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ABSTRACT 

 

 

EVALUATION OF DEEP LEARNING ALGORITHMS IN SENTIMENT 

ANALYSIS 

 

Deep Learning (DL) techniques have played an important role in the solution of a wide range 

of problems. Convolutional Neural Networks (CNN) are especially good at image 

processing tasks. Recurrent Neural Networks (RNN) are usually applied in Natural 

Language Processing (NLP) tasks. Sentiment analysis has been a popular area of research 

because people’s opinions are important for each other and people have been sharing their 

opinions in social media freely. In the literature, there are studies that use simple deep 

learning techniques or their combinations in sentiment analysis. In this thesis, we evaluate 

different deep learning techniques. The learning models we compare are CNN, Long Short-

Term Memory Networks (LSTM), and their ensembles and combinations. Moreover, we use 

Support Vector Machines (SVM) in a combination. In addition to these models, we compare 

different word embedding techniques such as Word2Vec and Global Vectors for Word 

Representation (GloVe) models. We focus on sentiment analysis from Twitter Data provided 

in Semantic Evaluation (SemEval), which is one of the most popular international workshops 

on semantic evaluation. Sentiment analysis work consists of two main steps. First phase is 

the creation of word embeddings, Word2Vec and GloVe models are compared in this step. 

Second phase is supervised training. Here, we apply CNN, LSTM, SVM, and their various 

combinations. Additionally, we have compared voting individual results of different learning 

techniques and their more organic combinations. All these combinations are tried with 

different weights and parameters, and best scoring values of each model is compared in terms 

of accuracy, precision, recall, and F-score.  
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ÖZET 

 

 

DUYGU ANALİZİNDE DERİN ÖĞRENME ALGORİTMALARININ 

KARŞILAŞTIRILMASI  

 

Derin öğrenme teknikleri son zamanlarda pek çok problemin çözümünde önemli bir rol 

oynamaya başladı. Convolutional Neural Networks (CNN) özellikle görüntü işleme 

uygulamalarında çok başarılı sonuçlar vermektedir. Recurrent Neural Networks (RNN) ise 

genelde Doğal Dil İşleme (NLP) uygulamalarında kullanılmaktadır. Duygu analizi son 

zamanlarda çok poüler bir araştırma alanı olmaya başladı, çünkü insanlar birbirlerinin 

düşüncelerini merak ediyorlar ve sosyala medyada özgürce düşüncelerini paylaşabiliyorlar. 

Literatürde, derin öğrenme tekniklerini tek başına veya birden fazla tekniği bir arada 

kullanan çalışmalar vardır. Bu çalışmada farklı öğrenme metotlarını karşılaştırılmaktadır. 

Karşılaştırdğımız modeller arasında CNN, Long Short-Term Memory Networks (LSTM), 

Support Vector Machines (SVM) ve bu modellerin farklı kombinasyonları yer almaktadır. 

Modellere ilaveten Word2Vec ve Global Vectors for Word Representation (GloVe) gibi 

kelime vektörleri de karşılaştırılmaktadır. Bu çalışmada dünya çapında en popüler doğal dil 

işleme organizasyonlarından birisi olan SemEval'ın sağladığı Twitter datası ile duygu analizi 

yapılmaktadır. Duygu analizi iki temel aşamadan oluşmaktadır. İlk aşamada GloVe veya 

word2vec ile kelimeler vektöre dönüştürülmektedir. İkinci aşama ise öğretmenli öğrenme 

aşamasıdır. Bu aşamada,  CNN, LSTM, SVM ve kombinasyonları denenmekte ve sonuçları 

karşılaştırılmaktadır. Ek olarak farklı öğrenme tekniklerinin ayrı ayrı denenip sonuçlarının 

birleştirilmesi veya farklı öğrenme tekniklerinin daha organik bir yapıda bir arada 

kullanıldığı modeller de karşılaştırılmaktadır. Bütün kombinasyonların faklı ağırlık ve 

parametrelerle denenip en iyi sonucu verenler doğruluk yüzdesi (accuracy), kesinlik 

(precision), hassasiyet (recall) ve F-ölçütü (F-score) açısından karşılaştırılmaktadır. 
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1. INTRODUCTION 

 

Social media has been a very popular tool for sharing ideas over the internet. People feel free 

to share their opinions about products, companies, services, topics on the agenda, etc. by 

means of social media. Since people have a high interest in the feelings and opinions of 

others, sentiment analysis in social media has been a very important topic. It can be 

beneficial for companies, service providers, and even for governments for making decisions. 

Twitter is one of the most popular social networks on/through which people can share their 

status (tweets). Twitter data are the most preferred data for sentiment analysis task in the 

literature because of its data structure consisting of sentences limited to 280 characters at 

most. It contains a short and meaningful text from which we can extract sentiments. 

Sentiment analysis can be done in different ways. One of the most common ways is to  

calculate positivity, negativity, and objectivity scores and decide the belonging class of a 

text such as  positive, negative, and neutral as a classification task. Other option is to find a 

positivity score ranging from zero to five or some other values as a quantification task. In 

this research we have concentrated on a three scale classification for sentiment analysis. 

With the importance and popularity of sentiment analysis task, lots of algorithms have been 

tried for having better scores for this task. Various natural language processing and machine 

learning techniques are applied for sentiment classification. Recently, deep learning 

algorithms like CNN and LSTM networks have shown state of the art scores in sentiment 

analysis. These scores are high in the literature but they are not satisfactory for the 

implementation needs in real life. Therefore, it is an important interest area for researchers. 

People have been trying different combinations and ensembles of these deep learning 

methods for increasing accuracy. In this research, our contribution is evaluation of these 

deep learning methodologies and their different combination and ensembles with a common 

Twitter data provided by SemEval contest in a single testing environment. 

Deep learning algorithms need numeric values for training and testing issues. In sentiment 

analysis, input data consist of text rather than numbers, so sentiment analysis task can be 

splitted into two main steps. 
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First phase of sentiment analysis is the creation of vectoral representations of words. This 

task is completed with word embedding techniques. The main idea in the word embedding 

is based on putting words in a multi-dimensional vectoral space in such a way that words are 

placed in terms of their relations with each other. There are a lot of successful word 

embedding techniques which are based on the number of occurrences of words and locations 

of words in sentences. Two of the most popular word embeddings are Word2Vec and Global 

Vectors for Word Representation (GloVe) models. We have compared two different samples 

of these two word embedding algorithms. Word2Vec vectors are created from SemEval 

tweets belonging to previous years’ competitions and pre-trained Glove Vectors are provided 

by Stanford University Natural Language Processing Group, have been trained from two 

billion tweets with a large corpus size of 27 billion words.  

Second phase is the deep learning models. Deep learning algorithms we use consist of 

supervised training. In this step, we apply several deep learning techniques, such as 

Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), as 

well as their unions and combinations. Moreover, we use Support Vector Machines (SVM) 

in a combination. In addition to different learning models, a regional structure similar to 

architecture developed by [1] is compared with standard learning models. 

Finally, we compare the results obtained in the second phase in terms of accuracy, precision, 

recall, and F-score. We see that all these variations of deep learning techniques did not yield 

too different results in terms of accuracy.  Data have much more important impact than the 

learning technique utilized. We were able to increase accuracy up to seven percent by just 

evaluating with different word vectors. Although self-trained word2vec word embedding 

were created from similar tweets which were consisting of previous years’ SemEval data 

with 31007 tweets with 662000 corpus size and 10000 words in vocabulary,  pre-trained 

GloVe vectors scored better since they were created from much more larger data with a huge 

corpus size of 27 billion words created from two billion tweets, with a vocabulary size of 

1.2 million words.  

In this thesis, we focus on sentiment analysis from Twitter Data provided by Semantic 

Evaluation (SemEval) competition. SemEval is one of the most popular international 

workshops on semantic evaluation like Kaggle, EMSASW, etc. SemEval provides 

competitors and other researchers with  tweets for both training and testing data. Because of 

Twitter policy laws, they are not allowed to share text of the tweets, they are only able to 
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share status IDs of tweets and researchers have to download tweets from Twitter servers with 

provided status IDs. Therefore, we have developed an application for downloading active 

tweets belonging to given tweet IDs from Twitter servers via LinqToTwitter API [2] 

provided by Twitter.  

This thesis is organized as follows. Section 2 gives an insight in the field of Sentiment 

analysis by mentioning related works done in the literature. Different learning models such 

as CNN and LSTM are used individually and also with their ensembles and combinations. 

Details about these learning methods are described in Section 3. Section 4 is about our 

analysis and design of the learning models describing operations step by step. Section 5 

includes our implementation of the models with the details of tools and technologies used in 

this research. In Section 6, comparison of different learning models are mentioned with the 

test details and evaluation results. Finally, Section 7 concludes the findings and includes 

some information towards future works. 
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2. BACKGROUND 

 

In recent years, social media have started to play an important role on people’s lives. People 

are easily sharing their opinions and feelings about any subject. At the same time, users are 

taking other users’ comments into consideration at any research. This research can be about  

any topic like products, companies, services, countries, cultures, etc. Therefore, sentiment 

analysis has been a popular research area in computer science. By means of sentiment 

analysis in social media, we can easily learn people’s feelings about any service, product, 

idea, etc. Especially, Twitter is the best social media type for sentiment analysis since it has 

short texts up to 140 characters in a tweet. Another ease of Twitter is that it provides 

developers with APIs to get tweets from all around the world. So, Twitter is a proper big 

data source for easily collecting tweets all around the world. Therefore, most of the 

researches in sentiment analysis deal with sentiments of tweets. Bo Pang and Lillian Lee 

presented different methodologies  that were used for sentiment analysis up to 2008[3]. 

Recently, Deep Neural Networks have been widely used because of its success with state of 

the art results in this task. Especially, CNNs [4,5] and RNNs [6] are used because CNN is 

good at resolving the dimensionality reduction problem and a special implementation of 

RNN, the LSTM networks [6], handle with success temporal or sequential data with the help 

of its gated structure [7]. 

2.1. CONVOLUTIONAL NEURAL NETWORKS (CNN) 

Convolutional Neural Networks are mainly used for image classification task in machine 

learning. It is based on convolving filters on images to find out relevance to classes. In 

Natural Language Processing (NLP) tasks, words are converted to vectoral representation 

with word embedding techniques and sentences are generally represented by concatenating 

created word vectors. State of the art methods have proved that CNN is very successful at 

sentiment analysis like its success in other classification tasks with image files. Works 

presented in [8] and [9] are two of the leading sample works that CNN architectures can be 

used successfully for sentiment analysis. 
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SemEval 2016 top-scoring team in two-scale classification (Tweester[10]) used a 

combination of CNNs, topic modeling, and word embeddings generated via word2vec[11], 

so reached 86 percent in two-scale classification. 

One of the simplest way to use deep learning techniques in sentiment analysis is the usage 

of CNNs after converting sentences into vectoral representations via some word embedding 

techniques. In a survey of deep learning methods in sentiment analysis [12], it can be seen 

that the word embedding is done mainly with two methods, Word2Vec [11] or GloVe [13].  

In addition, alternative embedding types like FastText[14] , Stanford Sentiment Treebank 

(SST) are used for embedding. After that, you can get good results by some fine tuning the 

parameters of CNN. In general, convolution layer, some pooling layer, and fully connected 

layers are used for prediction. Some teams [15-17] have tried this standard CNN structure 

as represented in Figure 2.1[18], created by Yoon Kim, for sentiment analysis with different 

data & weights. It is stated that simple CNN with one convolution layer can performs 

remarkably well with a little parameter tuning[18]. 

