
EVALUATION OF DEEP LEARNING ALGORITHMS IN SENTIMENT ANALYSIS

by

Sani Kamış

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Engineering

Yeditepe University

2019

iii

ACKNOWLEDGEMENTS

The present document, resulting of three years of research, would not have been possible

without the help, encouragements and support of many persons. I thank all of them and I

present them all my gratitude.

Special thanks to my supervisor, Asst. Prof. Dr. Dionysis Goularas, who initiated this

research, supported, and trusted me to complete from beginning to end.

I want to thank my manager, Özlem Topuz Öngel, for her encouragement and support in the

first year.

I am grateful to the company I work for, Softtech, for academic support.

I also appreciate the participation of Assoc. Prof. Dr. Özlem Durmaz İncel to the jury and

her advices throughout the process.

I want to thank Prof. Dr. Emin Erkan Korkmaz for his fruitful comments.

Finally, I would like to especially thank my wife, Serpil, for her unconditional love,

understanding, support, and encouragement for this research.

iv

ABSTRACT

EVALUATION OF DEEP LEARNING ALGORITHMS IN SENTIMENT

ANALYSIS

Deep Learning (DL) techniques have played an important role in the solution of a wide range

of problems. Convolutional Neural Networks (CNN) are especially good at image

processing tasks. Recurrent Neural Networks (RNN) are usually applied in Natural

Language Processing (NLP) tasks. Sentiment analysis has been a popular area of research

because people’s opinions are important for each other and people have been sharing their

opinions in social media freely. In the literature, there are studies that use simple deep

learning techniques or their combinations in sentiment analysis. In this thesis, we evaluate

different deep learning techniques. The learning models we compare are CNN, Long Short-

Term Memory Networks (LSTM), and their ensembles and combinations. Moreover, we use

Support Vector Machines (SVM) in a combination. In addition to these models, we compare

different word embedding techniques such as Word2Vec and Global Vectors for Word

Representation (GloVe) models. We focus on sentiment analysis from Twitter Data provided

in Semantic Evaluation (SemEval), which is one of the most popular international workshops

on semantic evaluation. Sentiment analysis work consists of two main steps. First phase is

the creation of word embeddings, Word2Vec and GloVe models are compared in this step.

Second phase is supervised training. Here, we apply CNN, LSTM, SVM, and their various

combinations. Additionally, we have compared voting individual results of different learning

techniques and their more organic combinations. All these combinations are tried with

different weights and parameters, and best scoring values of each model is compared in terms

of accuracy, precision, recall, and F-score.

v

ÖZET

DUYGU ANALİZİNDE DERİN ÖĞRENME ALGORİTMALARININ

KARŞILAŞTIRILMASI

Derin öğrenme teknikleri son zamanlarda pek çok problemin çözümünde önemli bir rol

oynamaya başladı. Convolutional Neural Networks (CNN) özellikle görüntü işleme

uygulamalarında çok başarılı sonuçlar vermektedir. Recurrent Neural Networks (RNN) ise

genelde Doğal Dil İşleme (NLP) uygulamalarında kullanılmaktadır. Duygu analizi son

zamanlarda çok poüler bir araştırma alanı olmaya başladı, çünkü insanlar birbirlerinin

düşüncelerini merak ediyorlar ve sosyala medyada özgürce düşüncelerini paylaşabiliyorlar.

Literatürde, derin öğrenme tekniklerini tek başına veya birden fazla tekniği bir arada

kullanan çalışmalar vardır. Bu çalışmada farklı öğrenme metotlarını karşılaştırılmaktadır.

Karşılaştırdğımız modeller arasında CNN, Long Short-Term Memory Networks (LSTM),

Support Vector Machines (SVM) ve bu modellerin farklı kombinasyonları yer almaktadır.

Modellere ilaveten Word2Vec ve Global Vectors for Word Representation (GloVe) gibi

kelime vektörleri de karşılaştırılmaktadır. Bu çalışmada dünya çapında en popüler doğal dil

işleme organizasyonlarından birisi olan SemEval'ın sağladığı Twitter datası ile duygu analizi

yapılmaktadır. Duygu analizi iki temel aşamadan oluşmaktadır. İlk aşamada GloVe veya

word2vec ile kelimeler vektöre dönüştürülmektedir. İkinci aşama ise öğretmenli öğrenme

aşamasıdır. Bu aşamada, CNN, LSTM, SVM ve kombinasyonları denenmekte ve sonuçları

karşılaştırılmaktadır. Ek olarak farklı öğrenme tekniklerinin ayrı ayrı denenip sonuçlarının

birleştirilmesi veya farklı öğrenme tekniklerinin daha organik bir yapıda bir arada

kullanıldığı modeller de karşılaştırılmaktadır. Bütün kombinasyonların faklı ağırlık ve

parametrelerle denenip en iyi sonucu verenler doğruluk yüzdesi (accuracy), kesinlik

(precision), hassasiyet (recall) ve F-ölçütü (F-score) açısından karşılaştırılmaktadır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES .. viii

LIST OF TABLES ... x

LIST OF SYMBOLS/ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

2.1. CONVOLUTIONAL NEURAL NETWORKS (CNN) .. 4

2.2. LONG SHORT-TERM MEMORY NETWORKS ... 8

2.3. SUPPORT VECTOR MACHINES .. 9

2.4. ENSEMBLES AND COMBINATIONS .. 9

2.4.1. CNN and LSTM ... 9

2.4.2. LSTM and SVM .. 12

2.4.3. CNN and SVM ... 12

2.5. SEMANTIC EVALUATION (SemEval) ... 13

3. METHODOLOGY ... 14

3.1. CONVOLUTIONAL NEURAL NETWORKS .. 14

3.2. LONG SHORT-TERM MEMORY NETWORKS ... 19

3.3. SUPPORT VECTOR MACHINES .. 22

3.4. WORD EMBEDDINGS ... 23

3.4.1. Word2Vec .. 24

3.4.2. GloVe ... 26

3.4.3. SentiWordNet .. 26

4. ANALYSIS AND DESIGN ... 28

4.1. TWEETS ... 28

4.1.1. Creating the Tweet Corpus .. 28

4.1.2. Data Cleaning .. 29

vii

4.2. WORD EMBEDDING.. 28

4.2.1. Self-trained Word Vectors ... 28

4.2.2. Pre-trained Word Vectors .. 29

4.2.3. Normalizing Word Vectors .. 29

4.2.4. Creating Sentence Vectors ... 31

4.2.5. Creating Sentence Vectors with Regions ... 32

4.3. NEURAL NETWORKS ... 34

4.3.1. Single CNN Network ... 34

4.3.2. Single LSTM Network ... 36

4.3.3. Individual CNN and LSTM Networks with a SVM Classifier 37

4.3.4. Individual CNN and LSTM Networks ... 38

4.3.5. Multiple CNNs and LSTM Networks .. 38

4.3.6. Multiple CNNs and Bidirectional LSTM Networks 41

4.3.7. Single Three-layer CNN and LSTM Networks ... 42

4.3.8. Single Three-layer CNN and Bidirectional LSTM Networks 43

5. IMPLEMENTATION .. 44

6. TEST AND EVALUATION .. 47

6.1. COMPARISON OF DESCRIBED DEEP LEARNING CONFIGURATIONS ... 47

6.2. COMPARISON OF BEST SCORING COMBINATION WITH THE STATE OF

THE ART METHODS ... 51

6.3. CLASS BASED PREDICTION COMPARISON .. 53

6.4. CROSS VALIDATION RESULTS COMPARISON ... 55

6.5. COMPARISON WITH LARGER DIMENSIONAL WORD VECTORS 57

6.6. LSTM AND GRU COMPARISON .. 58

7. CONCLUSION .. 60

REFERENCES .. 61

viii

LIST OF FIGURES

Figure 2.1. CNN model or sentiment analysis [18] ... 5

Figure 2.2. Deep learning model for sentiment analysis [30] .. 8

Figure 2.3. System architecture of the CNN-LSTM-MLP model [54] 10

Figure 2.4. Implementation of the convolutional recurrent neural network. [54] 11

Figure 2.5. System architecture of the regional CNN-LSTM model [1] 11

Figure 3.1. Images and convolution filters .. 16

Figure 3.2. Convolution process .. 17

Figure 3.3. Convolution filter with padding .. 17

Figure 3.4. Max pooling .. 18

Figure 3.5. CNN layers [61] .. 18

Figure 3.6. RNN ... 20

Figure 3.7. LSTM and gates .. 21

Figure 3.8. SVM and possible hyperplanes ... 22

Figure 3.9. Hyperplanes related to input dimensions .. 22

Figure 3.10. Country and capital vectors ... 23

ix

Figure 4.1. Regional structure for one tweet with regional data .. 33

Figure 4.2. Regional structure for one tweet with non-regional data 34

Figure 4.3. Single CNN network ... 35

Figure 4.4. Single LSTM network ... 36

Figure 4.5. Individual CNN and LSTM networks with a SVM classifier 38

Figure 4.6. Individual CNN and LSTM networks ... 38

Figure 4.7. Multiple CNNs and LSTM networks .. 40

Figure 4.8. Multiple CNNs and bidirectional LSTM networks ... 42

Figure 4.9. Single three-layer CNN and LSTM networks ... 42

Figure 4.10. Single three-layer CNN and bidirectional LSTM networks 43

Figure 5.1. Tweet download application ... 44

Figure 5.2. Relational database diagram for tweets and normalized word vectors 45

x

LIST OF TABLES

Table 3.1. Word2vec pretrained sample vectors .. 25

Table 3.2. GloVe pretrained sample vectors .. 26

Table 4.1. Word vectors before normalization .. 30

Table 4.2. Word vectors after normalization ... 30

Table 4.3. CNN parameters for single CNN network .. 35

Table 4.4. LSTM parameters for single LSTM network ... 37

Table 4.5. CNN parameters for multiple CNNs and LSTM networks 40

Table 4.6. LSTM parameters for multiple CNNs and LSTM networks 41

Table 4.7. CNN parameters for single three-layer CNN and LSTM networks 43

Table 6.1. Comparison of word embeddings ... 49

Table 6.2. Test results with word2vec self-trained vectors ... 50

Table 6.3. Test results with GloVe pretrained vectors .. 51

Table 6.4. Comparison of the state of the art methods with the best results of current study

 .. 52

Table 6.5. Test results for class accuracies with word2vec self-trained vectors 53

xi

Table 6.6. Test results for class accuracies with GloVe self-trained vectors 54

Table 6.7. Sentiment distribution in tweet data set .. 54

Table 6.8. Confusion matrix for multiple CNN and LSTM network 55

Table 6.9. Comparison of class scores for multiple CNN and LSTM network 55

Table 6.10. Cross validation results comparison ... 56

Table 6.11. Larger dimensional vectors with same parameters ... 57

Table 6.12. Larger dimensional vectors with different parameters 58

Table 6.13. LSTM and GRU comparison .. 59

xii

LIST OF SYMBOLS/ABBREVIATIONS

ANN Artificial neural network

BLSTM Bidirectional long short-term memory unit

BPTT Back propagation through time

CNN Convolutional neural network

CRNN Convolutional recurrent neural network

DL Deep learning

DNN Deep neural network

FNN Feed forward neural network

GloVe Global vectors for word representation

GRNN Gated recurrent neural network

GRU Gated recurrent unit

LCA Lexicon integrated convolutional neural networks with attention

LR Logistic regression

LSTM Long short-term memory unit

MA Mean average

MAD Mean absolute deviation

MAE Mean absolute error

ML Machine learning

MLP Multilayer perceptron

MSE Mean squared error

NB Naïve bayes

NN Neural network

NRMSE Normalized root mean squared error

POS Part of speech

RCNN Recurrent convolutional neural network

ReLU Rectified linear unit

RF Random forest

RMSE Root mean squared error

RNN Recurrent neural network

SA Sentiment analysis

xiii

SAT Sentiment analysis in twitter

SemEval Semantic evaluation

SST Stanford Sentiment Treebank

SSWE Sentiment specific word embeddings

SVM Support vector machine

TF-IDF Term frequency – inverse document frequency

1

1. INTRODUCTION

Social media has been a very popular tool for sharing ideas over the internet. People feel free

to share their opinions about products, companies, services, topics on the agenda, etc. by

means of social media. Since people have a high interest in the feelings and opinions of

others, sentiment analysis in social media has been a very important topic. It can be

beneficial for companies, service providers, and even for governments for making decisions.

Twitter is one of the most popular social networks on/through which people can share their

status (tweets). Twitter data are the most preferred data for sentiment analysis task in the

literature because of its data structure consisting of sentences limited to 280 characters at

most. It contains a short and meaningful text from which we can extract sentiments.

Sentiment analysis can be done in different ways. One of the most common ways is to

calculate positivity, negativity, and objectivity scores and decide the belonging class of a

text such as positive, negative, and neutral as a classification task. Other option is to find a

positivity score ranging from zero to five or some other values as a quantification task. In

this research we have concentrated on a three scale classification for sentiment analysis.

With the importance and popularity of sentiment analysis task, lots of algorithms have been

tried for having better scores for this task. Various natural language processing and machine

learning techniques are applied for sentiment classification. Recently, deep learning

algorithms like CNN and LSTM networks have shown state of the art scores in sentiment

analysis. These scores are high in the literature but they are not satisfactory for the

implementation needs in real life. Therefore, it is an important interest area for researchers.

People have been trying different combinations and ensembles of these deep learning

methods for increasing accuracy. In this research, our contribution is evaluation of these

deep learning methodologies and their different combination and ensembles with a common

Twitter data provided by SemEval contest in a single testing environment.

