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ABSTRACT 

 

 

A FUZZY METHOD FOR MODELING AND FORECASTING HUMAN 

POPULATION 

 

Human population modeling and forecasting are significant issues in development 

planning and financial and public decision making. Age-specific population estimates of 

immediate future or long-term forecasts shape the policies in allocating the resources 

among public and private investments and the future population. In literature, population 

estimation is generally based on deterministic or stochastic models for the three vital 

demographic indicators: mortality, fertility, and migration. The existing deterministic and 

stochastic models for demographic modeling and forecasting rely on strict assumptions 

which may sometimes be difficult to satisfy.  

Considering the above mentioned issues, a fuzzy bi-level method for modeling and 

forecasting age-specific demographic indicators is proposed in this thesis study. The bi-

level structure embedded in the model makes use of the well-known Lee-Carter method as 

well as fuzzy regression, singular value decomposition technique, unconstrained nonlinear 

optimization, and hierarchical clustering approaches; and reflects the general 

characteristics of the country of concern together with the distinct demographic behaviors 

of the age groups. Time series models through Bayesian approach are fitted to the time-

variant fuzzy parameters obtained via the proposed fuzzy bi-level method to forecast future 

demographic values. Finally, the future mortality, fertility, and migration forecasts are 

aggregated within a novel fuzzy population estimation model based on the conventional 

cohort component method. The proposed novel method is applied on age-specific 

mortality, fertility, and migration data of Finland, and the future demographic values and 

population levels are forecasted. In addition, the outputs of the proposed fuzzy method are 

compared with the outputs of an existing Bayesian method. The numerical findings display 

that the proposed fuzzy method yields superior forecasts within narrower prediction 

intervals compared to the existing Bayesian approach, therefore, it can be viewed as an 

efficient method for modeling and forecasting age specific demographic values and the 

future population. 
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ÖZET 

 

 

İNSAN NÜFUSU MODELLEMESİ VE TAHMİNİ İÇİN BULANIK BİR YÖNTEM 

 

İnsan nüfusu modellemesi ve tahmini kalkınma planları ile ekonomik ve kamusal 

kararlarda önemli bir yer teşkil etmektedir. Öyle ki, geleceğe dönük yaşa bağlı nüfus 

tahminleri özel teşebbüs ve kamu kaynaklarının gelecek nüfusa aktarımı ve dağıtımını 

şekillendiren politikaları etkilemektedir. Literatürde nüfus tahminleri genel olarak üç temel 

demografik unsur olarak ifade edilen ölüm, doğum ve göç değerlerinin deterministik ve 

stokastik yöntemlerle modellenmesine dayanır. Ancak, hem deterministik hem de stokastik 

modellerin karşılanması zor olan bir takım varsayımlara dayandıkları bilinmektedir.  

Bu çalışmada, yukarıda bahsedilen durumları göz önünde bulundurarak demografik 

unsurları modellemek ve gelecek değerleri tahmin etmek amacıyla iki seviyeli yaşa özel bir 

bulanık yöntem önerilmektedir. Modele gömülü olan iki seviyeli yapı literatürde sıkça 

karşılaşılan Lee-Carter metoduna dayanmakta olup bulanık regresyon, tekil değer ayrışımı, 

kısıtsız doğrusal olmayan programlama ve hiyerarşik kümeleme yöntemlerini 

kullanmaktadır. Bu iki seviyeli yapı ile ilgilenilen ülkenin genel özelliklerinin demografik 

unsurlar üzerine etkileriyle birlikte yaş gruplarının farklı demografik davranışları da 

yansıtılmaktadır. Demografik unsurların gelecek değerlerini tahmin etmek amacıyla 

bulanık yöntemden elde edilen parametreler üzerine Bayesgil bir yaklaşımla zaman serisi 

modelleri oluşturulmuştur. Tahmin edilen gelecek ölüm, doğum ve göç değerleri yeni ve 

özgün bir bulanık nüfus modeli ile birleştirilmiş, böylece gelecek nüfus değerlerinin 

tahminine yönelik bir bulanık nüfus modeli ortaya konmuştur. Önerilen özgün yöntem 

Finlandiya’ya ait ölüm, doğum ve göç verileri üzerine uygulanmış ve geleceğe dönük 

nüfus seviyeleri tahmin edilmiştir. Ayrıca önerilen yöntemden elde edilen sonuçlar 

literatürde yer alan Bayesgil bir yöntemin sonuçlarıyla kıyaslanmıştır. Sayısal bulgular 

önerilen yöntemin var olan yönteme kıyasla daha dar tahmin aralıklarında daha doğru 

sonuçlar verdiğini göstermekte, böylece önerilen bulanık yöntemin yaşa özel demografik 

unsurlar ve nüfus değerlerini modellemek ve tahmin etmek için etkili bir yaklaşım 

olabileceğini ortaya koymaktadır.  
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1. INTRODUCTION 

 

It is known that population modeling and forecasting play significant roles in strategy 

development and decision making in diverse sectors. Population modeling and 

demography analysis find application areas in projecting and forecasting life expectancies, 

age distributions, unemployment rates, labor force compositions, household consumptions 

and etc.  Together with fertility and migration rates, mortality rates constitute the vital 

demographic indicators of population dynamics [1]. Age-specific population estimates of 

immediate future or long-term forecasts based on these vital demographic indicators shape 

the policies in allocating the resources among public and private investments and the future 

population [2]. The outputs of the models obtained from fertility, mortality and migration 

elements form the basis for medium or long term planning in various areas such as labor 

market [3], public financing [4], insurance and pensions sector [5,6], education system [2], 

healthcare services [7], city planning [8] and etc. 

The research on human mortality and fertility is abundant but the demographic studies 

have omitted migration until recently [9]. However, population movements play significant 

roles in demography, economy, politics and sociology and culture in countries. Thus, 

modeling and forecasting international migration has become an attractive research topic, 

especially for countries with negative or almost zero natural population growth, where the 

role of migrants in shaping the socioeconomic structure is important [10]. The growing 

number of studies on international migration modeling mainly focuses on explaining the 

determinants of migration phenomenon as well as providing reasonable future predictions 

on migration levels or rates.  

1.1. CONTENT OF THE STUDY 

In this study, a fuzzy method for modeling and forecasting age-and-sex-specific population 

is proposed. This method includes modeling and forecasting mortality, fertility and 

migration rates and aggregating the forecasted rates with an initial population to generate 

future fuzzy population forecasts. The fuzzy modeling approach incorporates fuzzy 

regression with minimum fuzzification criterion as well as unconstrained nonlinear 
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optimization. For migration modeling, an additional level of fuzzy factors is included in 

the model in which a hierarchical clustering approach in estimating the age-and-time 

specific fuzzy parameters. This bi-level structure enables the model to cover the variations 

due to country-specific factors as well as age group clusters. The fuzzy model outputs for 

each demographic indicator are then employed in Bayesian time series models for 

forecasting the future mortality, fertility, and migration values. Finally, the forecasts are 

combined to obtain age specific population estimates for the upcoming years.  

The main research question in the study is to see the performance of the hybrid fuzzy set 

theoretical approach and Bayesian techniques for modeling and forecasting population. 

The proposed method is implemented on Finland mortality and fertility data for 1940-2000 

mortality and fertility data and migration data for 1990-2010 period as an exemplary data 

set to give annual forecasts for 2011-2025 period. The rest of the paper is designed as 

follows: the existing literature is re-evaluated in Section 2, and the motivation, scope and 

main deliverables of the study is provided in Section 3. The proposed method is given in 

Section 4, whereas the application results for Finland are analyzed in Section 5. The study 

is concluded with the discussion and future work in Section 6 and the conclusion in 

Section 7.  
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2. MODELS IN AGE-SPECIFIC DEMOGRAPHIC FORECASTING  

 

Population modeling and estimations are performed via diverse methodologies which can 

basically be grouped as population projection methods and population forecasting 

methods. The projection methods simply rely on deterministic scenarios for different 

components of mortality, fertility and migration value combinations [11]. Setting the 

values of these components generally requires formation of a group of experts. In contrast, 

population forecasting makes use of historical data to obtain a future population estimate 

using a stochastic approach which takes component un-certainties into account. In fact, 

stochastic modeling methods have a significant area in demographic forecasting since they 

provide estimations for the vital demographic indicators together with forecast intervals for 

them [11].  

The choice of the age-specific population forecasting model and the appropriate method to 

deal with it depends on several issues such as data availability, purpose, length of forecast, 

fit and forecast accuracies and etc. [11]. Cairns et al. [12] summarized the model selection 

criteria for mortality forecasting; which can be extended to include the two other 

components, fertility and migration, in population forecasting. They assert that a good 

model should provide consistency with historical data and trends and should generate 

biologically feasible results (e.g. the model should ensure positivity for forecasts of 

demographic rates or counts). 

Let 
,x tm  be an age-specific demographic rate for age group x at time period t. This 

demographic rate can be defined as the ratio of number of demographic events for age 

group x at time period t to the population at risk for that age group at the same time period. 

For example age-specific mortality rate for a certain region corresponds to the number of 

deaths for age group x at time period t over the population of age group x at time period t in 

that region. Actually, the population at risk refers to the population that is open to 

experience a demographic event of mortality, fertility, immigration or emigration. If the 

population at risk is set to unity, then the demographic rate becomes a demographic count. 

Since population forecasting is based on age-specific mortality, fertility and migration 

rates, in this section, models used in age-specific forecasting are examined. The commonly 
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used models are evaluated under separate subsections for the three demographic 

components: mortality (Section 2.1), fertility (Section 2.2) and migration (Section 2.3). 

However, it is worth mentioning that some of the models can be used for forecasting more 

than one single demographic component. In addition to the mortality, fertility and 

migration modeling approaches, commonly used cohort component method in which 

mortality, fertility and migration values are integrated to estimate a population with age-

specific characteristics is examined in Section 2.4. Last but not least, the Leslie matrix 

formulation for estimating a population through age-specific demographic components is 

given in Section 2.5.  

2.1. MORTALITY MODELING AND FORECASTING APPROACHES 

The almost linear decline in trends followed by age-specific mortality rates (ASMR) in 

most of the developed and developing countries allow modeling and forecasting human 

mortality by extrapolating the past trends into future. In majority of the existing 

approaches, the observed rates are transformed into logarithmic scale to ensure the 

nonnegativity and visualize the fluctuations and the almost linear structures in mortality 

trends for most of the ages [13]. In this perspective, the simplest approach is the direct 

linear extrapolation [14]. Let mx,t be the mortality rate for age group x at time t, which 

corresponds to ASMR. By direct linear extrapolation, the natural logarithm of mx,t can be 

modeled as:  

   
, ,

ln
x t x x x t

m a b t   (2.1)   

where 
x

a  is the intercept, 
x

b  is the regression coefficient and 
,x t

 is the error term 

distributed normally with mean zero and a small variance. Equ. (2.1) treats ASMR as a 

linear function of time, therefore, its usage is limited in cases of fluctuations in mortality 

trends. 

2.1.1.  Lee-Carter Model and Its Variants 

Thanks to the regularities in ASMR, the utilization of dimension reduction techniques 

based on principal components is common for modeling human mortality [7]. Among the 
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methods similar to principal components, the log-bilinear model proposed by Lee and 

Carter [15] is very popular. This is because, Lee-Carter (LC) model provides a simple 

procedure to extract the dominant temporal factor embedded in the mortality data as 

follows:  

   
, ,

ln
x t x x t x t

m a b k    (2.2) 

where 
x

a  and xb  are the age-specific regression coefficients, and tk  is the time-varying 

mortality index. The error term 
,x t  represents the variations in data that cannot be 

explained by the model. 
,x t  is normally distributed with a mean value of zero and a small 

constant variance, which leads to the homoscedasticity assumption of the model. The 

values of the unknown model parameters and the mortality indices kt’s in Equ. (2.2) are 

estimated via singular value decomposition (SVD) technique, in which a data matrix Z, 

composed of lnmx,t values purified from the average age impact, is decomposed into its 

singular values and their corresponding right and left eigenvectors. The most dominant 

singular value and its associated eigenvectors are then used to give estimates for the 

unknown model parameters and mortality indices.  

Due to its simplicity and ability to reflect the alike declining mortality trends among 

different age groups, LC model has been widely used in modeling ASMR for most of the 

developed and developing countries [16]. Several extensions of LC model are available in 

demographic literature, and these extensions are applied not only for mortality modeling, 

but also for fertility [13] and migration [17] modeling as well. In such models, once the 

time-varying kt values are extracted based on observed mortality data, the future values can 

be forecasted using univariate time series models such as random walk (RW) or 

autoregressive integrated moving average models. The future forecasts of kt are then 

employed within Equ. (2.2) to give future forecasts of ASMRs.  

In Lee-Miller variant of LC model [18] a reduced fitting period is used to mitigate the bias 

in forecasts based on more data. This model also does not treat the age-specific parameter 

bx as a fixed value; instead, bx changes by time in accordance with the changes in mortality 

index kt. Booth-Maindonald-Smith variant of LC model [19] also concentrates on the 

selection of best fitting period based on goodness of fit criteria with the assumption of a 

linear kt. 
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2.1.1.1. Renshaw-Haberman Model 

In cases where using only a single factor extracted via SVD does not meet the model 

capability requirements, Lee [20] and Renshaw and Haberman [21] suggest including a 

second factor into the LC model, which is named as LC(2) model:  

    (1) (1) (2) (2)

, ,
ln

x t x x t x t x t
m a b k b k    (2.3) 

where 
x

a , (1)

xb , and (2)

xb  are the age-specific parameters to be estimated, (1)

tk  and (2)

tk  are 

the time-varying mortality indices associated with the first and second most dominant 

singular values extracted via SVD.  

Renshaw and Haberman [22] further include a cohort effect factor into LC model to 

diminish the unexplained variances in mortality data through reflecting the separate 

changes in individual cohorts by time. The Renshaw-Haberman (RH) model is as follows:  

  


   (1) (2)

, ,
ln

x t x x t x t x x t
m a b k b    (2.4) 

where 
x

a , (1)

xb , and (2)

xb are the age-specific parameters to be estimated, tk  is the time-

varying mortality index, and t x   is the cohort effect (cohort = time period – age group). 

Another version of RH model, namely RH2 model removes the regression coefficient from 

the original RH model as:  

  


   
, ,

ln
x t x x t t x x t

m a b k    (2.5) 

2.1.1.2. Multiple Population Models 

The determination of which model to implement is due to data-driven manners such as 

minimizing the fitting or forecast errors. For a population composed of several groups or 

segments with distinct mortality behaviors, Russolillo et al. [23] introduce a factor index to 

modify the mortality for each group. The Russolillo-Giordano-Haberman (RGH) model 

proposed by Russolillo et al. [23] is as follows:  

   
, , , ,

ln
x t i x x t i x t i

m a b k I    (2.6) 
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Here, lnmx,t,i denotes the natural logarithm of mortality rate for age x at time t for 

population group i, and Ii is the factor index that modifies mortality for group i members. 

Debón et al. [24] modify RGH model by adding a separate factor index instead of 

multiplying it with the age-specific mortality factor bxkt as:  

    
, , , ,

ln
x t i x x t i x t i

m a b k I    (2.7) 

The models in Equ. (2.6) and Equ. (2.7) are applied to model the ASMR for small 

populations within a larger population and they result in more accurate forecast and fitting 

errors when compared to other LC model variants for such data.  

Considering mortality characteristics for multiple populations at a time, Li-Lee model [25] 

extends the LC model so that mortality patterns in all populations are influenced by a 

mutual factor as:  

    
, ,

ln
x t x x t x t x t

m a b k B K    (2.8) 

Here, 
x

a , bx, and Bx denote the age-specific parameters to be estimated, Kt refers to the 

time-specific common trend factor for a set of populations whereas kt denote the time-

variant mortality factor for a member population of this set. Li and Hardy [26] further 

propose another two-population model, in which the trend for a smaller population is 

treated as a function of the trend for a larger population. In Li and Hardy model, the 

mortality index kt in Equ. (2.2) is expressed as:  

     *

t t t
k k    (2.9) 

where kt and *

tk  represent the trend factor for a smaller and a larger population 

respectively. The mentioned smaller and larger population pairs may be a city and a 

country or a country and a region of the world. Dowd et al. [27] further exploit the trend 

factors in two-population mortality models by using an error correction model linking the 

trend for the smaller population to the trend for the larger population as:  

  
 

  * * * *

1 1t t t
k k    (2.10) 

    
 

     * *

1 1
( )

t t t t t
k k k C    (2.11) 
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Using a state-space framework, de Jong and Tickle [28] propose a modified LC model in 

which a design matrix X is included as:  

   
,

ln X X
x t t t

m a bk    (2.12) 

The design matrix X in Equ. (2.12) is formed in such a way that kt has dependent impact at 

each age, allowing the representation of age-across effects in mortality trends.  

2.1.1.3. Hyndman-Ullah Model 

Hyndman and Ullah [2] propose a functional data method to model the ASMRs. In their 

model, denoted as HU, ASMR are first smoothed using penalized regression spline with 

concavity constraint as follows:  

     
, ,

ln ( ) ( ) , 1,2,..., ,  1,2,...,
x t t t x t

m f x x x p t n    (2.13) 

Here, ( )tf x  is a continuous smooth function; ( )t x  allows the presence of heteroscedastic 

error by representing the noise to vary with age x in time t. The mean smooth function of 

age x, denoted by ( )a x  can be expressed as weighted sum of ( )tf x s as:  

 



1

( ) ( )
n

t t
t

a x w f x    (2.14) 

where the weight wt can either be 1/n, representing equal weights, or (1 )n t   , 

representing a set of geometrically decaying weights. Here, the value of weight parameter λ 

is determined through a data driven approach based on minimizing the total forecast error. 

Next, the set of curves  { [ ( ) ( )]; 1,2,..., }
t t

w f x a x t n   is decomposed into orthogonal 

functional components and their uncorrelated scores similar to the approach in LC model 

as:  

 


  , ,
1

ln ( ) ( ) ( )
J

x t j t j t
j

m a x b x k e x    (2.15) 

where ( )jb x  is the jth equally or geometrically decaying weighted principal component, 

,t jk  is the time varying  jth uncorrelated principal component score and ( )te x  is the error 
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function with mean zero. Here, J is the number of extracted principal components. The h-

step-ahead point and interval forecasts for ASMR are predicted by including univariate 

time series forecasts of
,t jk .  

Mitchell et al. [29] criticize the LC model and its variants as they model the level of 

mortality rates which misinterpret the temporal correlations between age groups, even for 

models including cohort factor which try to model dependencies between age groups using 

a downward trending temporal factor. However, the simplicity of LC model and its 

variants make them frequently be used in mortality modeling and forecasting. 

2.1.2. Cairns-Blake-Dowd Model and Its Variants 

Another family of dimension reduction methods for modeling ASMR is the Cairns-Blake-

Dowd (CBD) model and its variants. Proposed by Cairns et al. [30], CBD models include a 

number of time and cohort factors, where the number of time factors and the decision to 

include a cohort factor depend on data to be modeled. Four variants of CBD model are as 

follows:  

    (1) (2)

, ,
ln ( )

x t t t x t
m k x x k    (2.16) 

  


    (1) (2)

, ,
ln ( )

x t t t t x x t
m k x x k    (2.17) 

  


     (1) (2) (3)

, ,
ln ( )

x t t t x t t x x t
m k x x k b k    (2.18) 

  


     (1) (2)

, ,
ln ( ) ( )

x t t t c t x x t
m k x x k x x    (2.19) 

Here, (1)

tk  , (2)

tk  , and (3)

tk  are the time factors, t x   is the cohort factor linking age group x 

and time t, x  is the mean age group in data, and xc is a predetermined constant.. The 

coefficient term bx for the third time factor (3)

tk equals to the following expression:  

 


   
1

2 21
( ) ( )

p

x
i x

b x x i x
p

   (2.20) 

where x = x1, x2, …, xp; and t=1, 2, …, n. Plat [31] suggests using modified versions for the 

CBD models described in Equ. (2.16) to Equ. (2.17), which are expressed as:  
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       (1) (2) (3)

, ,
ln ( ) ( )

x t x t t t x t
m a k x x k x x k    (2.21) 

  


       (1) (2) (3)

, ,
ln ( ) ( )

x t x t t t t x x t
m a k x x k x x k    (2.22) 

  


        (1) (2) (3) (4)

, ,
ln ( ) ( )

x t x t t t x t t x x t
m a k x x k x x k b k    (2.23) 

  


        (1) (2) (3)

, ,
ln ( ) ( ) ( )

x t x t t t c t x x t
m a k x x k x x k x x    (2.24) 

where ( )x x   corresponds to max{( ),0)x x , ensuring nonnegativity. The main 

differences between CBD and Plat models is that Plat models include an intercept 

coefficient ax, which can be viewed as the mean mortality trend for age group x, and the 

coefficient ( )x x  is reversed into ( )x x . In addition, one more time factor is included in 

each equation for Plat models. Both CBD and Plat models are generalized linear models 

(GLM) and they can be fitted using GLM facilities in standard packages. Haberman and 

Renshaw [32] compared CBD and Plat models with LC, RH, and RH2 models for England 

and Wales male mortality data and found that Plat models described in Equ. (2.23) and 

Equ. (2.24), and RH2 model in Equ. (2.5) outperform the other models for this data set.  

2.1.3. Time Series Extrapolation of Age-Specific Mortality Rates 

Time series extrapolation of age-specific demographic rates, including ASMR, is also quite 

common in demographic literature. Apart from the parametric and semiparametric models, 

univariate time series models are the simplest approach in analyzing the age specific 

demographic rates [33]. Alho and Spencer [34] provide a detailed summary of time series 

models utilized in demographic forecasting. Being one of the most naïve linear 

extrapolation model a random walk model with drift term relates age-specific demographic 

rate for age group x at time t+1 with its value at time t as:  

 
 
     

, 1 , , 1 1 2
   1,2,..., 1,   , ,...

x t x t x t p
m c m t n x x x x    (2.25) 

where 
,x tm  is the age-specific demographic rate to be analyzed, c is the drift term and 

,x t   

is the error term which corresponds to a normally distributed random variable with mean 

zero. The h-step ahead point and interval forecasts are given by [35]:  
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 

    , | , ,1 ,2 , ,
ˆ E | , ,...,

x n h n x n h x x x n x n
m m m m m hc m    (2.26) 

    
            , | , ,1 ,2 , , ,

ˆVar Var | , ,..., Var Var
x n h n x n h x x x n x n x n h

m m m m m m e     (2.27) 

where E and Var refer to expected value and variance respectively. If the drift term c in 

Equ. (2.25) is zero, then the expression represents a random walk model without drift. A 

100(1 )%  prediction interval for the h-step ahead forecast 
,x t hm 

is constructed as 

  


, | , |
ˆ ˆVar

x n h n x n h n
m z m , where z   is the  1 /2  standard normal quantile.  

Autoregressive integrated moving average (ARIMA) models are also common in 

demographic forecasting. The model assumes a stationary time series which does not 

reflect a trend over time. Otherwise, stationarity is achieved through differencing the 

nonstationary time series so that an optimal autoregressive moving average, ARMA(p,q), 

model is constructed. Here, p and q refer to the orders of autoregressive (AR) and moving 

average (MA) components [36]. The ASMR (or other age-specific demographic rates) can 

be extrapolated by applying ARMA(p,q) model to each age group separately as:  

      
  

 

      , 1 , , ,
1 1

( ) + ,   max( , ) 1,...,
p q

x t i x t i x t j x t j
i j

m m t p q n          (2.28) 

where.   is the mean value of a time series, 
1 2, ,..., p    are the coefficients of the AR 

components, and 
1 2, ,..., p    are the coefficients of the MA components. The error term 

,x t  is normally distributed with mean zero and an estimated variance 2

 . One step ahead 

point and interval forecasts are obtained through):  

 
, 1| , 1 ,1 ,2 , , 1

1

ˆˆ ˆ ˆE | , ,..., ( )
p

x n n x n x x x n i x n i

i

m m m m m m     



          (2.29) 

   2 2 2 2

, 1| , 1 ,1 ,2 , 1 2
ˆ ˆ ˆˆ ˆVar Var | , ,..., (1 ... )x n n x n x x x n qm m m m m     

          (2.30) 

where E and Var refer to expected value and variance respectively. The iterative 

application of Equ. (2.29) and Equ. (2.30) generates h-step ahead forecasts, and the related 

100(1 )%  prediction interval can be achieved like random walk process.  
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Despite its common usage and simplicity, Rueda and Rodriguez [33] argue that analyzing 

each age group separately through univariate time series may not result in plausible 

outcomes. On the other hand, methods such as LC and CBD models and their variants 

capture the smooth shape of the demographic rates over age, hence, yielding more 

consistent and accurate forecasts. 

2.2.  FERTILITY MODELING AND FORECASTING APPROACHES 

Age-specific human fertility modeling and forecasting concentrates mainly on modeling 

age-specific fertility rates (ASFR) or fertility schedules/fertility curves. ASFR for age 

group x at time t, denoted by fx,t, can be defined as the ratio of number of births given by 

female population of age x in time period t and the mid-period female population of age 

group x. Fertility rates for a set of age groups at a certain time period constitute fertility 

schedules or fertility curves in demographic literature [37]. Various fertility models exist in 

literature, which can be analyzed in three groups as curve fitting approaches (i), relational 

models (ii), spline models (iii) and quantum-tempo decomposition approaches and other 

methods (iv). 

Unlike the dominance of dimension reduction methods common in mortality modeling, the 

majority of the fertility models are based on parametric or semiparametric curve fitting 

approaches. However, the interpretation of model parameters in curve fitting approaches is 

limited in most of the cases.  