 

 

Figure 2.1. CNN model or sentiment analysis [18] 

 

Another brilliant option is to make use of multiple individual CNN models with different 

weights and parameters. After individual predictions of each CNN model, results are 

combined to get final prediction by using different algorithms such as soft-voting or hard-

voting to combine results. In soft-voting, average possibility value of each class are 

calculated among all models. In hard-voting, total number of votes for each class is used for 
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the final prediction. Accuracy of multiple CNNs can be increased with additional deep 

learning layers. [15-17] used multiple CNN models with different weights and parameters. 

NNEMBs team [17] scored first in accuracy in SemEval 2017 by using several word 

embedding sets and a special gated convolution model,  Recurrent Convolutional Neural 

Network (RCNN) explained in [19]. When predicting the labels of tweets in testing set, label 

probabilities of all neural network are sum up to make final decisions. 

Ten convolutional neural networks and hard voting technique are used to decide the final 

sentiment in [15]. Each CNN network consists of a convolutional layer followed by a fully-

connected layer and a soft-max on top. Ten instances of this network are initialized with the 

same word embeddings as inputs but with different initializations for the network weights. 

Number of classifiers which give the positive, negative and neutral sentiment label to each 

tweet are counted to decide sentiment label which have the highest number of votes.  

Additional algorithms can be used in addition to CNN. In [16], two different two-layer CNNs 

are used and results are concatenated to a Random Forest (RF) classifier. 

Usage of different embeddings in addition to word embeddings is used in the literature. Some 

researchers have made use of lexicon embeddings in addition to word embeddings in order 

to increase accuracy in sentiment analysis. Topic, lexical, part of speech (POS), sentiment, 

character-level  embeddings are used. 

Lexicon embedding and word embedding are concatenated by Adullam team at SemEval-

2017 [20]. In order to improve on existing CNN based sentiment analyser, lexicon 

embedding and attention embedding were integrated into the proposed sentiment analyser. 

The proposed lexicon integrated convolutional neural networks with attention (LCA) 

consists of three input features such as word embeddings, lexicon embeddings, and attention 

embeddings. 

Concatenation of word embedding and sentiment embedding vectors are used in [21] similar 

to Adullam[20] at SemEval-2017. Difference is that they do not use attention embedding.  

Two different embeddings such as Word2Vec and Sentiment Specific Word Embeddings 

(SSWE) are used in [22]. Because the dimensionality of vectors in SSWE is 50, it is extended 

to 300 dimensional vectors by padding the 250 randomly generated numbers to the end. 
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EICA team [23] concatenates word embedding with topic embedding at SemEval 2017. 

They use two different CNNs, one for word embedding and the other is for topic embedding. 

Results are concatenated and input to a softmax layer to get a final prediction. 

Lexical, part-of-speech and sentiment embeddings are used for CNNs and results are 

concatenated and fed to a final Deep Neural Network (DNN) by SENSEI-LIF team[24] . 

This model has ranked 2nd at SemEval-2016[25] task 4. 

System developed in [26] combines CNN and Logistic Regression (LR). So, it uses both 

embedding features and various features like lexicons and dictionaries. The final prediction 

for sentiment is a combination of predictions given by both classifiers. The architecture 

contains two separate CNNs: one is for word-based input maps while the other is for 

character-based input maps.  Fully connected layer is used for final prediction of CNN. They 

have observed that, the performance of the system does not increase, but drops by simply 

adding LR features to CNN features. 

The system developed by Tweester team[10] is comprised of multiple independent models 

such as neural networks, semantic-affective models and topic modeling that are combined 

in a probabilistic way.  Each model is used to predict a tweet’s sentiment (positive, negative 

or neutral) and a late fusion scheme is adopted for the final decision. The motivation behind 

the development of various systems for sentiment classification is that different systems may 

capture different aspects of the sentiment, and by combining them we can predict more 

accurately the sentiment of tweets. 

In [9], a new deep neural network architecture that jointly uses character-level, word-level 

and sentence-level representations is presented to perform sentiment analysis. 

Another interest area in sentiment analysis is to predict sentiments from images instead of 

shot texts like tweets. Sentiment analysis from Flickr and Twitter images is done in the 

research [27]. 

2.2. LONG SHORT-TERM MEMORY NETWORKS 

Usage of Recurrent Neural Networks (RNN) is another important Deep Learning method for 

Sentiment Analysis. RNNs process input sequentially, so they can take positions of words 
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into consideration  in a sentence to predict the sentiment value. But, RNNs have two 

important problems which are called vanishing gradient problem & exploding gradient 

problem [28]. LSTM is a special form of RNNs which overcomes vanishing gradient 

problem by keeping  cell states through gates[7]. Technically speaking, model structure is 

the same as CNN architecture. Firstly, tweets are cleaned. Secondly, word embeddings are 

created & tweets are represented in a vectoral format by combining  word vectors.  Later, 

vectoral representations of tweets are fed to an LSTM layer. Finally, a softmax layer and a 

fully connected layer are applied for final prediction.  

In [29] the efficiency of RNN was demonstrated as they outperformed the state of the art 

methods. DataStories team at Semeval 2017 uses a 2- layer bi-directional LSTM for 

sentiment analysis[30]. Deep Learning (DL) model of DataStories is stated in Figure 2.2. 

They have ranked first in Subtask 4 which is to predict whether a tweet is positive, negative, 

or neutral. BUSEM team[31] have tried two different deep learning models, one of which 

was LSTM in SemEval 2017. GRU networks, introduced in 2014 [32] can be used 

effectively instead of LSTM [33] with showing similar results because it has similar 

architecture with LSTM by making use of gates.  

 

  

Figure 2.2. Deep learning model for sentiment analysis [30] 
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2.3. SUPPORT VECTOR MACHINES 

Support Vector Machines are as popular as CNNs in Sentiment Analysis task. There are a 

lot of researches in the literature those make use of SVMs in Sentiment Analysis in Twitter 

(SAT) with alternative features [15-29]. As we have seen in previous sections, convolutions 

are generally based on different word embeddings or lexical embeddings. SVMs are also 

based on different type of embeddings. In addition, SVMs are fed with a large variety of 

extracted features. Most common features used in addition to embeddings are; n-gram 

features, negation features, number of hashtags, number of emoticons, TF-IDF features, 

number of capitalized words, number of negative words, number of positive words, etc. 

There are so many features used in SVM that it can be another research area to detect most 

affective feature for Sentiment Analysis. Some researchers have preferred to decide 

sentiment in two phases like objectivity detection and polarity detection instead of predicting 

sentiment in a single step [35-44]. 

2.4. ENSEMBLES AND COMBINATIONS 

There are so many studies done on Sentiment Analysis with DL techniques that it has 

resulted in trying different ensembles & combinations of DL techniques.  Especially the ones 

which participate in SemEval competition are very successful in this way. Top scorers on 

SemEval 2017 Subtask A [50] , that is to classify English tweets into three categories 

(positive, negative, and neutral), generally use Deep Learning techniques to decide 

sentiments in tweets. 

2.4.1. CNN and LSTM 

Mostly used ensemble in the literature is combination of CNN and LSTM. In [51], an 

implementation of CNN and LSTM networks was presented, showing the significant 

advantages of using together these two neural networks. One of the top scorers BB_twtr[52] 

team who had scored the same as DataStories has tried different deep learning methods 

which are CNN and LSTM. In addition they have done a combination of both. They are 

using zero-padding strategy to make all tweets have same matrix dimension. Since LSTM 
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doesn’t sufficiently take into account post word information, they use bidirectional LSTM 

to  solve this problem. For combination, they have used an ensemble of 10 CNNs and 10 

LSTMs together through soft voting, which means taking the average of probabilities for 

each class and deciding the sentiment according to average.  

Some other researches have been concentrated on more organically combination of CNN & 

LSTM rather than an ensemble. 3rd top scorer LIA[53] team has used an ensemble of CNN 

and LSTM. One lexical embedding and three different sentiment embeddings are fed to four 

different DNN. Each DNN has a CNN and an LSTM layer sequentially and the resulting 

vectors  are fed to a Multi-Layer Perceptron. In [54], a similar method is applied with [53] 

with three different embeddings and using Bidirectional Long Short-Term Memory Unit 

(BLSTM) instead of LSTM layer. Convolutional Recurrent Neural Network (CRNN) in the 

Figure 2.3 represents a combination of CNN and BLSTM layers as represented in Figure 2.4 

 

 

Figure 2.3. System architecture of the CNN-LSTM-MLP model [54] 
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Figure 2.4. Implementation of the convolutional recurrent neural network. [54] 

Another way to use both CNN and LSTM organically is to use varying length filters in CNN 

layers and to use outputs of CNNs in LSTM layers [55]. 

[1] divides tweets into regions, each region is fed to a CNN and resulting vectors are fed to 

an LSTM layer as shown in Figure 2.3. This model can capture both local information within 

sentences via CNN and long distance dependency across sentences with the help of LSTM. 

 
 

Figure 2.5. System architecture of the regional CNN-LSTM model [1] 

There are other simple ideas to make use of both LSTM and CNN that is to use them 

separately and combine results in some alternative ways. [56] combines the results with an 

interpolation algorithm where weight of algorithm is decided with grid search. [57] combines 
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the results through soft-voting. [58] uses two CNN models and a Gated Recurrent Unit 

(GRU) model separately and combines the results with another CNN model. They use Gated 

Recurrent Neural Network (GRNN) instead of LSTM because they have got better results 

on GRU with their data. On the other hand, [57] states that LSTM hits GRU in sentiment 

analysis task. GRU and LSTM can be used interchangeably in the literature, they have 

similar results. It depends on data and parameters of the models used, we have use LSTM in 

our research. 

2.4.2. LSTM and SVM 

As we have stated in the previous section, some researchers prefer to use GRU instead of 

LSTM because of better accuracy in their data and model. [49] is  another supporter of GRU. 

A  gated recurrent neural network is trained using pretrained word embeddings, then feature 

are extracted from GRU layer and these features are input to SVM for classification. 

Some researchers have tried multiple deep learning algorithms for just comparison rather 

than using them in an ensemble or combination. BUSEM team[31] has done a research in 

this manner in SemEval 2016, they have tried SVM, RF, NB, and LSTM independently. 

Finally, they have resulted in SVM scores best among these alternatives in SA. 

2.4.3. CNN and SVM 

In the literature, CNN and SVM is used sequentially like the structure in CNN and LSTM. 

In [59], CNN is applied first and outputs of CNN are input to SVM together with additional 

linguistic information. Proposed model performs better than single CNN. 

In [60], two CNN and LSTM are applied separately.  SVM classifier features are based on a 

bag of words model, the CNN classifier is initialized with pre-trained word vectors. Finally, 

ensemble model counts votes from three classifiers and predicts the class which has the 

maximum number of votes from the three classes. 
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2.5. SEMANTIC EVALUATION (SemEval) 

Increasing need and interest to sentiment analysis in computer science have resulted in 

science competitions for sentiment analysis. SemEval is one of the most popular 

competitions in this area, which is an international workshop on semantic evaluation. 

Sentiment analysis competition is repeated annually with small changes in tasks. 

