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ABSTRACT 

 

 

PLANNING OF ENERGY STORAGE SYSTEMS IN POWER NETWORKS: 

IMPROVING RELIABILITY OF TWO-STAGE ROBUST OPTIMIZATION 

ALGORITHMS 

 

The usage of renewable energy sources such as wind and solar in power networks has 

increased in recent years, introducing uncertainty and variability into the system. Energy 

storage plays a critical role in mitigating these problems. Thus, placement, sizing, and 

operation of energy storage units constitute important problems and there are many related 

studies. In this thesis, the problem of placement of energy storage systems in power networks 

is studied by modeling it as a two-stage stochastic robust optimization. A hybrid method is 

used, combining deterministic equivalent for the stochastic part and column and constraint 

generation for the robust part, to solve the problem. Two new algorithms are proposed for 

the solution of the second-stage max-min optimization. The proposed methods are applied 

to the 6-bus, IEEE 14-bus, and IEEE 30-bus systems, and numerical analyses are performed 

to compare the proposed methods with other methods from the literature. 
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ÖZET 

 

 

ENERJİ AĞLARINDA ENERJİ DEPOLAMA SİSTEMLERİNİN PLANLAMASI: 

İKİ-AŞAMALI GÜRBÜZ OPTİMİZASYON ALGORİTMALARININ 

GÜVENİLİRLİĞİNİN ARTIRILMASI 

 

Enerji şebekelerinde rüzgar ve güneş gibi yenilenebilir enerji kaynaklarının kullanımı son 

yıllarda artmış ve sisteme belirsizlik ve değişkenlik getirmiştir. Enerji depolama, bu 

sorunların azaltılmasında kritik bir rol oynar. Bu nedenle, enerji depolama birimlerinin 

yerleştirilmesi, boyutlandırılması ve işletilmesi önemli problemler oluşturmaktadır ve 

bunlarla ilgili birçok çalışma bulunmaktadır. Bu tezde, enerji depolama sistemlerinin güç 

şebekelerine yerleştirilmesi problemi, iki-aşamalı stokastik gürbüz optimizasyon olarak 

modellenerek incelenmiştir. Problemi çözmek için, stokastik kısım için deterministik 

eşdeğer ile gürbüz kısım için sütun ve kısıt üretim metodunu birleştiren hibrit bir yöntem 

kullanılmıştır. İkinci-aşama maksimum-minimum optimizasyonunun çözümü için iki yeni 

algoritma önerilmiştir. Önerilen yöntemler 6-baralı, IEEE 14-baralı ve IEEE 30-baralı 

sistemlerine uygulanmıştır ve önerilen yöntemleri literatürdeki diğer yöntemlerle 

karşılaştırmak için sayısal analizler yapılmıştır. 
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1. INTRODUCTION 

 

The usage of renewable energy sources such as wind and solar in power networks has 

increased in recent years, introducing uncertainty and variability into the system. Energy 

storage systems (ESSs) play a crucial role in reducing these problems in power networks. 

Thus, placement, sizing, and operation of ESSs in power networks constitute important 

problems and there are many related studies in the literature. 

Mainly two approaches can be used for planning of storage systems under uncertainty, 

namely stochastic programming (SP) and robust optimization (RO). In the former an 

expected cost is optimized while in the latter cost is optimized for wort-case scenarios. 

Because the computation of expectation exactly is difficult in general, SP based approaches 

make use of sampling-based approximations. As a result of sampling, worst-case 

uncertainties that can lead to infeasible operation can be missed, hurting the safety of the 

system. Moreover, the SP requires probabilistic information about uncertainties, which can 

be difficult to obtain in general. The RO, on the other hand, does not require any probabilistic 

information. It is enough to know sets from which uncertainties take values. In addition, 

solution algorithms do not rely on sampling. The uncertainties are regarded as continuous 

variables whose all possible values are taken into account in the associated optimization 

algorithms. As a result, worst-case uncertainties are not missed, and hence, the solutions 

found can ensure the safety of the system. 

Due to the aforementioned advantages, the RO has been used extensively for the operation 

and planning of power systems in the literature. Jabr et al. [1] studied two-stage robust 

investment planning of ESSs on transmission networks with renewable energy resources. 

Liu et al. [2] built a two-stage RO model for coordinated planning of generation expansion 

and ESSs. Dehghan and Amjady [3] proposed a two-stage RO model for transmission 

expansion and ESS planning problems in wind farm-integrated power network. Furthermore, 

Ye et al. [4] solved a two-stage robust security-constrainted unit commitment problem. 

Baringos [5] proposed a RO approach for the generation and transmission expansion 

planning. Jabr [6] presented a two-stage RO method for transmission network expansion 

planning problem under uncertain renewable generation and demand. Wei et al. [7] studied 

robust energy and reserve dispatch planning under uncertain renewable generation. 
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Bertsimas et al. [8] built a two-stage adaptive RO model for the security constrainted unit 

commitment problem in the presence of load uncertainty.  

Despite the advantages of the RO described above, it has a serious shortcoming. Because the 

cost is optimized for worst-case scenarios, solutions found can be highly conservative, 

making this approach unattractive economically. There have been some efforts in the 

literature to alleviate this conservativeness. The most widely used solution is to combine the 

RO with SP to obtain a hybrid approach, called Stochastic Robust Optimization (SRO). Zhao 

and Guan [9] proposed a two-stage SRO approach for the unit commitment problem. Liu et 

al. [10] presented a stochastic and robust optimization model for transmission expansion 

planning. 

Deterministic Equivalent (DE) is a method that can be used to solve both SP and RO 

problems. The method relies on defining uncertainty with a finite number of scenarios and 

these scenarios are considered while computing the optimal decisions. Unfortunately, the 

method is intractable for a large number of scenarios. This is especially problematic for the 

RO which requires enumeration of all extreme scenarios whose size increases exponentially 

with the dimension of uncertainties. 

Bender’s Decomposition (BD) is another method that can be used for the solution of SP and 

RO problems. The problem of interest is assumed to occur in two or more stages and the 

method decomposes the problem into master and slave problems. The master problem 

computes the first-stage decision while the slave problem sends information (cuts) to the 

master problem based on first-stage decisions. It is well known that this method converges 

slowly since it is a cutting plane based approach. Jabr [6] used the BD scheme to solve the 

problem he proposes in his work. Wei et al. [7] established the BD method to solve their 

optimization problem. Also, Bertsimas et al. [8] developed a solution methodology based on 

a BD-type algorithm. 

Recently, Zeng and Zhao [11] introduced a novel algorithm called the column and constraint 

generation (CCG) method for the solution of RO problems. It works quite fat alleviating the 

solve convergence issues encountered in BD. Due to this property, it has been used widely 

for the operation and planning of power systems. Jabr et al. [1] developed a computational 

engine called ROSION which is an implementation of the CCG method. Liu et al. [2] 

decomposed and solved their proposed min-max-min type problem CCG scheme. Also, 
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Dehghan and Amjady [3] introduced a CCG type primal cutting plane decomposition 

algorithm to obtain an optimal solution. Finally, Ye et al. [4] and Baringos [5] used modified 

versions of the CCG method to solve their two-stage RO models.  

In [9], where the SRO approach was introduced, they combined DE with CCG to solve the 

two-stage SRO problem. DE represented the stochastic part and CCG was employed for the 

robust part. It merges a scenario-based SP procedure with a two-stage RO solution scheme. 

Using DE for the stochastic part is realistic because good approximations for the SP can 

usually be obtained by using a reasonable number of scenarios and employing CCG for the 

robust part is practical because the method terminates after adding a reasonable number of 

worst-case scenarios. This method was used by Zhao and Guan [9] and Liu et al. [10]. 

BD and CCG methods that can be used for the solution of the RO problem decompose it into 

master and slave problems as mentioned above. The slave problem obtained has the same 

form for both approaches. It is a max-min type problem, which is difficult to solve in general. 

Some methods have been proposed for its solution in the literature, which can be categorized 

into three groups. 

The first set of methods are dedicated algorithms that making use of tailored versions of 

optimization strategies. However, in practice, for instance, in the power system literature, 

they are not preferred because they require a lot of coding and the algorithm obtained may 

not work reliably due to numerical issues that can arise from technical details. 

The second set of methods converts the max-min problem into an equivalent mixed-integer 

linear programming (MILP) problem by algebraic manipulations [3,5,6]. Then the 

equivalent formulation can be solved reliably without too much coding effort using off-the-

shelf solvers. One approach is the extreme point (EP) method [4,7] which solves feasibility 

type problems and works reliably. Another approach is Fortuny-Amat Formulation where 

Karush-Kuhn-Tucker (KKT) conditions are used [2,10–13]. It can be used to solve 

optimization type problems. But the method is based on Big-M formulation which causes 

numerical issues and the choice of 𝑀 is problematic [12,13].   

The third set of methods is approximations. They are preferred because max-min is a hard 

problem. But they produce suboptimal solutions, which can lead to safety issues because the 

robustness cannot be assured due to suboptimality. One approach is the Mountain Climbing 

(MC) method [4,9] where two linear problems are solved iteratively to obtain a solution and 
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the other approach is the Outer Approximation (OA) method [8] where linear 

approximations of the objective function are iteratively added to the problem to solve it.  

Our aim, in this thesis, is to solve a special type of problem for the planning of energy storage 

systems in power networks, namely, determining the locations of storage units so that the 

system will work reliably and installation and operation costs will be optimized. To ensure 

the safety of the system under all possible values of uncertainties without causing a high 

degree of conservativeness, a stochastic and robust optimization formulation will be 

employed. A hybrid method combining DE for the stochastic part and CCG for the robust 

part will be utilized as the solution approach. As mentioned above, solving the inner max-

min problem reliably and efficiently is an important issue. Two new algorithms are proposed 

for this problem, one being an exact method while the other an approximation scheme. The 

advantages of these methods are demonstrated by comparing them with the other alternatives 

available in the literature and summarized above. The proposed methods are not only 

applicable to storage locationing problem but also can be used for two-stage robust 

optimization in general. Therefore, they can be considered as contributions to RO literature. 

The rest of this thesis is organized as follows: In Section 2 the details of two-stage stochastic 

and robust optimization problems and their deterministic equivalents are given. Also, the 

modified CCG method is introduced in this section. Next, in Section 3 the solution methods 

for the second-stage max-min problem are discussed; as some exact and approximation 

methods and our proposed algorithms are explained. Then, in Section 4 the details of the 

energy storage planning problem are given and the mathematical model is formulated. 
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2. TWO-STAGE STOCHASTIC AND ROBUST OPTIMIZATION 

 

In the optimization theory, there are problems that include uncertainties. These problems can 

be classified as stochastic or robust optimization problems depending on how the uncertainty 

is characterized. In SP, the probability distribution of uncertainties is known and the solution 

is found optimizing an expected cost. On the other hand, in RO, sets to which uncertainties 

belong are known and optimization is performed for worst-case scenarios. Several real-

world problems, such as problems in the supply chain, finance, transportation, and energy, 

can be formulated as SP, RO, or a combination of them. 

In the following sections, two-stage stochastic and robust optimization problems are 

introduced and the solution approaches used frequently for them are explained which are 

also employed in this thesis. 

2.1. TWO-STAGE STOCHASTIC OPTIMIZATION AND ITS DETERMINISTIC 

EQUIVALENT 

The two-stage stochastic optimization problems have two stages. The decisions made in the 

first stage are called “here and now” and the decisions made in the second stage are called 

“wait and see”. In general, a two-stage SP problem can be expressed as follows: 

 min
𝐲

𝒄𝑇𝒚 + 𝔼[min
𝐱

𝒃𝑇𝒙(𝝃)] (2.1) 

 subject to:  

 𝑨𝒚 ≤ 𝒅  (2.2) 

 𝑬𝒚 + 𝑮𝒙(𝝃) ≤ 𝒉 + 𝑴𝝃 (2.3) 

 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛, 𝝃 ∈ Ξ  (2.4) 

   

where Ξ ⊂ ℝk. In the above formulation, 𝒚 represents the vector of first-stage decision 

variables which are made before the observation of the vector of random data 𝝃 and 𝒙 

represents the vector of second-stage variables decided after 𝝃 is revealed. The objective 
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function (2.1) minimizes the sum of first stage cost and expected cost of the second stage 

decisions. The constraints are given in (2.2)-(2.4). 

In general, computing expectation for continuous random variables is intractable. Hence, 

sampling-based approximations are usually employed. In this approximation, uncertain data 

𝝃 is represented by a set of finite number of samples taken  from the domain of  its 

distribution, which can be expressed as 𝒮 = {𝝃1, 𝝃2, … , 𝝃𝑁}. The 𝑁 samples 𝝃1, 𝝃2, … , 𝝃𝑁 are 

called the scenarios and they can be obtained by scenario generation techniques, like Monte 

Carlo sampling. If the respective probabilities are 𝑝1, 𝑝2, … , 𝑝𝑁, then the expectation in the 

objective function (2.1) can be approximated as: 

 𝔼 [min
𝐱

𝒃𝑇𝒙(𝝃)] ≈ min
𝐱

∑ 𝑝𝑠𝒃𝑇𝒙(𝝃𝑠)

𝑁

𝑠=1

 (2.5) 

   

where 𝑠 is the scenario index. In many practical applications, scenarios are generated by 

drawing 𝑁 independent samples from the distribution of 𝝃 and assigning them equal 

probabilities, that is, 𝑝𝑠 =
1

𝑁
 , 𝑠 = 1: 𝑁. In this case, the Equation (2.5) can be expressed as: 

 ∑ 𝑝𝑠𝒃𝑇𝒙(𝝃𝑠)

𝑁

𝑠=1

=
1

𝑁
∑ 𝒃𝑇𝒙(𝝃𝑠)

𝑁

𝑠=1

 (2.6) 

   

This is called the sample average approximation (SAA). 

The simplest approach that can be used to solve the SP (2.1)-(2.4), is to construct the so-

called deterministic equivalent, which is given below for the SAA objective (2.6). 

 min
𝐲

𝒄𝑇𝒚 +
1

𝑁
∑ 𝒃𝑇𝒙(𝝃𝑠)

𝑁

𝑠=1

 (2.7) 

 subject to:  

 𝑨𝒚 ≤ 𝒅 (2.8) 

 𝑬𝒚 + 𝑮𝒙(𝝃𝑠) ≤ 𝒉 + 𝑴𝝃𝑠, 𝑠 = 1: 𝑁 (2.9) 

 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (2.10) 
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Given that some elements of the first stage decision vector, 𝒚, can be an integer, this is a 

MILP in general and can be solved using off-the-shelf solvers reliably. But this problem 

becomes intractable when 𝑁 is large. In this case, one may use Bender’s Decomposition 

approach to split the SP into master and slave problems. In this way, an optimal solution can 

be obtained by optimizing problems of smaller sizes iteratively. However, since it is a cutting 

plane based method, generally, Bender’s Decomposition converges slowly to an optimal 

solution. 

2.2. TWO-STAGE ROBUST OPTIMIZATION AND ITS DETERMINISTIC 

EQUIVALENT 

A two-stage RO has a structure similar to a two-stage SP. There are “here and now” decisions 

to be made before the realization of uncertainties and “wait and see” decisions to be given 

after uncertainties are revealed. However, different from the SP, the second stage objective 

is not to minimize an expected cost but a worst-case cost that can be achieved under all 

possible realizations of uncertainties. This problem can be formulated as follows: 

 min
𝐲

𝒄𝑇𝒚 + max
𝜻∈Ξ

min
𝒙

𝒃𝑇𝒙(𝜻) (2.11) 

 subject to:  

 𝑨𝒚 ≤ 𝒅 (2.12) 

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (2.13) 

 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (2.14) 

   

In the above formulation, 𝒚 is the vector of first stage decisions whose elements can be 

continuous, integer, or binary variables, 𝒙 is the vector of second-stage decisions and 𝜻 is 

the vector of uncertainties. The objective of (2.11) is the summation of the first stage decision 

cost and the worst-case cost of the second stage. The uncertainty vector 𝜻 can take values 

from the set Ξ. This uncertainty set can be characterized in different ways using box, 

polytopic, or other convex constraints. 

There are two main approaches to solve two-stage RO problems, Bender’s Decomposition 

and CCG. Since BD works slow in general we will use the CCG method, proposed by Zeng 
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and Zhao [11], in this thesis similar to several works in the literature. These algorithms can 

terminate by finding an optimal solution when the uncertainty sets are box or polytopic. In 

this thesis, we assume that they are characterized by box constraints. 

CCG algorithm can be explained by firstly understanding the DE formulation of the RO 

problem (2.11)-(2.14). In the second stage of the RO problem, uncertainty can be considered 

as an adversary trying to maximize the minimum cost that can be achieved by the “wait and 

see” decisions 𝒙. Although the vector 𝜻 can take values from a continuous domain, for 

polytopic sets it can be easily shown that worst-case solutions lie at the corners of the 

polytope. Hence the maximum can be taken over a finite set of corner points 𝜻1, . . , 𝜻𝑅. This 

leads to the following DE which is a single-stage optimization problem: 

 min
𝐲

𝒄𝑇𝒚 + 𝜂 (2.15) 

 subject to:  

 𝑨𝒚 ≤ 𝒅 (2.16) 

 𝜂 ≥ 𝒃𝑇𝒙(𝜻𝑟), 𝑟 = 1: 𝑅 (2.17) 

 𝑬𝒚 + 𝑮𝒙(𝜻𝑟) ≤ 𝒉 + 𝑴𝜻𝑟, 𝑟 = 1: 𝑅 (2.18) 

 𝜂 ∈ ℝ, 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (2.19) 

   

Although it has a simple form, the above given DE is difficult to solve in general because 𝑅 

increases exponentially with the dimension of 𝜻. 

The CCG algorithm is based on the following key observation about the DE problem. Instead 

of considering all corners, if a subset of them is used in (2.16)-(2.19), a relaxed problem can 

be obtained giving a lower bound on the DE. By adding new uncertainties to this relaxation 

incrementally, one can obtain improving approximations. If these approximations converge 

to the optimal solution after adding a reasonable number of corners,  the optimal solution of 

the RO problem can be obtained tractably. 

CCG algorithm is given in Algorithm 2.1. It solves the following master and slave problems 

iteratively. Here the master problem is the relaxation of the DE mentioned above. The slave 

problem finds a new corner to be added to the uncertainty set in each iteration of the 

algorithm. 
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 Master Problem:  

 
min

𝐲
𝒄𝑇𝒚 + 𝜂 (2.20) 

 subject to:  

 𝑨𝒚 ≤ 𝒅 (2.21) 

 𝜂 ≥ 𝒃𝑇𝒙(𝜻𝑟), ∀𝑟 ∈ Ω (2.22) 

 𝑬𝒚 + 𝑮𝒙(𝜻𝑟) ≤ 𝒉 + 𝑴𝜻𝑟, ∀𝑟 ∈ Ω (2.23) 

 𝜂 ∈ ℝ, 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (2.24) 

 Slave Problem:  

 𝜙(𝒚) = max
𝜻∈Ξ

min
𝒙

𝒃𝑇𝒙(𝜻) (2.25) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (2.26) 

 𝒙 ∈ ℝm (2.27) 

   

where Ξ = {𝜻 ⊂ ℝ𝑢: 𝜻 ≤ 𝜻 ≤ 𝜻}.  

In the CCG method given in Algorithm 2.1, the uncertain scenarios are added to the master 

problem gradually in Step 4a and 4b, unlike DE which involves all extreme point scenarios. 