Deep learning algorithms need numeric values for training and testing issues. In sentiment

analysis, input data consist of text rather than numbers, so sentiment analysis task can be

splitted into two main steps.

2

First phase of sentiment analysis is the creation of vectoral representations of words. This

task is completed with word embedding techniques. The main idea in the word embedding

is based on putting words in a multi-dimensional vectoral space in such a way that words are

placed in terms of their relations with each other. There are a lot of successful word

embedding techniques which are based on the number of occurrences of words and locations

of words in sentences. Two of the most popular word embeddings are Word2Vec and Global

Vectors for Word Representation (GloVe) models. We have compared two different samples

of these two word embedding algorithms. Word2Vec vectors are created from SemEval

tweets belonging to previous years’ competitions and pre-trained Glove Vectors are provided

by Stanford University Natural Language Processing Group, have been trained from two

billion tweets with a large corpus size of 27 billion words.

Second phase is the deep learning models. Deep learning algorithms we use consist of

supervised training. In this step, we apply several deep learning techniques, such as

Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), as

well as their unions and combinations. Moreover, we use Support Vector Machines (SVM)

in a combination. In addition to different learning models, a regional structure similar to

architecture developed by [1] is compared with standard learning models.

Finally, we compare the results obtained in the second phase in terms of accuracy, precision,

recall, and F-score. We see that all these variations of deep learning techniques did not yield

too different results in terms of accuracy. Data have much more important impact than the

learning technique utilized. We were able to increase accuracy up to seven percent by just

evaluating with different word vectors. Although self-trained word2vec word embedding

were created from similar tweets which were consisting of previous years’ SemEval data

with 31007 tweets with 662000 corpus size and 10000 words in vocabulary, pre-trained

GloVe vectors scored better since they were created from much more larger data with a huge

corpus size of 27 billion words created from two billion tweets, with a vocabulary size of

1.2 million words.

In this thesis, we focus on sentiment analysis from Twitter Data provided by Semantic

Evaluation (SemEval) competition. SemEval is one of the most popular international

workshops on semantic evaluation like Kaggle, EMSASW, etc. SemEval provides

competitors and other researchers with tweets for both training and testing data. Because of

Twitter policy laws, they are not allowed to share text of the tweets, they are only able to

3

share status IDs of tweets and researchers have to download tweets from Twitter servers with

provided status IDs. Therefore, we have developed an application for downloading active

tweets belonging to given tweet IDs from Twitter servers via LinqToTwitter API [2]

provided by Twitter.

This thesis is organized as follows. Section 2 gives an insight in the field of Sentiment

analysis by mentioning related works done in the literature. Different learning models such

as CNN and LSTM are used individually and also with their ensembles and combinations.

Details about these learning methods are described in Section 3. Section 4 is about our

analysis and design of the learning models describing operations step by step. Section 5

includes our implementation of the models with the details of tools and technologies used in

this research. In Section 6, comparison of different learning models are mentioned with the

test details and evaluation results. Finally, Section 7 concludes the findings and includes

some information towards future works.

4

2. BACKGROUND

In recent years, social media have started to play an important role on people’s lives. People

are easily sharing their opinions and feelings about any subject. At the same time, users are

taking other users’ comments into consideration at any research. This research can be about

any topic like products, companies, services, countries, cultures, etc. Therefore, sentiment

analysis has been a popular research area in computer science. By means of sentiment

analysis in social media, we can easily learn people’s feelings about any service, product,

idea, etc. Especially, Twitter is the best social media type for sentiment analysis since it has

short texts up to 140 characters in a tweet. Another ease of Twitter is that it provides

developers with APIs to get tweets from all around the world. So, Twitter is a proper big

data source for easily collecting tweets all around the world. Therefore, most of the

researches in sentiment analysis deal with sentiments of tweets. Bo Pang and Lillian Lee

presented different methodologies that were used for sentiment analysis up to 2008[3].

Recently, Deep Neural Networks have been widely used because of its success with state of

the art results in this task. Especially, CNNs [4,5] and RNNs [6] are used because CNN is

good at resolving the dimensionality reduction problem and a special implementation of

RNN, the LSTM networks [6], handle with success temporal or sequential data with the help

of its gated structure [7].

2.1. CONVOLUTIONAL NEURAL NETWORKS (CNN)

Convolutional Neural Networks are mainly used for image classification task in machine

learning. It is based on convolving filters on images to find out relevance to classes. In

Natural Language Processing (NLP) tasks, words are converted to vectoral representation

with word embedding techniques and sentences are generally represented by concatenating

created word vectors. State of the art methods have proved that CNN is very successful at

sentiment analysis like its success in other classification tasks with image files. Works

presented in [8] and [9] are two of the leading sample works that CNN architectures can be

used successfully for sentiment analysis.

5

SemEval 2016 top-scoring team in two-scale classification (Tweester[10]) used a

combination of CNNs, topic modeling, and word embeddings generated via word2vec[11],

so reached 86 percent in two-scale classification.

One of the simplest way to use deep learning techniques in sentiment analysis is the usage

of CNNs after converting sentences into vectoral representations via some word embedding

techniques. In a survey of deep learning methods in sentiment analysis [12], it can be seen

that the word embedding is done mainly with two methods, Word2Vec [11] or GloVe [13].

In addition, alternative embedding types like FastText[14] , Stanford Sentiment Treebank

(SST) are used for embedding. After that, you can get good results by some fine tuning the

parameters of CNN. In general, convolution layer, some pooling layer, and fully connected

layers are used for prediction. Some teams [15-17] have tried this standard CNN structure

as represented in Figure 2.1[18], created by Yoon Kim, for sentiment analysis with different

data & weights. It is stated that simple CNN with one convolution layer can performs

remarkably well with a little parameter tuning[18].

Figure 2.1. CNN model or sentiment analysis [18]

Another brilliant option is to make use of multiple individual CNN models with different

weights and parameters. After individual predictions of each CNN model, results are

combined to get final prediction by using different algorithms such as soft-voting or hard-

voting to combine results. In soft-voting, average possibility value of each class are

calculated among all models. In hard-voting, total number of votes for each class is used for

6

the final prediction. Accuracy of multiple CNNs can be increased with additional deep

learning layers. [15-17] used multiple CNN models with different weights and parameters.

NNEMBs team [17] scored first in accuracy in SemEval 2017 by using several word

embedding sets and a special gated convolution model, Recurrent Convolutional Neural

Network (RCNN) explained in [19]. When predicting the labels of tweets in testing set, label

probabilities of all neural network are sum up to make final decisions.

Ten convolutional neural networks and hard voting technique are used to decide the final

sentiment in [15]. Each CNN network consists of a convolutional layer followed by a fully-

connected layer and a soft-max on top. Ten instances of this network are initialized with the

same word embeddings as inputs but with different initializations for the network weights.

Number of classifiers which give the positive, negative and neutral sentiment label to each

tweet are counted to decide sentiment label which have the highest number of votes.

Additional algorithms can be used in addition to CNN. In [16], two different two-layer CNNs

are used and results are concatenated to a Random Forest (RF) classifier.

Usage of different embeddings in addition to word embeddings is used in the literature. Some

researchers have made use of lexicon embeddings in addition to word embeddings in order

to increase accuracy in sentiment analysis. Topic, lexical, part of speech (POS), sentiment,

character-level embeddings are used.

Lexicon embedding and word embedding are concatenated by Adullam team at SemEval-

2017 [20]. In order to improve on existing CNN based sentiment analyser, lexicon

embedding and attention embedding were integrated into the proposed sentiment analyser.

The proposed lexicon integrated convolutional neural networks with attention (LCA)

consists of three input features such as word embeddings, lexicon embeddings, and attention

embeddings.

Concatenation of word embedding and sentiment embedding vectors are used in [21] similar

to Adullam[20] at SemEval-2017. Difference is that they do not use attention embedding.

Two different embeddings such as Word2Vec and Sentiment Specific Word Embeddings

(SSWE) are used in [22]. Because the dimensionality of vectors in SSWE is 50, it is extended

to 300 dimensional vectors by padding the 250 randomly generated numbers to the end.

7

EICA team [23] concatenates word embedding with topic embedding at SemEval 2017.

They use two different CNNs, one for word embedding and the other is for topic embedding.

Results are concatenated and input to a softmax layer to get a final prediction.

Lexical, part-of-speech and sentiment embeddings are used for CNNs and results are

concatenated and fed to a final Deep Neural Network (DNN) by SENSEI-LIF team[24] .

This model has ranked 2nd at SemEval-2016[25] task 4.

System developed in [26] combines CNN and Logistic Regression (LR). So, it uses both

embedding features and various features like lexicons and dictionaries. The final prediction

for sentiment is a combination of predictions given by both classifiers. The architecture

contains two separate CNNs: one is for word-based input maps while the other is for

character-based input maps. Fully connected layer is used for final prediction of CNN. They

have observed that, the performance of the system does not increase, but drops by simply

adding LR features to CNN features.

The system developed by Tweester team[10] is comprised of multiple independent models

such as neural networks, semantic-affective models and topic modeling that are combined

in a probabilistic way. Each model is used to predict a tweet’s sentiment (positive, negative

or neutral) and a late fusion scheme is adopted for the final decision. The motivation behind

the development of various systems for sentiment classification is that different systems may

capture different aspects of the sentiment, and by combining them we can predict more

accurately the sentiment of tweets.

In [9], a new deep neural network architecture that jointly uses character-level, word-level

and sentence-level representations is presented to perform sentiment analysis.

Another interest area in sentiment analysis is to predict sentiments from images instead of

shot texts like tweets. Sentiment analysis from Flickr and Twitter images is done in the

research [27].

2.2. LONG SHORT-TERM MEMORY NETWORKS

Usage of Recurrent Neural Networks (RNN) is another important Deep Learning method for

Sentiment Analysis. RNNs process input sequentially, so they can take positions of words

8

into consideration in a sentence to predict the sentiment value. But, RNNs have two

important problems which are called vanishing gradient problem & exploding gradient

problem [28]. LSTM is a special form of RNNs which overcomes vanishing gradient

problem by keeping cell states through gates[7]. Technically speaking, model structure is

the same as CNN architecture. Firstly, tweets are cleaned. Secondly, word embeddings are

created & tweets are represented in a vectoral format by combining word vectors. Later,

vectoral representations of tweets are fed to an LSTM layer. Finally, a softmax layer and a

fully connected layer are applied for final prediction.

In [29] the efficiency of RNN was demonstrated as they outperformed the state of the art

methods. DataStories team at Semeval 2017 uses a 2- layer bi-directional LSTM for

sentiment analysis[30]. Deep Learning (DL) model of DataStories is stated in Figure 2.2.

They have ranked first in Subtask 4 which is to predict whether a tweet is positive, negative,

or neutral. BUSEM team[31] have tried two different deep learning models, one of which

was LSTM in SemEval 2017. GRU networks, introduced in 2014 [32] can be used

effectively instead of LSTM [33] with showing similar results because it has similar

architecture with LSTM by making use of gates.

Figure 2.2. Deep learning model for sentiment analysis [30]

9

2.3. SUPPORT VECTOR MACHINES

Support Vector Machines are as popular as CNNs in Sentiment Analysis task. There are a

lot of researches in the literature those make use of SVMs in Sentiment Analysis in Twitter

(SAT) with alternative features [15-29]. As we have seen in previous sections, convolutions

are generally based on different word embeddings or lexical embeddings. SVMs are also

based on different type of embeddings. In addition, SVMs are fed with a large variety of

extracted features. Most common features used in addition to embeddings are; n-gram

features, negation features, number of hashtags, number of emoticons, TF-IDF features,

number of capitalized words, number of negative words, number of positive words, etc.

There are so many features used in SVM that it can be another research area to detect most

affective feature for Sentiment Analysis. Some researchers have preferred to decide

sentiment in two phases like objectivity detection and polarity detection instead of predicting

sentiment in a single step [35-44].

2.4. ENSEMBLES AND COMBINATIONS

There are so many studies done on Sentiment Analysis with DL techniques that it has

resulted in trying different ensembles & combinations of DL techniques. Especially the ones

which participate in SemEval competition are very successful in this way. Top scorers on

SemEval 2017 Subtask A [50] , that is to classify English tweets into three categories

(positive, negative, and neutral), generally use Deep Learning techniques to decide

sentiments in tweets.

2.4.1. CNN and LSTM

Mostly used ensemble in the literature is combination of CNN and LSTM. In [51], an

implementation of CNN and LSTM networks was presented, showing the significant

advantages of using together these two neural networks. One of the top scorers BB_twtr[52]

team who had scored the same as DataStories has tried different deep learning methods

which are CNN and LSTM. In addition they have done a combination of both. They are

using zero-padding strategy to make all tweets have same matrix dimension. Since LSTM

10

doesn’t sufficiently take into account post word information, they use bidirectional LSTM

to solve this problem. For combination, they have used an ensemble of 10 CNNs and 10

LSTMs together through soft voting, which means taking the average of probabilities for

each class and deciding the sentiment according to average.

Some other researches have been concentrated on more organically combination of CNN &

LSTM rather than an ensemble. 3rd top scorer LIA[53] team has used an ensemble of CNN

and LSTM. One lexical embedding and three different sentiment embeddings are fed to four

different DNN. Each DNN has a CNN and an LSTM layer sequentially and the resulting

vectors are fed to a Multi-Layer Perceptron. In [54], a similar method is applied with [53]

with three different embeddings and using Bidirectional Long Short-Term Memory Unit

(BLSTM) instead of LSTM layer. Convolutional Recurrent Neural Network (CRNN) in the

Figure 2.3 represents a combination of CNN and BLSTM layers as represented in Figure 2.4

Figure 2.3. System architecture of the CNN-LSTM-MLP model [54]

11

Figure 2.4. Implementation of the convolutional recurrent neural network. [54]

Another way to use both CNN and LSTM organically is to use varying length filters in CNN

layers and to use outputs of CNNs in LSTM layers [55].

