Boundary conditions representation

end

batch

param w = 147.29 ! Forced frequency (rad/s)
CXSOLve,,w,et I Harmonic solution
DISP,,605 ! Node 605 (beam end) displacement

END
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INTE

batch ! Harmonic response visual representation
plot rotate 1 30

plot mesh

plot boun

plot load

end

INTE

STOP
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% MATLAB ile Method 2- Reading Data from FEAP Result File

beam_nz = 9; % Number of nodes in y-direction in elastic beam
beam_nx =121; % Number of nodes in x-direction in elastic beam
beam_np = beam_nz*beam_nx; % Total number of nodes in elastic beam

file_nm="m1 90 158.vtu';% pview file name

[result] = readf vtu(file_nm); % Assigning data to result variable

nodes_a = reshape(result{1,2},3,size(result{1,2},2)/3);
% Node location vector

displ_c = reshape(result{5,2},6,size(result{5,2},2)/6);
% Displacement vector for each node

allst_r = reshape(result{6,2},24,size(result{6,2},2)/24);

% Voltage vector for each node

% X, Y, z positions of the elastic beam nodes

beam_nd = zeros(beam_nx,beam_nz,3); beam_st = beam_nd;% to clear
beam_nd(:,:,1) = reshape(nodes_a(1,1:beam_np),beam_nx,beam nz); % p_x
beam_nd(:,:,2) = reshape(nodes_a(2,1:beam_np),beam_nx,beam_nz); % p_y

beam_nd(:,:,3) = reshape(nodes_a(3,1:beam_np),beam_nx,beam nz); % p_z
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% Displacement in x, vy, z directions for elastic beam
beam_ds(:,:,1) = reshape(displ_c(1,1:beam_np),beam_nx,beam_nz); % s x
beam_ds(:,:,2) = reshape(displ_c(2,1:beam_np),beam_nx,beam_nz); % s y

beam_ds(:,:,3) = reshape(displ_c(3,1:beam_np),beam_nx,beam_nz); % s z

% Axial stress for elastic beam:
% Element number 20 is used in the stress vector:
% Normal stress at bottom

beam_st(:,:,1) = reshape(allst_r(20,1:beam_np),beam_nx,beam_nz);

%OVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VYV VYV VYV VY

VVVVWV

% Graphing the displacement and stress of the elastic beam in the system:
figure; hold on; grid; set(gca,'CameraPosition’,[819,-75,254])
plot3(nodes_a(3,:),nodes_a(1,:),nodes_a(2,:),'r.") % For all nodes
quiver3(nodes_a(3,:),nodes_a(1,:),nodes_a(2,:),...

displ_c(3,:),displ_c(1,:),displ_c(2,:),1) % For all nodes
pcolor(beam_nd(:,:,3),beam_nd(:,:,1),beam_st(:,:,1)); %Beam stress
xlabel('z"),ylabel('x"),zlabel('y"),

title('plot for all nodes and contour for the beam’)
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%OVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VY

VVVWV

% Avarage strain calculation:

ord_fix = @(x)(x([1,2,4,3])); % Transition from 2D to 1D

beam_ez = beam_nz-1; % Number of elements in y-direction in a elastic beam
beam_ex = beam_nx-1; % Number of elements in the x-direction in a elastic beam
beam_ne = beam_ez*beam_ex; % Total number of elements in elastic beam

total area = 0; total_astr = 0; max_stress = 0; % Initial values

aa_cal_are =0; aa_cal_str =0; % "area_avg_calculator" for use with
for ix = 1:(floor(beam_ex*0.8)) % Calculation is performed for 80% of the elastic beam
for iz = 1:beam_ez
cr_x =ord_fix(beam_nd(ix:(ix+1),iz:(iz+1),1));
cr_z = ord_fix(beam_nd(ix:(ix+1),iz:(iz+1),3));

st 1 =ord fix(beam_st(ix:(ix+1),iz:(iz+1),1));

forip=1:4
% Area and stress calculation using four nodes
ip_area = (cr_x(ip)*cr_z(1+mod(ip,4))-...
cr_x(1+mod(ip,4))*cr_z(ip))/2; % Nth poly area algorithm

ip_astr = (st_1(ip)+st_1(1+mod(ip,4)))/2;%
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max_stress = max(abs(st_1(ip)),max_stress); % Maksimum stress
total_astr = total_astr + ip_area*ip_astr;

total_area = total_area + ip_area;

end
% Area average of stress:

[n_area,n_avgs] = area_avg_calculator2...
(cr_x(1),cr_z(1),st_1(1),cr_x(2),cr_z(2),st_1(2),...
cr_x(3),cr_z(3),st_1(3),cr_x(4),cr_z(4),st_1(4));

aa_cal_str = aa_cal_str + n_area*n_avgs;

aa_cal_are =aa_cal_are + n_area;

end
end;
dist_astrsd = -abs((aa_cal_str/aa_cal_are)/max_stress) % Strain distribution

mean_astrs = total_astr/total_area; % Average stress

title('Nodes&Disps, contour is ply-str and sum-str and cal-str =",...

char(26),num2str((aa_cal_str/aa_cal_are)/max_stress)]
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FEAP * * Tip Deflection of Cantilever beam in Static Form

000364 I3d

PARA

1 =100 I Length of the beam

b=20 I Breadth of the beam

hd =40 I No. of elements - Horizontal direction
vd =8 I No. of elements - Vertical direction

t = (hd+1)*(vd+2)/2

BLOC 1
CART hd vd
QUAD 4
1000
2100
310b

400b

EBOUN
100111111 I Fully restraining all dof
CFORC

Node 10.00.00.0-100000.00.00.00.0 ! Load of 1000kN and Y -direction
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MATE 1
SHEL
ELAS ISOT 69.0e+6 .330e-0

THIC,, 2 I Shell thickness

END

BATCH
TANG,,1
DISP,,t
STREt
REAC,t
plot mesh
plot node
plot boun
plot load
FORM

END

INTE

STOP