The optimal solution of the slave problem, which is solved in Step 3, gives the scenario to 

be added to the set Ω of the master problem. The procedure expands the set Ω which is a 

subset of Ξ, at the end of 4a and 4b. Since the constraints (2.22) are defined on the set Ω, a 

subset of all possible uncertain scenarios, the master problem gives a lower-bound (LB) to 

the original two-stage RO problem which is calculated on Step 2, and adding more scenarios 

can give stronger lower bounds. The objective value of the master problem is added to the 

objective value of the slave problem and a new value is calculated in Step 3. This gives an 

upper-bound (UB) to the original two-stage RO problem because the summation of the cost 

of a first-stage feasible solution with the cost of a second-stage optimal solution yields an 

upper-bound to a minimization problem. The master problem is a MILP and can be solved 

by off-the-shelf solvers in Step 2. On the other hand, it is assumed that there is an oracle to 
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solve the given subproblem in Step 3. Algorithms that can be used to solve the subproblem 

will be introduced in the next section. 

Algorithm 2.1. Column and constraint generation method 

 

1. Set 𝐿𝐵 = −∞, 𝑈𝐵 = +∞, 𝑘 = 0, Ω = ∅. 

2. Solve the master problem (2.20)-(2.24) and get 𝒚𝑘+1
∗ , 𝜂𝑘+1

∗ , 𝒙(𝜻1)∗, …, 𝒙(𝜻𝑘)∗ 

and update 𝐿𝐵 = 𝒄𝑇𝒚𝑘+1
∗ + 𝜂𝑘+1

∗ . 

3. Solve the slave problem 𝜙(𝒚𝑘+1
∗ ) and update 𝑈𝐵 = min{𝑈𝐵, 𝒄𝑇𝒚𝑘+1

∗ + 

𝜙(𝒚𝑘+1
∗ )}. 

4. If 𝑈𝐵 − 𝐿𝐵 ≤ 𝜀, return 𝒚𝑘+1
∗  and terminate. Otherwise, do 

a. if 𝜙(𝒚𝑘+1
∗ ) < +∞, create variables 𝒙(𝜻𝑘+1) and add the following 

constraints 

𝜂 ≥ 𝒃𝑇𝒙(𝜻𝑘+1)  

𝑬𝒚 + 𝑮𝒙(𝜻𝑘+1) ≤ 𝒉 + 𝑴𝜻𝑘+1∗
  

to the master problem where 𝜻𝑘+1∗
is the optimal solution on 𝜙(𝒚𝑘+1

∗ ). 

Update 𝑘 = 𝑘 + 1, 𝛺 = 𝛺 ∪ {𝜻𝑘+1∗
} and go to Step 2. 

b. if 𝜙(𝒚𝑘+1
∗ ) = +∞, create variables 𝒙(𝜻𝑘+1)  and add the following 

constraints 

𝑬𝒚 + 𝑮𝒙(𝜻𝑘+1) ≤ 𝒉 + 𝑴𝜻𝑘+1∗
 

to the master problem where 𝜻𝑘+1∗
 is the scenario for which 𝜙(𝒚𝑘+1

∗ ) =

+∞. Update 𝑘 = 𝑘 + 1, 𝛺 = 𝛺 ∪ {𝜻𝑘+1∗
} and go to Step 2. 

 

In the algorithm given above, the constraints formulated in Step 4a present as optimality 

cuts, and constraints formulated in Step 4b present as feasibility cuts. This algorithm is 

guaranteed to converge to an optimal solution of  (2.11)-(2.14) after finitely many steps. 𝜀 is 

the tolerance used for terminating the algorithm. 

2.3. TWO-STAGE STOCHASTIC ROBUST OPTIMIZATION AND ITS 

DETERMINISTIC EQUIVALENT 

SP and RO approach described in previous sections have their own advantages and 

disadvantages. The former is usually preferred in many applications because optimization of 

expected cost constitutes a realistic objective. However, since one needs to approximate the 

expectation by taking samples, all possible values of uncertainties cannot be taken into 
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account. Thus, the solutions found may lead to infeasibilities if such uncertainties occur. RO, 

on the other hand, ensures feasibility for all possible realization of uncertainties but the 

worst-cost objective is conservative so that the solutions found lead to high costs on average. 

In order to overcome the problems mentioned and take the advantage of the desired features 

of SP and RO, a new method named Stochastic Robust Optimization was proposed in [9]. 

The problem solved in SRO can be formulated as follows: 

 min
𝐲

𝒄𝑇𝒚 + 𝛼 𝔼[min
𝐱

𝒃𝑇𝒙(𝝃)] + (1 − 𝛼) max
𝛇∈Ξ

min
𝐱

𝒃𝑇𝒙(𝜻) (2.28) 

 subject to:  

 𝑨𝒚 ≤ 𝒅 (2.29) 

 Stochastic Constraints:  

 𝑬𝒚 + 𝑮𝒙(𝝃) ≤ 𝒉 + 𝑴𝝃 (2.30) 

 𝝃 ∈ Ξ (2.31) 

 Robust Constraints:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (2.32) 

 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (2.33) 

   

In the above, the objective function (2.28) is composed of three parts. The first part 

minimizes the first-stage decision cost, the second part is the expectation of the second-stage 

stochastic decision cost and the third part minimizes the second-stage cost under worst-case 

uncertainty. The weight factors, 𝛼 for the stochastic optimization objective and (1 − 𝛼) for 

the robust optimization objective, are used in order to determine the contribution of 

stochastic and robust parts to the overall objective function value. 𝒙 and 𝒚 represent second 

and first stage decisions, respectively. The DE of the above two-stage stochastic robust 

problem can be given as below: 

 min 𝒄𝑇𝒚 + 𝛼
1

𝑁
∑ 𝒃𝑇𝒙(𝝃𝑠)

𝑁

𝑠=1

+ (1 − 𝛼)𝜂 (2.34) 

 subject to:  
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 𝑨𝒚 ≤ 𝒅 (2.35) 

 Stochastic Constraints:  

 𝑬𝒚 + 𝑮𝒙(𝝃𝑠) ≤ 𝒉 + 𝑴𝝃𝑠 , 𝑠 = 1: 𝑁 (2.36) 

 Robust Constraints:  

 𝜂 ≥ 𝒃𝑇𝒙(𝜻𝑟), 𝑟 = 1: 𝑅 (2.37) 

 𝑬𝒚 + 𝑮𝒙(𝜻𝑟) ≤ 𝒉 + 𝑴𝜻𝑟, 𝑟 = 1: 𝑅 (2.38) 

 𝜂 ∈ ℝ, 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (2.39) 

   

This problem can be solved by using a combination of DE and CCG. To be more specific, 

in practical applications, the expected objective is usually approximated well by using a 

relatively small number of scenarios. Hence, the SP part can be represented by a DE. For the 

RO part, on the other hand, one may employ the CCG algorithm because it is known to 

terminate after adding a reasonable number of worst-case scenarios in practice. This idea 

leads to Algorithm 2.2 which solves the following master and slave problems repeatedly to 

obtain an optimal solution of the SRO problem given in (2.34)-(2.39). 

 Master Problem:  

 min
𝐲

𝒄𝑇𝒚 + 𝛼 
1

𝑁
∑ 𝜂𝑠 + (1 − 𝛼)

𝑁

𝑠=1

𝜂 (2.40) 

 subject to:  

 𝑨𝒚 ≤ 𝒅 (2.41) 

 Stochastic Constraints:  

 𝜂𝑠 ≥ 𝒃𝑇𝒙(𝝃𝑠), 𝑠 = 1: 𝑁  (2.42) 

 𝑬𝒚 + 𝑮𝒙(𝝃𝑠) ≤ 𝒉 + 𝑴𝝃𝑠 , 𝑠 = 1: 𝑁 (2.43) 

 𝜂𝑠 ∈ ℝ, 𝑠 = 1: 𝑁 (2.44) 

 Robust Constraints:  

 𝜂 ≥ 𝒃𝑇𝒙(𝜻𝑟), ∀𝑟 ∈ Ω (2.45) 
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 𝑬𝒚 + 𝑮𝒙(𝜻𝑟) ≤ 𝒉 + 𝑴𝜻𝑟, ∀𝑟 ∈ Ω (2.46) 

 𝜂 ∈ ℝ, 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (2.47) 

 Slave problem:  

 𝜙(𝒚) = max
𝜻∈Ξ

min
𝒙

𝒃𝑇𝒙(𝜻) (2.48) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (2.49) 

 𝒙 ∈ ℝm (2.50) 

   

where Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 } and 𝑁 is the number of generated stochastic scenarios. 

Algorithm 2.2. Modified CCG method 

 

1. Set 𝐿𝐵 = −∞, 𝑈𝐵 = +∞, 𝑘 = 0, set Ω = {𝝃𝑠, 𝑠 = 1: 𝑁}. 

2. Solve the master problem and get 𝒚𝑘+1
∗ , 𝜂𝑘+1

∗ , 𝜂𝑠
∗, 𝑠 = 1: 𝑁, 𝒙(𝝃1)∗, …, 𝒙(𝝃𝑁)∗, 

𝒙(𝜻1)∗, …, 𝒙( 𝜻𝑘)∗ and update 𝐿𝐵 = 𝒄𝑇𝒚𝑘+1
∗ + 𝛼

1

𝑁
∑ 𝜂𝑠

∗ + (1 − 𝛼)𝑁
𝑠=1 𝜂𝑘+1

∗ . 

3. If 𝑈𝐵 − 𝐿𝐵 ≤ 𝜀, return 𝒚𝑘+1
∗  and terminate. Otherwise, 

4. Check the feasibility of the slave problem under 𝒚𝑘+1
∗ . 

a. If the slave problem is infeasible, create variables 𝒙(𝜻𝑘+1) and add the 

following constraints 

𝑬𝒚 + 𝑮𝒙(𝜻𝑘+1) ≤ 𝒉 + 𝑴𝜻𝑘+1∗ 

to the master problem where 𝜻𝑘+1∗ is the scenario that makes the 

subproblem infeasible. Update, 𝑘 = 𝑘 + 1, 𝛺 = 𝛺 ∪ {𝜻𝑘+1∗} and go to 

Step 2. 

b. Otherwise, solve the subproblem 𝜙(𝒚𝑘+1
∗ ), create variables 𝒙(𝜻𝑘+1) and 

add the following constraints 

𝜂 ≥ 𝒃𝑇𝒙(𝜻𝑘+1) 

𝑬𝒚 + 𝑮𝒙(𝜻𝑘+1) ≤ 𝒉 + 𝑴𝜻𝑘+1∗ 

to the master problem where 𝜻𝑘+1∗ is the scenario solving the slave 

problem. Update 𝑈𝐵 = min{𝑈𝐵, 𝒄𝑇𝒚𝑘+1
∗ + 𝛼

1

𝑁
∑ 𝜂𝑠

∗ + (1 −𝑁
𝑠=1

𝛼) 𝜙(𝒚𝑘+1
∗ )}, 𝑘 = 𝑘 + 1, 𝛺 = 𝛺 ∪ {𝜻𝑘+1∗} and go to Step 2. 

 

As can be seen, Algorithm 2.2. is very similar to the CCG algorithm given in Algorithm 

2.1. The main difference is that scenarios used for the DE of the stochastic part are added 
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at the very beginning. Besides, the lower and upper bounds computed combines stochastic 

objective with the bounds of the RO part. 
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3. SOLUTION METHODS FOR SECOND-STAGE MAX-MIN 

PROBLEM AND PROPOSED METHODS 

 

CCG algorithms introduced in Algorithm 2.1. and Algorithm 2.2 relies on the solution of the 

slave problem (2.48)-(2.50). This is a max-min type problem, which is NP-hard in general, 

and hence, difficult to solve. Several methods have been proposed in the literature to solve 

this type of problem, which can be categorized into three different classes.  

The first class contains dedicated algorithms making use of tailored versions of optimization 

strategies such as branch-and-bound, vertex enumeration, etc. Although, there is a large body 

of literature on these methods, in practice, particularly in power systems literature, they are 

seldom used. This is because they require considerable coding effort and making them 

numerically reliable is a difficult task.  

The second class tries to convert the max-min problem into an equivalent MILP via some 

transformations. This allows for solving the problem by making use of reliable off-the-shelf 

software packages. Thus, coding effort and numerical problems are easily avoided. This 

approach is mostly preferred in studies applying RO techniques to specific areas such as 

power systems. 

The last class involves approximation methods. Because the max-min problem is NP-hard 

in general, it can be difficult to solve (2.48)-(2.50) to optimality for large instances. In this 

case, one may need to resort to some cheaply computable approximations. 

In the first two sections given below, solution techniques employed in the literature for the 

last two classes summarized above will be described. Then, two new techniques proposed in 

this thesis will be introduced. The first class of methods is omitted since they are rarely used 

in the power systems literature. 
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3.1. EXACT SOLUTION METHODS 

3.1.1. Extreme Point Method 

The EP method is proposed for robust optimization problems in which only robust feasibility 

is considered. In the case of the two-stage robust optimization, one can check if the second-

stage problem is robustly feasible under the first-stage decision and find the uncertain 

scenario that makes the system infeasible. 

To check feasibility, two positive slack variables, 𝒔+ and 𝒔−, are added to the slave problem 

and it is reformulated as follows: 

 𝜓(𝒚) = max
𝜻∈Ξ

min
𝒙,𝒔+,𝒔−

𝒔+ + 𝒔− (3.1) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 + 𝒔− − 𝒔+ (3.2) 

 𝒔+, 𝒔− ≥ 0, 𝒙 ∈ ℝm (3.3) 

   

where Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 }. In order to convert the problem (3.1)-(3.3) into single-

level optimization, the dual of the inner minimization problem is taken, which yields to: 

 𝜓(𝒚) = max
𝜻,𝜷

𝜷𝑇(𝑬𝒚 − 𝒉) − 𝜷𝑇𝑴𝜻 (3.4) 

 subject to:  

 𝑮𝑇𝜷 = 0 (3.5) 

 0 ≤ 𝜷 ≤ 1 (3.6) 

 𝜻 ≤ 𝜻 ≤ 𝜻 (3.7) 

   

where 𝜷 represents the vector of dual variables. The problem above is a bilinear optimization 

problem because there is a product of terms in the objective function (3.4). It can be 

transformed into a MILP applying the reformulation-linearization technique introduced in 

[14] and described below. 
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Because uncertainties maximizing the slave problem (3.1)-(3.3) are extreme points of Ξ, they 

can be expressed by introducing binary variables 𝑧𝑗
+ and 𝑧𝑗

− as follows: 

 𝜁𝑗 = 𝜁𝑗 𝑧𝑗
− + 𝜁𝑗 𝑧𝑗

+, 𝑗 = 1: 𝑏 (3.8) 

 𝑧𝑗
+ + 𝑧𝑗

− ≤ 1, 𝑗 = 1: 𝑏 (3.9) 

 𝑧𝑗
+, 𝑧𝑗

− ∈ {0,1}, 𝑗 = 1: 𝑏  (3.10) 

   

In the above formulation, constraints (3.8) implies that uncertainties occur at the extreme 

points. If 𝑧𝑗
+ = 1, then 𝜁𝑗 = 𝜁𝑗 , which is the upper-bound of uncertainty. If 𝑧𝑗

− = 1, then 

𝜁𝑗 = 𝜁𝑗, which is the lower-bound of uncertainty. 

Defining auxiliary continuous variables 𝑣𝑖𝑗
+ = 𝛽𝑖𝑧𝑗

+ and 𝑣𝑖𝑗
− = 𝛽𝑖𝑧𝑗

−, where 𝑖 is an index for 

dual variables, and using the equations (3.8)-(3.10), (3.4)-(3.7) can be equivalently written 

as follows: 

 𝜓(𝒚) = max
𝜷,𝒛+,𝒛−,𝒗+,𝒗− 

𝜷𝑇(𝑬𝒚 − 𝒉) − ∑ ∑ 𝑚𝑖𝑗(
𝑗𝑖

𝜁𝑗 𝑣𝑖𝑗
− + 𝜁𝑗 𝑣𝑖𝑗

+) (3.11) 

 subject to:  

 𝑮𝑇𝜷 = 0 (3.12) 

 𝑣𝑖𝑗
+ = 𝛽𝑖𝑧𝑗

+, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.13) 

 𝑣𝑖𝑗
− = 𝛽𝑖𝑧𝑗

−, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.14) 

 𝑧𝑗
+ + 𝑧𝑗

− ≤ 1, 𝑗 = 1: 𝑏 (3.15) 

 0 ≤ 𝜷 ≤ 1 (3.16) 

 𝑧𝑗
+, 𝑧𝑗

− ∈ {0,1}, 𝑗 = 1: 𝑏 (3.17) 

   

where 𝑚𝑖𝑗 represents the elements of the matrix 𝑴. The problem above is still bilinear due 

to Constraints (3.13) and (3.14). They can be linearized, by adding new valid constraints that 

can be derived from McCormick envelopes [15]. The new problem takes the following form: 

 𝜓(𝒚) = max
𝜷,𝒛+,𝒛−,𝒗+,𝒗− 

(𝑬𝒚 − 𝒉)𝑇𝜷 − ∑ ∑ 𝑚𝑖𝑗(
𝑗𝑖

𝜁𝑗 𝑣𝑖𝑗
− + 𝜁𝑗 𝑣𝑖𝑗

+) (3.18) 



18 

 

 

 subject to:  

 𝑮𝑇𝜷 = 0 (3.19) 

 𝑧𝑗
+ + 𝑧𝑗

− ≤ 1, 𝑗 = 1: 𝑏 (3.20) 

 0 ≤ 𝜷 ≤ 1 (3.21) 

 𝑧𝑗
+, 𝑧𝑗

− ∈ {0,1}, 𝑗 = 1: 𝑏 (3.22) 

 𝑣𝑖𝑗
+ ≥ 0, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.23) 

 𝑣𝑖𝑗
+ ≥ 𝑧𝑗

+ + 𝛽𝑖 − 1, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.24) 

 𝑣𝑖𝑗
+ ≤ 𝑧𝑗

+, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.25) 

 𝑣𝑖𝑗
+ ≤ 𝛽𝑖 , 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.26) 

 𝑣𝑖𝑗
− ≥ 0, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.27) 

 𝑣𝑖𝑗
− ≥ 𝑧𝑗

− + 𝛽𝑖 − 1, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.28) 

 𝑣𝑖𝑗
− ≤ 𝑧𝑗

−, 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.29) 

 𝑣𝑖𝑗
− ≤ 𝛽𝑖 , 𝑖 = 1: 𝑎, 𝑗 = 1: 𝑏 (3.30) 

   

It is easy to verify that, in above, constraints (3.23)-(3.26) ensure that 𝑣𝑖𝑗
+ is equal to 𝛽𝑖 if 

𝑧𝑗
+ = 1 and it is zero otherwise. The same also applies to 𝑣𝑖𝑗

−, 𝑧𝑗
− and 𝛽𝑖. 

The problem (3.18)-(3.30) is a MILP and can be solved reliably using commercially 

available software packages. An important feature of this problem, owing to the bounds on 

𝜷 imposed by (3.21), the use of the big-M approach is avoided, which leads to numerical 

problems and reliability issues as described in the sequel. 

3.1.2. Fortuny-Amat Formulation 

Consider the max-min optimization slave problem introduced in Section 2, which is given 

below for convenience. 