[1] divides tweets into regions, each region is fed to a CNN and resulting vectors are fed to

an LSTM layer as shown in Figure 2.3. This model can capture both local information within

sentences via CNN and long distance dependency across sentences with the help of LSTM.

Figure 2.5. System architecture of the regional CNN-LSTM model [1]

There are other simple ideas to make use of both LSTM and CNN that is to use them

separately and combine results in some alternative ways. [56] combines the results with an

interpolation algorithm where weight of algorithm is decided with grid search. [57] combines

12

the results through soft-voting. [58] uses two CNN models and a Gated Recurrent Unit

(GRU) model separately and combines the results with another CNN model. They use Gated

Recurrent Neural Network (GRNN) instead of LSTM because they have got better results

on GRU with their data. On the other hand, [57] states that LSTM hits GRU in sentiment

analysis task. GRU and LSTM can be used interchangeably in the literature, they have

similar results. It depends on data and parameters of the models used, we have use LSTM in

our research.

2.4.2. LSTM and SVM

As we have stated in the previous section, some researchers prefer to use GRU instead of

LSTM because of better accuracy in their data and model. [49] is another supporter of GRU.

A gated recurrent neural network is trained using pretrained word embeddings, then feature

are extracted from GRU layer and these features are input to SVM for classification.

Some researchers have tried multiple deep learning algorithms for just comparison rather

than using them in an ensemble or combination. BUSEM team[31] has done a research in

this manner in SemEval 2016, they have tried SVM, RF, NB, and LSTM independently.

Finally, they have resulted in SVM scores best among these alternatives in SA.

2.4.3. CNN and SVM

In the literature, CNN and SVM is used sequentially like the structure in CNN and LSTM.

In [59], CNN is applied first and outputs of CNN are input to SVM together with additional

linguistic information. Proposed model performs better than single CNN.

In [60], two CNN and LSTM are applied separately. SVM classifier features are based on a

bag of words model, the CNN classifier is initialized with pre-trained word vectors. Finally,

ensemble model counts votes from three classifiers and predicts the class which has the

maximum number of votes from the three classes.

13

2.5. SEMANTIC EVALUATION (SemEval)

Increasing need and interest to sentiment analysis in computer science have resulted in

science competitions for sentiment analysis. SemEval is one of the most popular

competitions in this area, which is an international workshop on semantic evaluation.

Sentiment analysis competition is repeated annually with small changes in tasks.

In SemEval 2016 [25] & SemEval 2017 [50], top scorer teams used deep learning for the

task 4 of sentiment analysis, which is to group sentiments into three categories such as

positive, negative, and neutral. They have mainly used CNN, LSTM, SVM, and their

ensembles and combinations. In SemEval 2016[25], half of the ten top-ranked participating

teams used convolutional neural networks; three teams were using recurrent neural

networks, and seven teams used ensembles and combinations in their systems. Usage of

classifiers such as support vector machines, which were dominant until recent years, seems

to have lost its popularity because of its low efficiency compared to convolution and

recurrent neural networks. In SemEval 2017[50], we again see an increasing interest towards

deep learning rather than SVM. There were at least 20 teams who used deep learning and

neural network methods such as CNN and LSTM networks.

14

3. METHODOLOGY

3.1. CONVOLUTIONAL NEURAL NETWORKS

Artificial intelligence and neural network deal with the machines’ learning in the same way

people learn. One of the most important neural networks, which is convolutional neural

networks (CNN) exactly behaves in this manner. For instance, we are born with no

knowledge about animals. Throughout our lives, we see a lot of animals like cats, dogs,

birds, etc. in our living space. We learn some wild animals, sea animals from the

documentaries displayed in television or over the internet, which is not possible for us to see

in real life. While some of us can group animals into larger categories like animal, cat, dog,

etc., some people may group them in more detail for example into different cat categories

like lion, tiger, etc. The difference between people come from their earlier experiences, that

means it depends on how much different samples of these animals are seen and grouped by

people before. If we have seen more animals or dealed much more with animals, we can

have a broader vision and have more accurate knowledge about them. We can do these

grouping even for the ones which we have seen first time in our lives unintentionally from

our previous knowledge. Before dealing with machine learning, I had never talked about

how I am grouping animals, for instance cat, dog, or bird. Of course, it is very easy to

discriminate the birds from dogs and cats because they have wings, beaks, they have two

feet as another difference from dog and cat. They have lots of other filterable characteristics

visually. What about the difference between cats and dogs? We can categorize cats and dogs

from their eyes, noses, ears, tails, etc. We can even classify different categories of cats for a

more detailed visual characteristics like eye colors, fur shapes, etc. though they are not as

clear as more general classification attributes among cats and birds.

So far, I have mentioned about how people’s learn different animals from their experiences,

categorization of animals from larger to more detailed comparisons, visual characteristics

we have extracted from our previous scenes. The idea behind the grouping of the CNN is

exactly in the same way. Let us continue with the technical details of CNN while keeping

these samples in mind.

15

CNN is a special type of ANN which uses supervised learning algorithm. Supervised

learning algorithm means that algorithm learns from given labeled sample inputs. For each

image we give in our training set we have a class. This class may be a general classification

item label like bird, cat, etc. or it may be a more detailed categorization class of cat species.

Learning of the algorithm to which extent depends on the given classes like our detailed or

general learning example above. If we give samples of specific cat species in our training

set, algorithm learns these details. If we give only cat, bird, and dog classes in the labelled

training set, algorithm only learns about grouping these categories.

Let us take a deeper look into CNN and talk about how it makes classification. As we have

mentioned above people can distinguish between different categories by means of visual

characteristics of each class. It is the same in convolutional neural networks. Images are

categorized in terms of filters. Convolution is the process of convolving filters over images.

To find the probability of containing an object, or belonging to a special category, filters are

applied pixel by pixel by sliding it through an image as shown in the Figure 3.2 and similarity

of filter to convolved space is calculated. Applying filter means that element-wise matrix

multiplication is applied and results are summed. Feature map is obtained by applying filters

over the image and it shows the probability of containing a filter. In Figure 3.2, a 3x3 filter

is applied to a 7x7 image and a 5x5 feature map is obtained as the output of convolution

process. Width and height of the feature map are calculated with the below equations, where

W and H refers to width and height of input image, Fw is filter width, Fh is filter height, P

value is padding, Sw is stride width, and Sh is stride height.

𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ =

𝑊 − 𝐹𝑤 + 2𝑃

𝑆𝑤
+ 1

(3.1)

𝑜𝑢𝑡𝑝𝑢𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 =

𝐻 − 𝐹ℎ + 2𝑃

𝑆ℎ
+ 1

(3.2)

Items in the above equations can be described as;

Filter is the convolved sub image over the input. It is also called as kernel. It may be bird’ s

beak or tail, cat’ s ear or eye, dog’ s tongue or tail, etc. as shown in Figure 3.1 related to our

dog, cat, and bird classification sample.

16

SAMPLE IMAGES FILTERS FEATURE MAPS

Higher results for filters

with bird’ s beak and tail

Higher results for filters

with cat’ s ear and eye

Higher results for filters

with dog’ s tongue and tail

Figure 3.1. Images and convolution filters

Filter is applied all over the image by sliding it from left to right and from up to down. In

Figure 3.2 convolution is applied by sliding filter one by one in both directions. It could be

done by sliding filter with more than one in each iteration. Stride value refers to number of

sliding cells.

17

 Image Filter Feature Map

Figure 3.2. Convolution process

After applying filters, dimension decreases in the output of convolution. In some cases it is

needed to have same dimensions after convolution, therefore, padding is applied. Padding

means assuming that input image has larger dimensions and outer cells have zero values an

filters are applied starting from appended cells and goes until the end of appended zeros as

shown in Figure 3.3. Padding value is number of appended rows and columns.

Figure 3.3. Convolution filter with padding

In convolutional neural networks, some pooling is applied after convolution process. The

most commonly used pooling is max pooling, where maximum of the numbers in the pool

is selected and projected to the output as shown in Figure 3.4. In this sample, max pooling

18

with 2x2 windows is applied to a 4x4 input matrix and 2x2 output matrix is obtained.

Another commonly used option is to take average of values instead of taking the highest

value, it is called mean pooling. Pooling causes the input size to get smaller while keeping

the values in bigger image. It is a process like squeezing the image in the feature map. This

provides us with easier calculation processes in the later layers.

Figure 3.4. Max pooling

Next and the final layer after max pooling is fully connected layer to classify input image.

One or multiple fully connected layers are used and a vector is output including the

possibility values for each class. Structure of layers in a CNN is shown in Figure 3.5

Figure 3.5. CNN layers [61]

19

Filters are determined by Back Propagation Through Time (BPTT) in the training phase of

supervised learning. In CNN, after getting the filters we have a function to classify images.

On the other hand, we need to find a function which classifies images with the least error

given the input values and output values. In BPTT, derivative of the function is calculated

and weights are updated at each iteration according to a selected loss function [62]. In

training phase, labelled input data are fed to network in batches, batch size in convolution

layer refers to how many input data are used at each step with back propagation. After

feeding all the input data in batches to the network, a cycle is completed. Each cycle is called

an epoch, epoch size is an important parameter for deep learning. It determines how many

times all the input data is used for training.

CNN is mainly used for image processing tasks such as image classification, object

recognition, etc. In recent years, CNN has been also used for NLP tasks like sentiment

analysis and has shown state of the art results. In this study, CNN is one of the used DL

algorithms for sentiment analysis.

As mentioned above and can be seen in the Figure 3.2, convolution needs numbers to

process. On the other hand, sentiment analysis deals with sentences as a NLP task. So, first

need before using CNN is to convert words to their corresponding vectoral representations

which is called as word embedding. Details of word embeddings can be seen in Section 3.4.

Later, word vectors can be concatenated to represent sentence (tweet) matrices and these

matrices are fed to CNN as input data like images.

In a CNN model for sentiment analysis, there exist one or more convolution layers as the

first layer. Then, output of convolution with different filters are sent to a pooling layer. In

the literature, it has seen that max pooling best fits for pooling in sentiment analysis task.

Another option is to use mean pooling rather than max pooling. After pooling operation,

neural networks with some classifier are used for final classification (Figure 2.1).

3.2. LONG SHORT-TERM MEMORY NETWORKS

Long short-term memory networks (LSTM) is a special type of recurrent neural networks

(RNN). Therefore, it is a worth to mention about RNN before going into LSTM details. RNN

is a deep learning which is used for tasks in which an input with time series is given and next

20

item is predicted. Most common usage areas of RNNs change in a variety of tasks from

weather forecast to exchange rates prediction. At the same time, RNN has been one of the

most important deep learning models used in natural language processing (NLP) tasks in

recent years. It shows competitive results because of its structure dealing with sequential

information. In a RNN, output of each node is input to the next item. RNN not only deals

with last step it also takes into consideration information in a series of previous steps. RNNs

are good at predicting next item, they can be even used for complicated art tasks such as

writing poems, composing music, painting, etc. Figure 3.6 shows the standard RNN

structure.

Figure 3.6. RNN

Recurrent neural networks learn with BPTT like convolutional neural networks. Therefore,

it has an important problem named vanishing gradient problem. Vanishing gradient problem

is a difficulty found in training with gradient based methods. In particular, this problem

makes it really hard to learn and tune the parameters of the earlier layers in the network.

Gradient based methods learn a parameter's value by understanding how a small change in

the parameter's value will affect the network's output. If a change in the parameter's value

causes very small change in the network's output, the network just can't learn the parameter

effectively.

At this time, LSTM helps for a solution to this problem. It solves vanishing gradient problem

through usage of gates which are forget gate, input gate, and output gate. Each cell in LSTM

is responsible for keeping track of the dependencies between the elements in the input

sequence. Forget gate decides which information should be kept or thrown away from the

cell state. Forget gate uses a sigmoid function, information from the previous hidden state

and information from the current input are input to this sigmoid function. Function outputs

a value between zero and one, information with closer values to one are kept and values

21

near zero are thrown away. Input gate is responsible for deciding what new information is

going to be stored in the cell state. It consists of two functions to update the cell state. First,

previous hidden state and current input are input to a sigmoid function that decides which

values will be updated by transforming the values to be between zero and one where one

refers to the importance of the input. Second function is a tanh function to squish values

between minus one and one to help regulate the network. Then the tanh output with the

sigmoid output are multiplied. The sigmoid output will decide which information is

important to keep from the tanh output. Third and the last gate is output gate. Output gate

decides the next hidden state. Hidden state contains information on previous inputs and it is

used for predictions. This hidden is state is used as input to the next time step. LSTM is

much better at capturing long-term dependencies with the help of gates. The memory in

LSTMs are called cells and these cells take as input the previous state ht-1 and current input

xt. Internally these cells decide what to keep in memory. Finally, the previous state, the

current memory, and the input are combined.

Figure 3.7. LSTM and gates

A special version of LSTM, Gated Recurrent Unit (GRU), is introduced in 2014 . It combines

the forget and input gates into a single gate named update gate. It also merges the cell state

and hidden state. It has no output gate. It is used instead of standard LSTM in some works.