2.2.1.  Curve Fitting Approaches 

Despite the lack of parameter interpretation, due to its simplicity curve fitting based on 

well-known statistical distributions is quite common in not only age-specifc fertility 

modeling but also in mortality and migration fitting. Let fx denote the fertility rate at age x 

of the mother. Hoem et al. [38] make use of the beta distribution to model fertility 

schedules as:  

     
  

  
   

 

( 1) 1 1( )
( ) ( )

( ) ( )

A B A B

x

A B
f R x x

A A
   (2.31) 
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where   is the gamma function, α and β are the minimum and maximum age limits of 

fertility; and A and B are related to mean and variance of fertility rates. Here, R represents 

the level of fertility. A similar model, the gamma model is defined as [38,39]:  

 


 
  

    
   

11
( ) exp

( )

A

x A

x
f R x

BA B
   (2.32) 

Here, although the parameters A and B are associated with mean and variance of the 

model, their relation with these concepts are not in a simple linear way. Hence, these 

parameters cannot be directly explained in demographic context. More recently, de Iaco 

and Maggio [40] propose a dynamic version of this Gamma model to fit ASFR in Italy by 

adding a temporal dimension in addition to the age axes. Such extensions of age specific 

demographic schedules to include a time component enable the fitting models to generate 

future forecasts in an easier way. 

2.2.1.1.  Hadwiger Model 

Hadwiger model [41] is also one of the oldest and frequently used to model fertility 

schedules. The Hadwiger model is:  

 
    

       
    

3

2
2exp 2

x

ab c c x
f b

c x x c
   (2.33) 

where a , b, and c are to be estimated. Here, the values of a , b, and c are not directly 

interpretable, which is the main drawback of the Hadwiger model. However, in several 

studies it is noted that a  is associated with total fertility level, b is related to the height of 

the curve, c is related to mean age at motherhood, and ab
c

 is associated with the modal 

ASFR [42]. Despite the difficulties encountered in interpreting the parameters in Equ. 

(2.32), Hadwiger model enjoys the superiorities in terms of number of parameters included 

and computational complexity. Chandola et al. [43] introduce an additional term into the 

Hadwiger model to provide accurate fits for distorted distributions. They believe that the 

Hadwiger mixture model is capable of fitting the humped fertility distributions for some 
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countries like the UK, the USA and Ireland by taking the combination of two separate age 

distributions as:  

 
                

                     
                

3 3

2 2
2 21 1 1 2 2 2
1 2

1 1 2 2

exp 2 (1 ) exp 2
x

b c c b c cx x
f m b m b

c x x c c x x c
  (2.34) 

where m denotes the mixture parameter reflecting the relative size of two component 

distributions that are believed to be included in a single fertility schedule. 

2.2.1.2.  Coale-Trussel Model 

Another commonly used curve fitting approach is the Coale-Trussel (CT) model [44], 

which is defined as:  

  


 


 
  

 
0

( )exp ( )
x

x
f G n x v x    (2.35) 

where n(x) is the age pattern of fertility, v(x) is a fixed pattern of fertility control by age, 

log( )cm  , m  , and μ and σ are the mean and standard deviation of age at first birth. 

The parameter m embedded in α reflects the level of natural fertility whereas the parameter 

c in β represents the degree of fertility control. G0 in CT model is a standard nuptiality 

schedule representing the probability that a woman who will ever join a union has done so 

by age x. In fact, CT model is a relational model which expresses ASFR as a product of 

two model age schedules: a nuptiality schedule and a marital fertility schedule. Thus, the 

estimated ASFR by CT model are indeed based on the assumption that marital fertility is a 

good representative of ASFR. However, this assumption has turned out to be misleading 

especially since 1980, as childbearing without marriage has been increasing unavoidably 

[37]; which is viewed as one of the main weaknesses of CT model.  

2.2.1.3.  Peristera-Kostaki Model 

Further changes in fertility curves of various countries in recent years have required a more 

flexible model such as Peristera and Kostaki (PK) model [45]. The PK model appears like 

the bell curve but it is asymmetric in sense that the spread before and after the peak differs. 
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The distorted age-specific fertility patterns in countries such as the UK, Ireland, and Spain 

can be fitted by PK model as:  

 




   
   

   

2

exp
( )x

x
f c

x
   (2.36) 

where c is associated with total fertility rate (TFR), μ is the mean age of fertility, and σ(x) 

is the standard deviation of age of fertility. Here, 
11x   if x   and 

12x   

otherwise; where 11  and 12 are proxy for the spread of the distribution before and after 

its peak value.  

2.2.2.  Relational Models 

For fitting fertility curves with distortions or bimodal structure due to fluctuations such as 

high fertility at a young age, Peristera and Kostaki [45] further proposed a modified 

version of the PK model, namely PK2 model, by adding a second term as:  

 
 

 

          
         

         

2 2

1 2
1 2

1 2

exp exp
( ) ( )x

x x
f c c

x x
   (2.37) 

where c1 and c2 are related to the fertility level at the first and second peak, μ1 and μ2 are 

related to the mean age of the two subpopulations, and σ1(x) and σ2(x)  are associated with 

the spreads around the two peaks. Although both PK and PK2 models work well in fitting 

distorted fertility curves, they still lack the complete interpretability of parameters which is 

common in parametric curve fitting approaches.  

In general, the parameters in relational models imply the extent of the deviations from a 

model age schedule for a particular country in terms of a demographic rate. Originally 

proposed for modeling mortality, Gompertz model [46] provides one of the oldest 

relational models that can be applied for modeling fertility schedules. Gompertz model for 

modeling fertility schedules is as [47]:  

 
  

   
  

exp bx

x

a
f Ka e bx

b
   (2.38) 
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where K is the completed total fertility over all ages, a  is a location parameter, which 

determines the location of the schedule along the age axis for a given b, and b is a time 

scale parameter indicating the speed of the process. Goldstein [47] notes that a large value 

for location parameter a presents a compressed distribution with small variance whilst a 

small b indicates a slow time-scale of the process. Gompertz distribution generates 

plausible fits for the fertility rates except at extreme ages [42]. To mitigate the distortions 

from the smooth structure in fertility schedules additional terms are included into Equ. (38) 

as:  

 
  

   
  

exp ( )bx

x

a
f Ka e bx g x

b
   (2.39) 

where the function g(x) is set to unity before age 33 and take the value zero after age 43. 

The function takes values that are linearly declining in between ages 33 and 43, thus, g(x) 

can be viewed as an infertility effect. The model in Equ. (2.39) is said to improve the 

fitting capability of Gompertz model at older ages and has the advantage of possessing a 

conceivable biological foundation and behavioral interpretation.  

Similar to the model displayed in Equ. (2.39), Gupta and Pasupuleti [37] define a model 

that provides behavioral interpretation. Their model is given below as:  

 
 

  
 

, 49

b

a

x t

t
f rt a    (2.40) 

where r is a coefficient to be estimated, a  is a parameter associated with exposure to 

marriage or sexual union, and b is related to fertility control level and biological 

impotency.  

A broader relational model in which fertility rates are linked to any age schedule that is 

capable of mimicking the overall age patterns of fertility to be fitted is proposed by Brass 

[48]. Brass model makes use of the log-log transformation in Gompertz distribution to 

relate two schedules linearly as:  

    *

x x
Q Q    (2.41) 
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Here, ln( ln )x xQ f    and * *ln( ln )x xQ f   ; in which xf  is the ASFR to be fitted and 

*

xf represents the fertility rates based on a standard age schedule. The location and spread 

parameters α and β are estimated through ordinary least squares (OLS) method. Zeng et al. 

[49] assert that several age curves can be utilized as the standard age schedule *

xf , such as 

observed rates of another country, as long as they are in accordance with the data to be 

fitted. In addition, Zeng et al. [49] claim that the location and spread parameters in Equ. 

(2.41) should vary by time to enable projections for the demographic rates. The simplicity 

of the Brass model leads to its wide utilization for demographic modeling once an 

appropriate standard age schedule is on hand, however, the goodness of fit frequently 

depends on the selected standard age schedule. This can be seen as one of the major 

weaknesses of relational models.  

2.2.3.  Spline Models 

De Beer [42] claims that relating two age schedules with two parameters as in Equ. (2.41) 

may not be adequate to provide reasonable fits in some cases. By introducing more 

parameters, de Beer  [42] develops a model, namely TOPALS, in which the age patterns in 

ratios of ASFR of a country and fertility rates based on a standard age schedule are 

described by a linear spline function as:  

 


     0
1

( ) ( )
n

x j j j
j

r a b x m b x m k D    (2.42) 

where rx is the age-specific ratio defined by */x xf f  , m is the minimum age included in 

fertility curve, kj are the knots, that is, the ages at which the adjacent linear segments are 

connected. Moreover, n represents the number of knots, and a  and bj are the parameters to 

be estimated. Here, Dj is an adjustment term with value zero if 
jx m k   and with value 

one otherwise. The knots can be fixed a priori based on visual inspection which enables 

the utilization of OLS method in estimating the unknown model parameters. In contrast, 

they can be determined in such a way that the fit of the linear spline to the observed ASFR 

is optimal. This alternative way of knot selection requires a nonlinear estimation approach 
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in which the objective would be minimizing the distance between the fitted and observed 

rates.  

De Beer [42] asserts that it may be more convenient to use a nonparametric approach, such 

as fitting via splines, for smoothing age patterns of demographic rates rather than 

specifying a parametric curve fitting model. This is because the configuration of a 

nonparametric model is not fixed in advance, specified based on a data driven approach 

instead. Here, it is worth mentioning that nonparametric does not refer to models with no 

parameters. Actually, the number of parameters included is not predetermined and they do 

not require demographic interpretations.   

The utilization of spline models to fit demographic rates is not a new approach indeed. 

McNeil et al. [50] use quadratic splines for interpolating demographic data whilst Hoem 

and Rennermalm [51] and Hoem et al. [38] suggest applying cubic splines. Schmertmann 

[52] and de Beer [42] define the quadratic and cubic splines to be applied in terms of 

fertility modeling context as:  

 


      2

1

( ) ( )
n

x j j j
j

f a b x m c x m k D    (2.43) 
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       2 3

1

( ) ( ) ( )
n

x j j j
j

f a b x m c x m d x m k D    (2.44) 

where a , b, c, cj and dj are parameters to be estimated. The difference of linear splines and 

the models given in Equ. (2.43) and Equ. (2.44) is that the latter two partition the age 

schedule to be fitted into segments of quadratic or cubic curves instead of the lines 

expressed in Equ. (2.42). Whether linear, quadratic, or cubic; the spline model describes 

the distribution of fertility schedule based on the ages at which the schedule reaches certain 

characteristics.  

 

2.2.4.  Other Approaches 

Considering the lack of clear interpretation of coefficient values in spline modeling, 

Kostaki et al. [53] propose using support vector machines for fitting fertility schedules. 
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However, the implementation of support vector machines requires a significant 

computational effort when compared to splines and spline models are capable of 

generating fits as accurate as support vector machines. Thus, de Beer [42] advocates the 

utilization of splines against the more complex support vector machines.  

2.2.4.1.  Logistic Models 

Alho and Spencer [34] provide logistic models that can be applied to model the fertility 

patterns of different age groups. Conditional to a fixed moment in time, a logistic model 

enables fitting fertility schedules through simple approach with an orthogonal matrix 

design. Let ,x tB  be the number of births to females of age x at time period t. The logistic 

models assume that ,x tB  are generated by a Poisson process with intensity
,x t . The basic r-

dimensional logistic model can be expressed as [33]:  

 




 
 

  

,

,

)
log A

1 ( )
x t

x t

x t

β    (2.45) 

where 0 1( , ,...t t t rt      is the parameter vector and Ax is a predetermined design matrix 

with orthogonal columns defined as a function of the power of age x. Alho and Spencer 

[34] report that the number of the dimension r to be included depends on the fertility data 

analyzed, but three or four parameters are usually adequate to provide reasonable fits for 

the developed countries [54]. Durbin and Koopman [55] formulate the parameter series in 

Equ. (2.45) within a framework of state-space models. The state-space model enables the 

various sources of uncertainty to be integrated, thus, allowing the confidence intervals for 

forecasted fertility rates conveniently.  

2.2.4.2.  Simple Nonparametric Methods 

More simple nonparametric methods such as fitting age specific demographic rates via 

polynomial or exponential models are also available in literature. Nasir et al. [56] 

compares nth degree polynomial models and a family of exponential models in terms of 
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fitting capabilities for fertility component. For a fixed moment in time, the polynomial 

model they use is:  

 


  0
1

p
j

x j x
j

f b b z    (2.46) 

where z is the mid age group, b0 is a constant, bj is the coefficient of the term zj, and x  is 

the error term. The exponential family refers to models with exponential or logarithmic 

functions. Some of the exponential models have the capability to possess an inflection 

point and a maximum or minimum value based on the functional structure they have. The 

exponential family of models used by Nasir et al. [56] are:  

 
0 1

exp( )
x

f b b z    (2.47) 
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 

   
 

1
0 2

exp ln
x

b
f b b z

z
   (2.51) 

The models displayed above are namely the exponential model (Equ. (2.47)), modified 

exponential model (Equ. (2.48)), logarithmic model (Equ. (2.49)), reciprocal logarithmic 

model (Equ. (2.50)), and vapor pressure model (Equ. (2.51)).  

2.2.4.3.  Dimension Reduction Methods 

Apart from the parametric or semiparametric curve fitting approaches and the 

nonparametric polynomial, logistic or exponential models; dimension reduction based 

methods such as the LC model (defined in Equ. (2.2)) and HU model (defined in Equ. 

(2.15)) together with their variants are also applicable in age-specific fertility modeling 

[13,17,57]. The principal component analysis based approaches minimizes the loss of 
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information while reducing dimensionality and can be viewed as a nonparametric 

technique to deal with age-specific demographic components. Basically, these methods are 

preferred against parametric approaches in cases where the parametric assumptions are 

failed to be satisfied. Many researchers favor dimension reduction methods in demographic 

forecasting because these methods provide means to follow a data-driven procedure [35].  

Considering the above mentioned properties of dimension reduction techniques, Ramsay 

and Silverman [58] apply functional principal component analysis (FCPA) model on 

function based demographic processes as:  

  


 
1

( , ) ( , ) ( , )
R

r r
r

M x t x t Z x t    (2.52) 

where M(x,t) denote a demographic process as a function of space (age) and time, ( , )x t  is 

the mean of the process M(x,t), R is the rank of matrix M, and Zr are the random 

coefficients. Here, r  is an orthonormal basis of a two dimensional space that consists of 

the covariance operator of M(x,t). Through FCPA, the first K terms for ( , )r rZ x t  

constitutes the K-dimensional representation of M(x,t); and the unexplained variance 

becomes minimum for the optimal value of K to be extracted.  

The model given in Equ. (2.46) analyzes the joint impacts of age and time on the 

demographic process but ignores their marginal effects. Furthermore the model requires 

performing nonparametric regression analysis to estimate the covariance operator, which is 

computationally time consuming due to dimensionality issues. Chen et al. [59] enhance 

Equ. (2.52) by including eigenfunctions in single dimensions.  

Pantazis and Clark [60] suggest utilizing SVD as a dimension reduction method to capture 

the shape of the fertility schedules. Rearranging the original structure of the decomposed 

matrix, the age specific fertility schedule for country c in time period t, denoted by fc,t, can 

be modeled as:  
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3

( ) ( ) ( )
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c t c t
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sf v u    (2.53) 

Where 
( )is  is the ith greatest singular value and 

( )i
u  and 

( )

,

i

c tv  are its corresponding left and 

right singular vectors. According to Pantazis and Clark [60], the v(i) weights, which are the 
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elements of right singular vectors can be interpreted. They claim that v(1) controls the level 

of fertility, v(2) is associated with comparative levels of fertility at young and old ages, and 

v(3) is related to the amount of peak in the age schedule.  

Similar to mortality forecasting, univariate time series models are also commonly applied 

in ASFR forecasting. Shang [35] compares random walk and ARIMA models with HU 

methods and shows that the univariate models have worse performances in terms of 

forecast accuracies. Shang relates this issue to the smoothing of fertility rates performed in 

HU methods. Furthermore, univariate time series methods extrapolate the past data without 

considering any possible nonlinear structure. However, dimension reduction approaches 

forecast the future fertility patterns in terms of principal components and their associated 

scores, hence yielding more plausible forecasts. 

2.3.  MIGRATION MODELING AND FORECASTING APPROACHES 

The majority of the migration modeling literature concentrates on theoretically explaining 

the migration phenomenon through several factors and projecting the total migrant stocks 

or bilateral migration flows without considering the age structure of the migrants. 

However, inclusion of age characteristics in migration analysis is vital in demographic 

modeling [61]. The age and sex patterns of migration are essential in cohort component 

population projections [62], thus, should not be omitted. 

2.3.1.  Model Migration Schedules 

Several researchers emphasize the regularities in migration age profiles across regions and 

time [63–66]. Based on the observed regularities, migration intensities reach to a peak 

level in the young adult ages as a result of young adults’ tendencies to move due to factors 

associated with employment, education, marriages, and etc. This peak level is followed by 

a decline as age increases, mainly because of stability in socioeconomic and family factors. 

Some migration age profiles exhibit a secondary peak in retirement ages due to movements 

of couples to convenient locations [67]. Migration profiles for children display alike 

behavior to their parents as high migration intensities are observed for infants and toddlers 

whose parents, most of the time, are young adults with high mobility characteristics. The 
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migration age profile for teenagers exhibit a decline mimicking their parents who also 

become less mobile and this trend continues up until they become young adults.  

Considering this relatively stable structure of age-specific migration profiles, Rogers and 

Castro [65] introduced a parameterized model migration schedule (MMS) in which the 

age-specific migration curve is fitted through a multi-exponential model. The standard 

MMS is composed of the addition of five component curves as [68]:  

 
1 2 3 4

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )m x c m x m x m x m x        (2.54) 

where ˆ ( )m x  is the migration intensity of age x, 1
ˆ ( )m x  is the single negative exponential 

childhood curve, 2
ˆ ( )m x  is the left skewed unimodal labor force curve, 3

ˆ ( )m x  is the almost 

bell shaped retirement curve, 4
ˆ ( )m x  is the single exponential elderly curve, and c is the 

constant improving the fit.  

 

 

Figure 2.1. The standard model migration schedule [68]  

 

The standard MMS with the five component curves is illustrated in Figure 2.1. 

Algebraically, Equ. (2.54) is a 13-parameter multi-exponential model expressed as:  
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          exp{ ( ) exp[ ( )]} exp( )
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        

       
   (2.55) 

where 
i

a  is the height of curve ˆ ( )im x , i=1,…,4; i  is the rate of descent of of curve ˆ ( )im x

, i=1,…,4; 2  and 3  are rates of ascents of curves 2
ˆ ( )m x and 3

ˆ ( )m x , and 2  and 3  are 

rates of ascents of curves 2
ˆ ( )m x and 3

ˆ ( )m x . 

Since its introduction, MMSs have become a major approach in analyzing the migration 

age patterns. Their primary application is focused on specification of age patterns in case 

of missing or questionable data [69,70]. MMSs enable comparative analyses of migration 

age patterns [71] and provide data reduction by representing a large number of migration 

intensities through a small number of parameters [72]. In addition, the future migration 

profiles are projected through analyzing time series of model parameters [73].  

In most of the cases, the retirement and/or elderly curves of MMS are omitted if age 

profiles do not display a peaks after the labor force curve; thus, the thirteen parameter 

standard MMS is transformed into a multi-exponential model with seven or eleven 

parameters. Wilson [67] includes an additional curve to represent the patterns at late 

teenage which cannot be captured via the standard MMS. The student curve 5
ˆ ( )m x  

proposed by Wilson [67] is a double exponential function expressed as:  

 
5 5 5 5 5 5
ˆ ( ) exp{ ( ) exp[ ( )]}m x a x x            (2.56) 

in which the parameters are interpreted as it is done for Equ. (2.55). With the addition of 

Equ. (2.56) into Equ. (2.55) an eighteen parameter MMS is obtained. A further 

modification is made by replacing the double exponential retirement function by the PK 

model described in Equ. (2.36) [67,74]. Such a modification enhances the fitting capability 

of MMSs in some cases by resolving parameter instabilities. As a disadvantage the PK 

function is symmetrical which may not be appropriate for representing the retirement 

curve, but it is reported that this symmetry is tolerable for most circumstances [67] as the 

original retirement curve is also relatively bell shaped.  

Implementing MMS to observed data requires nonlinear regression approaches which often 

rely on initial parameter estimation. Rogers et al. [75] propose simpler linear methods to fit 

the multi-exponential model schedules that can be used in most applications. They express 
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the set of component curves as a weighted linear combination of density functions 

dedicated to each component. 

MMSs restrict migration age patterns to follow a prototypical shape which may not 

adequately represent the observed age patterns in developing or under-developed regions. 

Furthermore, the difficulties in specifying the optimal component curves to integrate 

weaken the estimation capabilities of MMSs [76,77]. Moreover Rogers et al. [75] report 

that the estimates are highly sensitive to initial parameter values. These problems result in 

a necessity to determine the set of component curves and parameter initialization following 

a trial and error manner. Utilization of non-parametric approaches such as cubic splines 

and kernel regression may prevent such problematic issues. These models do not constrain 

the age profiles to conform to a predetermined prototypical shape [78] and provide simpler 

implementations that are relatively less sensitive to subjective prior assumptions [61].  

Rogers et al. [79] applied cubic splines to smooth the migration intensities assuming that 

cubic splines generate better fits than the MMSs as they intensely utilize the local 

information with probably more number of parameters. Cubic splines are linear 

combinations of third degree polynomial functions that are connected at several knots. 

Bernard and Bell [61] use the following b-spline model to smooth migration age profiles:  
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where k is the degree of the polynomial, which is three for cubic splines and:  
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   (2.58) 

Despite their fitting capabilities, cubic splines are sensitive to the number and the locations 

of knots they include [80]. Knots may be determined by simple approaches such as scatter 

plot analyses [81] and model fit criteria [82], or through computationally intensive 

adaptive data-driven techniques [83]. However, in migration context, the number of knots 

is generally fixed and their locations are distributed at quinquenal intervals [61].  
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Another non-parametric method used in age-specific migration modeling is the kernel 

regression. Kernel regression has been implemented to fit age-specific fertility and 

mortality rates [84,85], and is proposed to smooth age-specific migration data by Bernard 

and Bell [61]. A kernel regression model for estimating the migration intensities as a 

function of ages 5 to 90 is:  
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   (2.59) 

Here,   is a normal density function which assigns more weight to the observed migration 

intensities close to age x. The choice of bandwidth parameter h, h>0, is critical as large 

bandwidths while the choice of kernel function is not that significant for the performance 

of the model [86].  

Recently, Bernard and Bell [61] compared cubic splines, kernel regression and MMSs in 

terms of their performances in smoothing migration age profiles. They found that MMSs 

result in better fits when predetermined shape of the schedule is capable of capturing the 

true age distribution and it is possible to specify the set of component curves to be included 

accurately. When the above mentioned requirements are not satisfied kernel regression or 

cubic splines provide more satisfactory outputs.  

2.3.2.  Logit Models 

Applications of model schedules in fitting migration age patterns is more limited when 

compared to utilizations of model schedules for representing age-specific fertility and 

mortality data. This is mainly because, in contrast to fertility and mortality, which are 

expressed in terms of a single population, migration is related to both origin and 

destination populations. Thus,  Rogers et al. [79] claim that concentrating only on age 

patterns is not appropriate for migration modeling; one should also take the spatial patterns 

into account. Such point of view constitutes the basis for a different family of modeling 

approaches that aim to capture both the age-specific and origin-destination specific 
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structures in migration flows. Rogers et al. [87] use logit models for this purpose. They 

define the age-specific migration flows as conditional survivorship proportions:  
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     (2.60) 

where ( )ijS x  is the proportion of emigrants of age x originating from place i to destination 

j, ( )ijn x  is the number of emigrants of age x originating from place i to destination j, and 

( )in x  is the number of individuals of age x that are present at place i at the beginning of 

migration interval. The proportion displayed in Equ (2.60) can be decomposed into two 

elements: the generation (level) element ( )iS x , and the distribution element | ( )j iS x  as:  
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where j|i denotes the conditional term and 
|

( ) 1
j i

j

S x  . Such decomposition is necessary 

to characterize the migration patterns that are convoluted through the mixture of 

inhabitants and migrants. Here, a saturated binomial logit model is utilized to elucidate the 

proportion of emigrants from each origin and a saturated multinomial logit model is 

employed to portray the proportion of those that are migrating to each destination given the 

emigrants from each origin. 

Let the predicted values ˆ ( )ij x  denote the possibility of migrating from origin i to 

destination j with respect to a reference destination k. The saturated logit model for 

generation component is then:  
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
   (2.62) 

where v are the parameters to estimate and superscripts O and A represents origin and age 

respectively. The model in Equ (2.62) estimates the possibilities of being a migrant to 

being an inhabitant for origin i. The saturated multinomial model for the distribution 

element is described as:  
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The model displayed in Equ. (2.63) predicts the odds of migrating to destination j given the 

origin i at age x relative to reference destination k. A similar procedure is followed by 

Raymer et al. [88] to describe the age and spatial characteristics of migration in Italy. For 

this task, a multiplicative component model based on a saturated log-linear model is 

defined to describe the migration flows between origin i and destination j at age x, ( )ijn x , 

as follows:  

 ( ) ( )( )( )( )
ij i j ij

n x T O D OD    (2.64) 

The model in Equ. (2.64) is includes four elements: T is an overall element depicting the 

migration level, O is an origin element standing for pushes from each origin point i, D is a  

destination element standing for pulls to each point j, and OD is a bi-lateral origin-

destination interaction element. In its additive log-linear form, Equ. (2.64) can be 

rewritten:  

 ln ( ) O D OD

ij i j ij
n x           (2.65) 

or in its multiplicative form:  

 ( ) O D OD

ij i j ij
n x       (2.66) 

Equ. (2.66) can be modified to include an age dimension A as:  

 ( ) ( ) ( ) ( ) ( )O D A OD OA DA ODA

ij i j ij i j ij
n x x x x x          (2.67) 

Raymer and Rogers [89] enhanced Equ. (2.66) by including an offset term to the 

unsaturated version of the log-linear model as:  

 *( ) ( ) ( )O D A

ij ij i j
n x n x x      (2.68) 

where the unsaturated model incorporates only the main effects origin, destination and age; 

and the offset 
* ( )ijn x   is a matrix with auxiliary information such as a past table of 

migration flows. Thus, the predicted flow values are based on imposed age-specific and 
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spatial regularities hidden in the offset. Such modifications enable the model to be used 

when complete or adequate data are not readily available. This idea has already been 

applied in Rogers et al. [90] with an output of a migration flow table that displays the level 

of a current period by adopting the spatial characteristics of the offset.  