In SemEval 2016 [25] & SemEval 2017 [50], top scorer teams used deep learning for the 

task 4 of sentiment analysis, which is to group sentiments into three categories such as 

positive, negative, and neutral. They have mainly used CNN, LSTM, SVM, and their 

ensembles and combinations. In SemEval 2016[25], half of the ten top-ranked participating 

teams used convolutional neural networks; three teams were using recurrent neural 

networks, and seven teams used ensembles and combinations in their systems. Usage of 

classifiers such as support vector machines, which were dominant until recent years, seems 

to have lost its popularity because of its low efficiency compared to convolution and 

recurrent neural networks. In SemEval 2017[50], we again see an increasing interest towards 

deep learning rather than SVM. There were at least 20 teams who used deep learning and 

neural network methods such as CNN and LSTM networks.  
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3. METHODOLOGY 
 

3.1. CONVOLUTIONAL NEURAL NETWORKS 

Artificial intelligence and neural network deal with the machines’ learning in the same way 

people learn. One of the most important neural networks, which is convolutional neural 

networks (CNN) exactly behaves in this manner. For instance, we are born with no 

knowledge about animals. Throughout our lives, we see a lot of animals like cats, dogs, 

birds, etc. in our living space. We learn some wild animals, sea animals from the 

documentaries displayed in television or over the internet, which is not possible for us to see 

in real life. While some of us can group animals into larger categories like animal, cat, dog, 

etc., some people may group them in more detail for example into different cat categories 

like lion, tiger, etc. The difference between people come from their earlier experiences, that 

means it depends on how much different samples of these animals are seen and grouped by 

people before. If we have seen more animals or dealed much more with animals, we can 

have a broader vision and have more accurate knowledge about them. We can do these 

grouping even for the ones which we have seen first time in our lives unintentionally from 

our previous knowledge. Before dealing with machine learning, I had never talked about 

how I am grouping animals, for instance cat, dog, or bird. Of course, it is very easy to 

discriminate the birds from dogs and cats because they have wings, beaks, they have two 

feet as another difference from dog and cat. They have lots of other filterable characteristics 

visually. What about the difference between cats and dogs? We can categorize cats and dogs 

from their eyes, noses, ears, tails, etc. We can even classify different categories of cats for a 

more detailed visual characteristics like eye colors, fur shapes, etc. though they are not  as 

clear as more general classification attributes among cats and birds.  

So far, I have mentioned about how people’s learn different animals from their experiences, 

categorization of animals from larger to more detailed comparisons, visual characteristics 

we have extracted from our previous scenes. The idea behind the grouping of the CNN is 

exactly in the same way. Let us continue with the technical details of CNN while keeping 

these samples in mind. 
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CNN is a special type of ANN which uses supervised learning algorithm. Supervised 

learning algorithm means that algorithm learns from given labeled sample inputs. For each 

image we give in our training set we have a class. This class may be a general classification 

item label like bird, cat, etc. or it may be a more detailed categorization class of cat species. 

Learning of the algorithm to which extent depends on the given classes like our detailed or 

general learning example above. If we give samples of specific cat species in our training 

set, algorithm learns these details. If we give only cat, bird, and dog classes in the labelled 

training set, algorithm only learns about grouping these categories. 

Let us take a deeper look into CNN and talk about how it makes classification. As we have 

mentioned above people can distinguish between different categories by means of visual 

characteristics of each class. It is the same in convolutional neural networks. Images are 

categorized in terms of filters. Convolution is the process of convolving filters over images. 

To find the probability of containing an object, or belonging to a special category, filters are 

applied pixel by pixel by sliding it through an image as shown in the Figure 3.2 and similarity 

of filter to convolved space is calculated. Applying filter means that element-wise matrix 

multiplication is applied and results are summed. Feature map is obtained by applying filters 

over the image and it shows the probability of containing a filter. In Figure 3.2, a 3x3 filter 

is applied to a 7x7 image and a 5x5 feature map is obtained as the output of convolution 

process. Width and height of the feature map are calculated with the below equations, where 

W and H refers to width and height of input image, Fw is filter width, Fh is filter height, P 

value is padding, Sw is stride width, and Sh is stride height. 

 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ =

𝑊 − 𝐹𝑤 + 2𝑃

𝑆𝑤
+ 1 

(3.1) 

 

 
𝑜𝑢𝑡𝑝𝑢𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 =

𝐻 − 𝐹ℎ + 2𝑃

𝑆ℎ
+ 1 

(3.2) 

 

Items in the above equations can be described as; 

Filter is the convolved sub image over the input. It is also called as kernel. It may be bird’ s 

beak or tail, cat’ s ear or eye, dog’ s tongue or tail, etc. as shown in Figure 3.1 related to our 

dog, cat, and bird classification sample. 
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SAMPLE IMAGES FILTERS FEATURE MAPS 

 

 
 

 
 

 

 
 

 
 

 

 

 

Higher results for filters 

with bird’ s beak and tail 

 

Higher results for filters 

with cat’ s ear and eye 

 

Higher results for filters 

with dog’ s tongue and tail 

 

Figure 3.1. Images and convolution filters 

 

Filter is applied all over the image by sliding it from left to right and from up to down. In 

Figure 3.2 convolution is applied by sliding filter one by one in both directions. It could be 

done by sliding filter with more than one in each iteration. Stride value refers to number of 

sliding cells. 
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          Image                 Filter          Feature Map 

 

Figure 3.2. Convolution process 

 

After applying filters, dimension decreases in the output of convolution. In some cases it is 

needed to have same dimensions after convolution, therefore, padding is applied.  Padding 

means assuming that input image has larger dimensions and outer cells have zero values an 

filters are applied starting from appended cells and goes until the end of appended zeros as 

shown in Figure 3.3. Padding value is number of appended rows and columns.  

 

 
 

Figure 3.3. Convolution filter with padding 

 

In convolutional neural networks, some pooling is applied after convolution process. The 

most commonly used pooling is max pooling, where maximum of the numbers in the pool 

is selected and projected to the output as shown in Figure 3.4. In this sample, max pooling 
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with 2x2 windows is applied to a 4x4 input matrix and 2x2 output matrix is obtained. 

Another commonly used option is to take average of values instead of taking the highest 

value, it is called mean pooling. Pooling causes the input size to get smaller while keeping 

the values in bigger image. It is a process like squeezing the image in the feature map. This 

provides us with easier calculation processes in the later layers.  

 

 

Figure 3.4. Max pooling 

 

Next and the final layer after max pooling is fully connected layer to classify input image. 

One or multiple fully connected layers are used and a vector is output including the 

possibility values for each class. Structure of layers in a CNN is shown in Figure 3.5 

 

 
 

Figure 3.5. CNN layers [61] 
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Filters are determined by Back Propagation Through Time (BPTT) in the training phase of 

supervised learning. In CNN, after getting the filters we have a function to classify images. 

On the other hand, we need to find a function which classifies images with the least error 

given the input values and output values. In BPTT, derivative of the function is calculated 

and weights are updated at each iteration according to a selected loss function [62]. In 

training phase, labelled input data are fed to network in batches, batch size in convolution 

layer refers to how many input data are used at each step with back propagation. After 

feeding all the input data in batches to the network, a cycle is completed. Each cycle is called 

an epoch, epoch size is an important parameter for deep learning. It determines how many 

times all the input data is used for training. 

CNN is mainly used for image processing tasks such as image classification, object 

recognition, etc. In recent years, CNN has been also used for NLP tasks like sentiment 

analysis and has shown state of the art results. In this study, CNN is one of the used DL 

algorithms for sentiment analysis.  

As mentioned above and can be seen in the Figure 3.2, convolution needs numbers to 

process.  On the other hand, sentiment analysis deals with sentences as a NLP task. So, first 

need before using CNN is to convert words to their corresponding vectoral representations 

which is called as word embedding. Details of word embeddings can be seen in Section 3.4. 

Later, word vectors can be concatenated to represent sentence (tweet) matrices and these 

matrices are fed to CNN as input data like images. 

In a CNN model for sentiment analysis, there exist one or more convolution layers as the 

first layer. Then, output of convolution with different filters are sent to a pooling layer. In 

the literature, it has seen that max pooling best fits for pooling in sentiment analysis task. 

Another option is to use mean pooling rather than max pooling. After pooling operation, 

neural networks with some classifier are used for final classification (Figure 2.1).  

3.2. LONG SHORT-TERM MEMORY NETWORKS 

Long short-term memory networks (LSTM) is a special type of recurrent neural networks 

(RNN). Therefore, it is a worth to mention about RNN before going into LSTM details. RNN 

is a deep learning which is used for tasks in which an input with time series is given and next 
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item is predicted. Most common usage areas of RNNs change in a variety of tasks from 

weather forecast to exchange rates prediction. At the same time, RNN has been one of the 

most important deep learning models used in natural language processing (NLP) tasks in 

recent years. It shows competitive results because of its structure dealing with sequential 

information. In a RNN, output of each node is input to the next item. RNN not only deals 

with last step it also takes into consideration information in a series of previous steps. RNNs 

are good at predicting next item, they can be even used for complicated art tasks such as 

writing poems, composing music, painting, etc. Figure 3.6 shows the standard RNN 

structure. 

 
 

Figure 3.6. RNN 

Recurrent neural networks learn with BPTT like convolutional neural networks. Therefore, 

it has an important problem named vanishing gradient problem. Vanishing gradient problem 

is a difficulty found in training with gradient based methods. In particular, this problem 

makes it really hard to learn and tune the parameters of the earlier layers in the network. 

Gradient based methods learn a parameter's value by understanding how a small change in 

the parameter's value will affect the network's output. If a change in the parameter's value 

causes very small change in the network's output, the network just can't learn the parameter 

effectively. 

At this time, LSTM helps for a solution to this problem. It solves vanishing gradient problem 

through usage of gates which are forget gate, input gate, and output gate. Each cell in LSTM 

is responsible for keeping track of the dependencies between the elements in the input 

sequence. Forget gate decides which information should be kept or thrown away from the 

cell state. Forget gate uses a sigmoid function, information from the previous hidden state 

and information from the current input are input to this sigmoid function.  Function outputs 

a value between zero and one, information with closer values to one are kept  and values 
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near zero are thrown away. Input gate is responsible for deciding what new information is 

going to be stored in the cell state. It consists of two functions to update the cell state. First,   

previous hidden state and current input are input to a sigmoid function that decides which 

values will be updated by transforming the values to be between zero and one where one 

refers to the importance of the input. Second function is a tanh function to squish values 

between minus one and one to help regulate the network. Then the tanh output with the 

sigmoid output are multiplied. The sigmoid output will decide which information is 

important to keep from the tanh output. Third and the last gate is  output gate. Output gate 

decides the next hidden state. Hidden state contains information on previous inputs and it is 

used for predictions. This hidden is state is used as input to the next time step. LSTM is 

much better at capturing long-term dependencies with the help of gates. The memory in 

LSTMs are called cells and these cells take as input the previous state ht-1 and current input 

xt. Internally these cells  decide what to keep in memory. Finally, the previous state, the 

current memory, and the input are combined.  

 

 

 

Figure 3.7. LSTM and gates 

A special version of LSTM, Gated Recurrent Unit (GRU), is introduced in 2014 . It combines 

the forget and input gates into a single gate named update gate. It also merges the cell state 

and hidden state. It has no output gate. It is used instead of standard LSTM in some works. 

3.3. SUPPORT VECTOR MACHINES 

SVM is another supervised learning algorithm that has been used for classification and 

regression tasks. Since sentiment analysis task is also a classification task, SVM is used in 
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the literature and shows competitive results. SVM is based on separating data into the groups 

by drawing a border among items in the plane. The idea is to find out the most distant 

boundary, called hyperplane, to all of the groups so that new coming items can be separated 

into one of the groups more easily (Figure 3.8). Hyperplane is a line in a two dimensional 

classification task. A plane is used as hyperplane in a three dimensional input space (Figure 

3.9).  SVM is not a deep learning model since it consist of a single layer, it does not contain 

hidden layers. Thus, SVM shows significant accuracy with less computing cost.  