3.3. SUPPORT VECTOR MACHINES

SVM is another supervised learning algorithm that has been used for classification and

regression tasks. Since sentiment analysis task is also a classification task, SVM is used in

22

the literature and shows competitive results. SVM is based on separating data into the groups

by drawing a border among items in the plane. The idea is to find out the most distant

boundary, called hyperplane, to all of the groups so that new coming items can be separated

into one of the groups more easily (Figure 3.8). Hyperplane is a line in a two dimensional

classification task. A plane is used as hyperplane in a three dimensional input space (Figure

3.9). SVM is not a deep learning model since it consist of a single layer, it does not contain

hidden layers. Thus, SVM shows significant accuracy with less computing cost.

Figure 3.8. SVM and possible hyperplanes

Figure 3.9. Hyperplanes related to input dimensions

First input to the SVM is word embeddings as expected. In addition to word embeddings, a

lot of different parameters can be used in sentiment analysis with SVM. Some of the

commonly used example inputs in the literature are; n-gram features, negation features,

23

number of hashtags, number of emoticons, TF-IDF features, number of capitalized words,

number of negative words, number of positive words, etc.

3.4. WORD EMBEDDINGS

In sentiment analysis task, we have tweets and their sentiments for classification. Tweets

consist of text data, but we need matrices consisting of numbers for calculation in Deep

Learning methods. So we need to convert these tweets somehow to their corresponding

matrix representations. One of the best practices for this task is to use word embeddings, that

is to detect vectoral representations of words. Words are represented in such a way that, for

example, vector operations vector('Paris') - vector('France') + vector('Turkey') results in a

vector that is very close to vector('Ankara'), and vector('king') - vector('man') +

vector('woman') is close to vector('queen')(Figure 3.10).

Word embedding is an unsupervised learning model, very large amount of text corpus is

used for training. Words are trained against other words that neighbour them in the input

corpus. It is done in one of two ways, either using context to predict a target word (a method

known as continuous bag of words, or CBOW), or using a word to predict a target context,

which is called skip-gram.

Figure 3.10. Country and capital vectors

24

3.4.1. Word2Vec

Word2Vec is maybe the most popular word embedding worldwide, developed by Google.

Google provides a lot of pretrained word embedding data set with different number of

dimensions, corpus size, vocabulary size, etc. (Table 3.1). In addition, there are a lot of

libraries provided for different programming languages. You can easily create your own

word embeddings by providing your own corpus as input text and setting parameters for

training. It can use one of two algorithms for learning; Continuous Bag Of Words (CBOW)

and Continuous Skip-gram. CBOW is generally used to to predict a target word using

context. On the other hand, continuous skip-gram model is used to predict a target context

using a word. Word2Vec.Net library is one of the libraries provided for .Net framework. It

provides creation of word2vec vectors by setting the following training options;

• WithTrainFile: text data to train the model

• WithOutputFile: path to save the resulting word vectors / word clusters

• WithSize: size of word vectors; default is 100

• WithSaveVocubFile: file path to save the vocabulary file

• WithDebug: debug level (default is two, more info during training)

• WithBinary: whether to save the resulting vectors in binary mode; default is zero

(off)

• WithCBow: whether to use the continuous bag of words model; default is one, zero

is used for skip-gram model

• WithAlpha: starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW

• WithWindow: max skip length between words; default is 5

• WithSample: threshold for occurrence of words. Those that appear with higher

frequency in the training data are randomly down-sampled; default is 1e-3

• WithHs: whether to use hierarchical softmax; default is zero (not used)

• WithNegative: number of negative examples; default is five, common values are

between three and ten. (zero means not used)

• WithThreads: number of threads (default 12)

• WithIter: number of training iterations (default is five), number of epochs.

• WithMinCount: number to discard words that appear less than, default is five which

means numbers occurring less than five times are ignored

25

• WithClasses: output word classes rather than word vectors; default number of classes

is zero (vectors are written)

Table 3.1. Word2vec pretrained sample vectors

Model file
Number of

dimensions

Corpus

(size)

Vocabulary

size
Author Architecture

Google

News
300

Google

News

(100B)

3M Google word2vec

Freebase

IDs
1000

Gooogle

News

(100B)

1.4M Google
word2vec,

skip-gram

Freebase

names
1000

Gooogle

News

(100B)

1.4M Google
word2vec,

skip-gram

Wikipedia

dependency
300

Wikipedia

(?)
174,015

Levy &

Goldberg

word2vec

modified

DBPedia

vectors

(wiki2vec)

1000
Wikipedia

(?)
? Idio word2vec

3.4.2. GloVe

Global Vectors for Word Representation (GloVe) is another most widely used word

embedding in sentiment analysis task. It is developed by Stanford NLP Group and they

provide researchers with a variety of pretrained word vectors publicly distributed. Pretrained

vectors for GloVe are shown in Table 3.2

3.4.3. SentiWordNet

SentiWordNet is a lexical resource for word vector representation. Unlike word2vec and

GloVe, SentiWordNet does not have large number of dimensions for word vectors. It

represents each word only with a two-dimensional vector which are positivity score and

negativity. These scores have values between zero and one. In addition, objectivity score is

26

calculated by subtracting the sum of positivity score and negativity score from one. Finally,

words are represented by three-dimensional sentiment vectors.

Table 3.2. GloVe pretrained sample vectors

Model file

Number of

dimensions Corpus (size)

Vocabulary

size Author Architecture

Wikipedia+

Gigaword 5

50
Wikipedia+

Gigaword 5 (6B)
400,000 GloVe GloVe

Wikipedia+

Gigaword 5

100
Wikipedia+

Gigaword 5 (6B)
400,000 GloVe GloVe

Wikipedia+

Gigaword 5

200
Wikipedia+

Gigaword 5 (6B)
400,000 GloVe GloVe

Wikipedia+

Gigaword 5

300
Wikipedia+

Gigaword 5 (6B)
400,000 GloVe GloVe

Common

Crawl 42B

300
Common Crawl

(42B)
1.9M GloVe GloVe

Common

Crawl 840B

300
Common Crawl

(840B)
2.2M GloVe GloVe

Twitter (2B

Tweets)

25 Twitter (27B) 1.2M GloVe GloVe

Twitter (2B

Tweets)

50 Twitter (27B) ? GloVe GloVe

Twitter (2B

Tweets)

100 Twitter (27B) 1.2M GloVe GloVe

Twitter (2B

Tweets)

200 Twitter (27B) 1.2M GloVe GloVe

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.42B.300d.zip
http://nlp.stanford.edu/data/glove.42B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip

27

4. ANALYSIS AND DESIGN

In this research, we have compared different word embeddings, different learning algorithms

individually and with different combinations and ensembles. We have compared the results

in terms of accuracy, training time, recall, precision, and f-measure. Overall system consist

of downloading and pre-processing tweets, word embedding, and applying deep learning

algorithms. We have applied two different word embeddings to eight different deep learning

configurations. In addition, we have used two different data organization types which are

standard concatenation of words in a tweet and applying regional structure. In total, we have

32 different results for comparison.

4.1. TWEETS

4.1.1. Creating the Tweet Corpus

Since learning methods we use, namely CNN, LSTM, and SVM, are supervised learning

algorithms, we first need labeled data for training. SemEval committee provides labeled

tweets for development, training, and testing. On the other hand, SemEval cannot directly

publish these tweets because of Twitter’s privacy laws. Twitter do not let distribution of

deleted tweets in terms of privacy rules. Therefore, SemEval only provides status id of tweets

and sentiment values for the given tweets. Later, those tweets are downloaded from Twitter

servers via different APIs provided by Twitter company. In our thesis, we have created a

.Net application with LinqToTwitter API provided by Twitter. Three different datasets were

collected for training data which were SemEval2017 – Task 4 development data plus

previous years’ full data for the same task, namely SemEval2016 – Task 4 full data,

SemEval2014 - Task 9 - Sub Task B full data are downloaded for training. We were able to

download a total of 31007 tweets for training which consist of 662.000 total words with a

vocabulary of around 10.000 words.

28

4.1.2. Data Cleaning

After downloading tweets, next step was to process the tweets in order to increase the

system’s performance during training. A lot of tweets need to be cleaned for getting better

performance in training. Therefore, we have done a few cleaning operations over

downloaded tweets. Firstly, whole tweets are converted to lowercase letters to get rid of case

sensitivity because it does not affect the sentiment of a tweet very much. Later, some

characters such as single quotes (‘), double quotes (”), @ character, # character of hashtags

are removed from text. Smileys are replaced, :) and :-) symbols are replaced with <smile>

tag, :(and :-(symbols are replaced with <sadface> tag. Links are replaced with <url> tag

because links do not have contribution in the sentiment.

4.2. WORD EMBEDDING

At the end of tweet cleaning operations, clean tweets are ready for training different learning

models. One more operation is needed to be able to train models which is to get vectoral

representations of words in tweets. In this stage, two different options for word embedding

are used. First option is to create word vectors via tools like word2vec, GloVe, etc. Second

option is to download pretrained word vectors (word2vec, GloVe, SentiWordNet). In this

research, both alternatives are tried and reported for comparison.

4.2.1. Self-trained Word Vectors

For creating self-trained word vectors, word2vec model is used. Input data were all tweets

provided for SemEval 2014 and SemEval 2016 competitions. In addition, SemEval 2017

development tweets were used for training word2vec. Word2vec model is configured for

output 25-dimensional word vectors. 25-dimensional vectors rather than larger-dimensions

are preferred because of performance issues for training in terms of time with a computing

environment without GPU support. Other options were, setting output in text format rather

than binary file, continuous bag of words model is used, max skip length between words is

set to 5, with 100 training iterations, discarding words that appear less than 5 times.

29

4.2.2. Pre-trained Word Vectors

GloVe pre-trained word vectors were utilized as a second alternative way. Again, 25-

dimensional word vectors are used for comparing both self-trained and pre-trained vectors

under the same circumstances. GloVe vectors were downloaded from Stanford University

NLP group web page. Word vectors are created from twitter data with a corpus size 27B

which means word embeddings are created from data with 27 billion words. 2 billion tweets

were used to create GloVe vectors.

Because of large corpus size and vocabulary, pre-trained GloVe vectors scored better than

self-trained word2vec vectors up to seven percent although word2vec vectors were created

from SemEval data.

4.2.3. Normalizing Word Vectors

After creating word vectors, each value in 25-dimensional vector is normalized to get a value

between 0 and 1. Property value is calculated by equation:

𝑝𝑟𝑜𝑝𝑉𝑎𝑙′ =

𝑝𝑟𝑜𝑝𝑉𝑎𝑙 − 𝑚𝑖𝑛𝑉𝑎𝑙

𝑚𝑎𝑥𝑉𝑎𝑙 − 𝑚𝑖𝑛𝑉𝑎𝑙

(4.1)

where minVal is minimum value for selected property, maxVal is maximum value for

selected property, and propVal is current item’s value for selected property. Some sample

word vectors before and after normalization is shown in the below tables.

30

Table 4.1. Word vectors before normalization

Table 4.2. Word vectors after normalization

Word Vectoral Representation

yesterday
[0.507 0.501 0.587 0.444 0.441 0.478 0.640 0.475 0.473 0.564 0.501 0.516 0.166

0.555 0.573 0.553 0.494 0.465 0.394 0.510 0.468 0.448 0.441 0.558 0.525]

today
[0.499 0.482 0.517 0.433 0.447 0.495 0.666 0.479 0.514 0.540 0.483 0.498 0.099

0.571 0.565 0.543 0.469 0.442 0.391 0.520 0.451 0.426 0.428 0.574 0.524]

tomorrow
[0.506 0.526 0.558 0.413 0.431 0.471 0.682 0.465 0.515 0.547 0.451 0.466 0.132

0.568 0.598 0.535 0.467 0.417 0.372 0.535 0.431 0.435 0.459 0.603 0.560]

man
[0.581 0.453 0.519 0.451 0.441 0.528 0.561 0.558 0.507 0.575 0.482 0.476 0.110

0.521 0.528 0.584 0.531 0.497 0.377 0.497 0.518 0.562 0.412 0.560 0.561]

woman
[0.493 0.457 0.500 0.497 0.492 0.495 0.636 0.505 0.532 0.570 0.516 0.488 0.151

0.533 0.471 0.563 0.502 0.486 0.470 0.522 0.574 0.512 0.394 0.457 0.486]

king
[0.505 0.472 0.544 0.511 0.433 0.490 0.601 0.583 0.561 0.514 0.530 0.484 0.207

0.505 0.510 0.544 0.483 0.497 0.433 0.591 0.485 0.497 0.414 0.499 0.554]

queen
[0.479 0.445 0.549 0.501 0.457 0.461 0.631 0.573 0.524 0.506 0.504 0.466 0.237

0.487 0.465 0.569 0.455 0.486 0.435 0.591 0.468 0.492 0.402 0.516 0.534]

uncle
[0.469 0.543 0.590 0.518 0.418 0.464 0.595 0.564 0.523 0.543 0.492 0.506 0.238

0.477 0.557 0.538 0.548 0.455 0.397 0.546 0.561 0.513 0.387 0.495 0.480]

aunt
[0.423 0.545 0.604 0.524 0.431 0.443 0.599 0.502 0.513 0.521 0.475 0.466 0.237

0.480 0.507 0.541 0.550 0.470 0.402 0.561 0.583 0.481 0.380 0.536 0.484]

Word Vectoral Representation

yesterday
[-0.718 0.297 1.058 -0.736 -0.321 -0.413 1.271 -0.633 -1.044 0.197 -0.071 0.838 -

4.207 0.608 1.010 -0.178 0.545 -0.439 -0.615 -0.554 -0.287 -0.242 0.220 0.217 0.177]

today
[-0.834 0.021 -0.056 -0.915 -0.218 -0.147 1.662 -0.577 -0.374 -0.180 -0.387 0.574 -