2.3.3.  Bayesian Approaches 

Recently, apart from MMSs and age-specific and spatial logit models, Azose and Raftery 

[91] fit Bayesian hierarchical first order autoregressive, AR(1), model to net migration 

rates for all countries. Their novel method is composed of three levels for modeling the 

migration rate 
,c tr  in country c at time period t as:  
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   (2.71) 

where 2( , )X N    denotes a random variable having a normal distribution with mean   

and variance 
2 . U(c,d) denotes a uniform distribution between the interval [c,d], and 

IG(a,b) denotes an inverse gamma distribution. After obtaining posterior distributions for 

the model parameters through Markov Chain Monte Carlo (MCMC) simulation with Gibbs 

sampling, migration rates are converted into migration counts. Next, the projected 
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migration counts for country c at time period t are further decomposed into age and sex 

components via MMSs. 

Another Bayesian modeling framework is suggested by Wiśniowski et al. [92] for 

estimating the age and sex patterns and their linkage with the origin-destination 

components of migration between European countries. Let k

odastz  denote the flows (counts) 

from country o to country d of sex s at age group a during time period t reported by the 

sending S or receiving R country, where { , }k S R . It is assumed that:  

 ( , )k k k

odast od t odt
z multinomial z


ρ    (2.72) 

where vectors 
1

( ,..., )k k k

odt od Ft odAMt
 ρ  are age-sex distributions for either the sending or 

receiving country, M is for male, F is for female, A is the oldest age group, and the 

subscript + denotes summation over a given index. This multinomial expression is 

redefined as a Poisson model as:  

 ( )k k

odast odast
z Poisson     (2.73) 

where:  

 
k

k odast
odast k

od t







    (2.74) 

The existing inconsistencies in the available data are adjusted through a log-normal 

transformation and then a multivariate logit transformation is applied to model the true 

spatial flows on the logarithmic scale. The posterior distributions for the model parameters 

are estimated using MCMC simulation with Gibbs sampling, which results in an age-and-

sex-specific bilateral migration flow database with measures of uncertainty.  

The LC based dimension reduction methods are also proposed within Bayesian 

perspectives for age-specific migration modeling. Raymer et al. [93] examine the 

applicability of LC type models to forecast age-specific migration. They claim that the 

quality of migration data is relatively worse than mortality and fertility data, therefore, 

some smoothing should be performed before implementing a model on migration data. 

Later, following a Bayesian scheme, Wiśniowski et al. [17] formalized Raymer et al. 

[94]’s study by extending the LC model to cover age-specific fertility, mortality and 
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migration, hence a total population forecasting method. In this Bayesian LC approach, the 

counts of migrants, which are separated into two as counts of emigrants and immigrants, 

are assumed to have a Poisson distribution with a lognormally distributed age-and-time-

specific mean. They models emigration rates as:  

 
, , ,

( )
x t x t x t

E Poisson R    (2.75) 

 
, ,

ln( ) E E E E

x t x x t x t
a b k       (2.76) 

where 
,x t  is the emigration rate for age group x at time period t, 

,x tR  is the population at 

risk, and the superscript E represents emigration. For modeling immigration, due to the 

ambiguities resulting from determining the population at risk, counts are modeled instead 

of rates as:  

 
, ,

( )
x t x t

I Poisson     (2.77) 

 
, ,

ln( ) I I I I

x t x x t x t
a b k       (2.78) 

Here, 
,x t  is the number of immigrants belonging to age group x at time period t, , and the 

superscript I is used to denote emigration.  

In estimating the time-specific parameters in Equ. (2.76) and Equ. (2.78), Wiśniowski et 

al. [17] consider univariate and bivariate autoregressive processes and use Bayesian 

inference. More recently, Raymer and Wiśniowski [62] modeled both emigration and 

immigration counts which they assume to follow Poisson distribution whose mean is 

lognormally distributed as in the case of Wiśniowski et al. [17]. They test this LC model 

through Bayesian perspectives for Sweden, South Korea and Australia and demonstrate the 

flexibility and applicability of LC model and Bayesian inference for migration forecasting. 

2.4.  COHORT COMPONENT METHOD 

The cohort component method is one of the most utilized technique for estimating a 

population of a city, region, or a country through age-specific mortality, fertility, and 

migration values [95]. In this procedure, the population is split into age and sex groups or 

cohorts and births, deaths, and migration values take place to make sound population 
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estimates for a single or five year projection interval ( t  to 1t   or t  to 5)t   [96]. For the 

quinquenally aggregated case, there are usually sixteen or eighteen five-years-age groups 

starting with the age group less than 5 years old (0-4 years old) and ending with age group 

75+ or 85+ based on the number of groups chosen [3]. The underlying mathematical 

formulations can be grouped in three; namely estimating the population at age five and 

over, estimating the population below age five, and estimating other demographics. The 

following sub-sections 2.4.1 to 2.4.3 are dedicated to mathematical formulations for 

estimating these three outcomes. 

2.4.1.  Estimating the Population at Age Five and Over 

The procedure starts with the estimation of survival ratios which can be accomplished as:  

 ( , ) [ ( )]SR x s T ELB s    (2.79) 

where 1,...,18x  denote the five year age group, 1,2s   is the sex group (1 for male and 2 

for female), ( , )SR a s  is the survival ratio for age group x and sex group s over the interval, 

( )ELB s is the life expectation at birth of sex group s for a specified projection interval; and 

T is the function that transforms ( )ELB s  into ( , )SR x s  based on a selected life table.  

Once the survival ratios for each age group x and sex group s are found, the number of 

survivors belonging to a specific age and sex group by the termination of a quinquenal 

interval can be calculated excluding the migration values as follows: 

      ( 1, , 5) ( , , ) ( , )   for 1,...,18, 1,2P x s t P x s t SR x s x s    (2.80) 

where t  is the first year of the projection,  ( 1, , 5)P x s t  is the number of survivors of age 

group x+1 and sex group s by the termination of the projection interval excluding 

migration, and ( , , )P x s t  is the number of survivors of age group x and sex group s at the 

start of the projection interval.  

Since above calculations do not include concepts associated with migration, population 

estimation for those that are aged 5 and over is necessary. First net migration rates should 

be determined for each age and sex group. That is; 
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       ( , , 5) ( , 5) ( , , 5)   for 1,...18, 1,2MR x s t TMR s t PMR x s t x s    (2.81) 

where ( , , 5)MR x s t  is the net migration rate for survivors of age group x and sex group s 

by the termination of the projection interval ( 5),t  ( , 5)TMR s t   is the total migration rate 

for survivors of sex group s  by the termination of the projection interval, and 

( , , 5)PMR x s t  is the proportionate net migration rate for survivors of age group x and sex 

group s  by the termination of the projection interval. 

The calculation of net migration rates of each age and sex group combination makes it 

possible to estimate net change in population resulting from migration. This is achieved by: 

       ( , , 5) ( , , 5) ( , , 5)   for 2,...18, 1,2NC x s t P x s t MR x s t x s    (2.82) 

where ( , , 5)NC x s t  is the net population change as a result of migration for the survivors 

of age group x and sex group s  by the termination of the projection interval.   

Following this, the population of those that are aged five and over by the termination of the 

projection interval, which is expressed as ( , , 5)Pop x s t , can be enumerated for each age 

and sex group  by combining Equ. (2.80) and Equ. (2.82). This can be shown as:  

       ( , , 5) ( , , 5) ( ,s,t 5)   for 2,...18, 1,2Pop x s t P x s t NC x x s    (2.83) 

2.4.2.  Estimating the Population Below Age Five 

Projecting the population below age five first requires estimating age-specific fertility 

rates, number of births and counts of migration respectively. Age-specific fertility rates can 

be calculated as:  

   ( ) ( /5) ( )   for 4,...,10FR x TFR PFR x x    (2.84) 

where ( )FR x  is the average annual fertility rate of age group x  during the projection 

interval, TFR  is the total fertility rate for the quinquenal projection interval, and ( )PFR x  

is the proportionate fertility rate of age group x for the corresponding projection interval. 

Here, 4,...10x  reflects the age groups for childbearing span.  
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The computation of the number of births requires the calculation of the number of females 

at ages corresponding to childbearing span at the middle of the projection interval. This is 

done through taking the geometric mean of the number of females at the start and by the 

termination of time interval, which is stated as: 

    1/2( ,2) [ ( ,2, ) ( ,2, 5)]    for 4,...10MP x P x t P x t x    (2.85) 

where ( ,2)MP x   is the mid-interval population of females of age group x. Together with 

the age-specific fertility rates, mid-interval population of females for age groups four to ten 

is used to compute the number of births for the time interval of interest, which can be 

formulated as: 

 


  
10

4

5 [ ( ) ( ,2)]
x

Births FR x MP x    (2.86) 

To enumerate the number of children who survive by the termination of this time interval, 

first, the sex structures at birth should be computed with the help of sex ratios at birth. The 

number of births grouped by sex is given as: 

 ( ) * ( )   for 1,2B s B RBS s s     (2.87) 

where 

 

  
   



/(100 ), for 1

100/(100 ), for 2( )

SRB SRB s

SRB sRBS s    (2.88) 

and ( )B s  is the number of births of sex group s that occur during the projection interval, 

( )RBS s is the proportion of births of sex group s, and SRB  is the sex ratio at birth.  

Ignoring the migration counts, the population below age five is then computed as: 

   (1, , 5) ( )* (1, )   for 1,2.P s t B s SR s s    (2.89) 

To complete this subsection, external migration amounts for the age groups of interest 

should be included in the calculations. The net population changes as a result of migration 

for survivors below age five is: 
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      (1, , 5) (1, , 5) (1, , 5)   for 1,2.NC s t P s t MR s t s    (2.90) 

Then population below age 5 can be obtained by: 

      (1, , 5) (1, , 5) (1, , 5)   for 1,2.Pop s t P s t NC s t s    (2.91) 

2.4.3.  Other Demographic Outcomes 

The age and sex structures that are estimated through Equ (2.79) to Equ. (2.91) can be used 

to compute some other demographic indicators. To start with, population size can be 

computed via summation of all age and sex group combinations as: 

 
 

  
18 2

1 1

( 5) ( , , 5)
x s

Pop t Pop x s t    (2.92) 

where ( 5)Pop t   is the size of population by the termination of the projection interval. As 

well as this aggregation; population can be examined in several age groups, namely; 

young-age population, working-age population, old-age population, and school-age 

population. Young-age population, which is the sum of all survivors below age 15, can be 

estimated by: 

 
 

  
3 2

1 1

( 5) ( , , 5)
x s

YP t Pop x s t    (2.93) 

where ( 5)YP t   is the young-age population by the termination of the projection interval. 

Similarly, working-age population within the age interval 15-64 is obtained as: 

 
 

  
13 2

4 1

( 5) ( , , 5)
x s

WP t Pop x s t    (2.94) 

where ( 5)WP t  is the working-age population by the termination of the projection 

interval. The old-age population corresponding to age groups of 65+ is: 

 
 

  
18 2

14 1

( 5) ( , , 5)
x s

OP t Pop x s t    (2.95) 
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where ( 5)OP t  is the old-age population at the end of the projection interval. In a similar 

manner school-age population which is composed of population groups within the age 

interval 5-24 can be computed as: 

 
 

  
5 2

2 1

( 5) ( , , 5)
x s

SP t Pop x s t    (2.96) 

where ( 5)SP t  is the school-age population by the termination of the projection interval. 

The number of females belonging to childbearing span, which is the group of females of 

ages 15 to 49, can be estimated via: 

 


  
10

4

( 5) ( ,2, 5)
x

CBS t Pop x t    (2.97) 

where ( 5)CBS t   is the population of females that are in childbearing span by the 

termination of the time interval. 

The mid-interval population size MP  is measured by the geometric mean of the 

population sizes at the start and end termination the projection interval, which is stated as: 

    1/2[ ( ) ( 5)MP Pop t Pop t    (2.98) 

Furthermore, the total number of person-years-lived, demonstrated as NPYL is computed 

by the product of mid-interval population size and number of years in the projection 

interval. That is:  

  5NPYL MP    (2.99) 

The population growth over the projection interval, illustrated as ,PopGr  equals to the 

difference between the population sizes at the termination and start of the time interval. 

The population growth can be mathematically expressed as: 

 ( 5) ( )PopGr Pop t Pop t      (2.100) 

Changes due to migration are essential in calculating the number of deaths that take place 

during the projection interval. The net population change in the population due to 

migration during the interval t to t+5, ,NCM   can be expressed as:  
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 

 
18 2

1 1

( , , 5)/ ( , )
x s

NCM NC x s t SRF x s    (2.101) 

where for each :s   

 

   
  



0.67 0.33 (1, ),    for 1

(1 ( , ))/2,   otherwise( , )

SR s x

SR x sSRF x s    (2.102) 

is the survival ratio factor while ( , )SR x s  is the survival ratio. Then, the number of deaths 

that occur during the projection interval, expressed as D, can be obtained via: 

   D B PopGr NCM    (2.103) 

The cohort component method also makes it possible to derive some estimates on rates of 

population change. Crude birth rate, crude death rate, rate of natural increase, rate of 

population growth, crude net migration rate are some of these indicators that can be 

obtained via cohort component technique. Crude birth rate, displayed as CBR, can be 

obtained by the proportion of the average annual number of births to the mid-interval 

population as: 

  [( /5)/ ] 1000CBR B MP    (2.104) 

Similarly crude death rate, CDR, is: 

  [( /5)/ ] 1000CDR D MP    (2.105) 

The average annual rate of natural increase, RNI, is determined by the change of the 

population size as a result of births and deaths, and it can be obtained as: 

 RNI CBR CDR     (2.106) 

The rate of population growth, GR, is computed via utilizing natural logarithm as: 

   [ln( ( 5)/ ( ))/5] 1000GR Pop t Pop t    (2.107) 

Finally, the average annual crude net migration rate, CMR, can be enumerated as the 

average annual net population change as a result of migration by the mid-interval 

population size and multiplied by 1000: 
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  [ /5]/ ] 1000CMR NCM MP    (2.108) 

2.4.4.  Applications Areas 

The cohort component method has been used in population projections by several 

significant organizations such as United Nations, World Bank, the US Census Bureau, 

Eurostat and etc. As well as these organizations, national statistical offices mainly make 

use of cohort component method in producing national level forecasts [97]. The use of 

cohort component technique is not limited to population forecasting, but it is also applied 

in medicine, education, economics, and so on. That is, the method has been utilized to 

forecast populations by level of their education [98], labor force forecasts [99], projection 

of future cancer incidence [100], predicting the number of surgeries [101], and so on.  

Through cohort component method; number of births, deaths, and migration are treated 

separately [95]. In order to make use of the model a number of age-specific demographic 

inputs should be given to the model including expectation of life at birth, survival ratio 

transformation parameters, fertility rates, external migration levels and etc. Estimation of 

these inputs may be quite difficult for countries or regions in which healthy population 

statistic are not recorded [102]. For such cases there exist several strategies to come up 

with appropriate input values developed by Population Division of the Department of 

International Economic and Social Affairs of the United Nations Secretariat. Smith [95] 

asserts that although a recording system is available for population demographics, 

obtaining sound data on migration is extremely difficult.  

With the developments in computer technologies, today there are several soft wares which 

can perform population projections based on cohort component method. In 2010, China 

Population and Development Research Center launched a software named PADIS-INT in 

cooperation with United Nations Population Division [103]. PADIS-INT is a web-based 

software for population projections making use of cohort component method with access to 

United Nations’ life tables online [104]. There are also some other software for cohort 

component projections such as Spectrum. A module named DemProj in Spectrum software 

is developed for making population projections using cohort component method [105].  
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2.5.  LESLIE MATRIX 

In 1945, Leslie introduced the matrix representation of a population projection method 

based on assumed mortality (or survival) and fertility values [1]. The Leslie matrix model 

is based on matrix algebra in which a population is treated as a combination of discrete age 

cohorts with corresponding fertility and survival ratios, similar to cohort component 

method. The model can be written as: 

 ( 1) ( )t t n Xn    (2.109) 

where ( )tn  is a population vector with entries ( )in t  representing the number of persons in 

each age class i at time t, ( 1)t n is a population vector of the next time period, and X is the 

n x n Leslie matrix, which is sometimes referred as projection matrix [69]. 

The two of the standard components of population projection methods, fertility and 

mortality are hidden in the projection matrix X. For female population, the first row of the 

matrix X is dedicated to fertility of an age group i, Fi; whereas the sub-diagonal entries 

correspond to survival probabilities, Pi, and all the other entries are set to zero.  In explicit 

form, Equ. (2.108) can be reorganized as: 
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   (2.110) 

For male population the entries in first row of projection matrix X are also set to zero. The 

whole population is then calculated as the sum of male and female population. If the matrix 

X is constant over time, then given the population at time t, the population after p 

projection intervals can be computed via: 

 ( ) ( )pt p t n X n    (2.111) 
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Although Equ. (2.111) depends on a constant X, in most of the cases the projection matrix 

can vary within time as well [15]. In this case, Equ. (2.111) can be modified as: 

 ( ) ( ) ( 1)... ( ) ( )t p t p t p t t    n X X X n    (2.112) 

Leslie matrix model is the underlying principle model in many of the projection and 

forecasting methods. It is used together with Markov chains [1], stochastic estimation [57] 

and in many other population estimation techniques [106]. 
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3.  MOTIVATION FOR THE STUDY 

 

In addition to the shortcomings of the existing demographic forecasting methods in terms 

of their strict statistical or subjective assumptions that may not always be met, the most 

problematic issue in demographic analysis is the high amount of uncertainty and vagueness 

in data. Although the quality of mortality and fertility data is better compared to that of 

migration for most of the developed countries, there are still several issues regarding the 

accuracy as a result of data recording and collection errors. The situation is worse in some 

of the developing and under developed regions, in which the age-decompositions of 

mortality or fertility are incomplete, thus, they are generated through some estimation 

methods.  

The issue is even more complicated for migration modeling. In addition to the difficulties 

in generating realistic predictions, another issue in migration modeling is the term 

migration itself: there is no universally accepted definition of the term “migrant” [107]. 

Thus, even for a single country, different statistics bureaus may give different number of 

migrants based on their perception of migration. Methods using aggregated data from 

distinct datasets may result in inconsistencies and be misleading [108–110]. Moreover, the 

exact values of migrants or migration rates are rarely known due to errors in data collection 

and recording systems [111]. 

In general international migration data are shown as total stocks or bilateral flows, in 

which age or sex profiles of migrants are often neglected, even for the developed countries. 

However, forecasts regarding age and sex profiles of migrants are vital in public and 

private policy designs and long and short term socio-economic decisions [97]. 

Furthermore, numbers of emigrants and immigrants or emigration and immigration rates 

are not available in some datasets; and migration is represented through the concept of net 

migration which is the difference between number of immigrants and emigrants, but in 

reality the term is artificial since there exists no individual as a net migrant. Thus, the use 

of net migrants or net migration rates for modeling migration would yield vague results 

[112]. Moreover, net migration rates are seldom known, and often are estimates through 

the census data based on number of births and deaths in a time interval. However, forecasts 

based on these estimates are in fact estimates from estimated figures. This kind of ex ante 
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analysis may be misleading since the error bounds expands proportional to the existing 

errors in data used.  

Despite some advocates of modeling net migration rates or counts, the current state of art is 

modeling rates of emigration relative to the population at risk and counts of immigration 

[113]. The immigration phenomenon is not represented by rates, since the population at 

risk for immigrants is not often known.  

In general if there exist high uncertainty due to lack of data or knowledge, the utilization of 

probability distributions becomes questionable, which leads the researchers to non-

probabilistic approaches such as fuzzy, evidence or interval theories [114]. In this study, 

considering the lack of coherent definitions of migration and the previously mentioned 

ambiguities in mortality, fertility and migration data, a novel fuzzy method for modeling 

age-and-sex-specific population is proposed. Here, the purpose is to model and forecast 

age-specific mortality and fertility rates and emigration and immigration counts for each 

sex. These demographic indicators are then integrated to generate fuzzy age-specific 

population forecasts for the following years. The reason to model emigration counts 

instead of emigration rates is to provide means for comparing emigration and immigration 

behaviors. All of the demographic indicators are expressed as triangular symmetric fuzzy 

numbers rather than the classical crisp notation, so that the uncertainty and vagueness in 

data are represented coherently.  

3.1. CONTRIBUTIONS AND RESEARCH AIMS OF THE STUDY 

The main contributions and research aims of this study can be listed as: 

 to analyze the applicability of fuzzy set theory in demographic forecasting, 

 to derive a coherent fuzzy representation for the observed crisp mortality and 

fertility rates and emigration and immigration counts,  

 to enhance the fitting capability by introducing a bi-level structure representing 

both the country-specific and age-group-oriented behaviors in demographic 

components 
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 to fit models with small errors to the fuzzified observed data and forecast the future 

values with fuzzy intervals (the aim is to provide fuzzy intervals for future forecasts 

instead of precise predictions), 

 to include subjective judgement on model parameters that shape the future levels of 

demographic components through Bayesian inference and generate informative 

forecasts within not-too-wide fuzzy intervals. 

3.2. A SUMMARY OF THE PROPOSED METHOD 

The proposed fuzzy method for modeling age-specific demographic indicators is denoted 

by FMM (Fuzzy Modeling Method) and is developed based on the existing fuzzy Lee-

Carter mortality modeling technique [16]. Originally proposed for modeling human 

mortality, Lee-Carter (LC) method [15] is an extrapolation approach in which the natural 

logarithm of mortality rates for age group x at time t are expressed through a regression 

equation as: 

 
, ,

( )
x t x x t x t

ln   m a b k   (3.1) 

Here, the intercept value 
x

a  and the regression coefficient xb  are the unknown age-

specific parameters, whereas the time-specific independent variable tk  is named as 

mortality index. Lee and Carter utilize singular value decomposition (SVD) technique to 

find the unknown regression parameters and the mortality indices. According to this 

technique the error terms 
,x t  reflect the historical effects that are not covered by the model 

and are assumed to be normally distributed with mean 0 and a small constant variance. The 

extensions of LC model are discussed in Section 2.1. 

This method is able to capture the decreasing mortality trend in most of the developed 

countries. The highlighted singular value-eigenvector structure in SVD allows the model to 

emphasize the fundamental characteristics in mortality rates, which follow similar patterns 

in all age groups throughout time. Thus, LC model can be extended to model fertility and 

migration rates as long as there are consistent similarities between the trends and patterns 

followed by these demographic rates in different age groups. Although fertility rates 

exhibit a slightly more variable trend [115], the last century witnessed a certain decline in 
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both mortality rates [15] and fertility rates [116] in the developed and most of the 

developing countries (in which data are available) by time. Considering the similarities in 

mortality and fertility trends for most of the developed countries, LC model is also 

implemented for modeling fertility rates [17,117]. Moreover, Wiśniowski et al. [17] apply 

this method for modeling age specific migration through a Bayesian approach. 

Furthermore, Garcia-Guerrero [118] uses this method to forecast the international age-and-

sex-specific net migration rates of Mexico.  

In general, the underlying SVD structure in LC model relies on the assumption that the 

rows of the data matrix Z which include the data to be decomposed should refer to a fixed 

effects domain such as space, time, genes, age groups, cohorts, and etc. In case of 

demographic modeling, these fixed effects are the age cohorts. This domain is expected to 

share similarities which can be reflected within the entries zij of data matrix Z in terms of 

smoothness or clustering as a function of the row domain [119]. Since the age cohorts 

exhibit alike patterns in terms of trends in mortality and fertility rates, SVD seems to be a 

good choice to be included in an age-specific mortality, fertility or migration model. 

FMM proposed in this study first fits a fuzzy bi-level model to the fuzzified observed age-

specific demographic indicators of mortality, fertility and migration, in which the first level 

is dedicated to general demographic characteristics due to country-specific factors and the 

second level mimics the behaviors of analogous age groups. In fact, a single leveled model 

is adequate to represent age-specific mortality and fertility; but a second level is included 

into the model to fit the migration values.  Next, the method forecasts the future fuzzy 

migration values using the fuzzy model parameters and time series analysis through 

Bayesian approach. Finally, fuzzy forecasts for future mortality, fertility and migration 

levels are integrated within a fuzzy population model so that future population can be 

forecasted. To the best of our knowledge, there exists no study incorporating fuzziness in 

age-specific fertility and migration modeling and population estimation. 
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4.  METHODOLOGY 

 

The proposed FMM for modeling and forecasting demographic indicators is a bi-level 

fuzzy approach in which the general demographic characteristics of a country and the age 

group cluster impacts are sequentially processed in two phases. For mortality and fertility 

only the first level is used while the bi-level structure is necessary for migration modeling. 

Following the estimation of age and time variant fuzzy parameters, the future demographic 

indicators are forecasted using time series models through Bayesian approach. Finally, 

mortality, fertility and migration forecasts are aggregated within a fuzzy population model 

to obtain future population within fuzzy intervals.  