 𝜙(𝒚) = max
𝜻∈Ξ

min
𝒙

𝒃𝑇𝒙(𝜻) (3.31) 
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 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝐌𝛇 (3.32) 

 𝒙 ∈ ℝm (3.33) 

   

where Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 }. A popular method to convert it into a MILP is the 

Fortuny-Amat method introduced in [16]. In this method, the inner minimization is replaced 

with KKT conditions, which are added as constraints to the outer maximization. This leads 

to the following single-level problem: 

 𝜙(𝒚) = max
𝜻∈Ξ,𝒙,𝜷

𝒃𝑇𝒙(𝜻) (3.34) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (3.35) 

 𝑮𝑇𝜷 = −𝒃 (3.36) 

 (𝑬𝒚 + 𝑮𝒙(𝜻) − 𝒉 − 𝑴𝜻)𝑖𝛽𝑖 = 0, 𝑖 = 1: 𝑎 (3.37) 

 𝜷 ≥ 0 (3.38) 

 𝒙 ∈ ℝ𝑚 (3.39) 

   

where Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 } and 𝜷 represents the vector of dual variables of the 

problem (3.31)-(3.33). Constraints (3.37) are complementary slackness conditions, where 𝑖 

is the index of the dual variables and their corresponding constraints. To obtain a MILP, 

these constraints can be replaced with the following using the big-M technique by 

introducing binary variables 𝑣𝑖: 

 (−𝑬𝒚 − 𝑮𝒙(𝜻) + 𝒉 + 𝑴𝜻)𝑖 ≤ (1 − 𝑣𝑖) 𝑀𝑖
𝑃 , 𝑖 = 1: 𝑎 (3.40) 

 𝛽𝑖 ≤ 𝑣𝑖 𝑀𝑖
𝐷 , 𝑖 = 1: 𝑎 (3.41) 

 𝑣𝑖 ∈ {0,1}, 𝑖 = 1: 𝑎  (3.42) 

   

where 𝑀𝑖
𝑃, 𝑀𝑖

𝐷 are large enough constants. The new problem, which is a MILP, becomes: 
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 𝜙(𝒚) = max
𝜻∈Ξ,𝒙,𝜷

𝒃𝑇𝒙(𝜻) (3.43) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (3.44) 

 𝑮𝑇𝜷 = −𝒃 (3.45) 

 (−𝑬𝒚 − 𝑮𝒙(𝜻) + 𝒉 + 𝑴𝜻)𝑖 ≤ (1 − 𝑣𝑖) 𝑀𝑖
𝑃 , 𝑖 = 1: 𝑎 (3.46) 

 𝛽𝑖 ≤ 𝑣𝑖 𝑀𝑖
𝐷 , 𝑖 = 1: 𝑎 (3.47) 

 𝑣𝑖 ∈ {0,1}, 𝑖 = 1: 𝑎  (3.48) 

 𝜷 ≥ 0 (3.49) 

 𝒙 ∈ ℝ𝑚 (3.50) 

   

where Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 }. In the problem above, 𝑀𝑖
𝑃and 𝑀𝑖

𝐷 are the upper bounds 

of the primal and dual variables, respectively. Selecting an appropriate value to 𝑀𝑖
𝑃 is usually 

easy because bounds on the primal variables can be obtained from physical limitations. 

However, it is a difficult task to find appropriate value to 𝑀𝑖
𝐷 since the upper limits of dual 

variables do not have any physical interpretation. This complication was discussed in [12] 

in the context of more general bilevel optimization problems. The main issue is that if one 

chooses values for 𝑀𝑖
𝐷 which are not big enough, then the optimal solution will be incorrect 

because (3.47) will be binding constraints which is not a part of the actual problem. In order 

to avoid this, if one picks too big values for 𝑀𝑖
𝐷, then numerical problems may easily arise 

making the MILP solver to fail to find an optimal solution. This constitutes a fundamental 

difficulty in the solution of max-min problems using the Fortuny-Amat approach. 

Another point that should be taken into account with the method described above is the 

validity of the KKT conditions (3.36)-(3.37). They are applicable if the max-min problem 

(3.31)-(3.33) has a feasible solution. Thus, in practice, before using this method, one may 

perform a feasibility check, which can be done using the EP approach introduced in the 

previous section. 
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3.2. APPROXIMATION METHODS 

3.2.1. Mountain Climbing Method  

Mountain climbing is a greedy approach to find a solution to the inner max-min problem. 

The method relies on iteratively solving two linear programs [9]. It is an efficient method 

but only guarantees local optimality. To apply the method, first, the inner max-min problem 

is converted into its single-level equivalent by taking the dual of the lower-level 

minimization problem. So, the problem (3.31)-(3.33) can be reformulated into its single-

level maximization problem as the following: 

 𝜙(𝒚) = max
𝜻∈Ξ,𝜷

(𝑬𝒚 − 𝒉)𝑇𝜷 − (𝑴𝜻)𝑇𝜷 (3.51) 

 subject to:  

 𝑮𝑇𝜷 = −𝒃 (3.52) 

 𝜷 ≥ 0 (3.53) 

   

where Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 } and 𝜷 represents the vector of dual variables of the 

lower-level minimization problem. Then, two linear programs obtained from the bilinear 

problem given above can be expressed as follows: 

 First Problem:  

 𝜙1(𝒚, 𝜻) = max
 𝜷

(𝑬𝒚 − 𝒉 − 𝑴𝜻)𝑇𝜷 (3.54) 

 subject to:  

 𝑮𝑇𝜷 = −𝒃 (3.55) 

 𝜷 ≥ 0 (3.56) 

 Second Problem:  

 𝜙2(𝒚, 𝜷) = max −
 𝜻∈Ξ

𝜷𝑇𝑴𝜻 + (𝑬𝒚 − 𝒉)𝑇𝜷 (3.57) 

   

The first LP starts with an initial guess 𝜻 and finds a dual variable vector 𝜷 and gives it to 

the second LP. The second LP finds an uncertainty vector 𝜻 for the given 𝜷 and produces a 
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decision vector 𝜻 to the first LP. The procedure goes on until the method terminates. The 

pseudo-code of this algorithm is given in Algorithm 3.1. 

Algorithm 3.1. Mountain Climbing method 

 

1. Pick an extreme point 𝜻 in Ξ. 

2. Solve the problem (3.54)-(3.56). If the problem (3.54)-(3.56) is infeasible, let 

𝜙1(𝒚, 𝜻) = −∞. Otherwise, keep the objective value 𝜙1(𝒚, 𝜻) and the optimal 

solution 𝜷. 

3. If 𝜙1(𝒚, 𝜻) = −∞, let 𝜙(𝒚) = +∞, return 𝜻 and terminate. Otherwise, Solve the 

problem (3.57) and keep the objective value 𝜙2(𝒚, 𝜷) and optimal solution 𝜻∗. 

4. If 𝜙2(𝒚, 𝜷) − 𝜙1(𝒚, 𝜻) > 𝜀, let 𝜻 = 𝜻∗ and go to Step 2. Otherwise, return 𝜻, 

𝜙′(𝒚) = (𝜙1(𝒚, 𝜻) + 𝜙2(𝒚, 𝜷))/2 and terminate. 

 

The algorithm described above finds a value for the objective function 𝜙(𝒚) and the worst-

case uncertainty 𝜻. Since it is a local optimization method, it does not guarantee to find a 

globally optimal solution. Hence, the solution found gives a lower bound on the optimal 

solution, in general. Note that this method also performs a feasibility check. But since this 

test is also based on local optimization, the problem can be incorrectly reported as feasible 

for infeasible instances. At the first step of the algorithm, one has to start with an initial guess 

of uncertainty. When there is no other information, one can choose a special extreme point 

such as all coordinates taking maximum or minimum values or a randomly generated 

extreme point. These strategies will be tested in Sections 5.1.2, 5.2.2, and 5.3.2. 

3.2.2. Outer Approximation Method 

The outer approximation is another method that can find a locally optimal solution to solve 

the inner max-min problem. In order to apply the method, first, the dual of the lower-level 

minimization problem is taken and it can be given as the following: 

 𝜏(𝒚, 𝜻) = max
𝜷

(𝑬𝒚 − 𝒉)𝑇𝜷 − (𝑴𝜻)𝑇𝜷 (3.58) 

 subject to:  

 𝑮𝑇𝜷 = −𝒃 (3.59) 
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 𝜷 ≥ 0 (3.60) 

   

where 𝜷 represents the vector of dual variables. Now the inner max-min problem (3.31-3.33) 

is equivalent to a BLP as follows: 

 𝜙(𝒚) = max
𝜻∈𝚵,𝜷

(𝑬𝒚 − 𝒉)𝑇𝜷 − (𝑴𝜻)𝑇𝜷 (3.61) 

 subject to:  

 𝑮𝑇𝜷 = −𝒃 (3.62) 

 𝜷 ≥ 0 (3.63) 

   

where Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 }. The method is used to solve the above BLP, where the 

linear approximations of the bilinear term in the objective function are added to the OA 

formulation and the bilinear term is linearized around intermediate solution points [8]. A 

pseudo-code of the OA method is given below: 
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Algorithm 3.2. Outer Approximation method 

 

1. Pick an extreme point 𝜻1 in Ζ. Set 𝐿𝐵 = −∞, 𝑈𝐵 = +∞, 𝑗 = 1. 

2. Solve the problem 𝜏(𝒚, 𝜻𝑗) defined by (3.58)-(3.60). Let 𝜷𝑗 be the optimal 

solution. Set 𝐿𝐵 = 𝜏(𝒚, 𝜻𝑗). Define 𝐿𝑗(𝑴𝜻, 𝜷), the linearization of the bilinear 

term (𝑴𝜻)𝑇𝜷 at (𝑴𝜻𝑗 , 𝜷𝑗), as follows:  

𝐿𝑗(𝑴𝜻, 𝜷) = (𝑴𝜻𝑗)𝑇𝜷𝑗 + (𝜷 − 𝜷𝑗)
𝑇

(𝑴𝜻𝑗) + (𝑴𝜻 − 𝑴𝜻𝑗)
𝑇

𝜷𝑗. 

3. Check if 𝑈𝐵 − 𝐿𝐵 < 𝜀, then terminate and return the current solution. 

Otherwise, set 𝑗 = 𝑗 + 1 and go to Step 4. 

4. Solve the linearized version of the problem 𝜙(𝒚), defined as follows: 

 𝑈(𝒚, 𝜻𝑗 , 𝜷𝑗 ) = max
𝜻∈𝚵,𝜷,𝜆

(𝑬𝒚 − 𝒉)𝑇𝜷 − (𝑴𝜻)𝑇𝜷 + 𝜆 (3.64) 

 subject to:  

 𝜆 ≤ 𝐿𝑖(𝑴𝜻, 𝜷),   ∀𝑖 = 1, … , 𝑗 (3.65) 

 𝑮𝑇𝜷 = −𝒃 (3.66) 

 𝜷 ≥ 0 (3.67) 

 Ξ = { 𝛇 ∈ ℝ𝑢 ∶  𝜻 ≤ 𝜻 ≤ 𝜻 } (3.68) 

5. Denote (𝜻𝑗+1, 𝜷𝑗+1, 𝜆𝑗+1) as the optimal solution. Set the 𝑈𝐵 = 𝑈(𝒚, 𝜻𝑗 , 𝜷𝑗 ). 

 

The OA method guarantees the local optimum since the problem (3.61)-(3.63) is 

nonconcave [8]. 

3.3. METHODS PROPOSED IN THIS THESIS 

Two new methods are proposed in this thesis for the solution of the max-min slave problem. 

The first one combines EP and MC algorithms to obtain a new local optimization method 

that can give better approximations and guarantee robust feasibility. The second one is an 

interval partitioning based method that can find a globally optimal solution to the max-min 

optimization problem by employing off-the-shelf solvers and avoiding the use of the big-M 

technique. 
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3.3.1. A Hybrid Optimization Method 

EP method introduced in Section 3.1.1 can be used to check the feasibility of the max-min 

problem reliably because it does not make use of the big-M technique owing to the bounds 

on the dual variables. But it does not solve the optimality problem (2.48)-(2.50). On the other 

hand, the MC method can find a locally optimal solution to the max-min problem but the 

global optimality will depend on the initial guess which is chosen at Step 1 of Algorithm 3.1. 

As described in Section 3.2.1, when there is no other information, the initial guess can be 

taken as a randomly chosen extreme point or a special extreme point such as all maximum 

or all minimum.  

The proposed hybrid optimization algorithm combines EP and MC methods. It first applies 

the EP to check feasibility. If the problem is feasible, its solution is used to obtain an initial 

guess for the MC. In this way, the MC algorithm can start from a better guess than the ones 

mentioned above. This proposed hybrid method is given in Algorithm 3.3. 

Algorithm 3.3. Hybrid optimization method 

 

1. Check the feasibility of the problem (2.48)-(2.50) with the EP method. 

2. If the problem is infeasible, return 𝜻∗ and terminate. 

3. Otherwise, keep 𝜻∗. Solve the problem (2.48)-(2.50) with MC method using 

initial guess as 𝜻∗.  

4. Return 𝜙′(𝒚), 𝜻, and terminate. 

 

3.3.2. An Interval Partitioning Method  

The second proposed method can find the global optimal solution of the max-min problem. 

It uses the EP method to find iteratively improving intervals that contain the optimal 

objective value. The lengths of these intervals are reduced by half-width at each iteration. 

Hence they converge to the optimal solution quickly after a reasonable number of steps. 

One needs an initial interval for this method. For the upper bound of the interval, the inner-

minimization of the original max-min problem is turned into maximization. This new 

problem is given in (3.69)-(3.72) and since the objective is replaced with a greater objective, 
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the solution of this problem gives an upper-bound. As for the lower bound, the outer-

maximization of the original max-min problem is turned into minimization. This problem is 

given in (3.73)-(3.76) and since the objective is replaced with a smaller objective, the 

solution of this problem gives a lower-bound. 

 𝜙(𝒚) = max
𝜻,𝒙

𝒃𝑇𝒙(𝜻) (3.69) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (3.70) 

 𝒙 ∈ ℝ𝑚  (3.71) 

 𝜻 ≤ 𝜻 ≤ 𝜻 (3.72) 

   

 

 𝜙(𝒚) = min
𝜻,𝒙

𝒃𝑇𝒙(𝜻) (3.73) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (3.74) 

 𝒙 ∈ ℝ𝑚  (3.75) 

 𝜻 ≤ 𝜻 ≤ 𝜻 (3.76) 

   

It is hard to solve the inner max-min optimization problem exactly. Thus, we iteratively 

convert this max-min problem into feasibility problems. Feasibility problems are obtained 

as follows. The objective function of the max-min problem is put as a constraint to the 

problem by setting its right-hand side as 𝑒. If the problem is feasible this means that 𝑒 is 

greater than the optimal objective value. Otherwise, 𝑒 is less than the optimal objective value. 

The feasibility problem defined is as follows: 

 𝜔(𝒚) = max
𝜻∈Ξ

min
𝒙,𝒔+,𝒔−

𝒔+ + 𝒔− (3.77) 

 subject to:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 + 𝒔− − 𝒔+ (3.78) 

 𝒃𝑇𝒙(𝜻) ≤ 𝑒 (3.79) 
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 𝒔+, 𝒔− ≥ 0, 𝒙 ∈ ℝm (3.80) 

   

 

Algorithm 3.4. Interval partitioning method 

 

1. Set 𝑈𝐵 = 𝜙(𝒚) and 𝐿𝐵 = 𝜙(𝒚). 

2. If 𝑈𝐵 − 𝐿𝐵 < 𝜀, return 𝜻∗ and terminate. Otherwise, go to Step 3. 

3. Set 𝑒 =
𝑈𝐵+𝐿𝐵

2
 and solve the problem (3.77)-(3.80). 

4. If 𝜔(𝒚) > 𝜀, set 𝐿𝐵 = 𝑒. Otherwise, set 𝑈𝐵 = 𝑒 and go to Step 2. 

 

In the algorithm above, in Step 1 𝑈𝐵 and 𝐿𝐵 are obtained by solving problems (3.69)-(3.72) 

and (3.73)-(3.76), respectively. In Step 2, the difference between 𝑈𝐵 and 𝐿𝐵 is calculated 

and if it is under a certain threshold value, 𝜀, the algorithm terminates and the optimal 

solution is returned. If it is not, the algorithm moves to Step 3. In Step 3, first, 𝑒 is calculated 

as the midpoint of the interval the feasibility problem given in (3.77)-(3.80), is solved with 

the EP method. If 𝜔(𝒚) > 𝜀, then the original objective value of the max-min problem is 

greater than 𝑒, thus 𝐿𝐵 is updated as 𝑒. Otherwise if 𝜔(𝒚) = 0, then the optimal objective 

value of the max-min problem is less than 𝑒, therefore 𝑈𝐵 is updated and the algorithm goes 

to Step 2. 
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4. ENERGY STORAGE PLANNING PROBLEM AND ITS 

FORMULATION 

 

In this thesis, we study the sitting of energy storage devices in power networks. This problem 

is modeled as a two-stage stochastic robust optimization problem and solved using the 

method described in Section 2.3 that combines DE for the stochastic part with CCG for the 

robust part. For the second stage, the proposed exact and hybrid optimization methods are 

employed and compared with the other alternative described in Section 3.1.3. In below, first, 

a mathematical description of the problem is given and then, the explicit and abstract 

formulations of the two-stage stochastic robust optimization model are presented. 

4.1. PROBLEM DESCRIPTION 

The aim of the problem is to decide the locations of the energy storage units to be built in a 

power network such that installation and operation costs are minimized.  

Such a system is composed of the following components. There are buses to which several 

components of power networks such as conventional generators, energy storage devices, and 

loads are connected. The buses are linked to each other with lines that transfer limited 

amounts of power. 

Conventional thermal generators use non-renewable energy sources like fossil fuels; coal, 

natural gas, or nuclear power. Thermal generators have limited production capacity. Besides, 

they have hourly ramping-limits meaning that there is a bound on the change in the power 

produced between consecutive hours. 

Renewable energy generators use renewable energy sources like solar energy, wind, falling 

water, geothermal, biomass, and tidal energy. Wind generators are used commonly to 

produce power and in this thesis, we also use wind generators as renewable sources. 

Energy storage systems are the units that can store electric energy in different forms. They 

can be used to reduce line congestions, mitigate voltage deviations, regulate the system 

frequency, perform load shifting, shave energy peaks, and facilitate the integration of 

renewable energy sources [17]. There are different kinds of storage devices based on the 
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technology used. Some examples are superconducting magnetic energy storage, flywheel 

energy storage, battery energy storage, compressed air energy storage, and pumped hydro 

energy storage devices [18]. Mathematically, they can be modeled as energy inventories 

having physical limits on the amount of energy stored and charge/discharge power. 

 

 

 

Figure 4.1. M-bus power network 

 

Figure 4.1 is a representation of 𝑚-bus power network. The components that are explained 

above and lines from bus 𝑏 to other buses are depicted in the figure. In general, there can be 

connections from any bus to any other. In order to develop a mathematical model of the 

storage sitting problem, one needs to have constraints associated with the components of the 

power network summarized above. 

 Bus Energy Balance Constraints: 

 
∑ 𝑔𝑖𝑡

𝑖∈Λ𝑏

+𝑞𝑏𝑡 − 𝑝𝑏𝑡 + ∑ 𝐵𝑏𝑗(𝜃𝑗𝑡 − 𝜃𝑏𝑡)

𝑗∈Ω𝑏

= 𝑑𝑏𝑡 − ∑ 𝑤𝑤𝑡

𝑤∈𝒲𝑏

,

𝑡 = 1: 𝑇 

(4.1) 

   

Constraints (4.1) maintains energy balance on a bus. It ensures that the total power 

generation of thermal generators at bus 𝑏, plus energy discharged from storage unit minus 
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energy charged into storage plus power coming from other buses linked to bus 𝑏 is equal to 

power demand minus total wind generation of wind farms at that bus. 

 Storage Energy Balance Constraints: 

 𝐸𝑏𝑡 = 𝐸𝑏(𝑡−1) + 𝑝𝑏𝑡 − 𝑞𝑏𝑡, 𝑡 = 1: 𝑇 (4.2) 

   

Constraints representing the dynamics of energy storage systems are given in equation (4.2). 