 

 

Figure 3.8. SVM and possible hyperplanes 

 

  
 

Figure 3.9. Hyperplanes related to input dimensions 

 

First input to the SVM is word embeddings as expected.  In addition to word embeddings, a 

lot of different parameters can be used in sentiment analysis with SVM. Some of the 

commonly used example inputs in the literature are; n-gram features, negation features, 
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number of hashtags, number of emoticons, TF-IDF features, number of capitalized words, 

number of negative words, number of positive words, etc. 

3.4. WORD EMBEDDINGS 

In sentiment analysis task, we have tweets and their sentiments for classification. Tweets 

consist of text data, but we need matrices consisting of numbers for calculation in Deep 

Learning methods. So we need to convert these tweets somehow to their corresponding 

matrix representations. One of the best practices for this task is to use word embeddings, that 

is to detect vectoral representations of words. Words are represented in such a way that, for 

example, vector operations vector('Paris') - vector('France') + vector('Turkey') results in a 

vector that is very close to vector('Ankara'), and vector('king') - vector('man') + 

vector('woman') is close to vector('queen')(Figure 3.10). 

Word embedding is an unsupervised learning model, very large amount of text corpus is 

used for training. Words are trained against other words that neighbour them in the input 

corpus. It is done in one of two ways, either using context to predict a target word (a method 

known as continuous bag of words, or CBOW), or using a word to predict a target context, 

which is called skip-gram. 

 
 

Figure 3.10. Country and capital vectors 
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3.4.1. Word2Vec 

Word2Vec is maybe the most popular word embedding worldwide, developed by Google. 

Google provides a lot of pretrained word embedding data set with different number of 

dimensions, corpus size, vocabulary size, etc. (Table 3.1). In addition, there are a lot of 

libraries provided for different programming languages. You can easily create your own 

word embeddings by providing your own corpus as input text and setting parameters for 

training. It can use one of two algorithms for learning; Continuous Bag Of Words (CBOW) 

and Continuous Skip-gram. CBOW is generally used to to predict a target word using 

context. On the other hand, continuous skip-gram model is used to predict a target context 

using a word. Word2Vec.Net library is one of the libraries provided for .Net framework. It 

provides creation of word2vec vectors by setting the following training options; 

• WithTrainFile: text data to train the model 

• WithOutputFile: path to save the resulting word vectors / word clusters 

• WithSize: size of word vectors; default is 100 

• WithSaveVocubFile: file path to save the vocabulary file 

• WithDebug: debug level (default is two, more info during training) 

• WithBinary: whether to save the resulting vectors in binary mode; default is zero 

(off) 

• WithCBow: whether to use the continuous bag of words model; default is one, zero 

is used for skip-gram model 

• WithAlpha: starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW 

• WithWindow: max skip length between words; default is 5 

• WithSample: threshold for occurrence of words. Those that appear with higher 

frequency in the training data are randomly down-sampled; default is 1e-3 

• WithHs: whether to use hierarchical softmax; default is zero (not used) 

• WithNegative: number of negative examples; default is five, common values are  

between three and ten. (zero means not used) 

• WithThreads: number of threads (default 12) 

• WithIter: number of training iterations (default is five), number of epochs. 

• WithMinCount: number to discard words that appear less than, default is five which 

means numbers occurring less than five times are ignored 
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• WithClasses: output word classes rather than word vectors; default number of classes 

is zero (vectors are written) 

 

Table 3.1. Word2vec pretrained sample vectors 

 

Model file 
Number of 

dimensions 

Corpus 

(size) 

Vocabulary 

size 
Author Architecture 

Google 

News 
300 

Google 

News 

(100B) 

3M Google word2vec  

Freebase 

IDs 
1000 

Gooogle 

News 

(100B) 

1.4M Google 
word2vec, 

skip-gram 

Freebase 

names 
1000 

Gooogle 

News 

(100B) 

1.4M Google 
word2vec, 

skip-gram 

Wikipedia 

dependency 
300 

Wikipedia 

(?) 
174,015 

Levy & 

Goldberg 

word2vec 

modified 

DBPedia 

vectors 

(wiki2vec) 

1000 
Wikipedia 

(?) 
? Idio word2vec 

3.4.2. GloVe 

Global Vectors for Word Representation (GloVe) is another most widely used word 

embedding in sentiment analysis task. It is developed by Stanford NLP Group and they 

provide researchers with a variety of pretrained word vectors publicly distributed. Pretrained 

vectors for GloVe are shown in Table 3.2 

3.4.3. SentiWordNet  

SentiWordNet is a lexical resource for word vector representation. Unlike word2vec and 

GloVe, SentiWordNet does not have large number of dimensions for word vectors. It 

represents each word only with a two-dimensional vector which are positivity score and 

negativity. These scores have values between zero and one. In addition, objectivity score is 
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calculated by subtracting the sum of positivity score and negativity score from one. Finally, 

words are represented by three-dimensional sentiment vectors. 

 

Table 3.2. GloVe pretrained sample vectors 

 

Model file 

Number of 

dimensions Corpus (size) 

Vocabulary 

size Author Architecture 

Wikipedia+ 

Gigaword 5  

50 
Wikipedia+ 

Gigaword 5 (6B) 
400,000 GloVe GloVe 

Wikipedia+ 

Gigaword 5  

100 
Wikipedia+ 

Gigaword 5 (6B) 
400,000 GloVe GloVe 

Wikipedia+ 

Gigaword 5  

200 
Wikipedia+ 

Gigaword 5 (6B) 
400,000 GloVe GloVe 

Wikipedia+ 

Gigaword 5  

300 
Wikipedia+ 

Gigaword 5 (6B) 
400,000 GloVe GloVe 

Common 

Crawl 42B  

300 
Common Crawl 

(42B) 
1.9M GloVe GloVe 

Common 

Crawl 840B  

300 
Common Crawl 

(840B) 
2.2M GloVe GloVe 

Twitter (2B 

Tweets)  

25 Twitter (27B) 1.2M GloVe GloVe 

Twitter (2B 

Tweets)  

50 Twitter (27B) ? GloVe GloVe 

Twitter (2B 

Tweets)  

100 Twitter (27B) 1.2M GloVe GloVe 

Twitter (2B 

Tweets)  

200 Twitter (27B) 1.2M GloVe GloVe 

 

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.42B.300d.zip
http://nlp.stanford.edu/data/glove.42B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
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4. ANALYSIS AND DESIGN 
 

In this research, we have compared different word embeddings, different learning algorithms 

individually and with different combinations and ensembles. We have compared the results 

in terms of accuracy, training time, recall, precision, and f-measure.  Overall system consist 

of downloading and pre-processing tweets, word embedding, and applying deep learning 

algorithms. We have applied two different word embeddings to eight different deep learning 

configurations. In addition, we have used two different data organization types which are 

standard concatenation of words in a tweet and applying regional structure. In total, we have 

32 different results for comparison. 

4.1. TWEETS 

4.1.1. Creating the Tweet Corpus 

Since learning methods we use, namely CNN, LSTM, and SVM, are supervised learning 

algorithms, we first need labeled data for training. SemEval committee provides labeled 

tweets for development, training, and testing. On the other hand, SemEval cannot directly 

publish these tweets because of Twitter’s privacy laws. Twitter do not let distribution of 

deleted tweets in terms of privacy rules. Therefore, SemEval only provides status id of tweets 

and sentiment values for the given tweets. Later, those tweets are downloaded from Twitter 

servers via different APIs provided by Twitter company. In our thesis, we have created a 

.Net application with LinqToTwitter API provided by Twitter. Three different datasets were 

collected for training data which were SemEval2017 – Task 4 development data plus 

previous years’ full data for the same task, namely SemEval2016 – Task 4 full data, 

SemEval2014 - Task 9 - Sub Task B full data are downloaded for training. We were able to 

download a total of 31007 tweets for training which consist of 662.000 total words with a 

vocabulary of around 10.000 words. 
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4.1.2. Data Cleaning  

After downloading tweets, next step was to process the tweets in order to increase the 

system’s performance during training. A lot of tweets need to be cleaned for getting better 

performance in training. Therefore, we have done a few cleaning operations over 

downloaded tweets. Firstly, whole tweets are converted to lowercase letters to get rid of case 

sensitivity because it does not affect the sentiment of a tweet very much. Later, some 

characters such as single quotes (‘), double quotes (”), @ character, # character of hashtags  

are removed from text. Smileys are replaced, :) and :-) symbols are replaced with <smile> 

tag, :( and :-(  symbols are replaced with <sadface> tag. Links are replaced with <url> tag 

because links do not have contribution in the sentiment. 

4.2. WORD EMBEDDING 

At the end of tweet cleaning operations, clean tweets are ready for training different learning 

models. One more operation is needed to be able to train models which is to get vectoral 

representations of words in tweets. In this stage, two different options for word embedding 

are used. First option is to create word vectors via tools like word2vec, GloVe, etc. Second 

option is to download pretrained word vectors (word2vec, GloVe, SentiWordNet). In this 

research, both alternatives are tried and reported for comparison.  

4.2.1. Self-trained Word Vectors 

For creating self-trained word vectors, word2vec model is used. Input data were all tweets 

provided for SemEval 2014 and SemEval 2016 competitions. In addition, SemEval 2017 

development tweets were used for training word2vec. Word2vec model is configured for 

output 25-dimensional word vectors. 25-dimensional vectors rather than larger-dimensions 

are preferred because of performance issues for training in terms of time with a computing 

environment without GPU support. Other options were, setting output in text format rather 

than binary file, continuous bag of words model is used, max skip length between words is 

set to 5, with 100 training iterations, discarding words that appear less than 5 times. 
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4.2.2. Pre-trained Word Vectors 

GloVe pre-trained word vectors were utilized as a second alternative way. Again, 25-

dimensional word vectors are used for comparing both self-trained and pre-trained vectors 

under the same circumstances.  GloVe vectors were downloaded from Stanford University 

NLP group web page. Word vectors are created from twitter data with a corpus size 27B 

which means word embeddings are created from data with 27 billion words. 2 billion tweets 

were used to create GloVe vectors. 

Because of large corpus size and vocabulary, pre-trained GloVe vectors scored better than 

self-trained word2vec vectors up to seven percent although word2vec vectors were created 

from SemEval data.  