4.1. PRELIMINARIES 

Some fuzzy set theory basics and fuzzy terminology that are used throughout the study are 

given in the following. The singular value decomposition utilized in fuzzification of 

observed demographic data is also summarized at the end of this subsection. 

4.1.1. Fuzzy Set Theory and Related Terminology 

Definition 4.1 [120]. A fuzzy subset A  over a universe set U  is denoted by 

 A
A , ( ) |x x x U   where 

A
: [0,1]U   is called the membership function of A . If 

U  , where  is the real line, the convex subset A  is called a fuzzy number.  

Definition 4.2 [120]. A triangular fuzzy number A ( , , )
A A

a l r  with center a , left and 

right spreads Al  and Ar  is defined by the membership function 

 
A

| |
1  if 

| |
( ) 1  if 

0               otherwise

A

A

A

A

a x
a l x a

l
a x

x a x a r
r






   
 

    





   (4.1) 
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A triangular fuzzy number A  is symmetric if A Al r l  . A symmetric triangular fuzzy 

number A  with center a  and spread l  can be denoted as A ( , )a l .  

Definition 4.3 The α-cuts of a triangular fuzzy number A ( , , )
A A

a l r  are 
1 2A [A ,A ]    

which equals to [ (1 ), (1 )]
A A

a l a r     , [0,1]  . Figure 4.1 displays a triangular 

fuzzy number and the  α-cut notion. 

 

 

Figure 4.1. Triangular fuzzy number with α-cut 
 

Definition 4.4 [120]. A fuzzy number A ( , , )
A A

a l r  with center a , left spread Al , and 

right spread Ar  is of LR-type if there exist nondecreasing continuous reference functions L 

(for left) and R (for right) to define its membership function as: 

 
A

 if 

( )  if 

0               otherwise

A

A

A

A

a x
L a l x a

l
x a

x R a x a r
r




     
   

    
 





   (4.2) 

Here, L and R are non-decreasing continuous functions mapping [0,1] onto [0,1].  

Definition 4.5 [120]. A triangular norm (t-norm) T is a binary operation on [0,1] which is 

associative, commutative, non-decreasing and has the property ( ,1)T x x   for all [0,1]x .  
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With the ordinary fuzzy arithmetic operations (fuzzy addition and multiplication) spreads 

enlarges as a result of Zadeh’s extension principle [121]. The utilization of t-norm based 

operators prevents such accumulation of fuzziness by controlling the growth of uncertainty 

[122,123]. Furthermore, the extension principle also leads to deteriorations in the 

piecewise linear shapes of triangular fuzzy numbers for multiplication [124]. However, for 

computational simplicity, it is important for a fuzzy operator to preserve the shapes of 

fuzzy numbers [16]. The shape preserving property can be achieved through the use of 

weakest t-norm ( WT ) based operators. 

Definition 4.6 [120]. Weakest t-norm WT  is a binary operation on [0,1] defined as: 

 

min( , ) if max( , ) 1

0              otherwise( , )
W

x y x y

T x y

 


 



   (4.3) 

Definition 4.7 [125]. For two symmetric triangular fuzzy numbers 
A

A ( , )a l  and 

BB ( , )b l , weakest t-norm based addition (
WT
 ), subtraction (

WT
 ), and multiplication    (

WT
 )  

are defined as follows:  

 
A B

A B ( ,max( , ))
WT

a b l l      (4.4) 

 
A B

A B ( ,max( , ))
WT

a b l l      (4.5) 

 
A B

A B ( ,max( |b|, |a|))
WT

ab l l     (4.6) 

Definition 4.8 [126]. The Diamond distance LRD  between two symmetric triangular fuzzy 

numbers 
A

A ( , )a l  and BB ( , )b l  is defined as: 

 2 2 2

A B A B
(A,B) ( ) [( ) ( )] [( ) ( )]

LR
D a b a l b l a l b l             (4.7)  

Definition 4.9 [127]. A fuzzy number A  with membership function 
A

( )x  can be 

defuzzified into the crisp number A as:  
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A

A

( )
A

( )

x xdx

x dx








   (4.8) 

This defuzzification approach is named as center of gravity defuzzification method. 

4.1.2. Singular Value Decomposition 

Definiton 10 [128]. An m n  rectangular matrix Z can be decomposed into product of 

three matrices as TUSV , where superscript T denotes the transpose of a matrix. Here, U is 

an m m orthogonal matrix whose columns are orthonormal eigenvectors of TZZ , V is an 

n n   orthogonal matrix whose columns are orthonormal eigenvectors of TZ Z , and S is an 

m n  diagonal matrix composed of the singular values (square roots of eigenvalues) from 

U or V in descending order. This decomposition technique is named as singular value 

decomposition (SVD).  

4.2. FUZZY LEE-CARTER MODEL 

LC model has become a popular method in mortality forecasting because of the fact that it 

is simple to be utilized for capturing the mortality trends in most of the developed 

countries. However, in some cases the application of LC model is limited. The outputs 

obtained from LC model may not reflect a reasonable trend in lack of relevant data for 

whole age and sex groups or in case of random fluctuations due to small sample size or 

exogenous effects [129].  Standard Lee-Carter Model uses SVD method and assumes that 

error terms are normally distributed with constant variance 2 ,  which is a strict 

homoscedasticity assumption that is difficult to satisfy especially in cases where precise 

and enough historic data are not available. The magnitude of this variance is hoped to be 

small for sound forecasts but there is an obvious ambiguity in how small it should be 

[130]. These kinds of problems are also present in time-series and Bayesian based 

forecasting methods as a major weakness.  

Considering the vagueness in how small the variances of error terms should be and 

problems related with assuming that the error terms are Gaussian, Koissi and Shapiro [16] 
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(2006) reformulate the Lee-Carter (LC) model by including fuzziness. The fuzzy 

formulation of the LC model is: 

 
, 1 1 1 1

Y A B K ,   ,... ,    , 1,..., 1
W W

x t x x t NT T
x x x t t t t T          (4.9) 

Here, ,Yx t  is the observed fuzzy ln-mortality rate of age group x at time t, A x
and Bx

 are 

the unknown fuzzy age-specific parameters, and K t
 is the unknown fuzzy time-variant 

mortality index. These quantities and parameters are expressed as triangular symmetric 

fuzzy numbers such that , , ,Y ( , )x t x t x ty e , A ( , )
x x x

a  , B ( , )x x xb  , and K ( , )t t tk   

where 
,x ty , 

x
a , xb , and tk  are the centers and 

,x te , x , x , and t  are the spreads. The 

natural logarithmic transformation enables fitting a linear model to the observed rates and 

ensures positive estimates.  

4.3. BI-LEVEL FUZZY AGE SPECIFIC DEMOGRAPHIC MODEL 

The fuzzy formulation of LC model requires the fuzzification of crisp Yx,t values, which 

can be performed by adding a number ±θ to each value, where θ is chosen to be small. The 

choice of θ may be arbitrary [131], or by utilizing random number generation. Koissi and 

Shapiro use fuzzy least squares regression based on minimum fuzziness criterion 

developed by Chang and Ayyub [131]. They try to find 0 0 0A ( , ),x xc s  1 1 1A ( , ),x xc s and 

, , ,Y ( ,e )x t x t x ty with centers 0 ,xc  1 ,xc  and 
, ,x ty  and spreads 0 ,xs  1 ,xs  and 

, ,x te so that:  

 
, , 0 0 1 1

( , ) ( , ) ( , )
x t x t x x x x

y e c s c s t     (4.10) 

where time t is treated as the independent variable. Although most of the mortality 

modeling methods rely on the fact that mortality rates can be viewed as time series, it may 

not be proper to directly use time as the only explanatory variable in the model. In fact, t, 

the independent variable in Equ. (4.10) is a monotonically increasing variable, hence the 

center and spread of ln-mortality rate (dependent variables in Equ. (4.10)) take a linear 

form. In this study, in order to overcome this issue, a modified version of the fuzzification 

of crisp Yx,t values based on singular value decomposition (SVD) technique is proposed, so 

that, the fluctuations in ln-demographic rates/counts can be included in the model. The 
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proposed novel method also aims to eliminate the homoscedasticity assumptions and 

assumptions related to the magnitude of error term variances. Moreover, it can be used in 

cases where there are concerns about the validity of data and when the number of data 

prohibits the usage of standard LC or other stochastic methods. The proposed method 

extends the existing fuzzy model to fertility and migration modeling as well. Thus, a 

complete fuzzy population modeling is possible with the proposed method. 

The fuzzy model in Equ. (4.9) makes use of SVD in fuzzification of observed ln-mortality 

rates. SVD technique is an operative approach for modeling age-specific mortality and 

fertility rates because; mortality/fertility rates follow similar patterns for common time 

periods in all age groups, although magnitude differences might exist. That is; if 

mortality/fertility rate decreases (increases) in a time period for an age cohort then it 

decreases (increases) for all age groups in that period.  For example during World War II 

years mortality rates decrease for all age groups. The existence of such similar fluctuations 

for specific time periods in all age groups allows SVD to give reasonable fits to the 

observed rates. 

However, the nature of migration phenomenon does not necessarily exhibit similar 

behavior for distinct age groups. Therefore extending the existing fuzzy method for 

modeling age-specific migration may not result in appropriate fits. Age group is among the 

most dominant factors in migration behavior since there are strong dependencies between 

migration characteristics and age groups. For example; infants and toddlers display 

migration behavior similar to the young adults, whereas there is a tendency for old age 

groups not to migrate whatever the conditions at their origin are. Additionally, young 

adults are migrating more than other age groups [65].  

Being aware of these behavioral differences for distinct age groups and the necessity for 

age-specific enhancements, the fuzzy method for modeling mortality rates can be modified 

to model human migration, mortality and fertility as follows. 

Let 
,x tm  denote the demographic indicator value (mortality/fertility rate or 

emigration/immigration count) of age group x at time period t for one of the sexes: females 

or males. The demographic indicator value is fitted via the proposed model that includes a 

bi-level structure as:  
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, , ,

Y [A B K ] C
W W W

x t x x t i x tT T T
      (4.11) 

where ,Yx t  is the observed fuzzy ln-demographic indicator value of age group x at time t, 

A x
 and Bx

 are the unknown fuzzy age-specific parameters, and K t
 is the unknown fuzzy 

time-variant demographic index. In Equ. (4.11), different than the fuzzy mortality model in 

Equ. (4.9), an additional term , ,Ci x t  named as cluster factor is present. [A B K ]
W W

x x t
T T
   in 

Equ. (4.11) represents the general country profile in terms of demographic attitudes; and 

the cluster factor , ,Ci x t  reflects the age group cluster impact, that is, the special 

demographic characteristics of an age group x at time t within a class i of analogous age 

groups. The country profile and age cluster factor are modeled sequentially through a fuzzy 

method with two levels: Level-I, modeling country profile, and Level-II, modeling the age 

group cluster factor.  

This model is referred as fuzzy method for modeling age-specific demographic indicators 

(FMM).  

4.3.1. Level-I: Modeling Country Profile 

The country profile, expressed as [A B K ]
W W

x x t
T T
   in Equ. (4.11), refers to the effects of a 

country or a region on the overall migration behaviors of both emigrants and immigrants 

from and to the origin or destination respectively. This profile can be viewed as the 

impacts of the country’s socio-economic and geographical structure on general migration 

characteristics of age groups related to that country. 

4.3.1.1. Fuzzification Phase  

The fuzzy formulation of in Equ. (4.11) requires the fuzzification of observed ln-migration 

values. This fuzzification phase can be summarized via a regression model in which the 

task is to find a fuzzy intercept 0 0 0A ( , )x xc s  and regression coefficient 1 1 1A ( , )x xc s  so 

that: 
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, , 0 0 1 1

( , ) ( , ) ( , )
x t x t x x x x t

y e c s c s f    (4.12) 

The independent variable tf  in Equ. (4.12) is defined as the fuzzification index, which is 

capable of capturing the possible fluctuations in data. tf  can be expressed as ( )t t xtf g m , 

where tg  is a function mapping xtm  to fuzzification index tf  for each time t, and xtm  is a 

vector composed of demographic indicator values (mortality/fertility rates or 

emigration/immigration counts) 
1 2
, ,...,m

Nx t x t x tm m  for each time t and age group 

1,... .i Nx x x  t, the independent variable in Equ. (4.10) is a monotonically increasing 

variable, hence the center and spread of ln-demographic indicator values (dependent 

variables in Equ. (4.10)) take a linear form. However, the proposed fuzzification index ,tf  

which is based on the aggregated age group demographic indicator values, does not 

necessarily show a linear trend. Consequently, Equ. (4.12) generates a better fitting model. 

The values of tf  are computed via SVD approach, in which the first singular value and its 

corresponding-eigenvectors allow the model to represent the fundamental characteristic of 

data [132].  

The center values in fuzzification of ln-migration values are based on: 

 
, 0 1x t x x t

y c c f     (4.13) 

The application of SVD technique on Equ. (4.13) yields the following scheme: first, tf s 

are assumed to be normalized to sum up to 0 and coefficients 
1,xc  to sum up to 1 to ensure 

the model identifiability [133]. Then, in each age group x, 
0,xc  is set to the average value of 

the observed 
,( )x tln m  for all time periods t. Next, a decomposition matrix Z  with entries 

,x tz s as 
, 0,( )x t xln m c  is formed. SVD is applied on this decomposition matrix as: 

 
min( , )

T

,
1

( ) ( )
x T

x t i i i
i

z u x s v t


     (4.14) 

where is , ( )iu x , and ( )iv t  denote the ith greatest singular value and its respective left and 

right eigenvectors. Taking the greatest singular value and its corresponding left and right 

eigenvectors the entry 
,x tz  becomes: 
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 T *

, 1 1 1 ,
( ) ( )

x t x t
z u x s v t      (4.15) 

where *

,x t  corresponds to the information hidden in the remaining singular values and 

eigenvectors, Ignoring *

,x t ,  fuzzification index tf  is estimated as T

1 1 ( )s v t  and 
1,xc  is set to 

be 1( )u x , which completes the calculation of center values. 

Calculation of the center values is followed by the computation of spread values. The 

spreads are obtained based on the minimum fuzziness criterion suggested by Tanaka, 

Ueijima and Asai [134] for fuzzy regression. This leads to linear programming models for 

each age group x as: 

 
0

0

1

0 1
minimize | |

t T

x x t
t t

Ts s f
 



     (4.16) 

Subject to 

 
0 1 0 1 , 0 0 0

(1 )[ | |] ( ) ,   , 1,..., 1
x x t x x t x t

c c f h s s f ln m t t t t T            (4.17) 

 
0 1 0 1 , 0 0 0

(1 )[ | |] ( ),   , 1,..., 1
x x t x x t x t

c c f h s s f ln m t t t t T            (4.18) 

 
0 1

, 0
x x

s s    (4.19) 

The objective function given in Equ. (4.16) minimizes the total spread while constraints in 

Equ. (4.17) and Equ. (4.18) ensure that the observed ln-demographic indicator value lie 

within the fuzzy interval defined by the corresponding center and spread values at a level 

h, which is a predetermined small parameter (generally preferred to be 0). h can be 

considered as α-cuts in fuzzy set theory, thus, the spreads increase as h. The last constraint, 

given in Equ. (4.19), guarantees the non-negativity. 

4.3.1.2. Estimation Phase 

Once the observed ln-demographic indicator values are fuzzified, the next task becomes to 

estimate the fuzzy parameters in the country profile [A B K ]
W W

x x t
T T
  . For this purpose, the 

total distance between the fuzzified ln-demographic indicator values and the estimated 
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values is minimized. Here, Diamond distance ( LRD ), a frequently used fuzzy distance 

metric in fuzzy regression methods, is employed and the corresponding optimization model 

is given as: 

 2Minimize [A (B K ),Y ]
W W

LR x x t xtT T
x t

D     (4.20) 

When the Diamond distance and WT  based addition and multiplication are utilized 

together, Equ. (4.20) becomes an unconstrained nonlinear optimization problem with the 

form: 2 2[A (B K ),Y ]   ( )   [   max{ ,| | , | |}
W W

LR x x t xt x x t xt x x t x x t x tT T
D a b k y a b k b k           

2 2( )] [ max{ ,| | , | |} ( )] .
xt xt x x t x x t x t xt xt

y e a b k b k y e          

This unconstrained nonlinear optimization problem is solved via Nelder-Mead (NM) 

simplex algorithm, which is a derivative free method. NM algorithm searches for the 

minimum solution of a discontinuous nonlinear function via a simplex, which adapts itself 

to the search space through reflection, expansion, outside/inside contraction and shrinkage 

[135]. A simplex is in n dimensions can be defined as the convex hull of a set of n+1 

noncoplanar points in a hyperplane of n dimension, nE [136]. To illustrate how NM 

algorithm operates, assume a hyperplane 2E  of 2 dimensions. A simplex in this hyperplane 

corresponds to a triangle. Furthermore, let ( , )f x y  be the function to be minimized. The 

algorithm starts with an initial simplex (in this case a triangle) having the vertices

1 1( , )B x y , 2 2( , )G x y , and 3 3( , )W x y , where B corresponds to the best vertex, G is 

good vertex (the next best), and W is the worst vertex in terms of fitness values [137]. 

Furthermore, let M be the midpoint of the line segment joining vertices B and G, R is the 

point obtained using reflection operation, E is the point obtained using expansion 

operation, C1 and C2 are the points obtained through inside and outside contraction 

operations respectively, and S is the point obtained through shrinkage operation. If d 

represents the distance between the points W and M, then the four operations used in NM 

algorithm can be illustrated as in Figure 4.2. The logical decisions in each step of the NM 

algorithm are also provided in the following Algorithm 4.1 [138]. 
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Reflection Extension 

  
Contraction Shrinkage 

 
 

 

Figure 4.2. Reflection, extension, contraction and shrinkage operations of NM algorithm 

 

Algorithm 4.1. Nelder-Mead simplex algorithm 

 

If f(R) < f(G), then apply reflection or extension operations 

 

     Begin 
  If f(B) < f(R), then change W with R 

  Else calculate E and f(E) 

   If f(E) < f(B), then change W with E 

   Else change W with R 

   Endif 

  Endif 

     End 

 

Else apply contraction or shrinkage operations 

 

 Begin 
  If f(R) < f(W), then change W with R 
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  Else calculate E and f(E) 

   If f(E) < f(B), then change W with E 

   Calculate either C = (W + M)/2 or C = (M + R)/2 and f(C) 

    If f(C) < f(W), then change W with C 

   Else calculate S and f(S) 

   change W with S 

   change G with M 

   Endif 

  Endif 

 End  

 

In literature, it is shown that the solutions found via NM simplex algorithm strongly 

depend on the initial solution and the dimensionality [139]. Here, the parameters obtained 

during the fuzzification of observed data is used as an initial solution, hence enhances the 

computation capacity of the algorithm. After the estimation of fuzzy parameters in Level-I 

are completed, the estimated fuzzy country profile are defuzzified via center of gravity.  

For modeling mortality and fertility, Level-I is adequate due to the relatively simple 

regularities followed by the age groups. However, a second level of modeling is required to 

fit migration trends. 

4.3.2. Level-II: Modeling Age-Cluster Factor 

Level-I is succeeded by computing the difference between the observed ln-demographic 

indicator values and the defuzzified country profile which is named as the cluster factor. In 

fact, cluster factor 
, ,Ci x t

 represents the demographic behaviors that cannot be captured by 

the general country profile and is assumed to be a consequence of differences in age group 

attitudes. In Level-II, the demographic indicator of interest is emigration or immigration 

counts, since mortality or fertility modeling does not require a second level of modeling 

effort. 

Here, the age groups are clustered such that neighbor age groups follow similar patterns 

while distinct clusters possess diverse migration behaviors. This clustering operation 

allows a method based on SVD technique analogous to the method used in Level-I to be 

utilized in level-II as well. The clustering operation, which can be viewed as a hierarchical 

clustering approach, is as follows: 
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 Step 1: For each age group 
ix  and 

jx , i jx x , and 
1, ,...i j Nx x x x , calculate slope 

similarity index 
ijS  . Call maximum 

ijS  value as max( )ijS . 

 Step 2: For each age group 
ix , select the age group 

jx , i jx x , such that 
ijS  is the 

smallest and connect age group ix  to age group 
jx . Now, age group ix  is labeled 

as a candidate member of class iC  which includes age group 
jx  as a member.  

 Step 3: If for all k ix C , *max( )ik ijS p S ; then age group ix  is re-labeled as a 

member of iC . Else, connect age group ix  to the most similar age group kx  and 

form a new class  ,n i kC x x , where 1k ix x   or 1k ix x  . Here, p is the 

dissimilarity proportion indicating the maximum dissimilarity ratio allowed, 

0 1p  . For instance, if p is chosen as 0.1, the dissimilarity within a class cannot 

be greater than 10 percent of max( )ijS .  

As mentioned in the previous steps, the age groups are clustered into classes based on a 

similarity measure called slope similarity index. Li et al. [140,141] define a slope 

similarity metric via piecewise linear approximations on a time series which corresponds to 

v piecewise linear subsequences expressed as y b mx  . If the approximation is denoted 

by PLA, then 1 1 2 2( , ; , ,..., , )w wPLA b m b m b m , where ib  and im , 1,...,i w , are the intercept 

and the slope of the ith  piecewise linear subsequence. Li et al. [140] show that a slope 

based distance between two linear subsequences as: 

 1 2
1 2

1 2

| |
( , )

| |

m m
d m m

m m


   (4.21) 

The slope based distance in Equ. (4.21) satisfies positivity, symmetry, constancy, and 

triangular inequality, so that, it is a metric. For clustering the age groups based on their 

migration behaviors, the error 
,x t  between the observed ln-demographic indicator value 

and the defuzzified estimates 
x x t

a b k  obtained at the end of Level-I modeling are 

calculated. Next, for each age group x, a piecewise linear segment is formed between all 

adjacent errors 
,x t  and 

, 1x t 
, making T-1 segments for each age group x. Then, the slopes 

of each linear segment are computed. Finally, the slope similarity index between age 

groups ix  and 
jx  is calculated via: 
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( , )
T

ij il jl
l

S d m m




   (4.22) 

where, l is the label of piecewise linear segment 1,..., 1l T  , and ( , )il jld m m is the slope 

based distance between the lth linear segments of age groups ix  and 
jx . 

After clustering the age groups into appropriate classes, the previously discussed fuzzy 

method (Level I of FMM) is applied on each class 
iC  separately. That is, for all 

ix C  and 

0 0 0, 1,..., 1t t t t T     , the error terms 
,x t s obtained after Level-I modeling are 

assumed to be consequences of age group cluster characteristics, and modeled as: 

 
, , ,

C D G R
W W

i x t x x i tT T
     (4.23) 

where , ,Ci x t  is the fuzzy cluster factor for age group x and class iC  at time t, Dx
 and G x

  

are the fuzzy age-specific parameters, and ,R i t  is the time-variant fuzzy cluster index with 

, ,i x tc , xd , xg , and 
,i tr  as center and 

, ,i x t , x , x , and 
,i t  as spread values, respectively. 

Here, the fuzzy numbers are symmetric and triangular. After estimating the fuzzy 

parameters in Equ. (4.23) via the method used to fit Level-I model, age-specific migration 

modeling is completed with the addition of country profile outputs and cluster impact 

estimates as in Equ. (4.11).  

4.3.3. Forecasting Future Migration Values 

To forecast future demographic indicator values, the time-variant fuzzy parameters 

K ( , )t t tk   in Equ. (4.11) and , , ,R ( , )i t i t i tr   in Equ. (4.23) are predicted through time 

series models based on Bayesian approach. Bayesian models integrate subjective prior 

beliefs with the observed historic data. In addition, these models are efficiently used in 

case of short data series. Bijak and Wiśniowski [113] state that the application of Bayesian 

approach in forecasting demographic values generates similar ex post errors to the classical 

approach; yet, it yields more realistic predictive intervals. Here, six models are specified to 

predict the time-variant parameter ty , where ty   is one of the parameters tk , t , 
,i tr , or 
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,i t ; 0 0 0 0, 1,..., 1,..., 1t t t t T t T H         and for all classes i, where H  denotes the 

length of the forecast horizon. Each model is denoted by 
jM , 1,2,...,6j    and defined as: 

 
1 1,1 1,2 1

:  ( )
t

M y c c t t     (4.24) 

 
2 1 2

:  ( )
t t

M y y t


    (4.25) 

 
3 3 1 3

:  ( )
t t

M y c y t


     (4.26) 

 
4 4 4 1 4 4 4

:  ( ); 0, 1
t t

M y c y t   


       (4.27) 

 
5 5 5 5 5 5

:  ( ) ( 1); 0
t

M y c t t          (4.28) 

 
6 6 6 1 6 6 6 6 6 6

: ( ) ( 1); 0, 1, 0
t t

M y c y t t      


          (4.29) 

The models displayed in Equ. (4.24) to Equ. (4.29) are namely linear trend model, random 

walk model, random walk model with drift, autoregressive process – AR(1), moving 

average process – MA(1), and autoregressive moving average process – ARMA(1,1), with 

respectively. Except the linear trend model M1 given in Equ. (4.24), the remaining models 

M2 to M6 are treated as Bayesian models. The reason why these six models are to be used 

is that the orders of the ARIMA models in demographic forecasting do not go beyond 

(1,1,1) [142]. In this study, integrating fuzzy modeling into Bayesian forecasting allows 

representing the future forecasts within fuzzy prediction intervals. 