5.073 0.881 0.892 -0.359 0.128 -0.836 -0.663 -0.400 -0.532 -0.576 0.022 0.452 0.167]

tomorrow
[-0.729 0.670 0.590 -1.258 -0.491 -0.515 1.896 -0.775 -0.355 -0.071 -0.928 0.116 -

4.646 0.829 1.356 -0.494 0.091 -1.258 -0.964 -0.168 -0.798 -0.441 0.513 0.885 0.734]

man
[0.370 -0.396 -0.022 -0.630 -0.319 0.343 0.110 0.488 -0.487 0.368 -0.392 0.254 -4.928

0.068 0.371 0.368 1.166 0.092 -0.877 -0.746 0.409 1.567 -0.239 0.248 0.764]

woman
[-0.925 -0.339 -0.321 0.147 0.523 -0.153 1.217 -0.224 -0.087 0.285 0.185 0.428 -4.398

0.262 -0.430 -0.001 0.669 -0.081 0.563 -0.375 1.179 0.771 -0.528 -1.259 -0.451]

king
[-0.745 -0.120 0.373 0.368 -0.447 -0.229 0.701 0.829 0.395 -0.583 0.415 0.371 -3.691

-0.201 0.115 -0.347 0.362 0.096 -0.018 0.685 -0.049 0.540 -0.210 -0.654 0.646]

queen
[-1.127 -0.521 0.456 0.211 -0.051 -0.652 1.140 0.699 -0.206 -0.718 -0.028 0.110 -

3.309 -0.493 -0.514 0.104 -0.118 -0.085 0.026 0.686 -0.292 0.459 -0.400 -0.404 0.318]

uncle
[-1.276 0.917 1.099 0.489 -0.700 -0.615 0.608 0.571 -0.220 -0.128 -0.227 0.698 -3.295

-0.665 0.783 -0.437 1.450 -0.611 -0.567 0.001 0.998 0.791 -0.643 -0.703 -0.544]

aunt
[-1.955 0.941 1.322 0.589 -0.483 -0.927 0.671 -0.268 -0.388 -0.476 -0.515 0.114 -

3.305 -0.602 0.071 -0.394 1.474 -0.367 -0.487 0.217 1.302 0.280 -0.748 -0.097 -0.484]

31

4.2.4. Creating Sentence Vectors

Sentence vectors are created by concatenating word vectors belonging to the words in a

tweet. Since convolution needs the same size input and all tweets do not have the same

length, we need to equalize the size of the tweets. In literature, different alternatives are

applied for getting equal size tweets. Most common way is to feed zeros to the end of short

tweets until getting the same length. Another common option is to feed randomly generated

values. We have tried a new way, which is to repeat the word vectors until we get the same

length (Algorithm 4.1). We set max word length to 40. We decided this number according

to the length of the tweets in our training dataset. If a tweet has more than 40 words, first 40

words are taken into consideration. For the tweets which have less than 40 words, we repeat

the words in the same order they appear in text. For instance the tweet “my parents are going

to the zac brown band concert tomorrow night and im so jealous.” has 16 words. Words in

this tweet are repeated twice and first eight words are repeated three times. Final

representation of tweet becomes “my parents are going to the zac brown band concert

tomorrow night and ım so jealous. my parents are going to the zac brown band concert

tomorrow night and ım so jealous. my parents are going to the zac brown” so it has finally

40 words.

After having all equal size tweets input data is created by concatenating vectoral

representations of words. The words which do not exist in our vocabulary forms another

problem. We use zero-padding for such words, that is, we add 25 zeros for these words.

Final vectors are saved to a file after adding sentiment value to each line for processing in

deep learning methods. These vectors are 40 times 25 dimensional vectors. So, we have

1000-dimensional vectors for sentence representation plus one sentiment value for each line

in the training file (Algorithm 4.1).

32

Algorithm 4.1. Creating sentence vectors with no region

maxNumberOfWords = 40

wordsArray = SplitTweetIntoWords()

while wordsCount < maxNumberOfWords do

 foreach word ∈ wordsArray do

 AddWordToWordList(wordList, word)

 wordsCount = wordsCount + 1

 end for

 foreach word ∈ wordList do

 wordVector = GetWordVectorFromDatabase(word)

 if wordVector is empty then

 for i from 1 to 25

 wordVector[i] = 0

 end for

 end

 sentenceVector = sentenceVector + wordVector

 end for

end

4.2.5. Creating Sentence Vectors with Regions

In addition to standard CNN, LSTM, and SVM, different combinations of these algorithms

are used in sentiment analysis. One alternative is to use regional structure for combination

as shown in Figure 2.1. In this structure, each sentence is split into regions. We use

punctuation notations such as full stop, comma, colon, semi-colon, question mark,

exclamation mark for splitting regions. Each region is set to a standard length of 10 words,

we apply the same rules used in the sentence vectors with no regions for padding and non-

existing words. In addition, each tweet is split into eight regions. If a tweet has less than

eight regions, regions are repeated in the same way we apply for the word length. If a tweet

has more than eight regions, first eight regions are used for training (Algorithm 4.2). Finally

we have 2000-dimensional vectors by concatenating eight regions in a sentence, 10 words

in a region, and 25 dimensional vectors for each word (Figure 4.1). For non-regional data

organization, the same structure is applied by accepting each single word as a region (Figure

4.2). Additionally, sentiment value is appended to the end of training file’s each line.

33

Algorithm 4.2. Creating sentence vectors with regional structure

maxNumberOfRegions = 8

maxNumberOfWords = 10

regionsArray = SplitTweetIntoRegions()

while regionsCount < maxNumberOfRegions do

 foreach region ∈ regionsArray do

 AddRegionToRegionList(regionList, region)

 regionsCount = regionsCount + 1

 end for

 foreach region ∈ regionList do

 wordsArray = SplitRegionIntoWords()

 while wordsCount < maxNumberOfWords do

 foreach word ∈ wordsArray do

 AddWordToWordList(wordList, word)

 wordsCount = wordsCount + 1

 end for

 foreach word ∈ wordList do

 wordVector = GetWordVectorFromDatabase(word)

 if wordVector is empty then

 for i from 1 to 25

 wordVector[i] = 0

 end for

 end

 sentenceVector = sentenceVector + wordVector

 end for

 end

 end for

end

Figure 4.1. Regional structure for one tweet with regional data

34

Figure 4.2. Regional structure for one tweet with non-regional data

4.3. NEURAL NETWORKS

Sentence vectors created in the previous step are used as input for training and testing issues.

SemEval2016 Task4 full data, SemEval2014 Task 9 Sub Task B full data, and SemEval2017

development data are used for training. SemEval2017 test data are used for testing which

have 12284 tweets in total. In this research, widely used learning models such as CNN and

LSTM are compared. In addition, some alternative ensembles and combinations of these

models are used for comparison. Moreover, SVM is applied as an alternative solution in one

combination.

4.3.1. Single CNN Network

Single CNN model is a deep learning model consisting of a convolution layer, a max pooling

layer, a flatten layer, and a fully connected (dense) layer with a sigmoid activation function.

Convolution layer takes input as 1000 dimensional vector which is a concatenation of 40

words, each word is represented by 25 dimensional vectors. It has 12 filters with a kernel

size of 50. Pool size is set to three in max pooling layer. Flatten layer is applied for making

the output of max pooling layer usable for fully connected layer. Since we have 12 filters,

output of the max pooling for each tweet is 317 x 12 matrix. Flatten layer concatenates these

values to a single vector. Finally, fully connected layer outputs three dimensional vector

which represent the probabilities of each class. Sigmoid activation function and mean square

error (mse) loss function is used for training. The same model is applied for regional word

embeddings, only dimensions change. Implementation details of configuration and

35

parameters for CNN are shown in Figure 4.3 and Table 4.3. The reason behind regional

model having less dimension after first convolution is that stride is set to 25 in the first

convolutional layer for being able to deal with large dimensional input.

Figure 4.3. Single CNN network

Table 4.3. CNN parameters for single CNN network

PARAMETER
VALUE

(NO REGIONS)

VALUE

(REGIONAL)

Number of Layers

1 Convolution

1 Max pooling

1 Fully connected

1 Convolution

1 Max pooling

1 Fully connected

Batch size 100 100

Epochs 300 300

Number of tweets 31007 31007

Word count 40 80

Word Vector Dimensions 25 25

Number of filters 12 12

Kernel size 50 50

Stride number 1 25

Pool size 3 3

Activation function sigmoid sigmoid

Loss function MSE MSE

Optimizer rmsprop rmsprop

Metrics accuracy accuracy

Validation split 0.05 0.05

36

4.3.2. Single LSTM Network

LSTM model uses the same input with the CNN model and some parameters such as

activation and loss functions are the same. But the layer outputs are totally different from

the one in CNN model described in previous section because of the differences between

CNN and LSTM structure. LSTM model has an LSTM layer, a dropout layer, a flatten layer,

and a fully connected layer. In LSTM layer, output dimension is set to three. A dropout of

20 percent is applied. Flatten layer and fully connected layer are used in the same way with

CNN model.

Figure 4.4. Single LSTM network

37

Table 4.4. LSTM parameters for single LSTM network

PARAMETER
VALUE

(NO REGIONS)

VALUE

(REGIONAL)

Number of Layers

1 LSTM

1 Dropout

1 Fully connected

1 LSTM

1 Dropout

1 Fully connected

Batch size 100 100

Epochs 300 300

Number of tweets 31007 31007

Word count 40 80

Word Vector Dimensions 25 25

Dropout 0.2 0.2

Activation function sigmoid sigmoid

Loss function MSE MSE

Optimizer rmsprop rmsprop

Metrics accuracy accuracy

Validation Split 0.05 0.05

4.3.3. Individual CNN and LSTM Networks with a SVM Classifier

SVM model used in this research is not a single SVM layer. In this configuration, single

CNN network and single LSTM network described in the previous sections are used with

the parameters described in Table 4.3, Table 4.4, Figure 4.3, and Figure 4.4.Outputs of the

fully connected layers of CNN model and LSTM model are concatenated and input to the

SVM for training. Therefore, SVM model structure is an ensemble of CNN model and

LSTM model described in the previous sections. SVM model has an input of six dimensional

vector and it outputs three dimensional vector. Aim of this configuration was to see whether

SVM could be used as a more intelligent algorithm rather than just voting results of LSTM

and CNN layers. Therefore, SVM model is applied with default values described in sklearn

[63] library. The default values of SVM described in sklearn library are; penalty parameter

C of the error term is one, kernel type to be used in the algorithm is rbf, kernel coefficient

for algorithm is set to auto which uses one / number of features, shrinking heuristic is used,

probability estimates are set to false, verbose output option is set to false.

38

Figure 4.5. Individual CNN and LSTM networks with a SVM classifier

4.3.4. Individual CNN and LSTM Networks

Input to this model is provided exactly in the same way with SVM model described in

previous section. The only difference is that instead of feeding LSTM and SVM results to

an SVM layer, a soft-voting is used for final prediction that means average of each class are

calculated to decide corresponding sentiment value.

Although models mentioned so far do not use regional structure, it is also used with data

provided for regional structure. When we use regional data, some parameters in the model

change for best accuracy. In addition, layer outputs have different shapes.

Figure 4.6. Individual CNN and LSTM networks

4.3.5. Multiple CNNs and LSTM Networks

In this structure (Figure 2.5), tweets are divided into regions. Each region is a sub sentence

in a tweet which is divided by punctuation marks such as full stop, comma, colon, semi-

39

colon, question mark, exclamation mark. Each tweet is divided into eight regions and each

region is set to a maximum number of 10 words.

Firstly, a CNN model is applied to each of eight regions. CNN model has a convolution

layer, a max pooling layer, a flatten layer, and a fully connected (dense) layer with a sigmoid

activation function. Convolution layer takes input as 250 dimensional vector which is a

concatenation of 10 words, each word is represented by 25 dimensional vectors. It has 12

filters with a kernel size of three. Pool size is set to three in max pooling layer. Since we

have 12 filters, output of the max pooling for each region is 2 x 12 matrix. Flatten layer

concatenates these values to a single vector. Finally, fully connected layer outputs three

dimensional vector which represent the probabilities of each class. Sigmoid activation

function and mean square error (mse) loss function are used for training.

Second step is to feed CNN model outputs to LSTM model and get the final predictions.

Since we have eight regions, LSTM model input is eight times three dimensional vectors.

LSTM model has an LSTM layer, a dropout layer, a flatten layer, and a fully connected

layer. In LSTM layer, output dimension is set to three. A dropout of 30 percent is applied.

Flatten layer and fully connected layer are used in the same way with CNN model.

Although this model is mainly used for regional structure, it is also used with data provided

without regions. In this scenario, each word in the tweet is accepted as a region for simplicity.

Therefore, region size in a tweet becomes 40 and each region consists of 25 dimensional

word vector. Network structure is shown in Figure 4.7 for both scenarios. CNN parameters

and LSTM parameters are shown in detail in Table 4.5 and Table 4.6.