As can be seen, in this equation energy level in storage in time 𝑡 is given by energy stored 

in the device in time (𝑡 − 1) plus charge rate minus discharge rate. 

 Line Flow Capacity Constraints: 

 𝐵𝑏𝑗(𝜃𝑏𝑡 − 𝜃𝑗𝑡) ≤ 𝐿𝑏𝑗, ∀𝑗 ∈ Ω𝑏, 𝑡 = 1: 𝑇 (4.3) 

   

The amount of power that a line can transfer is limited. This is given in constraints (4.3). 

Power flowing on the line is equal to susceptance of a line times phase difference between 

buses that are linked by that line. 

 Generator Capacity Constraints 

 𝑃𝐺𝑖 ≤ 𝑔𝑖𝑡 ≤ 𝑃𝐺𝑖 , ∀𝑖 ∈ Λ, 𝑡 = 1: 𝑇 (4.4) 

   

Power generation by a thermal generator is limited, lying between and upper and lower limit. 

 Ramping Capacity Constraints: 

 −𝑅𝑅𝑖 ≤ 𝑔𝑖𝑡 − 𝑔𝑖(𝑡−1) ≤ 𝑅𝑅𝑖 , ∀𝑖 ∈ Λ, 𝑡 = 1: 𝑇 (4.5) 

   

These constraints ensure that change in the power produced by a thermal unit in consecutive 

time instances is bounded below and above. 

 Storage Energy Capacity Constraints 

 𝐸𝑏 ≤ 𝐸𝑏𝑡 ≤ 𝐸𝑏, 𝑡 = 1: 𝑇 (4.6) 
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The amount of energy that a storage unit can store is limited. constraints (4.6) ensure that 

energy stored in the storage at bus 𝑏 is smaller than maximum energy capacity and 

greater than minimum energy capacity of the unit 

 Storage Charging Capacity Constraints 

 𝑝𝑏 ≤ 𝑝𝑏𝑡 ≤ 𝑝
𝑏

, 𝑡 = 1: 𝑇 (4.7) 

   

Constraints (4.7) ensure that energy charged to the ESS at bus 𝑏 is limited. 

 Storage Discharging Capacity Constraints 

 𝑞𝑏 ≤ 𝑞𝑏𝑡 ≤ 𝑞𝑏, 𝑡 = 1: 𝑇 (4.8) 

   

Constraints (4.8) guarantee that energy discharged from the ESS at bus 𝑏 is limited. 

4.2. FORMULATION AS A TWO-STAGE STOCHASTIC ROBUST 

OPTIMIZATION PROBLEM 

In this study, we build a two-stage stochastic robust programming model for the sitting of 

ESSs on power networks. The power network is composed of buses connected with 

transmission lines. Different components can be connected to each bus including, 

conventional thermal generators, energy storage units, wind generators as renewable energy 

sources, and loads. The mathematical model of the problem solved and its nomenclature are 

given below: 

Sets: 

ℬ: index set of all buses 

Ω𝑏: index set of buses linked to bus 𝑏 

Λ: index set of all thermal generators 

𝛬𝑏: index set of thermal generators connected to bus 𝑏 

𝒲𝑏: index set of wind farms at bus 𝑏  

𝒮: index set of all scenarios 

Indexes: 
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𝑏, 𝑗: indexes of buses 

𝑖: index of generators 

𝑡: index of time 

𝑤: index of wind farms 

𝑠: index of scenarios 

Parameters: 

𝑇: time horizon 

𝑆𝐶𝑏: storage investment cost at bus 𝑏 

𝐶𝐺𝑖: generation cost of thermal generator 𝑖 

𝐵𝑗𝑏: susceptance of the line between bus 𝑗 and bus 𝑏 

𝑤𝑤𝑡𝑠: wind power of wind farm 𝑤 in time 𝑡 and for scenario 𝑠 

𝑑𝑏𝑡
𝑛 : distributed nominal demand at bus 𝑏 in time 𝑡 

𝑤𝑤𝑡
𝑛 : nominal wind power of wind farm 𝑤 in time 𝑡 

Δ𝑤𝑤𝑡: upper-bound on wind deviation of wind farm 𝑤 in time 𝑡 

Δ𝑤𝑤𝑡: lower-bound on wind deviation of wind farm 𝑤 in time 𝑡 

𝐿𝑗𝑏: flow limit of the line between bus 𝑗 and bus 𝑏 

𝑃𝐺𝑖: maximum power generation of thermal generator 𝑖 

𝑃𝐺𝑖: minimum power generation of thermal generator 𝑖 

𝑅𝑅𝑖: ramp-rate limit of thermal generator 𝑖 

𝐸𝑏: maximum energy capacity of storage unit can be built at bus 𝑏 

𝐸𝑏: minimum energy capacity of storage unit can be built at bus 𝑏 

𝑝𝑏: maximum charging capacity of storage unit can be built at bus 𝑏 

𝑝𝑏: minimum charging capacity of storage unit can be built at bus 𝑏 

𝑞𝑏: maximum discharging capacity of storage unit can be built at bus 𝑏 

𝑞𝑏: minimum discharging capacity of storage unit can be built at bus 𝑏 

𝐸𝑏0𝑠: initial energy stored in storage unit can be built at bus 𝑏 for scenario 𝑠 

𝑔𝑖0𝑠: initial electricity generation of thermal generator 𝑖 for scenario 𝑠 

𝐸𝑏0: initial energy stored in storage unit can be built at bus 𝑏  

𝑔𝑖0: initial electricity generation of thermal generator 𝑖 

𝑘: contribution weight of the stochastic and robust parts in the objective function  

Decision Variables: 
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𝛼𝑏: binary variable equal to one if storage is opened at bus 𝑏 and equal to zero otherwise  

𝑔𝑖𝑡𝑠
′ : power generation by thermal generator 𝑖n time 𝑡 and for scenario 𝑠 

𝜃𝑏𝑡𝑠
′ : phase angle of bus 𝑏 in time 𝑡 and for scenario 𝑠 

𝐸𝑏𝑡𝑠
′ : energy stored in the storage unit at bus 𝑏 in time 𝑡 and for scenario 𝑠 

𝑝𝑏𝑡𝑠
′ : power charged into the storage unit at bus 𝑏 in time 𝑡 and for scenario 𝑠 

𝑞𝑏𝑡𝑠
′ : power discharged from the storage unit at bus 𝑏 in time 𝑡  and for scenario 𝑠 

𝑔𝑖𝑡
′′: power generation by thermal generator 𝑖 in time 𝑡 

𝜃𝑏𝑡
′′ : phase angle of bus 𝑏 in time 𝑡 

𝐸𝑏𝑡
′′ : energy stored in the storage unit at bus 𝑏 in time 𝑡 

𝑝𝑏𝑡
′′ : power charged into the storage unit at bus 𝑏 in time 𝑡 

𝑞𝑏𝑡
′′ : power discharged from the storage unit at bus 𝑏 in time 𝑡 

Δ𝑤𝑤𝑡: wind power deviation of wind farm 𝑤 in time 𝑡 

 

 

min
𝛂

∑ 𝛼𝑏𝑆𝐶𝑏𝑏∈ℬ + 𝑘
1

𝑁
min

𝐠s
′

∑ ∑ ∑ 𝑔𝑖𝑡𝑠
′ 𝐶𝐺𝑖𝑠∈𝒮𝑖∈Λ

𝑇
𝑡=1 + (1 −

𝑘) max
𝚫𝒘≤𝚫𝐰≤𝚫𝒘

min
𝐠′′

∑ ∑ 𝑔𝑖𝑡
′′𝐶𝐺𝑖𝑖∈Λ

𝑇
𝑡=1    

(4.9) 

 subject to:  

 Stochastic Constraints:  

 
∑ 𝑔𝑖𝑡𝑠

′

𝑖∈Λ𝑏

+ 𝑞𝑏𝑡𝑠
′ − 𝑝𝑏𝑡𝑠

′ + ∑ 𝐵𝑗𝑏(𝜃𝑗𝑡𝑠
′ − 𝜃𝑏𝑡𝑠

′ )

𝑗∈Ω𝑏

= 𝑑𝑏𝑡
𝑛 − ∑ 𝑤𝑤𝑡𝑠

𝑤∈𝒲𝑏

,

∀𝑏 ∈ ℬ, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇 

(4.10) 

 𝐸𝑏𝑡𝑠
′ = 𝐸𝑏(𝑡−1)𝑠

′ + 𝑝𝑏𝑡𝑠
′ − 𝑞𝑏𝑡𝑠

′  , ∀𝑏 ∈ ℬ, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇  (4.11) 

 𝐵𝑗𝑏(𝜃𝑏𝑡𝑠
′ − 𝜃𝑗𝑡𝑠

′ ) ≤ 𝐿𝑗𝑏, ∀𝑗 ∈ Ω𝑏, ∀𝑏 ∈ ℬ, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇 (4.12) 

 𝑃𝐺𝑖 ≤ 𝑔𝑖𝑡𝑠
′ ≤ 𝑃𝐺𝑖 , ∀𝑖 ∈ 𝛬, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇 (4.13) 

 −𝑅𝑅𝑖 ≤ 𝑔𝑖𝑡𝑠
′ − 𝑔𝑖(𝑡−1)𝑠

′ ≤ 𝑅𝑅𝑖 , ∀𝑖 ∈ 𝛬, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇  (4.14) 

 𝐸𝑏𝛼𝑏 ≤ 𝐸𝑏𝑡𝑠
′ ≤ 𝐸𝑏𝛼𝑏, ∀𝑏 ∈ ℬ, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇 (4.15) 

 𝑝𝑏 ≤ 𝑝𝑏𝑡𝑠
′ ≤ 𝑝𝑏 , ∀𝑏 ∈ ℬ, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇 (4.16) 

 𝑞𝑏 ≤ 𝑞𝑏𝑡𝑠
′ ≤ 𝑞𝑏, ∀𝑏 ∈ ℬ, ∀𝑠 ∈ 𝒮, 𝑡 = 1: 𝑇 (4.17) 

 Robust Constraints:  
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∑ 𝑔𝑖𝑡
′′

𝑖∈Λ𝑏

+ 𝑞𝑏𝑡
′′ − 𝑝𝑏𝑡

′′ + ∑ 𝐵𝑗𝑏(𝜃𝑗𝑡
′′ − 𝜃𝑏𝑡

′′ )
𝑗∈Ω𝑏

= 𝑑𝑏𝑡
𝑛 − ∑ 𝑤𝑤𝑡

𝑛 + Δ𝑤𝑤𝑡

𝑤∈𝒲𝑏

, ∀𝑏 ∈ ℬ, 𝑡 = 1: 𝑇 
(4.18) 

 𝐸𝑏𝑡
′′ = 𝐸𝑏(𝑡−1)

′′ + 𝑝𝑏𝑡
′′ − 𝑞𝑏𝑡

′′  , ∀𝑏 ∈ ℬ, 𝑡 = 1: 𝑇  (4.19) 

 𝐵𝑗𝑏(𝜃𝑏𝑡
′′ − 𝜃𝑗𝑡

′′) ≤ 𝐿𝑗𝑏, ∀𝑗 ∈ Ω𝑏, ∀𝑏 ∈ ℬ, 𝑡 = 1: 𝑇 (4.20) 

 𝑃𝐺𝑖 ≤ 𝑔𝑖𝑡
′′ ≤ 𝑃𝐺𝑖 , ∀𝑖 ∈ 𝛬, 𝑡 = 1: 𝑇 (4.21) 

 −𝑅𝑅𝑖 ≤ 𝑔𝑖𝑡
′′ − 𝑔𝑖(𝑡−1)

′′ ≤ 𝑅𝑅𝑖 , ∀𝑖 ∈ 𝛬, 𝑡 = 1: 𝑇  (4.22) 

 𝐸𝑏𝛼𝑏 ≤ 𝐸𝑏𝑡
′′ ≤ 𝐸𝑏𝛼𝑏, ∀𝑏 ∈ ℬ, 𝑡 = 1: 𝑇 (4.23) 

 𝑝𝑏 ≤ 𝑝𝑏𝑡
′′ ≤ 𝑝𝑏, ∀𝑏 ∈ ℬ, 𝑡 = 1: 𝑇 (4.24) 

 𝑞𝑏 ≤ 𝑞𝑏𝑡
′′ ≤ 𝑞𝑏, ∀𝑏 ∈ ℬ, 𝑡 = 1: 𝑇 (4.25) 

 𝛼𝑏 ∈ {0,1}, ∀𝑏 ∈ ℬ (4.26) 

   

where 𝑁 = |𝒮|. The objective function (4.19) is composed of three parts. The first part is the 

minimization of the total investment cost of storage devices based on first-stage decisions 

𝛼𝑏. The second part is the minimization of the second stage expected economic dispatch cost 

for the stochastic optimization part. The third part is the minimization of the second stage 

worst-case economic dispatch cost for the robust part. The constraints are given for the 

stochastic and robust parts separately as described below: 

Constraints (4.10)-(4.17) are for the stochastic optimization part and they are defined for all 

scenarios. Constraints (4.10) are the bus energy balance constraints. Constraints (4.11) are 

storage energy balance constraints. The line flow capacity constraints are given in (4.12). 

Constraints (4.13) are the generation capacity constraints of thermal generators. The 

generation ramping capacities are given in the constraints (4.14). Constraints (4.15) are 

storage energy capacity constraints. As can be seen 𝛼𝑏 determines if a storage system is 

installed or not. If 𝛼𝑏 is zero, the energy level of the storage will be enforced to be zero 

implying that no storage device will be installed to bus 𝑏. If 𝛼𝑏 is one there will be a single 

storage device installed on the bus. The charging and discharging capacities of the storage 

units are given in the constraints (4.16) and (4.17), respectively. 
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Constraints (4.18)-(4.25) are for the robust optimization part. Constraints (4.18) are energy 

balance equations of the buses. Constraints (4.19) are storage energy balance constraints. 

Line power flow capacities are enforced by (4.20). Constraints (4.21) are for generation 

capacities of the thermal power plants. Ramp-rate limits are given in (4.22). Constraints 

(4.23) are storage energy capacity constraints. Constraints (4.24) and (4.25) ensure the 

charging/discharging capacities of ESSs are not exceeded. Constraints (4.26) ensure that the 

locationing decisions of the storage systems 𝛼𝑏 are binary. 

The abstract formulation of the model given above can be expressed as follows: 

 min
𝐲

𝒄𝑇𝒚 + 𝛼
1

𝑁
∑ 𝒃𝑇𝒙(𝝃𝑠)

𝑁

𝑠=1

+ (1 − 𝛼) max
𝜻≤𝜻≤𝜻

min
𝐱

𝒃𝑇𝒙(𝜻) (4.27) 

 subject to:  

 Stochastic Constraints:  

 𝑬𝒚 + 𝑮𝒙(𝝃𝑠) ≤ 𝒉 + 𝑴𝝃𝑠 , 𝑠 = 1: 𝑁 (4.28) 

 Robust Constraints:  

 𝑬𝒚 + 𝑮𝒙(𝜻) ≤ 𝒉 + 𝑴𝜻 (4.29) 

 𝒙 ∈ ℝ𝑚, 𝒚 ⊂ ℝ𝑛 (4.30) 

   

In the above formulation, y represents the vector of binary decision variables 𝜶, 𝒙(𝝃) 

represents the vector of continuous decision variables 𝒈𝑠
′  of the stochastic part, 𝒙(𝜻) 

represents the vector of continuous decision variables 𝒈′′ of the robust part and 𝜻 represents 

the vector of uncertain decision variables 𝚫𝒘. Equation (4.27) corresponds to the objective 

function (4.9). For the stochastic part, constraints (4.28) correspond to constraints (4.10)-

(4.17). For the robust part, constraints (4.29) correspond to constraints (4.18)-(4.25). 
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5. NUMERICAL EXPERIMENTS 
 

In this section, the proposed methods and alternatives are tested on three different bus 

network systems. The systems considered are; 6-bus system [19], IEEE 14-bus system, and 

IEEE 30-bus system [20]. The details of these systems and the results of numerical analysis 

are presented in the next sections.  

For these power network systems, the SRO problem formulated in Section 4.2. is solved 

using the CCG algorithm introduced in Section 2.3. The inner max-min problem is solved 

using the two methods proposed in this thesis and the MC approach described in Section 

3.2.1. The Fortuny-Amat and OA methods are not considered. The former is not considered 

because it leads to numerical issues and initial experiments carried out show that this method 

takes a too long time to finish for the problems considered. The OA is not also considered 

because it is a local optimization method as the MC, and hence, it is expected to produce 

similar results. 

For each bus system, two sets of experiments are carried out. In the first one, the interval 

partitioning based exact solution method is used and the positioning of storage devices are 

analyzed under different conditions obtained by changing problem parameters. In the second 

one, a larger set of parameters are considered and max-min optimization methods considered 

are compared in terms of optimality and computation times. In the experiments, the MC 

method is run repeatedly for seven different initial guesses. Five of them are generated by 

choosing extreme points of uncertainties randomly while in two of them maximum and 

minimum values are taken as initial guesses. 

All numerical analyses are carried out using CPLEX 12.8.0 on a computer having an i7-

8550U CPU @ 1.80 GHz processor and a 16.0 GB RAM. The optimality gap tolerance 𝜀 

used in all algorithms is set to 10−3. 

The demand profiles used in the numeric analyses are common for all test systems. There 

are two types; 24-hour profile and 12-hour profile. These profiles are generated by making 

use of data provided in Jabr et al. [21]. 24-hour and the 12-hour profiles are given in Figure 

5.1 and Figure 5.2, respectively. 

 



37 

 

 

 

 

Figure 5.1. 24-hour demand profile 

 

 

 

Figure 5.2. 12-hour demand profile 

 

Values of the 12-hour profile are obtained by taking averages of values in the 24-hour profile 

in consecutive time instances. As can be seen from the figures, values are between zero and 
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100. For every system, these percent values are multiplied with a maximum demand value 

to obtain nominal demands. 

The normalized values depicted in Figure 5.3 and Figure 5.4, which are taken from [22], are 

used for obtaining nominal wind generations. Similar to demand data, percent values are 

multiplied with a maximum wind power value to generate nominal wind values. 

 

 

 

Figure 5.3. 24-hour wind profiles 
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Figure 5.4. 12-hour wind profiles 

 

Stochastic wind scenarios are produced by adding Gaussian noise to the nominal wind 

generation at each hour. The standard deviation of the noise is chosen as the one-third of the 

uncertainty interval length used for the robust part. This will ensure that stochastic scenario 

values will fall into the RO intervals with almost probability one. 

5.1. 6-BUS SYSTEM 

This test system includes six buses. There are three generators, 11 lines, and three demand 

points. The generators are located at buses 1, 2, and 3 and the demands are at buses 4,5, and 

6. Parameters of generators and lines are given in Table 5.1 and Table 5.2, respectively. 
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Table 5.1. Parameters of generators for the 6-bus system 

 

Generator 

 𝑷𝑮𝒊 

(MW) 

 𝑪𝑮𝒊 

($/MW) 

1 200 11.67 

2 150 10.33 

3 180 10.83 

 

The minimum generation capacity is set to zero for all generators. Ramp-rate limits are 

calculated by multiplying maximum generation capacity with a scaling factor. The details 

will be given in the next section. 