For the models specified in Equ. (4.24) to Equ. (4.29), ( )j t  denotes the Gaussian white 

noise, ( )j t ~
2N(0, )j .  For mortality/fertility rates and emigration/immigration counts, 

these models are fitted using MCMC simulation with Gibbs sampling. To accomplish this 

task, the prior distributions for the model parameters are determined based on the data and 

some prior beliefs. The Gibbs sampling leads to convergence in most cases, however the 

simulation may start at a distinct point from the stable distribution. The impacts of the prior 

values are mitigated by discarding some initial portion of the simulation, named as the 

burn-in iterations. The posterior distributions of the model parameters are determined 

based on the remaining iterations in the simulation.   
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The model to be utilized in forecasting demographic indicator values is selected according 

to posterior probabilities of each model (referred as posterior odds criterion). Here, 

posterior probability of model Mj given the marginal distribution of data is computed 

through the Bayes rule [143] as:  

 
( | ) ( )

( | )
( )

j j

j

p x M p M
p M x

p x
    (4.30) 

For forecasting, the model with the highest ( | )jp M x  is selected. This selection criterion 

requires defining the prior probabilities ( )jp M  for each model. The prior probabilities for 

the models are determined based on the famous Occam’s razor principle, which indicates 

that in model selection problems, the selection criterion should support the simpler 

explanations of the phenomena under study. Here, as suggested by Bijak [144], the prior 

probabilities can be set in such a way that ( )jp M  is proportional to 2 jn
, where 

jn  is  the 

number of parameters in model 
jM . This prior probability setting assumes that the 

measure of complexity of a model can be represented by the number of parameters in that 

model. MCMC simulation refines the prior probabilities based on the estimation capability 

of the model and provides posterior distributions for the models given the data.  

4.4. MODELING AND FORECASTING THE POPULATION 

After all of the fuzzy ln-demographic indicators, ln-mortality, ln-fertility, ln-immigration, 

and ln-immigration for males and females are estimated, it is possible to construct a fuzzy 

population model. The first step in this phase is converting the fuzzy ln-demographic 

values to fuzzy demographic values by taking the exponential of their center and spread 

values.  

The next step is to convert fuzzy mortality rates to fuzzy survival ratios. Here, for each 

fuzzy mortality rate, the spread value is added to and subtracted from the center value to 

form the left and right tails of the fuzzy number respectively. Let ,

s

x tM  be the fuzzy 

mortality rate for age group x at time t for sex group s with center ,( )s

x t Cm  and spread ,

s

x te  
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where s equals to 1 for females and 2 for males. Then, the left and right tales of ,

s

x tM  are 

obtained by  

 , , ,
( )s s s

x t L x t x t
m c e     (4.31) 

 , , ,
( )s s s

x t R x t x t
m c e     (4.32) 

where ,( )s

x t Lm  is the left tail and ,( )s

x t Rm  is the right tail of the fuzzy mortality rate. Next, 

the center, and the left and right tails of the fuzzy survival ratio are obtained by; 

 
,

1,

1,

3 2

1, 1,

3 2

, ,

2 ( )
,  for ages 0-1

2 ( )

( ) exp[ 4( ) (4) (0.008)(( ) ) ],  for ages 1-4

exp[ 5( ) (5) (0.008)(( ) ) ],  otherwise
x t

s

t i

s

t i

s s s
i t i t i

s s

x t i x t i

m

m

sr m m

m m

 





  


 



   (4.33) 

where subscript i denotes the center and left and right tails of the fuzzy quantitiy. The 

fuzzy triangular survival ratio ,

s

x tS  can then be identified as 

, , , ,
(( ) ,( ) ( ) )s s s s

x t x t C x t C x t L
S sr sr sr   or 

, , , ,
(( ) ,( ) ( ) )s s s s

x t x t C x t R x t C
S sr sr sr   where , ,

( ) ( )s s

x t C x t L
sr sr    

or , ,
( ) ( )s s

x t R x t C
sr sr  corresponds to the spread value.  

Once the above operations are performed and given the population at time t, the total 

population at time t+1 can be forecasted by; 

 1 2

1 1 1
w

t t tT
N N N

  
     (4.34) 

where t
N ,  

1

t
N  and 

2

t
N  stand for the total fuzzy population, fuzzy female population and 

fuzzy male population at time t respectively. The fuzzy female and male population at time 

t+1 can be computed via:  

 
1 1 1

1 1 1 1 1 1 1 1 1

1 , , , , , , ,

N N N

w w w w w w

x x x

t x t x t t x t x t x t x t x tT T T T T T
x x x x

N S N SRB F N S I E
  


              (4.35) 
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1 , , , , , , ,

N N N

w w w w w w

x x x

t x t x t t x t x t x t x t x tT T T T T T
x x x x

N S N SRB F N S I E
  


              (4.36) 

where; , , , ,,  ,  ,and s s s s

x t x t x t x tS F E I  are fuzzy survival and fertility rates, and emigration and 

immigration counts for age group x and sex group s  at time t to t+1 respectively, ,

s

x tN  is 

the fuzzy number of persons of age group x and sex group s at time t, and 
s

t
SRB  is the sex 

ratio at birth for sex group s at time t. The first summation refers to the individuals 

surviving the age group x and reaching to age group x+1 from time t to t+1. The second 

summation deals with the newborns; whereas the last two summations refer to the number 

of surviving individuals that immigrate and emigrate from time t to t+1. If crisp values, 

rather than fuzzy ones for the number of persons of age group x and sex group s at time t 

which is denoted by ,

s

x tN , are used Equ. (4.35) and Equ. (4.36) can be modified as: 

 
1 1 1

1 1 1 1 1 1 1 1 1

1 , , , , , , ,

N N N

w w w w

x x x

t x t x t t x t x t x t x t x tT T T T
x x x x

N S N SRB F N S I E
  


              (4.37) 

 
1 1 1

2 2 2 2 2 2 2 2 2

1 , , , , , , ,

N N N

w w w w

x x x

t x t x t t x t x t x t x t x tT T T T
x x x x

N S N SRB F N S I E
  


              (4.38) 

where ,

s

x t
N  denotes the crisp number of persons of age group x and sex group s at time t. 
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5.  NUMERICAL FINDINGS 

 

The proposed FMM is applied to the age-specific mortality and fertility rates and 

emigration and immigration counts of Finland for each sex (female and male) separately 

(For fertility only female dataset is used since fertility is referred to females). Finland is 

located in Northern Europe between Norway, Sweden and Russian Federation and Baltic 

Sea. The country is a member of United Nations, OECD, and European Union, and ranked 

as fifteenth in the world according to human development index (HDI for 2017 is 0.920, 

which is which is categorized as very high based on [145]).  

There are several reasons why Finland data are selected for application. First of all, 

mortality and fertility rates in Finland for age groups are available for males and females 

separately in official statistics, which are believed to be of high quality. The emigration 

and immigration values are available as counts in official population statistics in age 

groups for the two genders as well. The country displays a stable population profile by 

time with several fluctuations observed in fertility rates, and almost linear declining trends 

of mortality in diverse age groups by time. The trends in emigration and immigration 

values display several fluctuations for years around the collapse of Soviet Union and 

expansion of the European Union (EU), but the country did not witness mass emigration or 

immigration due to global financial crisis of 2008 when compared to some other EU 

countries. Beside the accessibility and quality of age-specific demographic data of the 

country, another reason for selecting Finland as the application region is that the existing 

fuzzy method of Koissi and Shapiro [16] has also been applied on Finland data. 

The total male and female populations of Finland for all age groups are displayed in Table 

5.1 for selected years between 1940 and 2015. As observed from Table 5.1, the total 

population in 2015 is 47.97 percent greater than the population in 1940; due to natural 

growth of population and net migration. The number of females are greater than the 

number of males in all displayed years, although the percentage of females in total 

population in 1940 decreases from 51.21 percent to 50.80 percent in 2015. The population 

statistics reveal a monotonic growth for Finland changing in between 0.97 percent and 6.77 

percent. The country witnessed a significant population growth right after the World War 



64 

 

 
 

II, but the growth percentage decreased to 2.25 percent in 2015 with several fluctuations in 

years.  

 

Table 5.1. Summary of total population statistics of Finland 

 

Year Female Male Total 
Growth 

Percentage 

1940 1893736 1804098 3697834  

1945 1955020 1778959 3733979 0.98 

1950 2083150 1903480 3986630 6.77 

1955 2193006 2018698 4211704 5.65 

1960 2288868 2124788 4413656 4.8 

1965 2357881 2200716 4558597 3.28 

1970 2384336 2230286 4614622 1.23 

1975 2428607 2273819 4702426 1.9 

1980 2464449 2306777 4771226 1.46 

1985 2524507 2369234 4893741 2.57 

1990 2561750 2412798 4974548 1.65 

1995 2617095 2481685 5098780 2.5 

2000 2648125 2523032 5171157 1.42 

2005 2674268 2562053 5236321 1.26 

2010 2725859 2624963 5350822 2.19 

2015 2779251 2691760 5471011 2.25 

 

The age-specific population of Finland for 2015 is given in Table 5.2. The last column in 

Table 5.2 provides the percentage of each age group population within the total population 

for 2015. The distribution of the population among age groups indicate that 16.39 percent 

of the total population are younger than 15 years old, 63.69 percent of the population is in 

between ages 15 and 65, and 19.93 percent of the population is older than 65 years old. 

Thus, the ratio of children within the total population is less than the ratio of old people, 

which is common in most of the developed countries in Europe.  

Considering the fluctuations in population growth percentages and the necessity of age-

group decomposition of the population in further analysis, the proposed FMM is applied on 

mortality, fertility and migration data of Finland. The content and sources of data used and 
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the modeling and forecasting results for each demographic indicator are provided in sub-

sections 5.1 to 5.3, and the aggregated population forecasts are given in sub-section 5.4. To 

display the modeling and forecasting outputs for each of the demographic indicators age 

group [20,25) is selected for exemplary purposes. In fact, this age group corresponds to 

young adults, in which a tendency of high mobility and fertility is observed. 

 

Table 5.2. Age-specific distribution of Finland in year 2015 

 

Age Group Female Male Total 

Percentage of the age 

group population in 

total population 

[0,5) 146650 153486 300136 5.49 

[5,10) 148856 155317 304173 5.56 

[10,15) 142702 149597 292299 5.34 

[15,20) 150090 156492 306582 5.6 

[20,25) 167324 174762 342086 6.25 

[25,30) 165545 174020 339565 6.21 

[30,35) 172264 183123 355387 6.5 

[35,40) 167323 177106 344429 6.3 

[40,45) 154103 160576 314679 5.75 

[45,50) 177605 181712 359317 6.57 

[50,55) 187142 188443 375585 6.87 

[55,60) 187031 183866 370897 6.78 

[60,65) 191909 183321 375230 6.86 

[65,70) 195527 181087 376614 6.88 

[70,75] 128836 110037 238873 4.37 

[75,80] 113191 85233 198424 3.63 

[80,85) 88410 55027 143437 2.62 

[85,90) 62245 28807 91052 1.66 

[90,95) 27051 8469 35520 0.65 

95+ 5447 1279 6726 0.12 

 

Furthermore, Bayesian migration modeling and forecasting method of Wiśniowski et al. 

[17] (denoted as BMM, henceforth) is also implemented on the same data for comparison 

purposes. BMM is also based on Lee-Carter model as discussed in Section 2.3 and it 

forecasts age-specific demographic indicator values using analogous parameters to FMM. 
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The main difference between the two is that BMM uses a Bayesian approach whereas 

FMM utilizes fuzzy set theory in model fitting.  

The linear programming models for spread optimization as part of fuzzification of actual 

demographic values are solved using GAMS 24.4 software, while the fuzzy parameter 

estimation is accomplished using optimization toolbox of MATLAB R2014a software. In 

forecasting phase, OpenBUGS 3.2.3 software is used. GAMS code for spread optimization 

in Level I of FMM is given in Appendix A, while MATLAB function used as an input to 

NM simplex algorithm is displayed in Appendix B. OpenBUGS code for demographic 

forecasting is provided in Appendix C. 

5.1. MORTALITY RESULTS 

5.1.1. Mortality Data 

Finnish mortality dataset for each sex (females and males) considered in this study consists 

of 21 age groups including [0,1), [1,5), [5,10), …, [95,100) for 15 quinquenal (five-year) 

time periods of 1940-1944, 1945-1949, …, 2010-2014. The datasets are retrieved from 

“Human Mortality Database” at www.mortality.org. The main reasons to aggregate data 

within five-year age groups and time periods are to reduce dimensionality for 

computational purposes and to obtain smoother data as suggested by Rogers et al. [79].  

Figure 5.1 and Figure 5.2 display the mortality profiles of Finland throughout time for 

females and males respectively. The year axes in these figures illustrate the first year in 

each five-year time period, that is, year 1940 corresponds to time period 1940-1944 

actually. Similarly, in age group axes, the starting age of a quinquenal group is provided. 

As displayed in Figure 5.1 and Figure 5.2, mortality rates are relatively high among 

infants, then, reach their minimum in childhood. The rates exhibit almost stable trends up 

to pre-retirement ages and start to increase afterwards.  

The fluctuations in mortality rates among young adult males in Figure 5.2 in period 1940-

1944 are due to World War II, however, females display a more non-fluctuating mortality 

profile for the same period. Furthermore, it is observed that mortality rates for both sexes 

are decreasing by time and the rates are lower for females when compared to males. The 
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regular patterns followed by age groups throughout time enable the proposed FMM to be 

applied in Finnish mortality data.  

 

 

Figure 5.1. Observed mortality rates, females 

 

 

 

Figure 5.2. Observed mortality rates, males 
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Figure 5.3. Observed ln-mortality rates, females 

 

 

 

Figure 5.4 Observed ln-mortality rates, males 

 

The natural logarithms of observed mortality rates (ln-mortality rates) for females and 

males are illustrated in Figure 5.3 and Figure 5.4 respectively. As it can be seen from these 
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figures, natural logarithmic transformation smooths the observed mortality rates and results 

in almost linear trends for most of the age groups although some amount of fluctuations are 

still observed. Thus, natural logarithmic transformation of demographic rates/values makes 

it possible to obtain accurate fits via singular value decomposition based methods such as 

FMM.   

The proposed FMM is applied on mortality data of Finland for 1940-1999 time periods, 

that is, the data used for modeling consists of 12 quinquenal time periods and 21 age 

groups for each sex. Using the model outputs, future mortality rates are forecasted for 

2000-2004, 2005-2009, …, 2020-2024 periods. This enables to measure the forecasting 

performance of FMM by ex-post analysis for 2000-2004, 2005-2009, 2010-2014 periods. 

The modeling and forecasting performances of the proposed FMM are also compared with 

Koissi and Shapiro’s fuzzy mortality modeling method (KSM) and the Wiśniowski et al.’s 

BMM in the following sub-sections. 

5.1.2. Validity of FMM Modeling Results 

The validity of FMM in generating realistic fuzzy estimates for datasets covering 1940-

1999 mortality rates is analyzed via fuzzy paired t-tests. Here, the equality of fuzzy 

estimates obtained via only the level-I of the proposed method and the fuzzified actual 

mortality rates is tested through paired fuzzy sample differences tests. Based on Liu and 

Kao [146]; Tsai and Chen [147] suggests using fuzzy sample differences test for testing the 

equality of paired fuzzy data; in which the null hypothesis H0 states that the difference 

between two fuzzy sets is zero (or in other words, the two data sets are equal). A lower and 

an upper test statistics tL and tU for all α-cuts of the mean fuzzy differences are computed; 

and if both tL and tU lay within the t-value for n-1 degrees of freedom at a specified 

significance level, where n is the number of observations, the null hypothesis H0 cannot be 

rejected. In this case, the test results indicate that there is no sufficient evidence to say that 

the two datasets are different from each other, therefore, it is concluded that they are the 

same. Otherwise, H0 is rejected in favor of the alternative hypothesis H1, which states that 

the two samples are different from each other. 

Here, the null and the alternative hypothesis are constructed as: 
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H0: The fuzzified actual mortality rates and the fuzzy estimates obtained via Level-I 

of FMM are equal. 

H1: The fuzzified and estimated values be considered as the same.  

For each sex, the null hypothesis is tested at a significance level of 0.05 for all α-cuts of the 

mean fuzzy differences. The results are displayed in Table 5.3, in which tL and tU values of 

only five different α-cuts are given due to space limitations. For two samples to be 

considered as equal, tL and tU values should be in the interval [-1.969, 1.969], specified by 

the corresponding t values for 0.05 significance level and 251 degrees of freedom. The test 

results indicate that using only general country profiles (refers to level-I) in the method 

provide equality of the estimates and the actual fuzzy values in modeling mortality rates. 

Thus, it is decided to use only one level in FMM for mortality modeling and forecasting. 

 

Table 5.3. Results of paired fuzzy sample differences tests for the equality of actual 

mortality values and FMM estimates 

 

Demographic 

Indicator Sex Model t 

α  

Decision α=0 α=0.2 α=0.4 α=0.6 α=0.8 α=1 

Mortality 

Female Level I 
tL -0.063 -0.058 -0.051 -0.036 0.008 0.632 Cannot 

Reject H0 tU 0.098 0.103 0.110 0.125 0.170 0.632 

Male Level I  
tL -0.341 -0.296 -0.221 -0.069 0.388 1.353 Cannot 

Reject H0 tU 0.695 0.738 0.809 0.950 1.088 1.353 

 

5.1.3. Comparison of FMM and KSM 

The modeling performance of the proposed FMM is first compared with that of Koissi and 

Shapiro’s fuzzy Lee-Carter method (KSM). This comparison examines the enhancements 

of FMM in fuzzification and estimation phases of fitting observed rates for 12 quinquenal 

time periods between 1940-1999 period and for the 21 age groups mentioned previously, 

making 252 observations for each sex.  

The modeling outputs obtained via FMM and KSM for the example age group [20,25) are 

given in Figure 5.5 and Figure 5.6 for females and males respectively. In these figures, the 
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horizontal axis displays the beginning year of each quinquenal time period while the 

vertical axis corresponds to the mortality rates. Both figures display the actual mortality 

rates in addition to the center and the α=0.05-cut fuzzy intervals obtained through KSM 

and FMM.  

From Figure 5.5 and Figure 5.6, it is seen that the center values generated via FMM are 

more congruent to the actual values when compared to the center values obtained via KSM 

in this age group for both females and males. This is mainly due to the modifications in 

fuzzification phase of FMM, in which the mortality rates are fitted based on singular value 

decomposition technique rather than the ordinary least squares regression with the time as 

the regressor embedded in KSM. Furthermore, FMM generates smaller spreads, that is, the 

uncertainty in fitted mortality rates, which is assumed to be due to fuzziness, is less for 

FMM outputs. It is worth mentioning that even though FMM gives narrower fuzzy 

intervals, it is still able to cover all of the fluctuations in observed mortality rates. 

 

 

Figure 5.5. Fitting mortality rates for age group [20,25), females: FMM versus KSM 
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Figure 5.6. Fitting mortality rates for age group [20,25), males: FMM versus KSM 

 

The performance of FMM and KSM are also compared in terms of fitting and the results 

are provided in Table 5.4.  In this table, mean absolute percentage error (MAPE) between 

the actual and the center values obtained via KSM and FMM are given for each sex. When 

all age groups are considered, it is seen that fitting errors in FMM are relatively smaller 

compared to that of KSM. The enhancements in modeling capabilities achieved via FMM 

can be figured out as the MAPE decreases from approximately 15 percent to 10 percent 

and 13 percent for females and males respectively. Thus, it can be concluded that FMM 

provides superior results in terms of modeling accuracy compared to the existing KSM.  

 

Table 5.4. MAPE between actual and fitted mortality values for 1940-1999 period obtained 

via KSM and FMM 

 

Demographic Indicator Sex 

 MAPE (%) between actual and fitted values  

 KSM  FMM 

Mortality 
Female  14.82  10.61 

Male  15.31  12.94 
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5.1.4. Mortality Modeling Results of FMM and BMM 

The modeling performance of the proposed FMM is also compared with that of BMM for 

1940-1999 period. The results for the example age group [20,25) for females and males are 

displayed in Figure 5.7 and Figure 5.8 respectively together with the actual values. In these 

figures FMM results are obtained using only a single level of modeling as it is shown in 

Section 5.1.2 that the Level-I model is adequate to represent the actual mortality rates. In 

Figure 5.7 and Figure 5.8, the center values and α=0.05-cut fuzzy intervals generated via 

FMM are depicted in addition to the median fits and the 95 percent Bayesian prediction 

interval obtained via BMM.  

 

 

Figure 5.7. Mortality modeling estimates for age group [20,25), females, using 1940-1999 

data: FMM versus BMM 

 

In Figure 5.7 and Figure 5.8 the center values obtained via FMM and the median fits 

generated via BMM both seem to represent the actual mortality rates for each sex for age 

group [20,25). The actual mortality rates are covered within the α=0.05-cut fuzzy intervals 

and 95 percent Bayesian prediction intervals, however, the Bayesian prediction intervals of 

BMM are too narrow when compared to fuzzy intervals of FMM for this age group in each 

sex. Furthermore, in both figures, it is observed that the Bayesian and fuzzy intervals are 
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narrowing by time. This is due to exponential transformation of natural logarithms of the 

fitted mortality rates.  

 

 

Figure 5.8. Mortality modeling estimates for age group [20,25), males, using 1940-1999 

data: FMM versus BMM 

 

Table 5.5. MAPE between actual and fitted mortality values for 1940-1999 period obtained 

via BMM and FMM 

 

Demographic Indicator Sex 

MAPE (%) between actual and fitted values  

BMM FMM 

Mortality 

Female 10.28 10.61 

Male 13.24 12.94 

 

The mortality modeling performance of FMM and BMM are also compared for 1940-1999 

period. The MAPE between actual mortality rates and median fits obtained via BMM as 

well as the MAPE between actual mortality rates and center values obtained via FMM are 

given in Table 5.5. Here, all age groups in the datasets are considered. The comparison 

results indicate that BMM and FMM generating almost the same amount of fitting errors 
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which are in between approximately 10 percent and 13 percent. Thus, it can be asserted 

that the two methods perform similarly in modeling historic age-specific mortality rates.  

5.1.5. Mortality Forecasting Results of FMM and BMM 

After the modeling part is over, the future mortality rates are forecasted using the age-

specific fuzzy parameters A x  and Bx
, and the future values of the time-specific fuzzy 

parameter K t
 for FMM. This requires forecasting the future values of K ( , )t t tk  , which 

is accomplished through fitting the six Bayesian time series models discussed in Section 

4.3 and choosing the one with the highest posterior probability. The prior distributions of 

the model parameters are based on a data-driven approach. The constants 
jc  are assumed 

to follow a normal prior distribution N(0, 1002), which display non-informative 

characteristics. The prior distributions for the autoregressive parameters 
j  and the moving 

average parameters 
j  are also normal, but more informative, following N(0.5, 12). Similar 

to Wiśniowski et al. [17], the precision parameters 1/
2

j  are assumed to follow a Gamma 

distribution with scale parameter 0.5 and shape parameter 0.5, reflecting a low precision of 

estimation.  

The ultimate models selected to forecast female mortality rates are ARMA (1,1) model for 

future tk  values and random walk without drift model for future t  values. For male 

mortality rates, similarly, random walk without drift model is selected to forecast future t , 

but random walk with drift model is chosen for estimating future tk  values. Using these 

models and the age-specific parameters computed in modeling part, future mortality rates 

for females and males are forecasted for 2000-2004, 2005-2009, …, 2020-2024 periods. 

Similarly BMM is also applied on the same datasets for comparison purposes. 

As observed in Figure 5.9, the actual female mortality rates for 2000-2004, 2005-2009 and 

2010-2014 are almost at the edge of the right tail of α=0.05-cut fuzzy interval while the 95 

percent Bayesian interval fails to cover the actual mortality rates. However, the forecast 

intervals of both FMM and BMM capture the actual male mortality rates for the three 

quinquenal time periods between 2000 and 2014 as illustrated in Figure 5.10. 
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Figure 5.9. Mortality forecasts for age group [20,25), females 

 

 

 

Figure 5.10. Mortality forecasts for age group [20,25), males 
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Table 5.6. Forecast analysis of actual and forecasted mortality values for 2000-2014 period 

 

Demographic 

Indicator Sex 

MAPE between 

actual values and 

forecasts 

Percentage of actual values covered 

within the forecast intervals 

BMM  FMM   

95% Bayesian 

prediction interval 

α=0.05-cut fuzzy 

interval 

Mortality 
Female 21.08 14.15 90.47 93.65 

Male 24.85 14.91 90.47 93.65 

 

When all of the twenty one age groups are considered, the ex-post analyses of comparisons 

between actual and forecast values for 2000-2014 period are in favor of FMM method for 

both females and males as depicted in Table 5.6. In Table 5.6, MAPE between actual 

mortality rates and median forecasts and center values obtained via BMM and FMM are 

provided in addition to the percentage of actual mortality rates covered within the α=0.05-

cut fuzzy intervals and the 95 percent Bayesian intervals. The MAPE between actual 

mortality rates and median forecasts of BMM are approximately 21 percent for females 

and 25 percent for males while the MAPE between actual mortality rates and center values 

of FMM are approximately 14 percent for females and 15 percent for males. That is to say, 

FMM is more accurate in generating point forecasts compared to BMM. 

 

Table 5.7. Mortality forecast interval comparisons for the BMM and the FMM 

 

Demographic 

Indicator Sex 

Average prediction 

interval width (in rates) 

BMM 95% prediction 

interval vs FMM α=0.05 cut 

fuzzy interval BMM FMM 

Mortality 
Female 0.018 0.013 BMM interval is 41.58% wider  

Male 0.031 0.022 BMM interval is 41.67% wider 

 

Another important information given in Table 5.6 is that the percentage of actual mortality 

rates covered within the α=0.05-cut fuzzy intervals are almost 94 percent for both sexes 

while approximately 90 percent of the observed mortality rates for 2000-2014 period are 

covered within the 95 percent Bayesian prediction interval. Table 5.7 provides deeper 

insight to comparison of forecast intervals obtained via FMM and BMM in which it is seen 

that the Bayesian prediction intervals are approximately 42 percent wider than the fuzzy 
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forecast intervals for both sexes. That is to say, it can be concluded that the proposed FMM 

cover more amount of actual mortality rates within significantly narrower forecast 

intervals. Thus, the proposed FMM is superior to the existing BMM in forecasting age-

specific mortality rates in terms of both point forecasts and forecast interval comparisons.  