4.2.3. Normalizing Word Vectors 

After creating word vectors, each value in 25-dimensional vector is normalized to get a value 

between 0 and 1. Property value is calculated by equation: 

 
𝑝𝑟𝑜𝑝𝑉𝑎𝑙′ =

𝑝𝑟𝑜𝑝𝑉𝑎𝑙 − 𝑚𝑖𝑛𝑉𝑎𝑙

𝑚𝑎𝑥𝑉𝑎𝑙 − 𝑚𝑖𝑛𝑉𝑎𝑙
 

(4.1) 

 

where minVal is minimum value for selected property, maxVal is maximum value for 

selected property, and propVal is current item’s value for selected property. Some sample 

word vectors before and after normalization is shown in the below tables. 
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Table 4.1. Word vectors before normalization 

 

 

 

Table 4.2. Word vectors after normalization  

 

Word Vectoral Representation 

yesterday 
[0.507 0.501 0.587 0.444 0.441 0.478 0.640 0.475 0.473 0.564 0.501 0.516 0.166 

0.555 0.573 0.553 0.494 0.465 0.394 0.510 0.468 0.448 0.441 0.558 0.525] 

today 
[0.499 0.482 0.517 0.433 0.447 0.495 0.666 0.479 0.514 0.540 0.483 0.498 0.099 

0.571 0.565 0.543 0.469 0.442 0.391 0.520 0.451 0.426 0.428 0.574 0.524] 

tomorrow 
[0.506 0.526 0.558 0.413 0.431 0.471 0.682 0.465 0.515 0.547 0.451 0.466 0.132 

0.568 0.598 0.535 0.467 0.417 0.372 0.535 0.431 0.435 0.459 0.603 0.560] 

man 
[0.581 0.453 0.519 0.451 0.441 0.528 0.561 0.558 0.507 0.575 0.482 0.476 0.110 

0.521 0.528 0.584 0.531 0.497 0.377 0.497 0.518 0.562 0.412 0.560 0.561] 

woman 
[0.493 0.457 0.500 0.497 0.492 0.495 0.636 0.505 0.532 0.570 0.516 0.488 0.151 

0.533 0.471 0.563 0.502 0.486 0.470 0.522 0.574 0.512 0.394 0.457 0.486] 

king 
[0.505 0.472 0.544 0.511 0.433 0.490 0.601 0.583 0.561 0.514 0.530 0.484 0.207 

0.505 0.510 0.544 0.483 0.497 0.433 0.591 0.485 0.497 0.414 0.499 0.554] 

queen 
[0.479 0.445 0.549 0.501 0.457 0.461 0.631 0.573 0.524 0.506 0.504 0.466 0.237 

0.487 0.465 0.569 0.455 0.486 0.435 0.591 0.468 0.492 0.402 0.516 0.534] 

uncle 
[0.469 0.543 0.590 0.518 0.418 0.464 0.595 0.564 0.523 0.543 0.492 0.506 0.238 

0.477 0.557 0.538 0.548 0.455 0.397 0.546 0.561 0.513 0.387 0.495 0.480] 

aunt 
[0.423 0.545 0.604 0.524 0.431 0.443 0.599 0.502 0.513 0.521 0.475 0.466 0.237 

0.480 0.507 0.541 0.550 0.470 0.402 0.561 0.583 0.481 0.380 0.536 0.484] 

Word Vectoral Representation 

yesterday 
[-0.718 0.297 1.058 -0.736 -0.321 -0.413 1.271 -0.633 -1.044 0.197 -0.071 0.838 -

4.207 0.608 1.010 -0.178 0.545 -0.439 -0.615 -0.554 -0.287 -0.242 0.220 0.217 0.177] 

today 
[-0.834 0.021 -0.056 -0.915 -0.218 -0.147 1.662 -0.577 -0.374 -0.180 -0.387 0.574 -

5.073 0.881 0.892 -0.359 0.128 -0.836 -0.663 -0.400 -0.532 -0.576 0.022 0.452 0.167] 

tomorrow 
[-0.729 0.670 0.590 -1.258 -0.491 -0.515 1.896 -0.775 -0.355 -0.071 -0.928 0.116 -

4.646 0.829 1.356 -0.494 0.091 -1.258 -0.964 -0.168 -0.798 -0.441 0.513 0.885 0.734] 

man 
[0.370 -0.396 -0.022 -0.630 -0.319 0.343 0.110 0.488 -0.487 0.368 -0.392 0.254 -4.928 

0.068 0.371 0.368 1.166 0.092 -0.877 -0.746 0.409 1.567 -0.239 0.248 0.764] 

woman 
[-0.925 -0.339 -0.321 0.147 0.523 -0.153 1.217 -0.224 -0.087 0.285 0.185 0.428 -4.398 

0.262 -0.430 -0.001 0.669 -0.081 0.563 -0.375 1.179 0.771 -0.528 -1.259 -0.451] 

king 
[-0.745 -0.120 0.373 0.368 -0.447 -0.229 0.701 0.829 0.395 -0.583 0.415 0.371 -3.691 

-0.201 0.115 -0.347 0.362 0.096 -0.018 0.685 -0.049 0.540 -0.210 -0.654 0.646] 

queen 
[-1.127 -0.521 0.456 0.211 -0.051 -0.652 1.140 0.699 -0.206 -0.718 -0.028 0.110 -

3.309 -0.493 -0.514 0.104 -0.118 -0.085 0.026 0.686 -0.292 0.459 -0.400 -0.404 0.318] 

uncle 
[-1.276 0.917 1.099 0.489 -0.700 -0.615 0.608 0.571 -0.220 -0.128 -0.227 0.698 -3.295 

-0.665 0.783 -0.437 1.450 -0.611 -0.567 0.001 0.998 0.791 -0.643 -0.703 -0.544] 

aunt 
[-1.955 0.941 1.322 0.589 -0.483 -0.927 0.671 -0.268 -0.388 -0.476 -0.515 0.114 -

3.305 -0.602 0.071 -0.394 1.474 -0.367 -0.487 0.217 1.302 0.280 -0.748 -0.097 -0.484] 
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4.2.4. Creating Sentence Vectors 

Sentence vectors are created by concatenating word vectors belonging to the words in a 

tweet. Since convolution needs the same size input and all tweets do not have the same 

length, we need to equalize the size of the tweets. In literature, different alternatives are 

applied for getting equal size tweets. Most common way is to feed zeros to the end of short 

tweets until getting the same length. Another common option is to feed randomly generated 

values. We have tried a new way, which is to repeat the word vectors until we get the same 

length (Algorithm 4.1). We set max word length to 40. We decided this number according 

to the length of the tweets in our training dataset. If a tweet has more than 40 words, first 40 

words are taken into consideration. For the tweets which have less than 40 words, we repeat 

the words in the same order they appear in text. For instance the tweet “my parents are going 

to the zac brown band concert tomorrow night and im so jealous.” has 16 words. Words in 

this tweet are repeated twice and first eight words are repeated three times. Final 

representation of tweet becomes “my parents are going to the zac brown band concert 

tomorrow night and ım so jealous. my parents are going to the zac brown band concert 

tomorrow night and ım so jealous. my parents are going to the zac brown” so it has finally 

40 words.  

After having all equal size tweets input data is created by concatenating vectoral 

representations of words. The words which do not exist in our vocabulary forms another 

problem. We use zero-padding for such words, that is, we add 25 zeros for these words.  

Final vectors are saved to a file after adding sentiment value to each line for processing in 

deep learning methods. These vectors are 40 times 25 dimensional vectors. So, we have 

1000-dimensional vectors for sentence representation plus one sentiment value for each line 

in the training file (Algorithm 4.1). 
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Algorithm 4.1. Creating sentence vectors with no region 

 

maxNumberOfWords = 40  

wordsArray = SplitTweetIntoWords() 

while wordsCount < maxNumberOfWords do 

        foreach word ∈ wordsArray do 

                AddWordToWordList(wordList, word) 

                wordsCount = wordsCount + 1 

        end for 

        foreach word ∈ wordList do 

                wordVector = GetWordVectorFromDatabase(word) 

                if wordVector is empty then 

                        for i from 1 to 25 

                                wordVector[i] = 0 

                        end for 

                end 

                sentenceVector = sentenceVector + wordVector 

        end for 

end 

4.2.5. Creating Sentence Vectors with Regions 

In addition to standard CNN, LSTM, and SVM, different combinations of these algorithms 

are used in sentiment analysis. One alternative is to use regional structure for combination 

as shown in Figure 2.1. In this structure, each sentence is split into regions. We use 

punctuation notations such as full stop, comma, colon, semi-colon, question mark, 

exclamation mark for splitting regions. Each region is set to a standard length of 10 words, 

we apply the same rules used in the sentence vectors with no regions for padding and non-

existing words. In addition, each tweet is split into eight regions. If a tweet has less than 

eight regions, regions are repeated in the same way we apply for the word length. If a tweet 

has more than eight regions, first eight regions are used for training (Algorithm 4.2). Finally 

we have 2000-dimensional vectors by concatenating eight regions in a sentence, 10 words 

in a region, and 25 dimensional vectors for each word (Figure 4.1). For non-regional data 

organization, the same structure is applied by accepting each single word as a region (Figure 

4.2).  Additionally, sentiment value is appended to the end of training file’s each line. 
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Algorithm 4.2. Creating sentence vectors with regional structure 

 

maxNumberOfRegions = 8 

maxNumberOfWords = 10  

regionsArray = SplitTweetIntoRegions() 

while regionsCount < maxNumberOfRegions do 

        foreach region ∈ regionsArray do 

                AddRegionToRegionList(regionList, region) 

                regionsCount = regionsCount + 1 

        end for 

        foreach region ∈ regionList do 

                wordsArray = SplitRegionIntoWords() 

                while wordsCount < maxNumberOfWords do 

                        foreach word ∈ wordsArray do 

                                AddWordToWordList(wordList, word) 

                                wordsCount = wordsCount + 1 

                        end for 

                        foreach word ∈ wordList do 

                                wordVector = GetWordVectorFromDatabase(word) 

                                if wordVector is empty then 

                                        for i from 1 to 25 

                                                wordVector[i] = 0 

                                        end for 

                                end 

                                sentenceVector = sentenceVector + wordVector 

                        end for 

                end 

        end for         

end  
 

 

 

 

Figure 4.1. Regional structure for one tweet with regional data 
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Figure 4.2.  Regional structure for one tweet with non-regional data 

4.3. NEURAL NETWORKS 

Sentence vectors created in the previous step are used as input for training and testing issues. 

SemEval2016 Task4 full data, SemEval2014 Task 9 Sub Task B full data, and SemEval2017 

development data are used for training. SemEval2017 test data are used for testing which 

have 12284 tweets in total. In this research, widely used learning models such as CNN and  

LSTM are compared. In addition, some alternative ensembles and combinations of these 

models are used for comparison. Moreover, SVM is applied as an alternative solution in one 

combination. 

4.3.1. Single CNN Network 

Single CNN model is a deep learning model consisting of a convolution layer, a max pooling 

layer, a flatten layer, and a fully connected (dense) layer with a sigmoid activation function. 

Convolution layer takes input as 1000 dimensional vector which is a concatenation of 40 

words, each word is represented by 25 dimensional vectors. It has 12 filters with a kernel 

size of 50. Pool size is set to three in max pooling layer. Flatten layer is applied for making 

the output of max pooling layer usable for fully connected layer. Since we have 12 filters, 

output of the max pooling for each tweet is 317 x 12 matrix. Flatten layer concatenates these 

values to a single vector. Finally, fully connected layer outputs three dimensional vector 

which represent the probabilities of each class. Sigmoid activation function and mean square 

error (mse) loss function is used for training. The same model is applied for regional word 

embeddings, only dimensions change. Implementation details of configuration and 
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parameters for CNN are shown in Figure 4.3 and Table 4.3. The reason behind regional 

model having less dimension after first convolution is that stride is set to 25 in the first 

convolutional layer for being able to deal with large dimensional input.  

 
 

Figure 4.3. Single CNN network 

 

Table 4.3. CNN parameters for single CNN network 

 

PARAMETER 
VALUE 

(NO REGIONS) 

VALUE 

(REGIONAL) 

Number of Layers 

1 Convolution  

1 Max pooling 

1 Fully connected 

1 Convolution  

1 Max pooling 

1 Fully connected 

Batch size 100 100 

Epochs 300 300 

Number of tweets 31007 31007 

Word count 40 80 

Word Vector Dimensions 25 25 

Number of filters 12 12 

Kernel size 50 50 

Stride number 1 25 

Pool size 3 3 

Activation function sigmoid sigmoid 

Loss function MSE MSE 

Optimizer rmsprop rmsprop 

Metrics accuracy accuracy 

Validation split 0.05 0.05 
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4.3.2. Single LSTM Network 

LSTM model uses the same input with the CNN model and some parameters such as 

activation and loss functions are the same. But the layer outputs are totally different from 

the one in CNN model described in previous section because of the differences between 

CNN and LSTM structure. LSTM model has an LSTM layer, a dropout layer, a flatten layer, 

and a fully connected layer. In LSTM layer, output dimension is set to three.  A dropout of 

20 percent is applied. Flatten layer and fully connected layer are used in the same way with 

CNN model.  