 

Table 5.2. Parameters of lines for the 6-bus system 

 

Line From  To 𝑳𝒋𝒃 (MW) 𝑩𝒋𝒃 

1 1 2 40 0.04 

2 1 4 60 0.04 

3 1 5 40 0.06 

4 2 3 40 0.06 

5 2 4 60 0.02 

6 2 5 30 0.04 

7 2 6 90 0.05 

8 3 5 70 0.05 

9 3 6 80 0.02 

10 4 5 20 0.08 

11 5 6 40 0.06 

 

Tests on the 6-bus system are carried out for 24 hours using the normalized demand profile 

depicted in Figure 5.1. The system is tested for different maximum demand values. Total 

nominal demand values of different test cases are obtained by multiplying the normalized 

profile with different maximum values. Total nominal demands are distributed to buses 

proportional to the demands provided in the data file of the bus system. We use this approach 

in all test systems and numerical analysis. 
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The original 6-bus system is modified by adding two find farms of 40 MW capacity to buses 

1 and 3. The modified system is depicted in Figure 5.5. 

 

 

 

Figure 5.5. Modified 6-bus system 

 

Similar to demand, nominal wind values are obtained by scaling normalized profiles shown 

in Figure 5.3 with maximum generation capacities of wind farms. Four different sets of 

stochastic wind scenarios obtained by adding Gaussian noise are given in Figure 5.6, Figure 

5.7, Figure 5.8, and Figure 5.9. They correspond to 20 and 40 percent deviations 

respectively. 
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Figure 5.6. Wind scenarios of first wind farm for 20 percent wind deviation 

 

 

 

Figure 5.7. Wind scenarios of second wind farm for 20 percent wind deviation 
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Figure 5.8. Wind scenarios of first wind farm for 40 percent wind deviation 

 

 

 

Figure 5.9. Wind scenarios of second wind farm for 40 percent wind deviation 
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The candidate ESSs are assumed to have 30 MWh maximum energy storage capacity and 6 

MW rated power for charge and discharge. ESS installation cost is taken as $160 for all 

buses and it is assumed that ESS units can be placed on every bus. 

5.1.1. Analysis of ESS Planning 

In this section, we analyze the placement of ESSs under different conditions. We use the 

original line capacities of the 6-bus system. We create eight different cases for different 

values of maximum demand power, wind power deviation and ramp-rate limit scaling factor 

and solve our planning problem for these cases. Cases considered and results are given in 

Table 5.3.  

In this table, low and high maximum loads are taken as 150 MW and 250 MW, respectively. 

Low and high wind power deviations are 20 and 40 percent, respectively. Lastly, low and 

high ramp rate limits are considered correspond to 25 percent and 50 percent of generation 

capacities of thermal units. 

Table 5.3. ESS planning for the 6-bus system 

 

Maximum 

Load 

Level 

Wind 

Power 

Deviation 

Level 

Ramp-

Rate Limit 

Factor 

Level 

Investment 

Cost ($) 

Total 

Stochastic 

Robust 

Operation 

Cost ($) 

Location 
No. Of 

Iterations 

low low low 320 10911.86 1, 6 3 

low low high 320 10911.86 1, 5 3 

low high low 960 12400.19 
1, 2, 3, 4, 5, 

6 
3 

low high high 960 12400.19 
1, 2, 3, 4, 5, 

6 
3 

high low low 160 27171.31 4 2 

high low high 160 27163.12 4 2 

high high low 160 28694.83 4 2 

high high high 160 28690.39 4 2 

 

Table 5.3 summarizes the planning results including the investment cost, the total operation 

cost of thermal generators of stochastic and robust parts, storage locations, and the number 
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of iterations of the CCG algorithm. The results show that for low demand low deviation 

cases the investment cost is $320 and the total operational cost is $1092 with two ESSs 

placement. When the wind deviation is high, the investment cost is $960 and the operational 

cost is $12400. ESSs are installed at every bus this time. The need for ESS placement in 

these cases is energy peak. Since the generated power is higher than the demand, especially 

when wind deviation is high, storage devices are installed near generating units to store 

excess energy and keep the system safe. For high demand cases, the situation is different 

since, for all high demand cases, there is one ESS installed at bus 4 with a $160 investment 

cost. Total operational costs are changing with wind deviations and ramping limits. ESSs 

are used to overcome the congestion problem in these cases. To be more specific, because 

capacities of lines connected to bus 4 are lower than the other buses, congestion may occur 

while satisfying the demand at this bus. By installing a storage device, the system can avoid 

congestion by storing energy when demand is low and using it when the demand is high at 

this bus. 

5.1.2. Comparison of Solution Methods for Max-Min Problem 

In order to compare performance of the algorithms used for the max-min optimization, 

additional numerical experiments are performed for 36 test cases including the ones used in 

the previous section. Details of the results obtained are provided in Appendix A. Since the 

exact method proposed in this thesis give the global optimal solution, it is used to measure 

and compare optimality gaps of local optimization based methods. Also, computation times 

of all methods considered are compared. 

Test cases are created by considering three different levels for the total maximum demand 

as low (150 MW), medium (200 MW), and high (250 MW). For ramping limits and wind 

deviations, the same values used in the previous experiment are employed as high and low 

levels. In addition to cases in which original line flow limits are employed, new cases are 

created by scaling flow limits to smaller values. All parameters of the cases investigated can 

be found in Appendix A. 

Optimality gaps of seven MC strategies and our hybrid method for 36 cases are given in 

Figure 5.10. 
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Figure 5.10. Optimality gaps for the 6-bus system 

 

The maximum gap value is about six percent and it is observed in cases 9 and 12. For all 

cases, there is at least one MC strategy that can find the global optimal solution means that 

the optimality gap is equal to zero. Especially for cases 13-19 and 25-26, optimality gap 

values are zero for all MC strategies. Furthermore, all of the gap values are equal to zero 

when the hybrid method is used meaning it works well for the 6-bus system.  

In Figure 5.11 computation times are shown. Here, total time is the computation time of the 

CCG algorithm to solve a given case. 
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Figure 5.11. Computation times for the 6-bus system 

 

The proposed exact method leads to the highest computation time as can be expected. But 

the solutions could be obtained in a reasonable time. The MC is the fastest method and it is 

closely followed by the proposed hybrid method. To be more specific, these two approaches 

yield almost the same computation times except the first three cases for which the hybrid 

method performed considerably slower. But one should keep in mind that the hybrid method 

ensures robust feasibility while the MC approach does not have such a guarantee. 

5.2. IEEE 14-BUS SYSTEM 

There are 14 buses in this test system. It includes two generators, 20 lines, and 11 demand 

points. The generators are at buses 1, 2 and the demands are at buses 2-6 and 9-14. 

Parameters of generators and lines are given in Table 5.4 and Table 5.5, respectively. 
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Table 5.4. Parameters of generators for  the 14-bus system 

 

Generator 

 𝑷𝑮𝒊 

(MW) 

 𝑪𝑮𝒊 

($/MW) 

1 340 7.92 

2 59 23.27 

 

The minimum generation capacity is set to zero for all generators. Ramp-rate limits are 

calculated by multiplying maximum generation capacity with a scaling factor. 

 

Table 5.5. Parameters of lines for the 14-bus system 

 

Line From  To 𝑳𝒋𝒃 (MW) 𝑩𝒋𝒃 

1 1 2 472 0.059 

2 1 5 128 0.223 

3 2 3 145 0.198 

4 2 4 158 0.176 

5 2 5 161 0.174 

6 3 4 160 0.171 

7 4 5 664 0.042 

8 4 7 141 0.209 

9 4 9 53 0.556 

10 5 6 117 0.252 

11 6 11 134 0.199 

12 6 12 104 0.256 

13 6 13 201 0.13 

14 7 8 167 0.176 

15 7 9 267 0.11 

16 9 10 325 0.085 

17 9 14 99 0.27 

18 10 11 141 0.192 

19 12 13 99 0.2 

20 13 14 76 0.348 

 

Tests on the 14-bus system are carried out for 12 hours using the normalized demand profile 

depicted in Figure 5.2. The system is tested for different maximum demand values. 
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The original 14-bus bus system is modified by adding two find farms of 40 MW capacity to 

buses 2 and 3. The modified system is illustrated in Figure 5.12. 

 

 

 

Figure 5.12. Modified 14-bus system 

 

Nominal wind values are obtained by scaling normalized profiles shown in Figure 5.4 with 

maximum generation capacities of wind farms. Stochastic wind scenarios used are given in 

the figures below. Wind deviations are taken as 25 and 50 percent. 
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Figure 5.13. Wind scenarios of first wind farm for 25 percent wind deviation 

 

 

 

Figure 5.14. Wind scenarios of second wind farm for 25 percent wind deviation 
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Figure 5.15. Wind scenarios of first wind farm for 50 percent wind deviation 

 

 

 

Figure 5.16. Wind scenarios of second wind farm for 50 percent wind deviation 
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The candidate ESSs are assumed to have 60 MWh maximum energy storage capacity and 

12 MW rated power for charge and discharge. ESS installation cost is taken as $160 for all 

buses and it is assumed that ESS units can be placed to every bus. 

5.2.1. Analysis of ESS Planning 

Similar to the 6-bus system analysis, we use the original line capacities of the 14-bus system. 

We create eight different cases for different values of maximum demand power, wind power 

deviation and ramp-rate limit scaling factor and solve our planning problem for these cases. 

Cases considered and results are given in Table 5.6.  

In this table, low and high maximum total loads are taken as 100MW and 300 MW, 

respectively. Low and high wind power deviations are 25 and 50 percent, respectively. 

Lastly, low and high ramp rate limits correspond to 25 percent and 50 percent of generation 

capacities of thermal units. 

 

Table 5.6. ESS planning for the IEEE 14-bus system 

 

Maximum 

Load 

Level 

Wind 

Power 

Deviation 

Level 

Ramp-

Rate Limit 

Factor 

Level 

Investment 

Cost ($) 

Total 

Stochastic 

Robust 

Operation 

Cost ($) 

Location 
No. Of 

Iterations 

low low low 640 1290.21 2, 3, 10, 14 3 

low low high 640 1290.21 2, 4, 5, 12 3 

low high low 960 1931.77 
1, 2, 4, 9, 12, 

14 
3 

low high high 960 1931.77 
2, 3, 4, 5, 6, 

11 
3 

high low low 960 14854.23 
5, 6, 10, 11, 

12, 13 
2 

high low high 960 13948.67 
5, 6, 10, 11, 

12, 13 
2 

high high low 1120 15482.77 
5, 6, 10, 11, 

12, 13, 14 
2 

high high high 1120 14577.21 
5, 6, 10, 11, 

12, 13, 14 
2 
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Table 5.6 shows the planning results including the investment cost, the total operation cost 

of thermal generators, locations of ESSs, and the number of iterations of the CCG algorithm. 

The results show that for low demand low deviation cases the investment cost is $640 and 

the total operational cost is $1290 with four ESSs placement. When the wind deviation is 

high, the investment cost is $960 and the operational cost is $1932, the ESSs are installed at 

six buses. Furthermore, in these cases, storage units are installed near wind farms and 

thermal generators to store excess power production to maintain system balance. For cases 

for which maximum demand is high, there are more ESSs installed in the system. For the 

last two cases, there are seven ESSs installed with an investment cost of $1120. For high 

demand cases are installed to buses having relatively high demands. By this way, possible 

line congestions are avoided by storing energy when the demand is low and using it in peak 

demand periods. 

5.2.2. Comparison of Solution Methods for Max-Min Problem 

In this section, again experiments are performed for 36 test cases including the ones used in 

the previous section to compare the performance of the algorithms used for the max-min 

optimization. Details of the results obtained are provided in Appendix A. 

Test cases are created by considering three different levels for the total maximum demand 

as low (100 MW), medium (200 MW), and high (300 MW). For ramping limits and wind 

deviations, the same values used in the previous experiment are employed as high and low 

levels. In addition to cases in which original line flow limits are employed, new cases are 

created by scaling flow limits to smaller values. All parameters of the cases investigated can 

be found in Appendix A. Optimality gaps are given in Figure 5.17. 
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Figure 5.17. Optimality gaps for the 14-bus system 

 

As can be seen for the first 12 cases, none of the MC strategies could find a global optimal 

solution and their gaps range between 8 and 58 percent. On the other hand, the proposed 

hybrid method led to zero optimality gap for cases 1,4,7,8,11,12 while having a high gap for 

cases 2,3,5,6,9. Given that this method ensures robust feasibility, it can be said that the 

hybrid method performed better than the MC in terms of optimality and feasibility. 
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Figure 5.18. Computation times for the 14-bus system 

 

Computation times are shown in Figure 5.18. As for the 14-bus system, the interval 

partitioning method leads to the highest computation times while the hybrid method follows 

the MC strategy closely.  Although the interval partitioning method is computationally 

expensive it could find optimal solutions in a reasonable time for all case cases considered. 

5.3. IEEE 30-BUS SYSTEM 

This test system includes 30 buses. There are two generators, 41 lines, and 21 demand points. 

The generators are located at buses 1 and 2. Parameters of generators and lines are given in 

Table 5.7 and Table 5.8, respectively. 
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Table 5.7. Parameters of generators for  the 30-bus system 

 

Generator 

 𝑷𝑮𝒊 

(MW) 

 𝑪𝑮𝒊 

($/MW) 

1 271 18.42 

2 92 52.18 

 

The minimum generation capacity is set to zero for all generators. Ramp-rate limits are 

calculated by multiplying maximum generation capacity with a scaling factor. 
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Table 5.8. Parameters of lines for the 30-bus system 

 

 

Line From To        (MW)

1 1 2 138 0.058

2 1 3 152 0.165

3 2 4 139 0.174

4 3 4 135 0.038

5 2 5 144 0.198

6 2 6 139 0.176

7 4 6 148 0.041

8 5 7 127 0.116

9 6 7 140 0.082

10 6 8 148 0.042

11 6 9 142 0.208

12 6 10 53 0.556

13 9 11 142 0.208

14 9 10 267 0.11

15 4 12 115 0.256

16 12 13 210 0.14

17 12 14 29 0.256

18 12 15 29 0.13

19 12 16 30 0.199

20 14 15 20 0.2

21 16 17 38 0.192

22 15 18 29 0.219

23 18 19 29 0.129

24 19 20 29 0.068

25 10 20 30 0.209

26 10 17 33 0.085

27 10 21 30 0.075

28 10 22 29 0.15

29 21 22 29 0.024

30 15 23 29 0.202

31 22 24 26 0.179

32 23 24 29 0.27

33 24 25 27 0.329

34 25 26 25 0.38

35 25 27 28 0.209

36 28 27 75 0.396

37 27 29 28 0.415

38 27 30 28 0.603

39 29 30 28 0.453

40 8 28 140 0.2

41 6 28 149 0.06



58 

 

 

Tests on the 30-bus system are carried out for 12 hours using the normalized demand profile 

depicted in Figure 5.2. The system is tested for different maximum demand values. 

The original 30-bus system is modified by adding two find farms of 40 MW capacity to 

buses 5 and 11. The modified system is depicted in Figure 5.19. 
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Figure 5.19. Modified 30-bus system 
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Nominal wind values are obtained by scaling normalized profiles shown in Figure 5.4 with 

maximum generation capacities of wind farms. Stochastic wind scenarios used are given in 

Figure 5.20-Figure 5.23. Wind deviations are taken as 20 percent and 30 percent. 

 

 

 

Figure 5.20. Wind scenarios of first wind farm for 20 percent wind deviation 
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Figure 5.21. Wind scenarios of second wind farm for 20 percent wind deviation 

 

 

 

Figure 5.22. Wind scenarios of first wind farm for 30 percent wind deviation 
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Figure 5.23. Wind scenarios of second wind farm for 30 percent wind deviation 

 

ESSs to be installed are assumed to have 90 MWh maximum energy storage capacity and 

18 MW rated power for charge and discharge. ESS installation cost is taken as $160 for all 

buses and it is assumed that ESS units can be placed to every bus. 

5.3.1. Analysis of ESS Planning 

The placement of ESSs under different conditions is analyzed in this section. Original line 

capacities of the 30-bus system are used. We create eight different cases for different values 

of maximum demand power, wind power deviation and ramp-rate limit scaling factor and 

solve our planning problem for these cases. Cases considered and results are given in Table 

5.9.  

In this table, low and high total maximum loads are taken as 100 MW and 300 MW, 

respectively. Low and high wind power deviations are 20 and 30 percent, respectively. 

Lastly, low and high ramp rate limits correspond to 25 percent and 50 percent of generation 

capacities of thermal units. 
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Table 5.9. ESS planning for the IEEE 30-bus system 

 

Maximum 

Load 

Level 

Wind 

Power 

Deviation 

Level 

Ramp-

Rate Limit 

Factor 

Level 

Investment 

Cost ($) 

Total 

Stochastic 

Robust 

Operation 

Cost ($) 

Location 
No. Of 

Iterations 

low low low 480 2676.79 1, 2, 30 3 

low low high 480 2676.79 2, 7, 24 3 

low high low 480 3353.12 5, 17, 24 3 

low high high 480 3353.12 2, 6, 9 3 

high low low 320 31050.52 2, 5 2 

high low high 320 31050.52 2, 5 2 

high high low 480 31602.54 2, 5, 7 2 

high high high 480 31602.54 2, 5, 7 2 

 

Planning results are given in Table 5.9. The results show that for all low demand cases the 

investment cost is $480 with four ESSs placement. As wind-power deviation increases total 

operational cost increases from $2678 to $3353. For high demand cases, the number of ESSs 

installed in the system changes for different levels of wind power deviation. As the deviation 

increases, the number of ESSs increases. For low deviation, the investment cost is $320 and 

the total operational cost is $31050 but when the deviation becomes high investment cost is 

$480 and the total operational cost is $31602. ESSs are placed near wind farms and thermal 

generators to shave energy peaks. 

5.3.2. Comparison of Solution Methods for Max-Min Problem 

In this section, additional numerical experiments are performed for 36 test cases including 

the ones used in the previous section to compare the performance of the algorithms used for 

the max-min optimization. Optimality gaps of local optimization based methods and 
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computation times of all methods considered are presented. Details of the result obtained are 

provided in Appendix A. 

Test cases are created by considering three different levels for the total maximum demand 

as low (100 MW), medium (200 MW), and high (300 MW). For ramping limits and wind 

deviations, the same values used in the previous experiment are employed as high and low 

levels. In addition to cases in which original line flow limits are employed, new cases are 

created by scaling flow limits to smaller values. All parameters of the cases investigated can 

be found in Appendix A. Optimality gaps are given in Figure 5.24. 

 

 

 

Figure 5.24. Optimality gaps for the 30-bus system 

 

As can be seen, the MC method could not find a global optimal solution for the first six cases 

for any initialization strategy and the gaps obtained range between 4 and 68 percent. Among 

the first six cases, the hybrid method could found the global optimal solution for case five 

while leading to a high optimality gap for the others. For cases 13-36 non of the methods 

had an optimality gap. Lastly, for cases 7-12 there are some initialization strategies for the 

MC leading to zero optimality gap, and for four cases the hybrid method yields the global 

optimal solution. 
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Figure 5.25. Computation times for the 30-bus system 

 

Computational times are given in Figure 5.25. Different than other bus systems, the MC 

method did not exhibit superior performance, especially for cases 13-36. The reason behind 

this is that unlike the previous cases the first stage problem turns out to be much more 

computationally intensive dominating the solution time of the second stage max-min 

optimization. Although the interval partitioning method worked slower than the other 

methods for the first 12 cases, the solution times are comparable. 
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6. CONCLUSION AND FUTURE WORK 
 

In this thesis, the problem of finding optimal locations of storage systems in power networks 

is studied. A stochastic robust optimization approach is employed to model and solve the 

problem. As in two-stage robust optimization, the underlying CCG algorithm relies on the 

solution of a max-min type problem, which is difficult in general. Two new algorithms, one 

can find a locally optimal solution while the other is guaranteed to produce a globally optimal 

solution using off-the-shelf solvers, are proposed. The proposed methods and some 

alternatives available in the literature are implemented and tested on IEEE benchmark bus 

systems.  