5.2. FERTILITY RESULTS 

5.2.1. Fertility Data 

Finnish fertility data to be used in this study are retrieved from “Human Fertility Database” 

at www.humanfertility.org. The dataset consists of fertility rates for 15 quinquenal time 

periods of 1940-1944 to 2010-2014 for nine age groups of below 15, [15-20), [20, 25), …, 

[50, 55) making a total of 135 data points. The corresponding dataset is for females as they 

are accepted as the fertile gender in human demography. Similar to the datasets used in 

mortality modeling, fertility rates are also aggregated into time and age groups to provide 

dimensionality reduction and smoothness.  

 

 

Figure 5.11. Observed fertility rates 
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Figure 5.12. Observed ln-fertility rates 

 

The fertility profiles of Finland throughout time are displayed in Figure 5.11. The year axis 

in Figure 5.11 corresponds to the first year in each five-year time period, and likewise, in 

age group axis, the starting age of a quinquenal group is provided. 

As displayed in Figure 5.11 fertility rates are almost zero below the age 15, then increase 

significantly and reach their maximum at age groups [20,25) and [25,30) and decrease to 

zero again by the age 55. The fertility rates are relatively high at the starting time period 

1940-1944 and diminish until 1970s. Starting by 1970s, fertility rates slightly increase and 

after 1990s display a more stable profile. 

Although the shape of the fertility age profile is completely different than that of mortality, 

the unimodal structure in the shape of fertility profiles is preserved throughout time, 

enabling the proposed FMM to be applied in Finnish fertility data. The natural logarithms 

of observed fertility rates (ln-fertility rates) are depicted in Figure 5.12. Similar to the 

natural logarithmic transformation of mortality rates, natural logarithmic transformation of 

fertility rates smoothes the observed values, making it possible to obtain accurate fits via 

singular value decomposition based methods such as FMM.   
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The proposed FMM is applied on fertility data of Finland for 1940-1999 time periods, that 

is, the data used for modeling consists of 12 quinquenal time periods and nine groups. 

Using the model outputs, future mortality rates are forecasted for 2000-2004, 2005-2009, 

…, 2020-2024 periods and the forecasting performance of FMM on fertility dataset is 

examined by ex-post analysis for 2000-2004, 2005-2009, 2010-2014 periods. The 

modeling and forecasting performances of the proposed FMM are also compared with the 

Wiśniowski et al.’s BMM. Here, different than mortality modeling, the proposed FMM is 

not compared with Koissi and Shapiro’s fuzzy method KSM, since KSM is only applicable 

for mortality modeling in which the rates follow almost linear trends. 

5.2.2. Fertility Modeling Results 

The observed fertility rates for the nine age groups of below 15, [15-20), [20, 25), …, [50, 

55) for 12 quinquenal time-periods of 1940-1944 to 1995-1999, making a total of 108 

observations, are fitted via FMM. The validity of FMM in generating realistic fuzzy 

estimates is analyzed via fuzzy paired t-tests as discussed in Section 5.1.1.  Here, the 

equality of fuzzy estimates obtained via only the level-I of the proposed method and the 

fuzzified actual fertility rates is tested through paired fuzzy sample differences tests, in 

which the null and the alternative hypothesis are constructed as: 

H0: The fuzzified actual fertility rates and the fuzzy estimates obtained via Level-I 

of FMM are equal. 

H1: The fuzzified and estimated values be considered as the same.  

The null hypothesis is tested at a significance level of 0.05 for all α-cuts of the mean fuzzy 

differences. The results are displayed in Table 5.8, in which tL and tU values of only five 

different α-cuts are given due to space limitations. For two samples to be considered as 

equal, tL and tU values should be in the interval [-1.982, 1.982], specified by the 

corresponding t values for 0.05 significance level and 107 degrees of freedom. The test 

results indicate that using only general country profiles (refers to level-I) in the method 

provide equality of the estimates and the actual fuzzy values in modeling fertility rates. 

Thus, it is decided to use only one level in FMM for fertility modeling and forecasting 

similar to the mortality case.  
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Table 5.8. Results of paired fuzzy sample differences tests for the equality of actual 

fertility values and FMM estimates 

 

Demographic 

Indicator Sex t 

α  

Decision α=0 α=0.2 α=0.4 α=0.6 α=0.8 α=1 

Fertility Female 
tL 1.8*10-6 1.8*10-6 1.9*10-6 1.9*10-6 2*10-6 0.260 Cannot 

Reject H0 tU -1.7*10-6 -1.7*10-6 -1.7*10-6 -1.6*10-6 -1.5*10-6 0.260 

 

The fertility modeling performance of the proposed FMM is also compared with that of 

BMM for the 12 quinquenal time periods of 1940-1944 to 1995-1999. The results for the 

example age group [20,25) are displayed in Figure 5.13 as well the actual values. Figure 

5.13 provides the FMM results for only Level-I model as it is statistically found to 

represent the actual fertility rates. Therefore, in Figure 5.13, the center values and α=0.05-

cut fuzzy intervals generated via FMM with Level-I model are depicted in addition to the 

median fits and the 95 percent Bayesian prediction interval obtained via BMM.  

 

 

Figure 5.13. Fertility modeling estimates for age group [20,25), using 1940-1999 data: 

FMM versus BMM 
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As observed in Figure 5.13, BMM seems to fail in generating accurate fits to the actual 

fertility rates for [20,25) age group since the actual rates are not covered within the 

generated 95% Bayesian prediction interval. However, the center values obtained via 

FMM are consistent with the actual fertility rates for age group [20,25). Furthermore, 

α=0.05-cut fuzzy intervals cover all actual fertility rates. The age group [20,25) 

corresponds to young adults in which the fertility rates reach their peak level. Thus, it can 

be claimed that FMM is capable of capturing the unimodal shape of the fertility age 

profiles while BMM fails to accomplish this task for Finland fertility dataset.  

 

Table 5.9. MAPE between actual and fitted fertility values for 1940-1999 period obtained 

via BMM and FMM 

 

Demographic Indicator Sex 

MAPE (%) between actual and fitted values  

BMM FMM  

Fertility Female 32.25 20.67 

 

The fertility modeling performance of the two methods in generating accurate point fits to 

the observed rates are also compared in Table 5.9. In Table 5.9, the MAPE between the 

actual fertility rates and median fits obtained via BMM and the MAPE between actual 

fertility rates and the centers values computed via FMM are provided considering all of the 

nine age groups. Compared to mortality modeling, both BMM and FMM seem to generate 

more fitting errors in fertility modeling, but FMM performs still better than BMM.  

5.2.3. Fertility Forecasting Results 

After computing the age-specific fuzzy parameters A x  and Bx
 and the time-specific fuzzy 

parameter K t
 via FMM with Level-I model, the future values of K ( , )t t tk   are 

forecasted so that the future fertility rates can be predicted.  The six Bayesian time series 

models discussed in Section 4.3 are fitted separately on parameters tk  and t  computed in 

modeling part, and the model with the highest posterior probability is selected for each 

parameter. The prior distributions of the model parameters are based on a data-driven 

approach as in mortality forecasting. The constants 
jc  are assumed to follow a normal 
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prior distribution N(0, 1002), which display non-informative characteristics. The prior 

distributions for the autoregressive parameters 
j  and the moving average parameters 

j  

are also normal, but more informative, following N(0.5, 12). Similar to Wiśniowski et al. 

[17], the precision parameters 1/
2

j  are assumed to follow a Gamma distribution with 

scale parameter 0.5 and shape parameter 0.5, reflecting a low precision of estimation.  

The ultimate models selected to forecast fertility rates are ARMA (1,1) model for future tk  

values and random walk without drift model for future t  values which are also the models 

used for female mortality forecasting. Using these models and the age-specific parameters 

computed in modeling part, future fertility rates for females and males are forecasted for 

2000-2004, 2005-2009, …, 2020-2024 periods. Similarly BMM is also applied on the same 

datasets for comparison purposes. 

 

 

Figure 5.14. Fertility forecasts for age group [20,25) 

 

The fertility forecasts obtained via FMM and BMM for the five quinquenal time periods of 

2000-2004 to 2020- 2024 are illustrated for the example age group [20,25) in Figure 5.14. 

The forecasts obtained via FMM are displayed through the center values and α=0.05-cut 

fuzzy intervals while the forecasts generated via BMM are represented through median 
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forecasts and 95 percent Bayesian prediction intervals. In Figure 5.14, median fits of BMM 

display an almost constant trend within the forecast horizon, while the center values of 

FMM forecasts are decreasing in a similar fashion to the actual fertility rates for age group 

[20,25). Although the forecast intervals of the two methods cover the actual fertility rates, 

95 percent Bayesian prediction interval of BMM is significantly wider than α=0.05-cut 

fuzzy interval. 

When all of the nine age groups are considered, the ex-post analyses of comparisons 

between actual and forecasted fertility rates for 2000-2014 period given in Table 5.10 and 

Table 5.11. In Table 5.10, MAPE between actual fertility rates and median forecasts of 

BMM and MAPE between actual fertility rates center forecasts of FMM are provided in 

addition to the percentage of actual fertility rates covered within the α=0.05-cut fuzzy 

intervals and the 95 percent Bayesian intervals. The MAPE between actual fertility rates 

and median forecasts of BMM are approximately 28 percent, while the MAPE between 

actual fertility rates and center values of FMM are approximately 26 percent. That is to 

say, FMM is slightly more accurate in generating point forecasts compared to BMM.  

 

Table 5.10. Forecast analysis of actual and forecasted fertility values for 2000-2014 period 

 

Demographic 

Indicator Sex 

MAPE between 

actual values and 

forecasts 

Percentage of actual values covered 

within the forecast intervals 

BMM  FMM   

95% Bayesian 

prediction 

interval 

α=0.05-cut fuzzy 

interval 

Fertility Female 27.81 25.57 96.29 88.89 

 

Table 5.11. Fertility forecast interval comparisons for the BMM and the FMM 

 

Demographic 

Indicator Sex 

Average prediction interval 

width (in rates) 

BMM 95% prediction 

interval vs FMM α=0.05 cut 

fuzzy interval BMM FMM 

Fertility Female 0.062 0.021 

BMM interval is 192.3% 

wider  
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When all of the nine age groups are considered, the ex-post analyses of comparisons 

between actual and forecasted fertility rates for 2000-2014 period given in Table 5.10 and 

Table 5.11. In Table 5.10, MAPE between actual fertility rates and median forecasts of 

BMM and MAPE between actual fertility rates center forecasts of FMM are provided in 

addition to the percentage of actual fertility rates covered within the α=0.05-cut fuzzy 

intervals and the 95 percent Bayesian intervals. The MAPE between actual fertility rates 

and median forecasts of BMM are approximately 28 percent, while the MAPE between 

actual fertility rates and center values of FMM are approximately 26 percent. That is to 

say, FMM is slightly more accurate in generating point forecasts compared to BMM.  

As displayed in Table 5.10, the percentage of actual fertility rates for 2000-2014 period 

covered within the α=0.05-cut fuzzy intervals are almost 89 percent while approximately 

96 percent of the observed mortality rates are covered within the 95 percent Bayesian 

prediction interval. Although BMM covers more actual data within its forecast intervals, 

the widths of the 95 percent Bayesian prediction intervals are significantly larger than that 

of the α=0.05-cut fuzzy intervals, which can be observed in Table 5.11. The forecast 

interval of BMM is 192.3 percent wider than the forecast interval of FMM, which displays 

a tradeoff between the amount of the covered observed data and widths of the forecast 

intervals. 

5.3. MIGRATION RESULTS 

5.3.1. Migration Data 

The proposed FMM is applied to the age-specific emigration and immigration counts of 

Finland for each sex separately. Although Finland displays stable migration profile for 

some specific periods, the migration patterns also fluctuates in certain time intervals such 

as in years around the collapse of Soviet Union and expansion of the European Union 

(EU); but the country did not witness mass emigration or immigration due to global 

financial crisis of 2008 when compared to some other EU countries. Finland migration data 

are accessible from the Official Statistics of Finland. Finnish population statistics are based 

on the Population Information System maintained by the Population Register Centre and 

includes immigration and emigration counts in total and for each sex separately. The 
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annual data are available as quinquenal (five-year) age groups from 1990 to 2016 (at the 

time of accession). In addition, both population and migration data of Finland are among 

the most reliable ones due to its high developed registration and data recording systems.  

The observed emigration counts are displayed in Figure 5.15 and Figure 5.16 for females 

and males respectively. Moreover, the observed immigration counts for females and males 

are illustrated in Figure 5.17 and Figure 5.18 respectively. The datasets of annual age-

specific immigration and emigration counts for females and males are composed of 16 

quinquenal age groups including ages [0,5), [5,10), …, [70,75] and 75 and over, making 

432 data points in each set. The number of emigrants from Finland is smaller than the 

number of immigrants to the country in each year for 1990-2016 period, and it is observed 

that age groups between [20,35) constitute the main migrants. Number of migrants are also 

relatively high for age groups [0,5), [5,10), and [35,40) when compared to the remaining 

age groups. 

 

 

Figure 5.15. Observed emigration counts, females 
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Figure 5.16. Observed emigration counts, males 

 

 

 

Figure 5.17. Observed immigration counts, females 
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Figure 5.18. Observed immigration counts, males 

 

Unlike mortality and fertility curves, immigration and emigration curves have bimodular 

structures with two peak levels young children and young adults. This bimodular shape is 

preserved throughout time with an increase in the level of both immigration and emigration 

as observed in Figure 5.15 to Figure 5.18.  

The observed data are smoothed via natural logarithmic transformation to enable the 

application of proposed FMM on migration modeling and forecasting. The natural 

logarithms of emigration counts (ln-emigration count) for females and males are displayed 

in Figure 5.19 and Figure 5.20; while the natural logarithms of immigration counts (ln-

immigration count) for females and males are illustrated in Figure 5.21 and Figure 5.22. 

Despite the observed regular structure of emigration and immigration counts in Figure 5.19 

to Figure 5.22, the proposed FMM with a single level model may not be adequate to 

represent the bimodular shape of the migration curves, thus, the proposed method is 

enhanced via addition of a bi-level structure for migration modeling and forecasting. 
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Figure 5.19. Observed ln-emigration counts, females 

 

 

 

Figure 5.20. Observed ln-emigration counts, males 
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Figure 5.21. Observed ln-immigration counts, females 

 

 

 

Figure 5.22. Observed ln-immigration counts, males 

 

Although the data sets are considered to be of high quality, there are still some problems 

regarding the completeness of migration data due to unregistered/illegal migration. Such 
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kind of under-registrations result in the fact that the exact values of migration can be rarely 

known; therefore, emigration and immigration counts are expressed as fuzzy numbers 

rather than their classical crisp representation.  

The proposed FMM is applied on emigration and immigration counts for two sexes 

separately for 1990-2010 data (336 data points for each set). The fuzzy model estimates 

obtained by FMM are used in Bayesian time series analysis to forecast 2011-2025 

migration values. Furthermore, Bayesian migration modeling and forecasting method of 

Wiśniowski et al. (2015) is also implemented on the same data for comparison purposes. 

5.3.2. Migration Modeling Results 

The two levels of FMM, level-I (general country factor) and level-II (age group cluster 

factor) are compared in terms of the mean absolute percentage errors (MAPE) between the 

observed migration values and the center values of the fuzzy estimates for 1990-2010 

period. The MAPE values obtained in modeling emigration and immigration for females 

and males through the two levels of FMM are displayed in Table 5.12, in which results of 

different dissimilarity proportions (p) for Level-II are given.  

 

Table 5.12. MAPE between actual and fitted migration values for 1990-2010 period 

obtained via different dissimilarity proportions (p) in Level II of FMM method 

 

Migration Type Sex 

MAPE (%) between actual and fitted values for 1990-2010 period  

p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p=1 

Emigration 
Female 5.59 5.59 5.79 6.31 6.32 6.56 6.56 7.39 7.39 8.57 

Male 6.21 6.21 6.38 7.18 7.83 8.02 8.02 8.02 8.02 9.16 

Immigration 
Female 3.97 3.97 4.21 4.42 4.92 4.95 4.72 4.72 5.60 8.81 

Male 4.19 4.19 4.50 4.61 5.82 6.48 6.48 6.48 6.48 10.45 

 

The results in Table 5.12 indicate that FMM generates minimum absolute errors when the 

dissimilarity proportion p is set to be 0.1 or 0.2; and the amount of fitting errors increase as 

p increases. Further analyses reveal that the first time when MAPE starts to increase is 

observed if dissimilarity proportion exceeds 0.2157 for male emigration data set. Thus, the 

optimum dissimilarity proportion p* is set to be 0.2157; meaning that error becomes 
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minimum if the dissimilarity between age groups within a cluster does not exceed 21.57 

percent. 

The validity of FMM in generating realistic fuzzy estimates are analyzed via fuzzy paired 

t-tests. Here, two paired fuzzy sample differences tests are performed for each data set. The 

first test is conducted to check the equality of fuzzy estimates in level-I of FMM and the 

fuzzified actual migration values; and the second test is performed to analyze the equality 

of fuzzy estimates of bi-level FMM (level-I plus level-II) and the fuzzified actual 

migration values. The null and the alternative hypothesis are constructed as: 

H0: The fuzzified actual migration counts and the fuzzy estimates obtained via 

FMM are equal. 

H1: The fuzzified and estimated values cannot be considered as the same.  

 

Table 5.13. Results of paired fuzzy sample differences tests for the equality of actual 

migration values and FMM estimates 

 

Migration 

Type Sex Model t 

α  

Decision α=0 α=0.2 α=0.4 α=0.6 α=0.8 α=1 

Emigration 

Female 

Level I 
tL -1.804 -2.082 -2.531 -3.368 -5.371 -10.05 

Reject H0 
tU -0.582 -0.890 -1.401 -2.403 -5.018 -10.05 

Level I+II 

(p=0.21) 

tL -0.039 -0.032 -0.024 -0.016 -0.008 0 Cannot 

Reject H0 tU 0.039 0.031 0.024 0.016 0.008 0 

Male 

Level I 
tL -2.299 -2.577 -3.030 -3.898 -6.168 -14.66 

Reject H0 
tU -0.038 -0.341 -0.848 -1.863 -4.800 -14.66 

Level I+II 

(p=0.21) 

tL -0.744 -0.603 -0.457 -0.307 -0.154 0 Cannot 

Reject H0 tU 0.735 0.597 0.454 0.305 0.153 0 

Immigration 

Female 

Level I 
tL -0.712 -0.741 -0.790 -0.880 -1.091 -1.297 Cannot 

Reject H0 tU 0.452 0.417 0.360 0.246 -0.076 -1.297 

Level I+II 

(p=0.21) 

tL -0.033 -0.027 -0.020 -0.013 -0.006 0 Cannot 

Reject H0 tU 0.033 0.027 0.020 0.013 0.006 0 

Male 

Level I 
tL -0.029 -0.030 -0.031 -0.032 -0.037 -1.627 Cannot 

Reject H0 tU 0.026 0.025 0.024 0.022 0.017 -1.627 

Level I+II 

(p=0.21) 

tL 0.126 0.101 0.076 0.051 0.025 0 Cannot 

Reject H0 tU -0.127 -0.102 -0.076 -0.051 -0.026 0 
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For each migration type and sex, the null hypothesis is tested at a significance level of 0.05 

for eleven selected α-cuts (0, 0.1, 0.2, …, 1) of the mean fuzzy differences. However, only 

six are demonstrated in Table 5.13 due to space limitations. In Table 5.13, results for Level 

II refer to outcomes obtained by using dissimilarity proportion p*=0.2157. For two 

samples to be considered as equal, tL and tU values should be in the interval [-1.967, 1.967], 

specified by the corresponding t values for 0.05 significance level and 335 degrees of 

freedom. The test results indicate that using general country factors only (refers to level-I) 

is not sufficient to accept the equality of the estimates and the actual values. However, with 

addition of age group cluster factors (level-II) into the FMM, H0 cannot be rejected in both 

emigration and immigration modeling, which means that the estimates and actual values 

can be accepted as same.  

 

Table 5.14. MAPE between actual and fitted migration values for 1990-2010 period 

obtained via BMM and FMM 

 

Migration Type Sex 

MAPE (%) between actual and fitted values  

BMM Method 

FMM Method 

Level I Level I+II 

Emigration 
Female 8.92 8.90 5.59 

Male 9.91 9.80 6.21 

Immigration 
Female 8.98 9.38 3.97 

Male 11.21 10.97 4.19 

 

Table 5.14 depicts the comparison of BMM and FMM in terms of fitting capabilities for 

1990-2010 migration data. The MAPE between the actual values and the centers of the 

estimated fuzzy migration values obtained via level-I and bi-level FMM (dissimilarity 

proportion p* = 0.2157 is taken for Level II estimates) are displayed separately to illustrate 

the enhancements achieved by adding cluster factor to the general country factor. Except 

for the female emigration data set, Level I produces slightly smaller fitting errors than 

BMM. However, the addition of a second level, the age group cluster factor, into FMM 

improves the fitting capability of the proposed method between 37.19 percent (MAPE 

reduces from 8.90 percent to 5.59 percent in modeling female emigration counts) and 

61.80 percent (MAPE reduces from 10.97 percent to 4.19 percent in modeling male 

immigration counts). When BMM and the bi-level FMM are compared, the decrease in 



94 

 

 
 

MAPE is in between 37.33 percent (from 8.92 percent to 5.59 percent for female 

emigration counts) and 62.62 percent (from 11.21 percent to 4.19 percent for male 

immigration counts). Considering the results of paired fuzzy sample differences tests in 

Table 5.13 and errors illustrated in Table 5.14, it can be asserted that the inclusion of age 

group cluster factor into the model enhances the performance of FMM in capturing the 

actual data. 

To provide a better insight, emigration modeling outputs for age group [20,25) of females 

are selected for illustration purposes. This age group corresponds to young adults that 

display high mobility characteristics; and the enhancements achieved through bi-level 

FMM are minimum at emigration modeling for females. These constitute the main reasons 

for analyzing the emigration modeling outputs for females of age group [20,25). Figure 

5.23 and Figure 5.24 display the center values and α=0.05-cut fuzzy intervals obtained 

through Level I and the bi-level FMM. In both figures, the median estimates and 95 

percent prediction interval of BMM as well as the actual emigration counts are also 

depicted.  

 

 

Figure 5.23. Emigration modeling estimates for age group [20,25), females, using 1990-

2010 data: FMM with Level I versus BMM 
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Figure 5.24. Emigration modeling estimates for age group [20,25), females, using 1990-

2010 data: bi-level FMM versus BMM 

 

As it is clear from these two figures, the center values obtained from the bi-level FMM 

generates better fits to the actual values when compared to BMM and Level-I of the FMM. 

This observation illustrates the enhancement in fitting capabilities achieved by the addition 

of Level-II outputs to the Level-I outputs. That is, the consideration of age group cluster 

factors in addition to the general country factors yields estimates that can mimic the 

nonlinear and fluctuating migration patterns. The emigration modeling outputs for males 

and immigration modeling outputs for both sexes for the example age group [20,25) are 

provided in Appendix D. 

For this age group, for some observations, 95 percent prediction intervals of the BMM are 

unable to cover 1/3 of the actual migration values, which is a major drawback for the 

Bayesian approach in estimating the past data. In overall, 95 percent prediction intervals of 

the BMM do not cover 34.92 percent of the actual emigration and immigration counts for 

1990-2010 period. In contrast, 99.27 percent of actual migration values are included within 

α=0.05-cut fuzzy intervals for both level-I and bi-level FMM for the same period. 

Therefore, the bi-level FMM is superior to BMM in generating better fits covering the 

actual migration values within the obtained fuzzy intervals. The inclusion of age group 
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cluster factors enlarges the fuzzy interval in small amounts thanks to the WT  based 

addition embedded in FMM.  

5.3.3. Migration Forecasting Results 

Using the fuzzy parameters obtained by applying FMM on 1990-2010 data, the future 

migration values for 2011-2025 period are forecasted using the Bayesian time series 

models discussed in Section 4.3.3. The six models, M1,…,M6, given in Equ. (4.24) to Equ. 

(4.29) are applied on the estimates of time-variant parameters tk  and t  in general country 

factor. The six models are also applied for age group cluster factors on parameter 
,i tr  of 

class Ci i=1,…,8. Here, no operation is performed to forecast future 
,i t  values because all 

,i t  values for 1990-2010 period are estimated as zero according to MATLAB outputs. 

The prior distributions of the model parameters are based on a data-driven approach and 

they are conforming to the existing literature. The constants 
jc  are assumed to follow a 

normal prior distribution N(0, 1002), which display non-informative characteristics. The 

prior distributions for the autoregressive parameters 
j  and the moving average parameters 

j  are also normal, but more informative, following N(0.5, 12). Similar to Wiśniowski et 

al. [17], the precision parameters 1/ 2

j  are assumed to follow a Gamma distribution with 

scale parameter 0.5 and shape parameter 0.5, reflecting a low precision of estimation. The 

ultimate models to represent the future values are selected based on the posterior 

probabilities. The selected models are displayed in Table 5.15. 

 

Table 5.15. The models used in forecasting future kt, δt, and ri,t values. 

 

Migration Type Sex 

Level I Level II (ri,t) 

kt δt C1 C2 C3 C4 C5 C6 C7 C8 

Emigration Female M1 M2 M6 M2 M2 M5 M5 M2 M4 M5 

 Male M1 M2 M6 M5 M5 M5 M5 M5 M5 M4 

Immigration Female M1 M2 M4 M2 M4 M4 M5 M5 M5 M4 

 Male M1 M2 M6 M5 M4 M4 M2 M2 M4 M4 
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Ci in Table 5.15 refers to the ith class obtained in Level-II of the FMM for dissimilarity 

proportion p* = 0.2157, i = 1,…,8. As illustrated in Table 5.15, linear trend models (M1) 

are fitted to tk  and random walk models (M2) are utilized for t  based on posterior odds 

criterion. Forecasting class-and-time variant parameter 
,i tr  requires more complex models 

like AR(1) (M4), MA(1) (M5), and ARMA(1,1) (M6) as well as the simple random walk 

model.  