 

 

 

Figure 4.4. Single LSTM network 
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Table 4.4. LSTM parameters for single LSTM network 

 

PARAMETER 
VALUE 

(NO REGIONS) 

VALUE 

(REGIONAL) 

Number of Layers 

1 LSTM  

1 Dropout 

1 Fully connected 

1 LSTM  

1 Dropout 

1 Fully connected 

Batch size 100 100 

Epochs 300 300 

Number of tweets 31007 31007 

Word count 40 80 

Word Vector Dimensions 25 25 

Dropout 0.2 0.2 

Activation function sigmoid sigmoid 

Loss function MSE MSE 

Optimizer rmsprop rmsprop 

Metrics accuracy accuracy 

Validation Split 0.05 0.05 

 

4.3.3. Individual CNN and LSTM Networks with a SVM Classifier 

SVM model used in this research is not a single SVM layer. In this configuration, single 

CNN network and single LSTM network described in the previous sections are used with 

the parameters described in Table 4.3, Table 4.4, Figure 4.3, and Figure 4.4.Outputs of the 

fully connected layers of CNN model and LSTM model are concatenated and input to the 

SVM for training. Therefore, SVM model structure is an ensemble of CNN model and 

LSTM model described in the previous sections. SVM model has an input of six dimensional 

vector and it outputs three dimensional vector. Aim of this configuration was to see whether 

SVM could be used as a more intelligent algorithm rather than just voting results of LSTM 

and CNN layers. Therefore,  SVM model is applied with default values described in sklearn 

[63] library. The default values of SVM described in sklearn library are; penalty parameter 

C of the error term is one, kernel type to be used in the algorithm is rbf, kernel coefficient 

for algorithm is set to auto which uses one / number of features, shrinking heuristic is used, 

probability estimates are set to false, verbose output option is set to false. 
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Figure 4.5. Individual CNN and LSTM networks with a SVM classifier 

4.3.4. Individual CNN and LSTM Networks 

Input to this model is provided exactly in the same way with SVM model described in 

previous section. The only difference is that instead of feeding LSTM and SVM results to 

an SVM layer, a soft-voting is used for final prediction that means average of each class are 

calculated to decide corresponding sentiment value.  

Although models mentioned so far do not use regional structure, it is also used with data 

provided for regional structure. When we use regional data, some parameters in the model 

change for best accuracy. In addition, layer outputs have different shapes.  

 
 

Figure 4.6. Individual CNN and LSTM networks 

4.3.5. Multiple CNNs and LSTM Networks 

In this structure (Figure 2.5), tweets are divided into regions. Each region is a sub sentence 

in a tweet which is divided by punctuation marks such as full stop, comma, colon, semi-
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colon, question mark, exclamation mark. Each tweet is divided into eight regions and each 

region is set to a maximum number of 10 words.  

Firstly, a CNN model is applied to each of eight regions. CNN model has a convolution 

layer, a max pooling layer, a flatten layer, and a fully connected (dense) layer with a sigmoid 

activation function. Convolution layer takes input as 250 dimensional vector which is a 

concatenation of 10 words, each word is represented by 25 dimensional vectors. It has 12 

filters with a kernel size of three. Pool size is set to three in max pooling layer. Since we 

have 12 filters, output of the max pooling for each region is 2 x 12 matrix. Flatten layer 

concatenates these values to a single vector. Finally, fully connected layer outputs three 

dimensional vector which represent the probabilities of each class. Sigmoid activation 

function and mean square error (mse) loss function are used for training.  

Second step is to feed CNN model outputs to LSTM model and get the final predictions. 

Since we have eight regions, LSTM model input is eight times three dimensional vectors. 

LSTM model has an LSTM layer, a dropout layer, a flatten layer, and a fully connected 

layer. In LSTM layer, output dimension is set to three. A dropout of 30 percent is applied. 

Flatten layer and fully connected layer are used in the same way with CNN model.  

Although this model is mainly used for regional structure, it is also used with data provided 

without regions. In this scenario, each word in the tweet is accepted as a region for simplicity. 

Therefore, region size in a tweet becomes 40 and each region consists of 25 dimensional 

word vector. Network structure is shown in Figure 4.7 for both scenarios. CNN parameters 

and LSTM parameters are shown in detail in Table 4.5 and Table 4.6. 
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Figure 4.7. Multiple CNNs and LSTM networks 

 

Table 4.5. CNN parameters for multiple CNNs and LSTM networks 

 

PARAMETER 
VALUE 

(NO REGIONS) 

VALUE 

(REGIONAL) 

Number of CNNs 40 8 

Number of Layers 

1 Convolution  

1 Max pooling 

1 Fully connected 

1 Convolution  

1 Max pooling 

1 Fully connected 

Batch size 100 100 

Epochs 300 300 

Number of tweets 31007 31007 

Input Dimensions 1 x 25 10 x 25 

Number of filters 12 12 

Kernel size 3 3 

Stride number 1 1 

Pool size 3 3 

Activation function sigmoid sigmoid 

Loss function MSE MSE 

Optimizer rmsprop rmsprop 

Metrics accuracy accuracy 

Validation split 0.05 0.05 

 



41 

 

 

Table 4.6. LSTM parameters for multiple CNNs and LSTM networks 

 

PARAMETER 
VALUE 

(NO REGIONS) 

VALUE 

(REGIONAL) 

Number of Layers 

1 LSTM  

1 Dropout 

1 Fully connected 

1 LSTM  

1 Dropout 

1 Fully connected 

Batch size 100 100 

Epochs 300 300 

Number of tweets 31007 31007 

Input Dimensions 40 x 3 8 x 3 

Dropout 0.3 0.3 

Activation function sigmoid sigmoid 

Loss function MSE MSE 

Optimizer rmsprop rmsprop 

Metrics accuracy accuracy 

Validation Split 0.05 0.05 

 

4.3.6. Multiple CNNs and Bidirectional LSTM Networks  

This model is the same as the one in the previous section. Difference is the usage of 

bidirectional LSTM layer instead of LSTM layer. When bidirectional LSTM is used, output 

of LSTM layer differs because LSTMs in each direction yields three dimensional vectors 

and a total of six dimensional vector is created. Difference can be seen in Figure 4.8.  Aim 

of this configuration is to compare the impact of using bidirectional LSTM instead of single 

directional LSTM because some works in the literature have shown competitive results with 

bidirectional LSTM. Parameters are the same as stated in Table 4.5 and Table 4.6.  
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Figure 4.8. Multiple CNNs and bidirectional LSTM networks 

4.3.7. Single Three-layer CNN and LSTM Networks 

This model consists of three convolution layers, each convolution is followed by a max 

pooling layer with a pool size of three. After three CNN and max pooling layers, LSTM, 

dropout, and fully connected layers are applied to decide final prediction. Configuration is 

displayed in  

Figure 4.9 where the input is directed to a three-layer CNN. The input has a size of 1000 if 

it is based on words (non-regional) or a size of 2000 if it is based on regions (regional). CNN 

parameters are shown in Table 4.7 and LSTM parameters are the same as described in Table 

4.4. 

 

 

Figure 4.9. Single three-layer CNN and LSTM networks 
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Table 4.7. CNN parameters for single three-layer CNN and LSTM networks 

 

PARAMETER 
VALUE 

(NO REGIONS) 

VALUE 

(REGIONAL) 

Number of Layers 
3 Convolution  

3 Max pooling 

3 Convolution  

3 Max pooling 

Batch size 100 100 

Epochs 300 300 

Number of tweets 31007 31007 

Word count 40 80 

Word Vector Dimensions 25 25 

Number of filters 12 12 

Kernel size 50 50 

Stride number 1 1 

Pool size 3 3 

Activation function sigmoid sigmoid 

Loss function MSE MSE 

Optimizer rmsprop rmsprop 

Metrics accuracy accuracy 

Validation split 0.05 0.05 

4.3.8. Single Three-layer CNN and Bidirectional LSTM Networks 

This model is the same as the model described in the previous section. Only difference is the 

application of bi-directional LSTM layer instead of one directional LSTM. Motivation 

behind this configuration is to compare the impact of using bidirectional LSTM instead of 

single directional LSTM because some works in the literature have shown competitive 

results with bidirectional LSTM. CNN parameters and LSTM parameters are the same as 

described in Table 4.7 and Table 4.4. 

 

 

Figure 4.10. Single three-layer CNN and bidirectional LSTM networks 
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5. IMPLEMENTATION 

 

This research can be split into two steps. First step is about arranging input data and second 

step  is deep learning itself. In each step, different tools and technologies are used for 

implementation. 

First step of sentiment analysis is to download data and convert tweets into numerical values. 

We need to download tweets for converting them to numerical values. SemEval committee 

does not directly distribute tweets because of Twitter privacy laws that forbids sharing of 

removed tweets. They provide us with only status ids of tweets with a text file. Tweets are 

downloaded from Twitter databases via C# LinqToTwitter.net library, which is a publicly 

available library for tweet operations like reading, sharing, editing tweets. Downloaded 

tweets are inserted to an Sql Server database, and tweets are cleaned by removing links, 

replacing smileys, etc mentioned in Section 4.2.  

 

 

Figure 5.1. Tweet download application 
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Word vectors are needed to represent whole tweet in numerical values. We have created a 

windows application with .Net framework and C# programming language to create 

word2vec word vectors. Word vectors are created from SemEval data with open source C# 

word2vec library named word2vec.net. We have configured library to create 25 dimensional 

word vectors using continuous bag of words model, discarding words those occur less than 

5 times, and repeating 100 iterations for training.  The file containing SemEval 2014 tweets, 

SemEval 2016 tweets, and SemEval 2017 development tweets is set as training file for 

word2vec model and word vectors are inserted to the database (Figure 5.2) after 

unsupervised training with the selected file. Inserted word vectors are normalized with 

another .Net application written with C# programming language. 

 
 

Figure 5.2. Relational database diagram for tweets and normalized word vectors 
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Finally, sentence vectors are created from word vectors. In single models, word vectors are 

simply concatenated to create sentence vectors. In regional structure, tweets are splitted into 

regions, later word vectors in each region are concatenated and later regions are concatenated 

to form sentence vectors. This application is also written with C# and .Net framework. This 

application exports sentence vectors to text file with System.IO library in .Net Framework. 

Second step is the development and training of deep learning algorithms. In this phase, 

formatted text data files exported from .Net application are used as input to learning models. 

Learning models are created with Python. Pandas library is used for reading input files. 

Tensorflow [62] framework and Keras [64] deep learning libraries are used for designing 

deep learning models in Python.  In addition, sklearn [63] library is used for SVM model. 
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6. TEST AND EVALUATION 

 

This chapter compares the differences among different learning models such as CNN, 

LSTM, SVM, and their combinations in both classic way or regional structure. In addition, 

performance of pretrained GloVe vectors and self-trained Word2Vec vectors from SemEval 

data are compared.   

6.1. COMPARISON OF DESCRIBED DEEP LEARNING CONFIGURATIONS 

To begin with the testing and evaluation process, first mention about the data used for 

training and testing. Tweets published on Twitter have been changing continuously. For 

example, if you want to get tweets containing any hashtag, word, or topic, you can get 

different set of tweets each time you try because new tweets may be published, tweets may 

be updated, or previously published tweets may be removed. Of course, this change is 

proportional to popularity of the subject and keywords you search. Therefore, we have 

decided to work with a publicly distributed data set  provided by SemEval committee. Even 

though we have worked with a static data set, we couldn’t prevent deletion of some tweets. 