The results show that the algorithms developed works successfully. To be more specific, the 

exact method could find a global optimal solution for the test cases in acceptable time limits. 

Besides, it worked reliably without any numerical issue because it avoids the use of big-M 

values as opposed to the well known Fortuny-Amat approach. On the other hand, the hybrid 

local optimization algorithm proposed does not guarantee global optimality but ensures 

robust feasibility. Moreover, it could find solutions with relatively low optimality gaps in 

several test cases. Thus, this method provides a good trade-off between optimality and 

computational efficiency.  

Although proposed max-min optimization algorithms are employed for energy storage 

planning, they are applicable to two-stage robust optimization in general and can be used to 

solve different problems in power networks including unit commitment, transmission 

expansion planning, generation expansion planning, and reserve scheduling.  
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APPENDIX A:  DETAILED RESULTS OF THE ANALYSIS 

 

 

Table A.1. Results of 6-bus test system for  the exact solution method 

 

 

 

 

 

Case #

Maximum 

Demand 

(MW)

Wind 

Power 

Deviation

Ramp-Rate 

Limit 

Factor

Flow 

Limit 

Factor

Total Cost ($) Location
No. Of 

Iterations

Total 

Time (s)

1 150 20 0.25 0.61 11308.59 4, 5 3 9.64

2 150 20 0.25 0.805 11231.86 4, 6 3 11.08

3 150 20 0.25 1 11231.86 1, 6 3 10.71

4 150 20 0.5 0.61 11308.59 4, 5 3 7.84

5 150 20 0.5 0.805 11231.86 4, 5 3 10.08

6 150 20 0.5 1 11231.86 1, 5 3 8.75

7 150 40 0.25 0.61 13409.18 1, 2, 3, 4, 5, 6 3 39.8

8 150 40 0.25 0.805 13360.19 1, 2, 3, 4, 5, 6 3 30.88

9 150 40 0.25 1 13360.19 1, 2, 3, 4, 5, 6 3 32.15

10 150 40 0.5 0.61 13406.55 1, 2, 3, 4, 5, 6 3 17.77

11 150 40 0.5 0.805 13360.19 1, 2, 3, 4, 5, 6 3 25.54

12 150 40 0.5 1 13360.19 1, 2, 3, 4, 5, 6 3 26.53

13 200 20 0.25 0.79 19262.44 4 2 9.93

14 200 20 0.25 0.895 19056.76 - 2 8.98

15 200 20 0.25 1 18946 - 2 10.11

16 200 20 0.5 0.79 19262.03 4 2 8.99

17 200 20 0.5 0.895 19056.76 - 2 9.98

18 200 20 0.5 1 18944.72 - 2 9.2

19 200 40 0.25 0.79 20786.16 4 2 13.95

20 200 40 0.25 0.895 20659.78 4 3 11.05

21 200 40 0.25 1 20581.27 4 3 25.53

22 200 40 0.5 0.79 20785.89 4 2 10.12

23 200 40 0.5 0.895 20659.65 4 3 9

24 200 40 0.5 1 20580.85 4 3 16.75

25 250 20 0.25 1 27331.31 4 2 9.16

26 250 20 0.25 1.08 27147.23 - 2 7.88

27 250 20 0.25 1.34 26887.75 - 2 8.5

28 250 20 0.5 1 27323.12 4 2 7.96

29 250 20 0.5 1.08 27145.47 - 2 6.8

30 250 20 0.5 1.34 26887.09 - 2 7.64

31 250 40 0.25 1 28854.83 4 2 13.82

32 250 40 0.25 1.08 28669.18 - 2 13.19

33 250 40 0.25 1.34 28395.55 - 2 11.25

34 250 40 0.5 1 28850.39 4 2 10.2

35 250 40 0.5 1.08 28664.85 - 2 9.99

36 250 40 0.5 1.34 28394.74 - 2 9.74
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Table A.2. Results of 6-bus test system for MC method with the first strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11180.74 4 2 0.48 1.13

2 11076.88 5 2 0.48 1.38

3 11071.87 6 2 0.39 1.42

4 11180.74 4 2 0.4 1.13

5 11076.88 5 2 0.4 1.38

6 11071.87 6 2 0.34 1.42

7 12697.54 4 2 0.38 5.31

8 12576.32 5 2 0.39 5.87

9 12560.19 4 2 0.36 5.99

10 12694.9 4 2 0.3 5.31

11 12576.32 5 2 0.33 5.87

12 12560.19 4 2 0.35 5.99

13 19262.44 4 2 0.33 0

14 19056.77 - 2 0.26 0

15 18946.01 - 2 0.28 0

16 19262.04 4 2 0.3 0

17 19056.77 - 2 0.26 0

18 18944.73 - 2 0.27 0

19 20786.17 4 2 0.34 0

20 20574.99 - 2 0.28 0.41

21 20458.95 - 2 0.29 0.59

22 20785.9 4 2 0.45 0

23 20574.99 - 2 0.27 0.41

24 20458.34 - 2 0.31 0.6

25 27331.32 4 2 0.35 0

26 27147.23 - 2 0.29 0

27 26887.75 - 2 0.32 0

28 27323.12 4 2 0.36 0

29 27145.48 - 2 0.3 0

30 26887.09 - 2 0.29 0

31 28854.83 4 2 0.36 0

32 28669.18 - 2 0.34 0

33 28395.56 - 2 0.34 0

34 28850.4 4 2 0.35 0

35 28664.85 - 2 0.34 0

36 28394.74 - 2 0.29 0
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Table A.3. Results of 6-bus test system for MC method with the second strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11308.60 4, 5 3 1.31 0.00

2 11231.87 4, 6 3 1.13 0.00

3 11231.87 1, 6 3 0.97 0.00

4 11308.60 4, 5 3 0.94 0.00

5 11231.87 4, 5 3 0.87 0.00

6 11231.87 1, 5 3 0.78 0.00

7 13409.19 1, 2, 3, 4, 5, 6 3 0.97 0.00

8 13360.19 1, 2, 3, 4, 5, 6 3 1.04 0.00

9 13360.19 1, 2, 3, 4, 5, 6 3 1.01 0.00

10 13406.55 1, 2, 3, 4, 5, 6 3 0.98 0.00

11 13360.19 1, 2, 3, 4, 5, 6 3 0.82 0.00

12 13360.19 1, 2, 3, 4, 5, 6 3 0.83 0.00

13 19262.44 4 2 0.40 0.00

14 19056.77 - 2 0.34 0.00

15 18946.01 - 2 0.31 0.00

16 19262.04 4 2 0.46 0.00

17 19056.77 - 2 0.30 0.00

18 18944.73 - 2 0.28 0.00

19 20786.17 4 2 0.43 0.00

20 20659.79 4 3 0.68 0.00

21 20581.27 4 3 0.67 0.00

22 20785.90 4 2 0.37 0.00

23 20659.66 4 3 0.68 0.00

24 20580.86 4 3 0.67 0.00

25 27331.32 4 2 0.38 0.00

26 27147.23 - 2 0.31 0.00

27 26887.75 - 2 0.33 0.00

28 27323.12 4 2 0.35 0.00

29 27145.48 - 2 0.32 0.00

30 26887.09 - 2 0.32 0.00

31 28854.83 4 2 0.38 0.00

32 28669.18 - 2 0.33 0.00

33 28395.56 - 2 0.32 0.00

34 28850.40 4 2 0.34 0.00

35 28664.85 - 2 0.30 0.00

36 28394.74 - 2 0.32 0.00
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Table A.4. Results of 6-bus test system for MC method with the third strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11180.74 4 2 0.48 1.13

2 11076.88 5 2 0.50 1.38

3 11071.87 6 2 0.50 1.42

4 11180.74 4 2 0.40 1.13

5 11076.88 5 2 0.41 1.38

6 11071.87 6 2 0.36 1.42

7 12958.50 1, 4, 5 3 0.82 3.36

8 12880.49 1, 4, 5 3 1.10 3.59

9 12880.19 1, 5, 6 3 0.86 3.59

10 12955.87 1, 4, 5 3 0.74 3.36

11 12880.49 1, 4, 5 3 0.82 3.59

12 12880.19 4, 5, 6 3 0.85 3.59

13 19262.44 4 2 0.40 0.00

14 19056.77 - 2 0.31 0.00

15 18946.01 - 2 0.33 0.00

16 19262.04 4 2 0.42 0.00

17 19056.77 - 2 0.39 0.00

18 18944.73 - 2 0.48 0.00

19 20786.17 4 2 0.63 0.00

20 20574.99 - 2 0.53 0.41

21 20458.95 - 2 0.49 0.59

22 20785.90 4 2 0.61 0.00

23 20574.99 - 2 0.36 0.41

24 20458.34 - 2 0.35 0.60

25 27331.32 4 2 0.43 0.00

26 27147.23 - 2 0.33 0.00

27 26887.75 - 2 0.37 0.00

28 27323.12 4 2 0.39 0.00

29 27145.48 - 2 0.31 0.00

30 26887.09 - 2 0.30 0.00

31 28854.83 4 2 0.37 0.00

32 28669.18 - 2 0.33 0.00

33 28395.56 - 2 0.38 0.00

34 28850.40 4 2 0.35 0.00

35 28664.85 - 2 0.31 0.00

36 28394.74 - 2 0.29 0.00
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Table A.5. Results of 6-bus test system for MC method with the fourth strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11308.60 4, 5 3 1.00 0.00

2 11231.87 4, 5 3 1.07 0.00

3 11231.87 1, 6 3 0.93 0.00

4 11308.60 4, 5 3 0.92 0.00

5 11231.87 4, 5 3 0.90 0.00

6 11231.87 1, 6 3 0.73 0.00

7 13102.34 1, 4, 5, 6 3 0.89 2.29

8 13040.19 1, 4, 5, 6 3 1.06 2.40

9 13040.19 3, 4, 5, 6 3 1.26 2.40

10 13099.70 1, 4, 5, 6 3 0.97 2.29

11 13040.19 1, 4, 5, 6 3 0.81 2.40

12 13040.19 1, 4, 5, 6 3 0.95 2.40

13 19262.44 4 2 0.38 0.00

14 19056.77 - 2 0.28 0.00

15 18946.01 - 2 0.33 0.00

16 19262.04 4 2 0.34 0.00

17 19056.77 - 2 0.30 0.00

18 18944.73 - 2 0.30 0.00

19 20786.17 4 2 0.38 0.00

20 20659.79 4 3 0.66 0.00

21 20581.27 4 3 0.69 0.00

22 20785.90 4 2 0.39 0.00

23 20659.66 4 3 0.66 0.00

24 20580.86 4 3 0.65 0.00

25 27331.32 4 2 0.41 0.00

26 27147.23 - 2 0.33 0.00

27 26887.75 - 2 0.34 0.00

28 27323.12 4 2 0.36 0.00

29 27145.48 - 2 0.31 0.00

30 26887.09 - 2 0.30 0.00

31 28854.83 4 2 0.38 0.00

32 28669.18 - 2 0.34 0.00

33 28395.56 - 2 0.35 0.00

34 28850.40 4 2 0.38 0.00

35 28664.85 - 2 0.35 0.00

36 28394.74 - 2 0.33 0.00
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Table A.6. Results of 6-bus test system for MC method with the fifth strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11180.74 4 2 0.65 1.13

2 11076.88 5 2 0.57 1.38

3 11071.87 6 2 0.52 1.42

4 11180.74 4 2 0.63 1.13

5 11076.88 5 2 0.75 1.38

6 11071.87 6 2 0.62 1.42

7 12825.52 4, 5 3 1.51 4.35

8 12726.20 4, 5 3 1.27 4.75

9 12720.19 1, 5 3 0.91 4.79

10 12822.89 4, 5 3 0.98 4.35

11 12726.20 4, 5 3 0.83 4.75

12 12720.19 4, 5 3 0.77 4.79

13 19262.44 4 2 0.37 0.00

14 19056.77 - 2 0.30 0.00

15 18946.01 - 2 0.30 0.00

16 19262.04 4 2 0.37 0.00

17 19056.77 - 2 0.28 0.00

18 18944.73 - 2 0.27 0.00

19 20786.17 4 2 0.41 0.00

20 20574.99 - 2 0.30 0.41

21 20458.95 - 2 0.29 0.59

22 20785.90 4 2 0.43 0.00

23 20574.99 - 2 0.34 0.41

24 20458.34 - 2 0.29 0.60

25 27331.32 4 2 0.39 0.00

26 27147.23 - 2 0.32 0.00

27 26887.75 - 2 0.31 0.00

28 27323.12 4 2 0.36 0.00

29 27145.48 - 2 0.31 0.00

30 26887.09 - 2 0.29 0.00

31 28854.83 4 2 0.37 0.00

32 28669.18 - 2 0.33 0.00

33 28395.56 - 2 0.36 0.00

34 28850.40 4 2 0.37 0.00

35 28664.85 - 2 0.30 0.00

36 28394.74 - 2 0.29 0.00
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Table A.7. Results of 6-bus test system for MC method with the sixth strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11308.60 4, 5 3 1.51 0.00

2 11231.87 4, 5 3 1.40 0.00

3 11231.87 1, 5 3 1.06 0.00

4 11308.60 4, 5 3 0.97 0.00

5 11231.87 4, 5 3 0.94 0.00

6 11231.87 2, 5 3 0.78 0.00

7 13102.34 1, 4, 5, 6 3 1.02 2.29

8 13040.19 1, 4, 5, 6 3 1.16 2.40

9 13040.19 2, 4, 5, 6 3 1.02 2.40

10 13099.70 1, 4, 5, 6 3 0.83 2.29

11 13040.19 1, 4, 5, 6 3 0.92 2.40

12 13040.19 1, 4, 5, 6 3 0.84 2.40

13 19262.44 4 2 0.38 0.00

14 19056.77 - 2 0.33 0.00

15 18946.01 - 2 0.32 0.00

16 19262.04 4 2 0.37 0.00

17 19056.77 - 2 0.33 0.00

18 18944.73 - 2 0.30 0.00

19 20786.17 4 2 0.43 0.00

20 20659.79 4 3 0.72 0.00

21 20581.27 4 3 0.74 0.00

22 20785.90 4 2 0.43 0.00

23 20659.66 4 3 0.67 0.00

24 20580.86 4 3 0.68 0.00

25 27331.32 4 2 0.36 0.00

26 27147.23 - 2 0.34 0.00

27 26887.75 - 2 0.33 0.00

28 27323.12 4 2 0.38 0.00

29 27145.48 - 2 0.32 0.00

30 26887.09 - 2 0.34 0.00

31 28854.83 4 2 0.41 0.00

32 28669.18 - 2 0.38 0.00

33 28395.56 - 2 0.39 0.00

34 28850.40 4 2 0.38 0.00

35 28664.85 - 2 0.35 0.00

36 28394.74 - 2 0.33 0.00
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Table A.8. Results of 6-bus test system for MC method with the seventh strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11308.60 4, 5 3 1.61 0.00

2 11231.87 4, 5 3 1.51 0.00

3 11231.87 1, 5 3 1.19 0.00

4 11308.60 4, 5 3 1.33 0.00

5 11231.87 4, 5 3 1.11 0.00

6 11231.87 1, 5 3 1.00 0.00

7 13102.34 1, 4, 5, 6 3 1.17 2.29

8 13040.19 1, 4, 5, 6 3 1.51 2.40

9 13040.19 1, 4, 5, 6 3 1.14 2.40

10 13099.70 1, 4, 5, 6 3 1.17 2.29

11 13040.19 1, 4, 5, 6 3 1.82 2.40

12 13040.19 1, 4, 5, 6 3 1.13 2.40

13 19262.44 4 2 0.57 0.00

14 19056.77 - 2 0.51 0.00

15 18946.01 - 2 0.64 0.00

16 19262.04 4 2 0.57 0.00

17 19056.77 - 2 0.69 0.00

18 18944.73 - 2 0.56 0.00

19 20786.17 4 2 0.65 0.00

20 20574.99 - 2 0.49 0.41

21 20458.95 - 2 0.59 0.59

22 20785.90 4 2 0.73 0.00

23 20574.99 - 2 0.69 0.41

24 20458.34 - 2 0.55 0.60

25 27331.32 4 2 0.70 0.00

26 27147.23 - 2 0.55 0.00

27 26887.75 - 2 0.43 0.00

28 27323.12 4 2 0.53 0.00

29 27145.48 - 2 0.63 0.00

30 26887.09 - 2 0.54 0.00

31 28854.83 4 2 0.75 0.00

32 28669.18 - 2 0.56 0.00

33 28395.56 - 2 0.58 0.00

34 28850.40 4 2 0.55 0.00

35 28664.85 - 2 0.55 0.00

36 28394.74 - 2 0.65 0.00
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Table A.9. Results of 6-bus test system for the hybrid method 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 11308.60 4, 5 3 13.23 0.00

2 11231.87 4, 6 3 11.58 0.00

3 11231.87 1, 6 3 9.87 0.00

4 11308.60 4, 5 3 1.95 0.00

5 11231.87 4, 5 3 1.51 0.00

6 11231.87 1, 5 3 1.39 0.00

7 13409.19 1, 2, 3, 4, 5, 6 3 1.34 0.00

8 13360.19 1, 2, 3, 4, 5, 6 3 1.30 0.00

9 13360.19 1, 2, 3, 4, 5, 6 3 1.25 0.00

10 13406.55 1, 2, 3, 4, 5, 6 3 1.19 0.00

11 13360.19 1, 2, 3, 4, 5, 6 3 0.96 0.00

12 13360.19 1, 2, 3, 4, 5, 6 3 0.94 0.00

13 19262.44 4 2 0.46 0.00

14 19056.77 - 2 0.35 0.00

15 18946.01 - 2 0.41 0.00

16 19262.04 4 2 0.48 0.00

17 19056.77 - 2 0.42 0.00

18 18944.73 - 2 0.35 0.00

19 20786.17 4 2 0.48 0.00

20 20659.79 4 3 0.78 0.00

21 20581.27 4 3 1.01 0.00

22 20785.90 4 2 0.45 0.00

23 20659.66 4 3 0.79 0.00

24 20580.86 4 3 0.89 0.00

25 27331.32 4 2 0.53 0.00

26 27147.23 - 2 0.47 0.00

27 26887.75 - 2 0.38 0.00

28 27323.12 4 2 0.44 0.00

29 27145.48 - 2 0.38 0.00

30 26887.09 - 2 0.38 0.00

31 28854.83 4 2 0.47 0.00

32 28669.18 - 2 0.43 0.00

33 28395.56 - 2 0.44 0.00

34 28850.40 4 2 0.46 0.00

35 28664.85 - 2 0.46 0.00

36 28394.74 - 2 0.38 0.00



79 

 

 

Table A.10. Results of 14-bus test system for the exact solution method 

 

 

 

 

 

 

 

 

Case #

Maximum 

Demand 

(MW)

Wind 

Power 

Deviation

Ramp-Rate 

Limit 

Factor

Flow 

Limit 

Factor

Total Cost ($) Location
No. Of 

Iterations

Total 

Time (s)