Forecasts obtained from the bi-level FMM are compared to the forecasts obtained via 

BMM, and the results for female emigrants of age group [20,25) are displayed for 

exemplary purposes in Figure 5.25. This figure depicts the actual migration values for 

2000-2016 period, median forecasts of BMM together with their 95 percent prediction 

interval; and center forecasts of the bi-level FMM with associated α=0.05-cut fuzzy 

prediction intervals. The fuzzy prediction intervals are computed based on median 

forecasts for the spread values, and because α=0.05-cuts are employed, they are 

comparable with the 95 percent Bayesian prediction intervals of the BMM. The emigration 

forecasting outputs for males and immigration forecasting outputs for both sexes for the 

example age group [20,25) are provided in Appendix D. 

 

 

Figure 5.25. Emigration forecasts for age group [20,25), females 
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For age group [20,25), α=0.05-cut fuzzy prediction interval of the bi-level FMM is 42.21 

percent narrower than 95 percent prediction interval for the BMM forecasts on average, but 

it still includes the actual migration values for 2011-2016 period. The Bayesian prediction 

interval expands significantly by time, even resulting in over-predictions for emigration 

counts larger than 4000 for 2025. Such kinds of expansions are witnessed as the forecast 

horizon enlarges, thus, only fifteen years ahead forecasts are provided within this study.  

The available migration data for 2011-2016 period make forecast analysis possible to be 

performed. These analyses are summarized in Table 5.16, in which MAPE between actual 

and forecasted emigration and immigration values are given for BMM and FMM. The 

performances of the BMM and the bi-level FMM do not display significant differences in 

terms of the fitting error magnitudes. Both methods generate slightly smaller fitting errors 

in forecasting immigration counts when compared to emigration counts. The results of two 

methods are also compared in terms of percentage of actual values covered within the 

forecast intervals. When all observations are considered, 95 percent prediction intervals of 

the BMM cover approximately 89 percent to 94 percent of the actual data. Similarly, 

α=0.05-cut fuzzy intervals of the FMM include approximately 88 percent to 91 percent of 

the actual emigration and immigration counts for 2011-2016 period. This reveals the fact 

that both methods yield almost similar forecasts in general. 

 

Table 5.16. Forecast analysis between actual and forecasted migration values for 2011-

2016 period 

 

Migration 

Type Sex 

MAPE between actual 

values and forecasts 

Percentage of actual values covered 

within the forecast intervals 

BMM  Bi-level FMM   

95% Bayesian 

prediction 

interval 

α=0.05-cut fuzzy 

interval 

Emigration 

Female 15.56 15.71 89.58 89.58 

Male 14.29 14.45 92.70 87.50 

Immigration 

Female 12.40 11.90 92.71 88.54 

Male 12.36 13.03 93.75 90.63 

 

Table 5.17. Prediction and fuzzy interval comparisons for the BMM and the FMM 
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Migration 

Type Sex 

Average prediction interval 

width (in counts) 

BMM 95% prediction 

interval vs FMM α=0.05 cut 

fuzzy interval BMM Bi-level FMM 

Emigration 

Female 390.92 275.97 BMM interval is 41.65% wider  

Male 437.41 224.31 BMM interval is 95.00% wider 

Immigration 

Female 772.58 491.24 BMM interval is 57.27% wider 

Male 872.78 645.88 BMM interval is 35.13% wider 

 

The two methods are also compared in terms of their forecast interval widths, which can 

represent the forecast information value. The comparisons are given in Table 5.17. The 

findings state that 95 percent prediction intervals generated via BMM are wider than 

α=0.05-cut fuzzy prediction intervals of FMM in both emigration and immigration 

forecasting. When the numerical outputs displayed in Table 5.16 are also taken into 

account, it is observed that the two methods cover almost the same amount of actual values 

for 2011-2016 period within their prediction intervals, yet FMM generates narrower 

prediction intervals. This observation forms the main advantage of the proposed bi-level 

fuzzy method over the existing Bayesian method since it is known that if the range is large, 

the forecast becomes uninformative [148]. 

5.3.4. Sensitivity Analysis 

These results are obtained when the prior distributions of model parameters in the BMM 

are taken to be the same as in Wiśniowski et al. [17]. However, Wiśniowski et al. apply 

their Bayesian method on LC model using the migration data for United Kingdom (UK); 

which displays different migration characteristics than Finland. Therefore, the assumption 

that prior distributions of model parameters for forecasting the UK migration values also 

hold for Finland may be misleading. The assigned variances for the model parameters are 

capable of representing migration values in the UK, which are reported to be great in 

numbers. Thus, using the same variances may lead to wide Bayesian prediction intervals 

for Finland.  

To check whether the variance magnitudes used in the UK case also holds for Finland, 

sensitivity analyses are performed on variance quantities in prior distributions of the LC 

model parameters embedded in BMM. For this task, a design of experiment consisting of 
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three different values for the related variances in prior distributions of the LC model 

parameters (ax, bx, and kt) and the drift term cj in Equ. (4.26) to Equ. (4.29) is conducted on 

each data set for Finland (making 81 experiments in total).  

 

Table 5.18. Summary of sensitivity analyses conducted on variance magnitudes of prior 

distributions used in the BMM 

 

Migration 

Type Sex 

The narrowest 95% Bayesian 

prediction interval obtained 

The widest 95% Bayesian 

prediction interval obtained 

% of 

actual 

values 

covered 

Average 

prediction 

interval 

width (in 

counts) 

Comparison 

with FMM 

α=0.05 cut 

fuzzy 

interval 

% of 

actual 

values 

covered 

Average 

prediction 

interval 

width 

Comparison 

with FMM 

α=0.05 cut 

fuzzy 

interval 

Emigration 
Female 89.21 385.91 

BMM 

interval is 

39.83% 

wider 92.70 418.89 

BMM 

interval is 

51.78% 

wider 

Male 86.45 429.92 

BMM 

interval is 

91.66% 

wider 93.75 487.30 

BMM 

interval is 

117.25% 

wider 

Immigration 
Female 90.63 771.01 

BMM 

interval is 

56.95% 

wider 95.83 997.93 

BMM 

interval is 

103.14% 

wider 

Male 88.54 870.91 

BMM 

interval is 

34.84% 

wider 95.83 1141.17 

BMM 

interval is 

77.09% 

wider 

 

The results indicate that 95 percent prediction intervals generated through BMM widens 

with the increase in variances for the migration index kt and the drift factor cj. Furthermore, 

the prediction interval width seems to be rather insensitive to variance magnitude changes 

for the age specific parameters ax and bx.  
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A summary of performed sensitivity analyses is displayed in Table 5.18. In this table, the 

percentage of actual values for 2011-2016 period covered within the narrowest and the 

widest 95 percent prediction intervals are provided. As it is seen from Table 5.18, FMM 

still performs better than the BMM with different prior model parameter variances in 

covering approximately same amount of actual migration values for 2011-2016 period 

within significantly narrower prediction intervals. Thus, altering the prior variance 

magnitudes does not lead to any significant performance changes in BMM for modeling 

Finland migration data. Sensitivity analyses are performed only on the variance terms of 

prior distributions because they are the main factor leading to the expansion of prediction 

intervals.  

5.4. POPULATION FORECASTS 

Once age-and-sex-specific mortality and fertility rates as well as emigration and 

immigration counts are modeled and forecasted, the population of Finland is estimated for 

years 1995, 2000, to 2025. Here, in each estimation year, 21 age groups of [0,5), [5,10), …, 

[90,…) are used. The estimation years and the age groups given are taken based on the 

common age groups and time periods used in modeling demographic indicators, and 

migration values for ages above 80 are assumed to be zero. The two methods, the proposed 

FMM and the existing BMM are compared in terms of their point forecast accuracy and 

interval widths.  

The population estimates are illustrated through population trees, in which the populations 

of each group are also available. Population estimates for 1995, 2010, and 2025 are 

selected as example years due to space limitations and they are displayed in Figure 5.26 to 

Figure 5.28 respectively. The first population tree in each figure displays the observed 

male and female population disaggregated by age groups as shaded rectangles, and the 

fuzzy forecast interval obtained via FMM as borders without shading. Similarly, the 

second population tree in each figure displays the observed male and female age-specific 

population as shaded rectangles, and the fuzzy forecast interval obtained via FMM as 

borders without shading. For Figure 5.28, since there are no observed values yet, the 

shaded regions denote the point forecasts. 
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The dramatic changes in observed levels of age-specific population can easily be seen from 

Figure 5.26 to 5.27 in which the number of old people and adults are increasing from 1995 

to 2010, while the number of children are decreasing. This reveals the fact that Finland is 

an ageing country, in which the percentage of young people follows a decreasing trend as 

in the rest of most of the developed countries. The difference between forecast intervals 

generated via FMM and BMM is mainly observed in age group [0,5) in 1995 and 2010, 

while the forecast intervals do not seem to differ much for the remaining age groups. This 

might be due to the large Bayesian prediction intervals of BMM computed for fertility 

forecasts. Furthermore, although the Bayesian prediction intervals of BMM are 

significantly wider than fuzzy forecast intervals of FMM in migration forecasting; they do 

not result in large intervals in population forecasts of especially young adult age groups 

since migration levels are low relative to the population levels. 

The point forecasts for 2025 generated via FMM maintain the ongoing ageing population 

trend with increase in fuzziness in all age groups especially for the young ages as observed 

from the fuzzy intervals displayed in Figure 5.28. The uncertainty associated with BMM 

forecasts are even larger than FMM forecasts as displayed through the 95 percent Bayesian 

prediction intervals in the left population tree of Figure 5.28.  

  
 

Figure 5.26. Observed versus forecasted population for Finland, 1995 
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Figure 5.27. Observed versus forecasted population for Finland, 2010 

 

  
 

Figure 5.28. Forecasted population for Finland, 2025 

5.4.1. Error Comparisons 

The MAPE between observed and forecasted population, average forecast widths and 

percentage of observed population values covered within the forecast intervals are given 

for BMM and FMM outputs in Table 5.19 and Table 5.20 respectively. For both methods, 

it is observed that average forecast width is larger for males. This may be the reason for the 
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percentage of observed population levels covered within the forecast intervals to be higher 

for males, which can be seen at the fourth and the last columns of Table 5.19 and 5.20.  

 

Table 5.19. Expost analysis for BMM population forecasts 

 

Year 

Female Male 

MAPE 

between 

actual & 

forecasted 

Population 

Average 

forecast 

interval 

width (in 

counts) 

% of actual 

values 

covered 

within the 

forecast 

interval 

MAPE 

between 

actual & 

forecasted 

Population 

Average 

forecast 

interval 

width (in 

counts) 

% of actual 

values 

covered 

within the 

forecast 

interval 

1995 3.84 12012.7 36.84 3.80 13071.0 89.47 

2000 3.48 11837.6 68.42 3.50 12998.4 68.42 

2005 3.29 13331.8 57.89 3.45 14762.4 84.21 

2010 2.57 15110.3 84.21 3.10 17076.4 100.00 

2015 4.79 31700.9 89.47 6.19 35889.7 100.00 

 

Table 5.20. Expost analysis for FMM population forecasts 

 

Year 

Female Male 

MAPE 

between 

actual & 

forecasted 

Population 

Average 

forecast 

interval 

width (in 

counts) 

% of actual 

values 

covered 

within the 

forecast 

interval 

MAPE 

between 

actual & 

forecasted 

Population 

Average 

forecast 

interval 

width (in 

counts) 

% of actual 

values 

covered 

within the 

forecast 

interval 

1995 2.15 6700.2 78.95 1.94 7852.0 94.73 

2000 1.76 5978.2 63.15 1.60 7155.7 100.00 

2005 2.54 5502.8 52.63 2.42 7050 94.73 

2010 2.33 5739.9 68.42 2.29 9694.4 89.47 

2015 4.51 11188.6 63.15 4.13 14.954.7 100.00 

 

Furthermore, for the two methods, the forecast interval widths for 2015 are larger than 

those of the other given years, which can be explained as the increase in uncertainty 

throughout the forecast horizon. Such increase in uncertainty is also observed in mortality, 

fertility, and migration forecasts as discussed in previous sections. Moreover, when Table 



105 

 

 
 

5.19 and Table 5.20 are compared, it is observed that FMM generates more accurate point 

forecasts than BMM. The fuzzy forecast intervals are narrower than Bayesian prediction 

intervals, yet they cover almost the same amount of actual population values for females 

and even more amount of actual values for males. This can be seen as a superiority of 

FMM over BMM. 

The observed total population and forecasted levels via BMM and FMM are provided in 

Table 5.21 together with their forecast intervals. The age structure of Finland population is 

not given in Table 5.21, but the provided information is still valuable since the change in 

the two method outputs and the actual population levels can be directly observed. Based on 

the observed population levels, Finland population increases slightly from 1995 to 2015 

reaching from 5.08 million to 5.47 million. This trend is closely captured by the point 

forecasts - the center forecast values – of FMM which increases from 5.11 million to 5.41 

million from 1995 to 2015. FMM point forecasts indicate a slight increase for 2020, in 

which the population will forecasted to be 5.48 million. Next, the Finnish population is 

forecasted to be 5.54 million based on FMM center estimates. The point forecasts 

generated via BMM seem to overestimate the observed population, which indicate that the 

population will increase from 5.23 million in 1995 to 6.06 million in 2025. If the forecast 

intervals are compared, it is seen that the Bayesian prediction intervals are a lot wider than 

the fuzzy forecast intervals. 

 

Table 5.21. Population forecasts via BMM and FMM 

 

Year 

Actual 

Total 

Population 

BMM FMM 

Point 

Forecast 

Bayesian 

prediction interval 

Point 

Forecast 

Fuzzy forecast 

interval 

1995 5098780 5235751 [5047829, 5524420] 5119687 [4995167, 5271658] 

2000 5171157 5311489 [5126861, 5598747] 5175003 [5062092, 5311639] 

2005 5236321 5360157 [5158718, 5692512] 5245599 [5137647, 5376152] 

2010 5350822 5443239 [5214515, 5826063] 5330637 [5214913, 5470165] 

2015 5471011 5646492 [5178231, 6462455] 5407940 [5185607, 5682331] 

2020 - 5854417 [5126565, 7188935] 5479298 [5152390, 5890614] 

2025 - 6062829 [5055876, 8033273] 5547305 [5112895, 6104774] 
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5.4.2. Age Distributions 

Another important demographic output obtained from a population forecast is the 

distribution of population within young-age-population (ages 14 and below), working-age-

population (between ages 15 and 64), and old-age-population (age 65 and over). The 

percentage distributions of the total population in these three age groups are summarized in 

Figure 5.29 for the example years 1995, 2010, and 2025. The first column in Figure 5.29 

depicts the percentage distribution of age groups for the observed population, whereas 

FMM and BMM outputs are illustrated in the second and third columns respectively based 

on the point forecasts. 

   

   
 

  
 

Figure 5.29. Distributions of the age group populations 
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The observed population levels indicate an increase in percentage of old-age-population 

and a decrease for the young-age-population within the total population, which supports 

the assertion that Finnish population is an ageing society. This ongoing trend is also 

observed within the FMM and BMM outputs. The FMM outputs suggest that the 

percentage of old-age-population within the total population will reach 25.6 percent in 

2025, while this value is forecasted to be 21.3 percent for BMM outputs. However, BMM 

outputs forecast a more stable percentage for the young-age-population surprisingly, which 

contradicts the observed values and FMM forecasts. 

 

 

Figure 5.30. Percentage changes in distribution of young-age-population 

 

 

 

Figure 5.31. Percentage changes in distribution of working-age-population 
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Figure 5.32. Percentage changes in distribution of old-age-population 

 

The changes in percentage distributions of age groups throughout the forecast horizon are 

also graphically illustrated. For this purpose, the changes in percentage of young-age 

population, working-age-population, and old-age-population are given in Figure 5.30, 

Figure 5.31 and Figure 5.32 respectively.  From these three figures, it is seen that the 

percentage distribution of age groups within total population obtained via FMM are 

consistent with the observed values, whilst there are some over/under-estimations for the 

BMM outputs as discussed previously. 
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6. DISCUSSION AND FUTURE PERSPECTIVES 

 

The numerical findings state that the proposed FMM performs better than BMM in 

modeling and forecasting the future demographic indicators of age-specific mortality, 

fertility, and migration and results in more accurate future population forecasts that are 

consistent with the observed population levels values accurately. The application outputs 

of the proposed FMM method on demographic indicators and future population are 

discussed in the following sub-sections as well as the further implications of the method 

for future research.  

6.1. ON RESULTS FOR DEMOGRAPHIC COMPONENTS 

The proposed FMM method is generating more accurate fits to the observed mortality rates 

than the existing fuzzy method KSM for both males and females. The main reason for this 

is the fact that KSM utilizes time t as the independent variable of the regression equation 

for the fuzzification of the observed mortality rates. However, this results in linearly 

increasing or decreasing center values and left and right tails for the fuzzified mortality 

rates. Instead, the proposed FMM makes use of an artificial independent variable named as 

fuzzification index, whose value is computed via SVD technique. The numerical finding in 

Section 5.1.2 displays that the assumption on capability of this fuzzification index to 

capture the fluctuations in mortality data turns out to be true.  

The bi-level structure embedded in FMM is assumed to enable the generation of realistic 

fits to the age-specific demographic indicators, and this assertion is supported through the 

numerical findings for migration modeling. For mortality and fertility modeling, the 

utilization of only Level-I, which corresponds to general country profile, turned out to be 

adequate as the outputs of paired fuzzy sample differences tests suggest. However, in both 

emigration and immigration modeling the addition of Level-II, which is the age cluster 

factor, improves the fitting capability of the proposed FMM method as it is illustrated via 

numerical findings in Section 5.3.  

As claimed in Raymer et al. [93], cohort patterns are missing in for migration unlike 

mortality and fertility. That is, the population born in a specific time period exhibit alike 
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behavior in terms of mortality and fertility patterns throughout time. However, such 

behavior is unlikely to be observed for the migration case, which may be one of the 

reasons why a single level model is inadequate to generate accurate fits for immigration 

and emigration. In fact, the underlying mathematical reason why a single level is adequate 

for mortality and fertility modeling while a bi-level structure is required for migration 

modeling can be explained through the ratio of the largest eigenvalues to the sum of all 

eigenvalues that are extracted in SVD for each demographic indicator. Table 6.1 displays 

the value of the largest eigenvalue, which is the square of the singular value used in the 

fuzzification of observed data in Level-I modeling phase and the ratio of this eigenvalue to 

the sum of all eigenvalues extracted for the data matrix for each demographic indicator. 

Actually, the ratio given in the last column corresponds to the ratio of variance in data 

explained via the largest eigenvalue, thus it displays to what extend using a single level 

captures the variations in data. 

 

Table 6.1. Summary of eigenvalues extracted via SVD in Level-I modeling phase 

 

Demographic 

indicator Sex 

Largest 

eigenvalue  

Ratio of the largest eigenvalue to 

the sum of all eigenvalues 

Mortality rates 
Female 90.09 0.958 

Male 78.91 0.913 

Fertility rates Female 60.63 0.903 

Emigration counts 

Female 4331907.75 0.831 

Male 3626535.70 0.824 

Immigration 

counts 

Female 13189792.94 0.867 

Male 21408472.75 0.870 

 

Actually, based on the paired fuzzy sample differences test results, Level-I is accepted as 

capable of modeling the observed mortality and fertility rates and immigration counts, 

whereas a bi-level structure is necessary for modeling emigration counts. The last column 

in Table 6.1 indicate that the percentages of variance in data explained through the largest 
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eigenvalue – or the largest singular value which is the square root of the largest eigenvalue 

– are over 86.7 percent for mortality, fertility and immigration datasets. However, this 

amount turns out to be relatively small for emigration count data (83.1% for females and 

82.4 percent for males). If 90 percent is selected as threshold value, then, it becomes clear 

why a bi-level structure is necessary for migration modeling. It is also worth mentioning 

that even for the emigration datasets, the variance explained via the largest eigenvalue can 

be considered as high, implying that the datasets have regular patterns for the age groups 

throughout time. 

As it is seen in the former section, the inclusion of age group cluster factor in addition to 

the general country profile enhances the modeling capabilities of the fuzzy method. 

However, this inclusion may result in expansions in fuzzy intervals as depicted in Figure 

5.23 and Figure 5.24, even though the utilization of WT  based addition and multiplication 

prevents the uniform accumulation of fuzziness. When the natural logarithms of migration 

values are transformed back into their usual values by taking their exponentials, the above 

mentioned issue may lead to over-predictions in the upper bounds of the fuzzy intervals. 

When compared to the existing BMM, the success of both FMM in modeling and 

forecasting the demographic indicators for Finland can be clearly seen in Section 5.1 to 

Section 5.3.  This is mainly due to minimum fuzziness criterion embedded in FMM which 

aims to cover the observed data within the possible smallest fuzzy interval. The numerical 

findings demonstrate that the Bayesian prediction intervals are significantly wider than the 

fuzzy forecast intervals, yet they cover less actual data. 

The superiority of FMM over BMM in both modeling and forecasting may be the 

consequence of integrating fuzzy modeling with Bayesian inference. The hybridization of 

fuzzy and Bayesian concepts enable the explanation of uncertainty through fuzziness and 

randomness, which seems to perform better than relating the uncertainty to only 

randomness as BMM does. 

6.2. ON POPULATION FORECASTS 

The population forecasts obtained via aggregating the fuzzy mortality, fertility and 

migration estimates of FMM indicate a slight increase in the current population levels of 
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Finland for the year 2025 which is consistent with the trend followed by the historic data. 

The existing BMM also results in an increase in the 2025 population levels; however, it 

seems to overforecast the possible values. This is mainly due to the more accurate point 

forecasts and narrower forecast intervals obtained via FMM for the demographic 

indicators. Thus, the population forecasts of FMM can be viewed as more informative 

compared to that of BMM. Furthermore, deterministic projections for 2025 points out a 

population of approximately 5.6 million for Finland [149]. This projection result supports 

the efficient performance of FMM, which generates a point forecast of approximately 5.5 

million for the year 2025 with a fuzzy interval ranging in between 5.1 million and 6.1 

million.  

The main uncertainties in the population forecasts are concentrated in the [0,5) age group 

for the year 1995 as observed in FMM outputs in Figure 5.26. However, as illustrated in 

Figure 5.28, the fuzzy intervals for the age groups [0,5) to [20,25) widens significantly. 

This can be explained as the relatively high fuzziness for the fertility rate forecasts, which 

results in uncertainties in the number of births. From 1995 to 2025, more uncertainty is 

added in number of newborns and these uncertainties are transferred to the next age groups 

in each five-year time interval.  

Another important insight that can be obtained from the population forecasts is that the 

Finnish population continues to get older. This may result in socioeconomic problems as 

more old-age-population implies more dependency on working-age-population. As well as 

this, the decrease in the percentage of young-age-population will lead to negative natural 

growth of population, that is, the population of Finland may not increase or be maintained 

in its current level without a significant amount of immigration to the country in the 

upcoming years. However, the numerical findings reveal that although number of 

immigrants exceeds the number of emigrants for Finland, the net migration levels are still 

low compared to other European countries. If this trend maintains in the upcoming years, a 

decrease in population growth for Finland may become inevitable. 
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6.3. FURTHER RESEARCH AREAS 

The forecasting scheme followed in this study is integrating the fuzzy modeling with a 

Bayesian approach, and the forecast accuracies are depending on the prior beliefs related to 

the distributions of model parameters. However, the MCMC algorithm used in estimations 

assumes a rather weak dependency to the past observations as the number of iterations in 

the simulation grows and the prior beliefs start to lose their impacts on the posterior 

distributions of the model parameters as the model converges. In addition to the prior 

beliefs driven by the data, judgments of a group of experts can also be elicited in 

determination of prior distributions for the model parameters in following studies.  

The ultimate model selection in forecasting future time-variant fuzzy parameters is based 

on posterior odds criterion, however, it is worth mentioning that there are several other 

selection approaches. The posterior odds criterion is assumed to be a data-driven technique 

and commonly used in migration forecasting. Among the model selection methods, 

deviance information criterion or inference pooling [143] may be alternative approaches.  

In a recent report by OECD [150], it is argued that quantitative analysis based on historic 

observations frequently ignores cannot reflect the impacts of unpredictable events which 

results in the necessity of combining such models with qualitative scenarios. As a matter of 

fact, although the general socio-economic profile of the country of concern and the 

response of age cohorts in migration behaviors are represented in FMM, the proposed 

FMM strictly relies on historic observations. The model does not include an explanatory 

variable standing for an extreme major event such as war, natural disaster, or an 

unpredictable economic depression which may influence migration behaviors of 

individuals directly. However, prediction of such sudden events is almost impossible or too 

complex and requires hybrid approaches that combine quantitative models with 

deterministic scenarios.  

To examine the impacts of such exogenous effects through fuzzy what-if scenarios, Equ. 

(4.11) is modified as: 

 
, , , ,

Y [A B K ] C E
W W W W

x t x x t i x t x tT T T T
        (6.1) 
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where 
,x tE  is the fuzzy age and time specific exogenous factor that represents the effect of 

extreme deviations from the historic trends of determinants of migration on age cohort 

behaviors. The inclusion of such exogenous variables to the model may provide insights in 

evaluating what-if scenarios. In this study, this exogenous factor is set to be zero, which 

corresponds to a scenario in which the deviations from the historic trends for determinants 

of migration are insignificantly small.  