40

Figure 4.7. Multiple CNNs and LSTM networks

Table 4.5. CNN parameters for multiple CNNs and LSTM networks

PARAMETER
VALUE

(NO REGIONS)

VALUE

(REGIONAL)

Number of CNNs 40 8

Number of Layers

1 Convolution

1 Max pooling

1 Fully connected

1 Convolution

1 Max pooling

1 Fully connected

Batch size 100 100

Epochs 300 300

Number of tweets 31007 31007

Input Dimensions 1 x 25 10 x 25

Number of filters 12 12

Kernel size 3 3

Stride number 1 1

Pool size 3 3

Activation function sigmoid sigmoid

Loss function MSE MSE

Optimizer rmsprop rmsprop

Metrics accuracy accuracy

Validation split 0.05 0.05

41

Table 4.6. LSTM parameters for multiple CNNs and LSTM networks

PARAMETER
VALUE

(NO REGIONS)

VALUE

(REGIONAL)

Number of Layers

1 LSTM

1 Dropout

1 Fully connected

1 LSTM

1 Dropout

1 Fully connected

Batch size 100 100

Epochs 300 300

Number of tweets 31007 31007

Input Dimensions 40 x 3 8 x 3

Dropout 0.3 0.3

Activation function sigmoid sigmoid

Loss function MSE MSE

Optimizer rmsprop rmsprop

Metrics accuracy accuracy

Validation Split 0.05 0.05

4.3.6. Multiple CNNs and Bidirectional LSTM Networks

This model is the same as the one in the previous section. Difference is the usage of

bidirectional LSTM layer instead of LSTM layer. When bidirectional LSTM is used, output

of LSTM layer differs because LSTMs in each direction yields three dimensional vectors

and a total of six dimensional vector is created. Difference can be seen in Figure 4.8. Aim

of this configuration is to compare the impact of using bidirectional LSTM instead of single

directional LSTM because some works in the literature have shown competitive results with

bidirectional LSTM. Parameters are the same as stated in Table 4.5 and Table 4.6.

42

Figure 4.8. Multiple CNNs and bidirectional LSTM networks

4.3.7. Single Three-layer CNN and LSTM Networks

This model consists of three convolution layers, each convolution is followed by a max

pooling layer with a pool size of three. After three CNN and max pooling layers, LSTM,

dropout, and fully connected layers are applied to decide final prediction. Configuration is

displayed in

Figure 4.9 where the input is directed to a three-layer CNN. The input has a size of 1000 if

it is based on words (non-regional) or a size of 2000 if it is based on regions (regional). CNN

parameters are shown in Table 4.7 and LSTM parameters are the same as described in Table

4.4.

Figure 4.9. Single three-layer CNN and LSTM networks

43

Table 4.7. CNN parameters for single three-layer CNN and LSTM networks

PARAMETER
VALUE

(NO REGIONS)

VALUE

(REGIONAL)

Number of Layers
3 Convolution

3 Max pooling

3 Convolution

3 Max pooling

Batch size 100 100

Epochs 300 300

Number of tweets 31007 31007

Word count 40 80

Word Vector Dimensions 25 25

Number of filters 12 12

Kernel size 50 50

Stride number 1 1

Pool size 3 3

Activation function sigmoid sigmoid

Loss function MSE MSE

Optimizer rmsprop rmsprop

Metrics accuracy accuracy

Validation split 0.05 0.05

4.3.8. Single Three-layer CNN and Bidirectional LSTM Networks

This model is the same as the model described in the previous section. Only difference is the

application of bi-directional LSTM layer instead of one directional LSTM. Motivation

behind this configuration is to compare the impact of using bidirectional LSTM instead of

single directional LSTM because some works in the literature have shown competitive

results with bidirectional LSTM. CNN parameters and LSTM parameters are the same as

described in Table 4.7 and Table 4.4.

Figure 4.10. Single three-layer CNN and bidirectional LSTM networks

44

5. IMPLEMENTATION

This research can be split into two steps. First step is about arranging input data and second

step is deep learning itself. In each step, different tools and technologies are used for

implementation.

First step of sentiment analysis is to download data and convert tweets into numerical values.

We need to download tweets for converting them to numerical values. SemEval committee

does not directly distribute tweets because of Twitter privacy laws that forbids sharing of

removed tweets. They provide us with only status ids of tweets with a text file. Tweets are

downloaded from Twitter databases via C# LinqToTwitter.net library, which is a publicly

available library for tweet operations like reading, sharing, editing tweets. Downloaded

tweets are inserted to an Sql Server database, and tweets are cleaned by removing links,

replacing smileys, etc mentioned in Section 4.2.

Figure 5.1. Tweet download application

45

Word vectors are needed to represent whole tweet in numerical values. We have created a

windows application with .Net framework and C# programming language to create

word2vec word vectors. Word vectors are created from SemEval data with open source C#

word2vec library named word2vec.net. We have configured library to create 25 dimensional

word vectors using continuous bag of words model, discarding words those occur less than

5 times, and repeating 100 iterations for training. The file containing SemEval 2014 tweets,

SemEval 2016 tweets, and SemEval 2017 development tweets is set as training file for

word2vec model and word vectors are inserted to the database (Figure 5.2) after

unsupervised training with the selected file. Inserted word vectors are normalized with

another .Net application written with C# programming language.

Figure 5.2. Relational database diagram for tweets and normalized word vectors

46

Finally, sentence vectors are created from word vectors. In single models, word vectors are

simply concatenated to create sentence vectors. In regional structure, tweets are splitted into

regions, later word vectors in each region are concatenated and later regions are concatenated

to form sentence vectors. This application is also written with C# and .Net framework. This

application exports sentence vectors to text file with System.IO library in .Net Framework.

Second step is the development and training of deep learning algorithms. In this phase,

formatted text data files exported from .Net application are used as input to learning models.

Learning models are created with Python. Pandas library is used for reading input files.

Tensorflow [62] framework and Keras [64] deep learning libraries are used for designing

deep learning models in Python. In addition, sklearn [63] library is used for SVM model.

47

6. TEST AND EVALUATION

This chapter compares the differences among different learning models such as CNN,

LSTM, SVM, and their combinations in both classic way or regional structure. In addition,

performance of pretrained GloVe vectors and self-trained Word2Vec vectors from SemEval

data are compared.

6.1. COMPARISON OF DESCRIBED DEEP LEARNING CONFIGURATIONS

To begin with the testing and evaluation process, first mention about the data used for

training and testing. Tweets published on Twitter have been changing continuously. For

example, if you want to get tweets containing any hashtag, word, or topic, you can get

different set of tweets each time you try because new tweets may be published, tweets may

be updated, or previously published tweets may be removed. Of course, this change is

proportional to popularity of the subject and keywords you search. Therefore, we have

decided to work with a publicly distributed data set provided by SemEval committee. Even

though we have worked with a static data set, we couldn’t prevent deletion of some tweets.

SemEval 2017 was dealing with two languages, Arabic and English with different subtasks.

We have used data for Task 4 Subtask A which is about considering English tweets with

positive, negative, and neutral sentiment values. Most of the top scoring teams use deep

learning models such as CNN, LSTM, SVM, and their combinations in SemEval 2017 [25].

The overall accuracy for the evaluation of testing set and the computational efficiency is

calculated by the equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(6.1)

Other metrics used for test and evaluation are precision, recall, and f-measure values.

Precision talks about how precise/accurate your model is out of those predicted positive,

how many of them are actually positive. Precision is ratio of truly predicted positive to all

positive predictions. (Equation 6.2)

48

Recall actually calculates how many of the actual positives our model capture through

labelling it as positive (Equation 6.3)

F-measure (F-score or F1 score) is the balance between precision and recall values. It is

calculated by harmonic average of the precision and recall with the Equation 6.4.

For each class precision, recall, and F-measure are calculated by below equations where:

TP: instance is classified as a, belongs to a

FP: instance is classified as a, belongs to others

TN: instance is classified as others, belongs to others

FN: instance is classified as others, belongs to a

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(6.2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑅𝑎𝑡𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(6.3)

Let a, b, and c represent positive, negative, and neutral classes respectively. After calculating

recall, precision, and F-measure for each class individually, we take average of recall,

precision, and F-measure respectively to find values for the entire model. Results are shown

in Table 6.2 and Table 6.3.

According to our evaluation criteria, we started with comparing different word vectors.

First, we tried different deep learning models with word2vec vectors. Word vectors are

created from previous years’ SemEval data tweets plus SemEval 2017 training data. 31007

tweets are used for training word vectors. Tweets consist of 662K words and it has a

vocabulary of size 10K.

𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑅𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(6.4)

49

Second option was to use GloVe vectors. GloVe vectors are created by Stanford NLP Group

and published freely. Word embeddings are created from two billion tweets with a corpus

size of 27 billion words and 1.2 million words in vocabulary. Comparison of word vectors

is shown at (Table 6.1).

With word2vec model, maximum accuracy of 52 percent was reached with two similar

models which are combination of CNN and single LSTM or bi-directional LSTM with

regional and non-regional structure. On the other hand, models with GloVe vectors scored

to a maximum of 59 percent in case of using CNN and LSTM organically in multiple CNN

and LSTM configuration described in section 4.3.5 and 4.3.6. The reason behind it lies to

the fact that with Word2Vec model is trained with a relatively small training dataset, around

32.000 tweets are too little compared to the pretrained GloVe word vectors’ training dataset

with a larger corpus.

Table 6.1. Comparison of word embeddings

Model file

Number of

dimensions

Corpus

(size)

Vocabulary

size Author Architecture

Twitter (2B

Tweets)

25 Twitter

(27B)

1.2M GloVe GloVe

Twitter (33K

Tweets)

25 Twitter

(662K)

10K Generated via

word2vec.Net

library

Word2vec

After comparing different word vectors, our main research of interest is comparison of

different learning models. According to our test results, best scorers in terms of accuracy

were the ones in which CNN and LSTM models are used. Usage of multiple CNNs with

LSTM networks increases the performance between three and six percent regardless of used

word embedding system. This system almost always scores the best among all the versions

with both one directional and bidirectional LSTMs. Another observation is that, arranging

data in a regional structure does not always improve the performance, especially in the tests

done with GloVe vectors. Soft voting after individual CNN and LSTM layers scores better

http://www-nlp.stanford.edu/data/glove.twitter.27B.zip
http://www-nlp.stanford.edu/data/glove.twitter.27B.zip

50

than using an SVM layer for these results. Final observation is that bidirectional LSTM

networks does not provide much better results than one directional standard LSTM models,

which can be because of the structure of words in a sentence.

Table 6.2. Test results with word2vec self-trained vectors

Embedding Word System: Word2Vec

Network Model Type Recall Prec. F1 Acc.

1. Single CNN network N-Ra 0.33 0.35 0.33 0.49

R 0.32 0.34 0.33 0.51

2. Single LSTM network N-R 0.43 0.51 0.39 0.51

R 0.44 0.49 0.39 0.50

3. Individual CNN and LSTM Networks N-R 0.43 0.47 0.37 0.50

R 0.46 0.52 0.42 0.52

4. Individual CNN and LSTM Networks with

SVM classifier

N-R 0.45 0.46 0.43 0.49

R 0.42 0.54 0.38 0.51

5. Single 3-Layer CNN and LSTM Networks N-R 0.41 0.52 0.40 0.46

R 0.40 0.46 0.35 0.48

6. Multiple CNNs and LSTM Networks N-R 0.43 0.47 0.37 0.50

R 0.46 0.52 0.43 0.52

7. Single 3-Layer CNN and bi-LSTM Networks N-R 0.42 0.45 0.39 0.48

R 0.42 0.47 0.36 0.48

8. Multiple CNNs and bi-LSTM Networks N-R 0.43 0.50 0.38 0.51

R 0.46 0.51 0.44 0.52

a N-R: Non-Regional, R: Regional word embedding

51

Table 6.3. Test results with GloVe pretrained vectors

Embedding Word System: GloVe

Network Model Type Recall Prec. F1 Acc.

1. Single CNN network N-Ra 0.44 0.41 0.4 0.54

R 0.35 0.31 0.31 0.48

2. Single LSTM network N-R 0.5 0.58 0.48 0.55

R 0.51 0.55 0.51 0.55

3. Individual CNN and LSTM Networks N-R 0.53 0.6 0.53 0.58

R 0.55 0.6 0.55 0.56

4. Individual CNN and LSTM Networks with SVM

classifier

N-R 0.52 0.55 0.53 0.56

R 0.49 0.6 0.5 0.56

5. Single 3-Layer CNN and LSTM Networks N-R 0.5 0.5 0.5 0.52

R 0.43 0.61 0.39 0.53

6. Multiple CNNs and LSTM Network N-R 0.53 0.60 0.53 0.58

R 0.55 0.6 0.56 0.59

7. Single 3-Layer CNN and bi-LSTM Network N-R 0.52 0.59 0.53 0.57

R 0.50 0.57 0.50 0.55

8. Multiple CNNs and bi-LSTM Network N-R 0.54 0.60 0.55 0.59

R 0.55 0.6 0.56 0.59

a N-R: Non-Regional, R: Regional word embedding

6.2. COMPARISON OF BEST SCORING COMBINATION WITH THE STATE OF

THE ART METHODS

In the second comparison, we compare our best scoring network with the state of the art

models. Results are displayed in Table 6.4. It is obviously seen our study has similar but a

bit lower, up to six percent, scores. This difference stem from usage of different datasets and

specialized methods used in other studies for reshaping dataset or tuning the neural network.

Moreover, the scope of this study was not focused on achieving the best performance in

comparison with other studies, but rather to evaluate and compare different deep neural

networks and word embedding systems on a single testing environment with an accepted

dataset. At this point, it is worth to mention that the best performance in the literature in

terms of accuracy (~65 percent) it is still not satisfactory, thus revealing that on sentiment

52

analysis deep learning methods are still far from guaranteeing a performance comparable to

other fields where the same networks are used with higher success rate (e.g. deep learning

networks for object recognition in images).

Table 6.4. Comparison of the state of the art methods with the best results of current study

Study Network

System

Word Embedding Dataset (labeled

Tweets)

Acc.