SemEval 2017 was dealing with two languages, Arabic and English with different subtasks.  

We have used data for Task 4 Subtask A which is about considering English tweets with 

positive, negative, and neutral sentiment values. Most of the top scoring teams use deep 

learning models such as CNN, LSTM, SVM, and their combinations in SemEval 2017 [25].  

The overall accuracy for the evaluation of testing set and the computational efficiency is 

calculated by the equation: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(6.1) 

 

Other metrics used for test and evaluation are precision, recall, and f-measure values. 

Precision talks about how precise/accurate your model is out of those predicted positive, 

how many of them are actually positive. Precision is ratio of truly predicted positive to all 

positive predictions. (Equation 6.2) 
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Recall actually calculates how many of the actual positives our model capture through 

labelling it as positive (Equation 6.3) 

F-measure (F-score or F1 score) is the balance between precision and recall values. It is 

calculated by harmonic average of the precision and recall with the Equation 6.4.  

For each class precision, recall, and F-measure are calculated by below equations where: 

TP: instance is  classified as a, belongs to a 

FP: instance is classified as a, belongs to others 

TN: instance is classified as others, belongs to others 

FN: instance is classified as others, belongs to a 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6.2) 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑅𝑎𝑡𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6.3) 

 

 

Let a, b, and c represent positive, negative, and neutral classes respectively. After calculating 

recall, precision, and F-measure for each class individually, we take average of recall, 

precision, and F-measure respectively to find values for the entire model. Results are shown 

in Table 6.2 and Table 6.3. 

According to our evaluation criteria, we started with comparing different word vectors. 

First, we tried different deep learning models with word2vec vectors. Word vectors are 

created from previous years’ SemEval data tweets plus SemEval 2017 training data. 31007 

tweets are used for training word vectors. Tweets consist of 662K words and it has a 

vocabulary of size 10K.  

 
𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑅𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(6.4) 
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Second option was to use GloVe vectors. GloVe vectors are created by Stanford NLP Group 

and published freely. Word embeddings are created from two billion tweets with a corpus 

size of 27 billion words and 1.2 million words in vocabulary. Comparison of word vectors 

is shown at (Table 6.1). 

With word2vec model, maximum accuracy of 52 percent was reached with two similar 

models which are combination of CNN and single LSTM or bi-directional LSTM with 

regional and non-regional structure. On the other hand, models with GloVe vectors scored 

to a maximum of 59 percent in case of using CNN and LSTM organically in multiple CNN 

and LSTM configuration described in section 4.3.5 and 4.3.6. The reason behind it lies to 

the fact that with Word2Vec model is trained with a relatively small training dataset, around 

32.000 tweets are too little compared to the pretrained GloVe word vectors’ training dataset 

with a larger corpus. 

 

Table 6.1. Comparison of word embeddings 

 

Model file 

Number of 

dimensions 

Corpus 

(size) 

Vocabulary 

size Author Architecture 

Twitter (2B 

Tweets)  

25 Twitter 

(27B) 

1.2M GloVe GloVe 

Twitter (33K 

Tweets) 

25 Twitter 

(662K) 

10K Generated via 

word2vec.Net 

library 

Word2vec 

 

After comparing different word vectors, our main research of interest is comparison of 

different learning models. According to our test results, best scorers in terms of accuracy 

were the ones in which CNN and LSTM models are used. Usage of multiple CNNs with 

LSTM networks increases the performance between three and six percent regardless of used 

word embedding system. This system almost always scores the best among all the versions 

with both one directional and bidirectional LSTMs. Another observation is that, arranging 

data in a regional structure does not always improve the performance, especially in the tests 

done with GloVe vectors. Soft voting after individual CNN and LSTM layers scores better 

http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
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than using an SVM layer for these results. Final observation is that bidirectional LSTM 

networks does not provide much better results than one directional standard LSTM models, 

which can be because of the structure of words in a sentence. 

Table 6.2. Test results with word2vec self-trained vectors 

 

Embedding Word System: Word2Vec 

Network Model Type Recall Prec. F1 Acc. 

1. Single CNN network N-Ra 0.33 0.35 0.33 0.49 

R 0.32 0.34 0.33 0.51 

2. Single LSTM network N-R 0.43 0.51 0.39 0.51 

R 0.44 0.49 0.39 0.50 

3. Individual CNN and LSTM Networks N-R 0.43 0.47 0.37 0.50 

R 0.46 0.52 0.42 0.52 

4. Individual CNN and LSTM Networks with 

SVM classifier 

N-R 0.45 0.46 0.43 0.49 

R 0.42 0.54 0.38 0.51 

5. Single 3-Layer CNN and LSTM Networks N-R 0.41 0.52 0.40 0.46 

R 0.40 0.46 0.35 0.48 

6. Multiple CNNs and LSTM Networks N-R 0.43 0.47 0.37 0.50 

R 0.46 0.52 0.43 0.52 

7. Single 3-Layer CNN and bi-LSTM Networks N-R 0.42 0.45 0.39 0.48 

R 0.42 0.47 0.36 0.48 

8. Multiple CNNs and bi-LSTM Networks N-R 0.43 0.50 0.38 0.51 

R 0.46 0.51 0.44 0.52 

a N-R: Non-Regional, R: Regional word embedding 
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Table 6.3. Test results with GloVe pretrained vectors 

 

Embedding Word System: GloVe 

Network Model Type Recall Prec. F1 Acc. 

1. Single CNN network N-Ra 0.44 0.41 0.4 0.54 

R 0.35 0.31 0.31 0.48 

2. Single LSTM network N-R 0.5 0.58 0.48 0.55 

R 0.51 0.55 0.51 0.55 

3. Individual CNN and LSTM Networks N-R 0.53 0.6 0.53 0.58 

R 0.55 0.6 0.55 0.56 

4. Individual CNN and LSTM Networks with SVM 

classifier 

N-R 0.52 0.55 0.53 0.56 

R 0.49 0.6 0.5 0.56 

5. Single 3-Layer CNN and LSTM Networks N-R 0.5 0.5 0.5 0.52 

R 0.43 0.61 0.39 0.53 

6. Multiple CNNs and LSTM Network N-R 0.53 0.60 0.53 0.58 

R 0.55 0.6 0.56 0.59 

7. Single 3-Layer CNN and bi-LSTM Network N-R 0.52 0.59 0.53 0.57 

R 0.50 0.57 0.50 0.55 

8. Multiple CNNs and bi-LSTM Network N-R 0.54 0.60 0.55 0.59 

R 0.55 0.6 0.56 0.59 

a N-R: Non-Regional, R: Regional word embedding 

6.2. COMPARISON OF BEST SCORING COMBINATION WITH THE STATE OF 

THE ART METHODS  

In the second comparison, we compare our best scoring network with the state of the art 

models. Results are displayed in Table 6.4. It is obviously seen our study has similar but a 

bit lower, up to six percent, scores. This difference stem from usage of different datasets and 

specialized methods used in other studies for reshaping dataset or tuning the neural network. 

Moreover, the scope of this study was not focused on achieving the best performance in 

comparison with other studies, but rather to evaluate and compare different deep neural 

networks and word embedding systems on a single testing environment with an accepted 

dataset. At this point, it is worth to mention that the best performance in the literature in 

terms of accuracy (~65 percent) it is still not satisfactory, thus revealing that on sentiment 
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analysis deep learning methods are still far from guaranteeing a performance comparable to 

other fields where the same networks are used with higher success rate (e.g. deep learning 

networks for object recognition in images). 

Table 6.4. Comparison of the state of the art methods with the best results of current study 

 

Study Network 

System 

Word Embedding Dataset (labeled 

Tweets) 

Acc. 

Baziotis et al. [30] bi-LSTM GloVe ~50.000 0.65 

Cliche [52] CNN+LSTM GloVe, FastText,Word2Vec ~50.000 0.65 

Deriu et al. [16] CNN GloVe, Word2Vec ~300.000 0.65 

Rouvier and Favre [24] CNN Lexical, POS, Sentiment ~20.000 0.61 

Wange et al. [1] CNN+LSTM Regional Word2Vec ~8.500 1.341a 

Current study CNN+LSTM Regional GloVe ~31.000 0.59 
a RMSE 

Cliche [52] has tried different deep learning methods which are CNN and LSTM. This model 

is similar to the one we have proposed in Section 4.3.4. They perform better because they 

have done a lot of improvements starting from the number of CNN and LSTM models. We 

have only used one CNN and one LSTM for soft-voting. In CNN, they use 200 dimensional 

word vectors. They set the tweet size to have 80 words. 200 filters are applied with three 

different kernel sizes. So, a total of 600 filters are applied. After that a hidden layer is used 

with a size of 30. To reduce overfitting 50 percent dropout is applied after both max pooling 

and fully connected layers. They use cross-entropy as the loss function, loss is minimized 

using the Adam optimizer. They use bi-directional LSTM. In terms of data improvements, 

100 million unlabeled tweets are downloaded in addition to 50000 labeled tweets, and these 

data are labeled according to smileys, tweets with smiling face “:)” are accepted positive, 

ones with sad face “:(“ are accepted negative. They train Word2vec, GloVe, and FastText 

vectors with default settings from 100 million unlabeled tweets. They ensemble 10 CNNs 

and 10 LSTMs together through soft voting. The models ensembled have different random 

weight initializations, different number of epochs (from 4 to 20 in total), different set of filter 

sizes (either [1, 2, 3], [3, 4, 5] or [5, 6, 7]) and different embeddings. Since this configuration 

is similar to our individual CNN and LSTM model which has scored lower than our multiple 

CNNs and LSTM configuration, data collection and pre-processing, different number of 

filters, and soft voting mechanism can be applied to our best scoring configuration to get 

better results for the future work. 
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6.3. CLASS BASED PREDICTION COMPARISON 

In Table 6.5 and Table 6.6 accuracies for each class labels are shown according to Equation 

6.1. From the results, we can easily state that positive classes can be predicted most easily 

in our experiments regardless of word embedding technique and neural network 

configuration. Second best predicted classes are negative classes. Our learning algorithms 

have difficulties in predicting neutral sentiment values. This may be because of unequal 

distribution of classes in our data set. As it is shown in Table 6.7, almost half of the tweets 

have neutral sentiment in both training and test data. In addition, training data have a short 

number of negative tweets and test data have very little positive tweet set. 

Table 6.5. Test results for class accuracies with word2vec self-trained vectors 

 

Embedding Word System: Word2Vec 

Network Model Type Positive Acc. Negative Acc. Neutral Acc. 

1. Single CNN network N-Ra 0.83 0.47 0.39 

R 0.85 0.46 0.38 

2. Single LSTM network N-R 0.79 0.68 0.54 

R 0.78 0.68 0.54 

3. Individual CNN and LSTM 

Networks 

N-R 0.85 0.68 0.61 

R 0.86 0.68 0.61 

4. Individual CNN and LSTM 

Networks with SVM classifier 

N-R 0.75 0.67 0.55 

R 0.82 0.68 0.53 

5. Single 3-Layer CNN and 

LSTM Networks 

N-R 0.74 0.66 0.52 

R 0.83 0.69 0.53 

6. Multiple CNNs and LSTM 

Networks 

N-R 0.79 0.68 0.53 

R 0.8 0.68 0.56 

7. Single 3-Layer CNN and bi-

LSTM Networks 

N-R 0.77 0.67 0.53 

R 0.76 0.68 0.53 

8. Multiple CNNs and bi-LSTM 

Networks 

N-R 0.81 0.68 0.53 

R 0.8 0.68 0.56 

a N-R: Non-Regional, R: Regional word embedding 
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Table 6.6. Test results for class accuracies with GloVe self-trained vectors 

 

Embedding Word System: GloVe 

Network Model Type Positive 
Acc. 