1 100 25 0.25 0.24 1930.21 1, 2, 4, 12 3 113.36

2 100 25 0.25 0.62 1930.21 2, 3, 10, 14 3 97.16

3 100 25 0.25 1 1930.21 2, 3, 10, 14 3 30.39

4 100 25 0.5 0.24 1930.21 2, 4, 8, 10 3 79.01

5 100 25 0.5 0.62 1930.21 2, 4, 5, 12 3 30.14

6 100 25 0.5 1 1930.21 2, 4, 5, 12 3 97.92

7 100 50 0.25 0.24 2891.77 1, 2, 3, 4, 7, 8 3 43.11

8 100 50 0.25 0.62 2891.77 2, 4, 5, 9, 12, 14 3 141.62

9 100 50 0.25 1 2891.77 1, 2, 4, 9, 12, 14 3 194.70

10 100 50 0.5 0.24 2891.77 2, 3, 4, 5, 7, 8 3 38.61

11 100 50 0.5 0.62 2891.77 2, 3, 4, 5, 6, 11 3 48.54

12 100 50 0.5 1 2891.77 2, 3, 4, 5, 6, 11 3 49.17

13 200 25 0.25 0.29 14012.18 3, 4, 7, 8, 9, 14 3 95.29

14 200 25 0.25 0.49 9007.59 5, 6, 10, 11, 12, 13 2 259.49

15 200 25 0.25 0.69 8544.02 5, 6, 12 2 14.03

16 200 25 0.5 0.29 14012.19 3, 4, 7, 8, 9, 14 3 11.47

17 200 25 0.5 0.49 8551.60 5, 6, 10, 11, 12, 13 2 111.97

18 200 25 0.5 0.69 8088.03 5, 6, 12 2 14.62

19 200 50 0.25 0.29 16235.82 2, 3, 4, 5, 6, 7, 8, 9 3 420.72

20 200 50 0.25 0.49 10511.76 5, 6, 11, 12, 13 2 15.42

21 200 50 0.25 0.69 9281.90 5, 6, 11, 12 2 22.00

22 200 50 0.5 0.29 16075.81 3, 4, 5, 6, 7, 8, 14 3 124.47

23 200 50 0.5 0.49 10294.37 5, 6, 11, 12, 13 2 10.75

24 200 50 0.5 0.69 8850.34 5, 6, 11, 12 2 20.80

25 300 25 0.25 0.62 21430.33 5, 6, 9, 10, 11, 12, 13, 14 3 105.45

26 300 25 0.25 1 15814.23 5, 6, 10, 11, 12, 13 2 28.88

27 300 25 0.25 1.26 15267.75 5, 6 2 7.81

28 300 25 0.5 0.62 21430.33 5, 6, 9, 10, 11, 12, 13, 14 3 12.72

29 300 25 0.5 1 14908.67 5, 6, 10, 11, 12, 13 2 17.34

30 300 25 0.5 1.26 14362.19 5, 6 2 5.80

31 300 50 0.25 0.62 23493.96 5, 6, 8, 9, 10, 11, 12, 13,14 3 46.50

32 300 50 0.25 1 16602.77 5, 6, 10, 11, 12, 13,14 2 102.12

33 300 50 0.25 1.26 16001.50 5, 6, 12 2 17.20

34 300 50 0.5 0.62 23493.96 5, 6, 7, 9, 10, 11, 12, 13, 14 3 36.56

35 300 50 0.5 1 15697.21 5, 6, 10, 11, 12, 13, 14 2 18.85

36 300 50 0.5 1.26 15095.95 5, 6, 12 2 12.99
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Table A.11. Results of 14-bus test system for MC method with the first strategy 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1625.89 4, 5 2 6.20 15.77

2 1625.89 2, 3 2 2.07 15.77

3 1625.89 2, 3 2 2.46 15.77

4 1625.89 4, 5 2 4.03 15.77

5 1625.89 2, 3 2 1.95 15.77

6 1625.89 2, 3 2 2.93 15.77

7 2433.65 4, 5, 6 2 3.10 15.84

8 2433.65 2, 3, 4 2 1.96 15.84

9 2433.65 2, 3, 14 2 1.40 15.84

10 2433.65 4, 5, 6 2 5.51 15.84

11 2433.65 2, 4, 6 2 1.27 15.84

12 2433.65 2, 4, 6 2 1.27 15.84

13 14012.19 3, 4, 7, 8, 9, 14 3 1.29 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 1.46 0.00

15 8544.03 5, 6, 12 2 0.65 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 1.30 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.37 0.00

18 8088.03 5, 6, 12 2 0.67 0.00

19 15915.82 3, 4, 7, 8, 9, 14 2 1.09 1.97

20 10511.77 5, 6, 11, 12, 13 2 0.81 0.00

21 9281.91 5, 6, 11, 12 2 1.06 0.00

22 15915.82 3, 4, 7, 8, 9, 14 2 0.92 1.00

23 10294.38 5, 6, 11, 12, 13 2 0.95 0.00

24 8850.34 5, 6, 11, 12 2 0.89 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.58 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.16 0.00

27 15267.76 5, 6 2 1.27 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 3.99 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 0.96 0.00

30 14362.19 5, 6 2 1.22 0.00

31 23493.97 5, 6, 8, 9, 10, 11, 12, 13, 14 3 1.86 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 1.38 0.00

33 16001.52 5, 6, 12 2 0.64 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 3.27 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.11 0.00

36 15095.95 5, 6, 12 2 0.59 0.00
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Table A.12. Results of 14-bus test system for MC method with the second strategy 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 948.28 1, 2, 4, 6 2 5.02 50.87

2 948.28 2, 5, 6, 7 2 2.24 50.87

3 948.28 1, 2, 3, 7 2 2.48 50.87

4 948.28 2, 3, 4, 12 2 3.36 50.87

5 948.28 2, 3, 5, 7 2 1.50 50.87

6 948.28 2, 5, 9, 12 2 1.94 50.87

7 1224.92 1, 2, 3, 4, 7, 8 2 1.76 57.64

8 1224.92 1, 2, 5, 6, 12, 13 2 11.24 57.64

9 1224.92 1, 2, 5, 6, 12, 13 2 10.09 57.64

10 1224.92 1, 2, 3, 4, 7, 8 2 4.35 57.64

11 1224.92 1, 2, 3, 4, 5, 7 2 10.75 57.64

12 1224.92 1, 2, 3, 4, 5, 7 2 10.86 57.64

13 14012.19 3, 4, 7, 8, 9, 14 3 1.57 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 1.63 0.00

15 8544.03 5, 6, 12 2 0.75 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 1.40 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.54 0.00

18 8088.03 5, 6, 12 2 0.76 0.00

19 16235.82 2, 3, 4, 5, 6, 7, 8, 9 3 4.58 0.00

20 10511.77 5, 6, 11, 12, 13 2 0.89 0.00

21 9281.91 5, 6, 11, 12 2 1.17 0.00

22 15915.82 3, 4, 7, 8, 9, 14 2 1.05 1.00

23 10294.38 5, 6, 11, 12, 13 2 1.03 0.00

24 8850.34 5, 6, 11, 12 2 1.03 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.91 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.28 0.00

27 15267.76 5, 6 2 1.31 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 4.21 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 1.08 0.00

30 14362.19 5, 6 2 1.22 0.00

31 23493.97 5, 6, 8, 9, 10, 11, 12, 13, 14 3 1.88 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 1.49 0.00

33 16001.52 5, 6, 12 2 0.74 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 3.55 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.29 0.00

36 15095.95 5, 6, 12 2 0.69 0.00
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Table A.13. Results of 14-bus test system for MC method with the third strategy 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1770.22 3, 5, 7 3 12.30 8.29

2 1770.22 4, 8, 12 3 11.75 8.29

3 1770.22 4, 8, 12 3 13.21 8.29

4 1770.22 2, 4, 11 3 12.87 8.29

5 1770.22 1, 2, 11 3 13.55 8.29

6 1770.22 1, 2, 11 3 13.74 8.29

7 2733.65 1, 2, 3, 4, 11 3 2.32 5.47

8 2733.65 1, 2, 3, 8, 10 3 2.15 5.47

9 2733.65 2, 3, 4, 10, 12 3 2.08 5.47

10 2733.65 1, 2, 3, 4, 7 3 7.68 5.47

11 2733.65 1, 2, 3, 4, 11 3 1.61 5.47

12 2733.65 1, 2, 3, 4, 11 3 1.86 5.47

13 14012.19 3, 4, 7, 8, 9, 14 3 1.54 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 1.65 0.00

15 8544.03 5, 6, 12 2 0.80 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 1.41 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.59 0.00

18 8088.03 5, 6, 12 2 0.75 0.00

19 16075.82 3, 4, 7, 8, 9, 10, 14 3 1.69 0.99

20 10511.77 5, 6, 11, 12, 13 2 0.91 0.00

21 9281.91 5, 6, 11, 12 2 1.21 0.00

22 15915.82 3, 4, 7, 8, 9, 14 2 1.02 1.00

23 9879.93 5, 6, 11, 12, 13 3 2.02 4.03

24 8850.34 5, 6, 11, 12 2 1.04 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.94 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.23 0.00

27 15267.76 5, 6 2 1.36 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 4.24 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 1.05 0.00

30 14362.19 5, 6 2 1.25 0.00

31 23493.97 5, 6, 8, 9, 10, 11, 12, 13, 14 3 2.09 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 1.52 0.00

33 16001.52 5, 6, 12 2 0.75 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 2.89 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.30 0.00

36 15095.95 5, 6, 12 2 0.70 0.00
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Table A.14. Results of 14-bus test system for MC method with the fourth strategy 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1625.89 4, 5 2 8.50 15.77

2 1625.89 2, 3 2 3.23 15.77

3 1625.89 2, 3 2 3.22 15.77

4 1625.89 4, 5 2 5.19 15.77

5 1625.89 2, 3 2 2.12 15.77

6 1625.89 2, 3 2 3.65 15.77

7 2583.16 1, 2, 3, 6 3 4.93 10.67

8 2583.16 2, 3, 9, 10 3 2.89 10.67

9 2583.16 2, 3, 9, 10 3 2.19 10.67

10 2583.16 3, 4, 5, 12 3 6.13 10.67

11 2583.16 1, 2, 3, 7 3 1.91 10.67

12 2583.16 4, 5, 8, 13 3 2.24 10.67

13 14012.19 3, 4, 7, 8, 9, 14 3 1.64 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 1.60 0.00

15 8544.03 5, 6, 12 2 0.75 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 1.42 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.80 0.00

18 8088.03 5, 6, 12 2 0.80 0.00

19 15672.64 3, 4, 7, 8, 9, 14 2 2.25 3.47

20 10511.77 5, 6, 11, 12, 13 2 0.95 0.00

21 9281.91 5, 6, 11, 12 2 1.13 0.00

22 15915.82 3, 4, 7, 8, 9, 14 2 1.07 1.00

23 10294.38 5, 6, 11, 12, 13 2 1.16 0.00

24 8850.34 5, 6, 11, 12 2 1.15 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.83 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.25 0.00

27 15267.76 5, 6 2 1.40 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.73 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 1.10 0.00

30 14362.19 5, 6 2 1.25 0.00

31 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 1.69 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 1.83 0.00

33 16001.52 5, 6, 12 2 1.04 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 2.90 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.75 0.00

36 15095.95 5, 6, 12 2 1.02 0.00
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Table A.15. Results of 14-bus test system for MC method with the fifth strategy 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1770.22 1, 4, 5 3 5.32 8.29

2 1770.22 2, 4, 8 3 2.64 8.29

3 1770.22 2, 4, 8 3 3.03 8.29

4 1770.22 2, 4, 10 3 3.03 8.29

5 1770.22 2, 4, 12 3 1.65 8.29

6 1770.22 2, 4, 12 3 2.26 8.29

7 2583.16 2, 3, 4, 6 3 5.98 10.67

8 2583.16 2, 3, 8, 10 3 2.65 10.67

9 2583.16 2, 3, 10, 14 3 1.77 10.67

10 2583.16 1, 2, 4, 7 3 4.89 10.67

11 2583.16 2, 4, 5, 13 3 2.11 10.67

12 2583.16 1, 2, 3, 11 3 2.27 10.67

13 14012.19 3, 4, 7, 8, 9, 14 3 1.39 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 1.48 0.00

15 8544.03 5, 6, 12 2 0.70 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 1.33 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.43 0.00

18 8088.03 5, 6, 12 2 0.68 0.00

19 15915.82 3, 4, 7, 8, 9, 14 2 1.16 1.97

20 10511.77 5, 6, 11, 12, 13 2 0.90 0.00

21 9281.91 5, 6, 11, 12 2 1.12 0.00

22 15915.82 3, 4, 7, 8, 9, 14 2 1.02 1.00

23 10294.38 5, 6, 11, 12, 13 2 1.03 0.00

24 8850.34 5, 6, 11, 12 2 1.02 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.78 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.25 0.00

27 15267.76 5, 6 2 1.31 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 4.14 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 1.04 0.00

30 14362.19 5, 6 2 1.18 0.00

31 23493.97 5, 6, 8, 9, 10, 11, 12, 13, 14 3 1.98 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 1.59 0.00

33 16001.52 5, 6, 12 2 0.78 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 3.51 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.28 0.00

36 15095.95 5, 6, 12 2 0.64 0.00
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Table A.16. Results of 14-bus test system for MC method with the sixth strategy 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1770.22 1, 4, 5 3 5.35 8.29

2 1770.22 2, 4, 11 3 2.29 8.29

3 1770.22 2, 4, 11 3 2.59 8.29

4 1770.22 4, 5, 7 3 6.93 8.29

5 1770.22 2, 4, 12 3 1.98 8.29

6 1770.22 2, 4, 12 3 2.52 8.29

7 2583.16 2, 3, 4, 6 3 6.28 10.67

8 2583.16 1, 2, 3, 8 3 2.56 10.67

9 2583.16 1, 2, 3, 14 3 1.82 10.67

10 2583.16 2, 3, 4, 12 3 7.79 10.67

11 2583.16 1, 2, 3, 11 3 2.26 10.67

12 2583.16 1, 2, 3, 11 3 1.84 10.67

13 14012.19 3, 4, 7, 8, 9, 14 3 1.42 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 1.47 0.00

15 8544.03 5, 6, 12 2 0.72 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 1.29 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.46 0.00

18 8088.03 5, 6, 12 2 0.71 0.00

19 15915.82 3, 4, 7, 8, 9, 14 2 1.18 1.97

20 10511.77 5, 6, 11, 12, 13 2 0.85 0.00

21 9281.91 5, 6, 11, 12 2 1.11 0.00

22 15915.82 3, 4, 7, 8, 9, 14 2 1.04 1.00

23 10294.38 5, 6, 11, 12, 13 2 1.04 0.00

24 8850.34 5, 6, 11, 12 2 1.00 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.73 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.23 0.00

27 15267.76 5, 6 2 1.28 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 4.07 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 1.03 0.00

30 14362.19 5, 6 2 1.15 0.00

31 23493.97 5, 6, 8, 9, 10, 11, 12, 13, 14 3 1.83 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 1.45 0.00

33 16001.52 5, 6, 12 2 0.74 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 3.37 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.21 0.00

36 15095.95 5, 6, 12 2 0.66 0.00
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Table A.17. Results of 14-bus test system for MC method with the seventh strategy 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1770.22 4, 5, 6 3 7.57 8.29

2 1770.22 1, 4, 10 3 2.59 8.29

3 1770.22 1, 4, 10 3 2.69 8.29

4 1770.22 4, 5, 11 3 8.09 8.29

5 1770.22 1, 2, 11 3 2.51 8.29

6 1770.22 2, 4, 6 3 2.99 8.29

7 2583.16 2, 3, 4, 6 3 4.06 10.67

8 2583.16 2, 3, 10, 14 3 2.91 10.67

9 2583.16 2, 3, 8, 10 3 1.88 10.67

10 2583.16 2, 3, 4, 12 3 8.13 10.67

11 2583.16 1, 2, 3, 11 3 2.23 10.67

12 2583.16 1, 2, 3, 11 3 2.14 10.67

13 14012.19 3, 4, 7, 8, 9, 14 3 1.45 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 1.62 0.00

15 8544.03 5, 6, 12 2 0.75 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 1.45 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.51 0.00

18 8088.03 5, 6, 12 2 0.77 0.00

19 16075.82 3, 4, 7, 8, 9, 10, 14 3 1.55 0.99

20 10511.77 5, 6, 11, 12, 13 2 0.88 0.00

21 9281.91 5, 6, 11, 12 2 1.12 0.00

22 15915.82 3, 4, 7, 8, 9, 14 2 0.95 1.00

23 10294.38 5, 6, 11, 12, 13 2 1.05 0.00

24 8850.34 5, 6, 11, 12 2 0.99 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 2.76 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.20 0.00

27 15267.76 5, 6 2 1.28 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 4.06 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 1.02 0.00

30 14362.19 5, 6 2 1.16 0.00

31 23493.97 5, 6, 8, 9, 10, 11, 12, 13, 14 3 1.82 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 1.50 0.00

33 16001.52 5, 6, 12 2 0.71 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 3.43 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.29 0.00

36 15095.95 5, 6, 12 2 0.67 0.00
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Table A.18. Results of 14-bus test system for the hybrid method 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1930.22 1, 2, 4, 12 3 8.23 0.00

2 948.28 2, 5, 6, 7 2 2.65 50.87

3 948.28 1, 2, 3, 7 2 2.74 50.87

4 1930.22 2, 4, 8, 10 3 4.69 0.00

5 948.28 2, 3, 5, 7 2 1.81 50.87

6 948.28 2, 5, 9, 12 2 2.37 50.87

7 2891.78 1, 2, 3, 4, 7, 8 3 7.46 0.00

8 2891.78 2, 4, 5, 9, 12, 14 3 22.82 0.00

9 1224.92 1, 2, 5, 6, 12, 13 2 12.84 57.64

10 2065.04 2, 3, 4, 5, 7, 8 3 6.52 28.59

11 2891.78 2, 3, 4, 5, 6, 11 3 23.41 0.00

12 2891.78 2, 3, 4, 5, 6, 11 3 22.49 0.00

13 14012.19 3, 4, 7, 8, 9, 14 3 2.92 0.00

14 9007.60 5, 6, 10, 11, 12, 13 2 2.16 0.00

15 8544.03 5, 6, 12 2 1.30 0.00

16 14012.19 3, 4, 7, 8, 9, 14 3 2.26 0.00

17 8551.60 5, 6, 10, 11, 12, 13 2 1.90 0.00

18 8088.03 5, 6, 12 2 1.17 0.00

19 16235.82 2, 3, 4, 5, 6, 7, 8, 9 3 31.14 0.00

20 10511.77 5, 6, 11, 12, 13 2 1.51 0.00

21 9281.91 5, 6, 11, 12 2 2.62 0.00

22 16075.82 3, 4, 5, 6, 7, 8, 14 3 10.84 0.00

23 10294.38 5, 6, 11, 12, 13 2 1.52 0.00

24 8850.34 5, 6, 11, 12 2 1.60 0.00

25 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 3.38 0.00

26 15814.24 5, 6, 10, 11, 12, 13 2 1.63 0.00

27 15267.76 5, 6 2 1.62 0.00

28 21430.34 5, 6, 9, 10, 11, 12, 13, 14 3 3.95 0.00

29 14908.68 5, 6, 10, 11, 12, 13 2 1.37 0.00

30 14362.19 5, 6 2 1.43 0.00

31 23493.97 5, 6, 8, 9, 10, 11, 12, 13, 14 3 5.97 0.00

32 16602.78 5, 6, 10, 11, 12, 13, 14 2 2.03 0.00

33 16001.52 5, 6, 12 2 1.39 0.00

34 23493.97 5, 6, 7, 9, 10, 11, 12, 13, 14 3 5.01 0.00

35 15697.22 5, 6, 10, 11, 12, 13, 14 2 1.65 0.00

36 15095.95 5, 6, 12 2 1.02 0.00
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Table A.19. Results of 30-bus test system for the exact solution method 

 

 

 

 

 

 

 

 

 

Case #

Maximum 

Demand 

(MW)

Wind 

Power 

Deviation

Ramp-Rate 

Limit Factor

Flow 

Limit 

Factor

Total Cost ($) Location
No. Of 

Iterations

Total 

Time (s)