Baziotis et al. [30] bi-LSTM GloVe ~50.000 0.65

Cliche [52] CNN+LSTM GloVe, FastText,Word2Vec ~50.000 0.65

Deriu et al. [16] CNN GloVe, Word2Vec ~300.000 0.65

Rouvier and Favre [24] CNN Lexical, POS, Sentiment ~20.000 0.61

Wange et al. [1] CNN+LSTM Regional Word2Vec ~8.500 1.341a

Current study CNN+LSTM Regional GloVe ~31.000 0.59
a RMSE

Cliche [52] has tried different deep learning methods which are CNN and LSTM. This model

is similar to the one we have proposed in Section 4.3.4. They perform better because they

have done a lot of improvements starting from the number of CNN and LSTM models. We

have only used one CNN and one LSTM for soft-voting. In CNN, they use 200 dimensional

word vectors. They set the tweet size to have 80 words. 200 filters are applied with three

different kernel sizes. So, a total of 600 filters are applied. After that a hidden layer is used

with a size of 30. To reduce overfitting 50 percent dropout is applied after both max pooling

and fully connected layers. They use cross-entropy as the loss function, loss is minimized

using the Adam optimizer. They use bi-directional LSTM. In terms of data improvements,

100 million unlabeled tweets are downloaded in addition to 50000 labeled tweets, and these

data are labeled according to smileys, tweets with smiling face “:)” are accepted positive,

ones with sad face “:(“ are accepted negative. They train Word2vec, GloVe, and FastText

vectors with default settings from 100 million unlabeled tweets. They ensemble 10 CNNs

and 10 LSTMs together through soft voting. The models ensembled have different random

weight initializations, different number of epochs (from 4 to 20 in total), different set of filter

sizes (either [1, 2, 3], [3, 4, 5] or [5, 6, 7]) and different embeddings. Since this configuration

is similar to our individual CNN and LSTM model which has scored lower than our multiple

CNNs and LSTM configuration, data collection and pre-processing, different number of

filters, and soft voting mechanism can be applied to our best scoring configuration to get

better results for the future work.

53

6.3. CLASS BASED PREDICTION COMPARISON

In Table 6.5 and Table 6.6 accuracies for each class labels are shown according to Equation

6.1. From the results, we can easily state that positive classes can be predicted most easily

in our experiments regardless of word embedding technique and neural network

configuration. Second best predicted classes are negative classes. Our learning algorithms

have difficulties in predicting neutral sentiment values. This may be because of unequal

distribution of classes in our data set. As it is shown in Table 6.7, almost half of the tweets

have neutral sentiment in both training and test data. In addition, training data have a short

number of negative tweets and test data have very little positive tweet set.

Table 6.5. Test results for class accuracies with word2vec self-trained vectors

Embedding Word System: Word2Vec

Network Model Type Positive Acc. Negative Acc. Neutral Acc.

1. Single CNN network N-Ra 0.83 0.47 0.39

R 0.85 0.46 0.38

2. Single LSTM network N-R 0.79 0.68 0.54

R 0.78 0.68 0.54

3. Individual CNN and LSTM

Networks

N-R 0.85 0.68 0.61

R 0.86 0.68 0.61

4. Individual CNN and LSTM

Networks with SVM classifier

N-R 0.75 0.67 0.55

R 0.82 0.68 0.53

5. Single 3-Layer CNN and

LSTM Networks

N-R 0.74 0.66 0.52

R 0.83 0.69 0.53

6. Multiple CNNs and LSTM

Networks

N-R 0.79 0.68 0.53

R 0.8 0.68 0.56

7. Single 3-Layer CNN and bi-

LSTM Networks

N-R 0.77 0.67 0.53

R 0.76 0.68 0.53

8. Multiple CNNs and bi-LSTM

Networks

N-R 0.81 0.68 0.53

R 0.8 0.68 0.56

a N-R: Non-Regional, R: Regional word embedding

54

Table 6.6. Test results for class accuracies with GloVe self-trained vectors

Embedding Word System: GloVe

Network Model Type Positive
Acc.

Negative
Acc.

Neutral
Acc.

1. Single CNN network N-Ra 0.84 0.51 0.42

R 0.82 0.46 0.37

2. Single LSTM network N-R 0.82 0.7 0.57

R 0.8 0.71 0.58

3. Individual CNN and LSTM

Networks

N-R 0.89 0.71 0.67

R 0.88 0.7 0.67

4. Individual CNN and LSTM

Networks with SVM classifier

N-R 0.82 0.71 0.59

R 0.83 0.71 0.57

5. Single 3-Layer CNN and

LSTM Networks

N-R 0.76 0.71 0.57

R 0.83 0.69 0.53

6. Multiple CNNs and LSTM

Networks

N-R 0.84 0.72 0.6

R 0.83 0.73 0.61

7. Single 3-Layer CNN and bi-

LSTM Networks

N-R 0.83 0.72 0.59

R 0.82 0.71 0.57

8. Multiple CNNs and bi-

LSTM Networks

N-R 0.83 0.73 0.61

R 0.83 0.73 0.61

a N-R: Non-Regional, R: Regional word embedding

Table 6.7. Sentiment distribution in tweet data set

Data

Type

Positive

Tweets

Negative

Tweets

Neutral

Tweets

Total

Train 11469 4966 14572 31007

Test 2375 3972 5937 12284

If we take into consideration our best scoring model for further analysis we prefer to continue

with multiple CNNs and LSTM network with GloVe vectors, and we select non regional

55

data organization because it has the same score with regional data set, but it requires less

computing power because it has smaller input data dimensions. According to confusion

matrix (Table 6.8), we can see that most errors are done by predicting positive and negative

as neutral. In addition least errors are confusion of positive values with negative values.

Precision, recall, and f-measure values for each class are reported in Table 6.9.

Table 6.8. Confusion matrix for multiple CNN and LSTM network

Confusion Matrix
Actual Classes

Positive Negative Neutral

Predicted

Classes

Positive 1100 139 594

Negative 89 1228 583

Neutral 1186 2605 4760

Table 6.9. Comparison of class scores for multiple CNN and LSTM network

 Recall Precision F-Measure

Positive 0.46 0.60 0.52

Negative 0.31 0.65 0.42

Neutral 0.80 0.56 0.66

6.4. CROSS VALIDATION RESULTS COMPARISON

Since our data is tiny compared to state of the art models, we have tried our selected deep

learning configuration with k-fold cross validation. Training and test data described in the

previous sections, with a total of 43290 records, are concatenated and used together. In terms

of k we applied two different values, 10-fold cross validation and 5-fold cross validation

because these two k values are most commonly used k values in the literature [65]. Our

selected model was multiple CNNs and LSTM networks with no region. Cross validation

takes long time because we are training the model five or ten times according to k value,

moreover, we have 40 CNNs and one LSTM model in each iteration. In order to reduce

56

training time, we have set number of CNN epoches to 100 instead of 300 because our aim

was to compare cross validation results with the system’s performance using test data rather

than increasing the accuracy. For equality of training parameters we have also tried our

model with 100 CNN epoches and we have observed only one percent decrease so it is not

so much important compared to time we earn by decreasing epoch number. In this

experiment, we have observed that cross validation score with bot 10-fold and 5-fold

validation are similar to results we have obtained for training and testing data independently.

In addition, we have tried with two different batch sizes, 100 and 1000. We have observed

that increasing batch size to 1000 causes a five to eight percent decrease in accuracy.

Another interesting observation is that, 10-fold cross validation performs better in 5-fold

with 1000 batch size. On the other hand, 5-fold cross validation outperforms 10-fold

validation with 100 batch size. Therefore, it is not possible to say 10-fold cross validation is

better than 5-fold validation, or vice versa although we use the same data set, it depends on

the parameters used.

Table 6.10. Cross validation results comparison

Accuracies Average

Accuracy

Configuration

Multiple CNNs and

LSTM Networks With No

Region

0.58 0.58 CNN Epoches:300

LSTM Epoches: 300

Batch size: 100

Multiple CNNs and

LSTM Networks With No

Region

0.57 0.57 CNN Epoches:100

LSTM Epoches: 300

Batch size: 100

5-Fold Cross Validation [0.50 0.59 0.59 0.57 0.55] 0.56 CNN Epoches:100

LSTM Epoches: 300

Batch size: 100

10-Fold Cross Validation [0.54 0.51 0.56 0.59 0.59

0.57 0.55 0.60 0.57 0.57]

0.57 CNN Epoches:100

LSTM Epoches: 300

Batch size: 100

5-Fold Cross Validation [0.48 0.54 0.54 0.49 0.48] 0.51 CNN Epoches:100

LSTM Epoches: 300

Batch size: 1000

10-Fold Cross Validation [0.45 0.46 0.56 0.51 0.46

0.51 0.50 0.52 0.49 0.48]

0.49 CNN Epoches:100

LSTM Epoches: 300

Batch size: 1000

57

6.5. COMPARISON WITH LARGER DIMENSIONAL WORD VECTORS

In these experiment sets, we have applied our selected network configuration with different

size of word embeddings such as 100 dimensional word vectors and 200 dimensional word

vectors. Pre-trained GloVe word embeddings from Stanford university are downloaded for

this task (Table 3.2). All the embeddings are created from the same dataset with a vocabulary

size of 1.2 million words and 27 billion corpus size. So, all vectors are compared under the

same circumstances.

 First, we have tested the network with the same parameters we had previously tried with

our best scoring model as described in Table 6.11. Within these implementations, we have

observed that 100 dimensional vectors scored the best accuracy with 61 percent and this is

the maximum accuracy we have reached so far. Since 200 dimensional vectors score less

than 100 dimensional vectors, we cannot conclude that increasing the vector size is

positively related with accuracy. The aim should be finding optimum vector size for best

accuracy.

Table 6.11. Larger dimensional vectors with same parameters

PARAMETER
25D

VECTORS

100D

VECTORS

200D

VECTORS

Number of CNNs 40 40 40

Batch size 100 100 100

Epochs 300 300 300

Number of tweets 31007 31007 31007

Input Dimensions 1 x 25 1 x 100 1 x 200

Number of filters 12 12 12

Kernel size 3 3 3

Stride number 1 1 1

Pool size 3 3 3

Activation function sigmoid sigmoid sigmoid

Loss function MSE MSE MSE

Optimizer rmsprop rmsprop rmsprop

Metrics accuracy accuracy accuracy

Validation split 0.05 0.05 0.05

Accuracy 0.58 0.61 0.60

58

In the second experiment set, we have tried 100 dimensional and 200 dimensional word

vectors with different parameters such number of filters, kernel size, and pooling size. In

these experiments, we have again observed superiority of 100 dimensional vectors over 200

dimensional vectors in all parameter sets. Another observation is that, our best scoring

parameters which were decided before with 25 dimensional vectors have again scored best

results with both 100 and 200 dimensional vectors. In addition, increasing or decreasing any

of these parameters is not directly related with accuracy. We can only see their effect with

trial and error in accordance with other parameters, as observed for number of dimensions

in word embeddings.

Table 6.12. Larger dimensional vectors with different parameters

PARAMETER
100D

VECTORS

200D

VECTORS

100D

VECTORS

200D

VECTORS

100D

VECTORS

Number of CNNs 40 40 40 40 40

Batch size 100 100 100 100 100

Epochs 300 300 300 300 300

Number of tweets 31007 31007 31007 31007 31007

Input Dimensions 1 x 100 1 x 200 1 x 100 1 x 200 1 x 100

Number of filters 48 48 48 48 12

Kernel size 12 12 12 12 3

Stride number 1 1 1 1 1

Pool size 12 12 3 3 12

Activation

function

sigmoid sigmoid sigmoid sigmoid sigmoid

Loss function MSE MSE MSE MSE MSE

Optimizer rmsprop rmsprop rmsprop rmsprop rmsprop

Metrics accuracy accuracy accuracy accuracy accuracy

Validation split 0.05 0.05 0.05 0.05 0.05

Accuracy 0.60 0.57 0.59 0.46 0.57

6.6. LSTM AND GRU COMPARISON

Another comparison was about the GRU and LSTM models. We have implemented GRU

models alone and compared with LSTM only model. The same parameters described in

Table 4.4 are used for these implementations. In addition, we have applied GRU instead of

LSTM in multiple CNNs and LSTM models. Parameter details are shown in Table 4.5 and

59

Table 4.6. They have output similar results in our tests (Table 6.13), but GRU only model

performed one percent better than LSTM only model with both Glove and word2vec

embeddings. On the other hand, they have shown the same accuracy when used with multiple

CNN model. Therefore, it is not easy to say one is more preferable than the other according

to our test results.

Table 6.13. LSTM and GRU comparison

Pretrained

GloVe vectors

Self-trained

word2vec vectors

Model LSTM

Only

GRU

Only

CNN

LSTM

CNN

GRU

LSTM

Only

GRU

Only

CNN

LSTM

CNN

GRU

Accuracy 0.55 0.56 0.59 0.59 0.51 0.52 0.52 0.52

Recall 0.5 0.54 0.55 0.55 0.43 0.43 0.46 0.46

Precision 0.58 0.56 0.6 0.6 0.51 0.51 0.52 0.52

F-Measure 0.48 0.54 0.56 0.56 0.39 0.41 0.43 0.43

60

7. CONCLUSION

In this thesis, different configurations of deep learning methods with CNN, LSTM, SVM,

and their combinations and ensembles are tested for sentiment analysis with Twitter data

provided by SemEval organization. These tests proved the importance of data for deep

learning tasks by showing better results with pretrained word vectors from a larger corpus.