Negative 
Acc. 

Neutral 
Acc. 

1. Single CNN network N-Ra 0.84 0.51 0.42 

R 0.82 0.46 0.37 

2. Single LSTM network N-R 0.82 0.7 0.57 

R 0.8 0.71 0.58 

3. Individual CNN and LSTM 

Networks 

N-R 0.89 0.71 0.67 

R 0.88 0.7 0.67 

4. Individual CNN and LSTM 

Networks with SVM classifier 

N-R 0.82 0.71 0.59 

R 0.83 0.71 0.57 

5. Single 3-Layer CNN and 

LSTM Networks 

N-R 0.76 0.71 0.57 

R 0.83 0.69 0.53 

6. Multiple CNNs and LSTM 

Networks 

N-R 0.84 0.72 0.6 

R 0.83 0.73 0.61 

7. Single 3-Layer CNN and bi-

LSTM Networks 

N-R 0.83 0.72 0.59 

R 0.82 0.71 0.57 

8. Multiple CNNs and bi-

LSTM Networks 

N-R 0.83 0.73 0.61 

R 0.83 0.73 0.61 

a N-R: Non-Regional, R: Regional word embedding 

 

Table 6.7. Sentiment distribution in tweet data set 

 

Data 

Type 

Positive  

Tweets 

Negative  

Tweets 

Neutral  

Tweets 

Total 

Train 11469 4966 14572 31007 

Test 2375 3972 5937 12284 

 

 

If we take into consideration our best scoring model for further analysis we prefer to continue 

with multiple CNNs and LSTM network with GloVe vectors, and we select non regional 
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data organization because it has the same score with regional data set, but it requires less 

computing power because it has smaller input data dimensions. According to confusion 

matrix (Table 6.8), we can see that most errors are done by predicting positive and negative 

as neutral. In addition least errors are confusion of positive values with negative values. 

Precision, recall, and f-measure values for each class are reported in Table 6.9. 

Table 6.8. Confusion matrix for multiple CNN and LSTM network 

 

Confusion Matrix 
Actual Classes 

Positive Negative Neutral 

Predicted 

Classes 

Positive 1100 139 594 

Negative 89 1228 583 

Neutral 1186 2605 4760 

 

Table 6.9. Comparison of class scores for multiple CNN and LSTM network 

 

 Recall Precision F-Measure 

Positive  0.46 0.60 0.52 

Negative 0.31 0.65 0.42 

Neutral 0.80 0.56 0.66 

 

6.4. CROSS VALIDATION RESULTS COMPARISON 

Since our data is tiny compared to state of the art models, we have tried our selected deep 

learning configuration with k-fold cross validation. Training and test data described in the 

previous sections, with a total of 43290 records, are concatenated and used together. In terms 

of k we applied two different values, 10-fold cross validation and 5-fold cross validation 

because these two k values are most commonly used k values in the literature [65]. Our 

selected model was multiple CNNs and LSTM networks with no region. Cross validation 

takes long time because we are training the model five or ten times according to k value, 

moreover, we have 40 CNNs and one LSTM model in each iteration. In order to reduce 
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training time, we have set number of CNN epoches to 100 instead of 300 because our aim 

was to compare cross validation results with the system’s performance using test data rather 

than increasing the accuracy. For equality of training parameters we have also tried our 

model with 100 CNN epoches and we have observed only one percent decrease so it is not 

so much important compared to time we earn by decreasing epoch number. In this 

experiment, we have observed that cross validation score with bot 10-fold and 5-fold 

validation are similar to results we have obtained for training and testing data independently. 

In addition, we have tried with two different batch sizes, 100 and 1000. We have observed 

that increasing batch size to 1000  causes a five to eight percent decrease in accuracy. 

Another interesting observation is that, 10-fold cross validation performs better in 5-fold 

with 1000 batch size. On the other hand, 5-fold cross validation outperforms 10-fold 

validation with 100 batch size. Therefore, it is not possible to say 10-fold cross validation is 

better than 5-fold validation, or vice versa although we use the same data set, it depends on 

the parameters used. 

Table 6.10. Cross validation results comparison 

 

 

 

Accuracies Average 

Accuracy 

Configuration 

Multiple CNNs and 

LSTM Networks With No 

Region 

0.58 0.58 CNN Epoches:300 

LSTM Epoches: 300 

Batch size: 100 

Multiple CNNs and 

LSTM Networks With No 

Region 

0.57 0.57 CNN Epoches:100 

LSTM Epoches: 300 

Batch size: 100 

5-Fold Cross Validation [0.50 0.59 0.59 0.57 0.55] 0.56 CNN Epoches:100 

LSTM Epoches: 300 

Batch size: 100 

10-Fold Cross Validation [0.54 0.51 0.56 0.59 0.59 

0.57 0.55 0.60 0.57 0.57] 

0.57 CNN Epoches:100  

LSTM Epoches: 300 

Batch size: 100 

5-Fold Cross Validation [0.48 0.54 0.54 0.49 0.48] 0.51 CNN Epoches:100 

LSTM Epoches: 300 

Batch size: 1000 

10-Fold Cross Validation [0.45 0.46 0.56 0.51 0.46 

0.51 0.50 0.52 0.49 0.48] 

0.49 CNN Epoches:100 

LSTM Epoches: 300 

Batch size: 1000 
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6.5. COMPARISON WITH LARGER DIMENSIONAL WORD VECTORS 

In these experiment sets, we have applied our selected network configuration with different 

size of word embeddings such as 100 dimensional word vectors and 200 dimensional word 

vectors. Pre-trained GloVe word embeddings from Stanford university are downloaded for 

this task (Table 3.2). All the embeddings are created from the same dataset with a vocabulary 

size of 1.2 million words and 27 billion corpus size. So, all vectors are compared under the 

same circumstances. 

 First, we have tested the network with the same parameters we had previously tried with 

our best scoring model as described in Table 6.11. Within these implementations, we have 

observed that 100 dimensional vectors scored the best accuracy with 61 percent and this is 

the maximum accuracy we have reached so far. Since 200 dimensional vectors score less 

than 100 dimensional vectors, we cannot conclude that increasing the vector size is 

positively related with accuracy. The aim should be finding optimum vector size for best 

accuracy. 

Table 6.11. Larger dimensional vectors with same parameters 

 

PARAMETER 
25D 

VECTORS  

100D 

VECTORS 

200D 

VECTORS 

Number of CNNs 40 40 40 

Batch size 100 100 100 

Epochs 300 300 300 

Number of tweets 31007 31007 31007 

Input Dimensions 1 x 25 1 x 100 1 x 200 

Number of filters 12 12 12 

Kernel size 3 3 3 

Stride number 1 1 1 

Pool size 3 3 3 

Activation function sigmoid sigmoid sigmoid 

Loss function MSE MSE MSE 

Optimizer rmsprop rmsprop rmsprop 

Metrics accuracy accuracy accuracy 

Validation split 0.05 0.05 0.05 

Accuracy 0.58 0.61 0.60 
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In the second experiment set, we have tried 100 dimensional and 200 dimensional word 

vectors with different parameters such number of filters, kernel size, and pooling size. In 

these experiments, we have again observed superiority of 100 dimensional vectors over 200 

dimensional vectors in all parameter sets. Another observation is that, our best scoring 

parameters which were decided before with 25 dimensional vectors have again scored best 

results with both 100 and 200 dimensional vectors. In addition, increasing or decreasing any 

of these parameters is not directly related with accuracy. We can only see their effect with 

trial and error in accordance with other parameters, as observed for number of dimensions 

in word embeddings. 

Table 6.12. Larger dimensional vectors with different parameters 

 

PARAMETER 
100D 

VECTORS  

200D 

VECTORS 

100D 

VECTORS  

200D 

VECTORS 

100D 

VECTORS 

Number of CNNs 40 40 40 40 40 

Batch size 100 100 100 100 100 

Epochs 300 300 300 300 300 

Number of tweets 31007 31007 31007 31007 31007 

Input Dimensions 1 x 100 1 x 200 1 x 100 1 x 200 1 x 100 

Number of filters 48 48 48 48 12 

Kernel size 12 12 12 12 3 

Stride number 1 1 1 1 1 

Pool size 12 12 3 3 12 

Activation 

function 

sigmoid sigmoid sigmoid sigmoid sigmoid 

Loss function MSE MSE MSE MSE MSE 

Optimizer rmsprop rmsprop rmsprop rmsprop rmsprop 

Metrics accuracy accuracy accuracy accuracy accuracy 

Validation split 0.05 0.05 0.05 0.05 0.05 

Accuracy 0.60 0.57 0.59 0.46 0.57 

 

6.6. LSTM AND GRU COMPARISON 

Another comparison was about the GRU and LSTM models. We have implemented GRU 

models alone and compared with LSTM only model. The same parameters described in 

Table 4.4 are used for these implementations. In addition, we have applied GRU instead of 

LSTM in multiple CNNs and LSTM models. Parameter details are shown in Table 4.5 and 
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Table 4.6. They have output similar results in our tests (Table 6.13), but GRU only model 

performed one percent better than LSTM only model with both Glove and word2vec 

embeddings. On the other hand, they have shown the same accuracy when used with multiple 

CNN model. Therefore, it is not easy to say one is more preferable than the other according 

to our test results. 

Table 6.13. LSTM and GRU comparison 

 

  
Pretrained 

GloVe vectors 

Self-trained 

word2vec vectors 

Model LSTM 

Only 

GRU 

Only 

CNN  

LSTM 

CNN 

GRU 

LSTM 

Only 

GRU 

Only 

CNN 

LSTM 

CNN 

GRU 

Accuracy 0.55 0.56 0.59 0.59 0.51 0.52 0.52 0.52 

Recall 0.5 0.54 0.55 0.55 0.43 0.43 0.46 0.46 

Precision 0.58 0.56 0.6 0.6 0.51 0.51 0.52 0.52 

F-Measure 0.48 0.54 0.56 0.56 0.39 0.41 0.43 0.43 
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7. CONCLUSION 

 

In this thesis, different configurations of deep learning methods with CNN, LSTM, SVM, 

and their combinations and ensembles are tested for sentiment analysis with Twitter data 

provided by SemEval organization. These tests proved the importance of data for deep 

learning tasks by showing better results with pretrained word vectors from a larger corpus. 

Test results showed similar results with state of the art methods but with lower values. With 

the help of convolution’s effective dimensionality reduction process and long and short term 

dependency detection of LSTM networks, combination of these two models scored better 

than their individual scores. All in all, performance contribution of different dataset has 

contributed much more than changing learning models used in the networks. We have 

observed this different in both using different word embeddings and comparing our best 

networks  with state of the art models. Therefore, it is more valuable than concentrating on 

getting better datasets for future work. In order to having a better training and test datasets, 

larger dimensional word vectors such as having 100, 300 dimensions are used and we have 

seen best results with 100 dimensional word vectors. SentiWordNet datasets can be used in 

another neural network and results can be combined with word embedding results,  thus 

making use of different word embeddings. More CNN, LSTM models with different 

parameters can be added to networks throughout Grid Search.  

To summarize, the contribution of this thesis is that it allowed to evaluate different deep 

neural network configurations and  principal word embedding systems under a single dataset 

and evaluation framework allowing  to shed more light on their advantages and limitations. 
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