1 100 20 0.25 0.29 3156.79 2, 11, 30 3 195.27

2 100 20 0.25 0.645 3156.79 1, 2, 10 3 200.00

3 100 20 0.25 1 3156.79 1, 2, 30 3 57.89

4 100 20 0.50 0.29 3156.79 1, 11, 26 3 120.88

5 100 20 0.50 0.645 3156.79 1, 2, 24 3 112.71

6 100 20 0.50 1 3156.79 2, 7, 24 3 177.84

7 100 30 0.25 0.29 3833.12 2, 11, 30 3 374.31

8 100 30 0.25 0.645 3833.12 1, 4, 30 3 342.19

9 100 30 0.25 1 3833.12 5, 17, 24 3 154.07

10 100 30 0.50 0.29 3833.12 2, 11, 27 3 142.65

11 100 30 0.50 0.645 3833.12 2, 19, 30 3 97.66

12 100 30 0.50 1 3833.12 2, 6, 9 3 266.76

13 200 20 0.25 0.41 17441.49 2, 5, 7, 10 2 545.85

14 200 20 0.25 0.48 17302.98 2, 5, 9 2 93.75

15 200 20 0.25 0.55 17231.20 2, 5 2 64.70

16 200 20 0.50 0.41 17441.49 2, 5, 7, 10 2 654.54

17 200 20 0.50 0.48 17302.98 2, 5, 9 2 97.55

18 200 20 0.50 0.55 17231.20 2, 5 2 61.17

19 200 30 0.25 0.41 18161.50 2, 5, 7, 10 2 688.25

20 200 30 0.25 0.48 18105.73 2, 5, 11 2 337.31

21 200 30 0.25 0.55 17957.83 2, 5, 7 2 75.11

22 200 30 0.50 0.41 18161.50 2, 5, 7, 10 2 749.64

23 200 30 0.50 0.48 18105.73 2, 5, 11 2 344.29

24 200 30 0.50 0.55 17957.83 2, 5, 7 2 73.49

25 300 20 0.25 0.64 33542.06 2, 5, 6, 7, 10, 11 2 93.64

26 300 20 0.25 0.82 31726.20 2, 5, 6, 7, 21 2 848.87

27 300 20 0.25 1 31370.52 2, 5 2 28.26

28 300 20 0.50 0.64 33542.06 2, 5, 6, 7, 10, 11 2 83.22

29 300 20 0.50 0.82 31726.20 2, 5, 6, 7, 11 2 927.15

30 300 20 0.50 1 31370.52 2, 5 2 19.66

31 300 30 0.25 0.64 35337.22 2, 5, 7, 9, 10, 11 2 34.18

32 300 30 0.25 0.82 32402.54 2, 5, 6, 7, 9 2 720.67

33 300 30 0.25 1 32082.54 2, 5, 7 2 90.00

34 300 30 0.50 0.64 35337.07 2, 5, 6, 7, 10, 11 2 33.35

35 300 30 0.50 0.82 32402.54 2, 5, 6, 7, 11 2 718.07

36 300 30 0.50 1 32082.54 2, 5, 7 2 41.32
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Table A.20. Results of 30-bus test system for MC method with the first strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 2996.80 11, 27 2 6.01 5.07

2 2996.80 3, 19 2 123.38 5.07

3 2996.80 6, 10 2 149.19 5.07

4 2996.80 2, 11 2 5.38 5.07

5 2996.80 3, 21 2 156.22 5.07

6 2996.80 2, 9 2 120.22 5.07

7 3673.13 11, 29 2 4.12 4.17

8 3673.13 1, 12 2 38.95 4.17

9 3673.13 7, 10 2 15.74 4.17

10 3673.13 11, 29 2 3.69 4.17

11 3673.13 2, 11 2 3.93 4.17

12 3673.13 5, 18 2 11.07 4.17

13 17441.50 2, 5, 7, 10 2 482.60 0.00

14 17302.99 2, 5, 9 2 62.51 0.00

15 17231.21 2, 5 2 53.59 0.00

16 17441.50 2, 5, 7, 10 2 581.51 0.00

17 17302.99 2, 5, 9 2 59.25 0.00

18 17231.21 2, 5 2 49.20 0.00

19 18161.52 2, 5, 7, 10 2 653.16 0.00

20 18105.74 2, 5, 11 2 300.79 0.00

21 17957.84 2, 5, 7 2 55.77 0.00

22 18161.52 2, 5, 7, 10 2 728.81 0.00

23 18105.74 2, 5, 11 2 303.26 0.00

24 17957.84 2, 5, 7 2 43.57 0.00

25 33542.07 2, 5, 6, 7, 10, 11 2 82.25 0.00

26 31726.21 2, 5, 6, 7, 21 2 788.98 0.00

27 31370.53 2, 5 2 14.86 0.00

28 33542.07 2, 5, 6, 7, 10, 11 2 68.85 0.00

29 31726.21 2, 5, 6, 7, 11 2 900.54 0.00

30 31370.53 2, 5 2 14.51 0.00

31 35337.09 2, 5, 6, 7, 9, 10 2 10.54 0.00

32 32402.55 2, 5, 6, 7, 9 2 668.08 0.00

33 32082.55 2, 5, 7 2 20.15 0.00

34 35337.09 2, 5, 6, 7, 10, 11 2 14.86 0.00

35 32402.55 2, 5, 6, 7, 11 2 672.83 0.00

36 32082.55 2, 5, 7 2 21.36 0.00
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Table A.21. Results of 30-bus test system for MC method with the second strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1191.72 2, 11, 27 2 4.23 62.25

2 1191.72 2, 26, 30 2 49.61 62.25

3 1191.72 1, 2, 17 2 37.29 62.25

4 1191.72 6, 11, 27 2 4.30 62.25

5 1191.72 2, 4, 11 2 61.29 62.25

6 1191.72 1, 2, 9 2 48.82 62.25

7 1230.90 11, 17, 27 2 58.24 67.89

8 1230.90 1, 2, 29 2 39.16 67.89

9 1230.90 2, 11, 14 2 37.59 67.89

10 1230.90 2, 9, 11 2 3.41 67.89

11 1230.90 2, 4, 11 2 5.74 67.89

12 1230.90 2, 9, 24 2 35.27 67.89

13 17441.50 2, 5, 7, 10 2 483.60 0.00

14 17302.99 2, 5, 9 2 62.74 0.00

15 17231.21 2, 5 2 53.72 0.00

16 17441.50 2, 5, 7, 10 2 572.74 0.00

17 17302.99 2, 5, 9 2 60.19 0.00

18 17231.21 2, 5 2 48.80 0.00

19 18161.52 2, 5, 7, 10 2 656.97 0.00

20 18105.74 2, 5, 11 2 302.29 0.00

21 17957.84 2, 5, 7 2 55.40 0.00

22 18161.52 2, 5, 7, 10 2 735.81 0.00

23 18105.74 2, 5, 11 2 304.38 0.00

24 17957.84 2, 5, 7 2 43.99 0.00

25 33542.07 2, 5, 6, 7, 10, 11 2 82.60 0.00

26 31726.21 2, 5, 6, 7, 21 2 793.08 0.00

27 31370.53 2, 5 2 15.26 0.00

28 33542.07 2, 5, 6, 7, 10, 11 2 69.26 0.00

29 31726.21 2, 5, 6, 7, 11 2 902.83 0.00

30 31370.53 2, 5 2 14.74 0.00

31 35337.09 2, 5, 6, 7, 9, 10 2 11.25 0.00

32 32402.55 2, 5, 6, 7, 9 2 674.05 0.00

33 32082.55 2, 5, 7 2 20.04 0.00

34 35337.09 2, 5, 6, 7, 10, 11 2 14.79 0.00

35 32402.55 2, 5, 6, 7, 11 2 678.61 0.00

36 32082.55 2, 5, 7 2 21.70 0.00
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Table A.22. Results of 30-bus test system for MC method with the third strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 2996.80 2, 11 3 68.86 5.07

2 2996.80 3, 19 2 118.60 5.07

3 2996.80 6, 10 2 160.44 5.07

4 2996.80 2, 11 2 5.35 5.07

5 2996.80 3, 21 2 154.53 5.07

6 2996.80 2, 9 2 118.89 5.07

7 3833.13 2, 11, 27 3 54.69 0.00

8 3833.13 4, 9, 22 3 41.54 0.00

9 3833.13 2, 14, 29 3 13.37 0.00

10 3833.13 2, 11, 21 3 8.54 0.00

11 3833.13 1, 2, 9 3 10.17 0.00

12 3833.13 2, 14, 22 3 8.08 0.00

13 17441.50 2, 5, 7, 10 2 485.29 0.00

14 17302.99 2, 5, 9 2 62.92 0.00

15 17231.21 2, 5 2 53.78 0.00

16 17441.50 2, 5, 7, 10 2 574.14 0.00

17 17302.99 2, 5, 9 2 63.41 0.00

18 17231.21 2, 5 2 55.20 0.00

19 18161.52 2, 5, 7, 10 2 721.58 0.00

20 18105.74 2, 5, 11 2 308.86 0.00

21 17957.84 2, 5, 7 2 55.32 0.00

22 18161.52 2, 5, 7, 10 2 801.18 0.00

23 18105.74 2, 5, 11 2 329.12 0.00

24 17957.84 2, 5, 7 2 46.91 0.00

25 33542.07 2, 5, 6, 7, 10, 11 2 90.66 0.00

26 31726.21 2, 5, 6, 7, 21 2 834.15 0.00

27 31370.53 2, 5 2 17.12 0.00

28 33542.07 2, 5, 6, 7, 10, 11 2 77.61 0.00

29 31726.21 2, 5, 6, 7, 11 2 963.57 0.00

30 31370.53 2, 5 2 16.77 0.00

31 35337.09 2, 5, 6, 7, 9, 10 2 13.19 0.00

32 32402.55 2, 5, 6, 7, 9 2 680.93 0.00

33 32082.55 2, 5, 7 2 21.92 0.00

34 35337.09 2, 5, 6, 7, 10, 11 2 15.67 0.00

35 32402.55 2, 5, 6, 7, 11 2 680.13 0.00

36 32082.55 2, 5, 7 2 21.65 0.00
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Table A.23. Results of 30-bus test system for MC method with the fourth strategy 
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Table A.24. Results of 30-bus test system for MC method with the fifth strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 2996.80 6, 11 3 6.95 5.07

2 2996.80 3, 19 2 123.65 5.07

3 2996.80 6, 10 2 166.44 5.07

4 2996.80 2, 11 2 5.43 5.07

5 2996.80 3, 21 2 154.23 5.07

6 2996.80 2, 9 2 127.84 5.07

7 3673.13 5, 11 3 33.66 4.17

8 3673.13 1, 12 2 43.14 4.17

9 3673.13 7, 10 2 16.42 4.17

10 3673.13 1, 11 3 46.72 4.17

11 3673.13 2, 11 2 3.91 4.17

12 3673.13 5, 18 2 11.53 4.17

13 17441.50 2, 5, 7, 10 2 530.85 0.00

14 17302.99 2, 5, 9 2 64.54 0.00

15 17231.21 2, 5 2 53.35 0.00

16 17441.50 2, 5, 7, 10 2 605.64 0.00

17 17302.99 2, 5, 9 2 61.00 0.00

18 17231.21 2, 5 2 50.62 0.00

19 18161.52 2, 5, 7, 10 2 675.28 0.00

20 18105.74 2, 5, 11 2 308.39 0.00

21 17957.84 2, 5, 7 2 59.00 0.00

22 18161.52 2, 5, 7, 10 2 876.32 0.00

23 18105.74 2, 5, 11 2 403.57 0.00

24 17957.84 2, 5, 7 2 44.52 0.00

25 33542.07 2, 5, 6, 7, 10, 11 2 92.42 0.00

26 31726.21 2, 5, 6, 7, 21 2 847.94 0.00

27 31370.53 2, 5 2 15.31 0.00

28 33542.07 2, 5, 6, 7, 10, 11 2 69.56 0.00

29 31726.21 2, 5, 6, 7, 11 2 909.73 0.00

30 31370.53 2, 5 2 14.66 0.00

31 35337.09 2, 5, 6, 7, 9, 10 2 11.05 0.00

32 32402.55 2, 5, 6, 7, 9 2 710.36 0.00

33 32082.55 2, 5, 7 2 20.44 0.00

34 35337.09 2, 5, 6, 7, 10, 11 2 15.80 0.00

35 32402.55 2, 5, 6, 7, 11 2 733.32 0.00

36 32082.55 2, 5, 7 2 23.64 0.00
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Table A.25. Results of 30-bus test system for MC method with the sixth strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 2996.80 11, 27 2 4.82 5.07

2 2996.80 3, 19 2 114.97 5.07

3 2996.80 6, 10 2 161.40 5.07

4 2996.80 2, 11 2 5.50 5.07

5 2996.80 3, 21 2 153.39 5.07

6 2996.80 2, 9 2 119.00 5.07

7 3673.13 2, 11 3 6.74 4.17

8 3673.13 1, 12 2 43.23 4.17

9 3673.13 7, 10 2 15.97 4.17

10 3673.13 11, 29 2 3.63 4.17

11 3673.13 2, 11 2 3.92 4.17

12 3673.13 5, 18 2 11.22 4.17

13 17441.50 2, 5, 7, 10 2 483.94 0.00

14 17302.99 2, 5, 9 2 62.79 0.00

15 17231.21 2, 5 2 53.60 0.00

16 17441.50 2, 5, 7, 10 2 579.53 0.00

17 17302.99 2, 5, 9 2 59.74 0.00

18 17231.21 2, 5 2 49.01 0.00

19 18161.52 2, 5, 7, 10 2 653.31 0.00

20 18105.74 2, 5, 11 2 301.85 0.00

21 17957.84 2, 5, 7 2 55.64 0.00

22 18161.52 2, 5, 7, 10 2 729.98 0.00

23 18105.74 2, 5, 11 2 302.60 0.00

24 17957.84 2, 5, 7 2 43.51 0.00

25 33542.07 2, 5, 6, 7, 10, 11 2 82.59 0.00

26 31726.21 2, 5, 6, 7, 21 2 787.99 0.00

27 31370.53 2, 5 2 14.92 0.00

28 33542.07 2, 5, 6, 7, 10, 11 2 69.13 0.00

29 31726.21 2, 5, 6, 7, 11 2 894.00 0.00

30 31370.53 2, 5 2 14.63 0.00

31 35337.09 2, 5, 6, 7, 9, 10 2 10.69 0.00

32 32402.55 2, 5, 6, 7, 9 2 671.86 0.00

33 32082.55 2, 5, 7 2 22.21 0.00

34 35337.09 2, 5, 6, 7, 10, 11 2 16.78 0.00

35 32402.55 2, 5, 6, 7, 11 2 677.97 0.00

36 32082.55 2, 5, 7 2 21.64 0.00
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Table A.26. Results of 30-bus test system for MC method with the seventh strategy 

 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 2996.80 11, 27 2 5.58 5.07

2 2996.80 3, 19 2 110.48 5.07

3 2996.80 6, 10 2 154.89 5.07

4 2996.80 2, 11 2 5.21 5.07

5 2996.80 3, 21 2 153.03 5.07

6 2996.80 2, 9 2 118.35 5.07

7 3673.13 2, 11 3 34.88 4.17

8 3673.13 1, 12 2 43.03 4.17

9 3673.13 7, 10 2 15.85 4.17

10 3673.13 4, 11 3 6.34 4.17

11 3673.13 2, 11 2 3.86 4.17

12 3673.13 5, 18 2 11.40 4.17

13 17441.50 2, 5, 7, 10 2 485.34 0.00

14 17302.99 2, 5, 9 2 62.31 0.00

15 17231.21 2, 5 2 53.89 0.00

16 17441.50 2, 5, 7, 10 2 618.69 0.00

17 17302.99 2, 5, 9 2 62.68 0.00

18 17231.21 2, 5 2 50.13 0.00

19 18161.52 2, 5, 7, 10 2 666.14 0.00

20 18105.74 2, 5, 11 2 306.10 0.00

21 17957.84 2, 5, 7 2 59.22 0.00

22 18161.52 2, 5, 7, 10 2 745.97 0.00

23 18105.74 2, 5, 11 2 305.85 0.00

24 17957.84 2, 5, 7 2 44.22 0.00

25 33542.07 2, 5, 6, 7, 10, 11 2 83.68 0.00

26 31726.21 2, 5, 6, 7, 21 2 803.05 0.00

27 31370.53 2, 5 2 15.04 0.00

28 33542.07 2, 5, 6, 7, 10, 11 2 69.81 0.00

29 31726.21 2, 5, 6, 7, 11 2 953.29 0.00

30 31370.53 2, 5 2 15.82 0.00

31 35337.09 2, 5, 6, 7, 9, 10 2 11.09 0.00

32 32402.55 2, 5, 6, 7, 9 2 713.57 0.00

33 32082.55 2, 5, 7 2 20.92 0.00

34 35337.09 2, 5, 6, 7, 10, 11 2 17.73 0.00

35 32402.55 2, 5, 6, 7, 11 2 716.41 0.00

36 32082.55 2, 5, 7 2 23.00 0.00
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Table A.27. Results of 30-bus test system for the hybrid method 

 

 

Case #
Total Cost 

($)
Location

No. Of 

Iterations

Total 

Time (s)
Gap (%)

1 1191.72 2, 11, 27 2 5.49 62.25

2 1191.72 2, 26, 30 2 49.70 62.25

3 1191.72 1, 2, 17 2 39.75 62.25

4 1191.72 6, 11, 27 2 5.05 62.25

5 3156.80 1, 2, 24 3 69.64 0.00

6 1191.72 1, 2, 9 2 50.50 62.25

7 3833.13 2, 11, 30 3 65.96 0.00

8 1230.90 1, 2, 29 2 42.04 67.89

9 3833.13 5, 17, 24 3 45.90 0.00

10 3833.13 2, 11, 27 3 74.86 0.00

11 1230.90 2, 4, 11 2 8.03 67.89

12 3833.13 2, 6, 9 3 42.79 0.00

13 17441.50 2, 5, 7, 10 2 520.13 0.00

14 17302.99 2, 5, 9 2 69.21 0.00

15 17231.21 2, 5 2 59.80 0.00

16 17441.50 2, 5, 7, 10 2 647.33 0.00

17 17302.99 2, 5, 9 2 66.21 0.00

18 17231.21 2, 5 2 51.62 0.00

19 18161.52 2, 5, 7, 10 2 707.16 0.00

20 18105.74 2, 5, 11 2 307.88 0.00

21 17957.84 2, 5, 7 2 56.75 0.00

22 18161.52 2, 5, 7, 10 2 742.86 0.00

23 18105.74 2, 5, 11 2 314.94 0.00

24 17957.84 2, 5, 7 2 45.48 0.00

25 33542.07 2, 5, 6, 7, 10, 11 2 85.61 0.00

26 31726.21 2, 5, 6, 7, 21 2 885.24 0.00

27 31370.53 2, 5 2 18.23 0.00

28 33542.07 2, 5, 6, 7, 10, 11 2 75.35 0.00

29 31726.21 2, 5, 6, 7, 11 2 962.46 0.00

30 31370.53 2, 5 2 17.42 0.00

31 35337.09 2, 5, 6, 7, 9, 10 2 12.21 0.00

32 32402.55 2, 5, 6, 7, 9 2 732.68 0.00

33 32082.55 2, 5, 7 2 23.56 0.00

34 35337.09 2, 5, 6, 7, 10, 11 2 19.40 0.00

35 32402.55 2, 5, 6, 7, 11 2 766.67 0.00

36 32082.55 2, 5, 7 2 22.78 0.00