Test results showed similar results with state of the art methods but with lower values. With

the help of convolution’s effective dimensionality reduction process and long and short term

dependency detection of LSTM networks, combination of these two models scored better

than their individual scores. All in all, performance contribution of different dataset has

contributed much more than changing learning models used in the networks. We have

observed this different in both using different word embeddings and comparing our best

networks with state of the art models. Therefore, it is more valuable than concentrating on

getting better datasets for future work. In order to having a better training and test datasets,

larger dimensional word vectors such as having 100, 300 dimensions are used and we have

seen best results with 100 dimensional word vectors. SentiWordNet datasets can be used in

another neural network and results can be combined with word embedding results, thus

making use of different word embeddings. More CNN, LSTM models with different

parameters can be added to networks throughout Grid Search.

To summarize, the contribution of this thesis is that it allowed to evaluate different deep

neural network configurations and principal word embedding systems under a single dataset

and evaluation framework allowing to shed more light on their advantages and limitations.

61

REFERENCES

1. Wang J, Yu LC, Lai KR, Zhang X. Dimensional sentiment analysis using a regional CNN-

LSTM model. Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers); 2016.

2. Linq provider for the twitter api (twitter library) [cited 2018 16 July]. Available from:

https://github.com/JoeMayo/LinqToTwitter.

3. Lee L, Pang B. Opinion mining and sentiment analysis. Foundations and Trends in

Information Retrieval. 2008;1(2):1–135.

4. Fukushima K. Neocognition: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological Cybernetics.

1980;202(36):193–202.

5. Lecun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-based learning.

Shape, Contour and Grouping in Computer Vision. 1999;1:319-345.

6. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error

propagation. Parallel Distributed Processing: Explorations in The Microstructure of

Cognition. 1985;1:318-362.

7. Understanding LSTM networks [cited 2019 24 February]. Available from:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

8. Kim Y. Convolutional neural networks for sentence classification. Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP);

2014.

9. Dos Santos CN, Gatti M. Deep convolutional neural networks for sentiment analysis of

short texts. Proceedings of COLING 2014, the 25th International Conference on

62

Computational Linguistics: Technical Papers; 2014.

10. Palogiannidi E. Tweester at SemEval-2016 task 4: Sentiment analysis in twitter using

semantic-affective model adaptation. Proceedings of the 10th International Workshop

on Semantic Evaluation (SemEval-2016); 2016.

11. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in

vector space. Proceedings of the International Conference on Learning Representations

(ICLR 2013); 2013.

12. Zhang L, Wang S, Liu B. Deep learning for sentiment analysis: A Survey. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2018;8(4): 253-287.

13. Pennington J, Socher R, Manning C. Glove: Global vectors for word representation.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP); 2014.

14. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics.

2016;5(1):135–146.

15. Hamdan H. Senti17 at SemEval-2017 task 4: Ten convolutional neural network voters

for tweet polarity classification. Proceedings of the 11th International Workshop on

Semantic Evaluations (SemEval-2017); 2017.

16. Deriu J, Gonzenbach M, Uzdilli F, Lucchi A, De Luca V, Jaggi M. SwissCheese at

SemEval-2016 task 4: Sentiment classification using an ensemble of convolutional

neural networks with distant supervision. Proceedings of the 10th International

Workshop on Semantic Evaluation (SemEval-2016); 2016.

17. Yin Y, Yangqiu S, Zhang M. NNEMBs at SemEval-2017 task 4: Neural twitter sentiment

classification: A simple ensemble method with different embeddings. Proceedings of

the 11th International Workshop on Semantic Evaluations (SemEval-2017); 2017.

63

18. Kim Y. Convolutional neural networks for sentence classification. Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP);

2014.

19. Lei T. Semi-supervised question retrieval with gated convolutions. Proceedings of

NAACL-HLT 2016; 2016.

20. Yoon J, Lyu K, Kim H. Adullam at SemEval-2017 task 4: Sentiment analyzer using

lexicon integrated convolutional neural networks with attention. Proceedings of the 11th

International Workshop on Semantic Evaluations (SemEval-2017); 2017.

21. Yin R, Li P, Wang B. Sentiment lexical-augmented convolutional neural networks for

sentiment analysis. Proceedings - 2017 IEEE 2nd International Conference on Data

Science in Cyberspace; 2017: IEEE.

22. Hao Y, Lan Y, Li Y, Li C. XJSA at SemEval-2017 task 4: A deep system for sentiment

classification in twitter. Proceedings of the 11th International Workshop on Semantic

Evaluations (SemEval-2017); 2017.

23. Maoquan W, Shiyun C, Yufei X, Lu Z. EICA at SemEval-2017 task 4: A simple

convolutional neural network for topic-based sentiment classification. Proceedings of

the 11th International Workshop on Semantic Evaluations (SemEval-2017); 2017.

24. Rouvier M, Favre B. SENSEI-LIF at SemEval-2016 task 4: Polarity embedding fusion

for robust sentiment analysis. Proceedings of the 10th International Workshop on

Semantic Evaluation (SemEval-2016); 2016.

25. Briones G, Amarasinghe K, McInnes BT. SemEval-2016 task 4: Sentiment analysis in

twitter. Proceedings of the 10th International Workshop on Semantic Evaluation

(SemEval-2016); 2016.

26. Gao H, Oates T. MDSENT at at SemEval-2016 Task 4: A supervised system for message

polarity classification. Proceedings of the 10th International Workshop on Semantic

64

Evaluation (SemEval-2016); 2016.

27. You Q, Luo J, Jin H, Yang J. Robust image sentiment analysis using progressively

trained and domain transferred deep networks. Image and Vision Computing.

2015;65(1):3–14.

28. Recurrent neural networks (RNN) – the vanishing gradient problem [cited 2019 20

March]. Available from: https://www.superdatascience.com/recurrent-neural-

networks-rnn-the-vanishing-gradient-problem/.

29. Lai S, Xu L, Liu K, Zhao J. Recurrent convolutional neural networks for text

classification. Twenty-ninth AAAI Conference on Artificial Intelligence; 2015.

30. Baziotis C, Pelekis N, Doulkeridis C. DataStories at SemEval-2017 task 4: Deep LSTM

with attention for message-level and topic-based sentiment analysis. Proceedings of the

11th International Workshop on Semantic Evaluations (SemEval-2017); 2017.

31. Ayata D, Saraclar M, Ozgur A. BUSEM at SemEval-2017 task 4: A sentiment analysis

with word embedding and long short term memory RNN approaches. Proceedings of

the 11th International Workshop on Semantic Evaluations (SemEval-2017); 2017.

32. Cho K. Learning phrase representations using RNN encoder-decoder for statistical

machine translation. Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP); 2014.

33. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural

networks on sequence modeling. Deep Learning Workshop at NIPS2014; 2014.

34. Khan FH, Qamar U, Bashir S. A semi-supervised approach to sentiment analysis using

revised sentiment strength based on SentiWordNet. Knowledge and Information

Systems. 2016;51(3):851–872.

35. Giorgis S, Rousas A, Pavlopoulos J, Malakasiotis P, Androutsopoulos I.

65

aueb.twitter.sentiment at SemEval-2016 task 4: A weighted ensemble of SVMs for

twitter sentiment analysis. Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval-2016); 2016.

36. Gomez-Adorno H, Vilariño D, Sidorov G, Pinto D. CICBUAPnlp at SemEval-2016 task

4-A : Discovering twitter polarity using enhanced embeddings. Proceedings of the 10th

International Workshop on Semantic Evaluation (SemEval-2016); 2016.

37. Sarker A, Gonzalez G. DiegoLab16 at SemEval-2016 task 4 : Sentiment analysis in

twitter using centroids, clusters, and sentiment lexicons. Proceedings of the 10th

International Workshop on Semantic Evaluation (SemEval-2016); 2016.

38. Martínez V, Pla F, Hurtado LF. DSIC-ELIRF at SemEval-2016 task 4: Message polarity

classification in twitter using a support vector machine approach. Proceedings of the

10th International Workshop on Semantic Evaluation (SemEval-2016); 2016.

39. Zhou Y, Zhang Z, Lan M. ECNU at SemEval-2016 task 4: An empirical investigation of

traditional NLP features and word embedding features for sentence-level and topic-level

sentiment analysis in twitter. Proceedings of the 10th International Workshop on

Semantic Evaluation (SemEval-2016); 2016.

40. Sarker A, Gonzalez G. HLP@UPenn at SemEval-2017 task 4A: A simple, self-

optimizing text classification system combining dense and sparse vectors. Proceedings

of the 11th International Workshop on Semantic Evaluations (SemEval-2017); 2017.

41. Esuli A, Faedo IA, Moruzzi G. ISTI-CNR at SemEval-2016 task 4 : Quantification on

an ordinal scale. Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval-2016); 2016.

42. Cozza V, Petrocchi M. MIB at SemEval-2016 task 4a: Exploiting lexicon based features

for sentiment analysis in twitter. Proceedings of the 10th International Workshop on

Semantic Evaluation (SemEval-2016); 2016.

66

43. Corrêa EA, Marinho VQ, Borges L, Santos D. NILC-USP at SemEval-2017 task 4: A

multi-view ensemble for twitter sentiment analysis. Proceedings of the 11th

International Workshop on Semantic Evaluations (SemEval-2017); 2017.

44. Nandi V, Agrawal S. Twitter sentiment analysis using hybrid approach. International

Research Journal of Engineering and Technology. 2016;3(6):2887–2890.

45. Jabreel M, Moreno A. SiTAKA at SemEval-2017 task 4: Sentiment analysis in twitter

based on a rich set of features. Proceedings of the 11th International Workshop on

Semantic Evaluations (SemEval-2017); 2017.

46. Lozi D, Šari D, Toki I, Medi Z, Šnajder J. TakeLab at SemEval-2017 task 4: Recent

deaths and the power of nostalgia in sentiment analysis in twitter. Proceedings of the

11th International Workshop on Semantic Evaluations (SemEval-2017); 2017.

47. Balikas G, Amini M. TwiSE at SemEval-2016 task 4: Twitter sentiment classification.

Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-

2016); 2016.

48. Abreu J, Castro I, Martínez C, Oliva S, Gutiérrez Y. UCSC-NLP at SemEval-2017 task

4: Sense n-grams for sentiment analysis in twitter. Proceedings of the 11th International

Workshop on Semantic Evaluations (SemEval-2017); 2017.

49. Wang M, Chu B, Liu Q, Zhou X. YNUDLG at SemEval-2017 task 4: A GRU-SVM

model for sentiment classification and quantification in twitter. Proceedings of the 11th

International Workshop on Semantic Evaluations (SemEval-2017); 2017.

50. Rosenthal S, Farra N, Nakov P. SemEval-2017 task 4: Sentiment analysis in twitter.

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-

2017); 2017.

51. Tang D, Qin B, Liu T. Document modeling with gated recurrent neural network for

sentiment classification. Proceedings of the 2015 Conference on Empirical Methods in

67

Natural Language Processing; 2015.

52. Cliché M. BB twtr at SemEval-2017 task 4: Twitter sentiment analysis with CNNs and

LSTMs. Proceedings of the 11th International Workshop on Semantic Evaluations

(SemEval-2017); 2017.

53. Rouvier M. LIA at SemEval-2017 task 4: An ensemble of neural networks for sentiment

classification. Proceedings of the 11th International Workshop on Semantic Evaluations

(SemEval-2017); 2017.

54. Angel González J, Pla F, Hurtado LF. ELiRF-UPV at SemEval-2017 task 4: Sentiment

analysis using deep learning. Proceedings of the 11th International Workshop on

Semantic Evaluations (SemEval-2017); 2017.

55. Zhang H, Wang J, Zhang J, Zhang X. YNU-HPCC at SemEval 2017 task 4: Using a

multi-channel CNN-LSTM model for sentiment classification. Proceedings of the 11th

International Workshop on Semantic Evaluations (SemEval-2017); 2017.

56. Yang TH, Tseng TH, Chen CP. System implementation for SemEval-2017 task 4 subtask

a based on interpolated deep neural networks. Proceedings of the 11th International

Workshop on Semantic Evaluations (SemEval-2017); 2017.

57. Xu S, Liang H, Baldwin T. UNIMELB at SemEval-2016 Tasks 4A and 4B: An ensemble

of neural networks and a word2vec based model for sentiment classification.

Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-

2016); 2016.

58. Deshmane AA, Friedrichs J. TSA-INF at SemEval-2017 task 4: An ensemble of deep

learning architectures including lexicon features for twitter sentiment analysis.

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-

2017); 2017.

59. Vilaresa D, Doval Y, Alonso MA, Rodriguez CG. LyS at SemEval-2016 task 4:

68

Exploiting neural activation values for twitter sentiment classification and

quantification. Proceedings of the 10th International Workshop on Semantic Evaluation

(SemEval-2016); 2016.

60. Khalil T, El-Beltagy SR. NileTMRG: Deep convolutional neural networks for aspect

category and sentiment extraction in SemEval-2016 task 5. Proceedings of the 10th

International Workshop on Semantic Evaluation (SemEval-2016); 2016.

61. Sudhakar S. Convolution neural network [cited 2019 04 June]. Available from:

https://towardsdatascience.com/convolution-neural-network-e9b864ac1e6c.

62. An end-to-end open source machine learning platform [cited 2019 04 June]. Available

from: https://www.tensorflow.org/.

63. Scikit-learn machine learning in python [cited 2019 01 June]. Available from:

https://scikit-learn.org/.

64. Keras: The python deep learning library [cited 2018 01 December]. Available from:

https://keras.io/.

65. Brownlee J. A gentle introduction to k-fold cross-validation [cited 2019 01 June].

Available from: https://machinelearningmastery.com/k-fold-cross-validation/.