Even with such efforts, the inherent uncertainty about future migration values cannot be 

decreased due to the multi-dimensional aspects in migration phenomenon. However, 

stating the level of uncertainty in future forecasts are vital in socioeconomic decision 

making regarding migration behaviors, thus it should not be ignored in modeling 

migration.  

As a future study, the impacts of this fuzzy exogenous factor in modeling and forecasting 

age-specific migration values can be analyzed through several scenarios for the near future. 

Moreover, a complete fuzzy population estimation method which models age-and-sex-

specific mortality, fertility and migration and forecasts the future values through fuzzy 

forecasting techniques instead of Bayesian inference can be developed. Such kind of a 

study would eliminate the statistical assumptions of Bayesian forecasting. FMM can also 

be modified by including the second and/or third singular values and their corresponding 

eigenvectors to diminish the discrepancies between the actual and the estimated migration 

values. However, inclusion of more singular values increases the number of fuzzy 

parameters in unconstrained nonlinear optimization model, which may result in 

inefficiencies in estimating these parameters.  

The proposed FMM involves some constraints to ensure model identifiability while 

computing the fuzzy parameters via SVD. Recently, there are several studies on the model 

identifiability issue as discussed in Mitchell et al. [29] and Beutner et al. [133]. The 

analysis of different model identifiability constraints or efforts to remove the dependency 

of the method on these constraints may be interesting research topics. 

The dimension reduction idea embedded in FMM, which corresponds to the representation 

of observed demographic indicators through their largest singular value and its associated 

eigenvectors can be extended to other disciplines. Here, demographic modeling of 
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mortality, fertility, and migration is implemented on the age-time structure of the data. The 

proposed FMM can be assumed to perform well on any kind of data expressed as two 

dimensions if the data display regularities for one of the dimensions over the other like the 

regularities in demographic rates of age groups over time. Such application areas may be 

energy consumptions by energy type over time, currency parities, and basic statistics 

expressed as space and time and etc.  

Last but not least, the computational performance of the proposed FMM may be compared 

for different software utilizations as a further research. In this study, the modeling of 

observed demographic indicators of mortality, fertility, and migration are accomplished 

through GAMS and MATLAB software; while the future values are forecasted using 

OpenBUGS software. The implementation of the FMM method in R, which is becoming 

popular for demographic analysis, may enable the comparison of the computational 

efficiencies of these softwares in population modeling and forecasting. 
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7. CONCLUSION 

 

In this study, a fuzzy bi-level method for modeling age-specific demographic indicators 

(FMM) is proposed. The demographic indicators to be modeled and forecasted are age-

specific mortality and fertility rates in addition to emigration and immigration counts. The 

proposed method extends the existing fuzzy mortality modeling method by incorporating 

two explanatory factors accompanied by implementation of singular value decomposition, 

fuzzy regression and unconstrained nonlinear optimization. The future migration values are 

forecasted using time series models based on a Bayesian approach. Moreover, the future 

population levels are forecasted through a fuzzy aggregation model in which the fuzzy 

forecasts for age-specific mortality, fertility and migration values are used. 

The demographic indicators are modeled through a fuzzy technique due to inconsistent 

demographic data associated with under/over recordings and data collection errors. Such 

issues result in ambiguities and vagueness in population modeling and forecasting. 

Therefore, the mortality, fertility, migration and population values are expressed as fuzzy 

numbers to include the inherent uncertainty within the data.  

The first level of FMM reflects the general characteristics of the country of concern; while 

the second level is dedicated to cluster impacts on age-group demographic behaviors. In 

the second level of FMM, age groups are clustered into classes such that the age groups in 

a single class possess similar demographic patterns through time; whereas distinct classes 

display diverse characteristics. This bi-level structure enables the model to capture the 

fluctuations and nonlinear patterns in demographic components.  

The proposed FMM is applied to Finland mortality, fertility, emigration, and immigration 

data. The mortality and fertility datasets that are used in modeling consist of rates for 

twelve five-year time periods of 1940-1944 to 1995-1999. Mortality rates are expressed for 

females and males while fertility rates are provided for only females. Emigration and 

immigration datasets include annual counts for 1990-2010 period for females and males 

separately. The numerical findings show that the FMM gives reasonable fits to the 

observed data by generating small errors. The mortality and fertility rates for the time 

periods of 2000-2004 to 2020-2024 and migration values for years 2011 to 2024 are 

forecasted via fitting time series models on time-variant parameters through Bayesian 
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approach. Modeling and forecasting results are compared with the outcomes of the existing 

Bayesian method of Wiśniowski et al. [17]. The numerical findings display that the 

proposed fuzzy method generates more accurate point forecasts than the Bayesian 

approach. In addition, the proposed FMM covers more actual observations within its fuzzy 

interval than the prediction interval of the Bayesian method. Similarly the population 

forecasts obtained via aggregating the mortality, fertility, and migration forecasts of FMM 

for the years 1995 to 2025 exhibit more consistent patterns to the actual population trends 

in terms both level and age distribution when compared to the BMM. The outcomes of this 

study has been published in a research article [151], a proceedings paper [152], and two 

book chapters [153,154]. 

The main contribution of this study is that it shows that fuzzy modeling can be an efficient 

approach in demographic analysis and population modeling and forecasting. Furthermore, 

the bi-level structure embedded in the proposed method makes it possible to capture the 

strong correlations among some age groups in exhibiting similar demographic patterns. 

This two stage model is necessary to capture the nonlinearities in demographic patterns, 

especially for migration. The fuzzy model outputs are combined with Bayesian inference 

for forecasting future demographic values and population, so that the inherent uncertainties 

are explained through both fuzziness and randomness.  
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APPENDIX A: GAMS CODE FOR SPREAD OPTIMIZATION 

 

GAMS code used in finding the spread values in fuzzification of observed mortality rates 

for age 0 for females is given in this section. This code is used for computing the spread 

values for mortality and fertility rates as well as emigration and immigration counts of the 

remaining age and sex groups by changing the input data (observed demographic values, 

center value parameters, fuzzification indices) and time indices. The code is as follows: 

Sets 

i coefficients  /1*2/ 

t time /1*17/ 

; 

Parameters 

y(t)    log-mortality rates 

/ 

1        -2.459426055 

2        -2.668185465 

3        -2.754026079 

4        -2.798883417 

5        -2.954436791 

6        -3.464424763 

7        -3.758186661 

8        -4.056124349 

9        -4.320743406 

10        -4.572896625 

11        -4.861095227 

12        -5.131786496 

13        -5.229911334 

14        -5.364457169 

15        -5.655278066 

16        -5.886024035 

17        -5.976772998 

/ 
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f(t)     fuzzification index 

/ 

1        23.62925483 

2        21.67365062 

3        19.96030697 

4        19.92090337 

5        14.56363877 

6        6.616790063 

7        2.52052295 

8        -0.446221994 

9        -1.847948497 

10       -4.792391756 

11       -8.804097846 

12       -12.32792987 

13       -12.73662699 

14       -13.61539946 

15       -16.09221047 

16       -18.36402556 

17       -19.85821513 

/ 

c(i)     regression coefficients 

/ 

1        -4.230156408 

2        0.079654563 

/ 

; 

scalar 

h 

/ 

0 

/ 

; 

Variable 
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z        total spread 

; 

Positive Variables 

s(i)     spread of coefficient i 

; 

Equations 

obj 

equ1(t) 

equ2(t) 

*equ3(t) 

; 

obj..z=e=17*(s("1"))+(s("2"))*sum(t,abs(f(t))); 

equ1(t)..c("1")+c("2")*f(t)+(1-h)*(s("1")+s("2")*abs(f(t)))=g=y(t); 

equ2(t)..c("1")+c("2")*f(t)-(1-h)*(s("1")+s("2")*abs(f(t)))=l=y(t); 

*equ3(t)..s("1")+s("2")*f(t)=g=0; 

model projea /all/ 

option optcr=0.0; 

solve projea using lp minimizing z; 

display z.l, s.l; 
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APPENDIX B: MATLAB FUNCTION FOR NM ALGORITHM 

 

MATLAB function representing the unconstrained nonlinear optimization problem to be 

minimized via NM Simplex algorithm for female emigration counts is given in this section. 

This function is also utilized in estimating the fuzzy parameters for the remaining 

demographic indicators by modifying the input data. The function is as follows: 

function [ sum ] = finemigrationfc10( dd ) 

%age group averages as estimate for a 

a=[5.97028  5.63140  5.27377  5.80970  6.83248  6.92860  6.56701  6.10647 

 5.71879  5.36098  4.97258  4.60495  4.39238  3.8485 3  3.19963  3.50048];  

%parameters to be estimated 

b=dd(1:16); 

k=dd(17:37); 

alfa = dd(38:53); 

beta=dd(54:69); 

teta=dd(70:90); 

%centers of fuzzified emigration counts 

c=[5.41079  5.4093  5.48894  5.50826 5.78390  5.8518  6.02358  5.9072  

6.00843  6.12433  6.27623  6.15364  6.16165  6.12949  6.24245  6.14689  

6.09667  6.15667  6.24191  6.12903  6.12466; 

5.2396   5.2386   5.29437  5.30790  5.50090  5.5484  5.66872  5.58723  

5.65811  5.73926  5.8456  5.75978  5.76539  5.74287  5.82196  5.75506  

5.71989  5.76190  5.8215   5.7425  5.7394; 

4.87836  4.87735  4.9335  4.94724  5.14205  5.19008  5.31144  5.22919  

5.30073  5.38264  5.49000  5.40336  5.4090  5.38629  5.46612  5.39859  

5.36309  5.40550  5.46574  5.38596  5.38287; 
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5.43774  5.4367   5.48969  5.50254  5.68579  5.73097  5.84513  5.76776  

5.83506  5.91211  6.01310  5.93160  5.93692  5.91554  5.99064  5.92711 

5.89372  5.93361  5.99028  5.9152  5.9123; 

6.36943  6.36825  6.43411  6.45010  6.67822  6.73447  6.87659  6.78027  

6.86405  6.95997  7.08569  6.98423  6.99086  6.96424  7.05773  6.97864  

6.93708  6.98674  7.05728  6.96386  6.96024; 

6.33289  6.33137  6.4160  6.43666  6.73015  6.80251  6.98535  6.86143 

6.96923  7.09262  7.25437  7.12383  7.13236 7.09812  7.21840  7.11665 

7.06318  7.1270  7.21782  7.09763  7.09298; 

5.87392  5.87216  5.97073  5.99466  6.33612  6.42031  6.63304  6.48886  

6.61427  6.75784  6.94602  6.79415  6.80407  6.76423  6.90417  6.78579 

6.72358  6.79791  6.90350  6.76366  6.75825; 

5.39286  5.39104  5.49253  5.51717  5.86874  5.95542  6.17445  6.02600 

6.15513  6.30295  6.49670  6.34033  6.35055  6.30953  6.45361  6.33173  

6.26767  6.34420  6.45292  6.30894   6.30337; 

5.18206  5.18070  5.25703  5.27556  5.53999  5.60519  5.76992  5.65827 

5.75539  5.86657  6.01230  5.89469  5.90237  5.87152  5.97989  5.88822  

5.84004  5.89760  5.97937  5.87108  5.86689; 

4.84445  4.84313  4.91659  4.93443  5.18891  5.25165  5.41019  5.30274 

5.39620  5.50320  5.64345  5.53026  5.53765  5.50796  5.61225  5.52403  

5.47767  5.53306  5.61176  5.50754  5.50351; 

4.25824  4.25642  4.35802  4.38268 4.73461  4.82138  5.04063  4.89203  

5.02129  5.16926  5.36321  5.20668  5.21691 5.17585  5.32001  5.19807  

5.13395  5.21055  5.31939  5.17526 5.16968; 

3.89019  3.88837  3.99002  4.01470  4.36684  4.45366  4.67304  4.52434 

4.65369  4.80175     4.99582  4.83919  4.84942  4.80834  4.95265  4.83057 

4.76642  4.84307  4.95197  4.80775  4.80217; 



137 

 

 
 

3.38917  3.38662  3.52930  3.56393  4.05819  4.18004  4.48795  4.27926  

4.46079  4.66860  4.94098  4.72115  4.73551  4.67785  4.88040  4.70906  

4.61901  4.72659  4.87943  4.67702  4.66919; 

3.13621  3.13439  3.23570 3.26030  3.61124  3.69776  3.91639  3.76821  

3.89711  4.04466  4.23806  4.08198  4.09217  4.05123  4.19505  4.07339 

4.00945  4.08584  4.19436  4.05064  4.04508; 

2.37993  2.37784  2.49442  2.52272  2.92656  3.02613  3.27772  3.10720 

3.25553 3.42532  3.64788  3.46826  3.48000  3.43288  3.59838  3.45838 

3.38480  3.47276  3.59759  3.43220  3.42581; 

3.20631  3.20556  3.24740  3.25756  3.40249  3.43822  3.52851  3.46731 

3.52054  3.58148  3.66135  3.59689  3.60110  3.58419  3.64358  3.59334  

3.56694  3.59848  3.64330  3.58395  3.58165]; 

%spreads for fuzzified emigration counts 

e=[0.62480  0.625962  0.56113  0.54539  0.32084  0.26547  0.21242  0.22039 

0.20008  0.29449  0.41825  0.31837  0.32489  0.29869  0.39072  0.31287  

0.27196  0.32084  0.39028  0.29832  0.29476; 

0.174  0.174  0.174  0.174  0.174  0.174  0.174  0.174  0.174  0.174  0.174  0.174  

0.174  0.174  0.174  0.174  0.174  0.174  0.174  0.174  0.174; 

0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  

0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179; 

0.29390  0.29444  0.26472  0.25751  0.15459  0.12921  0.10490  0.10855  

0.09924  0.14251  0.19923  0.15346  0.15645  0.14444  0.18662  0.15094 

0.13219  0.15459  0.18642 0.14427  0.14264; 

0.208 0.208  0.208  0.208  0.208  0.208  0.208  0.208  0.208  0.208  0.208  0.208 

0.208  0.208  0.208  0.208  0.208  0.208  0.208  0.208  0.208; 

0.089  0.089  0.089  0.089  0.089  0.089  0.089  0.089  0.089  0.089  0.089  0.089 

0.089  0.089  0.089  0.089  0.089  0.089  0.089  0.089  0.089; 
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0.102  0.102  0.102  0.102  0.102  0.102  0.102  0.102  0.102  0.102  0.102  0.102  

0.102  0.102  0.102  0.102  0.102  0.102  0.102  0.102  0.102; 

0.13647  0.13660  0.12984  0.12820  0.10481  0.09905  0.09352  0.09435 

0.09223  0.10207  0.11496  0.10455  0.10523  0.10251  0.11209  0.10398 

0.09972  0.10481  0.11205  0.10247  0.10210; 

0.124  0.124  0.124  0.124  0.124  0.124  0.124  0.124  0.124  0.124  0.124  0.124 

0.124  0.124   0.124  0.124  0.124  0.124  0.124  0.124  0.124 ; 

0.14395  0.14396  0.14326  0.14309  0.14065  0.14004  0.13947  0.13955 

0.13933  0.14036  0.14171  0.14062  0.14069  0.14041  0.14141  0.14056  

0.14011  0.14065  0.14140  0.14040  0.14036; 

0.221  0.221  0.221  0.221  0.221  0.221  0.221  0.221  0.221  0.221  0.221  0.221 

0.221  0.221   0.221  0.221  0.221  0.221  0.221  0.221  0.221; 

0.232  0.232  0.232  0.232  0.232  0.232  0.232  0.232  0.232  0.232  0.232  0.232  

0.232  0.232  0.232  0.232  0.232  0.232  0.232  0.232  0.232; 

0.60079  0.60200  0.53447  0.51808  0.28416  0.22649  0.17122  0.17953 

0.15837  0.25672  0.38563  0.28159  0.28839  0.26110  0.35696  0.27587 

0.23325  0.28417  0.35650  0.26071  0.25700; 

0.309  0.309  0.309  0.309  0.309  0.309  0.309  0.309  0.309  0.309  0.309  0.309  

0.309  0.309  0.309  0.309  0.309  0.309  0.309  0.309  0.309; 

0.278  0.278  0.278  0.278  0.278  0.278  0.278  0.278  0.278  0.278  0.278  0.278 

0.278  0.278  0.278  0.278  0.278  0.278  0.278  0.278  0.278; 

0.652  0.652  0.652  0.652  0.652  0.652  0.652  0.652  0.652  0.652  0.652  0.652 

0.652  0.652  0.652  0.652  0.652  0.652  0.652  0.652  0.652]; 

%objective function evaluation 

sum = 0; 

for x = 1:16 
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for t = 1:21   

mx = max([alfa(x),abs(k(t))*beta(x),abs(b(x))*teta(t)]); 

sum = sum + (a(x)+b(x)*k(t)-c(x,t))^2 + ((a(x)+b(x)*k(t)- mx)-(c(x,t)- e(x,t)))^2 + ... 

 ((a(x)+b(x)*k(t)+ mx)-(c(x,t)+ e(x,t)))^2; 

end 

end 

end 
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APPENDIX C: CODE FOR BAYESIAN FORECASTING 

 

OpenBUGS code used for forecasting future emigration counts for females is given in the 

following lines. By modifying the input values, this code is utilized in forecasting the 

future values of the remaining demographic indicators as well.  The corresponding code is 

as: 

model { 

# Priors for variables 

for (k in 2:5) { c[k] ~ dnorm(0,0.0001) } # priors for constants 

phi[3] ~ dnorm (0.5,1); phi[5] ~ dnorm (0.5,1) # priors for AR coefficients 

theta[4] ~ dnorm (0.5,1); theta[5] ~ dnorm (0.5,1) # priors for MA coefficients 

for (k in 1:5) { tau[k] ~ dgamma(0.5,0.5) } # priors for random error precisions  

e[1,4] ~ dnorm(0,tau[4]); e[1,5] ~ dnorm(0,tau[5]) # artificial MA error terms for t=1 

 

# Models 

# M[1]: m(t) = m(t-1) + e(t) 

# M[2]: m(t) = c[2] + m(t-1) +e(t) 

# M[3]: m(t) = c[3] + phi[3] m(t-1) + e(t); phi[3]<>0 & phi[3]<>1 

# M[4]: m(t) = c[4] + u(t) - theta[4] e(t-1) + e(t); theta[4]<>0 

# M[5]: m(t) = c[5] + phi[5] m(t-1) + e(t) - theta[5] u(t-1) + e(t); phi[5]<>0 & theta[5]<>0 

 

# Priors for models 

mod ~ dcat(p[]) # categorical prior over the model space 

p[1] <- 0.47059; p[2] <- 0.23529 ; p[3] <- 0.11765; p[4] <- 0.11765; p[5] <- 0.05882 

# Prior probabilities based on Occam's razor principle 

for (t in 1:n) { for (k in 1:5) { y[t,k] <- MR[t] } 

yav[t] <- MR[t] } 

 

# Estimation of the model parameters 

for (t in 2:n) { ye[t,1] <- y[t-1,1] 

ye[t,2] <- c[2]+y[t-1,2] 

ye[t,3] <- c[3] + phi[3] * y[t-1,3] 
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ye[t,4] <- c[4] - theta[4] * e[t-1,4] 

ye[t,5] <- c[5] + phi[5] * y[t-1,5] - theta[5] * e[t-1,5] 

for (k in 1:5) { y[t,k] ~ dnorm(ye[t,k], tau[k]); 

y.f[t,k] ~ dnorm(ye[t,k], tau[k]) } 

e[t,4] <- y[t,4]-ye[t,4] 

e[t,5] <- y[t,5]-ye[t,5] 

yeav[t] <- ye[t,mod]; yeav.f[t] <- y.f[t,mod] # averaged model 

} 

 

# Future forecasts  

for (t in n+1:N) { ye.f[t,1] <- y.f[t-1,1] 

ye.new[t,2] <- c[2] + y.f[t-1,2] 

ye.new[t,3] <- c[3] + phi[3] * y.f[t-1,3] 

ye.new[t,4] <- c[4] - theta[4] * e[t-1,4] 

ye.new[t,5] <- c[5] + phi[5] * y.f[t-1,5] - theta[5] * e[t-1,5] 

for (k in 1:5) { y.f[t,k] ~ dnorm(ye.f[t,k], tau[k]) } 

e[t,4] <- y.f[t,4]-ye.f[t,4] 

e[t,5] <- y.f[t,5]-ye.f[t,5]} 

for (k in 1:5) { prob[k] <- step(mod-k)-step(mod-k-1) }  # posterior p(M|x) 

} 

 

# Data sets 

# Data Finland Emigration Female - Level I tetat  

list( n = 21, N = 36, MR = c(0.001151342, 0.001542264, -0.001092645, -0.001057872, -

0.002021348, -0.001921898, 0.00209408, 0.000228002, 2.95435E-06, -9.17541E-06, -

0.000799638, -0.002745758, 0.001283076, 8.90195E-05, 0.002380878, -0.000280956, -

0.000614448, -0.001568347, -0.001481576, -0.000972244, 0.000980961) ) 

 

# Data Finland Emigration Female - Level II class1 

list(n = 21, N = 36, MR = c(0.187569703, 0.157768086, -0.65734193, -0.066991195, 

0.1739997, 0.055005497, -0.078882251, 0.290352704, 0.375566792, -0.013905729, -

0.000416715, 0.335044458, 0.148336408, 0.052066411, -0.17306647, -0.066109589, -

0.009739194, -0.103235947, -0.242618559, -0.282548356, -0.080853825) ) 
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# Data Finland Emigration Female - Level II class2 

list( n = 21, N = 36, MR = c(0.218635387, 0.163421471, -0.095917718, -0.177986032, -

0.034868783, -0.128077812, -0.064864691, -0.171214385, 0.060101928, 0.024002423, 

0.175865403, 0.187857912, 0.037016429, 0.046365534, -0.020246043, 0.09891833, 

0.021274631, -0.150082448, -0.075460769, -0.111737156, -0.003003612) ) 

 

# Data Finland Emigration Female - Level II class3 

list( n = 21, N = 36, MR = c(0.185460886, -0.036253209, -0.100139321, -0.035503914, 

0.043669979, -0.155832071, -0.158332679, -0.006928797, 0.058536706, 0.13271952, -

0.024258806, 0.259908424, 0.069129112, 0.104586815, -0.014661452, 0.080925905, 

0.048708605, -0.101954756, -0.162311021, -0.12794656, -0.059523367) ) 

 

# Data Finland Emigration Female - Level II class4 

list( n = 21, N = 36, MR = c(0.125328303, -0.091365045, -0.159541783, 0.059896828, 

0.019477667, -0.018685804, 0.067821629, 0.054245445, 0.076945901, -0.019594238, 

0.021494092, 0.073389082, 0.025612354, -0.146073566, -0.067748243, -0.005015808, 

0.146708192, 0.008263018, -0.037602164, -0.079916292, -0.05363957) ) 

 

# Data Finland Emigration Female - Level II class5 

list( n = 21, N = 36, MR = c(-0.051594067, 0.057107645, 0.112953142, -0.015681021, 

0.114218812, -0.047315417, 0.038351746, -0.116814607, -0.166711251, -0.044437745, 

0.14704891, 0.095615421, -0.070460354, 0.008107284, 0.101797979, -0.211807169, -

0.161241895, -0.024983892, 0.152483778, 0.007906004, 0.075456698) ) 

 

# Data Finland Emigration Female - Level II class6 

list( n = 21, N = 36, MR=c(0.041085394, -0.009267327, 0.096918346, 0.046740725, -

0.131485611, -0.141278503, -0.018497797, -0.016770617, 0.011261127, 0.11872525, 

0.087710591, 0.172553695, 0.354840946, 0.128989315, -0.038755896, 0.053700891, -

0.181221277, -0.038451489, -0.049082472, -0.217004023, -0.27071127) ) 

 

# Data Finland Emigration Female - Level II class7 

list( n = 21, N = 36, MR = c(-0.642487348, -0.26371062, 0.628057668, 0.162476056, 

0.090167032, 0.271295378, -0.233739694, 0.177773906, -0.135337558, -0.403820369, -
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0.331210639, -0.356400831, -0.133236757, 0.101675673,  0.007886126, 0.070754189, 

0.117084852, 0.329919968, 0.089901644, 0.436454248, 0.21984842) ) 

 

# Data Finland Emigration Female - Level II class8 

list( n = 21, N = 36, MR = c(-0.097069619, -0.011418327, 0.177333586, 0.038119343, -

0.258703061, 0.181364479, 0.464619507, -0.194167829, -0.263887928, 0.222786617, -

0.125038635, -0.751492458, -0.414762472, -0.075890434, 0.140686851, -0.00489106, 

0.03490185, 0.097001285, 0.260338122, 0.391267902, 0.188902282) )  
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APPENDIX D: MIGRATION MODELING OUTPUTS 

 

 

 

Figure D.1. Emigration modeling estimates for age group [20,25), males, using 1990-2010 

data: FMM with Level I versus BMM 

 

 

 

Figure D.2. Emigration modeling estimates for age group [20,25), males, using 1990-2010 

data: bi-level FMM versus BMM 
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Figure D.3. Immigration modeling estimates for age group [20,25), females, using 1990-

2010 data: FMM with Level I versus BMM 

 

 

 

Figure D.4. Immigration modeling estimates for age group [20,25), females, using 1990-

2010 data: bi-level FMM versus BMM 
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Figure D.5. Immigration modeling estimates for age group [20,25), males, using 1990-

2010 data: FMM with Level I versus BMM 

 

 

 

Figure D.6. Immigration modeling estimates for age group [20,25), males, using 1990-

2010 data: bi-level FMM versus BMM 
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Figure D.7. Emigration forecasts for age group [20,25), males 

 

 

 

Figure D.8. Immigration forecasts for age group [20,25), females 
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Figure D.9. Immigration forecasts for age group [20,25), males 

 

 


